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Abstract

Numerical simulations of tip clearance flow have been carried out to define the loss
generation mechanisms associated with tip leakage in unshrouded axial turbines. Mix-
ing loss between the leakage, which takes the form of a strong embedded streamwise
vortex (uθ/ux ≥ 1 in the vortex core), and the mainstream flow is found to be the
main source of loss. Vortex line contraction, and consequent vortex core expansion,
and also vortex breakdown, are identified as the two important mechanisms that
determine mixing loss. Because of these vortex dynamic features, the behavior is
different from the conventional view of the effect of pressure level on mixing of non-
uniform flows. More specifically, it is shown, through control volume arguments and
axisymmetric computations, that as a strongly swirling flow passes through a pres-
sure rise, the mixed-out loss can either decrease or increase, the latter occurring if
the deceleration becomes large enough to initiate vortex breakdown. It is further
shown that tip vortices in turbines experience pressure rises large enough to cause
vortex breakdown. The effect of pressure distribution on tip leakage losses is illus-
trated through examination of two turbine blades, one designed with a forward loaded
tip and one with an aft loaded tip. The computations show a 16% difference in tip
clearance loss between the two, due to the lower pressure rise encountered by the
clearance vortex, and hence lower vortex breakdown losses, with the forward loaded
blade. Other computational experiments, on the effects of blade loading, incidence,
and solidity, are also shown to be consistent with the ideas developed about blade
pressure distribution effects on vortex breakdown and hence clearance mixing loss.
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Chapter 1

Introduction

Turbomachines have a small clearance, referred to as the tip clearance or tip gap,

between the outer radius of the rotating blades and the stationary casing. The exis-

tence of the clearance results in losses as the flow leaks through the clearance, and

there is observed to be a decrease in efficiency of turbomachinery that varies roughly

linearly with gap size [1]. This change in efficiency with clearance level is known as

the leakage loss slope. Typical clearances for axial turbines lie in the range of 1-2%

gap-to-span ratio [15].

Rotating blade rows can be classed into two categories: shrouded and unshrouded.

Shrouded blade rows are characterized by a shroud, a ring of material linking the

blades at the tip so that flow cannot leak over the tip, with the clearance gap between

the shroud and the casing. Unshrouded blade rows have no shroud, and the flow passes

through the clearance gap between the blade tip and the casing. This thesis examines

loss mechanisms in unshrouded turbines.

For an unshrouded turbine, the tip clearance loss is about one-third of the total

loss [6]. The leakage loss slope has been observed to range between 2 and 3 points

in efficiency per 1% in clearance-to-span ratio [3]. The limits of quantitative under-

standing of the parametric dependence of tip clearance loss on stage design is one

barrier to turbine optimization. Providing such understanding is the objective of this

work.
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1.1 Background

Tip clearance flows in turbines have been studied extensively, and only a summary

of the fluid mechanics and attempts to model loss are given below.

Characteristic flow features have been observed in tip clearance flows over flat

tipped blades. Figure 1-1 shows a 2-D cartoon of the flow within the tip gap [3].

Flow enters the gap on the pressure side. If the corner is sharp, a separation bubble

will form on the tip at the pressure side corner. If the thickness to clearance ratio is

greater than 2 or so, the flow will reattach [11]. Downstream of reattachment, viscous

stresses reduce the relative stagnation pressure and mix the momentum. When the

flow exits the gap, its velocity vector is misaligned with the freestream velocity and a

shear layer (vortex sheet) exists between the clearance flow and the mainstream. As

the flow progresses downstream, the vortex sheet rolls up into a vortex.

Figure 1-2 shows contours of relative stagnation pressure in a turbine passage,

along with streamlines in the tip clearance vortex, from a 3-D turbine computation.

The vortex remains adjacent to the suction surface corner and is characterized by low

stagnation pressure relative to the freestream. As the vortex convects downstream,

it mixes with the freestream, generating loss.

In modeling the clearance flow, it has been standard to divide the process into

two fluid dynamic modules [3], [7], [22]. The first considers the flow passing through

the gap. The second considers the interaction between the leakage flow and the

mainstream.

In the first module, the stagnation-to-static pressure ratio across the gap and the

viscous losses in the gap determine the state of the flow at the gap exit. Moore and

Tilton, building on the work of Rains in compressors, viewed the gap as an orifice

[15], with the separation bubble as a vena contracta, where the contraction coefficient

could be determined through potential flow analysis. A control volume model was

used to mix the flow out within the gap. The model produced a discharge coefficient

which matched a low speed cascade experiment. Heyes and Hodson added viscous

losses from the endwalls to this model and developed a control volume method to
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Figure 1-1: 2D sketch of tip clearance flow features [3]

Figure 1-2: Computed turbine rotor flowfield at 2% clearance. Streamlines and con-
tours of relative stagnation pressure
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calculate the angle at which the flow exited the gap [7]. The model matched results

from a low speed turbine cascade, but it required knowledge of the static pressure at

the gap inlet and exit. This is the most useful model for tip leakage massflow that

the author has found in the literature.

The second fluid dynamic module, which is the focus of this work, looks at what

happens to the flow after it exits the gap. Sjolander found that the losses within the

tip gap comprised only 10-15% of the tip clearance loss, with most of the clearance

loss tied to the mixing of the tip clearance flow with the mainstream [22]. Denton

suggested a control volume model for estimating these mixing losses [3]. However,

there has been no work to assess the applicability of Denton’s model or to examine

the flow for additional loss sources. Up to now, the loss within the gap and the mixing

loss have been the only clearance loss mechanisms identified in the literature.

Recent work has focused on computational efforts to model the effects of various

geometrical modifications to the tip on the flow and heat transfer within the clearance

gap. [12], [14]. These modifications, known as tip treatments, attempt to reduce the

leakage massflow, and hence the clearance loss by adding rims around the tip gap

(squealers), or extending the tip into a winglet or partial shroud. Tip treatments

have been shown to reduce the tip clearance loss, but can be difficult to cool [12]. Li

et al. showed a 0.2% improvement in turbine efficiency at 0.5% clearance-to-span for

a squealer configuration with the pressure side rim angled away from the tip [14].

The author has not seen information in the literature on how best to choose turbine

airfoil shapes or design parameters to minimize tip losses. The simplest correlations

assume the tip loss slope is independent of turbine design. Kacker and Okapuu give a

correlation which estimates tip clearance loss based on the blade exit angle, although

they do not present a physical rationale [8]. The control volume model of Denton is

a useful tool, but it has not been shown whether such a control volume model gives

an accurate estimate of loss.
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1.2 Research Questions

The goal of this work is to identify and quantify loss mechanisms in turbine tip

clearance flow, and thus provide guidelines for the design of unshrouded high pressure

turbines. The research questions to be addressed are as follows:

• How well does the Denton model for mixing losses capture tip clearance losses?

• Are the mixing losses affected by the presence of the clearance tip vortex?

• How should a turbine rotor be designed to reduce tip clearance loss?

1.3 Methodology

To answer the research questions, three-dimensional computations of clearance losses

are carried out for a variety of turbine designs in order to identify the major loss

mechanisms. Since only 15% of the loss takes place within the gap, the present

work focuses on the mixing of the tip leakage flow with the mainstream and on the

development of the tip clearance vortex.

Viscous computations of ducts with slip-walls are used to illustrate the effect of

area expansions on vortex behavior. Specifically: (i) The Denton control volume

model is evaluated for mixing losses due to flow injection in rectangular ducts with

area changes, and (ii) a control volume model for the evolution of a Rankine vortex

in a pressure gradient is evaluated using axisymmetric calculations.

The 3-D turbine computations are used to evaluate tip clearance losses and in-

vestigate behavior of tip vortices in the turbine environment. Based on the results of

the duct calculations, it was hypothesized that reducing the pressure rise experienced

by the tip vortex would reduce the tip clearance loss in a turbine. Implementation of

such a turbine design was found to decrease the tip clearance loss by 9%.

1.4 Contributions

The main contributions to turbine aerodynamics from the present work are as follows:
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• Because turbine tip clearance vortices are strong swirling flows (in contrast to

compressor tip vortices), the mixing loss is sensitive to pressure gradients in

a different manner than for compressors. In particular mixing loss decreases

with pressure level until the onset of vortex breakdown. Once breakdown is

encountered the mixing loss increases with pressure rise. The first of these

effects is qualitatively different from compressor tip clearance flow, in which, as

with a wake in a pressure gradient, mixing loss increases with pressure level.

• The control volume analysis proposed by Denton estimates turbine tip clearance

loss due to mixing to within 40%. The discrepancy occurs because the leakage

vortex mixes out over a range of pressures rather than at constant pressure, as

Denton assumed.

• Tip vortex breakdown is a loss mechanism in turbine tip clearance flows.

• Tip clearance loss can be reduced by decreasing the pressure rise experienced

by the tip vortex. A 9% reduction in leakage loss has been obtained by using a

tip designed to reduce losses due to vortex breakdown.

1.5 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 illustrates the important

features of tip clearance flows using the computed flowfield around a representative

high pressure turbine blade. Chapter 3 describes a control volume analysis for mixing

losses and its assessment against a simplified duct geometry and against turbine cal-

culations. Chapter 4 gives a control volume model description of a Rankine vortex in

a pressure gradient and its implications for tip leakage vortex mixing losses. Chapter

5 describes the reasoning behind the turbine blade design for low leakage loss and the

mechanisms through which the leakage loss was decreased. Chapter 6 evaluates the

effect on tip clearance losses of further changes to the pressure distribution through

changes in blade loading, incidence, and solidity. Chapter 7 gives a summary and

recommendations for future work.
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Chapter 2

Features of Tip Clearance Flows

2.1 Introduction

This chapter discusses features of tip clearance flow relevant to loss. The loss sources,

the flow exiting the tip gap, and the vortex core are characterized based on a repre-

sentative 3-D turbine blade computation. The key observations are listed below.

• The main source of loss is the mixing between the leakage flow and the main-

stream flow.

• The leakage flow can be roughly regarded as pressure driven with a discharge

coefficient of approximately 0.8.

• The tip vortex formed by the leakage flow passes through a pressure rise and

breaks down (for this turbine design). The vortex breakdown location is corre-

lated with the region of highest loss per unit axial distance.

2.2 Computational Study of Tip Clearance Flow

To determine the connections between tip clearance flow features and losses, a com-

putational study was performed on a subsonic high pressure turbine blade with tip

clearance ranging from 0 to 2% of span. The calculation was done for a single rotor
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blade with constant area ducts upstream and downstream. A hybrid mesh was used,

with a structured mesh in the mainstream and an unstructured prism mesh at the

center of the tip gap. Figure 2-1 shows the mesh on the rotor blade and the hub,

Table 2.1 shows the turbine parameters, and Table 2.2 shows the details of the mesh.

At the inlet of the domain, stagnation pressure and temperature profiles were speci-

fied. The inlet conditions were determined from a separate calculation including the

stator and the rotor connected by a mixing plane interface. The exit static pressure

boundary condition was defined by holding the hub exit static pressure constant as

the clearance changed and using simple radial equilibrium to set the radial pressure

distribution. Periodic boundary conditions linked the left and right sides of the do-

main. No-slip, adiabatic wall boundary conditions were used for the solid surfaces,

and the blade rotated as the casing remained motionless. The Reynolds-Averaged

Navier Stokes (RANS) equations were solved using ANSYS Fluent, a commercial fi-

nite volume solver. Turbulence was modeled using the Spalart-Allmaras turbulence

model [18]. The mesh had an average y+ of 1 in the first cell from solid surfaces in

order to resolve the boundary layers.

2.3 Loss Sources

Figure 2-2 shows the computed rotor loss coefficient ξ, defined in Equation 2.1, as a

function of tip clearance. The loss coefficient is defined as the lost work due to entropy

generation normalized by the turbine work. 1 The loss coefficient rises linearly with

clearance level, as seen in the literature. The tip clearance loss is defined as the

difference in loss coefficient between the blade with a given tip clearance and the zero

clearance case.

ξ =
Texit∆s

cp(Tt,inlet − Tt,exit)
(2.1)

A loss breakdown was conducted to determine the sources of clearance loss. The

1It is more common to refer to a leakage loss slope as a change in turbine adiabatic efficiency per
percent gap to span ratio. In this work, an entropy based metric is used instead because it is the
entropy generation due to tip clearance which should scale linearly with the tip clearance, and the
efficiency changes non-linearly with loss.
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Figure 2-1: Mesh on the hub, blade surface, blade tip

Table 2.1: Turbine Parameters

Work Coefficient 2.13
Flow Coefficient 0.584
Midspan Relative Inlet Angle 54.3◦

Midspan Relative Exit Angle 64.6◦

Exit Mach Number 0.755
Stagnation-to-Static Pressure Ratio 2.22
Solidity 0.966
Aspect Ratio 1.25
Exit Relative Rec 3.8× 106

Table 2.2: Mesh Details

Cell count (2% clr) 2.8× 106

Avg near-wall y+ 1
Cells across tip gap (2% clr) 36
Inlet plane location (chords upstream of leading edge) 1.35
Exit plane location (chords downstream of trailing edge) 2.55
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Figure 2-2: Tip clearance loss coefficient for model subsonic HP turbine as a function
of clearance-to-span ratio

domain was split into four volumetric regions: the clearance gap, the blade and

hub boundary layers, the lower half of the mainstream, and the upper half of the

mainstream, which includes the tip clearance vortex. Figure 2-3 shows the normalized

volume integral of the entropy generation rate over each region at zero and two

percent clearance. The volumetric entropy generation rate ρds
dt

was calculated from

the dissipation function Φ, neglecting irreversible entropy generation due to heat

transfer which is responsible for only 7% of the loss [13].

ρ
dsvisc
dt

=
Φ

T
(2.2)

=
2µeff
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]
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The changes in loss for the blade and hub boundary layer and lower half of the
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mainstream are small relative to the change in loss in the upper half of the mainstream

and together account for a negligible change in loss. The gap losses are also a relatively

small fraction (15%) of the tip clearance loss, and the losses in the upper half of the

mainstream, where the tip leakage flow emerges and mixes out, account for 85% of

the tip clearance loss.

The loss per unit axial distance was obtained by taking the difference (between

the case with clearance and the case without clearance) of the surface integral of the

volumetric entropy generation on an axial plane. Figure 2-4 shows the normalized

leakage loss per unit axial distance, dξ
d(x/c)

as described in equation 2.4.

dξ

d(x/c)
=

Texitc

mmain∆ht

∫
axialslice

ρ
ds

dt
dA (2.4)

Upstream of x/c = 0.75, the leakage loss is generated mainly within the gap, but

downstream of x/c = 0.75, the mixing losses account for almost all of the leakage

loss. The main loss mechanism of tip clearance loss is the mixing between the leakage

flow and the mainstream flow.

2.4 Characterization of Gap Exit Flow

Since the tip clearance loss is predominantly due to mixing losses and since control

volume models show that mixing loss scales directly with the leakage massflow and

the square of the leakage velocity, the state of the flow exiting the tip gap is of interest.

Figure 2-5 shows the ratio of massflow exiting the gap between the leading edge and

a specified axial location to the passage massflow, as a function of axial position, for

a 2% clearance. It is observed that 85% of the massflow exits the gap aft of 50% axial

chord. The massflow through the gap is determined by the exit area, the relative

stagnation-to-static pressure ratio at the exit, the viscous losses within the gap, and

the angle ε between the leakage flow velocity vector and the gap contour (extension

of the tip airfoil suction surface into the clearance). A value of ε = 90◦ indicates that

the leakage flow is emerging normal to the gap surface.
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Figure 2-3: Normalized entropy generation in gap, blade and hub boundary layers,
lower half freestream, and upper half freestream, for subsonic HP turbine at 0, 2%
clearance

Figure 2-4: Normalized leakage loss per unit axial distance as a function of axial
distance for subsonic HP turbine. Volumetric entropy generation rate integrated over
axial planes and allocated to loss sources. Difference taken between 0, 2% clearance
cases to obtain leakage loss
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Figure 2-5: Leakage massflow between leading edge and specified axial position, nor-
malized by passage massflow. Subsonic HP turbine at 2% clearance.

m = ρ(~V · ~dA) = ρV Asin(ε) (2.5)

2.4.1 Gap Pressure Ratio and Discharge Coefficient

The gap can be viewed as an orifice, with the ratio of the relative stagnation pressure

to the exit static pressure determining ρV . The static pressure at the gap exit can be

significantly different from the pressure on the blade suction surface [7], [20]. Heyes

and Hodson cited work from Dishart and Moore which showed that for a 2D cascade,

the static pressure in the tip clearance gap in the forward 50% axial chord is higher

than that at the midspan [7]. Yang, Yu, and Feng showed that the static pressure

near the leading edge tip increases, relative to a linear cascade, when the casing is

rotated relative to the blade, and when Coriolis and centrifugal forces are included

[20]. The computations presented in this work similarly show a static pressure in the

forward tip gap region higher than that at 80% blade span. Figure 2-6 shows the

isentropic Mach number on the suction surface at 80% span, averaged across the tip

35



gap. In the first 40% axial chord, the Mach number in the gap is half that at midspan

and only 6% of the leakage flow emerges from the gap in that region. Between 40-60%

axial chord, the gap exit Mach number approaches that at the suction surface, and

between 60% to 100% axial chord, the two are approximately equal.

Figure 2-7 shows the gap discharge coefficient Cd (defined as the ratio of the

actual gap massflow to the ideal gap massflow, calculated assuming isentropic flow

through the gap for the same stagnation-to-static pressure ratio) as a function of

axial location. The discharge coefficient is near 0.8 over most of the aft 50% axial

chord. It falls approaches 0.6 toward the trailing edge. In this region, the flow does

not reattach (the tip thickness is smaller), and the separation bubble decreases the

effective gap exit area and hence the discharge coefficient.

2.4.2 Gap Exit Area

As implied in Equation 2.5, the leakage massflow is proportional to the leakage area. A

useful metric for the leakage area is the derivative of the gap perimeter with respect to

axial distance, i.e., the leakage area per unit axial distance divided by the gap height.

This is shown in Figure 2-8. As the blade curves away from the axial direction, the

gap area per unit axial distance increases so that 70% of the gap exit area is located

downstream of 50% axial chord.

2.4.3 Leakage Angle

The streamline angle is the final factor which gives the leakage massflow. Figure 2-9

shows the mass-averaged leakage angle as a function of axial position. Between 20%

and 60% axial chord, the angle between the leakage and the freestream drops to 45◦,

sin(ε) is low, and the massflow is reduced. Downstream of 50% axial chord, where

most of the massflow exits, the leakage angle peaks around 75% axial chord, where

the tip gap pressure ratio is lowest and the normal component of the velocity vector

is highest.
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Figure 2-6: Relative isentropic Mach number in the tip gap and on the blade suction
surface at 80% span as a function of axial position. Subsonic HP turbine at 2%
clearance.

Figure 2-7: Tip gap discharge coefficient as a function of axial position. Subsonic HP
turbine at 2% clearance.
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Figure 2-8: Derivative of gap perimeter with respect to axial distance. Subsonic HP
turbine at 2% clearance.

Figure 2-9: Leakage flow angle as function of axial position. Subsonic HP turbine at
2% clearance.
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2.4.4 Leakage Flow Modeling

Since 85% of the massflow exits aft of 50% axial chord, one model for tip clearance

flow in this range of clearances might be to neglect the forward 50% axial chord,

where the flow is more complex and the gap pressure differs from the suction surface

pressure in a way that is difficult to predict a priori. In the aft 50% axial chord, the

gap exit pressure is close to the suction surface pressure, and the discharge coefficient

is approximately equal to 0.8. If a leakage flow angle is estimated, or calculated via

the method of Heyes and Hodson [7], the gap exit massflow and velocities can be

estimated. For the subsonic HP turbine, the leakage massflow is estimated to within

10% by assuming the flow exits downstream of midchord, is driven by the stagnation-

to-static pressure ratio at 80% span, has a discharge coefficient of 0.8, and exits the

gap at a 70◦ angle (this is the mass-averaged leakage angle).

2.5 Characterization of Tip Clearance Vortex

The previous section addressed estimation of the tip leakage flow. A second aspect

of tip clearance flow modeling is estimation of mixing loss once the leakage flow

is specified. The control volume analysis of Denton assumed the flow mixes out

immediately to the suction surface velocity [3]. In reality, however, a vortex forms at

the suction surface corner and mixing takes place downstream where the conditions

are different. The vortex remains near the suction side corner and is strengthened by

leakage flow exiting the gap further downstream.

The vortex core was extracted from the CFD results by excluding cells containing

negative relative vorticity. 2 Slices are taken normal to the streamwise direction

to reveal the evolution of the vortex core, and Figure 2-10 shows the vortex core

vorticity, non-dimensionalized by turbine exit velocity and gap height. As tip leakage

vortex progresses downstream, it expands and the vorticity falls.

Two important metrics for a vortex core are the swirl number and the streamwise

2In a rotating reference frame, all cells have relative background vorticity −2Ω, where Ω is the
angular velocity of the rotor. In this work, the background vorticity has been subtracted from the
relative vorticity so that positive vorticity refers to vorticity higher than the background level.
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Figure 2-10: Contours of non-dimensionalized vorticity on crossflow planes. Subsonic
HP turbine at 2% clearance.

velocity ratio. The vortex core area and circulation are used to define the maximum

swirl velocity of a Rankine vortex, vmax and the swirl number is defined as the ratio of

that maximum swirl velocity to the average core streamwise velocity u as in Equations

2.6 and 2.7.

vθ,max =
Γ

2πrcore
(2.6)

S =
vmax
u

(2.7)

The streamwise velocity ratio is defined in Equation 2.8 as the core average stream-

wise velocity divided by the freestream velocity U .

V R =
u

U
(2.8)

The velocity ratio on the core centerline is also of interest, since that is the location

where the velocity is most affected by pressure gradients. The core centerline is defined
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as the lowest static pressure point in the vortex core at each streamwise location.

Figure 2-11 shows the swirl number, velocity ratio, and core centerline velocity

ratio of the tip clearance vortex, from the point at which it is identifiable at 40%

axial chord to a half chord downstream of the trailing edge. The tip clearance vortex

has a swirl number above 1, indicating a flow in which the swirl dynamics have an

important role. The streamwise velocity ratio drops sharply downstream of 75% axial

chord, and then rises toward the freestream value as the vortex mixes. The centerline

velocity ratio changes more than the average velocity ratio and becomes negative at

the trailing edge, indicating flow reversal in the vortex core.

Comparing Figures 2-11 to 2-6 and 2-4, two things are observed. First, the region

in which the core velocity ratio declines sharply is the region over which the freestream

flow is diffusing. Second, much of the tip clearance loss occurs in this region. It has

been well documented that under adverse pressure gradients, vortex cores can increase

dramatically in area, a phenomena known as vortex breakdown. Vortex breakdown

has been observed in turbine tip clearance vortices by Sjolander [21]. However, the

author has not seen evidence that tip vortex breakdown is a source of loss in turbines.

2.6 Conclusions

Computations of the flow in a subsonic high pressure turbine showed that 85% of

the leakage flow exits downstream of 50% axial chord, where the gap exit pressure is

close to the freestream pressure. The gap has a discharge coefficient near 0.8. The

massflow through the gap can be well predicted by estimating a discharge coefficient

and a leakage flow angle using the control volume calculation of Heyes and Hodson

[7]. Mixing losses are found to be the dominant source of tip clearance loss and much

of that loss takes place in the region where the tip clearance vortex breaks down

(between the x/c = 0.9 and 1.2).
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Figure 2-11: Tip clearance vortex core parameters as a function of axial chord: Aver-
age velocity ratio, centerline velocity Ratio, and swirl number. Subsonic HP turbine
at 2% clearance.
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Chapter 3

Estimation of Tip Clearance

Mixing Losses with Control

Volume Analysis

3.1 Introduction

In this chapter, we discuss the application of a control volume model to tip clearance

loss estimation. The model is assessed against tip clearance flows in rectangular ducts

and turbine geometries. When mixing takes place at constant area (roughly constant

pressure for typical tip clearance massflow ratio), the control volume model gives an

accurate estimate of loss. However, when mixing occurs in a pressure gradient, two

phenomena can cause the control volume model to be less appropriate, the decrease

in vortex mixing loss due to a pressure rise, and vortex breakdown. These effects will

be made quantitative below.

3.2 Description of Control Volume Model

Denton provided a useful approximate description of tip clearance loss by modeling

the situation as a compressible channel flow with mass injection [3]. The methodology

for this approach is based on differential control volumes, as described by Shapiro [17],
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i.e. the control volume analysis abstracts the turbine geometry to a compressible one-

dimensional internal flow. The mainstream flow near the suction surface is given as

a function of streamwise position and the leakage flow is modeled as an injection

into the mainstream, with specified density, velocity, temperature, and angle to the

freestream. The control volume is bounded by the duct walls and crossflow planes

upstream and downstream of the injection location. Figure 3-1 shows a sketch of the

control volume.

Figure 3-1: Control Volume Model for Mixing Losses [3]

The equations that define the exit state are conservation of mass, momentum, and

energy. An expression for the entropy generated within the control volume due to

irreversible processes is given by Equation 3.2 [4].

T∆sgen =
mleak

m1

(
1

2

[
V 2
y,leak + (V1 − Vx,leak)2]+ cpT

∫ Tinj

T

1

T
− 1

τ
dτ

)
(3.1)

or T∆sgen =
mleak

m1

(
1

2

[
V 2
leak + V 2

1 − 2V1Vleakcos(ε)
]

+ cpT

∫ Tinj

T

1

T
− 1

τ
dτ

)
(3.2)

Equation 3.2 gives the entropy rise as the product of the massflow ratio and three

terms. The terms in the square brackets represent dissipation of kinetic energy. The

first term represents dissipation of the kinetic energy associated with the crossflow
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velocity, and the second represents the dissipation associated with equilibrating the

leakage and mainstream velocities. The integral term represents irreversibility re-

sulting from the static temperature difference between the two streams. This term

is small (less than 5% of the total loss) compared to the other two terms because

T ≈ Tinj. From Equation 3.2 the estimated mixing loss is proportional to the leak-

age massflow ratio, rises with the square of the difference between mainstream and

injected velocities, and decreases as the leakage flow angle ε decreases.

Figure 3-2: Control volume model applied to turbine tip clearance flow for mass flow
ratio ≤≤ 1

The description of tip clearance loss, expressed in Equation 3.3 and shown in

Figure 3-2, views the suction surface as a series of differential control volumes. The

differential unit of leakage flow exiting the gap with velocity ~Vleak at each axial location

is mixed out to suction surface velocity VSS at constant pressure. The mixing of the

leakage flow can thus generate different amounts of entropy depending on the local

freestream conditions. The total estimated loss is an integral over the suction side

gap.
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T∆sgen =

∫
gap

ρVleaksin(ε)

mm

(
1

2

[
V 2
leak + V 2

SS − 2VSSVleakcos(ε)
]

+ cpT

∫ Tinj

T

1

T
− 1

τ
dτ

)
dA

(3.3)

3.3 Assessment of Control Volume Model in Rect-

angular Ducts

We can assess the control volume description of mixing losses using the state of

injected flow and the isentropic mainstream velocity extracted from the calculations.

Before doing this for the turbine environment, however, we examine its validity for

a simpler flow, injection into rectangular nozzles and diffusers with exit-to-inlet area

ratios ranging from 0.5 to 1.7.

Figure 3-3 shows a nozzle geometry with exit-to-inlet area ratio 0.8. Color contours

of the static pressure coefficient show that the pressure decreases as the nozzle area

decreases. The duct height h is uniform everywhere, and is used to non-dimensionalize

the lengths. The duct width w is equal to the height at the inlet (x/h = 0) and de-

creases to the exit width between x/h = 1 and 2. Flow is injected into the duct via the

indicated rectangular slot, whose dimensions are 0.02h by h. Two injection slot ge-

ometries are considered: one introducing the injected flow normal to the mainstream,

and one injecting flow at a 45◦ angle to the mainstream. The ratio of the duct inlet

stagnation pressure to the exit static pressure is varied between 1.05 and 1.6, with

the stagnation pressure at the injection inlet equal to that at the inlet. The mixing

losses are defined by specifying no-slip walls (so that there are not viscous losses at

the walls) and extracting the difference in loss between the case with flow injection

and the case without an injection slot. The exit of the computational domain is four

duct heights downstream of the slot.

Figure 3-4 presents streamlines of the leakage flow along with contours of entropy

for an area ratio of 0.8. The streamlines imply a vortical structure that persists to the

exit, indicating the flow at the exit plane is not completely mixed out. The control
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Figure 3-3: Geometry of rectangular nozzle with 90◦ flow injection, area ratio 0.8.
Color contours of static pressure coefficient.

volume model, which produces a mixed-out analysis, is assessed against the difference

between the mixed-out entropy flux at the domain exit and the inlet entropy flux.

The mixed-out exit state is arrived at by placing a constant area control volume at

the exit plane and conserving mass, momentum, and energy.

To obtain the control volume estimate for the losses, equation 3.3 was applied

over the injection slot exit, mixing out the leakage flow to the freestream velocity

at midspan. All losses for the duct cases are non-dimensionalized by the injected

massflow and the square of the exit velocity to give the loss per unit injected flow:

mmainT∆s
mleakV

2
exit

.

Figure 3-5 shows the mixed out loss (calculated mixing loss in the duct plus mixing

losses downstream of the duct exit) per unit injected flow, as a function of pressure

ratio for area ratio 0.8 with both 90◦ and 45◦ injection, along with the losses estimated

from the control volume analysis. The control volume approach underestimates the

loss by 20% but it gives the trends in change in loss with pressure ratio for both in-

jection angles, showing that the scaling with velocity, leakage massflow, and injection

angle are captured.

Figure 3-6 shows the mixed out loss as a function of the duct area ratio for pressure

ratio 1.05 (essentially incompressible flow) and 90◦ injection. For area ratios between
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Figure 3-4: Contours of entropy, streamlines of the leakage flow for 90◦ flow injection
into rectangular duct of area ratio 0.8.

0.5 and 1.5, the control volume model agrees with the computed loss to within 30%.

At an area ratio of 1 (constant area duct), the control volume description and the

calculation agree to within 2%; this is not surprising, since the control volume analysis

is based on constant area mixing. For AR ≤ 1, the rate of change of estimated

losses with area radio is less than the rate of change of the computed losses, so that

the mixing losses are thus underpredicted by the control volumes for AR ≤ 1 and

overpredicted for 1 ≤ AR ≤ 1.5. However, at AR = 1.3, the computed loss slope

becomes larger than the modeled loss slope, and for AR ≥ 1.5 the control volume

model underpredicts the loss.

The control volume description assumes that the injected flow mixes out imme-

diately as it enters the mainstream. In reality, however, the injected flow forms a

vortex, as shown in figure 3-4, which passes through a pressure change as it mixes

with the mainstream. Figure 3-7 shows the vortex core centerline streamwise velocity

ratio and swirl number at x/h = 2 as a function of duct area ratio. As the area

ratio rises from AR = 1, the velocity ratio decreases. For AR ≥ 1, the vortex area
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Figure 3-5: Mixing loss per unit massflow due to flow injection as function of pressure
ratio. Comparison between calculation and control volume analysis at area ratio 0.8
for both 45◦ and 90◦ injection

Figure 3-6: Mixing loss per unit massflow due to flow injection as function of area
ratio. Comparison between calculation and control volume analysis for PR = 1.05,
90deg injection
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Figure 3-7: Average velocity ratio, swirl number for vortices at x/h = 2 in a rectan-
gular duct, PR=1.05, AR=0.5-1.7

is increased and the swirl velocity decreased (by Kelvin’s theorem), decreasing the

mixed out losses associated with swirl. Conversely, for AR ≤ 1, the swirl velocity

and the losses decrease due to vortex stretching. For this reason, the control volume

approach overpredicts the loss for 1 ≤ AR ≤ 1.5 and underpredicts for AR ≤ 1.

We view the loss behavior for AR ≥ 1.3 as associated with vortex breakdown. As

described in Chapter 4, if a vortex core reaches a swirl number of roughly
√

2, the

vortex can experience a phenomena known as vortex breakdown, in which the flow

in the vortex core stagnates. Figure 3-7 shows that the swirl number for AR ≥ 1.5 is

greater than
√

2, so vortex breakdown can occur. It is hypothesized that as the area

ratio increases and the vortex is exposed to a larger pressure rise, the losses in vortex

breakdown increase, resulting in the increase in the rate of change of loss with area

ratio above AR = 1.3.

The two effects described above (vortex line contraction and vortex breakdown)

account for the difference between computed losses and losses estimated by the control

volume analysis. We conclude that the applicability of the control volume approxima-

tion depends on the pressure change over which vortex mixing occurs. If the vortex
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does not break down, deceleration of the vortex core will result in lower swirl veloc-

ities and losses lower than that predicted using control volume analysis. However,

there is a critical pressure rise above which vortex breakdown will occur, generating

increased losses so that the control volume approach will underpredict the mixing

loss.

3.4 Assessment of Control Volume Model of Mix-

ing in Turbine Environments

We now evaluate the utility of the control volume description in realistic turbine

geometries in comparison to 3-D computations for four turbine designs: a low pressure

turbine (LPT), a subsonic high pressure turbine (HPT), a transonic high pressure

turbine, and a supersonic high work turbine. These were chosen to span a range of

design parameters, as shown in table 3.1. The flow coefficient φ is the the average

axial velocity divided by wheelspeed at midspan. The work coefficient ψ is the ratio of

work extracted by the turbine to the square of the midspan wheelspeed. Finally, the

ratio of inlet stagnation pressure to exit static pressure determines the Mach number

and the influence of compressibility. Cases were run for tip clearances ranging from

0 to 2%.

The tip leakage loss was defined as the difference between the loss with clearance

and the loss at zero clearance. Figure 3-8 shows the tip leakage loss coefficient plotted

against clearance. The leakage loss varies between designs, with the LP turbine having

the lowest leakage loss. The supersonic high work turbine has a low loss slope near

zero clearance but has similar loss slope to the transonic and subsonic HP turbines

from 0.75 to 1.5% clearance. A nominal industry correlation of 2% loss in turbine

efficiency per 1% clearance is shown for comparison. Use of this correlation would

result, at 2% clearance, in a 20% underestimate of the tip clearance loss for the

subsonic and transonic HPTs, and a 20% overestimate for the LPT at 2% clearance.

To assess the control volume description, the leakage loss due to mixing was cal-
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Figure 3-8: Leakage loss coefficient for 0-2% clearance-to-span ratio for four turbine
designs

culated. Chapter 2 showed that mixing losses plus losses within the gap account for

the leakage loss. The loss within the gap was subtracted from the overall leakage

loss to calculate the mixing loss. For leakage flow small compared to mainstream

flow, the control volume description shows that the leakage loss is proportional to the

leakage massflow. It is thus useful to divide the mixing loss coefficient ξ = Texit∆s
∆ht

by

the leakage massflow ratio mleak

mm
to obtain the mixing loss per unit massflow ξ̂, as in

equation 3.4.

ξ̂ = ξ
mm

mleak

=
mmTexit∆s

mleakcp (Tt,inlet − Tt,exit)
(3.4)

As with the rectangular ducts, the leakage flow density, temperature, velocity,

and angle relative to the freestream were extracted and mixed out to the isentropic

suction surface velocity based on 80% span. Table 3.2 shows that for the subsonic

HP turbine, the estimated mixing loss is insensitive to the spanwise location used to

calculate the suction surface velocity, varying only 5% for spanwise location between

50 and 90% span.
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Figure 3-9 shows the mixing loss normalized by leakage flow for each turbine design

over a range of clearances. The solid lines show the computed results, while the dotted

lines show the control volume estimate. The control volume description gives losses

within 25% of the loss from the 3D simulations for three of the four turbines. The

calculated loss for the high work turbine at 0.37% clearance is 40% lower than the

control volume estimate, but the agreement is within 10% at higher clearances.

Figure 3-10 shows the suction surface isentropic Mach number at 80% span, while

figure 3-11 shows the swirl numbers of the tip vortices as a function of axial position

at 2% clearance for the four rotors. For the low pressure turbine, the vortex forms

further upstream (at 25% axial chord), the vortex is accelerated over the majority of

its existence, and the estimated loss is lower than the loss from the 3D computations.

The three high pressure turbines have deceleration from 75% axial chord to the trailing

edge and the maximum swirl number exceeds
√

2, indicating vortex breakdown. We

cannot say whether the control volume analysis should overpredict or underpredict the

leakage loss because there are two effects at work: deceleration decreases the mixing

losses by decreasing the swirl velocity while vortex breakdown generates additional

loss. However, we can say that a design change which causes additional deceleration

of the vortex core will increase the losses due to vortex breakdown. This will be

demonstrated in Chapter 5.

3.5 Conclusions

The computational studies presented in this chapter showed that vortex mixing losses

are affected by changes in pressure. A pressure rise reduces the vortex mixing loss by

decreasing the swirl velocity. However, a sufficiently large pressure rise leads to vortex

breakdown and increased losses. These two effects are the source of the disagreement

between control volume analysis and computed losses. More specific conclusions are

listed below.

• A control volume description estimates the mixing loss accurately for a constant

area duct.
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Table 3.1: Design parameters of turbines used in the assessment of the control volume
model for mixing losses

Design φ ψ
Pt,inlet

Pexit

Subsonic LPT 1.1 2.4 1.6
Subsonic HPT 0.54 2.1 2.2

Transonic HPT 0.58 2.4 2.7
Supersonic HPT 0.41 1.6 4.5

Table 3.2: Difference in loss calculated at X% span and 80% span using control volume
model for subsonic HPT

Spanwise Location z/h Difference in loss / Loss calculated at 80% span
0.5 -.047
0.6 +.009
0.7 -0.004
0.8 0
0.9 +0.01

Figure 3-9: Normalized mixing loss per unit leakage flow as a function of clearance-to-
span ratio for four turbine designs. Computed losses (solid lines) and control volume
estimate (dotted)
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Figure 3-10: Suction surface isentropic Mach number at 80% Span as a function of
axial location for four turbine designs

Figure 3-11: Tip vortex swirl number as a function of axial location for four turbine
designs
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• As a vortex passes through a pressure rise, the swirl velocity and hence the

mixing losses decrease, leading to a decrease in the mixing loss. This is the

reason the control volume analysis underpredicts the rectangular duct losses for

1 ≤ AR ≤ 1.5.

• Vortex breakdown is associated with the increase in mixing losses seen for the

rectangular ducts of area ratio 1.3 ≤ AR ≤ 1.7.

• A control volume analysis is capable of predicting tip clearance loss to within

40% across a wide range of turbine designs, if the leakage flow is specified. An

improvement to the control volume analysis would need to consider the effect

of pressure changes on vortex mixing losses.
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Chapter 4

Effect of Pressure Changes on

Vortex Mixing Losses

4.1 Introduction

Two important concepts discussed in previous chapters are that the majority of tur-

bine tip clearance loss is generated in the mixing of the tip vortex with the mainstream

flow as it convects through a pressure rise, and that mixing losses in vortices are al-

tered by changes in pressure level so that constant pressure mixing does not predict

the loss. To minimize tip clearance losses, it is useful to examine the effect of a pres-

sure change on mixed-out loss in a vortical flow, because it differs from the effect of

a pressure changes on wake mixing losses.

The response of a streamwise velocity defect, or wake, to a pressure change is well

understood. An adverse pressure gradient increases the mixing loss for a wake by

increasing the axial velocity non-uniformity between wake a freestream; the losses are

proportional to the velocity defect squared.

For a vortex, a given freestream pressure rise has a larger effect on the core center-

line axial velocity non-uniformity than on a wake [5]. In this context, core stagnation

occurs for a lower non-dimensional pressure rise for vortices than for wakes. How-

ever, the increase in core area associated with the decrease in core velocity decreases

the swirl velocity and hence the mixed-out loss. This chapter illustrates differences
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between the response of a wake and a vortex to a pressure change and gives criteria

for vortex breakdown, defined here as a stagnation of the flow on the core center-

line. Axisymmetric calculations on vortices in ducts with area expansion confirm the

effects of vortex line contraction and vortex breakdown on loss.

The ideas discussed also provide a distinction between compressor and turbine tip

vortices. The former can be characterized as weakly swirling flows (S ≤ 0.5) and thus

usefully viewed as wakes in pressure gradients. [9], [10]. Turbine vortices, however

are strongly swirling (S ≥ 1) and more prone to vortex breakdown. Because of this

difference, a given pressure rise typically increases the mixed out loss for a compressor

vortex but can often decrease the loss for a turbine vortex.

4.2 Mixing Losses for a Wake in a Pressure Gra-

dient

The differential form of the one-dimensional momentum equation shows how an ad-

verse pressure gradient increases a wake velocity non-uniformity. The wake velocity

is denoted as u while the freestream velocity is denoted U . The pressure p is taken as

only a function of x and the momentum equation reduces to conservation of stagnation

pressure in the wake and the freestream, Equations 4.1 and 4.2.

du

u
= − dp

ρu2
(4.1)

dU

U
= − dp

ρU2
(4.2)

Equations 4.1 and 4.2 show that the fractional decrease in velocity due to the

adverse pressure gradient is inversely proportional to the dynamic pressure. The

freestream thus decelerates less than the wake does, and the mixed out loss grows as

the pressure rises because (as we saw in Chapter 3) mixing losses scale with (U −u)2.

Figures 4-1 shows the velocity non-uniformity and mixed-out loss, normalized by
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Figure 4-1: Effect of pressure rise on wake: velocity defect (normalized by freestream
velocity) and mixed-out loss (normalized by inlet mixed-out loss) as a function of
farfield pressure rise Cp = ∆p

0.5ρU2 .

their initial value, for a wake with velocity ratio u(x=0)
U(x=0)

= 0.6 as a function of Cp. In

equation 4.3, Cp is defined as the pressure rise normalized by inlet freestream dynamic

head. Both the streamwise velocity non-uniformity and the pressure rise in Figure

4-1 are representative of turbine tip clearance vortices, but without swirl velocity. As

Cp rises to 0.36, the flow in the wake decelerates and stagnates, so the velocity deficit

and the mixed out loss increase monotonically.

Cp(x) =
P (x)− P (0)
1
2
ρU(x = 0)2

(4.3)

4.3 Control Volume Model for Rankine Vortex Re-

sponse to Pressure Gradient

We illustrate the behavior of a vortex in a pressure gradient using an incompressible

unconfined Rankine vortex description [2]. The Rankine vortex consists of a core

undergoing solid body rotation surrounded by a free vortex freestream as in figure
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Figure 4-2: Illustration of Rankine vortex model.

4-2.

A control volume for the vortex core is bounded by the core edge streamtube

and axial planes. The problem as can be cast in terms of three non-dimensional

parameters, the velocity ratio, V R, the swirl number, S, and the farfield pressure

coefficient, Cp, defined in equations 4.4, 4.5, and 4.6. Here, u is the vortex axial

velocity, U is the freestream axial velocity, vθ is the swirl velocity, re is the radius of

the vortex core edge, and the farfield pressure p∞ is the static pressure at r =∞.

V R =
u

U
(4.4)

S =
vθ (r = re)

u
(4.5)

Cp =
p∞(x)− p∞(0)

1
2
ρU2

(4.6)

To calculate a mixed-out loss, a mass ratio between the vortex and the freestream

must also be specified: MR = mcore

mfreestream
. This is necessary because the mixing loss

due to dissipation of swirl kinetic energy is infinite if the radius is allowed to extend
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out to infinity, as in Equation 4.7.

T∆s ∝ lim
R→+∞

∫ R

0

v2rdr ∝ lim
R→+∞

∫ R

0

1

r
dr =∞ (4.7)

At the inlet to the control volume, the vortex initial radius re(x = 0), circulation Γ,

and streamwise velocity ratio u
U

are known. The circulation Γ, defined in equation 4.8,

is the line integral of the velocity component about a contour of radius re. Equations

4.9 and 4.10 describe the axial and swirl velocities in the domain. The farfield pressure

at r = ∞, p∞(x), specified as a function of axial position, determines the evolution

of the core flow. The simple radial equilibrium equation, given in equation 4.11 links

the farfield pressure to the pressure in the vortex core, resulting in equation 4.12,

which gives the radial distribution of pressure as a function of the circulation and the

farfield pressure.

Γ =

∮
~V · d̂s = 2πrevθ (r = re) (4.8)

vx (x, r) =

 u(x) : r ≤ re(x)

U(x) : r > re(x)
(4.9)

vθ (x, r) =

 Γr
2πre(x)2

: r ≤ re(x)

Γ
2πr

: r > re(x)
(4.10)

dp

dr
=
ρv2

θ

r
(4.11)

p (x, r) =


p∞ − ρ

(
Γ2

8π2r2e

)[
2−

(
r
re

)2
]

: r ≤ re

p∞ − ρ
(

Γ2

8π2r2e

) (
re
r

)2
: r > re

(4.12)

Conservation of mass, momentum, and angular momentum are applied over the

control volume shown in Figure 4-2 to give the exit streamwise velocity, swirl velocity

and edge radius. Equations 4.13, 4.14, and 4.15 are the differential forms of the mass,

momentum, and angular momentum conservation equations. The angular momentum

equation is here equivalent to Kelvin’s theorem.
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ρ

[
πr2

e

du

dx
+ 2πre

dre
dx

]
= 0 (4.13)

d

dx

[
ρu2πr2

e + 2π

∫ re

0

Prdr

]
= 0 (4.14)

dΓ

dx
= 0 (4.15)

4.4 Mixing Losses for a Vortex in a Pressure Gra-

dient

A vortex in a pressure gradient behaves differently from a wake in a pressure gradient

because the pressure in the core is lower than that in the freestream, as in Equation

4.16, and for a given increase in freestream pressure, the pressure change on the core

centerline is larger than that with no swirl because re increases, and the axial velocity

in the vortex core thus decreases more than the axial velocity of a wake with the same

initial velocity and farfield pressure rise.

p (x, 0) = p∞ − ρ
(

Γ2

4π2r2
e

)
(4.16)

The other effect of a pressure rise is seen in the swirl velocity, which decreases as

the core expands. Figure 4-3 shows the effect of a pressure rise on the axial velocity

defect and swirl number for a vortex with initial swirl number 1 and axial velocity

ratio 0.6, conditions representative of a turbine tip vortex at the onset of deceleration.

As the pressure increases, both velocity defect and swirl number rise, indicating that

the decrease in core axial velocity is larger than that of the freestream and swirl

velocities. The figure continues until a maximum value of ∆Cp, which is associated

with vortex breakdown, as discussed in the next section.

We now examine the change in mixing loss associated with the adverse pressure

gradient. The final mixing state is taken to be no swirl and uniform velocity (since the
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Figure 4-3: Effect of pressure rise on vortex: Normalized velocity defect ( U−u
Uinlet

) and

swirl number as a function of farfield pressure change Cp = ∆p
0.5ρU2

energy associated with swirl velocity in the tip vortex is not recoverable). The swirl

kinetic energy is assumed to be dissipated. The mixing loss associated with the axial

velocity difference scales as the square of the axial velocity defect (U −u). Figure 4-4

shows the mixing loss, normalized by the initial value, as a function of Cp, for the

vortex of figure 4-3 with a mass ratio of 1%. The losses associated with the mixing of

the axial velocity nonuniformity and with the dissipation of swirl velocity are given

separately to show the dominant effect is in the swirl velocity (because the freestream

is swirling as well), and the loss decreases by 20% for Cp=0.09. Deceleration of a

vortex decreases the mixed out loss, in contrast to deceleration of a wake, where the

mixed-out loss increases. This is the reason that the control volume model (Chapter

3) underpredicted mixing losses for flow injection into diffusers of area ratio 1-1.3 and

it also suggests that that deceleration of the tip vortex in the turbine passage can be

beneficial to performance.

We are also interested in the dependence of the sensitivity of mixed-out loss to an

incremental pressure rise on vortex state (velocity ratio and swirl number). Figure

4-5 shows a contour plot of the derivative of the normalized mixing loss (defined as
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Figure 4-4: Effect of pressure rise on vortex: normalized mixed-out loss (mixed out
loss / mixed out loss based on inlet conditions) as a function of farfield pressure
change Cp = ∆p

0.5ρU2

the mixed-out loss divided by the inlet mixed-out loss) with respect to Cp for vortices

of different swirl numbers and axial velocity ratios. The mass ratio used for the

computation was 1%, which is close to the ratio between the turbine tip vortex core

massflow and the freestream massflow.

One can see the two competing effects of wake behavior and vortex behavior. For a

given velocity ratio, the loss derivative decreases as the vortex swirl number increases

and the flow becomes more “vortex-like”. For a given swirl number, the loss derivative

increases as the velocity ratio decreases and the flow becomes more “wake-like”. The

states of turbine (calculated) and compressor (measured) tip vortices are also plotted

in Figure 4-5 [9]. Deceleration of compressor vortex flows results in increases in mixed

out losses, while deceleration of turbine vortex flows results in decreases in loss. The

magnitude of the change in loss can be an order of magnitude higher for the turbine

vortices than for the compressor vortices; swirl velocity in tip vortex flow is more

important to leakage loss in turbines than it is in compressors.
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Figure 4-5: Derivative of mixed out loss with respect to Cp = ∆p
0.5ρU2 for vortices with

specified initial swirl number and velocity ratio. Points plotted represent low pressure
turbine (◦, computed), high pressure turbine (+, computed), and compressor vortices
(∗, [9]).
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4.5 Criteria for Vortex Breakdown

Figure 4-3 shows that there is a maximum pressure rise above which no solutions exist.

This represents stagnation in the vortex core and vortex breakdown. Darmofal et al.

presented an approximate analysis that indicated that this occurs when the swirl

number reaches
√

2 [2]. In Chapter 3 it was shown that vortex swirl numbers in high

pressure turbine calculations exceed
√

2. In contrast, measurements of compressor

tip vortices at design point showed swirl numbers less than 0.5, indicating that vortex

breakdown is much less of a concern in compressors at design point [9].

Figure 4-6 shows the calculated maximum pressure rise for a vortex with a specified

initial swirl number, along with results from vortex breakdown experiments [16]. Here

the pressure rise is non-dimensionalized by 1
2
ρu2 (using the vortex axial velocity).

Also shown are swirl numbers and pressure rises associated with the vortex cores

observed in the high pressure turbine calculations, based on the state of the vortex

at the location at which diffusion begins. Each of the computed vortices experiences

a pressure rise large enough to cause vortex breakdown.

The above inviscid analysis admits no solutions for pressure rises larger than

the breakdown limit, and so it cannot make a statement about losses beyond this.

However, the rectangular duct computations in Chapter 3 show that, in the regime

in which vortex breakdown occurs, loss increases rapidly as the duct area ratio, and

the vortex swirl number, increases. This implies that vortex breakdown is a loss

mechanism whose magnitude depends on the pressure rise experienced by the vortex.

4.6 Computational Study of Vortex in Pressure

Rise

To quantify the effect of vortex line contraction and breakdown on the mixed-out

loss in turbulent viscous vortices, axisymmetric calculations were carried out to for

in circular ducts with area expansions. Figure 4-7 shows the geometry of a duct with

area ratio 1.21. The initial core radius re is 0.1 of the duct radius. The velocities
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Figure 4-6: Maximum pressure rise resulting in vortex breakdown for specified swirl
number, calculated from Rankine vortex model [2]. Also plotted are experimental
data for vortex breakdown [16], and computed turbine vortex parameters.
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Figure 4-7: Geometry of axisymmetric duct, area ratio 1.21

Figure 4-8: Swirl velocity, normalized by freestream velocity as a function of radius
for Burger, Rankine vortices

specified at the inlet are given in Equations 4.17 and 4.18 as,

vx
U

(r, x) =

 V R : r ≤ re(x)

1 : r > re(x)
(4.17)

vθ(r, 0)

U
= S V R

re
r

(1− e−1.26(r/re)2) (4.18)

The swirl velocity specified in equation 4.18 is that of a Burger vortex, which

resembles the Rankine vortex but is defined by a smooth function and has a lower

peak swirl velocity [2]. Figure 4-8 shows the swirl velocity distribution as a function

of radius for Burger and Rankine vortices with the same total circulation.

The exit boundary sets the derivatives of flow variables in the axial direction equal
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Figure 4-9: Calculated change in mixed out loss, normalized by inlet mixed out loss
as a function of duct endwall pressure rise Cp = ∆p

0.5ρU2 for vortices in ducts with area
expansion. Velocity ratio 0.6, Swirl numbers 0, 0.42, 0.83.

to zero, which is appropriate for a flow which is slowly mixing out. The outer wall

is a slipwall to minimize losses unrelated to vortex behavior. Turbulence is modeled

using the RNG k-ε model [19], and the Reynolds number, based on the vortex core

radius and the freestream velocity, is 8× 104, approximately the Reynolds number of

the tip vortex in the subsonic high pressure turbine.

Figure 4-9 shows the difference in mixed out loss between the inlet and exit plane,

normalized by the inlet mixed out loss, as a function of the pressure rise coefficient

(pressure rise along the duct maximum radius normalized by freestream dynamic

pressure) for vortices with velocity ratio 0.6 and swirl numbers 0 (a wake), 0.42,

and 0.83. The wake mixed-out loss increases monotonically with pressure rise. The

mixed-out losses of the vortices decrease for 0 ≤ Cp ≤ 0.3, because of vortex line

contraction. Figure 4-10 shows contours of swirl velocity (normalized by freestream

inlet velocity) for Cp = 0.05, 0.19, and 0.31. As the pressure rise increases, the swirl

velocity ratio decreases from 0.32 to 0.27, and the mixed out loss drops accordingly.

Referring back to Figure 4-9, the loss for the S = 0.83 vortex begins to increase
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Figure 4-10: Contours of swirl velocity, normalized by inlet freestream velocity for
vortex with velocity ratio 0.6, swirl number 0.83 passing through duct with endwall
pressure rise Cp = ∆p

0.5ρU2 = 0.05, 0.19, 0.31.
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at Cp = 0.3. At Cp = 0.38, the exit mixed-out loss becomes greater than the inlet

mixed-out loss. This increase in loss is due to vortex breakdown and flow reversal.

Figure 4-11 shows contours of axial velocity ratio for the S = 0.83 case for pressure

rises Cp = 0.31, 0.37 and 0.42. For Cp = 0.31, the reversed flow region occupies a

maximum of 0.07% of the duct area, but as the pressure rise increases, the region of

reversed flow grows by more that an order of magnitude to occupy 0.8% of the duct

area at Cp = 0.42.

The calculations show changes in loss of lower magnitude than predicted by the

Rankine vortex model, since viscous effects mix the flow before and during the area

expansion. Figure 4-12 shows a comparison of the change in mixed-out loss given by

the Rankine vortex model and the axisymmetric CFD. For the control volume, the

loss slope with respect to Cp is about five times greater than that for the computations

for Cp ≤ 0.1. Vortex breakdown is predicted to occur earlier than in the axisymmetric

calculations, at Cp = 0.16. However, the qualitative behavior for the two descriptions

are in accord and show that a vortex which passes through a pressure rise less than

that sufficient to cause vortex breakdown will experience a decrease in mixed-out loss.

As the pressure rise increases past a critical value, the vortex breaks down, and the

control volume approach cannot capture the increase in exit mixed-out loss as the

vortex experiences increasingly more flow reversal.

4.7 Conclusions

The effect of pressure gradients on flow non-uniformities has been explored. It has

been shown that an adverse pressure gradient always increases mixing losses for a

wake, but not necessarily for a vortex. However, a vortex core experiences stagnation

at a lower freestream pressure change, leading to a large expansion in the vortex core.

Turbine tip vortices can have initial swirl numbers near unity, implying the swirl

component must be considered when examining the effect of pressure gradients on

the flow. This is in contrast to the compressor tip clearance vortex, for which a wake

is a reasonable model because of the lower swirl number [9]. It is seen that a small
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Figure 4-11: Contours of axial velocity, normalized by inlet freestream velocity for
vortex with velocity ratio 0.6, swirl number 0.83 passing through duct with endwall
pressure rise Cp = ∆p

0.5ρU2 = 0.31, 0.37, 0.42. Reversed flow regions indicated in white.
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Figure 4-12: Comparison of change in mixed out loss from axisymmetric computations
with Rankine vortex model as a function of duct endwall pressure rise Cp = ∆p

0.5ρU2 .

amount of diffusion has the potential to decrease the mixing loss, but that the current

turbine designs subject the vortex to an amount of diffusion sufficient to cause vortex

breakdown, a loss mechanism controlled by the freestream pressure rise. Chapter 5

describes the direct application of this observation to a turbine through a numerical

study in which vortex breakdown was made more and less severe in an attempt to

reduce the tip clearance loss.
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Chapter 5

Effect of Turbine Pressure Rise on

Clearance Loss

5.1 Introduction

In the previous chapter, it was shown that the tip leakage vortex core in the subsonic

high pressure turbine passage encountered a pressure rise sufficient for vortex break-

down, in which the flow in the vortex core is decelerated through flow reversal This

leads to the question of whether tip clearance loss can be decreased by designing the

turbine with decreased pressure rise near the trailing edge. To answer this question,

two blades were designed. One blade was designed with a forward loaded tip section

to decrease the suction surface pressure rise. The second had an aft loaded tip section

to increase the suction surface pressure rise. For the remainder of the chapter, the

forward loaded, and aft loaded designs will be respectively referred to as the F and

A blades.

This chapter describes the results of simulations which showed that, relative to

the baseline, denoted by B, the A blade had 7% increased tip clearance loss, while

the F blade had 9% decreased clearance loss. The entropy generation associated with

the tip vortex breakdown region was higher for A blade with more reversed flow in

the vortex core.
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Figure 5-1: Tip geometries: Aft loaded (A), baseline (B), and forward loaded (F).

5.2 Tip Design Strategy

The effect of vortex breakdown on loss was assessed by computing the flowfields

around airfoils which increased (the aft loaded or A design) and decreased (the forward

loaded or F design) the pressure rise and hence the vortex core deceleration in the

aft 25% axial chord of the blade.

Figure 5-1 shows the A, B (baseline), and F tip section geometries. In shifting the

loading from aft to forward, the blade is uncambered and suction surface is flattened.

The blade was re-stacked to include the new tip design, with the tip blended linearly

into the 50% span airfoil shape. Meshes were generated to the same wall spacings

as the baseline, and the flow in the blade passages was examined for clearances from

0-2% under the same conditions as the baseline mid-loaded tip (see table 2.1).

Figure 5-2 shows the isentropic suction surface Mach number extracted from the

computations at 80% span as a function of axial position for 0.5% clearance. The

desired effect has been achieved in that, from x/c = 0.75 to 1, the slope of the suctions

surface isentropic Mach number is more negative for the A blade than for the F blade.
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Figure 5-2: Isentropic suction surface Mach number at 80% Span from 3-D calcula-
tions at 0.5% clearance.

5.3 Results

5.3.1 Overall Loss

The F blade has 9% less leakage loss than the baseline design. Figure 5-3 shows the

leakage loss coefficient (Chapter 2) against clearance for the three different tips. As

the loading goes from forward to aft, the tip clearance loss slope increases by 15%.

The difference in mixing loss per unit leakage flow between the F and A blades is

30%, which is twice as large as the difference in total leakage loss. Though there is

less massflow emerging from the gap for the A blade, the mixing loss is higher. Figure

5-4 shows the computed normalized loss per unit leakage flow for the three different

blades at 2% clearance, as well as results from the control volume loss analysis, as

described in Chapter 3. The gap loss per unit massflow is the same for each design,

indicating that gap loss scales with massflow. The control volume approach captures

the effect of pressure distribution, that forward loading decreases the clearance loss

due to the decrease in the suction surface peak velocity, however, it underpredicts
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Figure 5-3: Leakage loss coefficient as function of clearance for A, B, F blades.

the magnitude of the effect, indicating that another mechanism is operating. It will

be shown that the increase in mixing losses is due to a decrease in vortex streamwise

velocity ratio between the F and A cases.

5.3.2 Leakage Mass Flow

The leakage mass flow increases as the blade design changes from aft loaded to forward

loaded. Figure 5-5 shows the massflow for the A, B, and F blades as a function of

clearance. The difference in leakage flow between the F and A blades cases is 14%.

Figure 5-6 shows that the difference in massflow between the F and A blades is

primarily associated with the region x/c = 0.4− 0.8.

The massflow through the tip is determined by the gap exit stagnation-static

pressure ratio, the viscous losses, and the area, as well as the angle at which the flow

exits relative to the mainstream. Figure 5-7 shows the isentropic Mach number at the

gap exit for the three blades. The gap pressure ratios are similar from x/c = 0.4 to 1

where the majority (85%) of the massflow exits, indicating that the difference in gap

exit pressure ratio is not the reason for the increase in leakage massflow. The change
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Figure 5-4: Normalized loss per unit leakage massflow for A, B, F blades. Computed
mixing loss, control volume estimate for mixing loss, gap losses at 2% clearance

Figure 5-5: Ratio of leakage massflow to passage massflow as a function of clearance
for A, B, F blades at 2% clearance.
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Figure 5-6: Normalized leakage massflow per unit axial chord as a function of axial
position for A, B, F blades at 2% clearance.

in viscous losses within the gap account for only 9% of the change in tip clearance

loss. Figure 5-8 shows that the discharge coefficients of the three tips differ by no

more than 10% from x/c = 0.4 to 1.

The factors that do change between the F and A blades are the gap area and

the angle between the leakage flow and the mainstream. Figure 5-9 shows the gap

perimeter per unit axial chord at each axial location. From x/c = 0.4 to 0.8, the F

tip gap has more perimeter, and hence area for the flow to exit, than the A tip gap.

The angle at which the leakage flow emerges from the gap is given in Figure 5-10.

Between 40%-80% axial chord, the leakage flow exits from the F tip gap at a 10−15◦

higher angle (closer to perpendicular to the freestream) than that from the A tip gap,

meaning that more flow can exit per unit area. In summary, there is a difference in

leakage massflow of 14% between the A and F blades because the F blade has a larger

perimeter and the leakage flow exits the gap in a direction closer to the gap normal

vector.
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Figure 5-7: Relative isentropic Mach number at suction side gap exit as function of
axial position for A, B, F blades at 2% clearance.

Figure 5-8: Computed tip gap discharge coefficient as a function of axial position for
A, B, F blades at 2% clearance.
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Figure 5-9: Gap perimeter per unit axial chord as a function of axial position for A,
B, F blades.

Figure 5-10: Mass average leakage angle in the tip gap as a function of axial position
for A, B, F blades at 2% clearance.

82



5.3.3 Tip Clearance Vortex

In the baseline turbine, vortex breakdown was seen under the influence of the static

pressure rise from 75% axial chord to the trailing edge. The aft and forward loaded

tips change the pressure rise to which the vortex is exposed, alter the deceleration of

the core flow, and alter the losses generated in this breakdown.

Figures 5-11, 5-12, 5-13 and 5-14 show the evolution of the tip clearance vortex

properties for the forward and aft 2% clearance cases, extracted using the method-

ology defined in Chapter 2. Slices were taken normal to the streamwise direction,

and the vortex was defined by including cells with positive vorticity (greater than

the baseline relative vorticity −2Ω) outside of the tip gap and blade boundary layers.

Figures 5-11 and 5-12 show the average and mimimum streamwise velocity ratios in

the vortex core for the A, B and F blades. In terms of the average streamwise velocity

ratio, the flow in the core of the vortex in the A blade is decelerated more than that

in the F blade. The core centerline velocity shows the same trends, but magnified. In

the A blade, the core centerline velocity ratio reaches a minimum of -0.13, indicating

that the vortex core is reversed, while the F blade does not experience any flow rever-

sal. Figure 5-13 shows this in contours of the streamwise velocity normalized by exit

velocity. The reversed flow at the center of the vortex core for the aft loaded turbine

is shown in the last two slices, indicated by the white area.

Figure 5-14 shows the swirl numbers for the vortices for the F and A blades. The

vortex in the F blade barely reaches the nominal vortex breakdown criterion. It also

has a swirl number lower than that in the A blade by a factor of 2 because of the

larger pressure rise in the A blade.

5.3.4 Loss Mechanisms

The increase in mixing loss between the F and A blades occurs in the region of

vortex breakdown. To illustrate this point, Figure 5-15 shows the difference in loss

generation per axial distance(computed from the viscous dissipation, see Chapter 2)

between the 0 and 2% clearance cases as a function of axial location for the F and
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Figure 5-11: Vortex core average velocity ratio as a function of axial position for A,
B, F blades at 2% clearance.

Figure 5-12: Vortex centerline velocity ratio as a function of axial position for A, B,
F blades at 2% clearance.
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Figure 5-13: Contours of streamwise velocity ratio for A (left), F (right) blades at 2%
clearance. Reversed flow regions shown in A blade vortex in white.
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Figure 5-14: Vortex swirl number as a function of axial position for A, B, F blades
at 2% clearance.

A blades. The A blade has a 35% higher mixing loss per unit distance in the region

x/c = 1 to 1.4, where the tip clearance vortex has broken down and is mixing out.

From this, we conclude that vortex breakdown is a loss mechanism which contributes

to the difference in loss per unit leakage between the A and F blades.

Figure 5-16 compares the viscous dissipation in the F and A blade at the location

of maximum entropy generation, x/c = 1.15. The volumetric entropy generation has

been non-dimensionalized by the massflow through the turbine passage, the exit static

temperature, and the specific enthalpy rise through the the turbine. The maximum

local dissipation in the plane shown is located in the region of mixing of the tip vortex

with the surrounding flow and is a factor of two larger for the A blade than for the F

blade, confirming that the increase in viscous dissipation between the A and F blades

occurs in the vortex breakdown region.
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Figure 5-15: Difference in mixing loss per axial chord between 0%, 2% clearance for
A, B, F blades.

Figure 5-16: Contours of normalized viscous dissipation at x/c = 1.15 for F, A blades
at 2% clearance. Two adjacent passages shown.

87



5.4 Conclusions

It has been shown in this chapter that the tip loading distribution can affect tip

clearance loss by affecting vortex breakdown, which is a source of tip clearance losses.

Two turbine blades were designed to alter the pressure rise experienced by the tip

clearance vortex. Computations showed that, relative to the baseline blade, a forward

loaded tip (F blade) decreased the tip clearance loss by 9% while an aft loaded tip

(A blade) increased the tip clearance loss by 7%. The reason for the difference in

clearance loss was found to be the decrease in streamwise velocity ratio in the vortex

core, which is directely attribuete to the difference in pressure rise at the aft region

of the blade. The A blade, compared to the F blade, had more reversed flow in the

vortex core and twice the loss in the region where the vortex broke down and mixed

out. These results indicate that leakage vortex breakdown and hence the leakage loss

can be moderated by reducing the trailing edge pressure rise through design of the

near-tip airfoil shape.

We have seen that a change in the tip section geometry, resulting in a small

change in the pressure distribution (see figure 5-2), results in a 9% change in clearance

loss (between the B and F blades). The alteration of the pressure distribution was

constrained in that the velocity triangles and axial chord were kept constant, and

only the tip section airfoil was changed. The pressure distribution can be further

altered by changing the airfoil loading along the entire span, the inlet flow angle, or

the solidity. Chapter 6 shows the effect of these three variables on tip clearance loss.
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Chapter 6

Effect of Overall Blade Loading,

Incidence and Solidity

In the previous chapter, we saw that when the the tip airfoil section is changed to

reduce the pressure rise encountered by the vortex, the vortex breakdown is mitigated

and the clearance loss reduced. Because only the tip section was altered, the pressure

distribution was unable to be varied much for the geometries considered. In this

chapter, we remove that limitation and evaluate the effect of changes in overall blade

pressure distribution on tip clearance loss.

The first section in this chapter addresses the effect of blade loading using linear

cascades with the airfoil geometries in figure 5-1. It is shown that the forward loaded

cascade has 50% lower loss per unit leakage flow than the aft loaded cascade, mainly

because of a decrease in vortex breakdown losses.

Inlet incidence angle affects the pressure distribution for a given blade geometry.

The second section shows that as the incidence angle increases, the blade becomes

more forward loaded. The tip clearance loss thus decreases because the losses due to

vortex breakdown decrease.

Solidity is examined in the third section. It is demonstrated that as the solidity

of the baseline rotor increases, the tip clearance loss decreases.
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6.1 Effect of Blade Loading

6.1.1 Computational Details

Tip leakage loss was evaluated for linear cascade blades extruded from the A, B, and

F tip sections. These will be referred to as the A2, B2, and F2 designs.

Relevant cascade parameters are found in table 6.1. The mesh is spaced to resolve

boundary layers near the tip, with y+ ≤ 1 and 48 cells across the tip gap. The calcu-

lation was done in the absolute frame, holding the blade stationary and translating

the casing. The inlet total pressure, inlet total temperature, and exit static pressure

were specified. No boundary layer was specified at the inlet.

Table 6.1: Linear Cascade Parameters

Midspan Inlet Angle 40.3◦

Midspan Exit Angle 67.2◦

Exit Mach Number 0.58
Total-Static Pressure Ratio 1.2477
Solidity 1.0
Aspect Ratio 1.26
Exit Rec 1.82e5

6.1.2 Blade Loading Study Results

As intended, the differences in suction surface pressure distribution between the A2,

B2 and F2 are larger than between the A, B, and F cases. Figure 6-1 shows the

suction surface isentropic Mach number at 50% span as a function of axial position

for the A2, B2, and F2 blades. The Mach number of the F2 blade peaks at x/c = 0.05

and falls to the exit Mach number over the remainder of the blade, with 75% of the

decrease in velocity taking place upstream of x/c = 0.5. The B2 Mach number is 0.65

for x/c = 0 to x/c = 0.6, and then falls to 0.58 over x/c = 0.6 to x/c = 1. The A2

Mach number rises from x/c = 0 to x/c = 0.65, peaks at M = 0.7 and then falls to

the exit Mach number from x/c = 0.75 to 1.
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Figure 6-1: Suction surface isentropic Mach number at midspan as a function of axial
position for A2, B2, F2 blades at 2% clearance

The difference in pressure distribution results in a 9% decrease in tip clearance

loss between the B2 and F2 blades. The difference in loss per unit leakage however

is more extreme, because the leakage mass fraction is 18% higher for the F2 blade

relative to the B2 blade.

Figure 6-2 shows the calculated mixing loss per unit leakage flow, and the gap loss

per unit leakage flow, for the A2, B2, and F2 cascades, along with the control volume

estimate for the mixing loss. The gap loss per unit leakage flow is the same to within

5% between designs, indicating that the viscous losses in the gap scale with massflow.

The control volume analysis predicts a decrease in loss as the loading changes from

aft to forward, but underestimates the magnitude of the decrease by roughly 60%,

indicating that not all the losses are captured.

As with the turbine calculations, the increased entropy generation between the

A2 and F2 blades can be associated with vortex breakdown. Figure 6-3 shows the

swirl numbers for the tip vortices in the A2 and F2 blades as a function of axial

position. Each vortex exceeds the nominal breakdown criteria, but the vortex in the
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Figure 6-2: Loss per unit leakage flow for A2, B2 and F2 blades at 2% clearance.
Computed mixing losses, estimated mixing loss from control volume analysis, and
gap losses.

F2 case has lower maximum swirl number and is already broken down at x/c = 0.5

due to the adverse pressure gradient from x/c = 0 to 0.5. At x/c = 0.5, the F2 vortex

has accumulated only 43% of its eventual circulation and so the losses due to vortex

breakdown are likely lower than had the breakdown occurred at the trailing edge,

involving all of the leakage flow.

Figures 6-4 and 6-5 show the core centerline velocity ratio (6-4) and entropy

generation per axial distance (6-5) for the A2 and F2 blades as a function of axial

position. The vortex breakdown occurs further upstream for the F2 blade than for

the A2 blade, and so the loss per axial distance is higher for the F2 blade upstream

of the trailing edge. Over the region x/c = 1 to 1.4, flow reversal is observed in the

A2 blade, the streamwise velocity ratio for the A2 blade is 30% lower than for the F2

streamwise velocity ratio, and the loss per axial distance of the A2 blade is twice that

of the F2 blade. These support the conclusion of Chapter 5 that vortex breakdown

is a mechanism in tip clearance loss.

92



Figure 6-3: Tip vortex swirl number as a function of axial location for A2, B2, F2
blades, 2% clearance.

Figure 6-4: Tip vortex streamwise velocity ratio as a function of axial location for
A2, B2, F2 blades, 2% clearance.
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Figure 6-5: Loss per unit axial distance as a function of axial location for A2, B2, F2
blades, 2% clearance.

6.1.3 Discussion and Conclusions

The interpretation of the cascade study results can be summarized as follows. The

control volume estimate for the mixing losses in the F2 blade is 30% lower than that

in the A2 blade, because the Mach number of the main flow at the suction surface

midspan is lower (for the F2 blade relative to the A2 blade) from x/c = 0.5 to 1. Put

another way, the mixed-out losses estimated from the control volume are modified by

vortex line contraction and breakdown to give the actual loss.

For the F2 blade, the pressure rise encountered by the tip vortex is sufficient for

vortex breakdown at x/c = 0.5. Since the vortex breakdown occurs when only 20%

of the leakage flow has exited the gap, the loss due to breakdown is small. The rest

of the leakage flow then rolls up into the vortex, which goes through a pressure rise

from x/c = 0.5 to 1 that is smaller than that in the A2 blade. The pressure rise from

x/c = 0.5 to 1 decreases the swirl velocities so that the mixing loss per unit leakage

flow is lower than that given by the control volume analysis.

For the A2 blade, the pressure rise occurs between x/c = 0.6 and 1, and the vortex
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breakdown occurs at the trailing edge and involves the entire leakage flow. The vortex

breakdown generates enough loss so the loss per unit leakage is slightly higher than

that predicted by the control volume model.

The F2 and A2 results illustrate that a pressure rise upstream of midchord is less

harmful (in terms of leakage loss) than a pressure rise downstream of midchord since

the vortex is not completely formed at midchord. Vortex breakdown in the former

situation will produce lower losses than in the latter.

6.2 Effect of Incidence

A change in incidence alters the pressure distribution on the suction surface and

thus the tip leakage loss. It will be shown that the leakage loss decreased 16% when

the inlet flow angle (relative to the blade) was increased from 30◦ to 50◦ for the

B2 linear cascade. Figure 6-6 shows the computed suction surface isentropic Mach

number at midspan for inlet flow angles 30◦, 40◦ (baseline) and 50◦. As the incidence

increases, the drop in isentropic Mach number from x/c = 0.55 to x/c = 1 decreases

slightly. Since the leakage mass fraction did not change with incidence 1, the loss per

unit leakage flow, shown in figure 6-7, also decreases by 16% between 30◦ and 50◦

incidence. The mixing loss predicted by the control volume model is roughly uniform

(to within 1%) with incidence, while the actual mixing loss decreases linearly and is

lower in value than the control volume estimates.

The change in pressure distribution also affects the vortex evolution. Figure 6-8

shows the tip vortex centerline velocity ratio for the three inlet angles, and Figure

6-9 shows the entropy generation per axial distance. As the incidence angle increases,

the minimum centerline velocity rises and the loss generation in the vortex mixing

region (between x/c = 1 to x/c = 1.4) decreases. In other words, the vortex breaks

down with lower losses.

Comparing figures 6-1 and 6-6, there are qualitative similarities between the F2

1The leakage mass fraction does not change with incidence because most of the massflow exits
downstream of 40% axial chord, and the loading in that region is not changed much by incidence
(Isentropic Mach number varies by only 0.04.
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Figure 6-6: Suction surface isentropic Mach number at midspan for incidences 30◦ to
50◦

Figure 6-7: Mixing loss per unit leakage flow as a function of inlet flow angle for B2
blade. Computed losses, control volume model estimate
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Figure 6-8: Vortex centerline streamwise velocity ratio for B2 blade, inlet flow angles
30◦, 40◦, 50◦.

Figure 6-9: Entropy generation per unit axial distance as a function of axial distance
for B2 blade, inlet flow angles 30◦, 40◦, 50◦.
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blade and the 50◦ incidence case, and between the A2 blade and the 30◦ incidence case,

although the differences in isentropic Mach number are greater for the tip loading

study. Increasing the incidence forward loads the blade, reduces the pressure rise

experienced by the vortex, and leads to lower losses from vortex breakdown.

6.3 Effect of Solidity

Solidity is defined in equation 6.1 as the ratio of midspan chord c to pitch p.

σ =
c

p
(6.1)

An increase in solidity decreases the loading and is therefore expected to affect

both the loss per unit leakage flow and the leakage mass fraction. This can be seen

using Denton’s tip clearance loss analysis [3]. Consider a rectangular pressure dis-

tribution. Using the blade circulation and continuity, we obtain expressions for the

suction side and pressure side velocities, Equation 6.2 and 6.3, where Vx is the axial

velocity, ψ = ∆ht
(ωr)2

is the work coefficient, φ = Vx
ωr

is the flow coefficient, and α is the

local relative flow angle [3].

Vss =
Vx

cos(α)
+
Vxψ

2φσ
(6.2)

Vps =
Vx

cos(α)
− Vxψ

2φσ
(6.3)

Following Denton, we assume that the leakage flow dm emerging from the gap

over a small axial distance dz is two-dimensional. Equation 6.4 gives an expression

for dm, where Cd is the discharge coefficient, g is the gap height, and ρ is the density.

dm = Cdg
√

2(pps − pss)ρdz = Cdgcρ
√
V 2
ss − V 2

psd(z/c) (6.4)

The mainstream massflow is given by mm = ρVxhp. Using Equations 6.3 and 6.2

in Equation 6.4 and dividing by the mainstream massflow we obtain an expression
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for the leakage massflow in Equation 6.5

dm

mm

= Cd(g/h)

√
2ψσ

φ cosα
d(z/c) (6.5)

The massflow through the gap decreases as 1/
√
σ due to the loading change, but

the passage massflow decreases at a rate of 1/σ. The result is that the leakage mass

fraction is predicted to increase as the square root of solidity.

Equation 6.6 gives the loss per unit leakage flow, where Vleak,x and Vleak,y respec-

tively refer to the velocity component of the leakage flow aligned and perpendicular

to the suction surface velocity.

T∆sgen =
dm

mm

1

2

[
(Vss − Vleak,x)2 + V 2

leak,y

]
(6.6)

Vleak,x is equal to the pressure side velocity because the streamwise velocity of the

fluid is unaffected as it passes through the gap. Vleak,y is computed from the leakage

massflow. The resulting expression for loss per unit leakage flow is given in equation

6.7.

mmT∆sgen
dmV 2

x

=
ψ2

2φ2σ2
+

C2
dψ

φσcos(α)
(6.7)

The first term on the right hand side is associated with the equilibration of stream-

wise velocity between the leakage flow and the mainstream, and decreases at a rate of

1/σ2. The second term is associated with dissipation of the crossflow kinetic energy,

depends on the leakage massflow, and decreases at a rate of 1/σ.

Three-dimensional calculations of the B blade showed the tip clearance loss de-

creased 15% as the solidity increased from 0.88 to 1.07 2. Comparison of the 3-D

results with the scaling arguments discussed above for leakage massflow and mixing

losses are discussed below.

2The solidities of the geometries evaluated were obtained by varying the blade count for the
subsonic high pressure turbine of chapter 2 between 53 and 64 (the baseline design has 58 blades).
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Figure 6-10: Leakage mass fraction as a function of solidity for B blade, 2% clearance.

6.3.1 Leakage Massflow

Figure 6-10 shows the change in leakage massflow ratio (MR = mleak

mm
) with solidity.

Also shown is the scaling predicted by the Denton’s analysis as the solidity changes

from σ = 0.97, given in Equation 6.8.

MR(σ) =

√
σ

0.97
MR(σ = 0.97) (6.8)

The computed leakage massflow increases linearly with solidity, rather than as
√
σ; the computed massflow through the tip gap remains constant as solidity changes,

because the total-to-static pressure ratio across the tip gap is unaffected by solidity

downstream of x/c = 0.25, as shown in figure 6-11. The only effect of solidity on the

mass ratio is the change in pitch, so that the mass ratio scales linearly with σ.

6.3.2 Mixing Losses

Three-dimensional computations confirm that the mixing loss per unit leakage flow

decreases as solidity increases, but more rapidly than predicted by the control volume
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Figure 6-11: Suction surface gap exit isentropic Mach number for B blade, σ =
0.88, 0.97 and 1.07, 2% clearance.

analysis or scaling arguments presented above. Figure 6-12 shows the mixing loss per

unit leakage massflow as a function of solidity, along with the control volume estimates

for mixing losses and the scaling. Because the leakage massflow and thus Vy,leak are

unaffected by the change in solidity, the first term in Equation 6.7 is the only one

that varies with solidity, the change in mixing loss should scale as 1/σ2. Since the two

terms in Equation 6.7 are roughly of equal magnitude (Vleak,y ≈ Vss and Vleak,x � Vss),

the mixing loss will scale as given in equation 6.9.

mmT∆s

mleak∆ht
(σ) = 0.5

mmT∆s

mleak∆ht
(σ = 0.97) + 0.5(

0.97

σ
)2 mmT∆s

mleak∆ht
(σ = 0.97) (6.9)

The control volume estimates for the mixing losses decrease at a rate similar to that

predicted by the scaling arguments. The computed loss is more sensitive to solidity

than the control volume analysis predicts, because of changes in vortex breakdown

loss with solidity. Figure 6-13 shows the midspan suction surface isentropic Mach

number for the three solidities, while Figure 6-14 shows the vortex core centerline
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Figure 6-12: Mixing loss per unit massflow as a function of solidity for B blade, 2%
clearance. Computed losses and control volume estimate.

velocity ratio as a function of axial position for σ = 0.88, 0.97 and 1.07. As solidity

decreases, the flow decelerates more in the aft region of the blade, and the minimum

streamwise velocity ratio at x/c = 1.15 decreases. For the three solidities considered,

the mixing loss peaks at the location of minimum streamwise velocity in the vortex,

as in figure 6-15. This increase in loss is due to both the increase in suction surface

Mach number (which is captured by the control volume analysis) and to increased

losses from vortex breakdown.

6.4 Conclusions

Blade loading affects tip clearance loss both through increased suction surface mixing

velocities, which are captured by the control volume model, and through altering the

extent of vortex breakdown, which is not captured by the control volume model.

With the entire blade front-loaded (the F2 blade), the tip clearance loss is de-

creased 9% relative to the baseline B2 blade, but the loss per unit leakage flow is

decreased 30%. The pressure rise from x/c = 0 to 0.5 in the F2 blade did not con-
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Figure 6-13: Midspan suction surface isentropic Mach number for B blade, σ =
0.88, 0.97 and 1.07, 2% clearance.

Figure 6-14: Vortex centerline velocity ratio as a function of axial distance for B
blade, σ = 0.88, 0.97 and 1.07, 2% clearance.
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Figure 6-15: Entropy generation per unit axial distance as a function of axial distance
for B blade, σ = 0.88, 0.97 and 1.07, 2% clearance.

tribute to the loss because it caused vortex breakdown while the vortex was still small.

If the entire blade is aft loaded, the tip vortex breakdown causes more losses than in

the baseline blade, and the tip clearance loss per unit leakage flow is increased 40%.

Positive incidence change shifts the airfoil surface loading forward, while negative

incidence change shifts the loading aft. Increasing the inlet flow angle by 10◦ decreases

tip clearance losses by 9% while decreasing the inlet flow angle by 10◦ increases tip

clearance loss by 8%.

Finally, an increase in solidity reduces tip clearance loss by decreasing the freestream

Mach number and vortex breakdown losses, even though the leakage mass fraction

increases. A 10% increase in solidity was found to decrease the loss per unit leakage

flow 13%, while a 10% decrease in solidity increased loss per unit leakage flow by 33%.

As solidity increases, the leakage mass fraction grows linearly because the the leakage

massflow is unaffected by the solidity change, while the passage massflow decreases.

The loss per unit leakage massflow decreases with an increase in solidity because the

losses due to vortex breakdown are reduced.
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Chapter 7

Conclusions and Recommendations

for Future Work

7.1 Summary

The dependence of tip clearance loss on turbine blade pressure distribution was ex-

amined through three-dimensional RANS turbine computations, control volume anal-

yses, and computations of flow in rectangular ducts with area changes.

• A control volume approach was assessed against the leakage mixing process

in rectangular ducts with area expansion and flow injection as well as in four

turbine blade passages. It was found that while control volume analysis is useful

for estimating turbine tip clearance losses, there is a large (∼ 30%) uncertainty,

because the the change in loss as the vortex passes through a pressure gradient

is not addressed.

• Axisymmetric computations of vortices in area expansions showed that strongly

swirling tip clearance flows (uθ/ux ≥ 1) in the vortex core) respond differently

to pressure rises than do wakes, because of vortex line contraction and vortex

breakdown.

• Based on the observations, it was hypothesized that tip clearance loss due to

vortex breakdown could be reduced for blade designs that lower the pressure
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rise in the aft section of the suction surface near the tip. Computations for

turbines with forward and aft loading, as well as with different incidences and

solidities, confirmed this hypothesis.

7.2 Contributions

There are four main contributions made by this work, presented below.

• Turbine tip leakage vortices are found to be qualitatively different from com-

pressor tip leakage vortices at the design point. Turbine vortices have initial

swirl numbers greater than 1, while compressor vortices have swirl numbers

(uθ/ux) less than 0.5. Because of this, a turbine clearance vortex is susceptible

to vortex breakdown under a large pressure rise, but it can experience a reduc-

tion in mixing loss under a small pressure rise (large and small are defined in

Chapter 4). A compressor clearance vortex is more like a wake, whose mixed

out loss increases as it passes through a pressure rise.

• The use of control volume analysis to capture the mixing loss between the leak-

age stream and the mainstream was assessed to be accurate to within 40% for

the cases studied. The reason for the discrepancy is that much of the mixing

takes place downstream in the tip clearance vortex, which passes through a

pressure rise (for the cases considered), rather than at the clearance exit condi-

tion.

• Tip clearance vortex breakdown is an important loss mechanism in turbine tip

clearance flow. Axisymmetric vortex breakdown calculations showed that as

the pressure rise increased above a certain level, the amount of reversed flow in

the vortex core and the mixed-out loss both increased.

• Tip clearance loss can be decreased by designing the turbine with a lower pres-

sure rise in the aft 50% axial chord. A forward-loaded blade reduced the tip

clearance loss by 16%, relative to an aft-loaded blade, by reducing the pressure
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rise and hence the vortex breakdown in the turbine passage. Tip clearance

loss also decreases as solidity and incidence increase, consistent with the above

ideas.

7.3 Recommendations for Future Work

One major recommendation concerns unsteady flow. The turbine calculations in

this thesis treated the blade in isolation. In reality, the upstream vane provides an

unsteady inlet flow which can affect the tip clearance flow and the vortex. More

importantly, in a real turbine, the tip clearance vortex will not mix out before it

encounters the next stationary blade row, and the effect of the unsteady interaction

of the vortex with the downstream blade row is not known. One-and-a-half stage

unsteady calculations, along with simplified analyses, should be done to assess and

to clarify the unsteady effects of tip clearance flow, in particular to determine the

behavior of the tip loss in a multi-row unsteady environment.

A second recommendation concerns the design features. The turbines studied in

depth were all subsonic. The suggestion is thus to examine the physical features of

the mixing process for a supersonic turbine to see if the trends are similar to those of

subsonic flow.
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