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Abstract

Computer vision requires the processing of images at various levels of abstraction. This thesis
explores two image representations for vision which can be classified as "syntactic and "se-
mantic respectively. As an exploration into syntactic (signal level) representations, an image
coding technique based on the statistical relationship between subbands of the wavelet trans-
form is explored. A sample implementation is described, which shows how this technique can
be integrated into standard vector quantization coding schemes. A formulation for the recov-
ery of rigid and non-rigid motion from optical flow is presented as an exploration of semantic

(content based) image compression. This framework is based on the dynamic behavior of de-
formable models, and allows for closed form solution. This technique has applications for image
understanding and the interpretation of visual motion.
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Chapter 1

Introduction

1.1 Overview

Early in the development of the field of vision, a natural distinction between "low-level" and

"high-level" visual processes was discovered. Biologically, these processes can be classified by

where they occur in the visual system. The lowest level processing occurs in the architecture of

the retina itself. As one traces the visual system back to the cortex, these low-level mechanisms

are combined in increasingly complex ways which yield high-level functionality.

Image coding and machine vision have a similar relationship. Image coding deals with find-

ing a representation that can be expressed in the minimum amount of information. Coding

can be considered a syntactic representation in that it looks for image-level relationships (cor-

relations) in the image signal itself. Machine vision also looks for correlations; rather than 2-D

image correlations, it seeks the correlations that are meaningful for robotics and other applica-

tions. By discovering such meaningful correlations machine vision seeks to transform the image

signal into a semantic representation.

The representations of machine vision and image coding form a continuum. This thesis

consists of two individual research endeavors which are at opposite ends of this continuum, but

both aimed at the problem of representing images and their content. The first part of the thesis,

Chapters 2 through 5, explores a technique for image compression which is based on the 2-D

image-level relationship between subbands of the wavelet transform. The second part, Chapters

6 through 10, addresses the high-level representation of 3-D motion. The final chapter briefly



hints at how these two techniques might be combined to form a unified image interpretation. I

will describe in detail two specific research projects which are grounded in these different ways

of treating and managing images.

1.2 Collaborations and Supporting Research

It should be mentioned that much of the work presented here is of a collaborative nature. The

algorithm for the interpretation of non-rigid motion was developed with my thesis advisor Alex

Pentland. The platform on which it is implemented, ThingWorld, is the result of continued

effort by a number of people: Alex Pentland, Stanley Sclaroff, Martin Friedmann, Irfan Essa and

Thad Starner. Related work by Stanley Sclaroff shows how similar techniques can be used to

fit range data and recognize objects, and the reader is encouraged to also consult that work for

more information. The initial experiments on vector quantization were inspired by the work of

Takenori Seno and Bernd Girod. Ted Adelson's and Eero Simoncelli's EPIC (Efficient Pyramid

Image Coder) formed the platform for investigations in image coding. When the pronoun "we"

is used in the text, it refers to Alex Pentland and myself. I am thankful to all of these colleagues

and apologize for any omissions.

It should also be noted that much of the material presented here has been published in

journals and conference proceedings. The work on non-rigid motion is derived from [22] and

the results in fractal image coding were first presented in [26].
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Chapter 2

Fractal Image Coding

Fractal techniques for image compression have recently attracted a great deal of attention.

Unfortunately, little in the way of practical algorithms or techniques have been published. We

present a technique for image compression that is based on a very simple type of iterative

fractal. In our algorithm a wavelet transform (quadrature mirror filter pyramid) is used to

decompose an image into bands containing information from different scales (spatial frequencies)

and orientations. The conditional probabilities between these different scale bands are then

determined, and used as the basis for a predictive coder.

We find that the wavelet transform's various scale and orientation bands have a great deal

of redundant, self-similar structure. This redundant structure is, however, in the form of multi-

modal conditional probabilities, so that linear predictors perform poorly. Our algorithm uses

a simple histogram method to determine the multi-modal conditional probabilities between

scales. The resulting predictive coder is easily integrated into existing subband coding schemes.

Comparison of this fractal-based scheme with our standard wavelet vector coder on 256 x 256

grey-level imagery shows up to a two-fold gain in coding efficiency with no loss in image quality,

and up to a four-fold gain with small loss in image quality. Coding and decoding are imple-

mented by small table lookups, making real-time application feasible.



2.1 Introduction

Fractal geometry was introduced by Mandelbrot [17] in the late seventies, and has had important

consequences in a number of domains. In image processing and generation fractals have been

important because they can describe and generate natural-looking images with (literally) infinite

detail using only a small number of simple rules and parameters. The simplicity of these rules

lead the computer graphics community to immediately adopt fractals as their primary stochastic

modeling tool.

In the image processing and compression community, fractals have generated a great deal of

interest because the prospect of solving the inverse problem, that of automatically recovering

simple rules that describe complex imagery, is extremely attractive. Pentland [18] was perhaps

the first to apply fractals to image processing, using estimates of fractal parameters to perform

texture segmentation and shape extraction. More recently, Barnsley and Sloan [5] have proposed

using iterated function systems (IFS) to achieve massive compression of some images, while

Walach & Karnin have proposed a "yardstick" technique to achieve a fractal encoding of images.

Most common fractals exhibit a type of statistical self-similarity, that is, there is a fixed

pattern of relationships that exists between the fractal's values at different scales of examination.

Brownian fractals, for instance, exhibit a self-affine correlation structure. In consequence, we

may characterize these fractal signals by discovering the pattern of relationships that exists

within and between the different scales.

As an example, let us examine the appearance of some different-scale subbands of a typical

image. Figure 2-1 shows a three-level Laplacian pyramid computed from an image, a decompo-

sition of the signal into roughly octave-wide subbands. This transform was suggested by Burt

and Adelson [7], and uses separable Gaussian linear filters to recursively bandsplit the image,

generating a pyramid-like data structure that provides a compact, multi-scale representation

of an image. Even a cursory examination of these subbands makes it clear that there is great

similarity between the various scales. In large part this is due to the self-similarity of edges;

a perfect edge appears the same at all scales and hence appears in the same location in each

subband.

The image model that we have adopted is a generalization of the behavior of edges in

subbands, and characterizes images as a simple type of recursively-defined, non-linear fractal.



Figure 2-1: 3-level Laplacian pyramid of the image face



In particular, our model is that (1) all subbands of the same orientation consist of unions of the

same primitive elements (e.g., edge fragments, textures), and that (2) for all subbands of the

same orientation there is a fixed, one-to-many function that maps that subband's elements to

the elements of the next-higher frequency subband. In the case of perfect edges the subband-

to-subband mapping is simply the identity operation, however in most cases the mapping is

not only one-to-many but also non-deterministic. Our model defines a simple type of iterative

fractal, and when applied recursively can generate a wide class of imagery.

The main idea behind our approach to image compression is to characterize the set of

mappings that exist between subbands, and to use this knowledge to achieve greater compression

ratios. By use of a standard vector quantization approach we are able to characterize the

patterns that exist within subbands, and by a simple histogramming approach we are able to

statistically characterize the mapping between subbands. Using these characterizations we are

then able to remove redundancies that exist between, and within, subbands.

Our work is similar in spirit to image extrapolation or interpolation techniques that attempt

to predict high frequency detail (or subbands) from lower frequency content (or subbands).

Extrapolation research, however, has focused almost exclusively on the use of linear and quasi-

linear filters, whereas our approach is based on the observation that the conditional probabilities

that relate different image subbands are inherently non-linear and multi-modal. Our work is

also similar to the iterated function systems research of Barnsley [5]. In our approach, however,

we limit ourselves to a much smaller class of iterated functions, thus simplifying the search for

the correct set of iterative mappings.

2.2 A Testbed System

In this paper we will explain and demonstrate our fractal technique by applying it to a subband

coding system using a wavelet decomposition (also referred to as a quadrature mirror filter

(QMF) pyramid) and vector quantization (VQ). Several properties of the wavelet transform

make it especially suitable for VQ. In particular, each oriented subband generated by the

decomposition exhibits internal structure: the horizontal, vertical, and diagonal subbands show

horizontal, vertical and diagonal structure respectively due to the frequency response of the

filter. It is important to remember, however, that our technique may potentially be adapted to
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Figure 2-2: (a) Original face image and (b) its wavelet (QMF) decomposition

any subband coding system.

Our testbed system used in this paper is intended as a simple, general-purpose image com-

pression facility rather than being optimized for low bit rates. In particular, because the system

employed here is intended for near-real-time encoding/decoding, it avoids complex bit alloca-

tion schemes. Typical bit rates for the system used in this paper are 0.57 bits-per-pixel (bpp)

for a 30 dB SNR (approximately 35 dB peak SNR) using 256 x 256 eight-bit grey-level imagery.

The details of this testbed system are described in the following sections. The wavelet trans-

form (QMF pyramid) employed is based on the nine-tap filter developed in our laboratory by

Adelson and Simoncelli [1].

2.3 The Wavelet Transform

Perhaps the earliest study using the wavelet transform or QMF pyramid for image compression

was by Adelson and Simoncelli [1], while Vetterli was the first to use quadrature mirror filters for

image compression [33]. However other researchers, such as Mallat [16], Gharavi and Tabatabai

[10], and Tran et. al. [31], also suggested use of the wavelet transform at about the same time.

The wavelet transform consists of a set of spatially-localized orthonormal linear filters which

split an image into oriented spatial frequencies bands. An important property of the wavelet



transform (QMF pyramid) is that can be constructed by recursive application of a base filter to

successive lowpass subbands, requiring only O(n) operations, where n is the number of image

pixels.

The result of this transform is a set of subbands which are localized in scale (spatial fre-

quency), orientation, and space. An example of such a transform is shown in Figure 2-2; for

additional detail see Simoncelli and Adelson [28].



Chapter 3

Vector Quantization

3.1 Standard Vector Quantization

The QMF transform does not in itself reduce the amount of data needed to represent the signal.

However, the entropy of the data is reduced, and therefore standard coding techniques can be

applied in order to acheive compression. In this initial implementation, we have investigated

using vector quantization as a coding technique. VQ is well suited to our application, since as

well as efficiently coding blocks of coefficients, it also inherently performs pattern matching.

Therefore, the same technique used for compression can also be used to determine the fractal

statistics of the image.

Vector quantizers map an input signal onto a set of finite reproduction vectors, known as

the codebook. In image compression, each input signal is a 2D k x 1 image patch. Once the

codebook is constructed, pattern matching occurs between the input vector and the codebook

entries. Ordering schemes, such as uniform lattices and K-d trees, have been suggested to prune

search times in the coding and generation processes.

Our implementation uses the Equitz nearest neighbor (ENN) algorithm to approximate

a minimum distortion quantizer over the set of training vectors. The algorithm iterates by

replacing the two "nearest neighbor" vectors in the codebook by a vector which optimally

encodes their constituency. Codebook distance is measured using mean squared error, and

vectors are weighted by the number of samples which depend on them. Typically the ENN

algorithm iterates over the entire set of training vectors until it converges to a solution; we have



chosen to incrementally build the codebook and constrain its maximum size to 256 entries.

This greatly reduces the combinatorics of codebook generation while only slightly affecting the

quality of the resulting codebook. It should be stressed that the fractal technique is not tightly

coupled to the this particular VQ framework.

3.2 Uniform Lattice Quantization

Standard VQ tends to be quite sensitive to its training set. In our experience, we found that

the performance of Equitz VQ varied greatly, depending on content of the training images and

subsequent test images. Moreover, for those images on which VQ did poorly, there was no way

to incrementally increase the quality of the image. The fidelity of the reconstructed image was

upper bounded by the content of the static, predetermined codebook.

These limitations of the standard VQ scheme are well-known, and much recent research

has focused on addressing and overcoming them. Hierarchical VQ, edge-preserving VQ and

adaptive VQ are but a few of the proposed improvements to the basic paradigm. Rather than

employ one of these hybrid schemes, we sought an alternative method which would provide

us with arbitrary reconstruction fidelity (with tradeoff in bitrate), and no dependence on a

statistical training set.

3.2.1 EPIC

The EPIC system, developed in our lab by Adelson and Simoncelli [28], is a pyramid coder

based on scalar quantization of QMF transform coefficients. We adapted this system to act as

a uniform vector quantizer by grouping quantized coefficients in k x I blocks. Each k x I block

is then assigned a codeword by simply concatenating the coefficients. (An efficient shift and or

operation in implementation terms.) Thus the codeword for each block can be one of (k * l)"

values, where n is the number of values that the quantized transform coefficients may assume.

The number of codewords is thus exponential with respect to n. However it is important to

stress that this is implicit VQ; there is no codebook as such, and images are coded and decoded

without search. Moreover, even for large n the histogram of the coefficient values is strongly

biased towards zero; therefore the entropy of actual codewords is, in practice, low.
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Figure 3-1: Comparison between (a) 4D uniform lattice quantizer (dotted line), (b) standard
run-length and Huffman coding of QMF coefficients (dashed line), and (c) JPEG (solid line).
The results for the ENN VQ of Section 3.1 are of higher quality and greater bitrate, and hence
lie to the top right of the graph.

3.2.2 Results of Uniform Lattice Quantizer

Figure 3-1 shows a comparison between the four dimensional lattice quantizer described in

Section 3.2, a scalar quantizer with run-length and huffman coding of coefficients and JPEG.

The JPEG results reflect a simple doubling of the coefficient tolerances in the standard JPEG

implementation, with no attempt to optimize performance for the specific image tested. The

figure shows that the Lattice Quantizer is an efficient method at the extremely low bitrates we

have been investigating. Figures 3-2 a shows several examples of extremely low bitrate coding

using the lattice quantizer.
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Figure 3-2: Images coded using the lattice quantizer described in Section3.2. (a) .19 bpp at
29.76 dB peak SNR (b) .096 bpp at 27.14 dB peak SNR.



Chapter 4

Determining and Using

Relationships Between Subbands

4.1 Fractal Coding

The output of the VQ stage is a set of codes for each of the horizontal, vertical and diagonal

subbands within each of the scales (pyramid levels) included in the wavelet transform. The

codes for a lower frequency subband will contain one-fourth the number of entries contained

by the next-higher frequency subband. The goal of our fractal-based encoding scheme is to

first estimate the conditional probabilities between various subband's codes, and then use these

statistical relationships in a predictive coding algorithm.

In the pyramid subband structure shown in Figure 2-2(b), an k x 1 patch in one subband

corresponds spatially to four k x I patches in the next-higher frequency subband. Similarly, a

single entry in that subband's coded representation corresponds to four entries in the coded

representation of the next-higher frequency subband. Determining the conditional probabilities

between these codes is thus quite simple. As images are coded, the mappings between the VQ

codes for each subband and the next-higher frequency subband are tallied to obtain a histogram

of the frequency of each of the mappings. Separate histograms are required for each of the four

lower-to-higher frequency mappings. These histograms are called the prediction lookup tables.

Once this frequency histogram is constructed, the conditional probabilities between the

various subband codings can be analyzed to determine an optimal lossless (with respect to the



VQ coding) encoding scheme. In this scheme each VQ-coded entry of each band is re-coded by

comparing it to the codes most frequently associated with the VQ code at the corresponding

location in the next-lower frequency band. Typically the higher frequency band's VQ code is

one of the 2" - 1 codes found most frequently in the prediction lookup table associated with

the lower frequency band's VQ code. The VQ code for the higher frequency band can then be

re-coded by use of an n bit index into that prediction lookup table.

Thus each VQ code in the higher frequency band is re-coded by the following token:

n prediction index bits m bit VQ index (for prediction failures)

The prediction index indicates which of the 2" - 1 most frequent entries in the prediction

lookup table is the correct lower-to-higher frequency mapping. In the event that the correct

code for the higher frequency subband is not one of the 2" - 1 most frequent predictions, the

2"th index is reserved to indicate that the next token is a standard VQ codebook index. An

optimal value for n is determined by minimizing

bits
toe= Pn + (1 - Pn)(n + m) = n + (1 - P)m (4.1)token

where n = number of bits used to index into the prediction lookup table, Pn is the percentage

of low-to-higher frequency mappings accounted for by the most frequent 2" - 1 mappings, and

m is the number of bits used to encode a full codebook index in case of a prediction failure.

The optimal n is determined by analyzing the prediction lookup tables.

In our system the prediction index tokens and the VQ tokens resulting from the above

recoding are separately passed through standard Huffman and run-length encoders, thus form-

ing the code that is finally transmitted. The length of these final codes, rather than entropy

estimates, are the basis for the all of bit rates quoted in this paper.

4.2 Results of Fractal Coding Technique

Table 4.1 shows how the percentage of re-codings, and the resulting bit rate, varies as a function

of the number of bits n used to encode the lower-to-higher frequency mapping. These statistics

are calculated using the testbed wavelet-and-VQ system described in the previous section, and



Table 3: Bit Rate as a Function of Predictions over Training Set
Percentage Encoded

Predictions Bits Horizontal Vertical Diagonal Bit Rate
0 0 0.0 0.0 0.0 .57
1 1 33.96 34.65 28.61 .47
3 2 57.75 61.40 52.91 .43
7 3 78.98 82.01 75.13 .36
15 4 93.53 96.06 91.81 .35
31 5 99.88 99.98 98.94 .38

are averages over a set of ten standard 256 x 256 eight-bit grey-scale images. A 3-level wavelet

transform (QMF pyramid) was used, and the vector quantizer used a vector size of 4 x 4 pixels.

Separate codebooks were used for each orientation within the pyramid; all coding has occurred

at the fixed rate of 8 bits per vector in order to simplify and facilitate determining the statistical

relationship between subbands.

As Table 4.1 shows, our fractal coding scheme produces up to a mean improvement of 1.5

times the testbed's original 0.57 bpp average coding rate. Because the fractal scheme is lossless

with respect to the original VQ coding, the mean 30 dB SNR (35 dB peak SNR) is maintained

even at a mean bit rate of 0.35 bpp. It is important to remember that our fractal coding scheme

can potentially be combined with any subband coder.

Figure 4-1(a) shows the original girl image, at 256 x 256 pixel and eight-bit grey-level

resolution. This image is coded by the testbed system at 0.57 bpp with 28.9 SNR (34.9 dB

peak SNR). By combining our fractal coding scheme (using five prediction index bits) with the

testbed coding system a typical bit rate of 0.35 bpp is achieved. Since the technique is lossless

with respect to the original VQ coding, the image shows no additional degradation as a function

of bit rate. Figure 4-1(b) shows the reconstructed image at 0.31 bpp with 28.9 dB SNR (34.9

dB peak SNR).



(a)

(b)

Figure 4-1: (a) Original and (b) reconstructed girl image, 0.31 bpp at 28.9 dB SNR (34.9 dB
peak SNR) using our fractal coding technique.



4.3 Lossy Image Coding

The scheme described above gives lossless compression with respect to the original VQ coding.

The same approach can be readily adapted to lossy coding, by simply removing the "catch"

entries. That is, rather than reserving the 2"th entry of the prediction index as an indicator

that a standard VQ codebook entry follows, we can instead transmit the prediction codebook

index that is closest to the correct VQ entry. In our experiments, using 10 standard 256 x 256

eight-bit grey-scale imagery, this approach has resulted in a three-fold mean increase in coding

efficiency as compared to the original testbed coding system. Typical results are bit rates of

approximately 0.125 bpp with approximately 28 dB SNR (approximately 33 dB peak SNR).

An example of this type of fractal coding is shown in Figure 4-2. Figure 4-2(a) shows the

original image, and Figure 4-2(b) shows the lossy fractal coding at 0.125 bpp with 26.8 dB SNR

(31.9 dB peak SNR).



(a) E

(b)

Figure 4-2: (a) Original and (b) reconstructed girl image, 0.125 bpp at 26.8 dB SNR (31.9 dB
peak SNR) coded using the lossy fractal technique described in Section 4.3.



Chapter 5

Summary

5.1 Conclusion

We have described a fractal coding technique based on a very simple type of iterative fractal.

In our algorithm a wavelet transform (QMF pyramid) is used to decompose an image into

bands containing information from different scales (spatial frequencies) and orientations. The

conditional probabilities between these different scale bands are then determined, and used as

the basis for a predictive coding scheme.

We find that the wavelet transform's various scale and orientation bands have a great deal

of redundant, self-similar structure. This observation lends support to the assertion that most

images conform to our fractal model of image structure. The resulting predictive coder is

easily integrated into existing subband coding schemes, and produces an average 1.5-fold gain

in coding efficiency with no loss in image quality, and up to a four-fold gain with slight loss

in image quality. Coding and decoding are implemented by small table lookups, making the

scheme practical for real-time applications.

5.2 Epilogue: Motion Coding

Many of the same techniques which are described here for still images can be used to code

image sequences as well. Figure 5-1 shows one second of video coding at 64Kbit / sec. A simple

differencing method has been used to exploit interframe redundancy. Image differencing is the



simplest way of coding image sequences. Since motion between frames is likely to be small,

pixel brightness tends to vary slowly. Differencing fails when blocks of pixels move globally,

either due to movement of an object or of the camera (panning.) For instance if the entire

image is translated by five pixels, the sparsity of the difference image is lost. However, it is

clear that if this global motion could be extracted, reconstruction would be trivial.

The techniques described in this section can be extended to serve as input to the system

described in the next section. Three-dimensional QMF filters can be applied to extract local

measurements of image motion as described in [12]. The second half of this thesis addresses

the problem of how to convert these local, noisy 2-D measurements into a coherent 3-D repre-

sentation. The output of such a system could then be used in a sophisticated coding scheme,

although this is not addressed in this thesis.



Figure 5-1: Motion sequence coded at 64Kbit / sec. The left image in each column shows the
original 128x128 image, the right image is the coded version. Approximately one second of
video is shown.
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Figure 5-2: First three frames of motion sequence enlarged to show detail.
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Semantic Image Representations:

The Recovery of Non-Rigid Motion and
Structure



Chapter 6

Interpretation of Non-Rigid Motion

The previous section concluded with a discussion of coding image sequences using a simple

frame to frame differencing method. More sophisticated coders use a technique known as motion

compensation to predict how objects in the scene are spatially displaced from frame to frame.

These techniques are inherently 2-D, and most assume object motion is confined to translation

in the image plane [3]. The remainder of this thesis addresses the problem of 3-D motion

estimation from 2-D data. This information could be integrated with the techniques described

in the previous section to form a sophisticated coding system, although that endeavor is beyond

the scope of this thesis. More importantly, we recover a high-level semantic description of the

scene which could be used for content-based coding as well as image-level coding.

6.1 Introduction

To date almost all research on recovering structure from optical flow has been based on rigid

motion, either of surface patches or of 3-D structures. Even schemes which address non-rigid

motion, e.g., Ullman's incremental rigidity scheme [32], are usually based on minimizing the

deviation from a rigid-body interpretation.

Yet non-rigid motion is everywhere: trees sway, flags flap, fish wriggle, arm and leg muscles

bunch up, neck and body twist and bend, and cheeks bulge and stretch. One way of coping

with nonrigidity is to simply abandon the idea of recovering a whole-body description of the

motion, and seek to recover structure on a patch-by-patch basis, perhaps allowing some limited



form of non-rigidity [34, 29]. Unfortunately, using a faceted approximation requires that we

limit ourselves to using only noise-sensitive local measurements, and that we correctly and

consistently segment optical flow into the same facets or patches. Consequently such patch-by-

patch recovery of structure is not likely to be either very accurate or robust.

Moreover, we want more than a patch-by-patch description, because whole-body motions

like bending, twisting and the like are meaningful [25, 19], especially when trying to interpret

the actions and gestures of animals and people. To quote Gibson [11]: "An elastic motion,

including that of a walking man with his gestures and facial expressions, could be analyzed into

a set of rigid motions of elementary particles if one wished to do so, but it is better thought

of in terms of components like bending, flexing, stretching, skewing, expanding, and bulging."

Recovering such descriptions is exactly the goal of this paper.

We suggest that the main limitation of previous approaches to non-rigid motion was that

non-rigid motion was conceptualized as being completely unstructured. As a consequence all

one can say about it is how each point or patch is moving. To describe such completely un-

structured motion requires three unknowns per object point, and as a consequence the problem

of estimating non-rigid motions becames badly underconstrained. In fact, however, most real

objects are made of approximately elastic materials, and we will show this fact can be used to

transform the non-rigid motion problem in to an overconstrained problem with a reliable and

efficient solution.

The key insight is that the coherent, elastic behavior of real materials implies that non-

rigid, whole-body motion can be accurately described with relatively few parameters.1 The

optimal parameterization is obtained from the eigenvectors of the object's corresponding finite

element method (FEM) model. These eigenvectors are often referred to as the 3-D object's free

vibration or deformation modes. The parameterization is unique, and is obtained by a multi-

scale orthonormal linear transform (similar to the Fourier transform) that maps the object's

point-by-point motion in Cartesian coordinates into a coordinate system based on the object's

intrinsic deformation modes.

By describing object behavior using a truncated series of vibration/deformation modes one

can obtain the best RMS error description possible for a given number of parameters. By varying

'Except in unusual cases, for example, an object being torn apart by a chaotic flow



the number of description parameters (often as a function of the number of sensor measurements

available) one can smoothly make the transition from a coarse qualitative description to a finely

detailed, accurate description - just as one can smoothly obtain more accuracy by adding more

terms to a Fourier series. The important consequence for the problem of recovering non-rigid

motion is that the problem can always be made overconstrained by reducing the number of

vibration/deformation modes. The limiting case is rigid-body motion, which is equivalent to

using only the lowest six vibration/deformation modes.

Because the modal representation is derived from the ideas of finite element analysis, we

will begin by reviewing the finite element method.

6.2 Representation

The finite element method (FEM) is the standard engineering technique for simulating the

dynamic behavior of an object. Use of the similar technique of finite differences has become

quite popular in machine vision, following the seminal work of Terzopoulos, Witkin, and Kass

[30]. One motivation for using the FEM for vision is that vision is often concerned with

estimating changes in position, orientation, and shape, quantities that the FEM accurately

describes. Another motivation is that by allowing the user to specify forces that are a function

of sensor measurements, the intrinsic dynamic behavior of the FEM can be used to solve fitting,

interpolation, or correspondence problems.

In the FEM, interpolation functions are developed that allow continuous material properties,

such as mass and stiffness, to be integrated across the region of interest. Note that this is quite

different from the finite difference schemes commonly used in computer vision, as is explained

in Appendix A of Pentland and Sclaroff [23], although the resulting equations are quite similar.

One major difference between the FEM and the finite difference schemes is that the FEM

provides an analytic characterization of the surface between nodes or pixels, whereas finite

difference methods do not. All of the results presented in this paper will be applicable to both

the finite difference and finite element formulations.

Having formulated the appropriate FEM integrals, they are then combined into a description

in terms of discrete nodal points. Energy functionals are then formulated in terms of nodal

displacements U, and the resulting set of simultaneous equations is iterated to solve for the



nodal displacements as a function of impinging loads R:

M J + CU + KU = R (6.1)

where U is a 3n x 1 vector of the (Ax, Ay, Az) displacements of the n nodal points relative to

the object's center of mass, M, C and K are 3n by 3n matrices describing the mass, damping,

and material stiffness between each point within the body, and R is a 3n x 1 vector describing

the x, y, and z components of the forces acting on the nodes.

Equation 6.1 is known as the governing equation in the finite element method, and may

be interpreted as assigning a certain mass to each nodal point and a certain material stiffness

between nodal points, with damping being accounted for by dashpots attached between the

nodal points. Inertial and centrifugal effects are accounted for by adding appropriate off-

diagonal terms to the mass matrix. For additional detail about the finite element formulation

see [23], or references [13) or [27].

The most obvious drawback of both the finite difference or finite element methods is the

large computational expense. Such methods require roughly 3nmk operations per time step,

where 3n is the order of the stiffness matrix and Mk is its half bandwidth.2 Normally 3n such

time steps are required to obtain an equilibrium solution. For a full 3-D model, where typically

Mk P 3n/2, the computational cost scales as 0(n3). Because of this poor scaling behavior,

equations are sometimes discarded (for example, those equations corresponding to internal

nodes, as in [30]) in order to obtain sparse banded matrices. In this case the computational

expense is reduced to "only" O(n 2mk).

A related drawback in vision applications is that the number of description parameters is

often roughly equal to the number of sensor measurements, necessitating the use of heuristics

such as symmetry and smoothness. This results in non-unique and unstable descriptions, with

the consequence that it is difficult to determine whether or not two models are equivalent.

Perhaps the most important problem with using such physically-based methods for vision,

however, is that all of the degrees of freedom are coupled together. Thus closed form solutions

are impossible, and solutions to the sort of inverse problems encountered in vision are very

2See Bathe[13] Appendix A.2.2 for complete discussion on bandwidth of a stiffness matrix.



difficult.

Thus there is a need for a method which transforms the Equation 6.1 into a form which is

not only less costly, but also admits of closed-form solutions. Since the number of operations

is proportional to the half bandwidth mk of the stiffness matrix, a reduction in mk win greatly

reduce the cost of step-by-step solution. Moreover, if we can actually diagonalize the system

of equations, then the degrees of freedom will become uncoupled and we will be able to find

closed-form solutions.

6.2.1 Modal Analysis

To accomplish the goal of diagonalizing the system of equations a linear transformation of the

nodal point displacements U can be used:

U = P (6.2)

where P is a square orthogonal transformation matrix and U is a vector of generalized

displacements. Substituting Equation 6.2 into Equation 6.1 and premultipling by pT yields:

MU+ CU+KU=R (6.3)

where

ICI = PTMP; t = PTCP; K = pTKP; R = PTR (6.4)

With this transformation of basis set a new system of stiffness, mass and damping matrices can

be obtained which has a smaller bandwidth then the original system.

Use of Free Vibration Modes

The optimal transformation matrix P is derived from the free vibration modes of the equilibrium

equation. Beginning with the governing equation, an eigenvalue problem can be derived

K4; = WO;M (6.5)

which will determine an optimal transformation basis set.



Figure 6-1: Several of the lowest-frequency vibrations modes of a cylinder.

The eigenvalue problem in Equation 6.5 yields 3n eigensolutions

(Wf 21),7 (W, 24 2), -. - - (Wl 03n)

where all the eigenvectors are M-orthonormalized. Hence

SM4= (6.6)
=0; i f

and
0< W~ 2 w2 w2 < ... < 2(6.7)

The eigenvector 4; is called the ith mode's shape vector and wi is the corresponding frequency

of vibration. Each eigenvector 4; consists of the (x, y, z) displacements for each node, that is,

the 3j - 2, 3j - 1, and 3j elements are the x, y, and z displacements for node j, 1 < j n.

The lowest frequency modes are always the rigid-body modes of translation and rotation.

The eigenvector corresponding to x-axis translation, for instance, has ones for each node's x-

axis displacement element, with all other elements being zero. In the finite element formulation

rotational motion is linearized, so that nodes on the opposite sides of the body have opposite

directions of displacement.

The next-lowest frequency modes are smooth, whole-body deformations that leave the center

of mass and rotation fixed. That is, the (x, y, z) displacements of the nodes are a low-order

function of the node's position, and the nodal displacements balance out to zero net translational



and rotational motion. Compact bodies (simple solids whose dimensions are within the same

order of magnitude) normally have low-order modes that are similar to those shown in Figure

6-1. Bodies with very dissimilar dimensions, or which have holes, etc., can have substantially

more complex low-frequency modes.

Using these modes we can define a transformation matrix 4, which has for its columns the

eigenvectors #j, and a diagonal matrix f2, with the eigenvalues w? on its diagonal:

= [41, #2,43, ... , 43n] (6.8)

2W1

2

n2 =(6.9)

2

Using (6.9) Equation (6.5) can now be written as:

KW = n24M (6.10)

and since the eigenvectors are M-orthonormal:

pTKP = n2, TMI = I (6.11)

From the above formulations it becomes apparent that matrix 4 is the optimal transformation

matrix P for systems in which damping effects are negligible.

When the damping matrix C is restricted to be Rayleigh damping, then it is also diagonalized

by this transformation. Restriction to this form is equivalent to the assumption that damping,

which describes the overall energy dissipation during the system response, is proportional to

system response. For this reason Rayleigh damping is commonly assumed in finite element

analysis [13].

In summary, we have shown that the general finite element governing equation is decoupled



when using a transformation matrix P whose columns are the free vibration mode shapes of the

FEM system [13, 27, 24, 20]. These decoupled equations may then be integrated numerically

(see [24]) or solved in closed form by use of a Duhamel integral (see [20]).

6.2.2 Accuracy and The Number of Modes Employed

The modal representation decouples the degrees of freedom within the non-rigid dynamic system

of Equation 6.1, but it does not by itself reduce the total number of degrees of freedom. However

modes associated with high resonance frequencies (large eigenvalues) normally have little effect

on object shape. This is because for a given excitation energy the displacement amplitude

for each mode is inversely proportional to the square of the mode's resonance frequency, and

because damping is proportional to a mode's frequency. The consequence of these combined

effects is that high-frequency modes generally have very little amplitude.

We can therefore discard high-frequency modes with little loss of accuracy or generality,

with the result that we have fewer equations in fewer unknowns and (because of Nyquist con-

siderations) we can employ a much larger time step when performing a simulation. For a

typical problem this approach can decrease computational cost by two orders of magnitude

while maintaining good accuracy [24]. Moreover, for a fixed number of modes the computation

scales as O(n) rather than 0(n 2 ) or O(na). For complex shapes this linear scaling behavior can

be extremely important, and it is for this reason that this type of reduced-basis modal analysis

has become the standard method for extremely large engineering problems, such as the analysis

of airplane frames or large buildings.

Figure 6-2 shows a sampling of shapes that can be achieved by elastically deforming an

initial spherical shape using its 30 lowest-frequency deformation modes (note that the first six

modes are rigid-body translation and rotation). As can be seen, a wide range of non-rigid

motions and their resulting shapes can be produced with relatively few deformation modes. As

Figure 6-2 illustrates, discarding high-frequency modes is not equivalent to assuming that the

surface is smooth, because we can still generate sharp bends, creases, and so forth.

As can be seen, besides decoupling the degrees of freedom the modal representation also

provides a natural hierarchy of scale, so that we can smoothly vary the level of detail by adding

in or discarding high-frequency modes. That is, the modal representation provides a natural



Figure 6-2: A sampling of shapes produced by elastically deforming an initial spherical shape
using its 30 lowest-frequency deformation modes. As can be seen, a wide range non-rigid
motions and their resulting shapes can be described by relatively few deformation modes.
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multi-scale representation for 3-D object shape in much the same manner that the Fourier

transform provides a multi-scale representation for images.

The ability to decouple and order the degrees of freedom has several important implications

for machine vision applications. For instance, by matching the level of detail (the number of

modes) to the number of sensor measurements the shape recovery process can be kept over-

constrained. Similarly, because the degrees of freedom are orthogonal, shape and velocity

descriptions are unique for an object in canonical position (the restriction to canonical position

is necessary because rotations have been linearized). These properties contrast markedly to

representations based on nodes, polynomials, or splines where descriptions are normally neither

unique nor overconstrained. 3

Because of this uniqueness property, the modal representation is well-suited for object recog-

nition and other spatial database tasks. To compare two objects described using a modal rep-

resentation one simply compares the vector of mode values U; if the dot product of the U

for each object is small, then the objects are similar (again assuming that the objects are in

canonical position).

'As the number of nodes used to define the finite element model increases, the underlying continuous differ-
ential equations can be more accurately approximated. This is simply because there are more high-frequency
modes in the model; assuming that all models correctly capture the geometry the low-frequency modes are not

affected by number of nodes defining the finite element model.



Chapter 7

Recovering Motion

7.1 Recovering Motion

In this thesis we will analyze the case where the object geometry at time t = 0 is known, and

where object motion is viewed under orthographic projection. The problem of obtaining the

initial object geometry and vibration mode description is addressed by Pentland and Sclaroff

[23]. The problem, then, is to find the rigid and non-rigid 3-D motions dU/dt that best account

for the observed 2-D image velocities. The major difficulty in finding such a solution is that

there are 3n unknown degrees of freedom in the model and at most 2n degrees of freedom in

the observations. Thus we must somehow reduce the number of unknowns to obtain a solution.

The modal representation offers a principled, physically-based method for reducing the

number of degrees of freedom. Because we know that the elastic properties of real materials

imply that the high-frequency modes are (almost always) of low amplitude, we can discard

many of these modes without incurring significant error.

Further, because the modal representation is frequency-ordered, it has stability properties

that are similar to those of a Fourier decomposition. Just as with the Fourier decomposition,

an exact' subsampling of the data points points does not change the low-frequency modes.

Similarly, irregularities in local sampling and measurement noise tend to primarily affect the

high-frequency modes, leaving the low-frequency modes relatively unchanged.

'E.g., if there are 2 h points a sampling of every 21 points (I < k) is an exact subsampling.



Again, we note that discarding these high-frequency modes is not equivalent to a general

smoothness constraint, because we can still generate sharp bends, creases, and so forth (see

Figure 6-2). What we cannot do with a reduced-basis modal representation is generate several

sharp creases that are close together.

We will therefore pose our problem in the modal coordinate system: the problem is to find

the set of 3-D mode velocities dU/dt that best account for the observed 2-D image velocities. If

we use the m lowest frequency modes, then there will be only m unknown degrees of freedom in

the model and up to 2n degrees of freedom in the observations. Thus by appropriate choice of m

the problem can always be made overconstrained. Whenever the 3-D velocities of the individual

nodes are required, we can convert U back to the original space coordinates by multiplying by

7.1.1 Kinematic Solution

We first note that 4;, the ith column of 4', describes the deformation the object experiences as

a consequence of the modal force fi. Or, perhaps more intuitively, 4; describes how each of the

n nodal points (xj, y, z3 )T change as a function of iii, the ith mode's amplitude,

dx1 dy1 dz dn dyn dZn)T .(7.1)

4; i df ds; di;''''. dii; ' ds; ' ds;ii ('

Letting V be the 3-D velocity of each node,

dx1 dy1 dz1 dx dyn dZn )T
V (di ' di ' di '' dt ' d it 72

we then have that
dU

V = 41 d = (D . (7.3)

Given the 3-D motions of each node, then we can solve for the modal velocities U:

= 4-'V (7.4)

Thus having observed 3-D nodal velocities V, the kinematic solution for the modal amplitudes



Ut at time t is simply

f t t
U = U At + it-1 = 4P-IVAt (7.5)

Note that Ut-1 = 0, that is, the object's rest state is taken to be its shape at time t - 1, so that

the nodal displacements at time t are calculated relative the the nodal positions at time t - 1.

The primary limitation of this solution stems from the finite element method's linearization of

modes such as rotation. Because these modes are linearized, it is important to limit inter-frame

motion to small rotations (less than 10*) and deformations (less than 10% of the object size).

7.1.2 Estimation from 2-D Data

Given the kinematic solution of Equation 7.5, the remaining problem is to obtain a generaliza-

tion that uses two-dimensional measurements of optical flow as input data. More concretely,

the problem is to estimate the rigid-body motion and non-rigid 3-D object deformation at each

each subsequent time t given only noisy estimates of 2-D (orthographically projected) optical

flow (ut, v!) at m image points (xi, y;). The image points (xi, y;) are not assumed to be either

dense or uniformly sampled.

This can be accomplished by allocating each of the available optical flow vectors (ug, vi)

among the nodal points whose image projections are close to (xi, yi), the flow vector's image

position. The most accurate method of accomplishing this allocation is to use the interpolation

functions H used to define the finite element model (see [23] Appendix A). However when the

mesh of nodes is sufficiently dense that each optical flow vector projects near to some node,

then we have found that it is sufficiently accurate to use simple bilinear interpolation of the

flow vectors to the surrounding three nodes. An inexpensive method of accomplishing this is

discussed reference [23] Appendix B.

This produces estimates of the projected 2-D nodal velocities

VP = (U1, v1, U2, V2, -.. - 7 -n, o)T (7.6)

We define the matrix Ip similarly, by removing rows of 4 that correspond to z-axis displace-

ments. Note that nodes without nearby optical flow may have no velocity estimate; therefore

rows of Vp and Pp corresponding to the x and y displacements of these nodes are undefined



(contain no information) and must also be removed.

Some modes, including translation, scaling and linear shearing along the z axis, cannot be

observed under orthographic projection. Therefore columns of tpp and rows of U corresponding

to these modes must also be removed. Because the remaining mode shapes are orthogonal to

the translation, scaling and shearing modes they remain unaffected. Similarly, in some cases

the 2-D motions caused by a particular modal deformation are very small, so that the mode's

amplitude cannot be reliably estimated. Such ill-conditioned estimates can be prevented by

discarding modes for which the corresponding column of 4 p has small magnitude.

With these definitions we may now generalize Equation 7.5 to obtain an estimate of the

object's 3-D shape Ut at time t based on the optical flow data. The generalization is simply:

Vt=At (7.7)

Equation 7.7 is underconstrained if all of the modes are present in 'Pp; however, by discarding

a sufficient number of the low-amplitude, high-frequency modes, the estimate can always be

made overconstrained. 2 Therefore, in practice, bf is calculated by use of a Moore-Penrose

pseudoinverse:

0 = (4T. 1  4TVAt (7.8)

with the columns of 4 p and the rows of U corresponding to high-frequency modes deleted.

Equation 7.8 provides us with a least-squares estimate of U, the object's rigid motion and

non-rigid deformation. It is the best RMS error estimate of the projected rigid and non-rigid

motions given the observed optical flow vectors, where the projected mode shapes are described

(analytically) by the columns of 'bp and the finite element interpolation functions H.

We have found that 30 deformation modes are adequate to account for most rigid and

non-rigid motions, so that only 15 or so independent flow vectors are required per body. In

situations with very sparse flow vectors, we can reduce the number of deformation modes still

further in order to keep the calculation overconstrained. In the limiting case, we require only

three independent flow vectors in order to estimate the six rigid body motions, and four vectors

2Note that when there are many more optical flow vectors than degrees of freedom in the finite element model,
the interpolation functions H act as filters to bandlimit the sensor data, thus reducing aliasing.



to obtain an overconstrained estimate.3

7.1.3 Efficiency Considerations for Motion Estimation

When an object rotates the intrinsic (object-centered) and global coordinate systems are no

longer identical. Because 4 is calculated in the intrinsic coordinate system, it must be either

recalculated or modified whenever significant object rotation has occured. The most efficient

method is to transform 4' to the new coordinate system by rotating the (x, y, z) triplets in the

columns of 4 by the object's current estimated rotation matrix R:

(#7,3*j, 'k7,3 *i+1, 47',3*j+2, )T = R- 1( i,3*j, ki,3*j+1, O,3*j+2, )T (7.9)

for i = 1,2,3,...3n and j = 1,2,3,...n. Thus as the object rotates the matrix 4 is progres-

sively transformed to the object's new intrinsic coordinate system. After each rotation 4 is

then projected to obtain 4'p as described above, and Equation 7.8 is applied.

'Note that this is different than the normal "n views of m points" result in that we are assuming that the

initial object geometry is known. Note also the restriction to small inter-frame rotations and deformations.



(a) Original Model

(b) Complex Flow Field

Optical Flow

(c) "Pinching" Deformation
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Figure 7-1: All motions, including complex non-rigid motions, can be decomposed into the
linear sum of a set of orthogonal basis motions. In our algorithm we use the free vibration
modes of the object as the basis set. In this example, a complex flow field is decomposed into
the sum of three non-rigid motions and a rigid-body rotation.
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(a) (b)

Figure 7-2: Random forces were applied to an elastic spherical body in order to evaluate the
accuracy of the kinematic solution. (a) Shape at frame zero, (b) shape at frame one, after a
randomly-selected force was applied.
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Figure 7-3: (a) Rigid-body motion estimation error, and (b) Non-rigid
both as a function of the SNR of the optical flow field.
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Chapter 8

Examples using Synthetic Data

8.1 Examples Using Synthetic Data

8.1.1 An Illustrative Example

Figure 7-1 illustrates how a complex sum of rigid and non-rigid motions can be decomposed into

a sum of the object's free vibration modes. Figure 7-1(a) shows a box, and 7-1(b) shows the

complex optical flow field generated as the box undergoes both rigid and non-rigid motion. The

general approach taken in this paper is to decompose such complex motions into a set of simpler,

orthogonal modal deformations. This is accomplished by using Equation 7.8 to "explain" the

complex flow field of (b) by use of a set of simpler "modal flow fields" illustrated in Figures

7-1(c-f). The modal amplitudes that are required to obtain this "explanation" provides us with

an estimate of the object's new 3-D shape, shown in Figure 7-1(g).

More specifically, the estimation process starts by interpolating the 2-D flow vectors to the

nearest nodes on the (assumed known) 3-D model of the box. Note that these flow vectors

do not have to be dense or regularly sampled. Equation 7.8 is then used to decompose this

flow field into a sum of the rigid and non-rigid deformations ("modal flow fields") described

by the columns of 4 p. These columns correspond to the free vibration modes of the box, as

determined from its finite element description. In this case Equation 7.8 determines that three

non-rigid and one rigid-body motion have occurred: the non-rigid motions are the pinching-,

tapering-, and bending-like motions shown in Figure 7-1(c), (d), and (e), and the rigid-body



motion is the rotation shown in Figure 7-1(f).

The combination of these motions, when applied to the original box shape, produces an

estimate of object's new shape which is shown in Figure 7-1(g). The result of this decomposition

process, therefore, allows us to track, predict, and describe the 3-D rigid and non-rigid motion

using only sparse 2-D estimates of optical flow.

8.1.2 A Statistical Evaluation

To evaluate the stability and accuracy of the decomposition and estimation process, an experi-

ment was conducted in which randomly selected forces were applied to an elastic spherical body

to produce both rigid-body and non-rigid motions. A typical example is shown in Figure 7-2.

The resulting 2-D optical flow field was then observed, and the rigid and non-rigid motions

estimated by use of Equation 7.8. To make the experiment more realistic, various amounts of

uniformly distributed noise was added to the optical flow field before Equation 7.8 was applied.

Each noise condition was repeated with 100 different randomly selected forces and consequent

motions. The mean accuracy of the estimation process was then measured.

Figure 7-3 shows the accuracy of the decomposition and estimation process. The signal-to-

noise ratio (SNR) for the motion estimates were calculated by

dB = 10 * logio ( lj112 (8.1)
(E ||Ui - Uil|2

where U is the estimated motion, U the true motion, and the sums are taken over the 100

experimental trials. This statistic compares the variance (squared magnitude) of the estimation

errors the variance of the true motion.

The SNR of the optical flow field was calculated by

dB = 10 * logio ( (8.2)
E ||, - Vp||2

where Vp is the noise-corrupted 2-D flow field, Vp the true 2-D flow field, and the sums are

taken over the 100 experimental trials. This statistic compares the variance of the flow field

noise to the variance of the true flow field.



Figure 7-3(a) shows the accuracy at estimating rigid-body motion as a function of the signal-

to-noise ration (SNR) of the optical flow field (i.e., only the first six elements of U, which are

the rigid-body modes, were used to compute the SNR). Although only rigid-body accuracy

is shown here, both rigid-body and non-rigid motions were estimated simultaneously. It can

be seen that the accuracy of estimation is linearly related to the SNR of the flow field. The

most noisy condition shown here (approximately 5 dB SNR) corresponds to approximately 56%

added noise.

Figure 7-3(b) shows the accuracy at estimating non-rigid motions as a function of the signal-

to-noise ratio (SNR) of the optical flow field (i.e., elements 7 through 30 of U, which are the

non-rigid motion modes, were used to compute the SNR). Although only non-rigid accuracy is

shown here, both rigid-body and non-rigid motions were estimated simultaneously. Again, it

can be seen that the accuracy of estimation is linearly related to the SNR of the flow field up

to at least 50% noise.

The major factor that permits the stability and noise-resistance shown here is the fact that

data is integrated over the entire body rather than only over a small patch. It should be noted,

however, that because <> linearizes object rotation and deformation it is important that inter-

image rotations and deformations remain small. For larger rotations and deformations we have

found that it is necessary to use an iterative estimation scheme.



Chapter 9

Kalman Filtering for Dynamic

Motion Estimation

In the previous sections we have addressed kinematic estimation, where velocity at only one

instant is considered. For time sequences, however, it is necessary to also consider the dynamic

properties of the body and of the data measurements. The Kalman filter [14, 15] is the standard

technique for obtaining estimates of the state vectors of dynamic models, and for predicting the

state vectors at some later time. Outputs from the Kalman filter are the optimal (weighted)

least-squares estimate for non-Gaussian noises [2, 9].

The first use of Kalman filtering for motion estimation was by Brodia and Chellappa [6], who

presented a careful evaluation of the approach. Work by Faugeras, Ayache and their collegues,

and more recently many others, has thoroughly developed the subject [8, 4]. In this section we

will develop a Kalman filter that estimates position and velocity for the finite element modal

parameters. We will then show that this particular type of Kalman filter is mathematically

equivalent to time integration of the FEM governing equation for appropriate choices of mass

M and stiffness K. That is, the Kalman filter may be viewed as a simulation of the model's

behavior, with the observed optical flow acting as guiding "forces."



9.0.3 The Kalman Filter

Let us define a dynamic process

X = AX + Ba (9.1)

and observations

Y=CX+n (9.2)

where a and n are white noise processes having known spectral density matrices. Then the

optimum observer [14, 15] is given by the following Kalman filter

X = AX + Kf(Y - CX) (9.3)

provided that the Kalman gain matrix Kf is chosen correctly.

The Kalman Gain Factor

The gain matrix Kf in Equation 9.3 minimizes the covariance matrix P of the error e = X - X.

Assuming that the cross-variance between the system excitation noise a and the observation

noise n is zero, then

K1 = pCTg-1 (9.4)

where the observation noise spectral density matrix A( must be nonsingular [9]. Assuming that

the noise characteristics are constant, then the optimizing covariance matrix P is obtained by

solving the differential of P

0 = P = AP + PAT -PCTHrlCP + BABT (9.5)

which is known as the Riccati equation.

Estimation of Displacement and Velocity

In the current application we are primarily interested in estimation of the modal amplitudes U

and their velocities V = U. U and V are therefore the state variables of our dynamic system,



and the governing equations are

(9.6)
V =a

where a is a vector of externally-applied nodal accelerations, which will be considered to be

noise. The observed variable will be Vp, the 2-D nodal velocities. Then from Equation 7.7 we

have that

VP= + n (9.7)
At

where n is a vector giving the observation noise, and again the last estimate of shape is taken

to be the object's rest state, e.g., Ut-1 = 0.

It is important to note that both rotational and non-rigid dynamics are inherently non-

linear. The finite element formulation, however, linearizes this behavior so that small times

stepsand small nodal displacements are required to obtain an accurate simulation using the

FEM. Because we are employing the FEM's linearization of dynamic behavior for motion esti-

mation, our formulation will be an extended Kalman filter. The behavior of such an extended

Kalman filter is difficult to analyze mathematically, and so properties such as convergence and

unbiased estimation must be evaluated experimentally or numerically. Such an evaluation will

be presented in the following section.

In state-space notation the system of equations is

UJ 0 I U 0
. = + a (9.8)

V 0 0 V1

where I is the n x n identity matrix.

Comparing with Equations 9.1 and 9.2 we obtain

A= , B= , CT= 4PA

0 0 I0



The Kalman filter is therefore

Uj 0 I U Kf'1 U
. =. + ' VP - [4p/At 0) (9.9)

0 0 V Kf,2  V

where Kf,1 and Kf,2 are the Kalman gain matrices for velocity and acceleration, respectively.

By collapsing terms, rewriting U = V, Equation 9.9 becomes

K1 + KNf,1 (V - kpU/At)
[U ±Nf,2 (Vp -4pfj/At) (9.10)

We may solve for the Kalman gain matrices by first using Equation 9.4 to obtain

K, 1  _ P11 P 12  4p/LAt Pu11pA- 1/At (9.11)
Nf,2  P12 P 22  0 P12 p -1/At

where the Pig are n x n blocks of the error covariance matrix P, and K is the n x n spectral

density matrix of the observation noise n.

We will assume that n and a originate from independent noise with standard deviations

n and a respectively. As each point-wise measurement error is spread to the various modes

by kp/At, it is reasonable to choose K = n2  /At 2. Using this spectral density matrix the

optimum covariance matrix P can be found by solving Equation 9.5 for the Pij, which yeilds

0 0 2P12 - n- 2p 2  p 2 2 - n- 2p11
1 P12(9.12)

0 0 P22 - n-2PPu a21 -2P 2

Similarly, as a is assumed independent for each mode, then its spectral density matrix is A = a2 1

and thus
P 11 = (2an3)1/21

P 12 = anI (9.13)

P 2 2 = (2a3n)1/21



Finally, from Equation 9.4, we can determine the Kalman gain matrices

f,1 _(2)1/2pg1AtKf,1 n P(9.14)

Nf,2 (I)4 -At

Substituting this result into Equation 9.10 we obtain

tO $+(? )1/ 2 1 lAt (VP - 4p/AtU)K( I f' (Vp - #p/AtU) 1(9.15)
Letting Vp = PfVp, we obtain in the modal coordinate system,

Oj f + (2a)1/2 (9,$t _ fi)

( ) ( pat - ) (9.16)

Each mode is independent within this system of equations, and so we may write the Kalman

filter for each of the separate modes:

i[ ;. 1 (a[ (i)p,At - iii)L i L (an)/ ( iAt - i)](.)

where bp,i is the ith element of Yp.
Having determined the optimal observer equations for mode amplitude and velocity, we can

now discretize over time and formulate the displacement prediction for time t + At. For mode

i this is

i+"t = fi + di + d2 ( - (9-18)

which is exactly the central-difference update rule for direct time integration of the finite element

governing equations [24, 20], with "loads" i; = ip,;At, di = At and d2 = 2At 2 /rtn = (a/n)At 2 +

(2a/n)1/2At.

The equivalence between these Kalman filter equations and time-integration of a finite-

element governing equation provides an intuitive interpretation of the Kalman filter. In essence,

it is smoothing the optical flow data over space by modeling it using the low-frequency, whole-



Figure 9-1: Using the Kalman filter to track rigid and non-rigid motion. Top row: Input image
sequence, Bottom row: estimated position and shape.

body mode shapes, and smoothing over time by use of a mass matrix M,

M = 2At (9.19)
(a/n)At + (2a/n)1/2

The effect of the mass matrix is to integrate information across time, thus providing a more

accurate estimate than is possible from a single measurement of velocity. When the observation

noise is large relative to the acceleration or excitation noise, the solution becomes similar to

simple time averaging. When the acceleration noise is large relative to the observation noise,

the solution become similar to the single-measurement case.

9.1 An Example Using Synthetic Data

In the kinematic case, our major concern was the behavior of the estimator with increasing levels

of noise. In the dynamic case, our principal concern is the convergence and possible bias of the

Kalman filter. There is some reason for such concern, as both rotational dynamics and non-



rigid dynamics are non-linear problems that are linearized by the FEM. As a consequence, the

Kalman filter developed here may be more properly considered an extended Kalman filter and,

despite the well-known stability and accuracy of the FEM, there is no proof of convergence and

bias-free behavior. We therefore have evaluated the stability and accuracy of our formulation

using synthetic data.

9.1.1 An Illustrative Example

Figure 9-1 shows an example of tracking both rigid and non-rigid motion. The top row of Figure

9-1 shows four frames from a 30 frame image sequence of a rotating, translating, and deforming

solid. In this example the initial position, shape, and (linearized) velocity of the object was

assumed known. Exact optical flow data from this sequence was corrupted by uniform noise to

produce a 16 dB SNR (approximately 15% noise). This noisy optical flow was used as input

to the Kalman filter of Equation 9.18, thus producing estimates of position, shape and motion.

Both rigid-body and non-rigid motions were estimated simultaneously. The inter-frame time

step was 0.1 seconds, and the parameters of the Kalman noise model were (a/n) = 0.3 (large

accelerations are assumed to be relatively rare).

The bottom row of Figure 9-1 shows the resulting estimates of shape and motion. In this

example the rigid-body modes were tracked with an error of 29.1 dB SNR (approximately 3.5%

error). The error in both rigid-body and non-rigid modes was 18.5 dB SNR (approximately

11.9% error). The fact that object motion could be tracked with much less error than was

present in the optical flow is attributable to the integration of information across the whole

body and across time.

The major source of error in the non-rigid modes was introduced by a single ill-conditioned

mode, i.e., a mode for which even large deformations cause small only 2-D motions. In Figure

9-1, for instance, even though the amount of bending perpendicular to the image plane is

almost 5% in error the tracking object appears nearly identical to the original object. Such

ill-conditioned modes can be detected by examination of the columns of tp, although this was

not done in this experiment.
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Figure 9-2: Estimation error as a function of frame number, for two ratios of acceleration noise

to optical flow field noise. Optical flow SNR is 10 dB.

9.1.2 A Statistical Evaluation

The previous examples have shown that our formulation can produce accurate estimates of

motion, but they do not allow evaluation of either convergence or stability. To evaluate these

properties, we followed the methodology of Brodia and Chellappa [6], and constructed an ex-

periment in which there were large errors in the initial velocity estimates. This condition is

equivalent to the case in which a very large acceleration "spike" produces a large inter-frame

change in system velocities. Following this acceleration spike, the behavior of the Kalman filter

over successive frames was observed to determine whether or not the Kalman estimates would

converge rapidly to the correct value.

In our this experiment noisy motion estimates for 100 image sequences were used as input

to Equation 9.18. The motion estimate noise level averaged 20 dB (i.e., the noise magnitude

was 10% of the flow vector magnitude). The mean velocity for each mode (including rigid-body

modes) was approximately 5 cm/second. The inter-frame time interval was 0.25 seconds. In

each trial the initial estimate of each mode's velocity was zero so that the mean initial error



was 5 cm/second for each mode. This condition is equivalent to applying an acceleration of 20

cm/second 2 to a resting system between the 0 th and 1 t frames of the image sequence.

The Kalman filter's output was then observed over the next twelve image frames, as shown

in Figure 9-2. Both rigid-body and non-rigid motions were estimated simultaneously. In this

figure percent error was measured as

Percent Error = 100* ( HU UI1)(9.20)

where U is the estimated motion, U the true motion, and the sums are taken over the 100

experimental trials.

The experiment was repeated with two separate measurement/acceleration noise models,

one with a/n = 2 (large accelerations are common) and one with a/n = 0.5 (large accelerations

are uncommon). The upper curve in Figure 9-2 shows the estimates convergence with the

a/n = 0.5 model, the lower curve shows convergence with a/n = 2.0. The error bars show the

standard deviation of the 100 separate estimates at each frame number. Note that although the

mean error goes very nearly to zero, in individual trials the errors were in the range of ±1%.

As can be seen from Figure 9-2, stable and accurate convergence was achieved in both

cases. All modes, including rigid-body modes, behaved in a very similar manner. When the

noise model was more appropriate to the large initial acceleration (the case where a/n = 2.0)

convergence to approximately 10% error was achieved by frame 3. When the noise model was

less appropriate (the case where a/n = 0.5) convergence to 10% error required 4 frames. In

both cases, and for all modes, convergence was both stable and unbiased.

As in the kinematic estimation case, the major factor that permits the stability and noise-

resistance shown here is the fact that data is integrated over the entire body rather than only

over a small patch. As with the kinematic case, it must be noted that because 4 linearizes

object motion, it is important that inter-image rotations and deformations remain small.



Chapter 10

Examples Using Real Data

10.1 Examples Using Real Data

Figure 10-1 shows an example of recovering non-rigid motion from optical flow data and Equa-

tion 9.18. The upper image in each box shows six successive frames of transmission X-ray

data, from which the rigid and non-rigid motions of the heart ventricle were estimated. Time

increases from top left to bottom righ; total elapsed time is approximately one second. Optical

flow was computed by use of a block-wise version of the Horn-Shunck optical flow algorithm.

The 3-D shape and motion of the heart ventricle was tracked over time using this optical flow

data. The computation started with an initial 3-D model of the ventricle, shown in wireframe

at the top left of Figure 10-1 (the bottom image in frame 1). See Pentland and Sclaroff [23] for

details on obtaining the initial 3-D object description. Equation 9.18 was used to estimate the

3-D rigid and non-rigid motion of the ventricle at each time step. The resulting rigid and non-

rigid motions are shown by the wireframe illustrations at the bottom of each frame, overlayed

on the original X-ray imagery. Execution time was approximately one second per frame on a

standard Sun 4/330.

It can be seen that the 3-D shape of the ventricle model is quite similar to the shape seen in

the original imagery. The major defect appears near the top of the wireframe model in frames

3 and 4. Close examination showed that the tracking process became confused in this area

because of the large deformations occurring between frames 2 and 3; as a consequence the top

edge of the model became "stuck" on edges in the surrounding volume.



Note that the estimated ventricle shape is very nearly the same in the first and last frames,

even though there was no constraint maintaining the position, rotation or volume of the model

during the estimation process. The fact that the 3-D model returned to its original shape,

position, and volume at the point at which the real ventricle returned to its original shape and

position is evidence of the stability of the Kalman filter solution.

10.1.1 Constrained motion

In many cases the observed motion is known to be constrained, for example, by gravity or by a

hinge or other attachment. Such constrainted motion adds a bias or control term to Equation

9.1, but as long as it varies sufficiently slowly with respect to the Kalman filter's sampling rate it

does not otherwise affect the convergence or stability of the estimator [2, 9]. We may therefore

hope to use the Kalman filter of Equation 9.18 to track the rigid and non-rigid behavior of

constrained objects as well free-moving objects.

In the ThingWorld modeling and simulation system [24, 25, 20, 21], which provides the

software base for the work described here, both gravity and spring-like constraints may be used

to affect object's behavior. To attach two objects to each other, for instance, a spring constraint

is placed between a point on each object's surface, and this constraint exerts equal and opposite

attractive forces on the two points of attachment. In the Kalman state equations such forces

appear as a constant or slowly-varying acceleration bias, i.e., Equation 9.6 becomes

U =V
z v (10.1)
V =Rc + a

where Rc is a vector describing the load exerted on each nodal point by all active constraints

(see reference [21] for additional details). The spring force is proportional to the square of the

distance between the two constrained points.

Given a priori knowledge of such a motion constraint, we can compensate for the contri-

bution of that constraint to the state equations and then estimate motion as previously. The

simplest way to accomplish this is to modify Equation 9.18 to account for this new term:

-+ = fi + d16 + d2 -t\ + 2At 2 iy/~n; (10.2)
- ~ + ~ii d2 ii U)
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Figure 10-1: Recovery of the rigid and non-rigid motion of a 3-D model of a human heart
ventricle; time proceeds from top left to bottom right.
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where #1; = p-g |4;,i| is an estimate of the ith mode's generalized mass, parameterized by p,

an estimate of the object's density.

Figure 10-2 illustrates a relatively complex example of tracking an object in which motion

is a priori known to be constrained to certain part junctions (joints). This figure shows three

frames from a twelve image sequence of a well-known tin woodsman caught in the act of jumping.

Despite the limited range of motion, this example is a difficult one because of the poor quality

optical flow, due to pronounced highlights on thighs and other parts of the body.

In this example the initial 3-D model was constructed by hand, with the spring-like con-

straints described previously inserted between the various body parts. In this manner the

combined behavior of the various parts were constrained to be consistent with the articulation

of the human body. An example of automatic recovery of a similarly complex 3-D model is

shown in Pentland and Sclaroff [23].

Optical flow estimates were then calculated by use of a block-wise Horn-Schunk algorithm,

and Equation 10.2 was used to estimate the constrained rigid-body motions of the various parts.

In this case only the six non-rigid modes were employed because of the large amount of noise

in the optical flow data. The estimates of constrained motion for this sequence are illustrated

by the bottom row of Figure 10-2.

As can be seen by comparing the 3-D motion of the model with that in the original image, the

resulting tracking is reasonably accurate. To a substantial extent this accuracy is attributable

the articulation constraints, as without them errors due to moving surface highlights would have

caused the "thigh" parts to fly off in wildly incorrect directions. The inter-part connectivity

enforced by these constraints allowed the stable motion estimates for the body and lower legs

to counterbalance these erroneous motion estimates.

10.2 Conclusion

We have introduced a precise, physically-correct model of elastic non-rigid motion. This model

is based on the finite element method, but decouples the degrees of freedom by breaking down

object motion into rigid and non-rigid vibration or deformation modes. Because of the intrinsic

elastic properties of real materials, it can be shown that the high-frequency modes in this repre-

sentation rarely have significant amplitude, so that they may be discarded without introducing



Figure 10-2: Three frames from an image sequence showing tracking of a jumping man using
an articulated, physically-based model. Despite poor quality optical flow (due to pronounced
highlights on thighs and other parts of the body) the overall tracking is reasonably accurate.
This accuracy is in part due to the presence of articulation constraints between the various
parts of the model.
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undue error.

The result is an accurate representation for both rigid and non-rigid motion that has greatly

reduced dimensionality, capturing the intuition that non-rigid motion is normally coherent and

not chaotic. Because of the small number of parameters involved, we have been able to use

this representation to obtain accurate, overconstrained estimates of both rigid and non-rigid

motion.

We have also shown that these estimates can be integrated over time by use of an extended

Kalman filter, resulting in stable and accurate estimate of both 3-D shape and 3-D velocity. The

formulation was then extended to include constrained non-rigid motion. Examples of tracking

single non-rigid objects and multiple constrained objects were presented.

An inevitable limitation of our technique stems from the fact that certain rigid-body and

non-rigid motions cannot be observed under orthographic projection. The inability to observe

motions such as translation in z, shear along the z-axis, etc., means that errors in estimation

of these motions are unavoidable. Further, the situatation is exacerbated when observing

extremely simple objects, such as planes or rods, as in these cases there is not enough data to

distinguish between various of the modal deformations.

For instance, when observing a rod, rigid-body rotation cannot be distinguished from length-

wise contraction. Note, however, that if the stiffness of each mode is included in the calculation

(by scaling each column of 4 proportional to the corresponding eigenvalue) then most of the ob-

served 2-D motions will be accounted for by low-frequency modes such as rotation, and relatively

little allocated to higher-frequency modes such as non-rigid contraction. The preferential allo-

cation of observed 2-D motion to the lower-frequency modes (including the rigid-body modes)

is similar to human observers' well-known bias towards the simplest motion interpretation.

Another limitation of our current technique stems from the use of optical flow, rather than

feature points, as the input data. The use of optical flow data requires us to integrate object

motion over time in order to determine the object's current position and shape; there is no way

to "anchor" our estimates of position and shape to our current observations. As a result small

biases in estimating rotation, etc., can grow over time and eventually destroy our ability to

accurately track the object. We are therefore working on integrating feature point information

into our motion and shape estimates, so that we no longer have to rely completely on time



integration to determine the object's current state.



Chapter 11

Conclusion

Two techniques were presented, representative of syntactic and semantic image representations

respectively. The first addressed an approach to image compression based on the statistical re-

lationship between subbands of the wavelet transform. A sample implementation demonstrated

how these relationships might be discovered and exploited in a practical way. The technique is

based on a low-level, syntactic analysis of the image signal. The second technique dealt with

the recovery of non-rigid motion from optical flow data. A closed form solution was presented

which is based on a principled, physically-based method of over-constraining this traditionally

ill-posed problem. The output of such a technique is a high-level semantic understanding of the

rigid and non-rigid motion in a scene.

Directions for Further Research

The two systems described herein could be combined to form an integrated image coding and

understanding system. The QMF pyramid provides a coding technique which is simple, efficient

and allows for real-time transmission of image sequences. Once these images are transmitted,

the motion algorithm enables an efficient framework for tracking, as discussed in chapter 10.1.

An implementation of such a system in underway. Images (128x128) are acquired and coded

at a rate of about 4 Hz. They are then transmitted to a separate process which tracks the posi-

tion of the hand using simple low-level processing, and decodes the image. The hand position is

then transmitted to the ThingWorld system which tracks the position subject to inertial forces



and internal constraints. Real-time performance has already been achieved without special

purpose or dedicated hardware.
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