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Spectrum of Light Scattered from

Thermal Fluctuations in Gases

by

Thomas John Greytak

Submitted to the Department of Physics on January 25, 1967, in
partial fulfillment of the requirement for the degree of Doctor of
Philosophy.

Abstract

This thesis is a study of the thermal fluctuations in five gases
(A, Xe, N2 , CO., and CH 4 ) at a pressure of one atmosphere by the
technique of inelastic scattering of light. The spectral power distribu-
tion is measured for d nsity fluctuations whose characteristic wave-
lengths are 3. 41 x 10- , 1. 61 x 10-1, and 3. 18 x 10- 5cm, correspond-

ing to scattering angles of 10. 60, 22. 70, and 1690 respectively.

The spectra obtained are compared to theoretical ones computed
for the following equations of motion for the fluctuations: the linearized
equations of hydrodynamics, the linearized Krook equation, and the
linearized Boltzmann equation for Maxwell molecules.

At 10. 60 the spectra are well represented by hydrodynamics.
The velocities and lifetimes of sound waves in the 100 MHz region are
obtained. A detailed comparison between the experimental and
theoretical spectra shows that a relaxation in the internal degrees of
freedom of the polyatomic molecules must be taken into account in the
hydrodynamic equations at these frequencies.

At 22. 70 thermal diffusion and sound propagation are no longer
completely independent modes of the medium and a 'sound velocity' is
not well defined. The hydrodynamic equations, however, still describe
the spectra in this region.

At 1690 the spectra differ qualitatively from the hydrodynamic
predictions and must be described in terms of kir etic theory. The
theoretical spectrum for Maxwell molecules (1/r' repulsive potential)
is in qualitative but not quantitative agreement with the data for Xe.
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Chapter I

Introduction

The spectral distribution of light scattered f-rom thermal

fluctuations in five gases (A, Xe, N2, CO 2, and CH 4 ) has been

measured(1 ) at one atmosphere using a frequency stabilized single

mode laser, high resolution Fabry-Perot interferometers, and a

detection system with a dark count of three photoelectrons per second.

This spectrum is the space-time Fourier transform of the particle

distribution function. The characteristics of the spectrum change as

the scattering angle is increased from the forward to the backward

direction; this corresponds to a transition from a hydrodynamic to a

kinetic behavior of the fluctuations giving rise to the spectrum.

Nelkin and Yip (2)have recently proposed that experiments of this sort

can be used as a test of the Boltzmann equation.

The experimental arrangement was first developed to study the

velocities and lifetimes of thermally excited hypersonic sound waves(3)

(4).
and the lifetimes of entropy fluctuations in normal liquids. The

sensitivity and resolution of the system were improved to their present

state to study the spectrum of the light scattered from liquid helium

below its X-point. The measurements reported here on gases began

as a check of the overall efficiency of the improved experimental

arrangement. Preliminary results have subsequently been obtained in

liquid helium, and a report of that work will be presented elsewhere.

The laser delivers 0. 6 mW. at 6328 A in a single longitudinal

mode locked electronically to the bottom of the Lamb dip. The
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scattering angles 6, are determined by conical lenses and the spread

in angle accepted, A6, is of the order of 10-3 radians. The scattering

toward the forward direction was analyzed with a spherical Fabry-Perot

interferometer(5 ) of 750 MHz free spectral range and an instrumental

profile of 28 MHz full width at half hieght. For the back scattering a

flat Fabry-Perot was used of 4. 96 GHz free spectral range and a width

(depending on the reflectivity of the mirrors used) as narrow as 125

MHz. The light was detected with an uncooled ITT model FW 130

phototube. Pulse height discrimination(6) was used to reduce the dark

count to about three photoelectrons per second while maintaining an

effective quantum efficiency of 2. 5%. With this system the primary

noise in the experiment was the shot noise due to the signal itself.

The fluctuations in the dielectric constant, E , are responsible for

the scattering of light. These fluctuations are caused, in turn, by the

fluctuations in the desnity, in the temperature, and in the orientation

of the molecules. In gases near one atmosphere the fluctuations in the

number density, p, completely predominate. The probability per unit

length O-(K, W) that a given photon in an incident polarized beam will be
3 -scattered into a region dK about K and dw about w can be shown to be

P ) 2 22 4 2CT(21T (Zf 41rp 0 ) k0 sin c

1.1
3

x jfdr dt G(r, t) exp (i K - r - iwt)

where w/217 is the frequency shift of the scattered light, $ is the angle
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between the electric field of the incident light and the wave vector k of

the scattered light, k is the wave vector of the incident light in the
0

medium, n is the index of refraction of the gas and p0 is its average

number density. The wavevector of the fluctuation being observed K

is the vector difference between k and k . Its magnitude is given by
0

K = 2k sin d/2 since k 0~k. G(r, t) is the classical limit of Van Hove's

density correlation function 7 in a homogenious medium:

1
G(r, t) - <p(0, 0) p (r, t) > . 1.2

0

Van Leeuwen and Yip(8 ) have shown that for a dilute gas

G(r, t) = p + dv 3 f(r, v, t) 1. 3

where f(r, v, t) is the particle distribution function satisfying the

linearized Boltzmann equation subject to the initial condition

3/2 mv2f(r, v, 0) = ( 2?kBT/m) exp - 6 (r). 1.4

BB
Here m is the mass of the molecule, kB is the Boltzmann constant, and

v is the particle velocity. It follows that C-(K, '4 is proportional to the

double Fourier transform of the space and time distribution function

for the gas molecules. The trace recorded experimentally is the con-

volution of 9-(K, W) with the instrumental profile of the optical spectro-

meter.

The form of the spectrum of the scattered light is determined by
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a parameter y which is a measure of the ratio of the wavelength of the

fluctuation observed to the collision mean free path:

y = (27/K) /(2/a) (2kBT/M)1/2 1. 5

where a is an effective collision frequency. When y > 10 the hydro-

dynamic description is very good. The spectrum consists of three

distinct, non-overlapping lines: an unshifted component due to non-

propagating fluctuations (the Rayleigh component) and a symmetrically

shifted doublet due to the scattering from thermally excited sound

waves (Brillouin scattering). In the region y - 5 the three lines begin

to overlap since their widths increase faster with K than does their

splitting; yet, the spectrum can still be described rather accurately

by the hydrodynamic equations. However, when y < 2 the hydro-

dynamic equations no longer adequately describe the spectrum. A

kinetic theory must be used to take into account the effects of the

distribution in molecular velocities. At a pressure of one atmosphere

each of these regions is investigated in turn by changing the scattering

angle from the forward to the backward direction. This work represents

the results of measurements at three scattering angles: 10. 60, 22. 70

and 169. 40. Previous measurements have been made at 900 in A and

H2 by May, Rawson, and Welsh .

The experimentally measured spectra are compared with the

theoretical spectra based on an exact solution of the linearized hydro-

(10) o
dynamic equations recently obtained by Mountain . At 169 the

spectra are also compared with two kinetic calculations. One of these



is based on an exact solution of the linearzied Boltzmann equation

obtained by Ranganathan and Yip for the special case of point
4

molecules interacting by means of a repulsive 1/r potential (Maxwell

molecules). The other kinetic spectrum which is compared to the data

(1 (13)
represents an exact solution(2) of the linearized Krook equation

which is the Boltzmann equation with the collision integral replaced by

a phenomenological term that maintains conservation of particle number,

momentum, and energy.

The results obtained in the kinetic region have a particular

significance. It is shown that the inelastic scattering of light from

gases can provide detailed information on the molecular distribution

function and can serve as a delicate test of the validity of various

theoretical solutions of the Boltzmann equation or its extensions to

higher densities. This technique gives results which compliment those

obtained by studying the transport coefficients and the propagation of

forced sound waves. Formally, the transport coefficients are pro-

portional to the integral over all time of various correlation functions

(14)
in the medium ; in practice they are related to various integrals

(15)
over the distribution function . The forced sound wave experiments

(16)
deal with the solutions of the boundary value problem in kinetic

theory. The inelastic light scattering experiments, on the other hand,

(2)
deal with a well-posed initial value problem in kinetic theory. They

have the advantage of determining directly, for a certain range of wave

vectors, the space-time Fourier transform of the distribution function.
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Chapter II

Theory

A. Introduction

In this chapter the classical theory of light scattering from a

transparent medium is reviewed. Figure 2. 1 shows the physical

situation under consideration. A beam of monochromatic light with

wave vector k and frequency &0 /217 passes through the medium. The

scattered light is characterized by a new wave vector ks and a

frequency shift of /2T. The scattering vector is defined as the

difference between k and k
5 0

k - k , 2.1
5 0

If the frequency shift is small, the magnitude of ks is equal to k to a

term of order w/W0 . These experiments deal with frequency shifts of

8 9 14
10 - 10 Hz and the light frequency is about 5 x 10 Hz so

7 -6W/o ~ 2 x 10 - 2 x 10. In this case the magnitude of K is deter-

mined only by k0 and the scattering angle e:

K= 2k sin e . 2. 2

The light which is scattered in a specific direction, and therefore

corresponds to the specific K given by equation 2. 2, is singled out for

analysis by a lens and detector system.

In section B. 1 the spectral power density SE(I, w) of the



AMDUM
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Fig. 2. 1 Schematic arrangement of a light scattering experiment.



16

scattered electric field at the detector is introduced in terms of the

time displaced correlation function of the field. SE(K, W) is proportion-

al to the fraction of the scattered intensity that corresponds to a

scattering vector K and a frequency shift W/2T. It is therefore also

proportional to the differential inelastic cross section of the medium.

The electric field at the detector is expressed in terms of the positions

and orientations of the particles of the medium. After making suitable

assumptions about the individual particle polarizabilities, SE is shown

to be proportional to the space-time Fourier transform of the density

correlation function. In section B. 2 it is shown that the density

correlation function can be interpreted as the evolution of the particle

distribution function in response to a specific initial condition. For a

gas under suitable conditions this particle distribution function is

demonstrated to be the space-time portion of the solution of the

Boltzmann equation.

The Boltzmann equation cannot be solved in general, but

approximate solutions have been obtained. In section C three classes

of solutions are discussed. These give rise to the theoretical spectra

which are compared with the experimental results in chapter IV.

B. Spectrum of the Scattered Light

1. Derivation in Terms of the Density Correlation Functions

The conventional approach to the scattering of light in a

(1)medium is a thermodynamic one. One observes that electromagnetic

plane waves will propagate undeflected in a continuous medium if the
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dielectric constant ( is an absolute constant. Fluctuations in the

dielectric constant 6 E with some characteristic wave vector x would,

however, give rise to scattering in a direction determined by the

Bragg condition:

2.3

The dielectric constant is taken to be a thermodynamic variable

of the medium and as such is expanded in a complete set of independent

thermodynamic variables for the medium (for a simple fluid these are

usually chosen to be either pressure P and entropy S, or density p and

temperature 'I). The time correlation function of 6 E (K, t ), which

determines the frequency spectrum of the scattered light, is then

expressed as the correlation function of a sum of the independent

variables with coefficients (or coupling constants) which are thermo-

dynamic derivatives. For example in a simple fluid one would have

< 6E(K, t )6E(K, t+)> =

< |T6 p(K, t )+4 6T(K, tX}..

6 (K, t + T) + 6(,t+T

In this case if the equations of motion governing the thermodynamic

fluctuations in 6p and 6 T are known along with the coupling constants,

then the spectrum of the scattered light can be found.



18

The total light scattered corresponding to a given K (that is,

the integral over the spectrum of frequency shifts) is proportional to

the mean square fluctuation in 6E(K). This mean square fluctuation

can be obtained from equation 2. 4 by setting T = 0. In the resulting

expression the cross term vanishes because the fluctuations in the

independent variables taken at the same time are uncorrelated. It

follows that

< 6E(K)2 2 <6p(K)2> + 2 < 6t(K)2>. 2. 5-TK ITY)T t

(2)
By using the theory of thermodynamic fluctuations the mean square

fluctuation in the independent variables in equation 2. 5 may be

evaluated directly in terms of such parameters of the medium as the

specific heats, compressibility, and thermal expansion coefficient.

Therefore the total light scattered for a given K can be determined

explicitly from the thermodynamic parameters of the medium, without

a knowledge of the time dependence of the fluctuations.

The results stated above are independent of the particular set

of independent variables chosen to represent the medium. In

particular if the entropy and pressure had been chosen, equations 2. 4

and 2. 5 would be modified by the substitution of S for p and P for T.

The advantage of choosing the variables S and P is that in the long

wavelength region of hydrodynamic behavior, the equations of motion

for the fluctuations have two independent normal modes, one governing

only 6 P (sound waves, which are known to be adiabatic so 6 S = 0) and
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one involving only 6 S (thermal diffusion which involves no pressure

change so 6 P = 0). As a result 6 P(K, t ) and 6 S(K, t + T) are

uncorrelated for all T and the equivalent of equation 2. 4 for the 6E

correlation function reduces to the sum of the correlation functions

for each of the independent variables:

< 6E(K, t ) 6(K, t + 7) > =

2.6

2 < 6S(K, t 6S(K, t +T)>+ 2< 6P(K, t 6P(K, t + T)>.

This separation will break down, however, when the spectrum due to the

first term (the diffusion mode with a spectrum centered about W= 0)

starts to overlap the spectrum due to the second term (the sound

waves whose spectrum is Doppler shifted by an amount W = K

where v is the sound velocity). This overlap is expected to occur fors

large values of K (short wavelengths of the fluctuations) since in the

absence of dispersion the width of spectrum of each mode grows as

2K while their separation only grows as K.

The thermodynamic approach to light scattering outlined above

has two major defects which limit its applicability. First, there are

some processes which give rise to scattering that cannot be described

in terms of a macroscopic thermodynamic variable of the medium. An

example of such a process is the fluctuation in the orientation of the

molecules of the medium. These fluctuations make the instantaneous

local dielectric constant anisotropic, and the scattering they cause

contains a depolarized part. In liquids the amount of light scattered
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by these fluctuations in the molecular orientation (referred to as

anisotropy scattering) is of the same order of magnitude as that

scattered by fluctuations in the thermodynamic variables.

The second defect of the thermodynamic approach lies in the

fact that thermodynamics is basically an equilibrium theory. When

one speaks of a local fluctuation in some thermodynamic quantity, the

temperature Tfor example, it is understood that 6T(r, t ) represents

a quasi-equilibrium state of a large number of molecules (large

enough to determine a meaningful statistical average) in a region

about the point r. Also it is understood that the time variation of 6T

must be slow compared to the time which the molecules around r
-equlibrum sate.(2)

require to adjust to the quasi-equilibrium state. For example if

the population of the rotational energy levels of the molecules

requires tR seconds to adjust to a change 6T, then6T(r, t) can only

be defined for fluctuations whose characteristic behavior involves

times much larger than tR. If 6Tis changed with a frequency

W << 1/tR, then the population of the energy levels will follow the

change, and the change in average energy of the molecules will be

described by a certain specific heat which is independent of W. Were

Wto be increased until it was comparable to 1/t the population of

the energy levels would not be able to follow the changes in 6T. The

specific heat measured under these conditions would be less than its

low frequency value. This example suggests, therefore, that the

assumptions about quasi-equilibrium break down at those frequencies

at which thermodynamic parameters become frequency dependent.
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Thermodynamics, because of its assumptions about equilibrium,

is a low frequency theory and cannot be expected to apply to those

frequencies at which the mechanical and thermal properties of the

medium - for example specific heats, transport coefficients, and the

coupling to the dielectric constant - become frequency dependent.

From a hydrodynamic point of view, however, the dispersion in the

velocity of sound observed in liquids and gases can only be explained

on the basis of such frequency-dependent parameters. (3) This is of

importance here because thermally excited sound waves are one of

the sources of the 6 E mentioned above. In fact light scattering has made

it possible to study the velocities and lifetimes of sound waves in

(4,5)
liquids at frequencies up to about 7 GHz, and a number of the

liquids studied exhibited dispersion in this region.

In those cases for which the above considerations preclude the

use of the thermodynamic approach, a phenomenological approach of

(6)
the same general form has been used. In this method non-thermo-

dynamic variables are introduced which can describe the scattering

processes otherwise neglected. For example the anisotropy scattering

is described in terms of the elements of a mechanical deformation

tensor and mechanical-optical coupling constants. The phenomenolgical

method treats media in which dispersion is present by maintaining the

form of the relations derived using thermodynamics, however it replaces

all the thermal constants appearing in these relations with frequency

dependent parameters. This phenomenological method, although use-

ful in a number of cases, is in part based on an extension of thermo-
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dynamics into a frequency region in which local equilibrium is not

established, and therefore it is not entirely satisfactory.

The procedure outlined above will not be carried out. Rather,

the derivation of the scattered spectrum given here will deal only with

microscopic variables. This approach is similar to that used by Van

(7)Hove to describe inelastic neutron scattering and was first applied

(8)
to the scattering of light by Komarov and Fisher. The scattering

medium considered here is a simple one and the relationship between

the spectrum and the density correlation function obtained could also

be derived by the "thermodynamic" procedure (after assumptions are

made about the relation of the thermodynamic variables and coupling

constants to the microscopic variables). It is felt, however, that the

derivation in terms of microscopic variables leads to a better under-

standing of the way in which the physical processes involved determine

the spectrum.

In figure 2. 1 the shaded portion of the medium represents that

volume, designated by V, which is both illuminated by the source and

observed by the detector. Only particles in this region will contribute

to the scattered electric field E(K, t) at the detector.

The spectral power density for the electric field at the detector

is defined as the Fourier transform of the time displaced correlation

function of the field:

SE(Kw) dT e < E(K, t) E (K, t + T)>. 2.7
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The < > indicate an ensemble average over similarly prepared

systems. The process giving rise to the scattered field is assumed

to be stationary, so the ensemble average is independent of the initial

time t. As the name implies, S E(K, w) A W is proportional to the

amount of power in the scattered electric field between the frequency

shifts w/27T and (W + A W)/2T. To calculate the constant of proportion-

ality first note that the mean square field at the detector is given by

the integral of SE over all frequency shifts:

dw SE(K, )= 27TK < IE(K) 2 >. 2. 8

But the total power I in watts per unit area in a complex plane wave of

the form E = E ei(w ot - k r)is given by

I = - <Z 2 > . 2.9

Therefore if I(K, W) A W is used to denote the power per unit area in

the direction indicated by K and lying between w and w+ A W, it follows

that

I(K, ) c 2 S E(K, W). 2.10
(47T)

Now the expression for Z(KZ, t) will be derived. Without loss of

generality the lens and detector can be assumed to be immersed in the

medium. Thus we avoid considering the boundary between the

scattering medium and the laboratory. In practice the behavior of the
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scattered light at that point is handled by geometrical optics. Let the

mean or observed incident electric field in the medium E (r, t) be a

complex plane wave

E 9 t) =E exp (i ot - ik -r). 2. 11
0 0 0 0

The effective electric field E (r, t), that which would be measured atE

the site of one of the particles of the medium, is linearly related to

the mean incident field by a constant B:

E (r, t) = B E (r, t). 2.12

This constant is determined by the dielectric susceptibility 1 of the

(10)
medium:

477
B= 1+ 41 2.13

For light waves the relationship between 77 and the index of refraction

n of the medium allows B to be expressed as

2
B n 2 2.14

At distances which are large compared to the dimensions of the

particle, the response of the particle to the effective field of the

incident light can be viewed in terms of an induced dipole moment.

This moment is linear in the effective field but may point in a different

direction. Under these conditions one may express the dipole moment



th
of the m particle P (t) in terms of a time dependent polarizabilitym

tensor am(t):

P (t) = a (t) - E (r ,0t. 2. 15m m E m

th
Here r (t) indicates the position of the m particle. All particles

are assumed to be identical (not a necessary assumption, but a

convenient one). However, the tensor differs from one particle to

another since the particles' principal axes may make different angles

with the reference coordinate system. The tensor is time dependent

through the rotation or vibration of the particle. Equation 2. 15 can

break down in the case of solids, not because of the highly correlated

motion of the constituent particles (which can be handled as a

correlation among the various a m), but because of the sharing of

outer electrons. This sharing of electrons blurs the identity of the

individual polarizable units implicit in equation 2. 15. On the other

hand, the majority of the electrons in most solids are tightly bound

to the nuclei, forming units called cores in the theory of lattice

vibrations. When the major portion of the polarizability of a solid

comes from the cores (which do maintain their individuality and can

be assigned an effective a m), then calculations based on equation 2. 15

should be in qualitative if not quantitative agreement with actual

results. In fact an assumption of the form of equation 2. 15 is used as

basis of most quantum mechanical treatments of Raman scattering in

solids. (11)
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The dipole P (t) is time varying and will therefore radiate.m

Its contribution E m(K, t) to the electric field at the detector is given

by

Et)(K )= 1 x xPm(t') ) _ . 2. 16
m d c 2 m t' t

m r

Here l is a unit vector in the direction of ks, t r is the retarded time

t = t - d /c, 2.17
r m

th
and d is the optical path length from the m particle to the detector.

m

To simplify equation 2. 16 it should be noted that the time dependence

of Pm (t) due to the particle rotation and vibration is very slow

io t
compared to that due to the e o factor in the effective field, there-

fore only the latter need be included in the double time derivative and

in the evaluation at the retarded time. Figure 2. 2 shows the construc-

tion to be used to evaluate dm . Let R be the optical path distance

from the center of the coordinate system to the detector. Then dm is

given exactly by the relation

r -k
d = R - m s 2.18

m k

Equation 2. 16 can now be rewritten as

E (K, t) = c x (f (tM - EZ x k )m ~Rs m o s
2. 19

exp (io t - i k R) exp (iK1Z- r ( t).
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The total field at the detector is then found by summing the

contributions from each particle:

E(K, t) = E (Kz, t). 2.20
m m

Equation 2. 19 is quite general and forms the basis for the

classical explanation of a wide range of scattering phenomena. The

tensor nature of am gives rise to depolarization scattering, that is,

components of E(K, t) perpendicular to the electric field of the

incident light. The time dependence of am due to rotation or vibration

of the particle gives the classical Raman effect. Raman scattering

involves frequency shifts which are large compared to the quasi-

elastically scattered light being investigated here. Therefore this part

of the time dependence of am can be dropped from consideration. This

can be put another way. Since the experiments investigate a range of

frequencies up to about 1 GHz, they obtain information about processes

occuring over periods of time no shorter than about 10 seconds. In

deriving the quasi-elastic spectrum, therefore, changes in the

orientation or the structure of the particles occuring over times less

than this may be'averaged over' when calculating am . The rotation of

the molecules in a gas is so rapid that the averaging process reduces

a m to a time independent scalar polarizability a. In the case of liquids,

however, the molecular rotation is hindered by neighboring molecules.

In most liquids the rotational part of the spectrum (called anisotropy

scattering or the wing of Rayleigh line) is still much broader than the

( 1 2 ) (13)quasi-elastic portion, but Starunov et. al. have found that in at
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least one case, nitrobenzene, the two portions have a comparable

extent. In general, though, the quasi-elastic scattering in liquids can

also be represented by a scalar polarizability.

In terms of a constant scalar polarizability a, equation 2. 20 can

be written as

2
aBE k sinc*

E(K, t) = 0 0 exp (i 0 t - ik0R)
R0

2.21

X Z exp (iK - r (t )

where * is the angle between E and k s. It is convenient to define a

particle density p(r, t) such that its integral over a region of space

gives the number of particles in that region:

p(r, t) = Z 6(r - r (t)). 2.22m m

Here 6(r) is the Dirac delta function. The sum involved in equation 2. 21

can be expressed simply in terms of the density:

exp (iK r ( t)) dr p(r, t) exp(iK - r). 2.23
m mV

Now SE may be found by substituting equations 2. 21 and 2. 23 into 2. 7:
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aBE k 2sin 2

R

dr 3dr 3dT <p(r t) p(r'+ r, t + T )> X 2.24

VV --

exp(iKe r - iowr.

To simplify notation, define the density correlation function

G(r, t) as

2. 25
1 3 r: r: r )G(r, t) dr <p6r, 0) p(r +

V

and also define the spectral power density S P(K, w) for the particle

density as

S(f ) Jf dr 3 d t G(r, t ) exp(iK -r - i w t). 2. 26
V -C

The normalization is chosen so that G(r, t) approaches the average

density p0 = N/V for large r and T. G(r, t) is the classical limit of

Van Hove's correlation function.. 7 N is the total number of particles in

the region V. The spectral power density function S used here differs,

however, from Van Hove's spectral function; the latter is N/29 times

larger than S . When the medium is homogeneous in space, the expecta-

tion value inside the integral in equation 2. 25 is independent of the start-

ing point r". In this case the integration may be carried out and one



obtains

1
G(r, t ) - < p(0, 0) p(r, t) >. 2.27

p0

Equation 2. 24 can be expressed concisely in terms of SP

2 2
aBE k sin *

SE(K,wo) = N( 0 0 ) S(, w). 2. 28

The most practical way to express the information contained in

equation 2. 28 is through an inelastic differential scattering cross

section 0(K, w) for the medium. Let cr(K, w) L P A A A W be the power

in watts scattered into a solid angle A C about the direction corres-

ponding to K within a range of frequency shifts A w/2r about w/27T

when a length L of the medium is crossed by a light beam of total

power P watts. It should be noted that c-(K, w) A Q A W is then the

probability per unit length that a given incident photon will be

scattered from the beam into A P and A w. If the beam has a cross

sectional area A then P = (AcE 2)/(81T) and AL = V. Using these facts

equation 2. 28 may be used together with equation 2. 10 to give the

principal result of this section:

PO 2 2
C-(K, 2) = (a B k0 s in ) S (K, K ). 2. 29

This shows that the cross section corresponding to K and W is simply

a constant times the space-time Fourier transform (evaluated at K and

I
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w) of the particle density correlation function. The constant has the

k and * dependence characteristic of dipole scattering.

For the case of gases the constant multiplying S in equation

2. 29 can be evaluated easily. The polarizability a for gases is known

to be given quite accurately in terms of the index of refraction n and

the mean particle density p 0 by the Lorentz-Lorenz formula(10 )

3 n -1 2.30
4v p n +2

Using this expression for a and equation 2. 14 for B, equation 2. 29

becomes

p n 2 )2

0k2 sin S(K, W). 2. 31

It is convenient to know the cross section for scattering into a

direction corresponding to K regardless of frequency shift:

Cr(K) d w r(K, W). 2. 32

Carrying out this operation on equation 2. 29 and using 2. 26 one finds

2 2 d 3 iK. r
c(K) =p 0(dBk 0s in) d drG(r,. 0) e 2.33

V

The instantaneous density correlation function G(r, 0) is a sum of



the self part 6(r) and the pair distribution function g(r) which is of

interest in X-ray scattering:

G(r, 0) 6(r) + g(r) . 2.34

In the case of dilute gases for K # 0, g(r) contributes a negligible

amount to the integral in equation 2. 33 and it follows that

2 2
(n -1) k sinc* 2

U(K) = p( )
4 p0

2. 35

3 . 2
8ff t

where Ut is the total scattering cross section. Using the fact that

n ~1, the total cross section can be written as

o 2  1 2 4 2.36
t -T - (n-i) k0

ot can be interpreted as the probability that a photon, while traversing

one cm. of the medium, will be deflected from the beam. Table 2. 1

gives the values of at for a number of gases at standard temperature

and pressure.

Before leaving this discussion of the spectrum of the scattered

light one should observe that S is not exactly the Fourier transform of

G. The spatial integration in equation 2. 26 is carried out only over the

region V, therefore S is determined not only by G, but also by the'



Table 2. 1

Index of refraction and scattering cross section

for selected gases

(n -1)* op

6. 06 x 10-8

13.9

6. 72

. 35

5.63

37. 6

15. 3

14. 9

24.3

*International Critical Tables, Vol. VII (McGraw Hill,
Values referred to STP and 6300 A

N. Y. 1930)

Gas

A

Kr

N
2

Ne

02

Xe

CO
2

CH 
4

C2H2

2.81 x 10~4

4. 26

2.96

. 67

2.71

7.00

4.46

4.41

5. 63
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extent of V. If every dimension of V is large compared to 1/K, then

S will approach the transform of G. In practice the smallest
p

dimension of V is usually the cross section of the illuminating laser

beam. If the power distribution across the beam is given by p(r) such

that

dA p(r) =P, 2. 37

then p(r) can be placed inside the integral in equation 2. 26 and the

limits of integration extended to infinity. The dimension of V along

the beam is assumed to be much larger than 1/K and will be neglected.

To determine the transverse K dependence of S(K, w) one now has an

exact Fourier transform, but of the product of p(r) and G instead of G

alone. The form of S can be visualized when one recalls that the
p

Fourier transform of a product of two functions is the convolution of

the transforms of the individual functions. For example assume the

beam travels along the z axis and has a Gaussian profile with a radius

(at the 1/e point) of a:

p(r) = $ exp - +2 2 2.38
alT a

The transform of p(r), denoted by p(K) is then given by

p(K) = P exp (- K 2 +K 2 2.39



a Gaussian in K with a radius (at the 1/e point) of 2/a. Its effect on

the scattering is shown in figure 2. 3. In order to determine the S
p

measured in the experiment one must convolve the true spatial

Fourier transform of G with p(K). This has the effect of smearing

out the values of K and K examined by the detector. The spectra
x y

corresponding to a range of K vector are superimposed. K is still

exact but a range of K and K are accepted with a Gaussian distribu-
x y

tion about the average.

In these experiments the beam radius is no smaller than 10- 2cm.

This implies that K is known to ± 2 x 10 2 cm . The finite radius of
x

the beam will have the largest percentage effect in the forward direction

where K is smallest (and the uncertainty is mostly parallel to the

__4 
0

direction of K). At 10. 6 , the smallest scattering angle used in these

4 -1experiments, K = 2 x 10 cm , The uncertainty in K will produce a

distribution of Brillouin shifts W for the sound wave contribution to the
s

spectrum since ws v K where vs is the sound velocity:

Aw AK 2
2 X 10 ,2,.40w K

The ws/27T is of the order of 100 MHz at 10. 60 for the gases and

the spurious frequency broadening of about 2 MHz is well below the

instrumental resolution of about 28 MHz and therefore is unimportant

in these measurements.
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2. Connection between the Density Correlation Function,

the Conditioned Density Distribution, and the Boltzmann

Equation

In this section only homogeneous systems are considered

(that is, crystalline solids are excluded), and G(r, t) can therefore be

given by equation 2. 27. In this case G(r, t ) is shown to be equal to the

particle density distribution for times t > 0 when it is specified that at

t = 0 there was a particle at r = 0. The spectrum of scattered light is

then related to the evolution of an initial density disturbance in the

medium. The equation of motion of such a disturbance is known only

for dilute gases where it is related to the solution of the Boltzmann

equation.

The correlation function for a homogeneous medium is

G(r, t) = < p(0, 0) p(r, t) > . 2.41

The physical meaning of G(r, t) can be visualized with the aid of

figure 2. 4. Consider an ensemble of M similarly prepared systems.

In each system one notes the number of particles n1 in a fixed increment

of volume A V about r = 0 at the time t = 0. At t seconds later one

notes the number of particles n 2 in a region A V about the position r.

G(r, t) is then formed by averaging the product n 1 n 2 over all M

systems:

M

G(r, t )= lim . 2.42
o Mi- .1

A V -0
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Fig. 2. 4 Construction involved in the interpretation of G(r, t).
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In the language of probability theory this expression can be written

in terms of the joint probability P(n1 , n 2 ) of finding n particles at

(0, 0) followed by finding n2 particles at (r, t ):

G(r, t) = lim 2 n n2 Pn 1 ,n 2 ). 2. 43
o AV-0

n n2

Since one is required to let AV - 0, it is permissible to imagine a

A V so small that the probability of finding two or more particles in

A V is much smaller than the probability of finding only one particle.

In this case the sum in equation 2. 43 can be terminated at n = 1 with no

loss of generality. Of the four remaining terms only one is non-zero

and one has

2
G(r, t ) - lim (T7) P(n1 = 1, n 2 = 1). 2.44

o AV-0

Next one uses the fundamental law of conditional probability to express

the probability P(n = 1, n 2  1) that n, 1 and n 2  1 as a product of

the probability P(n = 1) that n = 1, times the conditional probability

P(n 2 = 1/n 1 = 1) that n 2 = 1 given that n1 = 1. But P(n 1 = 1) is just

the average particle density p0 times the volume element AV.

Similarly P(n 2 = 1/n1 = 1) is A V times the particle density distribution

at r and t given that there was a particle at the origin at the 0 of time,

P(r, t /0, 0). These facts allow equation 2. 44 to be put in its final form:

G(r, t) = p(r, t /0, 0). 2.45



The conditional density distribution p(r, t /0, 0) can be defined

for any system, regardless of its average density, and is of central

importance in the theory of liquids and dense gases. The behavior of

p, for distances large compared to the mean free path of a molecule in

the medium and for times long compared to the mean time between

collisions, can be determined from macroscopic equations of hydro-

dynamics or elasticity. However, at the present time a tractable

microscopic equation of motion exists only for dilute gases.

For a dilute gas, the density of molecules f(r, v, t ) in a region

about r with velocities v at a time t is given in terms of the collision

cross section for the molecules by the Boltzmann equation ( 4 )(BE),

( +v- r+ m f r, v,t = o 2.46
r m/V~v ~ coil,

and by the initial conditions. Here m is the mass of the molecule, F

is the external force acting on the molecules (henceforth assumed to

be zero) and ( fcoll is the collision term, a functional of f and the

collision cross section. The validity of this equation is restricted to

times long compared to the mean duration of a collision. The BE, as

it is almost always treated, deals with point molecules interacting by

way of a central potential. This precludes the discussion of the effects

of internal degrees of freedom on the evolution of the distribution

function. Therefore the results discussed here, which are based on

equation 2. 46, are limited to monatomic gases. A discussion of the
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Boltzmann equation for polyatomic gases can be found in an article by

Wang Chang, Uhlenbeck and DeBoer.(15)

The original derivation of the BE, and that given in most text-

books, is based on 'a priori' assumptions about the nature of the

motion of the molecules (the assumption of molecular chaos or the

(14)
collision number ansatz). Recent attempts to find an equation for

f valid for higher densities lead to an exact expression relating f to the

two-particle correlation function. This is the lowest equation of a

hierarchy of N coupled equations, each relating the n-particle

correlation function to an (n + 1) - particle correlation function. The

BE can be obtained from the equation for f on the basis of specific

approximations. Under less severe approximations this approach

could lead to an equation for f which is valid for dense gases.

The specification that a particle is located at the origin at t = 0

causes only a small deviation of f from its equilibrium value. Let f

be made up of the sum of the equilibrium part p*0 c(v) and a part

*(v)h(r, v, t) due to the perturbation:

f(r, k, vt) = $(v) rp + h(r, V, t) . 2.47

pO$ corresponds to the equilibrium distribution of N particles,

-3/ 2*(v) = ( Wvo2) _2ex v2 )2. 48
v

where v0 is defined by the relation

2 2kB t
v = B 2.490 m
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The equation of motion of h is obtained by substituting equation 2. 47

into 2. 46, and the resulting linearized BE is(14)

+ V -7 r )h = dv3  d Q g r(g, e)

2.50

X p0 *(v 1 )(h'+h I -h -h

Here the prime and index 1 refer to the velocity variables only, so

that h1  h(r, v1 , t): and, the four velocity variables refer to the

velocities of the binary collision in such a way that (v, v) , " .

Also g i v -v1 I is the relative velocity which in a collision turns

over the angle 6, and c-(g, e) is the differential scattering cross

section.

The particle density p(r, t) is found by integrating f(r., v, t)

over all velocities; the conditional density is therefore the integral

over velocities of the f given in equation 2. 47:

3 - --+ -Ip(r, t /0, 0) = dv $(v) LP0 + h(r, v, t)

2.51

3 - -
+ dv $(v)h(r,'v, t).

The constant term contributes only to scattering in the forward

direction and can be shown to give rise to the index of refraction of

the medium. Therefore for K / 0, the spectrum of the scattered

light is related to h(r, v, t ) by the relation
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3 3
S P(IK, o)=dr dv d t $(v) h(r., v, t)

2.52

X exp (iK - r - iwt)

Finally the initial value of h must be specified. Since p(r, t/0,0) =6(r),

it follows from equation 2. 51 that h(r, v, 0) must be some velocity

function times 6(r). It is consistent to allow the particle at the origin

at t = 0 to have a Maxwellian probability distribution in velocities,

Since $ is already present as a factor in equation 2. 47, the initial

value of h is given simply by

h(r, v, 0) = 6 (r). 2. 53

It has been shown in this section that the density correlation

function G(r, t) for homogeneous media can be equated to the condition-

al density distribution p(r, t /0, 0). The macroscopic or continuum

behavior of p can be described by the linearized equations of elasticity

or hydrodynamics. Such a description is adequate for treating the

scattering of light from solids and liquids since the wavelength of light

is much larger than the particle mean free path. However, in the case

of gases at pressures of one atmosphere and lower, the mean free path

is comparable to the wavelength of light. In this case a microscopic or

kinetic equation must be used to compute p and thereby obtain the

spectrum of the scattered light. For dilute gases this leads to a well-

posed initial value problem concerning the linearized Boltzmann

equation. Solutions of this problem are discussed in the next section.
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C. Approximate Solutions of the Boltzmann Equation

1. Hydrodynamics

For times long compared to the mean free time of the

molecules of a medium, and for instances large compared to their

mean free path, the evolution of disturbances in the density p(r), in

the average velocity u(r), and in the temperature T(r) of a medium

are described by the equations of hydrodynamics. For monatomic

gases these equations may be obtained from the appropriate limiting

behavior of the Boltzmann equation. (17) The spectra for monatomic

gases derived from these equations should be accurate as long as the

magnitude of the scattering vector K is much less than the reciprocal

of the mean free path, and the frequencies involved, w/2r, are much

less than the mean collision frequency.

A more general form of these equations, applicable to dense

monatomic and polyatomic gases and to liquids, can be derived from

the conservation laws for the macroscopic density, momentum, and

(18 )Th
energy. This derivation is essentially a thermodynamic one, and

it requires the existance of local thermodynamic equilibrium. For

this reason the spectra obtained from these more general hydro-

dynamic equations are accurate only for frequencies at which this

local equilibrium can be maintained. As pointed out in section B. 1,

this will be the case up to those frequencies for which the thermal

parameters of the medium begin to exhibit a frequency dependence.

It should be pointed out that the thermal parameters may deviate from
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their low frequency values at frequencies well below the mean

collision frequency of the molecules. This point will be taken up

again later in this section. First the spectrum of the scattered light

will be found for low frequency fluctuations on the basis of the more

general hydrodynamic equations.

(19)The linearized hydrodynamic equations are: the continuity

equation

op

-T Po V- u = 0, 2.54

the Navier-Stokes equation

2 C2Bu C C o3
Po at+ C VP + VT 2.55

- + B -u = 0,

and the energy transport equation

P c aT 1  c (Y-1) ol p A 2 T = 0. 2.56
ocV at t

Here p1 is the deviation of the number density from its equilibrium

value p , T is the deviation of the temperature from its equilibrium

value T0 , and u is the average local velocity. Also y is the ratio of

the specific heat at constant pressure c to that at constant volume

cV, 77 and * are the shear and bulk viscosities, A is the thermal
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conductivity, 1 is the thermal expansion coefficient, and C is the low

frequency limit of the sound velocity. Mountain (18)has solved these

equations for the space-time transformed density and temperature

O
3

p (K, s) = dr dt p,(r, t) exp (-iK ' r - st)
IV 0

2. 57

3T (K, s) = drJ dt T (r, t) exp (-iK r -st)
fV 0

in terms of the initial values

3
p1 (K) =J dr p(r, o) exp (-iK - r)

2. 58
3

T I(K) = dr T 1(r, o) exp (-iK r)

Notice that the time transform is a Laplace transform to facilitate

the handling of the initial conditions. In the most general case

p (K, s) depends on the initial temperature distribution T (K) as well

as the initial density distribution p 1 (K). Because p and T can be

used as independent thermodynamic variables, their values at a

certain instant of time can be specified independently. In particular,

one can choose T (K) independently of p (K). For the calculation of

the density response function, one may therefore use as T I(K) its

ensemble average, which is simply zero.

Using the initial condition T I(K) = 0, Mountain shows that



p 1 (K, s) = p 1 (K)

where

In order to relate this

2 .22 4 2 2
s +(a+b)K s +abK + C (1-1/y)K
2 2 2 2 2 4 2 4

s +(a+b)K s +(C K + abK ) s+ aC K /y

Aa - VPocV

b =- ( - s + nB /0'

solution to S P(K, W) first

2.60

note that

2.61G(r, t) = p(r, t/0, 0) = p0 + p(r, t),

and

p1 (r, 0) = 6(r).

By substituting 2. 62 into 2. 58 one finds that

p 1 (K) = 1.

2. 62

Then by comparing equation 2. 57 for p(K, s) with equation 2. 26 for

S P(K, W) one finds that for K #0

S (K, w) = 2 Re pi (K, s = i.)

NR( W)DR( w) + NI(W)DI(W)

= 2 2 2
DR(w) +D1 (w)

2. 59

2. 63

2.64
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where N(W) and D(W) are the numerator and denominator of expression

2. 59 with s = iW and the subscripts R and I refer to their real and

imaginary parts.

Mountain shows that for long wave length fluctuations, that is

for small K, equation 2. 64 represents three Lorentzian lines. The

diffusion mode gives rise to a line unshifted in frequency with a full

width at half height 6v D given by

2
6 y K a

D yK
2.65

2
K A

The sound wave mode gives rise to two lines (the Brillouin

components) corresponding to frequency shifts V B of

C
VB - K 2. 66

and whose full widths at half height 6V B are given by

K2
6v K?vB = (b + (1-1/y) a)

2.67

2 4 + A
=K ( ? sB+ -)

+ (Y - 1) p c/PO o P

The ratio of the area under the central line to that under both of the

sound wave lines is known as the Landau-Placzek ratio and is given by
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POWER IN CENTRAL LINE = y 2.68
POWER IN BRILLOUIN DOUBLET

The thermodynamic parameters which pertain to these calculations

are assembled in table 2. 2 for a number of gases. Table 2. 3 lists

the values of 6v' 'V B vB and the Landau-Placzek ratio computed

on the basis of these parameters.

When the central line and the Brillouin lines begin to overlap,

the spectrum no longer has the simple form discussed above. In this

case one can evaluate equation 2. 64 numerically to obtain the

spectrum. A computer program has been written which evaluates

equation 2. 64 as a function of w for given values of the parameters

K, a, b, C and y. The results of this program are compared with the

experimental spectra in Chapter IV.

The use of the hydrodynamic equations to describe the spectra

of polyatomic gases is made suspect by the fact that all these gases

exhibit relaxation phenomena(20) and an associated dispersion in the

sound velocity at frequencies which are less than those characteristic

of the spectra observed in these experiments. This implies that some

of the degrees of freedom of the molecule are not in equilibrium with

the fluctuations which are being observed. Therefore the thermal

parameters listed in table 2. 2 (which are static or low frequency

values based on an equilibrium with all the degrees of freedom) will

no longer be appropriate to the equation of motion for the fluctuations.

Consequently, the spectra are no longer represented by the



Table 2. 2

Thermodynamic parameters for selected gases*

am

physical AMU

39. 94

83.80

28. 02

20. 18

32.00

131.30

44. 01

16. 04

26. 04

g cm

1. 634 x 10-3

3.429

1. 145

0.824

1.309

5.401

1.811

0. 657

1. 075

Ab

-1 -l o -1
cal sec cm C

42. 36

22.71

62. 13

115.26

63.37

13.4

39. 40

81. 49

50. 37

9c, a

-1 -1
g cm sec

226. 4 x 10- 6

253.2

178. 0

317.3

206.4

231.0

148. 9

111.5

95

* All values have been corrected to 25 0 C and 760 mm Hg.

a. AIP Handbook, 2nd edition.

b. CRC Handbook, 47th edition.

c. J. Kestin and W. Leidenfrost, Physica 25, 1033 (1959).

d. S. Chapman and T. G. Cowling, The Mathematical Theory
(Cambridge University Press, Cambridge, England, 1952)

of Non-Uniform Gases,

C P^

cal g

Kr

N
2

Ne

Xe

CO
2

CH 
4

C 2 H2

d
Y

, 124

. 059

. 249

.246

.219

. 0379

.202

. 532

.403

1. 666

1.666

1. 405

1,666

1.396

1.666

1.302

1. 310

1. 280



Table 2. 3

Parameters Determining the Hydrodynamic Spectra of Gases

Landau-Placzek
Ratio

Central Line Width* Brillouin Line Width'

6 V

n sin 6/2

2. 62 GHz

1.41

2.74

7.14

2. 77

.822

1.36

2. 92

1.46

.666

.666

.405

.666

. 396

.666

.302

. 310

. 280

8 = 10. 60

22. 2 MHa

12.0

23.2

60.5

23. 5

6.97

11. 5

24. 8

12.4

9 = 22. 70

101 MHz

55

106

276

107

32

53

113

56

6 v

n sin

2. 03 GHz

1.09

1.86

5. 55

1. 87

.631

.892

1. 87

.943

e= 10. 60

17. 2 MHz

9.24

15.8

4.71

15. 9

5. 35

7.56

15. 9

8. 00

9 = 22. 70

78. 5 MHz

42. 1

71.9

21.5

72. 3

24.4

34. 5

72. 3

36. 4

'The full width of the Lorentz line at its half power point is given.
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characteristics g iven in table 2. 3 which are based on the low

frequency thermal parameters.

Mountain(21) has proposed that the spectrum in the presence

of these relaxation phenomena can be described simply by replacing

the bulk viscosity rB in equation 2. 55 by a frequency dependent value.

One of the features of the resulting theory, the appearance of a second

unshifted mode in media exhibiting relaxation (this behavior is also

present in the thoery of Rytov (6)), has been confirmed in liquid carbon

tetrachloride by Gornall et. al. (22) and by unpublished work in this

laboratory(2 3). Those spectra in gases which arise from hydro-

dynamic fluctuations (scattering toward the forward direction at one

atmosphere and for larger angles at higher pressures) will be very

sensitive to these relaxation effects. Since the relaxation processes

in gases are better understood than those in liquids, and can in fact

be explained from first principles, the light scattering experiments

on polyatomic gases may serve as a more sensitive test of the theories

relating to these phenomnna than can be obtained from the scattering

in liquids. In these first experiments, however, stray light and

limited resolution obscure most of the effects that relaxation

processes might cause on the spectrum. The velocities of sound

measured from the Brillouin shift, however, correspond to the highest

frequency sound wave velocity measurements made in gases, and will

show a dispersion due to any relaxation phenomena of lower or com-

parable characteristic frequencies.



2. Maxwell Molecules

The term Maxwell molecules refers to a hypothetical model

in which molecules repel each other at all separations by means of a

mutual potential energy V12 of the form

V12 a 4 .2. 69
Ir 1 -r 2

This form of the potential is of interest because the associated

molecular collision cross section which appears in the collision term

of equation 2. 50 is independent of the relative velocity of the molecules.

This mathematical simplification allows the eigenfunctions and eigen-

values of the collision operator to be found explicitly, (24)and as a

result the solutions of the linearized BE (equation 2. 50) can be found

to any desired degree of approximation. Ranganathan and Yip (25)

have computed the spectrum of the light scattered from a Maxwell gas.

A brief outline of their method is given next.

The collision term in the linearized BE is a linear operator L(h)

operating on the velocity variables of the function h.

L(h) p 0  dv3 jd f g I(g, 6)* (h'+h' -h -h) 2.70

Equation 2. 50 may be written as

+ -v. )h(r, v, t) = L(h) 2. 71
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where the perturbation of the equilibrium distribution function is

f 1(r, v, t) = $(v) h(r, v, t). 2. 72

Here * is a normalized Maxwellian distribution:

(v) (vo2 2-3/2 exp -v2/vo2

2. 73

2 2k BT

0 m

The parameter v9 used throughout this thesis is consistent with most of

of the literature, but it is /2 times larger than that employed in

reference 25. Now define the inner product of two functions of the

velocity, p(v) and q(v) for example, as

(p, q) - dv3 *(v) p(v) q(v). 2. 74

Let the eigenfunctions of the collision operator L be denoted by

n (v). In general these eigenfunctions are labelled by more than one

subscript; but for the sake of clarity, and without loss of generality,

the multiple subscripts are contracted to a single one in this present-

ation. (26)By definition the 0n have the property thatn

L( () n (v), 2. 75n nn

and they are normalized in the sense that

2. 76(O., OM) = 6 nm
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For any potential, there are five eigenfunctions which can be

found by inspection and have eigenvalues equal to zero. These

correspond to the quantities which are conserved in a collision, the

particle number, momentum, and kinetic energy: 1, m v, and

I ~2
2 my . For any of these quantities the term in parentheses in

equation 2. 70 for L(h) vanishes identically. The proper combination

and normalization of these five quantities must be chosen to agree

with the orthonormality condition 2. 76 and as a result one obtains

$) = 1
0

V.
$b = /2 v i = 1, 2, 3 2. 77

10

2

4 v 22

It can be shown that all the other eigenfunctions must have negative

eigenvalues. It is assumed that the 4n form a complete set.

The solutions of the linearized BE can now be expanded in

terms of the eigenfunctions:

h(r., v, t) = an(r, t) Onv)
n= 0

2. 78

n n, h)

The first of the expansion coefficients a (r, t) is just the density
0
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disturbance in the medium. To understand this, recall that the non-

equilibrium part of the conditional density response A p is found

from equation 2.51 to be

A p(r, t) p(r, t/0, 0) - p
0

S 3 dv3(v) h(r, v, t)

2. 79

0 I, h)

= 0 (r, t).

The substitution of the expansion 2. 78 into the BE given in 2. 71 will

give the equations of motion for the a n(r, t).

The spectrum of h(r, v, t) is measured experimentally, thus it

is advantageous to deal with the transform of the space-time solution

h. Let g(K, v, w) be the Fourier space and Laplace time(with s already

set equal to i w as in section C. 1) transform of h:

3 - -
gK, v, w)= dr dt h(r, v, t)

JV 0
2. 80

exp (iK - r - iwt).

Now g may be expanded in terms of the eigenfunctions of L:

g(K, v, w) = b(K, ) nv)

n 0
2.81

bn n).



Again, it is the lowest expansion coefficient that pertains to the

scattering of light. Starting with equation 2. 64 one has

S (Kw) = 2 Re AP(I, w)(
P L

3
= 2 Re dv *(v) g(K, v,w) 2. 82

= 2 Re b (K, w) .
L o

Therefore the spectral power density of the fluctuations in the number

density is simply twice the real part of the lowest expansion coefficient.

The bn are found by substituting the expansion 2. 81 into the

transformed BE together with the initial condition 2. 53. The result,

an infinite set of coupled algebraic equations for the b n' is shown in

equation 7 of the paper by Ranganathan and Yip. (25) This procedure is

valid for any molecular potential, however, it can be carried out

explicitly only for Maxwell molecules because the eigenfunctions of L

and their inner products with the velocity (v, On) are known only for the

1/r4 repulsive potential. The spectrum is found by truncating the

infinite set of equations, leaving N equations for the first N expansion

coefficients. Ranganathan and Yip have programmed a digital computer

to solve the N algebraic equations for the coefficient b (w) as a function

of the parameter y = |I X/(Kvo). X1 1 is one of the Maxwell molecule

eigenvalues and is dependent on the constant a in the molecular potential

2. 69. Physically, y is proportional to the ratio of the wave length of the

a



fluctuations being observed XF (that is XF = 277/K) to the mean free

path L of molecules in the gas:

y = A .2. 83

A is a dimensionless constant of the order of 0. 1. To determine the

value of y corresponding to a particular experiment one uses the

relations between y and the viscosity 7 or thermal conductivity A of

the gas: (27)

_ mp 0 v9
?7-

3y K

2.84

5 kB0 v
4 yk

The Maxwell molecule calculation gives self consistent values for the

transport coefficients since the Eucken factor, (28) / /(7 cV), calculated

from equation 2. 84 gives the kinetic theory value for a monatomic gas

of 5/2.

The solutions for y >> 1 correspond to the hydrodynamic region

where the medium exhibits the behavior characteristic of a continuum.

For these values of y the Maxwell molecule spectra coincide with that

discussed in section C. 1 with the values of 6v 9sl 6vs and the

Landau-Placzek ratio corresponding to a monatomic gas.

Physically one expects the spectra for y << 1 to be that

characteristic of a Doppler shift from independent molecules moving

with a Maxwell distribution of velocities. The spectrum would then be

W
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Gaussian:

S (Kw ) = 217 (Iv 2K ) exp[- 2. 85
pv 0 K)2 -

Equation 2. 85 can be derived directly on the basis of a Doppler shift

from independent molecules. A more formal way of arriving at the

spectrum involves observing that in the limit of freely propagating

independent molecules the solution of the linearized Boltzmann

equation will be

h(r, v, t) = 6(r -vt). 2. 86

This relation can be inserted directly into equation 2. 52 for S(K, W),

and by carrying out the indicated integrations over r, v, and t the

result stated in 2. 85 is obtained.

The expansion 2. 81 converges slowly for small y. Ranganathan

and Yip obtained S(K, w) for y greater than or equal to 0. 4, and at

y = 0. 4 it was found that the results converged with N = 80.

Dr. Ranganathan has given us a copy of his computer program

which calculates S(K, w) for Maxwell molecules. With this we are able

to generate spectra to compare with the experimental results. Initially,

Dr. Ranganathan was kind enough to supply us with the results of his

own calculations to compare with our early data.

3. Kinetic Models

The Maxwell molecule calculations discussed above solve

I
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the linearized Boltzmann equation exactly for a very specific force

law. This force law is only an approximation to the actual force

between molecules. It is chosen for its mathematical convenience

and not for its similarity to forces based on physical interactions.

An alternative approach to tractable calculations based on the BE

involves replacing the collision term in the B B t I with a~t Coll'

term (called a kinetic model) which resembles it in some sense, yet

allows the resulting 'model equation' to be solved. Such a kinetic

model would have parameters which depend upon the exact nature of

the force law. The same model applied to different force laws would

yield different distribution functions, and therefore different spectra.

The application of kinetic models to the problem of light scattering is

discussed in this section.

Perhaps the simplest kinetic model is that used in the mean free

path treatment of transport phenomena:

Tfcoll v f -f(r, v,t) . 2. 87

Here f is the equilibrium distribution and T(v) is an effective mean

free time which may depend on the velocity. In order to understand

the physical basis for this model and its extension introduced later,

it is convenient to express the exact collision term in the form 17)

a f
-t coll = R -R 2, 88
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where
3 3

R 6 t dr dv = no. of collisions occuring during the time between

t and t + 6t in which one of the molecules involved is

3 3
in dr dv about (r, v) before the collision, and

iT 6 t dr3 dv = no. of collisions occuring during the time between t and

t + 6t in which one of the molecules is in dr 3dv3 about

(r, v) after the collision.

The model in equation 2. 87 corresponds to a loss rate R from (r, v)

which is proportional to the instantaneous distribution function

f(r, v, t). The constant of proportionality, 1/T, is the average

collision frequency. The rate of gain R of particles in the region

(r, v) is proportional to the absolute equilibrium distribution function

f . Of course, in the general case the loss rate and the gain rate are

coupled by the collision process. Therefore one may say that the

model in equation 2. 87 corresponds to collisions which immediately

reduce each particle involved to a state characteristic of absolute

equilibrium. It is easily shown (29)that the model collision term 2. 87

will not conserve particle number, momentum, or energy on an

instantaneous basis. For this reason the model is not satisfactory for

the description of kinetic processes, although it can be used as a basis

for a hydrodynamic description of transport phenomena.

Bhatnagar, Gross, and Krook ( 2 9 )proposed a model which satisfies

the conservation laws on a instantaneous basis. This model (referred

to simply as the Krook model) can be written in the form



a fn
StIcoll ~ local -f(r, v, t)

2. 89

m 3/2 
2

flocal n2k T exp {-m(v - q) /2kB '

Here n(r, t), _(r, t), and T (r, t) are the local values of the density,

flow velocity, and temperature defined as velocity averages over the

distribution function:

n (r, t) = fdv3 f(r, v, t)

1 3 -q(r, t) = n dv v f(r, v, t) 2.90

m 3 -* -* 2
T (r., t) = 3k f dv (v -g) f(r, v, t).

A comparison of equation 2. 89 with 2. 88 shows that the loss rate R is

still proportional to the instantaneous distribution function. The

constant of proportionality n/a' can be interpreted as collision fre-

quency which depends on the local value of the density. The gain rate

R is proportional to the local equilibirum distribution function flocal'

where flocal is a Maxwell-Boltzmann distribution based on the local

instantaneous values of the density, flow velocity, and temperature.

A collision, then, adjusts the particles involved to a local equilibrium.

The Krook model can be shown to maintain the collision invarients of

L 2
particle number n, momentum mv, and kinetic energy E my .

The linearized form of the Krook equation for a uniform gas with



no external forces is given by(30)

+ [v - h= + 2 Q- )iQ- ah, 2.91

where

Z (r, t)

Q(r, t) Jdv3 *(v) h(r, v, t) vi. 2.92

2
T (r, t) T o ( 2

3vJ

* and v0 are given in equation 2. 73. Equations 2. 91 and 2. 92 can be

obtained by substituting into equations 2. 89 and 2. 90 the relations

n = P + Z(r, t), q= Q (r, t), and T = T + T (r, t). Z, Q, and T are the
- 0

deviations of the local density, velocity, and temperature from their

equilibrium values. a is the adjustable parameter in this model and is

interpreted as a collision frequency. The initial value problem (as

discussed in section B. 2) corresponding to equation 2. 91 has been

solved in terms of the transformed variables by Yip and Nelkin.(30)

This involves a set of 6 simultaneous equations (corresponding to
-4

equations 2. 91 and 2. 92) in the transforms of h, Z, Q, and T, The

result for S P(K, w), proportional to the real part of the transform of

Z, is given explicitly as a complicated algebraic expression by Yip

and Nelkin. The frequency dependence of S depends only on the

parameter y given by

y = K . 2.93
0



This y has the same physical significance in the Krook model as it does

in the case of Maxwell molecules. The equations for the transport

coefficients in terms of y which pertain to the Krook model are(30)

mp v0

2 yK
2.94

5 kB0 ov
A = - -.

4 y K

The Eucken factor calculated for the Krook model from equation

2. 94 is 5/3 which is inconsistent with the kinetic theory value of 5/2.

This means that in the hydrodynamic limit (large y) the value of y may

be chosen to give either the proper central line width or the proper

Brillouin line width, but the Krook model spectrum cannot fit both

relaxation times simultaneously. Otherwise, the spectrum for large

y is at least in qualitative agreement with the proper hydrodynamic

spectrum for a monatomic gas in that it gives the correct Brillouin

shift and a Landau-Placzek ratio of ~ 0. 69 ( 7 -1 is 2/3 for a monatomic

gas). In the limit of y << I the Krook spectrum reduces to the proper

collisionless limit given in equation 2. 85. The expression for

S (K, W ) derived by Yip and Nelkin has been programmed on a digital

computer and the Krook spectrum will be compared with the experi-

mental data in Chapter IV.

More elaborate kinetic models have been proposed( 3 1 )(3 2 )than the

two considered here. In general they contain a larger number of

adjustable parameters. It may be possible to see how well these models



represent the BE by adjusting the parameters to correspond to

Maxwell molecules and comparing the results with the exact Maxwell

molecule calculation. This was done for several models, including

the Krook model, by Ranganathan and Yip.(25) In those models for

which this test leads to a good agreement, the parameters can be

changed to represent other molecular force laws. A comparison of

the resulting spectra with the light scattering experiments in the

region y 1 I would then be a means of choosing between various force

laws.
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Chapter III

Experimental Apparatus and Methods

A. Introduction

The experimental problem is to resolve the spectrum of the

light scattered by a gas at well defined angles from the forward to the

backward directions. The small frequency shifts involved, from

about 100 MHz at 100 to 1000 MHz in the backward direction, necessi-

tate the use of optical spectrometers with resolving powers (v/Av) of

7
about 2 x 10 . Here V is the light frequency and AlV is the instrumental

width. The light source must be monochromatic to better than 10MHz

so that its spectrum does not obscure details of the spectrum being

studied. Finally, since the scattering cross section of the gas is very

small, a low noise, high efficiency photon detection system must be

used.

A description of the overall arrangement and operation of the

experimental system is first given below. Subsequent sections

discuss (in detail) the operation of the individual components.

Figure 3. 1 is a schematic representation of the system as arranged

while scattering toward the forward direction. The beam from a single

mode, frequency stabilized gas laser is focused to a thin line along the

axis of the scattering cell. The light scattered at some specific

forward angle leaves the cell through a conical lens(1) (a prism of

revolution) by which it is made parallel to the axis. Light scattered at

other angles and passing through the conical lens will either diverge
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or converge relative to the axis. In front of the cell a mirror set at

450 to the axis deflects the scattered light into the spectrometer. The

unscattered laser beam passes through a hole in the mirror and falls

on a detector used in the stabilization of the laser. In the spectrometer

the scattered light is passed through a spherical Fabry-Perot inter-

ferometer. The interferometer has a certain solid angle of acceptance

and it is this which ultimately limits the range of scattering angles

accepted on either side of the average scattering angle. The average

scattering angle itself is determined by the geometry of the conical

lens; therefore a different lens is employed for each angle.

The Fabry-Perot acts as an optical filter whose pass band is

swept across the spectrum of the scattered light at a uniform rate.

The light passing through the interferometer is focused on the photo-

cathode of a photomultiplier tube. The photoelectron pulses arriving

at the anode of the tube are processed by a pulse counting system and

a signal proportional to the average photon counting rate is recorded.

The recorded signal is the convolution of the instrumental profile

(corresponding to the spectrum of the laser radiation and the inter-

ferometer band pass characteristic) with the spectrum imparted to the

scattered light by the fluctuations in the gas.

In order to investigate the back scattered light the cell is turned

around so that the conical lens faces the laser. The 45 mirror is

then placed between the cell and the laser. A flat Fabry-Perot is used

in the spectrometer to resolve the spectrum encountered in the back-

ward direction.
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The next four sections of this chapter describe in detail the

laser, the scattering cell, the interferometers, and the photon

detection system. The last section presents an expression for the

sensitivity of the system.

B. The Laser

1. Description of the Laser

The laser used in these experiments is an experimental

device on loan from the Bell Telephone Laboratories. The D. C.

discharge tube is 17 cm. long with a 1. 5 mm. bore and Brewster

angle windows. The optical cavity is formed by two 10 meter radius

of curvature mirrors separated by about 18 cm. One of the mirrors

is mounted on a piezoelectric tube. The supporting frame and integral,

adjustable mirror holders are made of invar. The laser delivers on

the average 0. 7 mW of power in a single longitudinal cavity mode at a

vacuum wavelength of 6329. 9 A.

The separation Av between adjacent longitudinal modes is

inversely proportional to the cavity length L,

A c , 3.1

where c is the velocity of light. Therefore lasers of this sort are

purposely kept short, a fact which explains their proportionally low

power output, in order to insure that only one mode at a time can

oscillate under the gain curve of the Doppler broadened emission line.

For example, expression 3. 1 gives a value of about 830 MHz for the
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longitudinal mode spacing. The 6329. 9 A line is known to have a full

width at half power of about 1500 MHz, but the range of possible laser

action is usually limited to a region somewhat narrower than this

near the peak of the line due to the losses in the cavity. In the laser

used the active region is slightly wider than the mode spacing since,

when two adjacent modes exactly straddle the center of the line, both

modes can oscillate simultaneously.

The position of the cavity mode, and therefore the laser frequency,

relative to the center of the gain curve of the gas is affected very

strongly by thermal expansion of the cavity, pressure changes of the

air between the Brewster angle windows and the mirrors, and by

mechanical and acoustical vibration. The short term changes in

frequency are minimized by several precautions. The laser is

surrounded by a plexiglas box fitted to the outside of the invar frame-

work in order to reduce pressure and temperature changes caused by

air currents in the room. Before the laser is operated, the cavity is

10
brought up to its known equilibrium temperature, about 65 C, by a

heater inside the box. Experimental runs are made when the building

is quiet (usually at night) and with the experimenter in the room only

briefly from time to time to check .the progress of the run. Even under

these conditions it was found that reliable results could be obtained only

if the frequency was stabilized by a servo-control system.

2. Details of the Servo-Control System

The servo-control system used here is based on the method

employed in the single mode, stabilized laser built by Spectra-Physics
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(their model 119). In fact, that commercial laser could have been

used in these experiments except that its output power was only 1/5

of that from the Bell Labs unit. The method is based on the fact that

the output power of a single mode laser exhibits a small dip, the

"Lamb dip", (2)as the mode is tuned through the peak or center of the

Doppler broadened emission line. The manner in which the Lamb dip

is employed in the stabilization of the laser can be explained with the

aid of figure 3. 2, which shows the response of the cavity length, laser

power, and laser frequency to the applied voltage on the piezoelectric

element. The mirror displacement is linear in the voltage. The shift

in the frequency 6v of a specific cavity mode is proportional to the

mirror displacement 6L:

6v 6L

V L 3.2

A comparison of this equation with equation 3. 1 shows that as the

mirror separation is changed by one half wavelength, a cavity mode

will move away from its initial frequency and be replaced by its

neighboring mode. The figure shows this process taking place. At

position 1 in the figure a mode is at the center of both the Doppler line

and the Lamb dip: at position 2 it has moved out of the dip and is

descending the side of the Doppler line: at 3 this mode ceases

oscillation but its neighboring mode has begun to oscillate on the other

side of the Doppler line: and finally at 4 the new mode has moved to

the center of the Lamb dip.

Since the absolute frequency of the center of the Lamb dip is
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independent of external laboratory conditions it can be employed as a

reference frequency. One must then lock the cavity mode to the

bottom of the dip. Figure 3. 3 shows a schematic representation of the

servo system. The voltage which controls the minor position is made

up of three components: a bias voltage manually adjustable from 150

to 600 V, an amplified error signal capable of producing ± 150 V, and

a 2. 4 V peak to peak reference signal at 1000 Hz. With the servo

loop open the bias voltage is adjusted so that a cavity mode lies at the

center of the Lamb dip. This mode is actually being swept back and

forth about its equilibrium position by the 1000 Hz reference signal.

The resulting frequency modulation of the laser is about ± 3 MHz. In

this position there is effectively no amplitude modulation of the laser

beam. If the cavity mode were to deviate a small amount from the

center of the dip, the beam would be amplitude modulated at 1000 Hz

by an amount proportional to the deviation and with a phase that differs

by 180 on either side of the center. Amplitude modulation of the beam

is detected by a solar cell placed in the beam, amplified, and fed into

a lock-in amplifier (Princeton Applied Research model JB-4). The

lock-in also serves as the source of the reference signal. In response

to the detected modulation it produces a D. C. error voltage whose

magnitude is proportional to the deviation from the center of the dip

and whose sign depends on the sense of the deviation. The phase of the

error signal relative to the reference signal is adjusted at the lock-in

so that the amplified error signal will, when the servo loop is closed,

push the cavity mode back toward the center.



SOLAR CELL
. O*TEcrom

L.ASER BEAM AND AE4PLIFIS/4

Fig. 3. 3 Block diagram of the servo-control system.



Assume that with the loop open the cavity mode finds itself

slightly displaced from the center of the dip. That displacement can

be measured by the voltage change, A V, that the bias voltage would

have to undergo to return the mode to the center of the dip. The open

circuit amplified error voltage will have some value, V Since VE

is proportional to AV one may define a dimensionless gain for the

system, G = VE/AV. One can show that for G >> 1 the closed loop

frequency offset, AVc, is related to the open loop offset, AV 0 by the

relation AV c = A 0/G. In practice the gain is increased to a point

just below the threshold for oscillation of the servo system and is

generally of the order of 100 when the response time is . 03 seconds.

The amplified error signal can deliver at most ± 150 V, which from

figure 3. 2 is seen to correspond to ± 350 MHz. This means that the

system will automatically compensate for open loop frequency drifts

over a region of almost one cavity mode spacing. If the laser mode

were to be in danger of exceeding this limit, the bias voltage could be

manually adjusted to return the mode to the center of the dip. This

procedure is seldom required in practice, however, and the laser has

been left unattended for as long as eight hours. This implies that the

laser frequency had drifted no farther from the center of the dip than

350 MHz divided by G, or about 3. 5 MHz.

C. The Scattering Cell

Figure 3. 4 is a full scale representation of the scattering cell as

it is used when scattering toward the forward directions. The conical

lens D and the reticle blank B form the front and back windows of the



Fig. 3. 4 Full scale drawing of the scattering cell.
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cell whose body has been omitted for clarity. The laser beam A enters

through the back window and passes along the axis of the cell. It

leaves through the conical lens,( 1 ) whose apex has been ground flat and

parallel to its plane face. The beam emerging from the lens is

surrounded by an opaque tube E which prevents light scattered by the

air in front of the mirror, or by dust particles in the air, from reaching

the spectrometer. A disk shaped aperture F is mounted on the tube to

absorb certain rays scattered by the lens itself. In the figure only those

scattered rays are traced which are made parallel to the axis by the

lens. a indicates a ray originating from imperfections and dust at the

point where the beam enters the lens. 1 indicates a ray back-scattered

from the point where the beam (whose diameter is less than 1 mm)

leaves the lens. This ray is reflected from the index of refraction miss-

match between the lens and the gas in the cell and exits through the

front of the cell. Y and 6 are rays which delineate the region of rays due

to the scattering from the gas alone. The hatch marked region G

indicates the portion of the laser beam's path from which scattered

light is accepted by the spectrometer.

In order to express the properties of the conical lens quantitatively

it is convenient to introduce an intermediate angle C defined by the

relation

nL sin cos, 3. 3

where nL is the index of refraction of the lens material and * is the half

apex angle of the cone. If the index of refraction of the medium in the

cell is denoted by nM, then the scattering angle e is given by
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n
sin L Cos + 3.4

nM

The radius r of the aperture necessary to block the spurious

ray ( is given by

r =2T tan # cot ($+C) 3.5
tan *+cot (#+)

where T is the base to apex thickness of the lens.

The length L of the beam which is accepted by the spectrometer

(the region marked G in figure 3. 4) is given by

L = (r6 ~r ) cot e 3. 6

where r 6 designates the maximum usable radius of the lens (correspond-

ing to the ray marked 6 in the figure). The spectrometer will accept

not only those rays scattered at exactly 6, but also those within some

range of angles A 6M about 6. Then for each point in the region G the

conical light gathering geometry leads to an accepted solid angle of

C&= 27TAe M sin 6. Therefore the product of scattering length and solid

angle for this arrangement is

L G= 2 (r 6 -r AeM cos 6. 3. 7

By passing through the lens the rays which form the increment of angle

AO M inside the cell are mapped into a slightly different increment A A

in the air outside the cell. Their ratio is given by the expression
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n nL 2A O1- ( cos(#+). 3. 8

A Om sin (+) sin n M

The parameters *, 0, T, r and A A /AM are given in table

3. 1 for the two conical lenses used in these experiments. They are

computed for an index of refraction of the scattering medium of 1. 000,

a value which applies to most gases at one atmosphere. The lenses

were fabricated from Borosilicate Crown glass by the A. D. Jones

Optical Company of Burlington, Massachusetts. The lenses have a

radius of 1. 91 cm but the cell in which they are mounted limits the

effective radius r 6 to 1. 27 cm. Lenses designed to give larger

scattering angles would be inefficient since r rapidly approaches r6

as 9 is increased. For example the lens corresponding to 9 = 22. 70

has r /r 6 = . 61. From figure 3. 4 it can be seen that reversing the

direction of the laser beam will present the spectrometer with light

that has been scattered through an angle of 180 - 6. This adds the

angles 169. 40 and 157. 30 to those that can be investigated with the

two lenses.

The primary advantage of a conical light gathering geometry for

scattering in an isotropic material (that is where the spectrum depends

only on the magnitude of K and not its direction) is the precise defini-

tion of the scattering angle. In this experiment A M is always less

than 1/20. The more conventional method used to observe scattering(3)

employs a spherical lens positioned to one side of the beam with its

focal point on the laser path. In this case the range of angles accepted

Ae M is given by the ratio of the diameter of the lens to its focal length.



Table 3. 1

Data for the Conical Lenses'

Lens

700

10.6 0

.98 cm

, 23 cm

1. 03

500

22. 70

1. 75 cm

.77 cm

1, 13

Calculated on the basis of the indices of refraction nL = 1, 515

and n = 1. 000 at 6329. 9 A,

Quantity

A aA/AeM

-0
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In general, for a given value of 6 eM, the product of scattering

length and solid angle (which determines the amount of scattered

light detected) of the spherical lens system is much less than that

given in equation 3. 7 for the conical system.

It would be desireable to exploit the advantages of a conical

geometry for scattering angles closer to 900. The impracticality of

conical lenses for scattering angles of more than 250 from the

forward or backward direction led to the investigation of conical

reflectors. The basic design is shown in figure 3. 5. A conical

reflector B is placed inside a cell with windows A and C. The body

of the cell has been omitted for clarity. The laser beam D passes

along the axis of the cone. If the half apex angle of the cone is $, then

a ray a scattered at an angle 6 = 2 * will leave the cell parallel to the

axis. The only conceptual disadvantage to this rather simple arrange-

ment is that some rays will emerge parallel which have been reflected

more than once inside the cell. In the figure, f designates a ray of

this type. They would correspond to scattering at angles other than 2*.

Reflectors with * =150, 25, 350, and 450 were fashioned from

Borosilicate Crown glass by the A. D. Jones Optical Company. The

conical surface had a diameter of 3. 81 cm at the base. The reflecting

surface was coated with aluminum and an overlay of aluminum oxide.

(4)(5)When used in experiments on the scattering of light from liquids,

the 15 0, 250 and 350 reflectors gave detectable intensities

simultaneously at as many as three scattering angles. This effect can

be eliminated, however, by placing an opaque screen inside the cell

which obscures 1800 of the circumference of the reflector. The 450
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Fig. 3. 5 A scattering cell using a conical reflector.
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reflector will give rise to only 900 scattering and the opaque screen

need not be employed.

During the experiments on liquids the relative performance of

the lenses and reflectors was evaluated. The lenses seem to deviate

from the idealized operation outlined above only by the partial

reflection of the scattered ray as it passes through the front and back

surfaces. The reflectors, on the other hand, never lived up to their

theoretical performance, even when the partial absorption of the rays

at the reflecting surface was taken into account. This is probably due

to the poorer quality of thei r conical surfaces relative to those of the

lenses. The concave conical surfaces of the reflectors showed visible

tool marks and waves. The convex conical surfaces of all but the

initial batches of lenses appear to be free of such technical flaws. The

optical company admitted that the finishing of an inside conical surface

is much more difficult than the finishing of an outside cone. As a

result of this situation the reflectors were not employed in this work

on the gases. It is believed, however, that conical reflectors will be

of great value for studying scattering angles between 300 and 1500 when

the technical difficulties involved in their fabrication have been solved.

Tyndall scattering from dust particles suspended in the gas could

obscure the scattering from the gas itself, but the problem is avoided

in the following way. When the cell is evacuated the dust suspended in

the air is either swept out with the gas or is deposited on the walls of

the cell. The gas to be studied is admitted into the cell through a
(6)Millipore filter of 0. 22 micron pore diameter and is therefore dust
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free. Fortunately the dust which had remained in the cell adheres to

the walls and, as long as the gas flow rate into the cell is not too high,

it is not re-suspended in the gas. A small amount of as yet unexplained

stray light does enter the spectrometer from the cell even when it is

evacuated. This is elastically scattered light and contributes a small

but significant amount to the experimental traces. This is measured by

taking the spectrum of the evacuated cell after a run and it is later

subtracted from the experimental results.

The pressure of the gas in the cell is measured to ± 1 mm. Hg by

a mercury manometer. No attempt is made to control the temperature

of the cell and the gas temperature is taken to be the ambient room

temperature, which remains constant to ± 0. 2 0C during a run.

D. The Fabry-Perot Interferometers

Two types of Fabry-Perot interferometers are used in this

experiment: the conventional flat Fabry-Perot 7 ) (FFP) and a newer

spherical Fabry-Perot (SFP) first devised by P. Connes. (8) The theory

and operation of the SFP will be reviewed in detail here because of the

novelty of the device. In order to relate the SFP to the better known

FFP a short review of the properties of the latter will be given first.

1. The Flat Fabry-Perot

Consider the idealized FFP consisting of two rigorously flat

lossless surfaces of reflectivity K separated by a distance d and

perfectly parallel to each other. The gas in which they are immersed

has an index of refraction n. AS shown in figure 3. 6 a ray falling on
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Fig. 3. 6 Division and recombination of a ray
in a flat Fabry-Perot.
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the surfaces is divided into a number of parts and these parts, each

differing in optical path length from next by some amount 1, are

recombined at a point in the focal plane of a lens. The ratio of the

intensity IL measured in the focal plane of the lens to the incident

intensity II of the ray is given by

L 4 K . 2 (7T lv 3.9
I (1 - K)

where V is the light frequency.

For simplicity consider first only normally incident rays. For

this case 1 = 2 nd. Equation 3. 9 has the form of a 'picket fence' in

frequency and the distance between the pickets is defined to be the free

spectral rangef,

f c 3.10
2 nd

The shape of each picket is referred to as the instrumental profile and

for K > 85% (a condition which is almost always met in practice) it is

closely approximated by a Lorentz line shape with full width at half

height of AV. The ratio of f to At? is defined as the finesse FR of the

interferometer:

F = .K 3.11
1 -K0

The finesse and free spectral range are convenient parameters for the

discussion of the FFP because they are functions of separate quantities.
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f depends on the optical path variables n and d but is independent of the

properites of the reflecting surfaces. The finesse as it has been used

so far depends only on the reflectivity (hence the subscript R ) but will

later be generalized to include the effects of imperfect surfaces and a

finite range of incident angles. Using these new variables equation 3. 9

can be rewritten as

I L IZF R Iv 21-3
=_ 1 + Rsin - 3. 12

I IT f

If n, the index of refraction, is now changed linearly with time

by changing the pressure of the gas surrounding the mirrors, the picket

pattern seems, to a high degree of approximation, to simply translate

linearly past any fixed optical frequency. A change in n of X/2d
5 

o(1. 05 x 10 when X = 6330 A and d = 3 cm) causes one picket to be

replaced by its neighbor, that is a particular instrumental profile

translates by one free spectral range. For nitrogen gas at one atmos-

phere n = 1. 0003 so a change in pressure of one atmosphere in a 3 cm

etalon covers about 30 free spectral ranges. If the perpendicular

incident ray has a spectrum of frequencies whose extent is less than f,

then each time a picket sweeps across the spectrum the transmitted

intensity undergoes a variation which is the convolution of the

instrumental profile with that spectrum. This is the basic principle

involved in the FFP spectrometer.

Thus far only normally incident rays have been considered, but

it is clear that in order to detect an appreciable amount of light a
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certain solid angle about the normal must be allowed. It must be

determined, therefore, how large this solid angle can be made without

smearing out the transmission characteristics outlined above. If a

ray makes a small angle E to the normal, its transmission is given by

equation 3. 9 with a value of 1 slightly smaller than that for the normal

ray:

1~ 2 nd (1 - E2/2). 3.13

In particular the picket pattern has the same f and FR as the one for

normal rays; but, the absolute frequency of a particular picket is

shifted relative to that for normal rays by an amount 6v given by

v 61 _ nd c 2  
3.14

Clearly the maximum acceptance angle EM should be chosen in such a

way that the 6v M resulting from it is some fraction of the instrumental

width caused by the reflectivity alone. In practice a convenient choice

is 6vM = f/F or one half the reflectance limited instrumental width.

With this choice

1 1

f (3. 15
R

The acceptance solid angle 0 is EM2 and since v/l- is the resolving

power of the instrument one has the useful relationship

G-x RESOLVING POWER = I. 3. 16



The angles of acceptance are limited in practice by placing a pinhole

whose radius is EM times the focal length in the focal plane of the lens

following the interferometer. It can be shown that the instrumental

profile of the spectrometer consisting of the ideal FFP, the lens, and

the pinhole is nearly Lorentzian with a width 1. 2 times the reflectance

limited Av. This then corresponds to an effective finesse F given by

F = F R/1. 2 . 3. 17

The factor which limits the resolution of most high finesse

instruments is neither the reflectivity nor the finite acceptance angle,

but defects in the surface flatness of the mirrors and their parallel

alignment. The actual separation between the reflecting surfaces may

deviate from the average value d from place to place over the useful

area of the mirrors. The most common causes of this distribution of

thicknesses are the following: improper alignment of the plates

resulting in a residual wedge angle between the surfaces, bending of the

mirrors caused by too large a pressure employed to hold or align the

plates, curvature in the plates themselves, and rough surfaces caused

by improper polishing or poor quality coatings. As a result of this

variation there will be a finite width instrumental profile even in the

limit of very large K and very small E M. The shape of this profile

will of course depend on the nature of the deviations but in general if

the RMS average deviation over the illuminated area of the plates is

some fraction 1/m of a wavelength of light then the defects limited

finesse FD is given roughly by 9

FD ~ m/2. 3. 18
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When it is found experimentally that FD is the major limitation on F,

then the estimated value of FD should be used in equation 3. 15 to

determine E M. A smaller value of E M would decrease the light

gathering ability, but give no increase in resolution. More important

is the fact that the instrumental profile is probably no longer

Lorentzian, nor for that matter can it be expected to be any analytic

shape. If the defects are mainly in alignment rather than surface

quality, the shape and width may even change at each realignment of

the instrument. For this reason each time a run is made in these

experiments, an instrumental profile is measured for the system using

elastically scattered laser light and it is later used when making a

comparison between the theoretical spectra and the experimental ones.

This will be discussed in detail in Chapter IV.

The FFP used in these experiments employs a pair of fused silica

plates which are flat to X/100 and coated to a reflectivity of 97% at

6328 A. The etalon for holding them was machined from solid invar

(10)and was copied from a design used by Dr. B. Stoicheff. The spacer

is also made of invar and has a measured length of 1. 1904 inches

corresponding to a vacuum f of 4. 96 GHz. The two plates taken

together should have a surface figure of better than X/70 corresponding

to a FD ~ 35, neglecting any decrease due to misalignment. This is

much smaller than FR which is about 100. The system as a whole when

carefully aligned gives a finesse of about 33, a satisfactory agreement

with the considerations mentioned above.

The etalon is mounted in a vacuum tight enclosure and the value
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of n is swept by evacuating the enclosure and letting dry nitrogen gas

leak in through a limiting orifice. As the pressure in the enclosure

increases from zero to one atmosphere, about 30 pickets of the trans-

mission function pass across a fixed optical frequency. The deviation

of the sweep from linearity for the first ten free spectral ranges is

experimentally negligible. The sweep rate is controlled by either

switching orifices or by adding ballast volumes in series with the

etalon enclosure.

2. The Spherical Fabry-Perot

The idealized SFP is formed by two concave spherical

reflecting surfaces of equal radius of curvature placed so that the

center of curvature of one is on the center of the surface of the other.

This is a confocal geometry since the focal points of both mirrors

coincide at the center of the cavity. Figure 3. 7 shows such a cavity

being traversed by a ray which is incident parallel to the axis and

displaced from it by a distance r. Of course, this is not the most

general ray that can pass through the cavity; but, because it can be

drawn in two dimensions and its path is easily traced, it is a convenient

ray to illustrate the physical principles involved in the SFP. The ray

is divided into a number of parts, each differing by some optical

length 1 from the next. These parts recombine as they leave the cavity

(for example at A) rather than at the focal plane of a lens as in the

FFP. Notice that portions of the ray under consideration also leave

the cavity at B and that the resulting ray formed outside the cavity at

B has the same transmission characteristic as the ray formed at A.
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Fig. 3. 7 Path of a particular ray in a spherical
Fabry-Perot cavity.
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In the more general case this leads to an intensity pattern at the exit

mirror which is symmetric with respect to reflection through the center

of the mirror surface.

The particular choice of incident ray used here allows the path in

the cavity to be followed easily: the ray alternately travels parallel to

the axis at a distance r from it and travels on a diagonal passing through

the focal point. As was done in the case of the FFP, the transmission

properties of a special ray will be discussed first. This reference ray

is taken to be the ray shown in figure 3. 7 in the limit r - 0, and is called

an 'on-axis ray'. For an on-axis ray 1 = 4 n R. By analogy with the

interference phenomena in a FFP one may immediately draw two

important conclusions. First, the free spectral range will be

c
f 4nR 3. 19

one half as large as that of a FFP of the same separation. This is

because the path between interfering rays is twice as long. Second, the

reflectivity finesse will be

F = ' 3.20R 1 K

one half as large as that of a FFP of the same reflectivity. This

results because the distance 1 in the SFP involves twice as many

reflections, and therefore twice the energy loss from the ray due to

transmission, as does the path 1 in the FFP. As a result of these

physical observations it follows that the intensity transmission
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characteristic for the on axis ray looks identical to that of the FFP,

but now depends on the new expressions for f and FR given in equations

3. 19 and 3. 20.

Again the change in the transmission characteristic must be

studied as the incident ray departs slightly from an on-axis ray. A

more general ray is shown traversing the cavity in figure 3. 8. Let r,

be the position vector from the center of the surface of the first mirror

to the point at which the incident ray first strikes it. Similarly let r2

completely specify the incoming ray. The angle between these two

vectors is defined to be $12. It is shown in Appendix A that the inter-

ference path length 1 for such a ray differs from the value for an on-axis

ray by an amount A 1 given by

2 2
Al r1 r 2-- - 2 cos 2 $12 3.21
R R

where R is the radius of curvature of the mirrors. In practice the

rays accepted by the SFP are limited by a pair of identical apertures,

each opaque except for a hole of radius a, placed in front of the mirrors

and concentric with the axis. Therefore the magnitude of the vectors

r and r must be less than a, and the maximum possible deviation in

4 3path length that any ray can have relative to an on-axis ray is a /R3

If the same criterion is used here that was used to choose the maximum

A1 in the case of the FFP, that is

61M = - SUM ~ 3. 22
f f 2 FR



Fig. 3. 8 Path of a general ray in a spherical
Fabry-Perot cavity.
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then the radius of the aperture is determined by the relation

( 21)F . 3.23

The limiting instrumental width, f/FR, is the same for the SFP as

it is for a FFP of the same spacing and reflectivity. The primary

advantage of the SFP is that for large mirror separations, and con-

sequently high resolution, its light gathering power exceeds that of the

comparable FFP. The light gathering ability of an interferometer is

proportional to the integral over the area of the aperture of the solid

angle of acceptance. The French designate this quantity as the

'etendue' of the system. For the FFP the solid angle is the same at
2each point on the plates and equal to 1T cM . If the usable area of the

plates is denoted by A then the etendue EF of the FFP is given by

EF =A - 1A 3.24F) Fv

and is inversely proportional to its resolving power. For the SFP the

solid angle at any point on the input aperture is just the solid angle

subtended by the other aperture, 17 (a/R) . Then the etendue E of the

SFP by

2 4 2
E s - R 3.25

R 2 F

Notice that, since the resolving power is proportional to R, if the

resolution of a SFP is increased by increasing R, its light gathering
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power will increase proportionally. This expression can be rewritten

as

2 f
E =IT(W R2) . 3.26

This form allows one to compare the light gathering abilities of

spherical and flat interferometers. If both interferometers have the

same f and F, that is have equivalent transmission characteristics,

then a comparison of equations 3. 26 and 3. 24 shows that the ratio of

the light gathering power of the SFP to that of the FFP is

E 2
s R3.27
F

This is simply the square of the ratio of the separation of the SFP (or

one half the separation of the equivalent FFP) to the usable radius of

the FFP mirrors.

For example the etalons used for the FFP's in this laboratory

allow a usable radius of 1. 27 cm, and the SFP has a separation of

10 cm. Therefore equation 3. 27 shows that this SFP has 62 times the

light gathering power of an equivalent FFP. Moreover the equivalent

FFP would have a separation of 20 cm and would be very difficult to

align. The FFP used in this experiment has a separation of 3 cm.

The SFP equivalent to it would have a radius of 1. 5 cm and its light

gathering power would only be 1. 4 as great as the FFP. In practice

mirrors of such small radius of curvature would be more difficult to

fabricate to high tolerances than the 10 cm radius mirrors used here.
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The SFP used in these experiments employs two 9. 962 cm radius

of curvature mirrors, whose radii are equal to /75 over a central

aperture of 0. 5 cm diameter and whose surfaces are spherical to

X/75 over the same central aperture. 12 ) The mirrors are formed in

fused silica blanks 3/8" thick and 1. 5" in diameter. The reflecting

surfaces are multi-layer dielectric coated to a reflectivity of 96% at

6328 A. The interferometer is shown in figure 3. 9. Three invar rods

are supported between two brass end plates. One mirror is attached to

the larger end plate by a piezoelectric element. The other is in a

gimbal mounting on a brass carriage which can be moved along the

rods. Two differential micrometers adjust the two angular degrees of

freedom of the gimbal mount and a third drives the carriage for fine

adjustments about its proper location.

When the cavity, set up with a spacing other than R, is

illuminated by diffused laser light interference rings are observed in

the plane of the back mirror. Experimentally, the diameter of the

central spot reaches a maximum when the cavity spacing approaches R.

This fact is used to bring the SFP into rough alignment. By maximizing

the central spot diameter the separation can be brought to within ten

wavelengths of the optimum operating position. Final alignment of

separation and mirror tilt is accomplished by driving the piezoelectric

element by about /4 with an A. C. voltage and observing the

instrumental profile on an oscilloscope. The maximum finesse occurs

over a region of separations of about 2 X around R, but it is relatively

insensitive to mirror tilt. As a consequence, a change in temperature



Fig. 3. 9 The spherical Fabry-Perot mount.
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of about 40 C (which would change the separation of a 10 cm invar

interferometer by about one X) leads to a detectable decrease in the

finesse of an aligned SFP. On the other hand the adjustment of the

'wedge angle' between the two mirror surfaces (the most difficult

adjustment to make and maintain in a FFP) is actually non-critical in

the SFP. The SFP used in these experiments will stay aligned

indefinately even when moved from place to place if the temperature is

held constant and reasonable care is exhibited.

The SFP is swept by applying a triangular voltage wave form to

the piezoelectric element. A change of X/4 in the separation causes the

instrumental profile to move through one free spectral range. Usually

five free spectral ranges are covered before the sweep reverses. This

range can be covered in times of from one to one thousand minutes.

The aperture diameter used was 1. 8 mm corresponding to a

maximum Al from equation 3. 21 of about /60. Exactly how this solid

angle effect will change the finesse is unclear since there is no relation

for the SFP similar to equation 3. 17. However, generalizing from

3. 18 one would expect F - 30 from this contribution alone. From

equation 3. 20, FR ~ 40. In practice the system finesse is about 28, in

good agreement with the above considerations.

E. The Photon Detection System

The phototube used in these experiments is an ITT model FW-130,

an end window type with a 16 stage box and grid electron multiplier and

a S-20 spectral response. An image-forming electron lens produces an
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image of the emitting photocathode in the plane of a small aperture

immediately preceding the first dynode. A hole in the aperture limits

the electrons entering the dynode chain to those coming from a 1/4"

diameter spot on the photocathode. These features combine to reduce

the number of dark pulses received at the anode to a very low rate

without the necessity of cooling the phototube. The pulse height

distribution of these dark pulses is shown by curve a in figure 3. 10.

This corresponds to a total tube voltage, kept constant in all these

experiments, of 1700 V. Curve b in the figure shows the pulse height

distribution resulting from a well illuminated photocathode, and can be

assumed to be the distribution corresponding to those electrons which

enter the dynode chain from the photocathode. A comparison of the two

curves shows that a higher proportion of the dark pulses relative to

signal pulses are concentrated at low pulse amplitudes. This is

generally interpreted as indicating that most of the dark pulses begin to

traverse the dynode chain beyond the photocathode, although the presence

of thermal and field emission from the photocathode is indicated by the

shape of the distribution for larger amplitude pulses.

The pulses from the anode are processed by a model PA-603

preamplifier, model 901-A linear amplifier, and a model 901-SCA

single channel analyzer, all made by Cosmic Radiation Labs., Inc.

The single channel analyzer is set to accept all pulses above the

threshold height indicated in figure 3. 10(13)(14) Comparing the area

under curve b which falls above the threshold to the total area, one

finds that only 12% of the signal counts are lost by this pulse height
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discrimination. A similar comparison made on curve b indicates a

rejection of most of the dark pulses. For each pulse it accepts, the

analyzer produces a single standardized pulse, thereby giving equal

experimental weight to all anode pulses above the discrimination

level. The resulting system has a dark count of 3 pulses per second

and has an effective quantum efficiency of about 2. 5%. The signal

consisting of the pulses from the single channel analyzer is passed

through a filter with an adjustable time constant. The output of the

filter is a voltage proportional to the counting rate averaged over a

period equal to the time constant of the filter. This voltage is

recorded on a strip chart recorder.

The significant portions of all spectra investigated produced a

counting rate at least 5 times larger than the dark counting rate.

Therefore the signal to noise ratio expected, and indeed observed on

the traces, is given by the square root of the average number of

signal counts occuring within one time constant of the filter. The

noise in the experiment is just this shot noise due to the signal itself.

F. Sensitivity

In order to determine the sensitivity of this method of investi-

gating the scattering spectrum, it is convenient to make the following

definitions:

a (e) is the probability per unit length that a given photon in the

laser beam will be scattered into a unit solid angle about the scattering

angle e,
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0 is the solid angle about e that is detected by the spectrometer,

L is the length of the beam under observation,

W(W) is the fraction of the total spectrum that falls under the

instrumental profile of the spectrometer when it is centered at a

frequency shift W,

a is probability that a scattered photon is lost while going

through the optics of the system (this corresponds to imperfect optics,

absorption in the coatings and general misalignment),

and Q is the effective quantum efficiency of the detector.

If the laser beam contains NL photons per second, then the

detected counting rate, ND, is given by

ND = QC-(e) OL W(W)a NL. 3. 28

When conical lenses are used to gather the scattered light L 0

is given by equation 3. 7. In that equation Ae A may be substituted for

Ae M since their difference is small (see table 3. 1). For the FFP,

A A corresponds to 2 EM = 1. 1 x 10-3 radians. For the SFP, A eA
corresponds to the acceptance angle of the apertured cavity, 2a/R

radians, multiplied by the demagnification of the lens shown in

figure 3. 1. The lens reduces the scattered beam from a radius

r6 = 12. 7 mm outside the cell to a radius a = 1. 8 mm as it enters the

SFP; this corresponds to a demagnification of 1. 8/12. 7 = . 14 and

A eA = 5 x 10-3 radians.

Equation 3. 28 can be reduced in complexity somewhat by
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substituting in values which are known up to now for the case of the

particular lens which gives scattering at e = 10. 60 or 169. 40. Let

the power of the laser beam be denoted by P and be measured in watts.

To convert between power and counting rate note that 3. 19 x 1018

photons per second correspond to one watt at 6328 A. Therefore

equation 3. 28 becomes

N (5 x 1014 cm) GWaP,D watt F

3. 29

-(25 x 1014 cm )7WaP.watt S

These relations will be used in the next chapter to estimate the

efficiency of the system.
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Chapter IV

Experimental Results

In this chapter the experimental results are presented and the

physical information which they contain is discussed. Sections A and

B deal with scattering through angles of 10. 60 and 22. 70 respectively.

The wavelengths of the fluctuations observed at these angles are long

compared to the mean free paths in the gases under the experimental

conditions. A comparison of the theoretical Maxwell molecule spectra

in this region with the theoretical hydrodynamic spectra for a monatomic

gas has been made by Ranganathan and Yip . The results show that

the differences between the two sets of spectra cannot be observed with

the resolution of the present experiment. Therefore the experimental

spectra at these two angles are compared only to hydrodynamic

(2)0calculations. Section C deals with scattering through an angle of 1690.

The wavelength of the fluctuations observed at this angle approaches the

mean free path of the molecules. The experimental results for xenon

and carbon dioxide show a qualitative disagreement with the theoretical

spectra computed on the basis of hydrodynamics. The results for xenon

can also be compared with kinetic spectra based on the model of

Bhatnagar, Gross, and Krook( 3 )and on the Maxwell molecule calcula-

tions. (1) The comparison afforded by the Krook model is ambiguous but

shows a qualitative agreement between experiment and theory. The

Maxwell molecule spectrum represents the general features of the ex-

perimental results very well, but a quantitative difference outside the
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experimental limits of error is observed. The overall efficiency of

the experimental arrangement, relative to a perfectly aligned, lossless

optical system, is calculated in section D.

A. Scattering at 10. 6

The scattering of light of wavelength 6328 A in the medium

through an angle of 10. 6' corresponds to a scattering vector K whose

4 -1
magnitude (equation 2. 2) is 1. 84 x 10 cm . The wavelength of the

fluctuations which give rise to this scattering X F is then 2ff /K =

3. 41 x 10~4 cm. Most of the data presented in this thesis was taken

at pressures near one atmosphere. The mean free path L of the

molecules under these conditions can be estimated from the relation(4)

= T m L p 0 <1v > 4. 1

where 77 is the viscosity, mp 0 is the mass density and v is the molecu-

lar velocity. Five gases are studied at this angle (Xe, CO 2, CH 4 , N 2 '

and A) and by using the thermal parameters given in table 2. 2 one finds

that L increases in that order from 0. 6 x 10-5 cm in Xe to 1. 0 x 10-5

cm in A. Therefore XF /L varies from about 57 in Xe to 34 in A. Using

the expression for the kinetic parameter y relevant to the Maxwell

molecule calculations (equation 2. 84) and the mean free path L defined

on the basis of 4. 1 one has the relationship XF/L = 21 /47w y. Of

course y is defined only for monatomic gases. At this angle, then, for

Xe one finds y - 8.

Figure 4. 1 shows sections of typical experimental runs on Xe,



X e
880 COUNTS

PER SECOND

380 COUNTS

PER SECOND
C o2

CHI
2ao COUNTS

PER SECOND

Fig. 4. 1 Experimental traces taken at 6 = 10. 60.
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CO 2, and CHg. Each spectrum shows clearly an unshifted line due

to the scattering from entropy fluctuations and to stray light which is

present even if the scattering cell is evacuated. Also present are a

pair of Brillouin components shifted by about 100 MHz to either side

of the central line. The distance between successive spectra on each

trace corresponds to the free spectral range of the spherical Fabry-

Perot interferometer (750 MHz). A displacement of some fraction of

the inter-order spacing corresponds to a frequency shift of that frac-

tion of 750 MHz. The shape of each of the three lines is determined

primarily by the instrumental profile of the interferometer since its

full width at half height (about 28 MHz) is larger than the intrinsic

widths of the lines expected at this angle (see table 2. 3). The spectro-

meter sweeps through one free spectral range in about 10 minutes.

The integration times used were 1, 3, and 2 seconds for the Xe, CO2

and CHg.

Table 4. 1 lists the Brillouin shifts measured in the five gases

and the velocities calculated from them using equation 2. 66. The

frequency shifts represent the average from about 10 spectra taken

during a single run and the uncertainties listed are the RMS fluctua-

tions of the separate values about their average. Also listed in the

table are velocities measured by standard acoustic techniques at lower

frequencies. In the polyatomic gases a dispersion in the sound

velocities is known to occur at frequencies well below 1 MHz

-1 Hz in N (5 n 5) and 186 x 10 3Hz in CH (6)
2 35 x 1 4Hz i 8

at one atmosphere) due to the relaxation of the vibrational degrees of



Table 4. 1

Brillouin shifts and velocities for scattering at an angle 10. 60.

Pressure

mm Hg

Temperature

C

Av

MHz

Computed C

m/s

(Hypersonic)

Low Frequency* C

m/s

(Ultrasonic)

A 770 280 93.0±2.0 318 ± 6 323a

Xe 795 25.20 50.8 ±2.0 174± 7 178a

N 2  770 280 100.5 ± 2. 0 344± 7 3 5 4 b

CO 2  770 24.90 81. 5 ± 1. 2 279 ± 4 2 8 1 c

CH 4 777 24.70 129 ±4 442 ± 13 4 5 4 d

* Measured at frequencies above any vibrational relaxations.

a M. Greenspan, J. Acous. Soc. Am. 28, 644 (1956).

M. Greenspan, J. Acous. Soc. Am. 31, 155 (1959).

Henderson and Peselnick, J. Acous. Soc. Am. 29, 1074 (1957).

B. T. Kelly, J. Acous. Soc. Am. 29,

Gas

1005 (1957).
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freedom. The velocities listed for the polyatomic molecules are those

measured above the region of vibrational dispersion.

The low frequency sound speed computed on the basis of hydro-

dynamics is given by(7)(8)

RT1/2C = ( ) (1 + 6) 4.2

where R is the gas constant and 6 is a correction (of the order of 10-3

at one atmosphere) for the non-ideal nature of the gas. Well above

the vibrational relaxation frequencies mentioned above, polyatomic

gases exhibit a sound speed which is higher than that given by equation

4. 2. Physically this effect is attributed to the fact that vibrational

energy levels of the molecules have life times which are long compared

to the period of the sound wave. Therefore the population of these

vibrational levels cannot change fast enough to enter into the dynamics

of sound wave propagation. The vibrational degrees of freedom are

said to be 'frozen out' at frequencies whose corresponding periods are

much shorter than the lifetimes of the vibrational levels.

Classically the specific heat ratio Yfor a gas can be expressed

in terms of the number of degrees of freedom N of the molecules by

the relation Y = 1 + 2/N. If one were to take into account only the

translational and rotational degrees of freedom, Y would therefore

assume the value 1. 667 for monatomic gases, 1. 400 for a gas of

linear molecules, and 1. 333 for more complex polyatomic gases.

These values of y are higher than the thermodynamic ones given in
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table 2. 2 since physically the vibrational energy levels are populated

to some extent at room temperature and enter into the macroscopic

energy balance and energy transport phenomena. The picture of a

vibrational dispersion of the sound velocity as a 'freezing out' of the

vibrational degrees of freedom therefore suggests that equation 4. 1

might still hold well above the relaxation frequency if the thermo-

dynamic value of Y were replaced by the vibrationless Y's listed

above. The velocities measured by ultrasonic methods show that this

is indeed the case. In fact, equation 4. 2 can be used to define a

frequency dependent specific heat ratio in terms of the sound speed

data. This concept of a frequency dependent Y will be useful below

when other details of the spectrum are discussed.

The 'hypersonic' velocities measured from the Brillouin shift

agree within experimental uncertainty with the ultrasonic values.

However, the hypersonic velocities are on the average 2% lower than

the ultrasonic ones. This is strongly suggestive of a systematic

error. The apparent center of the Brillouin components is drawn

toward the center of the spectrum by the overlap between the central

and Brillouin portions of the trace. This effect amounts to about 1%

of the Brillouin shift and was taken into account in the reduction of

the data. The free spectral range of the interferometer was checked

against the side bands of a laser beam inodulated at about 10 GHz by

a KDP crystal driven by an extremely accurate microwave source.

It was found that at the mirror separation corresponding to the optimum

finesse the spherical Fabry-Perot interferometer had a free spectral
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range of 750. 39± . 05 MHz. As a result of these checks the systematic

error if it does exist is believed to lie in the determination of the angle

of the conical lens.

Next, a detailed examination of the spectra can be made by

comparing the experimental traces with the theoretical results based

on the hydrodynamic theory outlined in section C1 of chapter II. The

result obtained by measuring a frequency spectrum A(v) with a

spectrometer whose instrumental profile B(V) is swept at a constant

rate across A can be shown to be the convolution A 0 B of the two

functions: (10)

A(v) 0 B(iv) f A(v') B(v -v') dV' 4.3

In these experiments A(V) is proportional to the spectral power density

function S P(K, 2 ir v) of the fluctuations in the number density. This was

discussed at length in Chapter II and has been calculated digitally by a

computer for the three approximations outlined there. The instrumental

profile B(v) includes the transmission function of the interferometer,

the finite width of the frequency spectrum of the laser (about 5 MHz due

to the frequency stabilization scheme employed; see section B. 2 of

Chapter III), and the effect of the finite integration time. The instru-

mental profile is measured experimentally by recording the output of the

system in response to the light elastically scattered by a dilute aqueous

suspension of polystyrene balls placed in the scattering cell after an

experimental run is made. This instrumental profile is digitalized and
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and convolved numerically by the computer with the theoretical spectrum

intrinsic to the scattering process.

Figures 4. 2, 4. 3, and 4. 4 show individual traces taken in the

three strongest scatterers investigated: Xe, CO2, and CH Super-

imposed on these traces are the theoretical results (the dashed

curves) computed from the exact solution of the linearized hydrodynamic

equations given by Mountain. (2) The parameters involved in the theory

were taken, with the exception of the velocity, from table 2. 2. The

velocity used was that measured from the Brillouin shift. Of the

three gases, CH has the broadest intrinsic line widths; figure 4. 5

illustrates the results of the convolution for CH4 by showing on the

same frequency scale A(v), B(V), and A(v) Q B(v). The experimental

traces include a certain amount of stray elastically scattered light

(which would have a spectrum identical to that of the instrumental

profile). The height of the central peak due to the gas alone can be

found by subtracting the amplitude of the stray light spectrum obtained

when the evacuated cell is run. This corrected central peak height

and its estimated uncertainty is indicated by the vertical interval I.

The theoretical spectra are normalized to the heights of the Brillouin

peaks, which are not effected by the stray light.

Figure 4. 2 shows that the comparison between theory and experi-

ment for Xe is good; but, it must be pointed out that the intrinsic widths

of the central and Brillouin lines are only 25% and 19% of the instru-

mental line. The Landau-Placzek ratio is defined to be the ratio of the

intensity in the central line to the sum of the intensities in the two
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Brillouin components. This ratio, computed from the hydrodynamic

theories, is Y -1. If the intrinsic line widths are narrow compared to

the instrumental width and there is no overlap between the lines on

the recorded trace, then the Landau-Placzek ratio is given by the

ratio of the height of the corrected central peak to twice the height of

the Brillouin components. From figure 4. 2 it can be seen that the

condition of non-overlaping lines does not apply. In fact the Landau-

Placzek ratio computed from the heights of the components in the

theoretical convolved trace is 0. 656, while the true ratio of the areas

of the components computed from the theoretical spectrum before

convolution is the correct value 0. 667. Therefore the height ratio as

measured from the experimental traces is not an accurate way of

determining the Landau-Placzek ratio, and thereby finding Y. Never-

theless a comparison of this ratio between the theoretical spectra and

the measured spectra can indicate whether the value of y used in the

theory is consistent with the experimental results. The fact that the

central peak of the theoretical trace in figure 4. 2 passes exactly

through the corrected experimental peak indicates that a value of

y = 1. 667 applies even to phenomena occuring at 50 MHz (the frequency

of the thermal sound waves giving rise to the Brillouin components).

Figure 4. 3 shows a good agreement between theory and experi-

ment in the Brillouin components of CO The intrinsic Brillouin

width from table 2. 3 is 27% of the instrumental width. In the region of

the central peak, however, there is a substantial difference between

theory and experiment. The theoretical curve rises only to about 70%
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of the corrected experimental central peak. This is to be expected,

however, since the theory is based on a static value for y of 1. 302.

Acoustic measurements show that in this frequency region, at least

as for as sound velocities are concerned, the vibrational degrees of

freedom are 'frozen out' and the proper value of y is 1. 400. The

way in which the 'freezing out' of the vibrational degrees of freedom

would modify the hydrodynamic spectrum (which includes the diffusion

as well as acoustic behavior) is not clear. Yet, it is tempting to

consider a Landau-Placzek ratio which excludes the vibrational levels.

This ratio would have the value 0. 400. Scaling the theoretical central

peak height by the appropriate factor, 0. 400/0. 302, brings it up to

94% of the corrected experimental central peak height, just below its

RMS experimental uncertainty.

Figure 4. 4 represents the situation in CH The experimental

Brillouin components seem slightly wider than the theory indicates.

From table 2. 3 one finds that the intrinsic Brillouin and central com-

ponents based on the hydrodynamic theory are 57% and 89% as wide as

the instrumental profile. This makes a marked and measureable

effect on the resulting spectrum as illustrated in the convolution

example in figure 4. 5. Again the theory, based on a static y= 1. 310,

underestimates the height of the central component. The vibrationless

Y would be 1. 333. Scaling the theoretical central peak by 0. 333/0. 310

raises it from 72% to 77% of the corrected experimental central peak.

This is still outside the RMS uncertainty in the central peak, but the

scaling procedure itself is made suspect by the broad intrinsic lines



126

and strong overlap. Increasing the theoretical Brillouin widths to

secure a closer fit to the experiment would, simply becasue of the

overlap, increase the height of the theoretical central peak.

There is some experimental evidence that sound waves in

N (11) 0 (12) , and CHg undergo a rotational relaxation at very high

frequencies analogous to the vibrational relaxation at lower frequencies.

Relaxation frequencies, both vibrational and rotational, are generally

directly proportional to the pressure. The experiments cited above

were done at pressures well below one atmosphere to bring the

frequency region of interest into the range of ultrasonic techniques.

At a pressure of one atmosphere the rotational relaxation frequencies

would be in the several hundred MHz region. The effects of such a

relaxation would be an increase in the sound speed corresponding to an

increase in Y in equation 4. 2, and an increase in the attenuation of

sound waves above the classical value calculated from equation 2. 67.

Kelly's results(13) on CH 4 suggest a rotational relaxation frequency of

300 MHz at one atmosphere. At about 130 MHz (the Brillouin shift in

the present experiment at one atmosphere) his results would indicate

an increase in the sound velocity of 3% over that given in table 4. 1 and

an increase in the attenuation of the sound wave by a factor of about 1. 8.

This velocity increase is about equal to the uncertainty in the velocity

measured in this experiment. The increase in attenuation seems a bit

higher than that necessary to explain the Brillouin widths in figure 4. 4.

In any case, the scattering experiments will be improved with regard

to resolution, stray light, and signal to noise ratio. The question of a
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rotational relaxation, particularly in CH can then be studied easily

with this technique as these preliminary measurements have shown.

B. Scattering at 22. 70

At this angle K = 3. 91 x 104 cm 1 and the wavelength of the

fluctuations observed is 1. 61 x 10~4 cm. Only two gases, Xe and

CO2, were investigated at this angle and for them the ratios of the

wavelength of the fluctuation to the mean free path are 28 and 25. The

value of the kinetic parameter y is about 4 for Xenon. The spectra at

this angle differ in two aspects from those discussed above for e= 10. 60.

First, since the ratio of kF/L is smaller, one expects that the differ-

ences between the spectra calculated on the basis of hydrodynamics

and those based on kinetic theory will be more pronounced. Second,

on the basis of hydrodynamics alone the central and Brillouin compon-

ents are beginning to overlap, indicating that diffusion and sound pro-

pagation are no longer completely independent normal modes of the

medium. Unfortunately the conical lens for 8 = 22. 70 is not as efficient

as the one for e = 10. 60 because of its smaller effective aperture. The

fact that the lines now have widths comparable to or larger than the

instrumental width is an advan tage in comparing the theoretical spectra

to the experiment. On the otherhand, a smaller fraction of the total

intensity in a given spectrum passes through the spectrometer at one

time. For this reason CH4 , although a strong scatter, could not be

investigated. Its Brillouin components were so broad (72 MHz from

table 2. 3) that they could barely be resolved from the background.
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Because of the overlap between the central and Brillouin parts

of the spectrum the concept of a Brillouin shift is no longer well

defined. For this reason no calculations of hypersonic sound veloci-

ties are made for this scattering angle. The experimental traces are

compared directly with the hydrodynamic spectra based on the ultra-

sonic sound velocities shown in table 4. 1. Figures 4. 6 and 4. 7 show

typical traces of Xe and CO 2 upon which the theoretical hydrodynamic

spectra have been superimposed. Figure 4. 8 is the convolution

example relative to the CO 2 trace.

Figure 4. 6 shows that for Xe the agreement between the theory

and experiment is good. The apparent displacement of the center of

the theoretical Brillouin components relative to the experimental ones

is a property of this particular experimental trace. On the basis of an

average taken over a number of traces, the Brillouin components do

coincide. A comparison of this figure with figure 4. 2 representing

Xe at 10. 6 shows that the stray elastically scattered light forms a

much larger part of the spectrum at this angle. The corrected height

of the central peak can still be determined quite accurate ly and can be

seen to agree with the theoretical value. From table 2. 3 the intrinsic

theoretical Brillouin and central line widths are 0. 9 and 1. 1 times as

wide as the instrumental profile.

Figure 4. 7 shows the spectrum of CO2 at this angle. The agree-

ment between theory and experiment is satisfactory in the region of the

Brillouin components, however, the large proportion of stray light

prevents a meaningful comparison in the region of the central compon-
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ent. The values taken from table 2. 3 show that in theory the

Brillouin and central component widths are 1. 2 and 1. 9 times as wide

as the instrumental profile. The curve A(V) in figure 4. 8 represents

the intrinsic theoretical spectrum and shows considerable overlap

between the three components.

C. Scattering at 1690

5 -1At this angle K = 1. 98 x 10 cm and the wavelength of the

fluctuations giving rise to the scattering is 3. 18 x 10-5 cm, about

half of the wavelength of the light being scattered. Only two gases,

Xe and CO2, were studied at this angle and they correspond to ratios

XF/L of 5. 5 and 5. 0 respectively.

Figure 4. 9 shows typical traces taken for Xe and CO 2 . The

spectra no longer show the three distinct lines characteristic of

hydrodynamic behavior. The separation between adjacent orders on

each trace is 4. 96 GHz, the free.spectral range of the flat Fabry-Perot

used in the spectrometer. The counting rates indicated in this figure

are much lower than those given in figure 4. 1 for the same gases in

the forward direction. This results from two facts: first, a smaller

fraction of the spectrum falls under the instrumental profile of the

spectrometer at a given time and, second, the light gathering ability

of the flat Fabry-Perot used here is not as high as that of the spherical

Fabry-Perot used in the forward direction. One free spectral range

was swept every 49 minutes. The integration times were 10 seconds

for the Xe trace and 5 seconds for the CO 2 '
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In order to facilitate a quantitative examination of the Xe

spectrum, an average was taken at 41 points across the spectrum

for the eight successive traces that comprised one experimental run.

For this particular run the temperature was 24. 8 0C and the pressure

was 780 mm of Hg. The average of the stray light spectrum (obtained

with an evacuated cell) was computed at the same points. The result-

ing average experimental spectrum, from which the stray light spect-

rum has been subtracted, is shown in figures 4. 10, 4. 11 and 4. 12.

The RMS variation of the eight individual traces about the average is

indicated by the length of the vertical bar through each point. Also

shown in the figures are the theoretical traces obtained on the basis of

the linearized hydrodynamic equations, (2) the Krook kinetic model, (3)

and the Maxwell molecule calculations. (1) The theoretical traces are

obtained by numerical convolution of the instrumental profile and the

intrinsic theoretical spectra. They have been normalized to match

the experiment (after subtraction of the stray light) at zero frequency

shift. Figure 4. 13 has been inserted to illustrate the relation between

the intrinsic spectrum and the convolved spectrum for Maxwell

molecules.

From figure 4. 10 it can be seen that the hydrodynamic spectrum

differs qualitatively from the experimental results. Hydrodynamics

predicts a smooth 'bell shaped' spectrum, yet the experimental spect-

rum has distinct 'shoulders' in the region where the acoustic modes

would appear if the density were increasecd. The frequency correspond-

ing to CK/2T for this angle is 561 MHz. This theory also underestimates
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the fraction of the power at large frequency shifts.

In figure 4. 11 representing the spectrum of the Krook model

there are two theoretical curves given because the value of the kinetic

parameter y cannot be determined unambiguously from the experi-

mental conditions. The two curves correspond to y determined from

the thermal conductivity (y = . 78) and from the viscosity (y = 1. 17)

according to equation 2. 94. 14) Both curves show the proper qualita-

tive features of a 'shoulder' in the acoustic region and 'tails' which

extend to higher frequencies than the hydrodynamic spectrum. The

curve based on the thermal conductivity lies closer to the data than

that based on the viscosity, but the agreement is not quantitative.

In calculating the value of y to be used for the Maxwell molecule

spectrum shown in figure 4. 12, the value determined from the thermal

conductivity and that determined from the viscosity coincide (equation

2. 84 and the thermal parameters in table 2. 2 are used). The result-

ing value of y is 0. 78 . The Maxwell molecule spectrum shows the

qualitative features of the data. However, it over emphasizes the

height at the 'shoulder' (by about 8% at 440 MHz) and seems to fall

below the data in the tails of the spectrum (above about 800 MHz).

These differences are small but. do fall outside the estimated uncertain-

ty in the measurements.

Figure 14. 14 shows the experimental spectrum in CO2 obtained

by averaging five traces from a single run and subtracting an averaged

stray light spectrum. The run was made at a temperature of 25. 10C

and at a pressure of 750 mm of Hg. The reflectivity of the plates in
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the interferometer was decreased slightly (resulting in a broader

instrumental profile) in order to increase the light gathering power.

The results are compared with a theoretical hydrodynamic spectrum

based on the thermal parameters from table 2. 2. The hydrodynamic

spectrum differs qualitatively from the data. It underestimates the

amount of energy at the higher frequency shifts. The data for CO 2

cannot be compared with the kinetic theories since they are applicable

only to monatomic gases.

The experiments discussed so far show that as the scattering

angle is increased from 0 to 1800, at a pressure of one atmosphere,

the spectrum changes from a hydrodynamic to a kinetic character.

This is a result of decreasing the ratio ?F/L by decreasing the wave-

length of the fluctuation observed XF, It is possible, of course, to

change this ratio by changing the mean free path L. In this region of

pressures, L is inversely proportional to the pressure. For example

the spectrum for a scattering angle of 169'can be made to regain its

hydrodynamic character by increasing the pressure. This effect is

illustrated in figure 4. 15 which shows the experimental traces of Xe

taken at pressures of 1. 80 and 2. 48 atmospheres corresponding to

values of y of 1. 36 and 1. 89. The reflectivity of the plates in the

interferometer has been increased slightly to increase the resolution.

More extensive experiments, based on'the methods introduced in this

work, can take advantage of this effect. First, it will allow the value

of the kinetic parameter y to be changed continuously and easily while

employing only one conical lens and a fixed scattering geometry.
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Second, the density dependence of the scattering spectra can be

investigated by comparing spectra corresponding to the same value

of y, but occuring at different densities. For example a spectrum

taken at y = 3 for 6 = 1690 would require a pressure of about 3. 8

atmospheres in Xe. At & = 10. 60 y = 3 occurs at about .36 atmos-

pheres. The difference in densities is about a factor of 10.

D. Calculation of the Experimental Efficiency

In Chapter III relations were derived for the detected counting

rate ND. These can be written as

ND = A c-WaP, 4.4

where

A = 25 x 1014 cm for the SFP,
watt

A = 5 x 1014 cm for the FFP.
watt

In 4.4, U is the cross section for scattering into a unit solid angle

regardless of frequency shift, W is the fraction of the scattered

spectrum falling under the instrumental profile, P is the power in

watts in the laser beam, and a is the efficiency of the system relative

to a perfectly aligned and adjusted lossless configuration. The factor

A is based on the use of the conical lens whose half apex angle is

0 0 0700; it therefore applies to the scattering at 10. 60 and 169 . At

these angles the term sin * in equation 2. 35 can be taken as being

3unity, in which case C- is simply 8ff"T
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The calculations presented here are carried out for Xe. Using

the value of 0 T given in table 2. 1 one finds 0 = 4. 49 x 10 8 cm ,

Consider first the scattering at 10. 60 as shown in the Xe trace of

figure 4. 1. In the hydrodynamic region, one of the Brillouin compon-

ents should contain a fraction 1/(2'Y) of the total intensity. This is 0. 30

for Xe and this value is taken to be W since the instrumental profile

in this case is large compared to the intrinsic width of the Brillouin

component. The power in the laser beam during this particular run

was 0. 66 x 10-3 watts. By substituting this information into equation

3
4. 4 one finds that ND/a = 22 x 103. From figure 4. 1 one finds that the

counting rate at the top of the Brillouin component, which is the ND

calculated here, is about 880. This leads to an efficiency a of about

4%. The peak transmission through the Fabry-Perot is limited to a

figure of the order of 30% by losses in the coatings. To this loss one

must add losses at the mirrors, lenses, and windows in the path of

the scattered beam. These effects bring the estimated transimssion

of the system down to about 10%, which accounts for the major portion

of the calculated efficiency.

Next, consider the backward scattering arrangement and the Xe

trace shown in figure 4. 9. It is estimated that at the 'shoulder' of the

spectrum a lossless interferometer with the instrumental width

indicated would pass about 1/10 of the power in the spectrum so

W = 0. 1. The laser power for this particular trace was 0. 58 x 10-3

watts. From equation 4. 4 one therefore obtains the value N D/a

31. 3 x 10 .The counting rate measured at the shoulder of the spectrum
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is about 67 photoelectrons per second. This corresponds to an

efficiency of 5%, in agreement with the value found in the forward

scattering arrangement.
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Chapter V

Conclusions

The spectrum of the light scattered inelastically by five dilute

gases (A, Xe, N2, CO 2 , and CH 4 ) has been measured. The character

of the spectrum is determined by the ratio of the wavelength XF of the

fluctuations responsible for the scattering to the mean free path L of

the gas molecules. This physical ratio is about a factor of seven

(depending on the exact definition of L) larger than the kinetic parameter

y defined rigorously for the various kinetic spectra.

For the monatomic gases the spectra measured in the range

XF/L - 60 to 20 match those calculated on the basis of linearized

hydrodynamics to within the experimental uncertainty. The spectra of

the polyatomic gases in this region deviate from those calculated on the

basis of the static thermodynamic parameters of the medium. The

deviation is explained qualitatively using the concept of frequency

dependent thermodynamic parameters first introduced to describe

forced sound propagation experiments in the ultrasonic region. The

velocity and lifetimes of thermally excited sound waves in the hypersonic

region are deduced from the measured spectra and are in agreement with

an extrapolation of the ultrasonically measured values.

The spectra measured at X F/L - 5 in Xe and CO2 differ qualita-

tively from the theoretical hydrodynamic spectra, therefore allowing

an upper bound to be set on the range of validity of the hydrodynamic

equations. A spectrum corresponding to the exact solution of the

linearized Boltzmann equation for molecules with a repulsive 1/r 4
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potential (Maxwell molecules) shows all the qualitative features of the

spectrum measured for Xe, and deviates from it by no more than

about 8% at any point. The quantitative differences, however, do lie

outside the experimental uncertainty and are felt to reflect the non-

physical nature of the Maxwell molecule potential.

It may at first seem surprising that the experimental spectra

can be fit so well by such a potential. However, it must be remembered

that an exact kinetic calculation based on any nonpathological potential

between molecules must give the hydrodynamic spectrum for large

XF/L, give a Gaussian spectrum for small F/L, and have a smooth

transition between the two in the region XF/L - 1. Spectra computed

from various kinetic equations show that the region most sensitive to

the form of the potential is around X F/L ~ 7 (that is, where the kinetic

parameter y - 1). These experiments have shown that the inelastic

scattering of light in this region is capable of distinguishing between

various potentials and testing the validity of equations introduced to

approximate the exact Boltzmann equation.
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Appendix A

Calculation of Optical Path Lengths in the Spherical Fabry-Perot

The optical length of the interference path for an arbitrary ray

entering the cavity may be evaluated most simply by a two-step

procedure. First, the focusing properties of a spherical mirror are

used to determine the path which the ray follows inside the cavity. In

particular it is shown that after traversing the cavity four times the

path closes on itself as the ray returns to the spot at which it entered

the cavity. Then, by using an expression for the distance between two

points on opposite mirrors, the total length of this path is computed.

It is shown to differ from the value 4R by terms of fourth order in the

displacement of the ray from the axis.

Figure A. 1 shows the path of an arbitrary ray traversing a SFP

cavity as it would appear projected on an end view (a) and on a side

view (b). Such a ray is shown in perspective in figure 3. 8. The ray

first enters the cavity at 1 and first strikes the opposite mirror at 2.

3 and 4 indicate the other spots at which the ray will be reflected

before returning to 1. It is convenient to erect on the end view of the

cavity a rectangular coordinate system whose origin corresponds to

the center of the mirrors. Then the point i may be represented by a

two dimensional vector r. with components x. and yi where i = 1, 2, 3,

and 4. r1 and r 2 serve to specify the incoming ray and are the independ-

ent variables of the calculation. The vectors r 3 and r 4 must now be

determined.
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a. END VIEW OF A RAY

TRIAVER SINCr A SFP CAVITY

SIDE vIEW OF A RAY
TRAVER S /A Cr A SFP CAVITY

End and side views of a ray in a spherical Fabry-Perot.Fig. A. 1
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It is assumed that I ri /R << 1. Path length expressions will be

carried to a certain power or order of this ratio: for example 0(6)

will indicate terms involving the sixth and higher powers of the ratio.

The first mirror lies at a distance of two focal lengths from the

opposite mirror and the points considered on either mirror are never

far from the axis. It follows as a consequence of the geometrical

optics of spherical mirrors that a spot located at 1 will be imaged

into a spot at 3 given by

r 3 ri. A.1

Similarly, the first mirror forms a real image of a spot at 2 in

position 4 given by

r =-r. A.2

Finally, since 3 is imaged at 1, the path closes on itself at its starting

point. These results are based on the assumption that the focusing

takes place without aberration. For this reason equations A. 1 and

A. 2 give values of r inaccurate in 0(2). The deviation of the actual

path length from 4R will be shown to be 0(4). Therefore these

corrections to the values of r (and therefore to r/R) will contribute

terms O(6) to the deviation and can be neglected.

In order to calculate the length of each of the four segments of

the path, a third coordinate z. is defined as the horizontal distance of
ththe i point from the center of the cavity. x, y, and z now form a

rectangular coordinate system about the center of the cavity. The
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distance s 12 between point 1 and point 2 is then simply

1

s12 = x22 + (y 1 -y 2 )2 + (z 1 -z2 2 A. 3

The z's are uniquely determined in terms of the x's and y's by the

equation for a spherical surface:

(z + R/)2 = R2 (x 1 + y 2

A. 4

(z 2 -R/2)2 = R2 (x 2 + y 2 2 ).

By substituting equations A. 4 into A. 3, it follows after a good deal of

algebra that

s 12 1

R2

2 2

+ r 1 r 2

4R

(1 x2 + y y 2

2 cos 2 12 )+ 0(6)

where $12 is the angle between r and r2 as shown in figure A. la and

in figure 3. 8.

Now the total path length, 4R + A 1, can be calculated:

A 1 s12+ S23+ s34+ s 41 - 4 A., 6
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By using the relations x 3  ~ 1 ' x 4  2 x y3  -y, andy 4 = -y 2 which

follow from equations A. 1 and A. 2, and the fact that and

$23 41 = 1800 - 12 which are obvious from figure A. la, equation

A. 6 can be expressed as

2 2
1 r r2= -ccos 2 + 0( 6 ). A

R R

The phase difference between this interference path and that of an on-

axis ray is then 2 7r Al/X.
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