
A General Index Heuristic for Search
wit IiobleAgetsMASSACHU8ETT&71 INSTITUTE

with Mobile AgentsO

by
Thomas. J. Temple

B.A., Dartmouth College (2003) RARIES
M.S., Massachusetts Institute of Technology (2006)

Submitted to the Department of Aeronautics and Astronautics

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2011

@ Massachusetts Institute of Technology 2011. All rights reserved.

Author ............................ .............

Department of Aeronautics and Astronautics
Februarv 4. 2011

Certified by. .................. . ........ iio
Lmilio Frazzoli'

Associate Professor of Aeronautics and Astronautics, MIT
Thesis S4permisor

Certified by....................
Brian Williams

Professor of Aeronautics and Astronautics, MIT
Thesis SuDervisor

Certified by........
Anouck Girard

Assistant Professor of Aerospace Engineering, Univ. of Michigan
Thesis Supervisor

Accepted by .......................
Prof. Eytan Modia no

Graduate Chair





Abstract

This dissertation considers a suite of search problems in which agents are trying to
find goals in minimum expected time. Unlike search in data structures in which time
is measured by a number operations, search in metric spaces measures time by units
of distance and has received much less attention. In particular, search strategies that
attempt to minimize expected search time are only available for a handful of relatively
simple cases.

Nonetheless many relevant search problems take place in metric spaces. This
dissertation includes several concrete examples from navigation and surveillance that
would have previously only been approachable by much more ad hoc methods. We
visit these examples along the way to establishing relevance to a much larger set of
problems.

We present a policy that is an extension of Whittle's index heuristic and is appli-
cable under the following assumptions.

* The location of goals are independent random variables.

" The agents and goals are in a length space, i.e., a metric space with continuous
paths.

* The agents move along continuous paths with bounded speed.

" The agents' sensing is noiseless.

We demonstrate the performance of our policy by applying it to a diverse set of
problems for which solutions are available in the literature. We treat each of the
following problems as a special case of a more general search problem:

" search in one-dimensional spaces such as the Line Search Problem (LSP) and
Cow Path Problem (CPP),

" search in two-dimensional spaces such as the Lost in a Forest Problem (LFP)
and problems of coverage,

" problems in networks such as the Graph Search Problem (GSP) and Minimum
Latency Tour Problem (MLTP), and

" dynamic problems such as the Persistent Patrol Problem (PPP) and Dynamic
Traveling Repairperson Problem (DTRP).

On each of these we find that our policy performs comparably to, and occasionally
better than, the accepted solutions developed specifically for these problems. As a
result, we believe that this dissertation contributes a significant inroad into a large
space of search problems that meets our assumptions, but that remains unaddressed.



4



Acknowledgements

This dissertation would not exist but for the support and guidance of my adviser,
Prof. Emilio Frazzoli, and the input from the brilliant group of researchers he has
brought together. It is indebted to the groundbreaking, cited work of John Enright
and Marco Pavone, as well countless, formative, uncited discussions with Ketan Savla,
Sertac Karaman, and Kyle Treleaven.

I would like to thank Derek Kingston, Corey Schumacher, Siva Banda, and the
many other researchers at AFRL/RBCA at Wright Patterson AFB for their support
and advocacy of this work. I would also like to extend my gratitude to our collabo-
rators at the University of Michigan. In particular, Prof. Anouck Girard, along with
Prof. Brian Williams, provided key guidance without which this dissertation would
be greatly inferior.

More deeply, I am indebted to the educators who have taught me. And more so, I
am indebted to my parents who not only taught me, but also positioned me to receive
and appreciate this teaching.

Finally, I cannot express sufficient gratitude to my wife Courtney, who has sup-
ported me throughout this work, not least by supporting the little boy who wants
nothing more than to keep me from it. Despite that fact, it is to Peak that this
dissertation is dedicated.



6



Contents

1 Introduction

1.1 Scope and Terminology . . . . . .

1.2 Preliminaries . . . . . . . . . . .

1.2.1 Markov Decision Problems

1.2.2 Path Planning . . . . . . .

1.2.3 Bandit Problems . . . . .

1.2.4 Whittle's Index Heuristic .

1.3 Organization . . . . . . . . . . .

2 Search on Rays

2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1.1 The Line Search Problem . . . . . . . . . . . . . . . .

2.1.2 The Cow Path Problem . . . . . . . . . . . . . . . . .

2.1.3 Competitive Analysis . . . . . . . . . . . . . . . . . . .

2.1.4 Search Games . . . . . . . . . . . . . . . . . . . . . . .

2.2 Indexability of the CPP . . . . . . . . . . . . . . . . . . . . .

2.2.1 Switching Costs . . . . . . . . . . . . . . . . . . . . . .

2.2.2 Subsidy Scheme . . . . . . . . . . . . . . . . . . . . . .

2.2.3 An Extension . . . . . . . . . . . . . . . . . . . . . . .

2.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . .

2.2.5 Comparison to Competitive Policy . . . . . . . . . . .

2.2.6 Comparison to Results on the LSP . . . . . . . . . . .

2.2.7 Comparison to the Dynamic Programming Approach .

15

. . . . . . . . . . . . . . . . . . 17

. . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . 20

. . . . . . . . . . . . . . . . . . 22

. . . . . . . . . . . . . . . . . . 23

. . . . . . . . . . . . . . . . . . 24

. . . . . . . . . . . . . . . . . . 25



2.2.8 Infinitesimal Oscillation . . . . . . . . . . .

2.3 Aim ing Off . . . . . . . . . . . . . . . . . . . . . .

2.3.1 Problem Specification and Assumptions . . .

2.3.2 Index Policy for Gaussian Search . . . . . .

2.3.3 Optimization . . . . . . . . . . . . . . . . .

2.3.4 Effects of a Finite Sensor Radius . . . . . .

2.3.5 Conclusion and Extensions . . . . . . . . . .

3 Search in Geometric Networks

3.1 Prelim inaries . . . . . . . . . . . . . . . . . . . . .

3.1.1 Geometric Networks . . . . . . . . . . . . .

3.1.2 Minimum Latency Covers . . . . . . . . . .

3.2 Generalizing the Index Policy . . . . . . . . . . . .

3.2.1 Complexity, Relaxation, and Approximation

3.2.2 An Augmentation . . . . . . . . . . . . . . .

3.3 Observable Problems in Arbitrary Metric Spaces . .

3.3.1 Some Experimental Results . . . . . . . . .

3.3.2 Multi-Planners . . . . . . . . . . . . . . . .

3.4 Metric Embedding . . . . . . . . . . . . . . . . . .

3.5 Multiple Agents . . . . . . . . . . . . . . . . . . . .

4 Search in Higher Dimensional Spaces

4.1 Prelim inaries . . . . . . . . . . . . . . . . . . . . . . . .

4.2 Lost in a Forest . . . . . . . . . . . . . . . . . . . . . . .

4.2.1 Existing Work on the Min-Max Escape Problem

4.2.2 Existing work on the Min-Mean Escape Problem

4.2.3 The Index Policy . . . . . . . . . . . . . . . . . .

4.2.4 Implementation Details . . . . . . . . . . . . . . .

4.2.5 Experimental Results . . . . . . . . . . . . . . . .

4.3 Minimum Weighted Latency Coverage . . . . . . . . . .

4.3.1 Relevant Work . . . . . . . . . . . . . . . . . . .

53

. . . . . . . . . . 5 5

. . . . . . . . . . 5 7

. . . . . . . . . . 58

. . . . . . . . . . 5 9

. . . . . . . . . . 6 1

. . . . . . . . . . 64

65

. . . . . . . . . . 6 5

. . . . . . . . . . 6 7

. . . . . . . . . . 6 8

. . . . . . . . . . 6 9

. . . . . . . . . . 70

. . . . . . . . . . 73

. . . . . . . . . . 76

. . . . . . . . . . 78

. . . . . . . . . . 78

. . . . . . . . . . 8 0

. . . . . . . . . . 8 3

85

. . . . . . . 86

. . . . . . . 87

. . . . . . . 88

. . . . . . . 90

. . . . . . . 90

. . . . . . . 94

. . . . . . . 98

. . . . . . . 103

. . . . . . . 104



4.3.2 Search in Length Spaces . . . . . . . . . . . . . . . . . . . . . 106

4.3.3 Comparison to Sweeping Policies . . . . . . . . . . . . . . . . 108

4.4 Control Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4.1 Complex Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.2 Noisy Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Dynamic Search and Routing Problems 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.1.2 Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Review of Existing Work . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Spatial Queueing . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . . . 121

5.2.4 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.5 Multi-Agent Control . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.6 The Intermediate-Load Regime . . . . . . . . . . . . . . . . . 123

5.3 The Persistent Patrol Problem . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 Index Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3.2 Comparison to Optimal Sweeps . . . . . . . . . . . . . . . . . 124

5.4 An Intermediate Problem . . . . . . . . . . . . . . . . . . . . . . . . 127

5.4.1 Proposed Augmentations . . . . . . . . . . . . . . . . . . . . . 127

5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.3 Segue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 The Light Load Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.5.1 Voronoi Partitions . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5.2 Partition Policies . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.6 The Heavy-Load Limit . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



5.6.2 Asymptotic Nearest Neighbor Distance . . . . . . . . . . . . . 142

5.6.3 Multi-Agent Policies . . . . . . . . . . . . . . . . . . . . . . . 150

5.7 Search and the Intermediate Load Case . . . . . . . . . . . . . . . . . 151

5.7.1 Index Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7.2 Intermediate Load . . . . . . . . . . . . . . . . . . . . . . . . 152

5.7.3 Multi-Class Requests and Preemptive Service . . . . . . . . . 156

5.8 Flight Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Conclusions and Possible Future Directions 163

6.1 Sum m ary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.2 Possible Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

A Algorithms 169

References 180

Acronyms 189

Glossary 191



List of Figures

1-1 G rid world . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2-1 Prior belief for three impulses on two paths. . . . . . . . . . . . . . . 42

2-2 Expected wait times for the uniform prior . . . . . . . . . . . . . . . 46

2-3 Expected wait times for the exponential prior . . . . . . . . . . . . . 46

2-4 Expected search distance as a function of starting location for the

symmetric triangular distribution . . . . . . . . . . . . . . . . . . . . 49

2-5 Expected search distance as a function of starting location for the unit

normal distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2-6 Modification of the spatial distribution to reflect non-zero sensor radius. 50

2-7 Expected search distance as a function of starting location and sensor

radius for the symmetric triangular distribution. . . . . . . . . . . . . 51

2-8 Expected search distance as a function of starting location and sensor

radius for the unit normal distribution. . . . . . . . . . . . . . . . . . 52

2-9 The index policy oscillates on this distribution, while the optimum

does not. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2-10 from The Proficient Pilot [83] [used with permission] . . . . . . . . . . 55

2-11 Asymptotic behavior with zero sensor radius as a function of initial

distance from the road. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2-12 Optimal heading for various models . . . . . . . . . . . . . . . . . . . 63

3-1 Visual description of the Geometric Spanning Tree. . . . . . . . . . . 74

3-2 Uniform measure on a the arc of a circular sector . . . . . . . . . . . 74

3-3 Sub-optimality histogram for the MLTP with 7 nodes . . . . . . . . . 79



3-4 Sub-optimality histogram for the MLTP with 10 nodes . . . . . .

3-5 Comparison with the index policy for the MLTP with 30 nodes. .

3-6 Comparison of index and nearest-neighbor policies on the MLTP .

Solutions to Problem 4.2.1-2 Cases (a) and (b) . . . . .

Besicovitch's path . . . . . . . . . . . . . . . . . . . . .

G luss's path . . . . . . . . . . . . . . . . . . . . . . . .

Two distinct headings minimizing Equation 4.5 . .

Paths for escaping the equilateral triangle . . . . . . .

Paths for escaping the infinite strip . . . . . . . . . . .

Gluss's path for min-mean escape from the half-plane. .

The trajectories under consideration for the half-plane

Index policy for finding a circle from a known distance

The grid-based index path and the Besicovitch path . .

. 79

. 80

. 81

. 88

. 89

. 89

. 95

. 97

. 100

. 101

. 101

. 102

. 103

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14 Proposed paths for the Dubins vehicle . . . . . . . . . . . . . . . . . 112

Comparison of index and sweep policies. . . . . . . .

The initial portion of the index policy trajectory. . .

Problematic Examples . . . . . . . . . . . . . . . . .

System time as a function of arrival rate . . . . . . .

System time with increasing sensor radius . . . . . .

Wait time as function of the number of agents . .

System time by arrival and service rate . . . . . . . .

Comparison of algorithms on DTRP . . . . . . . . .

Comparison of the index policy and Nearest Neighbor Algorithm.

A probability distribution lacking a non-increasing conditional mean.

Surveillance region at Vandenburg AFB. . . . . . . . . . . ... . . . . .

The helical path is not a shortest path between any pair of points. . . 108

Sweeping strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Search times as a function of sensor radius for searching the unit squarellO

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

5-11

125

126

128

130

131

132

133

154

155

156

161



List of Tables

2.1 Absolute values of the turn sequence for the triangular distribution 47

2.2 Searching the unit normal . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Starting point and subsequent turns for searching the normal distribu-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 Expected escape times from the infinite strip . . . . . . . . . . . . . . 100

4.2 Mean escape time from the half-plane . . . . . . . . . . . . . . . . . . 100

4.3 Expected search times for the circle from known distance . . . . . . . 100

4.4 Expected escape time from the equilateral triangle . . . . . . . . . . . 102

5.1 Statistical significance of the difference between the index policy and

the Nearest Neighbor Algorithm. . . . . . . . . . . . . . . . . . . . . 153



14



Chapter 1

Introduction

It is almost tautological to say that mobile agents attempt to move toward goals and

one can nearly take for granted that they would like to reach their goals in a timely

fashion. This dissertation considers search problems in which either the locations of

the agents or those of the goals are uncertain and presents a novel control policy for

getting mobile agents to their goals in minimum expected time.

We make the following assumptions throughout.

* The location of goals are independent random variables.

o The agents and goals are in a length space, i.e., a metric space with continuous

paths.

o The agents move as single-integrators with bounded speed, typically noiselessly.

o The agents' sensing is noiseless.

Despite these restrictive assumptions, the space of such problems remains vast.

It is difficult to make strong statements, either theoretical or otherwise, about the

performance of a policy across any non-negligible portion of this problem space. As

a result, the main goal of this thesis will be to present a policy that is general rather

than one that is cordon bleu.

We begin with a particular search problem, the Cow Path Problem (CPP), and

develop an "index policy" which is heuristic, but nonetheless stands on solid the-



oretical ground by leveraging the body of work on Whittle Indexability. Then we

generalize this policy by analogy into a metric, which we will refer to as an "index

function," by which we can compare partial plans. Nearly half of this dissertation can

be summarized as a collection of recipes demonstrating how such a function can be

adapted to the above problem space and demonstrating how to do so in an efficient

manner.

We will use this metric in the same way as a receding horizon planner: find the best

partial plan, execute its first control action, then recompute. What fundamentally

differentiates our algorithm from a receding horizon strategy is the index function

allows the comparison of plans with differing and arbitrary length. By considering

both long and short plans we are able to avoid many of the issues associated with

local methods. With this metric in hand, the primary obstacle is determining how to

restrict, parametrize, and efficiently search the space of partial plans.

We demonstrate the performance of our policy by applying it to a diverse set

of search problems for which answers are available in the relevant literature. The

underlying hypothesis is that if the same policy performs well on all of them, it can

reasonably be expected to perform well on other problems in the space for which an-

swers are not available. Since these problems are only anecdotes, we will choose them

carefully. We will focus on the most generic cases and the most general algorithms,

while attempting to show our policy in the worst possible light, comparatively.

We will treat each of the following problems as a special case of the more general

search problem to which our policy is applicable. We examine

" search in one-dimensional spaces such as the Line Search Problem (LSP) and

Cow Path Problem (CPP),

* search in two-dimensional spaces such as the Lost in a Forest Problem (LFP)

and problems of coverage,

" problems in networks such as the Graph Search Problem (GSP) and Minimum

Latency Tour Problem (MLTP), and



* dynamic problems such as the Persistent Patrol Problem (PPP) and Dynamic

Traveling Repairperson Problem (DTRP).

On each of these, our policy performs comparably well, and occasionally better, than

the available solutions. By demonstrating the effectiveness of a single heuristic on

such a diverse set of problem, we believe that this dissertation contributes a significant

inroad into the large space of yet unaddressed search problems.

1.1 Scope and Terminology

Let us take a moment to clarify the title, and the motivation, of this dissertation,

while introducing some essential terminology.

In the context of mobile agents, a search problem is a problem in which one or

more agents must move through a metric space to find one or more goals. The goals

might be points or sets, static or time-varying, and the agents might or might not

know their own position or those of the goals. The metric we will consider will always

be a notion of expected latency, which is the expected time at which a randomly

selected goal will be reached.

In abstract terms, let optimization problem P be a "search problem"

z* = min zp x)xEX(P)

in which the feasible set, X(P), is a set of control policies and the objective, z,, is

expected latency.

In the context of this dissertation, an algorithm for search is a function A from

a space of search problems, Q, to the space of all control policies, such that A(P) E

X(P). In abstract terms, statements about the generality of algorithm A refer to

the size of its domain, Q, while statements about its quality describe the closeness

between zp(A(P)) and z* across this domain.

Understandably, research is almost exclusively focused on the quality of algo-



rithms. The common metric for quality is the worst-case ratio of objectives.

z, (A(P))
Cf (A) =max . (1.1))

Definition 1.1.1 (Constant-Factor Approximation). An algorithm A for which

Cf(A) < oo is said to provide a Constant-Factor Approximation to Q.

An algorithm for which this maximum is one is definitively a "solution" to the set

of problems Q. However if Cf(A) > 1, there might be metrics showing a different

preference between algorithms, for instance if we were to replace the maximization in

Equation 1.1 with an expectation with respect to some measure over Q.

We wish to draw some attention to the tacit trade-off between quality and gener-

ality. Given a focus on quality rather than generality, it is natural to see a fracturing

of research between even very similar problems. There are situations in which Equa-

tion 1.1 can only be improved by constraining Q, rather than by changing A.

Consider, for example, the divergences between algorithms for the many combi-

natorial optimization problems in the set of problems that are NP-complete. Even

though these problems are in some sense equivalent, the Constant-Factor Approxi-

mation algorithms proposed for them are generally quite different.

One might say, "Of course this is the case. The quality of approximation doesn't

necessarily survive the conversion between problems." In response, we point to the

Nearest Neighbor Algorithm as a counter-example.

The Nearest Neighbor Algorithm algorithm is general in the sense that it can

be applied to a large set of problems. More importantly, we assert that it also has

significant quality, even if it lacks quality in the sense of Equation 1.1. To support

this assertion we point to the large set of problems on which it performs well. For

example if we let Q be instances of the Traveling Salesman Problem (TSP) in the



Euclidean plane we have, from [54],

E zp(NN(P))] 5/4

For instances of the MLTP with cities chosen uniformly in the Euclidean unit square,

our experiments in Section 3.3.1 show that Nearest Neighbor Algorithm puts this

notion of expected quality closer to 1.03. For the DTRP in this same space, the

Nearest Neighbor Algorithm is comparable to the best algorithms in the literature

under a range of conditions.[21, 23, 72, 76]

In this dissertation, we will attempt to present a maximally general algorithm for

search problems. Of course we want this algorithm to also be of high quality, but

that will not be our primary emphasis. Specifically, we make no attempt to minimize

Equation 1.1. Instead we will evaluate our algorithm on specific problems of interest

that allow comparison to existing work.

This is not to say that we are seeking the most general algorithm possible. We

are not trying to construct an algorithm for arbitrary optimization or path planning

problems. In particular, we use the word "algorithm" in such a way as to exclude

most such approaches. For example, when using a meta-heuristic, or Approximate

Dynamic Programming (ADP), there are a number of significant design decisions that

must be made before one has an implementable procedure. Even k-Nearest Neighbors

or, more aptly, Receding-Horizon, without a fixed or algorithmic way of setting k or

the horizon, fail to satisfy this definition in the strictest sense.

Although there will remain potentially significant implementation decisions, for

instance how to represent continuous measures on a discrete machine, we will do our

best to present a singular algorithm that does not omit any essential portion of its

design. There will nonetheless be situations in which we must circumvent complexity

by more-or-less ad hoc means. While these complexities introduce what may rightly

be considered "design decisions," they center on questions of "how" to approximate

rather than "what" to approximate. As a result, we expect that their ramifications

are less profound than those associated with more general-purpose methods such as



meta-heuristics or ADP.

We do not mean to suggest that focusing on quality, specifically in the form of

Equation 1.1, is futile or fallacious. This dissertation simply presents an alternative

in which we sacrifice much of our ability to make statements about quality in order to

make stronger statements about generality. To the contrary, it is our opinion that the

approximation results for NP-complete are impressively comprehensive. That said,

the continuous problems that will be our focus are generally much harder and the

available guarantees are correspondingly weaker. As a result, quality-focused research

has only nibbled around the edges of the problem space into which we are about to

bite.

1.2 Preliminaries

Having described the scope and philosophy of this dissertation, as well as establishing

some basic terminology, this section introduces a few fundamental formulations that

we will be relevant throughout.

1.2.1 Markov Decision Problems

Problem 1.2.1 (Markov Decision Problem (MDP)). A Markov Decision Pro-

cess is a tuple (X, A, T, R). Let X be a state space and A be the set of available

actions and let T : X x A -+ Q(X) wherein Q(X) is the set of probability measures

over set X. We also have a reward model R : X x A x X -± R with R(xo,a,x1)

giving the reward gained on transitioning from state x0 to state x1 under action a.

The Markov Decision Problem (MDP) is the problem of determining a control policy

U : X -+ A that maximizes some notion of cumulative reward.

Bellman, in [15], famously applied dynamic programming to the Markov Decision

Problem (MDP) showing that the optimal control policy is the argument-maximizer

of a value equation that bears his name, shown in Equation 1.2 for the case in which



cumulative reward is measured by an infinite sum with discount factor # < 1.

V*(x) = max E T(x'x, a)(#3V*(x') + R(x, a, x')). (1.2)
aG A

(x'X)

In particular we will make use of the following well-known theorem.

Theorem 1.2.1 (e.g., [42]). Every MDP has a stationary optimum in the expected

reward case.

A well-cited result from [71], is that MDPs in general are NP-hard if discrete and

PSPACE-hard if continuous. We do not go into detail on these complexity classes

beyond pointing out that problems that are NP-hard require time that is exponential

in size of their description (the state space, in this case) to solve exactly. It is most

likely the case that problems that are PSPACE-hard cannot be solved exactly in finite

time and require time exponential in the size of their description to approximate.

A Partially-Observable Markov Decision Problem (POMDP) is the extension of

the MDP in which the state is not directly observed.

Problem 1.2.2 (Partially-Observable Markov Decision Problem (POMDP)).

A Partially-Observable Markov Decision Process has two additional components, in

addition to the elements of the MDP: a set of observations Y and an observation

model 0 : X x A x X -+ Q(Y) with O(xo, ao, x 1) measuring the probability of any ob-

servation when undergoing a transition from state x 0 to state x1 under action a0 . The

Partially-Observable Markov Decision Problem (POMDP) is the problem of finding a

control policy II : Q(X) -* A that maximizes some notion of cumulative reward.

There is an exact equivalence between a POMDP and a so-called "belief state

MDP" in which the state space includes a probability distribution over the unobserved

states (and the transition model is consistent with the observation model). Since belief

over even a pair of discrete states is a continuous variable, POMDPs are PSPACE-

hard in general.

A simple example of a POMDP is that from [55], shown in Figure 1-1. The state

space is a discrete set of four locations xi, the actions are the directions {Left, Right}.



Figure 1-1: Grid world

The motion model is that an action moves the agent in the specified direction, as-

suming such a state exists, with probability p = 0.9. Otherwise the agent stays in

its current state. The observation model is that the agent observes the goal if and

only if it is in the goal (state x3) and makes no observation otherwise. Assume that

the reward R(x, a, x') = -1 and that the goal state is capturing, i.e., the process is

terminated when the goal is reached.

For this POMDP each (stationary) policy is a function from the probability sim-

plex Q({X1 , X2 ,X 4}) to the actions {left, right}. The striking feature of this problem

is that despite its simplicity, the answer is not trivial, nor is it immediately obvious if

we make motion deterministic (p = 1.0). One might assume that the optimal policy

is to go in the direction for in which the goal is most likely. However it is easy to

show that this cannot be optimal for the probability distribution {.5 + e, 0, .5 - E} for

small E.

1.2.2 Path Planning

The example in Figure 1-1 illustrates how the POMDP is a natural model for our

problem of interest. However the problem of path planning with uncertainty over

a continuous definition of position involves belief over continuous variables, which

potentially introduces a state space that is not even finite-dimensional.

Despite its difficulty, using the POMDP formulation for path planning has been

extensively studied, widely used, and as a result, has had some practical successes in

the form of heuristics.

For instance, one approach is referred to as the Augmented MDP (AMDP) which

is an example of the strategy of "feature selection" in Approximate Dynamic Pro-

2 3 4fl23*_7



gramming (ADP). Rather than solving Equation 1.2 over the entire state-belief space,

AMDP instead does so over a finite or reduced-dimension projection <k of the space.

maxj T(x'x, a)(#Vn ( ') + R(x,a,x')). (1.3)
x,x' s.t. -[(x)=4,(x')=q'

For example, in [81] the authors used features corresponding to the mean and

variance of the state distribution. This allowed them to exploit landmarks in order

to reliably reach a goal location.

The primary difficulty with feature selection is that there is no algorithmic way

of selecting features, and ultimately the success of the approach depends on this

selection. For instance, mean and variance alone would not be sufficient for the

example in Figure 1-1.

1.2.3 Bandit Problems

In the Multi-Armed Bandit Problem (MABP), a single server must choose from be-

tween n processes exactly one on which to work. Each process is an observable

Markov chain that, when worked on, or activated, evolves and gives reward. When

a process is not activated its state does not evolve. The problem is to determine an

activation policy that, based on the state of each process, decides which process to

activate. This problem is referred to as the "Multi-Armed Bandit" problem because

of its relevance to a gambler in front of a group of slot machines.

Gittins famously showed in [43] that there exists an "index function," depending

only on the state of a single process, which can be used to greedily solve the problem

to optimality. Let Xi denote the state space of process i, let xi G Xi denote its

current state, and let rl g Xi be a set of "stopping states." A "trajectory" T from

xi to fli is a sequence of states starting with xi and ending with x' E fli, such that

the final state x' is the first and only such state, i.e. -r n FI = {x'}. Let R(-rj) denote

the reward received on transitioning from the j - 1st to the jth state along r and let



# < 1 be a discount factor. The Gittins index of process i is given by

7iy(xi) = sup E [.I3JRQ-i] (1.4)nii T Ej 0i

which maximizes expected reward rate over the choice of stopping states. The optimal

policy is activate the process with the largest index.

The MABP has some relevant limitations. First, the state of unplayed "arms"

(i.e., processes) only changes when they are played. Secondly, there is no cost associ-

ated with switching between arms. If either of these features are present, the problem

is called a Restless Bandit Problem (RBP) and Gittins' indexing policy is no longer

optimal[10].

Nonetheless, Whittle in [92] used a a linear programming relaxation to derive an

index heuristic that is available if the problem has a property that has been dubbed

"Whittle Indexability." This heuristic reduces to the Gittins index in the MABP.

There is a large and growing body of research that suggests that RBPs with this

property are apparently much easier than a general MDP of similar size. Specifically,

this property gives rise to a relatively simple policy which has a small optimality gap

in practice which we describe in Section 1.2.4.

1.2.4 Whittle's Index Heuristic

Problem 1.2.3 (subsidy--y problem). Given a single process of a RBP as a two-

action MDP, the subsidy-y problem is the otherwise equivalent MDP in which a

subsidy -y is added to the reward for the "active action," i.e., activating the process.

Definition 1.2.2 (Whittle Indexability). Let fli(-y) denote the set of states of the

process for which the active action is optimal in the subsidy--} problem. Process i is

indexable if l1j(y) increases monotonically from the empty set to the entire state

space as subsidy, -y, increases from -oo to oo. An RBP is said to be indexable if

each process is indexable.



The Whittle index, 4' of an indexable process i in state x is given by

7(x) = in f 7i. (1.5)

Whittle's index policy is to always pursue the processes for which 7-y is minimum.

While non-optimal in general, this heuristic has been extensively examined and has

been shown to perform very well empirically, i.e., within a few percent of optimal (see

e.g., [5, 18, 44]). Furthermore, the heuristic is asymptotically optimal as the number

of arms n goes to infinity and the fraction of playable arms remains constant[90]. As

a result, there has been much recent effort into establishing the indexability of classes

of problems.

1.3 Organization

This dissertation is organized as follows.

In Chapter 2, we will cover search on lines and rays. Section 2.2 presents our main

theoretical result establishing the Whittle Indexability of the CPP and developing the

index function that forms the basis of the remainder of the dissertation. Section 2.3

illustrates the power of this result by examining a subtle path planning problem.

Chapter 3 extends the index policy to search in networks in which the edges

represent continua. In Section 3.3 we examine combinatorial problems such as the

MLTP that can be considered special cases of search in which the locations of the

goals are directly observed.

Chapter 4 extends the index policy to search in length spaces. Section 4.2 covers

the LFP for which only a few cases have been considered and we compare the index

policy to these. Section 4.3 presents a fundamentally novel approach to problems of

coverage. In Section 4.4 we consider the ramifications of relaxing our assumptions on

the agent's dynamics and consider the problem of optimal control for systems that

satisfy our other assumptions.

Chapter 5 considers problems in which goals are added to the environment by a



spatio-temporal random process. Section 5.3 considers the dynamic version of the

coverage problem which has only recently been broached. Sections 5.5-5.6 extend

the DTRP to length spaces and Section 5.7 defines the Dynamic Search and Repair

Problem (DSRP) which adds the element of search to the DTRP. In Section 5.7 we

examine the performance of the index policy on the DTRP and find it to outperform

the Nearest Neighbor Algorithm on a range of instances for which better results have

not been presented. In Section 5.8 we consider a practical application which we believe

underscores the contribution of this dissertation. Specifically we consider an instance

of the DSRP surveilling a network of roads using Unmanned Arial Vehicles (UAVs).

Finally, we describe a complete implementation which has been fully integrated into

a control architecture in use by the Air Force Research Lab (AFRL).

Chapter 6 summarizes the contribution of this dissertation and enumerates a few

of the ways in which it could be extended and improved. The most obvious of these

would be to extend the theoretical characterization of the algorithm we present and

more accurately demarcate the set of problems on which it performs well or poorly. In

particular, this includes proving some of the conjectures with which this dissertation

is seeded. At the same time we are pessimistic about the extent to which this is

possible without deep and fundamental breakthroughs. We are much more optimistic

about applications in which this work can be applied, validated, and extended. In

particular, we discuss the possibility of incorporating the search policy we develop

into a more general ADP approach.



Chapter 2

Search on Rays

This chapter considers problems in which agents move in a one-dimensional space,

which we call the "region," specifically a set of rays with a common origin: A =

{1, ... ,n} x R+. The problems we consider will all be static, i.e., the set of goals

does not change over time.

In this chapter we will develop the policy that is the main contribution of this

dissertation. We do this by examining a particular search problem and proving that

Whittle's index policy can be applied to it. For this particular problem, then, the

policy is not novel; what is important is the proof of applicability of a well-vetted pol-

icy. To illustrate the significance of this policy we examine a traditional navigational

technique which has largely resisted quantification. Having done this, the remainder

of this dissertation will be devoted to the logical extension of this policy to more

complex problems.

This chapter is organized as follows. In Section 2.1 we introduce the relevant

problems formulations and review existing scholarship. Section 2.2 proves the main

result of this chapter, namely that the Cow Path Problem (CPP) is Whittle-indexable

and presents the index policy. Section 2.2.4 provides a number of examples attesting

to the good performance of the index policy for the CPP and the Line Search Problem

(LSP), a special case. In Section 2.3 we illustrate the significance of this result by

using it to examine a traditional navigational technique, referred to as aiming off,

which is well-known to human navigators but is not produced by any existing path



planning algorithms.

2.1 Preliminaries

2.1.1 The Line Search Problem

In [17] Bellman posed the following problem

Problem 2.1.1 (Line Search Problem (LSP)). Suppose that we know that a par-

ticle is located in the interval (x, x+dx), somewhere along the real line -oo < x < 00

with a probability density function g(x). We start at some initial point x0 and can

move in either direction. What policy minimizes the expected time required to find the

particle, assuming a unit speed and

1. assuming that the particle will be recognized when we pass x, or

2. assuming that there is a probability p > 0 of missing the particle as we go past

it?

Also, what would be the optimum starting point x0 ?

We will restrict our attention to Case 1 and refer to it as the Line Search Problem

(LSP).

Significant early results on the LSP originate with [38] and are elaborated upon

by Beck et al [12, 14, 13, 11]. The most significant achievement is proving, from

first-order optimality conditions, that the LSP on differentiable distributions reduces

to the problem of finding the first turn-around point.

In [13], the authors analytically derived the optimal search pattern for uniform

distribution on [a, b], and the symmetric triangular distribution on [-1, 1] starting

from zero. They were also able to numerically find a policy for searching the unit

normal distribution, again starting from zero. In Section 2.2.6 we will review these re-

sults in detail. For the Gaussian distribution with density < the first-order optimality

conditions give the following recursive partial differential equation (PDE), wherein xi



is the absolute value of the ith turning point.

Oz,+Oxz q(x,_1) &x,_1
=(xn(x, + Xn+1) - 2) (2.1)ax" OXz_ 1  #(xn) x62 (-2

Given xo = 0 and a guess of x1 the system in Equation 2.1 can be solved recursively.

Values of xi that are too low result in sequences that are eventually non-increasing

and those that are too high create sequences that diverge, i.e., go to infinity in one

direction after a finite number of turns. As a result it was possible to search for the

optimum path simply by searching over xi. This search is made difficult only by the

remarkable numerical sensitivity of this process. The authors report that changing

x1 by 10- changes X7 by nearly 3. On the computers of the day, finding an answer

that was stable beyond the eighth turn was an impressive feat. Using this approach

to find the optimum starting point, at least at the time, would have been unrealistic.

The authors of [89] extend the numerical approach of [13] to any Lipschitz-

continuous measure having finite absolute first moment. Furthermore they show

that it is not necessary to search on xi. Instead they solve System 2.2.

Hi =I + G(zi_1) - G(zi)

G(xi_1 ) - G(xi) - 1

x1 = xo + 0.5/g(xo)

zj+1 = xi - Hi/g(xi) (2.2)

wherein G denotes the cumulative distribution of g. Having done this (and aided by

higher-precision arithmetic tools), they are able to search on xo to solve the problem of

the optimum starting point, a problem that we will examine at length in Section 2.3.

In [25, 89, 56] the authors, apparently independently, solve the LSP for distri-

butions consisting of n atoms in 0(n 2 ) time using dynamic programing. The key

insight is that state space can be represented as the current path of the agent and the

frontiers, or limits to which the search has already explored. Observing that the se-

quence of frontiers is non-repeating and the policy at the "boundary" is trivial (i.e., if



one direction has been completely searched, search in the other direction), Bellman's

equation can be solved exactly in one pass through the state space by starting at the

boundary and moving the frontiers toward the starting state.

In [3] the authors present a discretization scheme for continuous distributions

that gives a provable, arbitrary approximation when used with the above dynamic

programming approach. This is an important and surprising result, essentially estab-

lishing that the LSP is not PSPACE-hard.

Their result is as follows. Let g' < oo denote the absolute first moment of the

distribution, and IG-' be the inverse cumulative of its absolute value. For a provable

approximation of 1 + E to the continuous LSP, one can use the approach from [25]

with a discretization fidelity of egl/64 and truncate the distribution at r = IG-'(1 -

egl/24). If this search fails, the policy is to pursue a doubling strategy in which the

ith turn after completing the discretized search is at xi = 2'r.

2.1.2 The Cow Path Problem

A generalization of the LSP from the real line to a set of rays is called the Cow Path

Problem (CPP). In the CPP, m agents are searching for a unique goal that lies on

one of n rays diverging from a single origin (with m < n). We will call this set of

locations the "region," A = {1 ... n} x R+. The agents know their own positions,

and each has a sensor that can detect the goal only if the agent is at the location of

the goal; otherwise it gives no information.

When the literature shifted the discussion from the LSP to the CPP there was

a subtle but important shift in the objective. While Bellman's problem asks for

minimum expected time, beginning primarily with [8], the contemporary objective is

different.

In search problems such as the CPP, the most widely accepted theoretical frame-

work, nowadays, is competitive analysis (see [1, 52] for surveys) and not minimum

expectation. In this framework, the goal is to determine a search strategy that mini-

mizes the competitive ratio, which, informally for the moment, can be thought of as

a worst-case constant-factor guarantee.



A notable exception is [56], who point out that by assuming a prior distribution

over the goal location, it is quite natural to pose the CPP as a path planning problem.

Those authors point out that if the distribution has discrete, finite support, one can

apply algorithms for the discrete MDP in an efficient fashion. In fact it is possible that

approach from [3] can still provide an arbitrary, provable approximation. However,

the underlying solution of these methods scales exponentially with the number of

paths. In particular, with k discrete points on n paths with m agents, the dynamic

programming approach must construct O(") tables with O(k ()) values each.

2.1.3 Competitive Analysis

In the usual formulation of the CPP (see, e.g., [37] and the references therein), the

objective is to minimize the competitive ratio, Cr, of the search strategy. The com-

petitive ratio of an on-line algorithm A is given by

CrA = sup c(A(P)) (2.3)
PEQ c*(P)

where Q denotes the set of all problem realizations, c(A(P)) is the cost of the solution

returned by A applied to realization P, and c*(P) is the cost that could be found by

an optimal offline algorithm with full knowledge of P in advance.

Note the difference between Equations 2.3 and 1.1: c* need not be achievable by a

control policy, while the optimum z* is achievable by definition. In fact, c* will never

be acheivable for any non-trivial search problem.

For example, consider the case with one agent and two paths and assume that the

goal location is known to be integer. From [1], the best-possiblel schedule of turn-

around points, z(i), is z(i) = (-2)'. If the goal is at distance n from the origin, the

search takes 2(E$3jzJ+12i) + n, wherein lg denotes the base-2 logarithm. The optimal

offline algorithm would be able to travel straight there, so c* = n. The competitive

'An on-line algorithm with the minimum achievable competitive ratio is called "best-possible"
rather than "optimal" to avoid the confusion between c*, in Equation 2.3 and z* in Equation 1.1.



ratio is therefore
2(d "1 fJ~ 2 i) + n

sup =9.
n n

In contrast, in this dissertation we will try to minimize the expected distance travelled

before reaching the goal. To do this we must have a probability distribution, # : A -+

R+, for the goal location. As pointed out by [56], given such a prior distribution, it is

straightforward to pose the CPP as a path planning problem in the MDP framework.

One of the arguments in favor of competitive analysis is that it does not have

the requirement of a prior. However, if one takes a Bayesian view of probabilities,

a prior is required regardless. Philosophical arguments aside, we would argue that

the Bayesian requirement of a prior is, at least, not unreasonable-the region is a

well-defined set and there is nothing to prevent one from using an uninformative

prior.

Regardless of how informative this prior distribution may be, this formulation is

meaningfully distinct from that in Equation 2.3. Minimizing the expectation for the

uninformative distribution is seldom equivalent to minimizing the competitive ratio.

We illustrate this difference by example.

Consider the uniform distribution over the integers -n,...,n. In the limit of

n -+ oo, we have already discussed the best-possible competitive strategy, which

turns around at z(i) = -2'. This strategy searches for an expected distance of 33n/8.

In the framework of expected distance, the optimal policy for the uniform distribution

is given by [13]: For any finite n, the optimal policy simply searches each direction

to the end. This strategy only searches for an expected distance of 3n/2-less than

half as far.

Remark 2.1.1. For deterministic algorithm A, with competitive ratio CrA, there is

a probability measure over instances Q such that E [c(A(P))] is arbitrarily close to
PEQ

CrAx c*. This is accomplished by assigning probability one to the instance (or an

instance in the sequence) that maximizes Equation 2.3. In other words, the compet-

itive ratio provides a tight bound on performance in the worst-case over probability

distributions.



It has been noted (see e.g., [62]) that under competitive analysis, the performance

of an algorithm can be improved by randomization. This should further illustrate the

difference between the objectives: In the MDP framework this would constitute direct

contradiction to Theorem 1.2.1. The reason for this improvement is that it makes

the construction in Remark 2.1.1 impossible. For example, consider the policy z(i) =

±(-2)' with the sign chosen randomly. The worst-case over probability distributions

now puts support on both positive and negative n and the search will have expected

length 15n/2 rather then 9n.

2.1.4 Search Games

Another interesting formulation for search is game theoretic. There are two players,

a hider and searcher. A (mixed) hiding strategy H is a probability measure over the

region and a searching strategy S is a probability measure over paths that cover the

region. The game is zero-sum: The hider's payout is the time at which he is found and

the searcher's payout is its negative. This formulation can be applied to a broader

set of spaces and we will revisit it in subsequent chapters.

This formulation does not give search strategies for arbitrary measures. Instead it

finds strategy-measure pairs that are Nash equilibria. These equilibria are of interest

because they represent the worst cases over probability measures for an optimal search

policy (with respect to expectation).

For search games on weakly-Eulerian graphs, [40] shows that these equilibria can

be readily found. At these equilibria, the search strategy S is uniform over the set of

minimum edge covers. The hiding strategy H puts atoms on the leaves and uniform

distributions on Eulerian sub-graphs.

For more complex graphs, finding equilibria quickly becomes intractable. The

authors of [40] approximate the equilibria for the graph consisting of three unit edges

connecting two nodes, but it is non-trivial. When generalized to the graph with k

(odd) edges between two nodes, their approach has complexity in Q(ek).

To illustrate the distinction between the game theoretic formulation and the com-

petitive formulation recall the example of searching the integers -n, ... , n, discussed



in the previous section. This equilibrium corresponds to probability 0.5 on ±n, and

a search strategy that searches each direction to the end, picking the initial direction

randomly. The expected length of this search is 2n.

By way of enunciation, the game formulation provides the worst-case over mea-

sures for the policy with minimum expected search time. When randomized algo-

rithms are considered, the competitive formulation provides the worst-case over mea-

sures of the expected ratio of search time to the distance from the searcher's starting

point to the hiding location.

Hence, the competitive formulation is often cast as the game theoretic formulation

in which the hider's reward (and the negative of that of the searcher) is the ratio of

discovery time to this initial separation. In an unbounded region, this is a natural

response to the fact that the hider could achieve unbounded reward under the initial

formulation.

2.2 Indexability of the CPP

In this section we examine the CPP from the minimum expectation perspective. We

assume that we have a prior distribution for the location of the goal in the form of

cumulative distributions F for each path i.

As we discussed in Section 1.2.1, the main source of difficulty stems from the fact

that the state must include a measure over goal locations. In the CPP, however, the

belief has a special structure that can be exploited in the solution of the problem.

Due to the limited sensor model, either the goal is found or the posterior belief is the

prior distribution with explored regions zeroed-out (and re-normalized). Hence for a

given prior distribution, the belief can be represented by the limits of the explored

regions, which we will refer to as the "frontier" z, which is simply a vector in Rn . The

key observation is that the time required to switch between the frontiers on different

paths is the sum of a "tear-down" and a "set-up" cost. Given this observation, the

result from [45], although not directly applicable, is strongly suggestive of the Whittle

Indexability of the CPP.



Results establishing indexability, while not requiring that unplayed arms do not

evolve, universally require that the arms evolve independently. This property is also

absent from the CPP. There is only one goal; finding it on a particular path tells

a great deal about whether it will be found on a different path. In this section we

prove the indexability of what we will call the Poisson CPP in which we do not insist

that there is exactly one goal. In particular, we assume that the probabilities of there

being a goal in disjoint sub-regions are independent, but that the a priori expected

number of goals in the region is one.

We will establish indexability of the Poisson CPP by constructing a subsidy scheme

for each branch that satisfies Definition 1.2.2. To do this, we assume that an agent

pays a unit cost per unit distance moved, and we determine a system of subsidies

that make it neutrally profitable for the agents to conduct the search.

We will define our subsidy, y, such that an agent is paid only if it finds the goal. An

equivalent formulation (which would be more semantically consistent with [92, 45])

would be one in which the reward is unitary and we penalize motion. We use this

definition entirely for intuitive appeal: If we think of the goal as a commodity, say, a

quantity of natural gas, then 7 would be its "price". Posed as such, the Whittle index

will represent the price for gas at which exploration becomes profitable in expectation.

This intuition will become increasingly valuable in subsequent chapters when we

attempt to generalize our policy to problems which are not Whittle Indexable.

Remark 2.2.1. Trivially, for -y < 0 the set of states for which it is profitable to move

is surely empty since the agent receives no other rewards.

2.2.1 Switching Costs

Examining the CPP as a RBP, the "state" corresponds to that of the processes, as

opposed to that of the agents. Specifically, "paths" naturally correspond to processes

and we define the state of path i as the pair (ai, zi) E {0, 1} x R+ where ai indicates

whether the path is being actively searched, and zi denotes the "frontier" of the path.

This lets us define the state of the entire problem as (a, z) E {0, 1}" x R"n. For the



treatment that follows, we will not explicitly track the locations of the agents and

instead assume that there is an agent at frontier of path i if and only if ai = 1.

If an agent switches from path i (with state (1, zi)) to path j (with state (0, zj)) the

agent must move a distance zi + zg before it can activate path j. This is problematic

because we would like the subsidy to depend only on the state of the path being

activated. We will address this problem by changing the costs analogously to [44],

which has an intuitive interpretation in our formulation.

We change the costs as follows. For each active path the agent must maintain a

"return counter" that always contains the cost of returning to the origin. This way

when path i is abandoned, the cost of activating path j is only z1 . This reflects the

true costs assuming that the agent will eventually return to the origin, which does

not happen if the agent finds the goal. Therefore, we also must adjust the reward as

follows. If an agent finds the goal, it gets the payment y plus the value in the return

counter.

Lemma 2.2.2. Assume that there is a non-zero probability of finding the goal on path

i. 2 From any state, there exists a sufficiently large, finite subsidy -y < oc, for which

it is profitable to explore path i.

Proof. Let F(zi) denote the cumulative probability of finding a goal at or before zi

on path i.

The expected cost of exploring path i to distance d is upper-bounded by 2d.

The expected reward will be (F(d) - F(zi))-y, which is positive for some d > zi, by

assumption. For such a d, we can set -y > 2d/(F(d) - F(zi)) which guarantees that

it is profitable to explore path i.

2.2.2 Subsidy Scheme

We are interested in finding the minimum subsidy, -Y7(ai, zi), at which path i in state

(ai, zi) becomes profitable3 . Since we will only be considering a single path at a time,
21f there is zero probability, we are free to remove the path from the problem altogether.
3To avoid excessive use of infima, we will use the word "profitable" to encompass the case in

which the expected profit is zero.



we will drop the subscripts.

For an agent exploring path with state (a, z) we can compute the expected cost

of searching to frontier z'. For notational compactness let F(x1, x2) denote F(x 1 ) -

F(x 2 ).

E [c((a, z), z')] = 2(1 - a)z + a (jzy 1 dF(X) + (1 - F(z', z))2(z' - z)) (2.4)

In the original version of the problem, we knew that there is exactly one goal. There-

fore a = (1 - E F(zj))- 1 is a normalization term that depends on the the states of

other paths. For the Poisson CPP, a = 1 and we will subsequently drop it.

This lets us define the minimum subsidy under which any search is immediately

profitable
E [c((a, z), z')]

7*(a, z) = inf . (2.5)
z'>z F(z', z)

We now define the states, H(7), for which search is immediately profitable under 7.

1(-y) {(a, z) s.t. > y*(a, z)} (2.6)

Remark 2.2.3. It is clear from Equation 2.6 that -/o ; -y1 ==* UI'(yo) C Hi(71).

We proceed by deriving the optimal policy in the subsidy- problem. We can

write Bellman's equation for the the expected reward of the optimal policy, V*, when

started from state (a, z). Note that unlike Equation 1.2, Equation 2.7 uses the non-

discounted form.

V*(a, z) =max 0, sup (yF(z', z) - E [c((a, z), z')] + (1 - F(z', z))V,(1, z')

(2.7)

Lemma 2.2.4. Assume V,*(a,z) > 0. For the frontier, z', that maximizes (or is

a limiting value of the sequence that maximizes, potentially z or oc) Equation 2.7,



VY*(1, z') = 0, i.e.,

(2.8)V,*(a, z) max O, sup
Z/>Z

Proof. Suppose to the contrary that V,*(1, z') > 0 which is maximized by z" > z',

J Z/V,* (1, z') = "YF(z", z') - XdF(X) +

(1 - F(z", z'))(2(z' - z") + V*(1, z"))

Expanding Equation 2.7 and collecting terms we have

V,*(a, z) = -yF(z", z) - 2(1 - a)z - I // xdF(X) +

(1 - F(z", z))(2(z - z") + V*(1, z")) -

F(z', z) (yF(z", z') - j XdF(X)) +

F(z", z')(1 - F(z, z'))2(z' - z")

(2.9)

(2.10)

(2.11)

(2.12)

From our assumption that V,*(a, 2) > 0, term 2.11 must be negative. The term 2.12

is non-positive and zero only if there is no probability of finding the goal between z'

and z". We remove these terms and arrive at the inequality:

V,* (a, z) < 2(1 - a)z +7F(z", z) - I Z /i
XdF(X) +

(1 - F(z", z))(2(z - z") + V*(1, z")).

- yF(z", z) - E [c((a, z), z")] + V,*(1, z")

Since z', rather than z", maximizes Equation 2.7, we have the following contradiction

V* (a, z) > '-F(z", z) - E [c((a, z), z")] + V,*(1, z")

Lemma 2.2.5. The optimal policy in the subsidy-7 problem is to search if and only

(-yF(z', z) - E [c((a, z), z')]) ).



if x E U(-y).

Proof. We begin with necessity, proving that it is optimal not to search if x 1 U(7)

Substituting Equation 2.5 into Equation 2.8 and letting y = 7* + J-,

V,*(a, z) max 0, sup (,F(z', z) - E [c((ai, z), z')]+
Z'>z\

E [c((a, z), z")]
inf F(z' z) (2.13)

z">z F(z", z) '

Noting
E [c((a, z), z")] E [c((a, z), z')]

inf < z ', (2.14)
zft>z F (z", z) -- F(z', z)'

we can conclude that

V,*(a, z) < max 0 sup(JF(z', z))). (2.15)
(z'>z

Since x V U1(7) implies J, < 0, we can conclude that V*x = 0. Therefore the passive

action is optimal.

We now prove sufficiency, showing that for x E H(y) it is optimal to search. We

divide this into two cases.

Case 2.2.5.1. Let x E U(-y) and assume that the infimum in Equation 2.5 is achieved

by some z" > z

Proof of Case 2.2.5.1. By assumption,

E [c((a, z), z")]

7*(az) = F(z", z) ~

The supremum in Equation 2.13 is over z' rather than z"; hence

V,* (a , z) >_ max (0, (h F (z"a, z))) .

Since x E Ul(7) implies J, ;> 0, we can conclude that the active action is optimal. 0



Case 2.2.5.2. Let x G l(y) and assume that the infimum in Equation 2.5 is achieved

by the limit of some sequence z= z= '. We divide this into three sub-cases.

Case 2.2.5.2.1. z = oo. In this limit, the cost of searching to z' is unbounded,

therefore -y* must be unbounded and 6., cannot be positive. This case cannot occur.

Case 2.2.5.2.2. z < z < oo

Proof. The expected cost of searching from z to z' > z is continuous in z'. Hence

the cost of searching the open interval [z, z') is equal to that of searching its closure.

At the same time, the expected reward is non-decreasing in z'. Therefore this case

entails Case 2.2.5.1. l

Case 2.2.5.2.3. z' = z

Proof. We rewrite Equation 2.14, with limjo zi = limdzoo+ z + dz

E [c((a, z), z + dz)]
7* (a, z) = lim

dz-+O+ dF(z)

For this limit to be meaningful, we must assume that

dF(z)
#(z) =dz

is well-defined.

Since sup_>o g(x) > lim,;o g(x) we can rewrite Equation 2.13 as

V,*(a, z) > max 0, lim (6,(z)dz + 7*(a, z)#(z)dz-
dz-4o+

E [c((a, z), z + dz)]

4(z)dz

> max(0, lim 64(z)dz).
\ dz-+o+ 

Since # and dz are non-negative, Jy 2 0 implies that it is optimal to search.O



Since these cases are exhaustive, this concludes the proof of Lemma 2.2.5 0

Theorem 2.2.6. The Poisson CPP is indexable.

Proof. Lemma 2.2.5 proves that fl(-/) (Equation 2.6) is exactly the set of states for

which the active action is optimal in the subsidy--y problem. From Remark 2.2.1,
Lemma 2.2.2, and Remark 2.2.3 we have established that (U(7) increases monotoni-

cally from the empty set to the entire state space as y goes from -oo to oo, satisfying

Definition 1.2.2. 0

Corollary 2.2.7. The Whittle index (defined in Equation 1.5) is exactly 7* (x), given

by Equation 2.5. This follows directly from the definition of l(y) given by Equa-

tion 2.6.

Policy 2.2.1. The index policy is to pursue the paths for which -y* is minimized.

2.2.3 An Extension

Recall that this section proves the indexability of a modified version of the CPP.

Specifically we replace the prior over the goal location with a probability measure for

the presence or absence of goals that assumed spatial independence. These probability

distributions are initially identical, but as the frontier is pushed back, the posterior

distribution of the former is re-normalized while that of the latter is not.

If the problem of interest is the unmodified problem we propose the following

simple extension to the index policy: Before computing the index, renormalize the

distribution. That is, if the frontier is z, one can multiply all the probability distri-

butions by (1 - E F(zi)).

This extension also represents the first in a sequence by which we will generalize

the index policy to a larger space of problems than the Poisson CPP. We expand the

index policy to the set of measures that are "separable." Suppose it is the case that

at any particular time t, the probability that there are n goals in set X is equal to

00

n D tX2:2_flt( 

)) -



1- Pa - Pb

Pa Pb

Path 1 Path 2

Figure 2-1: Prior belief for three impulses on two paths.

for some <Dt and ft with <Dt(A) = 1.

For such cases, we will use the index policy with measure [(X) = (1-- ft(0) t(X)

as the spatial distribution, to minimize the expected time at which the first goal is

found.

2.2.4 Examples

Toy example

From the nature of PSPACE-hard problems, any numerical evaluation is going to be

essentially anecdotal. This is precisely why we have embraced the literature on Whit-

tle Indexability. Nonetheless, we think the following example provides an intuition

while examining an interesting and non-negligible portion of the problem space. This

example will show the heuristic's non-optimality, but will also demonstrate that it is

a good approximation.

Suppose that a single agent is searching two paths and the prior belief consists

of three impulses, as shown in Figure 2-1. Note that one impulse is placed at unit

distance without loss of generality.

First, for simplicity, we let Pa = Pb = 0.25 and let Xb =2 - xa. Let 7r12  2l, 7212

denote the three possible search policies that search according to the order of their



subscripts. We compute the expected latencies under each policy.4

C1 2  (1-Pa-Pb)+Pa(2-xa)-pb(2+Xb)=2

C21 Pa(Xa) +Pb(xb) (1 -Pa-Pb)(2Xb+ 1)

C2 12
= Pa(Xa) + (1 - Pa - pb)(2Xa + 1) ±

Pb(2Xa + 2 - xb)

1.5 + 1.5Xa.

We compute the minimum subsidies

(1-pa-Pb)+(pa-pb)2
1 - Pa -Pb

. PaXa + (1 - Pa)2Xa
72=mm

Pa

PaXa + PbXb + (1 Pa -

Pa + Pb
= min (7xa, 5.5 - 2xa).

- 3

(2.16)

Pb)2Xb)

We will later refer to the first and second terms of Equation 2.16 as 72a and y2,

respectively.

If we explore path 2 to Xa, 72 will change to

Pb(Xb - Xa) ± (1 - Pb)2(xb - Xa)
14(1 - xa).

Comparing these, we can see that policy r2 12 is optimal for 0 Xa < 1/3 and

policy r12 is optimal for 1/3 Xa 1. Comparing the subsidies we see that the index

policy is optimal except for 1/3 < Xa < 3/7. In this range the worst case is 15/14 of

optimal, a sub-optimality of about 7%.

We now remove the restrictions on Pa,Pb and Xb and consider all possible priors

over three discrete locations on two paths. We will optimize over the locations and

4Note that the expected latencies are those from the original problem with exactly one goal.

72ab



priors in order to find the greatest sub-optimality.

From this we construct six optimization problems: one for each possible ratio of

the latency of policies. Each problem is subject to constraints on 71, y2a, '72b, and

72ab such that the numerator is the strategy chosen by the index policy. By way

of example, Problem 2.17 assumes that policy 7 21 is optimal, but the index policy

instead pursues 7r12.

C1 2max - s.t. '71 < 72a, 71 < 72b,
XaXb,PaPb>0 C21

Xa X ib, Pa ± pb (2.17)

To solve these problems we used Matlab's FMINCON search using the "active-set"

algorithm, with 400 random restarts. These were divided into four sets of one-hundred

cases, where starting points Xa, Xb were chosen from an exponential distribution with

scale parameters of 10, 100, 1000, or 10000. The largest sub-optimality was 38% which

occurs at Xa= 7.2, Xb = 23.2, pa = 0.56, and PA = 0.33 and when the index policy

chooses strategy 7r212 although r12 is optimal. This same optimum was consistently

found.

Of course, this does not prove a lower-bound. However, it does show that if it is

possible to achieve greater than 38% sub-optimality, such cases must be rare if we are

unable to find them using this search technique.

We compare this to the worst-case sub-optimality (over Xa, X, Pa, Pb) of the best-

possible competitive algorithm. It is easy to show that for Xa = Xb = 1, the best-

possible competitive ratio is three. From Remark 2.1.1, Pa,Pb can be chosen such that

this algorithm will be a factor of three from optimal.

Compared to a factor of three, we can interpret a 38% sub-optimality as strong

performance. Notably however, it a substantially greater level of sub-optimality than

is commonly reported in numerical studies on indexable problems[5, 18, 44].



2.2.5 Comparison to Competitive Policy

In this section we compare the best-possible competitive policy to the index policy

for distributions with continuous support. It is clear that the index policy stands to

benefit from knowledge of the prior. To provide the most fair comparison, we will use

the least informative distributions: uniform and negative exponential.

Since these distributions are continuous at zero we must modify our definition of

the competitive ratio. If we discretize the region with fidelity E, the best-possible

deterministic policy (from [9]) turns at

('e. (2.18)

For the analysis here we consider the best-possible competitive policy limit of e -+ 0,

in which the agent travels a distance of 2mjxI before turning at x.

The uniform prior with infinite support is improper. Instead, we consider uniform

probability over finite support f while taking the limit

lim EX-U(ot)m [w(x)J

wherein w(x) denotes the time at which location x is first reached. For the index

policy, this evaluates to (m - 1/2). For the best-possible competitive policy this

limit evaluates to 47/18 at m = 2. For higher values of m we resort to numerical

simulation, the results of which are presented in Figure 2-2.

Figure 2-3, shows simulation results for the exponential prior. In this case we

immediately resort to simulation, using importance sampling to improve the estimate.

In both cases, the index policy significantly outperforms the competitive policy.

This is notable because we selected priors that we expected to most favor the com-

petitive policy. These results illustrate the fact that, even with uninformative priors,

minimizing the competitive ratio does not minimize the expected wait time.



Uniform Prior

1.6

1.4

1.2

1.0

0.8

0.6

0.4 -

0.2 -

0.01
100

Figure 2-2: Expected wait times for the uniform prior

Exponential Prior
A 0.

- Best Competitive Policy
- Index Policy

100 101 102

Number of rays m

Figure 2-3: Expected wait times for the exponential prior

- Best Competitive Policy
- Index Policy

101 102

Number of 'rays' m

0.5
00 -I L



[13] Index Policy
x1  0.6561 0.5968
X 2 0.9697 0.9525
x 3 0.9998 0.9994

Xi ;> 4 1.0 1.0
mean 1.1835 1.1864

Table 2.1: Absolute values of the turn sequence for the triangular distribution

2.2.6 Comparison to Results on the LSP

In this section we compare the index policy to the cases addressed by [13], namely

uniform, symmetric triangular and unit normal with the origin at zero. We also

compare the index policy to the dynamic programming scheme presented in [3].

Under an optimal policy for the uniform case, the agent only turns at the endpoints

and the initial direction doesn't matter. This is also the behavior of the index policy.

The symmetric triangular distribution is the probability distribution whose sup-

port is the [-1,1] interval and whose density increases linearly on [-1,0] and de-

creases linearly on [0, 1]. For this distribution, starting from zero, the authors of [13]

proved that the optimal turn sequence (with absolute values xi) are the solution to

the following equations.

1 1
(xi + Xi+ 1)(1 - Xi) - -(1 -X,) 2 - -(1 -x._ 1)2 = 0

2 2

with xo = 0.

The turns that solve these equations are shown in Table 2.1 along with the turns

produced by the index policy. The index policy is about 0.25% sub-optimal for this

case.

For the unit normal distribution, the authors of [13] numerically solve a set of

partial differential equation, shown in Equation 2.1, to arrive at the turning points

shown in Table 2.2. The index policy produces a very similar result, that is within

0.2%.

In Table 2.2 we also include the algorithm from [3], both as described, as well as

with an obvious augmentation. As stated, the policy is to run the dynamic program-



[13] difference Index Policy difference [3] improved
xi 1.4409 1.3392 1.4501 1.4501
x 2  2.6276 1.1867 2.4732 1.1340 2.6061 2.6061
X3  3.6322 1.0046 3.4632 0.9900 2.6737 2.6737
x 4  4.5203 0.8881 4.3416 0.8784 2.6737 5.3474
X5  5.3267 0.8064 5.1492 0.8076 5.3474 10.3948
X6  6.0712 0.7445 5.8932 0.7440 10.3948 20.7896
X7  6.7681 0.6969 6.5940 0.7008
X8  7.4253 0.6572 7.2516 0.6576

mean 2.9030 2.9087 2.9916 2.9517

Table 2.2: Absolute values of the turn sequence for the unit normal distribution. Also
shown are the differences between subsequent turns to aid comparison. For [3] we
used E = 0.1. The improved version of [3] removes extra turns when transitioning
from the dynamic programming policy to the doubling policy.

ming policy until the [-R, R] interval has been searched, then return to zero and

then pursue a doubling strategy. This can introduce one or two superfluous turns.

For the "improved" version, shown in the table, we do as follows. Let s E {-1, 1} be

the sign of the first endpoint of [-R, R] that is reached at turn is. Immediately when

this happens, we initiate the doubling strategy xi = -sR(-2)i-s.

Since we can efficiently compute the index policy for any distribution, it is now

possible to optimize over the starting location. Figures 2-4 and 2-5 show the expected

search time under the index policy as a function of starting location for the triangular

and normal distributions respectively. In both cases, zero is not the optimal starting

location. In fact for the triangular distribution it is the worst starting location; for the

normal distribution zero is worse than any location less than 2.9 standard deviations

from the mean. Table 2.2 compares the optimum found by the index policy to the

optimal search reported in [89] for the unit normal from an arbitrary starting point.

We are also now in a position to consider the effect of a non-zero sensor radius for

the first time. In particular, assume that the agent detects the particle if it is within

a distance r.. This simply changes the prior distribution as shown in Figure 2-6.We

can still apply the index policy as discussed in Section 2.2.3. Figures 2-7 and 2-8

show how the expected search distance varies as a function of starting location and

sensor radius. Section 2.3 will make extensive use of these results for the Gaussian



1.20

1.15 -

1.10-

1.05-

1.00-

0.95-

0.90 -

0.8.0 0.2 0.4 0.6 0.8 1.0

Figure 2-4: Expected search distance as a function of starting location for the sym-
metric triangular distribution

0.5 1.0 1.5

Figure 2-5: Expected search distance as a function of starting location for the unit
normal distribution

2-..0



[89] Index policy
x0 1.5712 1.5728
xi 2.7352 2.6760
x 2 3.7259 3.6384
x 3 4.6046 4.5032
x 4 5.4040 5.2944
x 5 6.1435 6.0296
X6 6.8357 6.7304

mean 2.1630 2.1631

Table 2.3: Starting point and subsequent turns for searching the normal distribution.

Figure 2-6:

A.I J +r

Modification of the spatial distribution to reflect non-zero sensor radius.

case in solving a novel path planning problem.

2.2.7 Comparison to the Dynamic Programming Approach

The approach from [3] provides an arbitrarily precise approximation to the LSP by

discretization and dynamic programming. This approach requires a continuous mea-

sure G with density g, and finite first moment gF. Let |G|- 1 be the inverse survival

function of the absolute value of G. To achieve an approximation of (1 + E), this

entails discretizing the region into

64 Gj- 1(1 - E1/24)

E 91 (2.19)

and applying an algorithm with complexity 0(n 2).

FRom Equation 2.19 one can see that as E decreases, n increases at least as fast

as its inverse. One should also note the relatively large constant. As a result 0(n 2)

could actually be very burdensome at the level of accuracy we might want.



1.2

1.0-

0.8

0.6

0.4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2-7: Expected search distance as a function of starting location and sensor
radius for the symmetric triangular distribution. Blue indicates a sensor radius of
zero, red indicates a sensor radius of 1, increments of 0.04.



3.0

2.5

2.0

1.5

1.0-

.0 0.5 1.0 1.5 2.0

Figure 2-8: Expected search distance as a function of starting location and sensor
radius for the unit normal distribution. Blue indicates a sensor radius of zero, red
indicates a sensor radius of 2.4, increments of 0.08.



For example, for a guaranteed improvement on our result for the Gaussian case

consider c = .002, which gives n of about 300000. At this level of discretization, this

approach will require order of 1011 operations and, more importantly, use terabytes

of memory. Even with e = .1, this approach requires about a half gigabyte assuming

double precision variables.

Similarly, for the triangular case this approach will require the computation and

storage of more than 110592E 2 values.

2.2.8 Infinitesimal Oscillation

The author of [38] provides a necessary and sufficient condition for the non-existence

of an optimal rectifiable path for search on the real line. This condition is that the

right and left upper-derivatives of the cumulative distribution function are infinite at

zero. In particular they prove that for any policy that makes its first turn at E > 0

there is a better one that turns sooner. Put another way, the optimal policy begins

with an "infinitesimal oscillation".

For the CPP this same condition is that there two or more paths whose upper-

derivatives are infinite at zero.

For instance, the symmetric inverse distribution with density given by

2e

meets this condition for oscillation.

Lemma 2.2.8. The index policy can only produce an infinitesimal oscillation about

the origin and nowhere else.

Proof. Once away from the origin, the numerator in Equation 2.5 is bounded away

from zero. For the subsidy to be finite, the denominator must also be bounded away

from zero. Since any atom at zi would have already been visited, this implies that

z* - z, > 0. O



Figure 2-9: The index policy oscillates on this distribution, while the optimum does
not.

Lemma 2.2.9. The index policy produces an infinitesimal oscillation if the optimal

policy begins with an infinitesimal oscillation.

Proof. Assume that the optimal policy begins with an infinitesimal oscillation, which

from [38] implies infinite derivatives at zero, which results. We ignore impulses at

zero, assuming that they are immediately seen before we apply the policy.

If the agent moves a distance e > 0 in either direction it will see a subsidy of

E/oo = 0 in the other direction. However, the subsidy must have been greater than

zero for all but a vanishing fraction of the distance e covered, since the cumulative

distribution function must be finite.

This means that to have gone any distance e > 0 would have required moving

contrary to the index policy. E

Remark 2.2.10. -The converse of Lemma 2.2.9 does not hold. This can be shown by

examining the case with two paths each having density

fi(x) = r - N/2xr- x2

on the [0, r] interval for r = (2 (1 -,r/4))-, shown in Figure 2-9

As a practical matter, this is not a major concern as it is generally safe to assume

a minimum quantum of distance, for instance, from a small but non-zero sensor

footprint or because of discrete time computation.



Possible Trak
North of Course

VOR

Tue O= Chut3pah4 P=Osble Trm*i
So Of Course

Figure 2-10: from The Proficient Pilot [83] [used with permission]

2.3 Aiming Off

This section investigates a traditional navigational technique, known to human ex-

perts of various fields as "off-course navigation," "landfall intercept," "single line-

of-position," and "aiming off," which has been used by navigators on foot, ancient

ships, pre-GPS aircraft, and modern submarines. Using this technique, the navigator

deliberately aims to one side of their objective with the intention of following a line

feature (e.g., a road, coastline, celestial bearing, or radio beacon) that is known to

intersect the objective. By doing so he can search more confidently and decrease the

expected distance travelled. Figure 2-10 is an example from The Proficient Pilot [83].

The results in Section 2.2.6 confirm this practice.

In addition to navigational applications, e.g., in a Global Positioning System

(GPS)-denied environment, another practical application is in search for mobile tar-

gets. Suppose an Unmanned Aerial Vehicle (UAV) is being routed to take video of

a suspicious mobile target on a road. Rather than move directly toward the mean

of the target's position distribution it might be better for the UAV to aim off and

acquire the target while following the road.



This is a sophisticated strategy because it considers the value of information

derived from improved confidence in the direction to the destination. Unsurprisingly,

then, path planning to mitigate uncertainty has been left to human experts-to quote

a 1657 navigation text "[such practices] are better learned by practice, than taught

by pen.[31]" In this section we will attempt, "by pen," to confirm this practice and

determine the optimal amount of off-aim.

The main difficulty in quantifying the benefit of aiming off is that it entails the LSP

as a sub-problem; how does one proceed once the line feature is reached? The result

from Section 2.2 has provided a strong heuristic policy for search on the real line.

Using this policy, we are now able pose the problem of aiming off as a straightforward

optimization problem.

By way of contrast, the previously accepted solution to the CPP, discussed in

Section 2.1.2, does not predict such a behavior: there is no preference as to starting

place. On the other hand, the approach taken in [13] is, in principle, capable of

answering our question, but in practice this may prove difficult because it involves

solving many partial differential equations of the form of Equation 2.1. Another

small drawback to this approach is it requires an absolutely continuous probability

distribution.

The paper [89] improves on the method from [13] which allows them to find the

optimal starting point for the LSP by solving a single PDE shown in System 2.2.

This is the first and only scholarly confirmation of the practice of aiming off.

We improve on this result by characterizing the optimal performance as a function

of starting point. This lets us quantify the trade-off between additional travel distance

and additional search distance. The efficiency of the index policy will allow us to go

even further, characterizing the optimal search performance as a function of sensor

radius as well.

The dynamic programming approach presented in [25] can be applied but one must

chose a discretization method. The discretization method provided in [3] provides a

provable approximation but, as we discussed in Section 2.2.6, is computationally

burdensome at the level of accuracy provided by the index policy.



A similar problem was posed in [81] which they called the Coastal Navigation

Problem (CNP) in which a mobile robot attempted to robustly reach a goal location in

the presence of features. The most general and exact form of their model encompasses

our problem but is a continuous state POMDP which is intractable. The approach

taken was to use an AMDP in which they tracked the mean and entropy of the agent

location distribution. This approach is promising in that it predicts behaviors similar

to aiming off, e.g., wall following. However, to elicit these behaviors they had to

apply an artificial reward model in which the robot was penalized for entropy when

the distribution mean reached the goal. For the problem we will pose here, even with

the modified reward structure, their approach would not aim off. Certainly such an

approach could produce this behavior with an appropriate feature set, for instance a

sufficient number of moments of the distribution. At least for the moment, however,

there is no unified methodology for feature selection.

The goal of this section is to demonstrate a general methodology for determining

an optimal control policy in a commonly arising navigation situation. We believe

this is particularly interesting because it verifies a practice that human experts have

known for centuries but is not produced by any automated planner.

-2.3.1 Problem Specification and Assumptions

Assume that the objective is on a straight, featureless road. For the moment assume

that the navigator can only detect the objective if he is at its location, Section 2.3.4

will discuss the effects of a non-zero sensor radius. Assume that the navigator starts

at an initial position with no uncertainty and that the navigator-objective vector is

perpendicular to the road and has length E. We will assume that the navigator is a

single integrator

x U ± W)

with control I ju I < v and Gaussian noise w - K(0, Ico2 ). This is a natural model for

a navigator with a compass, for example.

We remark that the approach we will take is tractable for any noise model. We



choose Gaussian noise because it simplifies the analytical discussion and interpretation

of our example. In particular, the location of the navigator evolves according to a

Wiener process with drift u. That is, at time t, the position is a Gaussian random

variable with mean T(t)= f4 u(-r)dr and variance toI. In the UAV search example,

this would be equivalent to the target undergoing Brownian motion.

2.3.2 Index Policy for Gaussian Search

We now describe the application of the index policy to the case of a single agent

searching a one-dimensional Gaussian distribution. Note that Equation 2.4 scales

linearly under a scaling of distance. Since our error model ensures that the uncertainty

will always be normally distributed we need only determine the search behavior for

all starting locations in the standard normal. The actual search behavior can be

recovered with appropriate transformation of units.

At the moment that the agent arrives at the road, define zero to be the mean of the

distance-to-objective distribution and define the unit of distance to be its standard

deviation. With respect to this zero, let X denote the mean of the agent location

distribution and z+, z- as the extent to which the agent has searched in the positive

and negative directions, respectively. Let # and <b denote the density and cumulative

of the standard normal, respectively.

We can simplify the index function by redefining the origin (of the CPP) to be

the agent's location, which makes a = 0 for both directions. Rewriting Equation 2.4

and correcting signs in the negative direction,

E [c+] j (x - X)#(X)dX + (1 - 4(z+, z'))2(z' - ^)
/

E (c-] =Z (X - X^)#(X)dX + (1 - <b(z', z-))2(z' -x

Making use of

X#(x)dx = #(a) - #(b)



we arrive at Policy 2.3.1.

Policy 2.3.1 (Index Policy for Gaussian Search). The agent should move in the

positive direction whenever

inf (z+) - (z') + 2(z' -4()<

mf xZ - 2

2->2+ <b(Z+, z') .-

.n 2z 4 (z- 0 ) - 4(z') + 2(X' - z')
z'<2- <b (z', IZ-)

Using Policy 2.3.1 as a search strategy, the expected search time for A(0, 1) as

a function of starting location is shown in Figure 2-5. We will denote this function

d8 () with domain and range in units of standard deviations. The expected search

distance of a normal distribution with standard deviation o- is given by o-d,(x/o).

2.3.3 Optimization

We assume that since the navigator is trying to minimize travel time he always applies

maximum control I lu| v and attempts to travel in a straight line. Under this type

of control, and given a search strategy, the problem is simply to select an initial

heading.

Given d,, we can now write the expected search time as a function of heading 0

and the initial distance to the road e.

dT(e, 0) (f - sec(0) + o-,ds (2.20)
v / .

The two terms are, respectively, the distance to the road and the search distance

subject to a unit transformation. When the agent reaches the road the standard

deviation of error is given by o-, esec(0) 2

V

All that remains is to optimize Equation 2.20 over 0. The functions

d r(f) =- min dT(f,60)

0*(t) arg min dT(f, 0)
0

59



are shown in Figures 2-11a and 2-11b.

0.20-

10 
0.15-9 101- 0.10-

102

U Q~)
;--1 0.10

0.05 -

101)

10-4 ' '0.001

101 10-4 10^3 10- 10' 100 101 1o2 10
3  

101 101 10-5 10-4 10 10-2 1-1 100 101 10
2  13  104 101

initial distance initial distance
(a) Minimum search time (b) Optimal heading

Figure 2-11: Asymptotic behavior with zero sensor radius as a function of initial
distance from the road.

Discussion

The interesting shape of these curves results from the fact that the difficulty of search-

ing grows with the square root of the initial distance to the road, e. At large values

of f, the amount of offset that corresponds to the minimum in Figure 2-8 grows at

a rate proportional to vf and so the optimal heading goes to zero. For the same

reason, the search time becomes a vanishing component of the travel time.

When the navigator starts very close to the road, search time dominates and is

proportional to vly?. In this limit it is best to immediately move to the road. This

can be seen by linearizing dT about some particular 0 and examining the limit of

f -> 0. In this limit we can approximate d,(x) ~ a - bx for a, b > 0. Plugging this



linearization into Equation 2.20,

dT(eOo + dO) ~I [f sec(Oo + dO) + / sec(Oo +dO)o.2/v x

a -b f tan(O0 + do)
/Tsec(Oo + d)o.2 /V)

= [esec(o + do) + /Tsec(0 +d )o.2/v x

(a - b sin(Oo + dO) V/7sec(0o + dO)v/o-2

(1v ) I sec(Oo + dO)(1 - b sin(Oo + dO)) + a es sec(Oo + dO)J2/vl

~ (f/v) (sec(Oo) + dO sec(Oo) tan(Oo)) (1 - b(sin(Oo) + dO cos(Oo))) +

( e/V)ao- /sec(0) (1 + dO tan(0o)/2)

Small changes of 0 decrease dT proportionally to f but increase it proportionally

to v . Therefore in the limit of f - 0, 0* -+ 0.

In between these two regimes we see that it is sometimes optimal to choose large

heading offsets--over 15 degrees. Referring to Figure 2-5, this should not be sur-

prising. There is a substantial benefit as we move the start point away from the

mean. On the other hand, the extra travel distance only increases as sec(0) and the

additional search time as V/sec(9).

2.3.4 Effects of a Finite Sensor Radius

Suppose that the navigator can see a distance r, o-,8 in either direction along the

road. We apply the index policy to the distribution formed by removing the center

2rs/o-. about the agent's starting location x^ = x/o. from the normal distribution.

This transformation is shown in Figure 2-6.

Let d5'(1, ',) denote the expected search time of such a policy. To determine the

actual search time we make the following correction. Let X be the random variable



denoting the distance to goal.

,) (P [lxi 5 s])E [\x| |X < r^] + (P [lxI > rs|)(d'(x, 's) + s)

The first term is the case in which the agent can immediately see the goal. Otherwise

we simply add one sensor radius to the search time. Figure 2-8 shows d.(x, r) for

sample values of r' between 0 and 1.75. Above this value it no longer helps to aim

off.

We adjust Equation 2.20 to now include the sensor radius

dT(e, 6) = sec(0) + o-rd tanO r (2.21)
0r Ur

and optimize over 0.

Figure 2-12 shows the heading that minimizes Equation 2.21 for a variety of speeds

and sensor radii. These parameters were chosen to bracket those of a person navigat-

ing on foot and the variances are scaled such that the asymptotic behaviors match.

As a function of starting distance f, expected travel distance is qualitatively un-

changed from Figure 2-11a and we do not show it. Primarily this is because the

navigator must still move to the road and then to the actual location of the objective.

In the f -+ 0 limit, the performance improves by the ratio of E [A(0, 1)1] d, (0)

which is an improvement of about 45%. This improvement decreases along with the

probability of immediately seeing the objective.

Discussion

Unsurprisingly, for large distances, Figure 2-12 matches Figure 2-11b: the sensor

radius is becoming increasingly negligible. The interesting behavior is the very steep

rise in heading off-aim from zero up to the asymptote. Generally we see a rise from

no offset to the asymptote in a little more than a doubling of distance. It seems that

once it is no longer "very likely" that the navigator will be able to see the objective

immediately, off-aim becomes attractive very quickly.



0.25 - v=0.4m/s,o=1m/vT,r=25m

- v=0.4n/s,0=1m/VT,r=50m

v=0.4m/s,Glm/vT,r=100m
0.20 -

- v=2m/sU=5m/vT,r=25m

v=2m/s,U=5m/vT, r=50m

0.15 - - v=2m/s,U=5m/v sr=100m

- v=4m/sU=10n/VT,r=25m

- v=4m/s,=1 0m/vT, r=50in

0.10 -- V=4m/s,o=10m/v'T,r=100m

0

0.05-

0.001011 0
100 101 102 103 10" 105

Initial distance, (m)

Figure 2-12: Optimal heading as a function of starting distance from the road for
various speeds and sensor radii. Within each color, the three curves show increasing
sensor radii from left to right. These parameters were chosen to bracket those of
a person navigating on foot and the variances are scaled such that the asymptotic
behaviors match.



We see a maximum heading offset of 0.2 radians for the fast navigator with the

most limited visibility. For these conditions it is advisable to aim off even over very

short distances (a few tens of meters). On the other extreme, the slower, more careful

navigator with the best visibility has a maximum heading offset of 0.02 radians. In this

case the navigator prefers the direct route for distances up to nearly two kilometers.

Orienteering books recommend between 2-3 and 10 degrees of off-aim (e.g., [73,

87]). The surprising degree of non-linearity in this regime explains the lack of any

standard 'rules of thumb' for aiming off in orienteering.

2.3.5 Conclusion and Extensions

We were able to efficiently tackle this problem because we were able to pre-compute

a function that takes a measure over the road as an input and returns a mean search

time. Given that, the path planning problem was just a matter of optimizing over

trajectories. The approach here, then, can be straightforwardly applied to more

difficult problems, for instance more complex noise or dynamics. The main difficulty

in those cases would be determining the set of trajectories over which we should

optimize. In any problem in which all "reasonable" trajectories can be efficiently

enumerated, this approach will remain tractable. This enumeration will be a central

topic in Chapter 4 when we consider search in higher-dimensional spaces.

What made this approach tractable was the fact that we evaluated a black-box

policy to determine the value function for the tiny subset of states reachable from the

initial conditions. In the language of dynamic programming, what we are doing is us-

ing the value function from the CPP to determine the cost-to-go for a searchable and

pre-determined set of trajectories. On the surface this is trivial-given an optimal

policy, it is tractable simply to use it. More deeply, though, it represents an ex-

ploitation of hierarchy: We used the policy from a relatively simple, one-dimensional

problem to tackle a seemingly difficult two-dimensional problem. We will revisit this

intuition in the concluding remarks of this thesis, Section 6.2.



Chapter 3

Search in Geometric Networks

This chapter extends our index policy to search problems in which the region is a

network. Our index policy still has a natural interpretation in such problems. As a

result we are able to generalize the policy, by analogy, to a number of problems that

are not Whittle indexable.

Section 3.1 provides the essential terminology and formalisms. Section 3.2 presents

the generalized index policy, discusses the complexity of the policy as a function of the

size of the network, and presents alternative polices of similar character with lower

complexity. Section 3.3 considers the observable Minimum Latency Tour Problem

(MLTP) as a special case and evaluates the index policy as a heuristic for combinato-

rial optimization. Section 3.4 describes a methodology for search of one-dimensional

subspaces of metric spaces of higher dimension. This chapter will focus on single-

agent search with the exception of Section 3.5 which considers case in which multiple

agents are simultaneously searching.

3.1 Preliminaries

Definition 3.1.1. Metric space

A metric space consists of the pair of a set S and a distance function d(.,-)



S x S -+ R+ satisfying for all so,si, s 2 E S

d(so, s) 0 <=- so = si and,

d(so, si) < d(so, s2)+ d(s2,SI)

We will never use d(-, -) to denote the single-element vector norm.

It is common to refer to the set S as a metric space and leave its distance function

implicit. We will disambiguate distance functions as necessary with subscripts d(., -),.

Definition 3.1.2. Lipschitz Continuous function

A Lipschitz continuous function f : X -± Y between metric spaces X and Y is

one for which there exists a constant K, called the Lipschitz constant, such that for

any x1 ,x 2 G X

d(f(x1), f(x 2 ))Y Kd(x1,x 2)x

Definition 3.1.3. Uniform Path

We define a uniform path or simply path to be a Lipschitz continuous function

P : [0,t) -+ S from a possibly infinite interval to metric space S, d(-,-) for which:

lim d(P(x),P(xA+3))= 1 Vx E [0, f)

We will refer to e as the length of the path.

If this length is finite the endpoint is well-defined as P(f) = limaPe(P). If

P(f) = P(O) the path is called closed.

In a slight abuse of notation we use P(S) with a set argument S C [0, f) to refer

to the set Us P(x) and, when it is unambiguous, P to refer to the set P([0,f)), for

instance when referring to the Lebesgue measure C(P) = f.

Definition 3.1.4 (Length space). Given a metric space X, d(-, -) we can define a

new metric d(x1,x 2)1 called the intrinsic metric as the infimum of the length of ev-

ery uniform path between x 1 and x 2 (or infinit' if no such path exists). If d(.,-) is



everywhere in agreement with d(., -)j, then X is called a length space, also known as

a path metric space.

For x 1, x 2 in a length space, if d(xi,,x 2) < oo, there exists at least one path P

whose length, L(P) is arbitrarily close to d(xi,x 2 ). If L(P) = d(x1,x 2 ), P is a called

a shortest path.

Definition 3.1.5 (Cover). A function f : X -+ Y covers set S C Y if S C

UX f(x). A single-valued function is called a cover if it is onto, while a set-valued

function f : X -+ Y* is called a cover if f covers the set Y.

3.1.1 Geometric Networks

A geometric network is a length space consisting of a continuous, one-dimensional

network structure that formalizes the notion of a roadmap. A geometric network is

a network in which the edges are "roads," i.e., continuous segments. On a roadmap,

there is a well-defined notion of the distance between any two locations or "addresses."

This is in contrast to the typical definition of a network, in which it is ordinarily only

meaningful to talk about this distance between vertices.

We begin with a representation of the environment as a connected, undirected

network (V, E, C), with vertices V and edges E, with edge lengths given by L : E -+

R+. From this, let us define the region, A, as the set of pairs consisting of an edge

label and a continuous location along that edge, like a street name and an address.

Formally, A V V U (S x (0,1)). For simplicity however, we will refer to all points in

the region, including the vertices, as pairs in E x [0, 1] with the understanding that

(eg, 1) (ejk, 0) Viog

When it is unambiguous, we will use e E E to denote the set UtElo,1(e, t). Given

this, it is useful and intuitive to interpret C as a measure on subsets of A rather than

simply a function on E. When L is applied to a set S, we interpret it as

L(e)A ({t G [0, 1] s.t. (e, t) E S})

eEE



wherein A denotes the Lebesgue measure on [0,1]. When discussing integration and

measureability in A, it is with respect to this definition.

The region has a natural and intuitive distance metric: The distance between any

two locations in A is the length of the shortest path between them. Let d* denote

the length of the ordinary shortest path between vertices i and k according to L

(this length could be found by using Dijkstra's algorithm, for instance). The distance

between (eij, x) and (ekI, y) for e eki E £, x, y E [0, 1] is given by

d(vi, v5) =d*j

d(vi, (eik, x)) M in( x(egk) + di, (1 - x)(ej) + dk)

d((ei, x), (e, y0 -- min ( C(ei)x -- y, C(eij)(1 - Ix - y)+di) ife = e

otherwise,

=min( d(vi, (esi,x)) + d((vi, (ekly)),

d(v1 , (eki, X))- d((v, (eki,

3.1.2 Minimum Latency Covers

As before, we are interested in a policy that minimizes the expected time of finding

a goal. For the single-agent case in a bounded network, we will refer to this problem

as the Minimum Weighted Latency Covering Problem (MWLCP).

Problem 3.1.1 (MWLCP). Let P be a uniform path that covers the region. Define

the following indicator of whether a location "a" has not been visited by P before time

t. { 0 if a EU<P(T)
I (a, t)_ 31

1 otherwise

Given a measure p over the region A, ve can compute the weighted latency of the

path, w(p).

w(F)= th coen P (t),int)idp (P (t)) (3.2)

Finding the covering path minimizing Equation 3.2 will be referred to as the Min-



imum Weighted Latency Covering Problem (MWLCP).

Problem 3.1.2 (GSP,MLTP). If the region is a network and t is supported by

only the nodes, then the Minimum Weighted Latency Covering Problem (MWLCP) is

called the Graph Search Problem (GSP). If p is uniform on the nodes, then the GSP

is called the Minimum Latency Tour Problem (MLTP)

3.2 Generalizing the Index Policy

Notice that we already have a policy for the MWLCP on star-shaped networks. That

policy is to pursue the path minimizing Equation 2.5. Recall that the interpretation

is that the agent is to pursue the path with the lowest break-even goal subsidy if the

agent pays unity cost for motion and must return to its starting point if it doesn't

find the goal. Stated like this, the generalization is natural.

Let Pa be a closed path (not necessarily covering) of length e with Pa(0) = Pa(f) =

a. The break-even price of Pa is given by

, W(Pa) + (1 - A(Pa))(
7(Pa) = (a (3.3)

pt(Pa)

Policy 3.2.1. The index policy is to move in the direction of the path (or path in the

limiting sequence) that minimizes Equation 3.3.

We will refer to the problem of finding such a path as the Minimum Price Path

Problem (MPPP).

Conjecture 3.2.1. For measures corresponding to the hiding policy at a Nash Equi-

librium of the search game described in Section 2.1.4 on weakly-Eulerian networks,

the index policy is optimal.

Argument. From [40], maximum search rate is always achievable and any minimum

length cover achieves it. For weakly-Eulerian graphs such covers can be found using



local methods. The index policy which maximizes its search rate point-wise will

always find a path that achieves the maximum search rate. l

3.2.1 Complexity, Relaxation, and Approximation

As posed thus far, the index policy entails comparing every closed path from the

agent's location, of which there are infinitely many. In particular, minimizing Equa-

tion 3.3 over all closed paths is no easier than solving the MWLCP directly if we are

to include consideration of all of the covering paths: For a covering path, the index

function is exactly its expected latency.

As in the CPP we can restrict the set of paths being considered. We start by

restricting ourselves to paths that are minimum length covers of their range. Under

this restriction, we can optimize over the turn-around points of which there are now

only finitely many. This reduces the computation to a finite number of paths. How-

ever, in general graphs there will remain a combinatorial number (in the size of the

graph) of distinct paths to compare as we will shortly prove.

The MWLCP is clearly NP-hard. With uniform support across only the vertices,

it is equivalent to the MLTP which is NP-hard and has a reputation for being much

harder than the Traveling Salesman Problem (TSP). Even restricted to tree topology,

the MLTP remains NP-hard [84]. We will prove the NP-hardness of the Minimum

Price Path Problem (MPPP) with uniform measure on the vertices and tree topology

by reduction to the MLTP.

Theorem 3.2.2. The minimum price path problem is NP-hard.

Proof. Let (V, E, , xo) be an instance of the MLTP and assume we have a solver for

the MPPP. Let f+ denote the length of the longest edge in E. Construct a network

V' = V U {ao}, E' = E U {(ao, xo)} and C((ao, xo)) = d = 2|V|E+. Let the measure be

uniform over V. Solve the MPPP on this new network and let P be that solution.

From Lemma 3.2.3, we have P being a minimum latency cover of V'. Since this

cover starts with (ao, xo) its latency is the constant d more than that of the latency



of the sub-path covering V. Since this d is common to all paths, this sub-path is a

minimum latency covering of V.

Lemma 3.2.3 (helper lemma). The path P covers V.

Proof. Assume the contrary, viz., there exists some vertex v E V not in the path that

could be added to it by increasing its length by no more than 2E*. This increases the

the first term in the numerator of Equation 3.3 by no more than 2f* while decreasing

the second term by at least d/|VJ = 2f* and increasing the denominator. Therefore

adding v to the path decreases its price, contradicting optimality O

For small enough graphs, it may remain tractable to enumerate all "qualitatively

distinct" paths. Two path are qualitatively distinct if they cannot be transformed

into the same path by inserting or removing disjoint sub-paths of the form [(e, x) -+

(e, y) - (e, x)] for x, y E (0, 1). For each qualitatively distinct path, the turn-around

points y can be solved for efficiently.

If the graph is so large that we must insist on an index policy for search with poly-

nomial complexity (in the size of the network), we must make further compromises.

The remainder of this section will propose such compromises.

If we replaced the latency term in Equation 3.3 with the length of the tour, we

are attempting to solve now a so-called minimum ratio optimization problem. Given

a measure p over region A, let us define the price of subset S C A as

-) c(s) (3.4)
p(S)

wherein L, is the length of a minimum cover of S. In this section we will discuss the

problems of finding paths and trees of minimum price.

Problem 3.2.1 (Minimum Ratio Path Problem (MRPP)). The MRPP is the

problem of finding the closed path, ?, (or a limiting sequence of paths), starting at a,

with lowest 'price" as defined by Equation 3.4.

If we require that the path contain only complete edges we will call the problem the

Minimum Ratio Circuit Problem (MRCP).



The MRCP is the rooted version of the Tramp Steamer Problem (see, e.g., [57]).

Unlike the Tramp Steamer Problem, the MRCP is NP-hard. A simple way to see this

is to use the same long-edge construction as in the proof of Theorem 3.2.2 to reduce

the MRCP to the TSP.

It was pointed out in [68] that any ratio optimization problem with objective

z(x) = f(x)/g(x) for g(x) > 0 is no harder than optimizing a z'(x) f(x) + g(x)

because search for the critical -y* min2 z(x) is not difficult. As a result, one can

leverage existing algorithms for circuit minimization to solve the MRCP.

Lemma 3.2.4. Given a ratio y and a geometric network A = (V, E, L) we can con-

struct an isometric region A' with |V'| < 3|V| in which the closed path minimizing

z' = L(P) - -yt(P) is a circuit (i.e., uses only complete edges). The NODEADDING

Algorithm describes this construction.

Proof. Assume by way of contradiction that all optimal paths turn at some location

(e, t) for some t c (0, 1) and consider any arbitrary optimum. Assume without loss of

generality that the path goes from (e, 0) to (e, t) and back. Let (e, [0, t]) denote the

set UTE[ot] (er ). If

-yp ((e, [0, t])) 2tL(e),

we could construct a path with no greater cost by removing this sub-path. Therefore

we may assume the contrary.

By the construction in the NODEADDING Algorithm, the vertex at (e, 1) maxi-

mizes yp((e, [0, t])) - 2tL(e). Therefore we have

pL(e) - 2L(e) >-: 7p((e, [0, t])) - 2tf(e).

This implies that we can construct a path with no greater cost by replacing this

sub-path with one that goes from (e, 0) to (e, 1) and back.

Corollary 3.2.5. The MRPP is no harder than the MRCP.



By use of Algorithm NODEADDING and Lemma 3.2.4 we have reduced the MRPP

to the relatively well-studied problem of finding the shortest circuit that includes a

given node. At this point, one can use an algorithm of one's choice. In particular,

algorithms exist that can provide provable approximation to this problem.

However, since the MPPP is already itself a simplification of the problem of mini-

mizing Equation 3.3, the value of a provable approximation is not self-evident, partic-

ularly given the size of the bounds available. We now propose an alternative approach

that is more specific to the problem at hand.

We will refer to the MRPP on trees as the Densest Sub-Tree Problem (DSP). Al-

though computing minimum latency tours is difficult on trees, the DSP can be solved

in polynomial time as we prove in Theorem A.0. 1. Furthermore, we can do so without

searching on price 7 as shown in Algorithm DENSESTSUBTREE. In Lemma A.0.2 we

prove that the subtree returned by DENSESTSUBTREE has only one edge leaving the

root. As a result it can be interpreted unambiguously as a policy.

Let us generalize the notion of a spanning tree to geometric networks.

Definition 3.2.6 (Geometric Spanning Tree). Given a geometric network A

(E, V, C), and a root location a0, the Geometric Spanning Tree is a new, tree-shaped

geometric network A' with the same total length C2(A) = L(A'), and an association

A: A -+ A' such that d(A(a), A(ao)) = d(a, ao).

A Geometric Spanning Tree can easily be constructed by breaking each loop at

the point most distant from the root. This is depicted in Figure 3-1 and described in

Algorithm NETTOTREE. Taken together, Algorithms NETTOTREE and DENSEST-

SUBTREE provide a polynomial approach to finding dense sub-regions connected to

the agent's location. We refer to this approach as DENSESUBNET.

3.2.2 An Augmentation

Figure 3-2 depicts a relatively simple failing of DENSESUBNET. In that example,

the region is a circular sector with multiple spokes and the measure is uniform on

the arc. If the agent is in the center, the algorithm will prefer the interior spokes to



Figure 3-1: Visual description of the Geometric Spanning Tree. Two non-connecting
nodes are added to each loop at the point most distant from the root a.

Figure 3-2: Uniform measure on a the arc of a circular sector with additional spokes.
The agent is at the center of the circle. The minimum latency circuit starts with an
edge-most spoke, while DENSESUBNET initially selects an interior spoke.

the edge-most spokes. This is not what we want as it is obviously inconsistent with

aiming off-it is surely preferable to pursue one of the edge-most spokes first.

The problem is that when converting the network into a tree, Algorithm NET-

ToTREE divides the measure of continuous sub-regions between different sub-trees.

We propose the following augmentation to mitigate this effect. In the following we

ignore the case in which the densest sub-tree does not exist, i.e., Equation 3.3 is

maximized by a sequence of sub-trees converging to one with total length zero.

After applying the DENSESUBNET Algorithm, we consider replacing an initial

portion of it with a more profitable path. We do this by constructing a graph with

edge lengths corresponding to their profit under the level of subsidy associated with



that tree.

Let S be the sub-tree returned by DENSESUBNET with root ao. Let '(S)
Let ai denote the location of the first branching of that tree, or the leaf if that tree

has no branchings. Without loss of generality, assume that ao, ai E V. Let Pio denote

the path from a1 to ao in S.

Define r~ : [0, 1] - R as

r-(t) t id(ai, ao) - j dpt(Pio(t1(Pio))). (3.5)

Lemma 3.2.7. r-(1) > 0

Proof. Suppose the contrary. The path Pio is a tree that is a sub-tree of the Geometric

Spanning Tree for which L < -y* contradicting the optimality of S on the DSP.O

Let

t* = 0 if {t s.t. r-(t) < 0} = 0 (3.6)
arg mint[0,11 r(t) O.w.,

and let a* denote Pio(t*). Note that if we apply Algorithm NODEADDING with

subsidy 7*, then a* will be a vertex in the new region.

Next, we will attempt to find a shortest path between ao and a* in a weighted

graph whose edge weights correspond to subsidized cost. We construct a weighted

graph with vertices V and edges E and edge weights L'(e) _ C(e) - 7*(p(e)). Note

that these edges have both positive and negative weights and so computing shortest

paths is still potentially difficult.

The way we deal with this problem is by breaking negative cycles that do not

contain ao by removing the edge with largest length. If we find a negative cycle

containing ao, this represents a better solution than the specified tree and so we return

that. If not, then eventually there are no negative weight cycles and the Bellman-

Ford Algorithm can find the shortest path from ao to a*. Algorithm REPLACEPREFIX

describes this procedure in detail.



Algorithm NETWORKINDEXPOLICY, summarizes the entire algorithm, which we

will refer to as the "simplified index policy," for search in geometric networks in

polynomial time.

3.3 Observable Problems in Arbitrary Metric Spaces

One can consider the well-studied combinatorial optimization problem known as the

Minimum Latency Tour Problem (MLTP) as a special case of "search" with no un-

certainty. This section will apply our proposed policy to the MLTP and analyze its

performance.

The MLTP is the problem of finding the tour that minimizes the latency of the

requests. Formally, let 00 denote the starting location of the agent and 0 be the set of

requests with 101 n all elements of a metric space. The MLTP is to find an ordering

of the requests minimizing

d(06_ 1,0 0)
iE1,..n jE1..,i

Note the difference between this and the ordinary TSP: each inter-request distance is

included in the latency of every subsequent request. As we have already noted, the

MLTP is NP-hard even with a tree topology.

The literature on the MLTP has been exclusively concerned with achieving the

lowest provable approximation factor. Currently that factor resides at 3.58[26] which

can be achieved by an algorithm requiring O(n3 log(n)) time. Although the nearest

neighbor algorithm lacks a provable constant factor, we will show that its expected

performance on randomly generated instances in the Euclidean plane is very good.

Problem 3.3.1 (Prize Collecting Steiner Tree Problem (PCSTP)). Given a

weighted graph (V, 6, L), a root node x G V, and a function R : V -± R, the PCSTP

is to find an connected sub-graph T- containing x, that maximizes

E R(n) - E L(e)
nET eET



Problem 3.3.2 (Prize Collecting Stroll Problem (PCSP)). The PCSP is the

same as the PCSTP in which the sub-graph T must be an open path starting from x.

The authors of [60] provide an algorithm with a constant factor of 1.665 for the

MLTP with unit edge costs. This is notable because this factor is less than half that

of the best available for the general problem. We generalize this approach to general

distances in Algorithm MODKOUTSOUPIAS but in so doing sacrifice the guarantee.

Section 2.2.3 introduced a technique for applying the index policy to problems in-

volving multiple goals. Using this, we can treat MLTP as a special case of a measure

over the geometric network consisting of the completely connected graph of the re-

quests. The measure is one that puts probability one on each of the vertices. However

since the policy applies a normalization, this is equivalent to the one which assigns a

probability of 1/n to each node and renormalizes each time a node is visited.

The index policy reduces to finding a sequence of length k minimizing

E1,...,k (jE1,...,'i o )-1 7 -+ ) ,.k d(Oi- 1, Oi) + d(Ok, 00))
k
n

1 d(6j_1, 6 O) + - 1) d(6i_1, Bi) +d(6k, 60 (3.7)
k E ,., kE,., \E ,.,

It is important to note that Equation 3.7 lacks an important quality of a good

heuristic: tractability. In fact, solving Equation 3.7 is at least as difficult as solving

the MLTP directly. Let us remind the reader that our main goal is to present a

general purpose policy and this serves as another example of a problem to which it

can be applied. The same machinery discussed in Section 3.2.1 provides polynomial

approaches, which we re-examine in the context of the observable MLTP.

Specifically, we replace the MLTP with the MRCP which now has the following

formulation

m iE1,...,k d(4-1 , Oi) + d(Ok, ) (3.8)
circuits k

Solving Equation 3.8 is still hard. In fact, even if we replace the requirement of a

tour with a tree, the problem is equivalent to the PCSTP, which is NP-hard.



At this point we must resort to further heuristics, for instance those in the litera-

ture or that described in Section 3.2.1. For the latter, Algorithm NETTOTREE will

generate the minimum spanning tree, and the sub-tree returned by Algorithm DENS-

ESUBNET has a natural interpretation as the most node-dense, rooted sub-tree of

the minimum spanning tree. We suppose that Algorithm REPLACEPREFIX provides

little to no improvement.

Conjecture 3.3.1. The index policy both with and without the above simplifications

(specifically, Algorithm NETWORKINDEXPOLICY) has a constant-factor guarantee for

the MLTP as does its simplified version .

Argument. This conjecture is based on the fact that many of the algorithms with

such guarantees (including, in particular [26]) are based on repeatedly approximating

the PCSP or PCSTP. The index policy and it's simplified version do likewise. 0

3.3.1 Some Experimental Results

To put the following results into context, let us recapitulate how we arrived here. By

theoretically analyzing the CPP, we discovered an index policy. We then generalized

that policy by analogy to search problems in more general one-dimensional spaces.

Next, we introduced simplifications of that policy to improve tractability. Since we

can model zero-dimensional spaces in this framework, we find that a difficult but well-

studied combinatorial optimization problem is a special case of the set of problems

we have already addressed.

We examine the performance of the Index Policy, Nearest Neighbor, and Algo-

rithm MODKOUTSOUPIAS on instances of the MLTP generated uniformly in the Eu-

clidean unit square.

3.3.2 Multi-Planners

Recall that we are trying to minimize the index function, Equation 2.5, over the set of

closed paths. All of the work in this section has been working around the issue raised



Suboptimality for the MLP on 7 nodes

10 mNN
Koutsoupia

100

10

0

10-2

10 -

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 0 2.12.2 2.3 2.42.52.6
Suboptimality

Figure 3-3: Sub-optimality histogram for the MLTP with 7 nodes

Suboptimality for the MLP on 10 nodes

Index
- NN
- Koutsoupias

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3
Suboptimality

Figure 3-4: Sub-optimality histogram for the MLTP with 10 nodes

101

C

0 -2



Comparison with the Index policy on 30 nodes

10

10 Koutsoupias.

100

C

R3 10-1

102

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
Latency over that of the Index Policy

Figure 3-5: Comparison with the index policy for the MLTP with 30 nodes

by the large number of such paths. This too will be the focus of much of Chapter 4.

Nonetheless, the thesis of this dissertation is simply that the index function is a good

metric by which to compare paths.

In particular, given a small set of paths, we can easily compare them regardless of

how they were generated. For example, one need not choose between Algorithm NET-

WORKINDEXPOLICY or an algorithm for the MPPP with a provable guarantee: one

can run both and at each instant choose the one with lower index.

Given a set of planners, the indices returned by these planners provide a means for

comparing them. This lets us define a multi-planner which at each moment chooses

the one with lowest index.

3.4 Metric Embedding

This section presents a methodology for searching one-dimensional subspaces of arbi-

trary metric spaces. We will approach the problem by approximating the topology of



Comparison of Index and Nearest Neighbor Policies

101 - 10
30

10

10 -
C

210-
10

102- .

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
Ratio of Objectives (Index/NN)

Figure 3-6: Comparison of index and nearest-neighbor policies on the MLTP



the metric space with a geometric network. We argue that this is valid because the

outer space is relevant only insofar as it enhances the connectivity of the space being

serached. The methodology presented in this section can fairly be called ad hoc and

fails to meet the standard for an "algorithm" as defined in Section 1.1. Nonetheless,

it will form a component of an important unifying example in Section 5.8.

Suppose the region is an arbitrary metric space, but goals are restricted to a sub-

space with dimension one, which we will refer to as the "goal network" G. This is a

natural model for aerial vehicles performing surveillance of road networks, for exam-

ple. We will tackle this by modeling the region as a geometric network corresponding

to the goal subspace and adding finitely many edges to describe possible motion of

the agent in the larger space.

What differentiates aiming off, discussed in Section 2.3, is simply that the goal

distribution is fixed. If the agent is initially very far from the road, the variance of

the goal distribution will not vary greatly by heading. In such a case, the problem of

aiming off can be thought of as an instance of the current problem.

We were able handle the problem of aiming off because we could assume that

* the agent should go straight to the road, and

e once on the road the agent should never leave.

The first assumption should be no less valid, but the second is certainly questionable.

For instance, in two-dimensional space, the agent might quite routinely cross roads

without any intention of searching them at all.

Given some minimum distance 5 , we can break each edge e into FC(e)/1 new

segments and then add edges S+ to form the completely connected graph in the new

node set. This new network G' will have order of edges.

Remark 3.4.1. Let A denote the mapping from locations in G to G'.

max d(ao, a1)A - d(A(ao), A(ai))' < (3.9)
ao,ai G



From the particulars of Algorithm NETWORKINDEXPOLICY and the issues de-

scribed in Section 3.2.2, its not clear that we even want a fine discretization even if it

is convenient computationally. In particular, as we add direct paths from the agent's

location to each small segment, the Algorithm DENSESTSUBTREE will ultimately

choose the one with the smallest ratio of distance to probability density.

To prevent this, we propose the following means of culling the set S+. First sort

these edges by increasing length, then iteratively add them provided that

d (A (ao), A (ai))'G >J
d(ao, ai)A

In effect we are creating the graph in which for all location pairs, ao, a1 we have

distance error bounded by either an absolute error of 6 or fractional error of J2. This

procedure is described in detail in Algorithm METRICEMBEDDING.

3.5 Multiple Agents

The primary focus of this dissertation is search involving a single agent. However,

a number of significant applications exist in which multiple agents search coopera-

tively. This section presents possible approaches for applying the index policy to

such applications.

In the CPP there was a natural and obvious way to extending the index policy

to a multi-agent setting. We knew that we would never want two cows searching the

same path and so we could safely assign paths to cows in increasing order of index.

This follows from the decoupled nature of bandit problems themselves.

In problems that are not indexable, for instance search on geometric networks,

single-agent policies are not so readily generalized into multiple agent policies. Con-

sider the index policy when applied independently and simultaneously by multiple

agents. It is entirely possible that the paths that different agents choose to minimize

Equation 3.3 may have a non-empty intersection. However, only one of the agents

can search a particular location first.



We address this by assigning the intersection to the agent whose path has lower

subsidy. This is not the only possible approach, for instance we could assign the

intersection based on whichever agent arrives first. We chose this solely because it

lends itself to a simple algorithm that is polynomial in the number of agents.

Algorithm AUCTIONPLANNER defines a winner-take-all auctioning approach. Each

agent computes the path with minimum price and the agent whose path has lowest

price is assigned to it. Then the measure associated with that path is removed and

the unassigned agents recompute their minimum price paths. This is repeated until

each agent is assigned a path.

It should be remarked that this will not necessarily assign cows to different paths

in the CPP. Consider two cows on the real-line. Clearly they should go in opposite

directions. But if the optimizing path for the first cow is short (or infinitesimal), then

the second cow might also try to go in the same direction but plan on going further.

We suppose that this problem could be mitigated by forward simulation. Instead

of only zeroing-out Pi in Line 12 of Algorithm AUCTIONPLANNER, one could forward

simulate agent i to get a path Pj of some minimum length and zero-out ?i before

the next round of planning. We do not investigate this possibility. Furthermore we

believe a more principled treatment of this issue is likely one of the more fruitful

directions in which this dissertation could be extended.

An alternative approach to handling the multiple-agent case is simply to par-

tition the region into as many sub-regions as agents and have each agent operate

independently. We will examine this strategy in Chapter 5.



Chapter 4

Search in Higher Dimensional

Spaces

This chapter generalizes the index policy developed in Chapters 2 and 3 to higher

dimensional spaces.

We will concentrate on two main problems. The first of these will be the Lost in a

Forest Problem (LFP) in Section 4.2 in which an agent moves with perfect dynamics

and a known environment but from an unknown starting state. For this problem we

will restrict ourselves to Riemannian Manifolds in which the goal includes the (pos-

sibly empty) boundary of the space. The second is a generalization of the Minimum

Weighted Latency Covering Problem (MWLCP) (Problem 3.1.1) in which an agent

with a perfect, finite-radius sensor moves with known position but the location of the

goal is unknown. For this problem we can consider general length spaces and place

no special requirements on their boundaries.

In Section 4.4 we will briefly attempt the problem of optimal control in which the

agent has complex, noisy dynamics and a limited sensor but nonetheless wishes to

reach a goal configuration.

We do not revisit the problem of multiple agents in this chapter. We make the

following remarks.

. m agents in a region A can be treated as a single agent in Am.



e Partitioning policies remain possible in length spaces.

* Algorithm AUCTIONPLANNER remains applicable and about it we making the

following conjecture.

Conjecture 4.0.1. The expected intersection between maximizing paths selected by

different agents decreases as the dimension of the space increases. As this happens,

the performance of AUCTIONPLANNER can only improve.

Argument. This conjecture is based simply on the fact that distances expand as di-

mension increases. Since Algorithm AUCTIONPLANNER encourages agents to sepa-

rate, this fact should serve to make doing so easier.

4.1 Preliminaries

Lemma 4.1.1 (Shortest Path Principle). In a length space, sub-paths of shortest

paths are shortest paths.

Proof. Assume the contrary and consider a shortest path Poi from ao to ai that has

length to1. Without loss of generality assume that there exists a path PO from ao to

a = Poi(x) for some x E (0, to1) of length to < x. We can construct a new path as

follows:

PO = Po (y) for y E [0, to)

Poi (x + y - to) for y c [to, fo - x + o]

Which is continuous at fo,has the same endpoints as Poi, and has length toi -x+to <

to1. To establish the contradiction, all that remains is to verify uniformity.

lim d(Ps1 (i)jPs1 (f - h)) - lim d(Po(f), To(e - h))
hao h hwo h
. d(PO1 (f + h) 7P61 (t)) _ d(Poi(x + h), 'Po(x))
hm = 1. L

hlohi-+ h



Definition 4.1.2 (Riemannian Manifold). A Riemannian Manifold is a length

space that is locally Euclidean. In particular, a Riemannian Manifold has constant,

integer point-wise dimension.

A Riemannian Manifold is a metric space in which the notions of "angle" and

"straight" are meaningful. In particular, the shortest paths on the interior of the space

are defined to be "straight" and from this, we can define the set of geodesics which

are everywhere locally straight. Additionally, since the space is locally Euclidean,

there is a well-defined notion of the angle between paths at a point of intersection.

4.2 Lost in a Forest

In [16] Bellman posed the following problem:

Problem 4.2.1 (Minimization problem). We are given a convex planar region

A and a random point P within the region. Determine the paths which

1 Minimize the expected time to reach the boundary, or

2 Minimize the maximum time required to reach the boundary.

Consider, in particular, the cases

a A is the region between two parallel lines at a known distance d apart.

b A is the semi-infinite plane and we are given the distance d from the point P

to the bounding line.

This problem was then known as "Lost in a fog" and later "Lost in a forest." We

will refer to Problem 4.2.1-1 as the Min-mean Escape Problem and Problem 4.2.1-

2 as the Min-max Escape Problem. Section 4.2.3 develops an index policy for the

Min-mean Escape Problem not just for convex planar regions, but for regions which

are Riemannian Manifolds. Sections 4.2.1 and 4.2.2 describe all the cases of the each

of these problems that have been solved as well as those for which any results are

available whatsoever. In Section 4.2.5 we will use them as test cases for the general

policy that we will develop.



210

P d

d
60

(a) Zalgaller's path solving Prob- (b) Isbell's path solving Problem 4.2.1-2(b)
lem 4.2.1-2(a)

Figure 4-1: Solutions to Problem 4.2.1-2 Cases (a) and (b). From [35] [used with
permission]

4.2.1 Existing Work on the Min-Max Escape Problem

The authors of [35] provide a comprehensive survey on the Min-max Escape Problem,

which we now summarize. Problem 4.2.1-2(a) was solved in [94] by what is known as

the Zalgaller path which is shown in Figure 4-la having parameters

<p=arcsin I+ 4sin Iarcsin1))

= arctan ( sec(<)

Problem 4.2.1-2(b) was solved in {49] and is shown in Figure 4-1b.

Definition 4.2.1 (Fat). Let A be a compact, convex subset of the plane of diameter

0. A is fat if a 60-degree rhombus with major axis 0 can be fit inside it.

The min-max escape path for any fat polygon is a straight line[78]. The min-max

escape path for a rectangle is either Zalgaller's path or a straight line whose length

is that of the diagonal, whichever is shorter[35].

There are two more cases for which there are accepted but not rigorously proven

answers, those being the equilateral triangle and finding a circle from a known



B D

A C

Figure 4-2: Besicovitch's path for escaping an equilateral triangle with unit edge
length is the optimum over the set of paths with AB = BC = CD x and LABC =

ZBCD = 0: with x = v12/14 and 9 =r - 2 arcsin(1/v/25).

S Cr

TT S

rCPQ
R t 1.24s<2s

(a) External Case (b) Internal Case

Figure 4-3: Gluss's path for finding a circle of radius s from a known distance r. Ge-
ometry: O'TS is straight, QR is tangent to F and ray O'Q bisects ZPQR. From [35]
[used with permission]

distance. For escaping the equilateral triangle, the authors of [24] optimized over

parametrized path shown in Figure 4-2 which is hypothesized to be optimal for all

paths.

For the problem of finding the circle, the agent initially knows the distance to a

circle and whether it is on the interior or exterior, but does not know the direction to

the circle's center. The solution proposed by [47] to the external case is an extension

of [49] (Figure 4-1b) and is shown in Figure 4-3a.

In [35] the authors examine the interior case and show that the path proposed

in [47] for the exterior case is still preferable to a straight path when the ratio of the

initial distance over the circle radius is smaller than about one third. This path is

shown in Figure 4-3b.



4.2.2 Existing work on the Min-Mean Escape Problem

For the Min-mean Escape Problem very little is known. It is conjectured (e.g. in

[36]) that a straight path is optimal for the uniform distribution inside a disk. In [36],

the authors determine the optimal two- and three-segment paths for the infinite strip

(Case (a)). The work [94] also addresses the Min-mean Escape Problem but contains

some error, as pointed out by [36] and our results confirm.

For the half-plane (Case (b)), [46] optimizes over paths initially identical to Fig-

ure 4-1b but ending with a quadratic curve.

4.2.3 The Index Policy

Before developing the policy, let us restate the LFP in the terminology of the control

of mobile agents.

Problem 4.2.2 (The Lost in a Forest Problem (LFP)). Assume that a mobile

agent's state space is a Riemannian Manifold that we will call the region, A, a subset

of which we will call the "goal," G, which includes the (potentially empty) boundary

of the region. The agent would like to reach the goal from an unknown starting pose,

which is measured by pN. Assume that the agent is a noiseless single integrator and

that its only sensing capacity is that it can tell whether or not it has reached the goal.

The Lost in a Forest Problem (LFP) is to find a control policy that finds the goal in

minimum expected time.

The reason it is important that the goal include the boundary is that the motion

at the boundary introduces a major complexity. Specifically, there is information to

be gained on the boundary, and computing the value of information is fundamentally

difficult. For instance if the region contains a corner, it may be possible for the agent

to localize by moving in such a way as to reach it. Doing so might be optimal even

if it involves moving away from the goal.



Recall that the index policy as described in Chapter 3 is to pursue the closed path

TP starting from the agent's location a minimizing

w(?P) + (1 - 1(P)))()PY(a) =min.(41
p(p

wherein w denotes the weighted latency of the path, C its length, and P(P) is the

probability that the path intersects the goal. The interpretation of this metric remains

valid.

The difficulty is in using it. In higher dimensions, the set of closed paths is much

more complex than in a network. To be able to apply the index policy to these spaces,

we must restrict the set of paths to a searchable space. In Riemannian Manifolds, we

will consider the set of straight paths.

We begin with some notation. From the geometry of the Riemannian Manifold

define the set of headings, e, which describe all of the geodesically straight paths.

Let P-, denote the geodesic path of heading 0 E c starting from x. For example, on

the surface of a sphere the set UOe Ps,, enumerate the great circles that pass through

x. Note that these paths need not be closed or have finite length, for instance helices

on tori.

Let P', 6(t) denote the location of an agent after pursuing path Px,, for time t from

initial state x. Let IG(P, t) be the indicator of whether the set G n UrE[Ot] P(r) is

non-empty.

We define a measure on R+, (o such that 4o([a, b]) = E [IG(Pxs,, b) - IG (Px9 a)].

Note that 4>o is not necessarily a probability measure, as it does not necessarily

integrate to one in an unbounded region or a region containing straight, closed paths.

Given a heading 0, consider now the problem of the optimal subsidized search

distance. In this problem, the agent may search any distance in the 0 direction and

pays unit cost for motion. If it finds the goal it receives payout 7, but if it does not,

it is obligated to return to it's starting point.



The expected payout for searching a distance t is given by

p(y, t) a@o([0, t]-j Td'Jo(T)- t + E [d(Px,o(r), x)] (1 -<Dr ([0, t])).

(4.2)

In spaces for which d(PxO(t), x) is non-decreasing in t, e.g., Euclidean spaces, we have

the simplification,1

ft

p(7, t) = <-y([0, t]) - Td'bo(T) - 2t(1 - <bps6 ([0, t])). (4.3)

The minimum subsidy at which any distance is profitable is therefore

(0) = inf{y s.t. sup p(-y, t) > 0} (4.4)
t>o

Policy 4.2.1 (Index Policy). We define the index policy as the one that always

selects the heading minimizing

min 7*(0). (4.5)
Orce

To fit the original statement of the LFP into this framework, we let the region be

the that of the forest crossed with the initial heading, i.e. [0,27r). The goal set is that

of the original problem, again crossed with [0, 2-r). Let the new distance metric d(., -)

be any metric that is consistent with the euclidean distance in the original forest,

d(., -)F- In Lemma 4.2.2 we prove, from the symmetry of the goal set, that we do not

need to consider any policies that turn.

Lemma 4.2.2. Let d(., -)o = d(-, -) - d(-, -)F, taking the necessary projections. The

choice of d(-, -)0 is not relevant because no optimal policy turns.

Proof. Let 11 be an optimal policy and assume, by way of contradiction that it turns.

Specifically, let (P2,4t)2, P2,9(t)9 ) denote the two components of the agent's loca-

tion at time t along the path taken by policy 1 starting from location (x, #). Let

t*(x, #), g*(x, #) denote the time and place at which this path that reaches the goal

'We also suppose that for spaces lacking this property, approximating Equation 4.2 with Equa-

tion 4.3 will have a relatively limited effect.



set. We will denote the correspondence using P.-(g*) = t*. The expected search

time can be written as

E [t*(x,)] = E [P~(g*)](4.6)

Let 1' be the same as H except without turning and let P', denote the first compo-

nent of the path taken by 1' from starting state (x, #). Since the goal set is symmetric

we know that H' also finds the goal at g* (x, 4). Therefore the expected search time

under H' is also given by

E [-P'-1(g*)] (4.7)

But examine arc lengths of these two paths. For clarity we write the metric Ds(x, y)

rather than d(x, y)s.

t* D ((P,o(t)z + +P,O(t)z, P2,o(t)0 + dP',O(t)o) , (P2,O(t)z, XO(t)o) d

= DF (Px,0 (t)z + d1x,e(t)z , Px'o(t)z +

Do P' 0(t)0 + dPO(t)O ,P.X,o(t)O dt

> j DF (Px,O(t)z ± dxO(t)z, x'O(t)z dt

= D (?P,o(t), + +P,o(t)z, I,9 t)) dt

We find that P' is shorter, contradicting the optimality of H 0

As a result of Lemma 4.2.2 we may restrict our attention to control policies that

do not modify the initial orientation.

In problems in which the goal set is not symmetric to orientation, we would need

specific information about the metric to properly formulate the problem. Specifically,

if there is a time-cost for turning, this describes a distinct metric which we must use

instead of d(-, -)F- If there is no such cost, then we are once again free to disregard

turning: The agent could simply spin with infinite speed and pursue the solution to

the problem in which the goal is taken to be the union over orientations.



4.2.4 Implementation Details

The policy we have described is a function from measures over a Riemannian Manifold

to headings. Since arbitrary measures are not finite-dimensional there remain some

practical details to nail down. In particular, there is the matter of how sensitive the

policy is to our choice of representation.

For instance, supose we track the probability distribution using a particle filter. It

is possible that the minimizing t in Equation 4.4 is very short and gets a exactly one

particle to the goal. Similarly if we implement this policy in discrete time, there is the

problem that the time interval might be unable to accurately capture the supremum.

We address this problem by replacing the inft>o in Equation 4.4 with mint 6, and

round small latencies up to 3 t.

ft max(r, t)d<Dp(eo)(r) + 2t(1 - <b(0, t))
min min
oee t> 4(0, t)

Nonetheless, without a very large number of particles or large ot this has the

potential to lead to erratic behavior which is driven by the realization of the few

particles closest to the goal. While "particle depletion" is an inherit difficulty of the

particle filter itself, the structure of the index policy serves to amplify this issue. For

the LFP with uniform support over convex regions this is not a serious consideration.

Such depletion can only happen late in the trajectory: after the important decisions

have been made. For supports and regions in which "unlikely observations" can

happen earlier, a particle filter implementation of the index policy will be sensitive

to the resampling strategy.

An additional concern is that Equation 4.5 might have multiple minima. Dis-

cretization over time and over headings can lead to zig-zagging when going straight

would be preferable. We illustrate this by examining the index policy for the problem

of reaching a circle of radius r from an initial distance of ro outside it.

Figure 4-4 depicts the state at an intermediate time. The green arc F, with radius

s = ro + r, is the set of possible agent locations with respect to the blue goal set G.

We will examine the two headings shown in red.



F,0 = 2.

,0 = 2r

Figure 4-4: Two distinct headings minimizing Equation 4.5



The distance d is the agent's radial distance from its starting point minus ro. If

the distance d is sufficiently large, the heading selected will be hi, but for sufficiently

small d > 0 consider moving in direction 0 = arccos(1 - d/r) a small distance 6t. Let

#= arccos(1- d/s) and let L denote the angular length of F. When L > (0- ) +7r/2,

we have

7*(hi) ~ 2s -- (4.8)
(0 - #) + 7r/2 4

and

-*(0) 2sL cos(0 - #). (4.9)

From these expressions, we should expect the policy to following heading tracking 0

until the distance d is reached whereupon the two headings are have equal subsidy. At

this point we have two distinct headings minimizing Equation 4.5. Pursuing either for

a non-zero distance will push d to be too large or too small, resulting in the oscillation

visible in Figure 4-9.

Naturally, the period of this oscillation can be reduced by decreasing 6 t. However,

if we also discretize the set of headings, the oscillations will persist. The period of

the large initial oscillations in Figure 4-8 are over 100 time-intervals even while the

set of headings is discretized at a fidelity of 7r/128-less than 1.5 degrees.

An obvious approach to dealing with this issue is to forward simulate the policy

and apply smoothing. Since the topic of "general" approaches to smoothing is vast

in itself, we will not address it in particular. We simply remark that for the LFP

at least, it is not difficult to find, algorithmically, a frequency cut-off that effectively

differentiates the signal from this oscillation.

In the implementations that we use to generate the results in Section 4.2.5, we use

discrete time (Equation 4.2.4) and heading. When the smoothed path is significantly

different we will show both.

We represent probability using a particle filter. As we previously implied, the

resampling strategy can have a profound effect on the outcome. We used two ap-

proaches. In one, we assume a very small amount of noise in the dynamics and use

standard resampling techniques. If we wanted a robustly successful control policy



0.2-

0.1

0.0

-0.1

-0.2-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 4-5: Paths for escaping the equilateral triangle: There is little differentiation
between these paths in terms of expectation.

with a small number of particles this was an effective strategy. Even though the ex-

pected search time differed little, it introduced an appreciable amount of qualitative

variation between the trajectories produced by subsequent trials. This was most pro-

nounced for the case of the equilateral triangle in which just about any "reasonable"

strategy has comparable expected length. All of the trajectories shown in Figure 4-5

have expected search times of within 3% of one another.

For the purposes of comparison with theoretically derived paths, this is not what

we want. More effective in producing repeatable trajectories was to use a very large

number of particles and simply not resample at all. For the figures and results in

Section 4.2.5 this is the approach we use.

We also explored using a grid-based representation of probability, but found that

the necessary fidelity was very high: For problems in dimension greater than three



this would likely be prohibitive. The reason for this is as follows. Suppose that ot
in Equation 4.2.4 is comparably small to the grid spacing. The minimizing heading

is able to find a path with favorable round-off errors. When the minimizing distance

is short, this can have an appreciable effect. As a result, ot must be large compared

to this discretization. Since we require 6t to be small compared to the region, this

necessitates a very large number of grid points.

Examine, for example, the trajectory shown in Figure 4-10, which also shows

Besicovitch's path for the equilateral triangle. The path is based on a grid with

millions of points yet still contains a noticeable discretization artifact. One can verify

this by rotating the triangle with respect to the grid axis. Under small rotations, the

orientation of the kink moves sympathetically.

A possible solution which we do not explore would be to carefully select headings

and distances to optimize over such that these errors are either absent or common to

all paths.

4.2.5 Experimental Results

We now compare the trajectory produced by the index policy to the those from the

literature for the scenarios described in Sections 4.2.1 and 4.2.2.

Infinite strip

Figure 4-6 and Table 4.1 compare the shape and expected escape time, respectively,

for index policy path (blue), Zalgaller's path [94] (green), and the three-segment

optimum from [36] (red). Table 4.1 contains the expected search times for these

paths. We find the non-smoothed index path to be within 1% of the three-segment

optimum.

Half-plane

Figure 4-7 shows the optimum over a parametrized version of Isbell's curve. Figure 4-

8 shows the trajectories considered and Table 4.2 gives their expected search times.



The trajectories in Figure 4-8 are aligned to share a worst case. The pink, outer-

most trajectory, shown only in Figure 4-8a, is that produced by gradient descent.

The red, inner-most trajectory is the min-max solution from [49]. The light blue

trajectory, initially similar to the min-max solution is that from [47]. The green and

dark blue trajectories are the smoothed and non-smoothed index policy trajectories.

The smoothed index trajectory is within 5% of [47]. Although the non-smoothed

trajectory is substantially longer, it considerably outperforms the gradient method.

Circle from known distance

We examine the particular case in which the circle has radius s = 2 and the initial

distance r =1 outside it. The path produced by the index policy is shown in Figure 4-

9 both with and without smoothing. The inner-most red path is the min-max path

proposed in [46].

Remark 4.2.3. In the limit of s -+ 0 all three trajectories are identical and optimal.

Argument. From [69] it is optimal to trace a circle.

Equilateral Triangle

Figure 4-10 overlays the index policy path generated by a grid-based representation

with Besicovitch's path. We feel that the similarity is quite striking. The Besicovitch

path has length ~ 0.982 while the index path shown has length 0.988, in a triangle

with edge length of unity. As it happens, both paths are beaten in expectation by

the straight path even though it has length one.

Figure 4-5 also shows a number of paths generated by particle filter implementa-

tions of the index policy. Table 4.4 shows the expected escape time for the grid-based

index path and the worst-case particle filter path as well as that of Besicovitch's path

and the straight path.



0.8

Figure 4-6: Paths for escaping the infinite strip under the index policy (blue), Zal-
galler's path [94] (green), and the three segment optimum from [36] (red).

Index Policy [36] 3-segment [94] min-max
0.893 0.884 0.917

Table 4.1: Expected escape times from the infinite strip using the trajectories shown
in Figure 4-6

[49] [46] Index smoothed Gradient 7r + 1
3.628 (3.660) 3.469 (3.598) 4.435 3.782 5.876 4.142

Table 4.2: Mean escape time from the half-plane for various trajectories. Our results,
based on Monte Carlo, were not consistent with those of [46]. We show ours in
parenthesis.

[46] Index smoothed 7r + 1
3.853 4.493 4.082 4.142

Table 4.3: Expected search times for the circle from known distance.

100



E (d) ;- 3.4691

A F W

Figure 4-7: Gluss's path for min-mean escape from the half-plane. In [46], the authors
optimize independently over 0 and quadratic curves XW tangent to the circle and
perpendicular to the bounding line.

-1.5 -1.0 -0.5 0.0 0.5 10 1.5

(a) with gradient (b) without gradient

Figure 4-8: The trajectories under consideration for the half-plane. They
such that they share a starting point and a worst case.

are aligned

101

4.

3-

2

0 -

-3 -2 -1 0 1 2' 3 4 5 6.



1.0 -

0.5

0.0

-0.5

-1.0-

-1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Figure 4-9: Smoothed and non-smoothed trajectories for the index policy for problem
of finding a circle of radius 2 from unit distance on its exterior. The inner-most path
is the extension the path proposed in [46]

Index Policy (pf) (grid) [24] Straight
0.3200 0.3194 0.3175 0.3129

Table 4.4: Expected escape time from the equilateral triangle with unit edge. The
number reported as (pf)is for the worst particle filter path from Figure 4-5, while
(grid) refers to the path in Figure 4-10.

102



0.4 -

0.2

0.0

-0.2-

-0.4

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4-10: The grid-based index path and the Besicovitch path

Other Figures

The index policy goes straight in the 60-degree rhombus and the 60-degree circle

section as well as regular polyhedra with four or more sides. It was proven in [91]

that the min-max escape path out of any circle section with angle between 60 and

180 degrees is a straight line. As we've already discussed, the min-max escape path

out of an equilateral triangle is not straight, although Table 4.4 suggests that the

min-mean escape path might be.

4.3 Minimum Weighted Latency Coverage

In contrast to the LFP-in which the goals were known but the agent's state was

not-we now return to our original, and more usual formulation in which the agent's

location is known but that of the goals are not. For this section we will continue to

assume that the agent is a noiseless single-integrator, but now also assume that its

initial state is known. We will also now assume that the agent has a perfect sensor

of finite radius rs, i.e. it detects a goal if and only if the its location is within r, of

103



the goal. The problem is to determine a control policy that finds a goal in minimum

expected time.

Recall the MWLCP from Section 3.1.2. We generalize this formulation as follows.

Define the r,-coverage of a set to be

Cr(X) U Br(,(a). (4.10)

aEX

wherein B, (a) denotes the r,-ball centered at a. We redefine the indicator function

from Equation 3.1 to include the sensor radius.

I,rs(a, t) = 0 if a E C.(1([0,)]))1)
1 o.w

The weighted latency of a path of length f is

w(P) = j tI,(?(t), t)d p(Cr (P [0, t])). (4.12)

Problem 4.3.1 (Minimum Weighted Latency Covering Problem (MWLCP)).

The Minimum Weighted Latency Covering Problem (MWLCP) is to find a path that

is an r,-cover of the region and minimizes Equation 4.12.

The most significant difference between the MWLCP and the LFP is that in the

LFP the boundary was special. Specifically we required that the goal contain the

boundary to avoid the particulars of sensing, motion, and inference on the boundary.

Now that the agent's state is observable, this is no longer an issue.

4.3.1 Relevant Work

The search problem emerged primarily from the immediate concern posed by sub-

marines in World War II[28]. Early theoretical work was primarily concerned with

the optimal allocation of effort, which is how search time would ideally be spatially

distributed, ignoring motion constraints (see, e.g. [86] and its review [59]).

104



When trying to determine actual search trajectories, this was useful only insofar

as it could be used to verify the optimality of intuitive strategies, i.e., sweeps over

bounded, planar, Euclidean regions (e.g., [40]), as we demonstrate.

Define the maximum search rate as

max max (t), t)
~, t dt'

This is the maximum rate at which the agent can see new locations.

Consider the search problem with uniform support over a bounded planar region.

Let A(A) denote the area of the region. The maximum search rate is 2rv for an agent

with speed v. If there exists a r,-covering of the region with length A(A)/(2rv),

then that is surely optimal, since the rate at which goals are found is everywhere

maximized. Furthermore, in the limit of r, -+ 0 this is the case for the uniform

measure in any planar region.

With the exception of the results for search on the real line, based on first-order

optimality and discussed in Section 2.2.6, it is by this type of argument that optimality

has been established for search problems. For instance, under sufficient restrictions

on pL, one can always construct sweeps that are asymptotically optimal in the limit

of r, -+ 0[40]. The result [3], discussed in Section 2.2.6, establishing the optimality

of minimum length covers on weakly Eulerian graphs is another example of such an

argument.

However, this approach can only be applied in a very limited set of circumstances,

specifically, when there exist paths that exactly achieve the theoretical bounds and

someone had the ingenuity to construct them.

Coverage

A well-studied and closely related problem is commonly referred to as the coverage

problem, which is that of finding a minimum length, as opposed to minimum latency,

r,-cover. This research has been focused on bounded, but non-convex subsets of

the Euclidean plane. The survey [27] taxonomizes the available algorithms into two

105



classes:

" randomized and behavior based, and

" those based on cellular decomposition.

The former class of algorithms are metaphorically based on simple strategies seen

in nature. The research is devoted to finding conditions under which the region is

almost surely eventually covered. These algorithms are generally advocated for the

case in which the geometry of the region isn't known in advance. Such an approach

is a natural one for an inexpensive floor-sweeping robot, for instance.

The latter class involves dividing the region into sub-regions that can be covered

by simple sweeps and then ensuring that the agent or agents sweep each sub-region.

These algorithms are advocated for situations in which

* such policies are known, a priori, by the above arguments, to be optimal, or

" when thoroughness is more important than speed, like mine sweeping, for ex-

ample.

4.3.2 Search in Length Spaces

Having defined weighted latency in Equation 4.12, we will use our usual subsidized

stopping problem as a means of comparing trajectories. Let P be a closed path

starting from location x. The index or price of this path is given by

w(P) + L(P)(1 - p(C,,(P))). (4.13)
p (C,,(T))

The index policy is simply to pursue the best path with respect to this metric.

Since the space of all paths is infinite-dimensional, we need to restrict the set

of paths considered to a smaller set of candidate paths. For this to be an effective

strategy we need the set of candidates to be

e searchable, and

106



e to include good paths.

In Riemannian Manifolds, we considered the straight paths. In length spaces we do

not have a meaningful of a notion of "straight," and so we must find another way.

If the region is a finite-dimensional length space, we suppose that a reasonable

such set is a minimal set of shortest paths from the agent's location. Let Q(x) denote

the set of shortest paths starting from x. To avoid distracting non-existence issues

we allow these paths to use the closure of the region. The set of interest is

Q(x) {P E Q(x) s.t. #]'P' E Q(x) s.t. P C P'}.

The dimensionality of Q is still potentially larger than that of the region, for

example in [0,1]2 using the L1 metric. We can further reduce the size of this set,

by including only one shortest path for each endpoint. Let < be an arbitrary or-

dering on paths. Let Qx(a) denote the set of shortest paths from x to a, {P E

Q(x) s.t. P(d(x, a)) = a}.

U min{Qx(a)}.
aEA s.t. Q(a)#0

The set of paths V has, at most, the same dimensionality as A. Particularly if

Equation 4.13 varies smoothly throughout V, searching this set is not prohibitively

difficult, provided that the dimensionality of the region is not very large.

If the region is a Riemannian Manifold, there is a potentially significant difference

between searching over heading, as described in Section 4.2.3, and searching over the

set of longest shortest paths. This is illustrated by helical path shown in Figure 4-11

which can be found by searching over headings, but is not in the set V. In such a

case it is surely preferable to search over headings since these will contain the shortest

paths as subpaths.

107



Figure 4-11: The helical path is not a shortest path between any pair of points.

4.3.3 Comparison to Sweeping Policies

There is only a small set of problems for which an optimum is available for comparison,

which are described in Section 4.3.1. Since we are not especially concerned with the

zero sensor radius limit, (and we have already discussed trees and Eulerian graphs)

this set includes only uniform density over Euclidean spaces that can be nearly or

exactly covered by a path of width 2r,. Theoretical arguments aside, people have

been mowing fields for long enough to have established a solid consensus for such

cases.

For cases in which such a path is not straight, the index policy is likely to be

sub-optimal. The reason for this is that the second term in Equation 4.4 biases the

choice towards longer, more successful, straight paths. If A = [0,1]2 and we use the

Euclidean metric, the agent will initially move in the direction of the most distant

corner. Which seems obviously wrong...

Although a sweeping seem obvious in this case, it should be remarked that [0,1]2

cannot be perfectly covered by such a path for any r, > 0 as is shown in by the

red sub-region in Figure 4-12b. The simple sweeping path moves all the way to the

boundary, as shown in Figure 4-12a, will actually perform less well than the index

policy in some instances with large enough sensor radii.

108



(a) The simple sweeping strategy (b) A smarter sweeping strategy

Figure 4-12: Sweeping strategies

To explain this counter-intuitive result consider the last small - before the bound-

ary. In this motion the agent sees an new area of only E3/(2r,), but delays the rest

of the region by e. As in the case of the triangular distribution on the real line

(Section 2.2.6), exhausting the direction is a losing proposition.

The sweep shown in Figure 4-12b is addresses this and is always better than the

index policy. Figure 4-13 compares the performance of the index policy and these

two sweep policies while varying the sensor radius.

4.4 Control Problems

This section will briefly discuss the possibility of extending the index policy to prob-

lems involving control of dynamical systems that are not well-described by deter-

ministic single-integrators. Section 4.4.1 discusses the possibility of more complex

dynamics. Section 4.4.2 will discuss the ramifications of introducing noise into the

dynamics of the system.

109



10.0

5.0

3.0-

U
@ 2.0-

0.5 -

-index policy

0.3- simple sweep
-smart sweep

2 3 5 10 20 30
one over sensor radius

Figure 4-13: Search times as a function of sensor radius for various policies for search-

ing the uniform distribution on the unit square. The starting points were chosen to

be ideal for the sweep policies: r, from the corner.

110



4.4.1 Complex Dynamics

We argue that, as a practical matter, the single integrator model is typically sufficient.

The reason for this is that for typical mobile agents in search applications, the path

planning problem of "how to find the goal" is not of the same scale as the control

problem.

Suppose the agent is a person on a unicycle with a chair on his chin: If the goal

is more than a few meters away, his dynamics and motion planning can be treated

independently. In geographic search, i.e., involving physical robots in physical spaces,

we posit that this is typically the case: the regions (and the variation within them)

are large compared compared to the dynamical limitations of the agents.

Nonetheless, it is not impossible to incorporate other dynamical models into the

search policy we have developed. Notice that the index function is simply a metric by

which we can compare closed paths through the search space. This metric, coupled

with a searchable parametrization of the set of closed paths, constitutes a control

policy. Although finding a good such parametrization may be quite difficult for an

arbitrary dynamic model, it is not necessarily difficult for the types of models one

typically encounters.

For example, search with a fixed-wing aircraft is a problem of significant practical

importance. Typically these are modelled as Dubins vehicles which move at constant

speed and are subject to a bounded turning rate. For such a vehicle, we propose that

an adequate parametrization would be to the set of "running tracks" consisting of

two parallel lines joined by half-circles of a fixed radius, shown in Figure 4-14. In

particular, we propose that the radius of these half-circles be that of the sensor or

turning radius, whichever is larger.

111



Figure 4-14: Proposed paths for the Dubins vehicle

4.4.2 Noisy Dynamics

Let us examine problems of stochastic control of the following form. Let the agent be

a bounded-input, single integrator subject to noise w with a perfect binary sensor.

U + w(x),|ullI <1

1 ifx EGY{=
0 O.w.

wherein w is an arbitrary random process. Suppose that our loss function is

L(t) = I(x(t) G)

We are interested in finding the optimal control. In an unbounded space of dimension

two or higher, we will likely have to restrict our attention to discounted reward to

ensure the existence of optimal policies. That is, it might be the case that there

does not exist a policy that can spend a non-vanishing fraction of its time in the goal

112



state. For a bounded space (with appropriately defined dynamics at the boundary)

there exist policies for which the time-average reward is finite (module other necessary

conditions, of course, such as adequate control authority and a measureable goal).

Whenever the agent is outside of the goal, the index policy can be used to drive

the agent back into it. We see this as another example of the index policy's general

versatility, but for this general problem there are a number of important sources of

sub-optimality.

We have already discussed the issue of the dynamics on the boundary. Addition-

ally, it is possible that the optimal policy does not try to move directly to the goal in

minimum time at all. That is, it could be the case that a longer path might make it

easier to stay in the goal once it is reached.

Deciding whether this is the case is a value-of-information problem for which the

only tool available, for all practical purposes, is ADP. While there certainly could

exist a description of the agent location distribution that makes ADP both tractable

and effective, there does not exist a general algorithm for finding it. Since the goal

of this dissertation is to present a general purpose policy, we can not consider this

possibility, instead we assume that whenever y = 0 the agent tries to reach the goal

as quickly as possible.

Furthermore, since the noise is arbitrary and state dependent, the optimal open-

loop trajectory may be arbitrarily complex. This can be shown by defining a "noise

maze" in which motion is deterministic until the agent touches a wall, which in-

troduces large errors. If these errors are large enough we can be assured that the

optimal policy is to "solve" the maze. Since we have committed a priori to search

over a certain subset of trajectories, we have no guarantee that this set include such

a solution.

The noise need not be complex to demonstrate this. Consider a two wheeled

robot with much greater directional accuracy than angular accuracy. Also consider a

case in which the direction of the noise is known and constant, but whose magnitude

varies. For both of these cases, the optimal open-loop trajectory may be to aimoff. If

we restrict the considered trajectories as described in Section 4.2.3 and Section 4.3.2,

113



we will not find these trajectories. Section 6.2 suggests a possible extension of this

dissertation to approach these issues.

114



Chapter 5

Dynamic Search and Routing

Problems

This chapter will discuss the dynamic versions of some of the search problems we

have covered thus far as well as introduce the Dynamic Search and Repair Problem

(DSRP) in which agents must not only find goals but spend time at them.

As a motivating example we consider a scenario in which a fleet of mobile surveil-

lance assets are responsible for detecting and responding to possible improvised ex-

plosive devices (IEDs) along a network of roads. We suppose that the system will

be externally notified of some requests, e.g., someone may report a suspicious object,

but not necessarily all requests. The agents are also responsible for patrolling the

region and detecting IEDs themselves.

5.1 Introduction

In a dynamic search problem, goals, which we will now refer to as "requests," arrive in

the region according to a space-time random process. We will assume that the region

is a length space and that the arrival process be separable. Specifically this means

that it can be described with two components, a probability mass function A(t) over

the number of requests by time t, and a spatial probability measure 4 from which

the locations of these requests are drawn independent, identically-distributed (i.i.d.).

115



The probability of there having been exactly n requests in subset S at or before time

t is given by

Pr(n E S) = A(ti) <b(S)"(1 - (5.1)

The previously considered problems can be considered instances of dynamic prob-

lems in which A(t) = A(O) Vt.

The system objective remains minimizing the expected "latency" of these requests,

which is now defined as the amount of time between a request's arrival and when it

has been "serviced." We will consider two different cases for what constitutes service.

" A request is serviced when it is detected.

* A request is serviced when an agent has moved to its location and spent a

random amount of time s doing on-site tasks.

We refer to the former of these formulations is known as the PPP as proposed

by [34]. This is exactly the dynamic version of the minimum weighted latency sensor

cover problem discussed in Section 4.3. We will refer to the latter as the DSRP as

which extends the DTRP proposed by [21] to problems involving search.

The majority of this chapter will be devoted to the DSRP. The two features that

differentiate the DSRP from the PPP are that, in the DSRP, in order to service a

request

1. the agent must move to the location of a request, and

2. the agent must spend a random amount of time providing on-site service.

The on-site service times are drawn i.i.d. according to distribution s. We will assume

that service is non-preemptive meaning that once an agent starts providing service it

will continue to do so until until that service is completed.

Definition 5.1.1. Random variable X has non-increasing conditional mean if

E [XIX > x] - x

116



is non-increasing in x.

Lemma 5.1.2. If s has non-increasing conditional mean then there is an optimal

policy that does not preempt service.

Proof. Assume some optimal policy, H, preempts a request r time to after starting;

it then does a sequence of actions K of length t, servicing n other requests, before

returning to r. We construct a new policy H' identical, except before pursuing K it

completes the request r. If we assume that the on-site service time is cumulative,

i.e., the agent can resume where it left off, II' reaches the location of r at the exact

moment that H finishes it. This allows 11' to resume emulation. If we do not make

this assumption, H' can wait for H to catch up.

With this new policy, the latency of r is decreased by t, and that of the n other

requests is increased by E [sis > to] - to < 3, by assumption. The expectation of t

is n-, wherein 1 denotes the length of the tour visiting all the requests Therefore the

expected latency under H' is no greater for these n + 1 requests than under H. Since

the policies are otherwise identical, this imples that H' is also optimal. 0

In Section 5.7.3 we will discuss the case in which service times lack this property

as well as cases in which there are multiple classes of requests to which we might give

preferential treatment. In these cases, preemption is an important consideration.

5.1.1 Assumptions

We will assume that each agent has a perfect sensor with finite range r8, as we did in

Section 4.3. In addition to this sensor, in the case of the DSRP we will also consider

the possibility of the external detection of requests. We will assume that a request

at location a, is immediately detected upon arrival with probability pext(a), and

with probability 1 - Pext (a) it will never be externally detected, rather it will only

be detected when an agent comes within r, of it. This allows us to model immobile

sensors or the fact that some hikers carry cellular phones with spatially varying access

to a network.

117



We assume that an agent maintains a belief state at time t about the realization

of the process that can be encapsulated as the triple I(t) (= ((t), Z(t), p(t))

1. a list 0(t) of detected requests,

2. a probability mass function Z(t) over the number of undetected outstanding

requests, and

3. a spatial probability measure p(t) A* -+ [0, 1] measuring the probability that

a randomly selected outstanding request is in a particular subset of the region.

5.1.2 Policies

The range of a policy is simply a control-what each agent should do for the next

infinitesimal amount of time. The index policy is a "re-optimization policy" meaning

that at each instant, we take a snapshot of the state and solve a static problem. The

solution to the static problem is not a policy but a plan, i.e., a deterministic sequence

of actions of potentially non-vanishing length. The policy will then only execute the

first action of the plan before re-planning. The traditional receding horizon planner

is another example of such a policy.

It should be noted that in this framework, the plan is not allowed to be contingent

on future observations. Unlike in the static search problems in previous chapters, this

a major limitation in dynamic problems. The planner is unable to explicitly calculate

the value of information. In a general POMDP this would be a large weakness, but

in our problem somewhat less so. The reason being

" when an agent observes a location, that observations implies little about other

locations and

" if the sensor radius is small compared to the region, information gathering and

information exploitation are tightly coupled.

118



5.1.3 Organization

Section 5.2 reviews the relevant research threads. As an appetizer to the DTRP,

Section 5.3 we will discuss the PPP which we address using the algorithms presented in

Chapter 4 without modification. Section 5.4 transitions from the PPP to the DTRP,

considering the DTRP in which the on-site service requirement is zero. Sections 5.5

and 5.6 extend much of the existing theory for the observable DTRP to length spaces.

In Section 5.7 we extend the formalism of the DTRP to search, extend the index

policy to address it. In Section 5.8 we describe a scenario of interest that we believe

underscores the contribution of this dissertation.

5.2 Review of Existing Work

This section attempts to sketch the broad historical context of several research com-

munities that are relevant to the topic of Dynamic Vehicle Routing (DVR). To that

end, we focus on surveys and milestone works.

5.2.1 Spatial Queueing

The beginning of Dynamic Vehicle Routing (DVR) can be traced to the early 1970s

when researchers tried to apply queuing theory to emergency service systems. As a

result, these researchers used what we term a "service-oriented approach" in which

they attempted to minimize the latency of these systems. In this framework, queueing

theory and geometric probability form the basis of analysis.

This early period is well-summarized by [64]. Such efforts were indisputably suc-

cessful and well-received. Major cities around the world subjected their police, fire,

and ambulance systems to analytical scrutiny; money was saved and services im-

proved.

However, in order to apply the arguments from queueing theory and geometric

probability, certain trivializing assumptions needed to be made. For instance, either

the on-site service requirement or the travel time was considered relevant to analysis,

119



but not both. Typically the system could become "full" at which point new requests

are completely (and permanently) ignored.

While these problems are fundamentally stochastic, the types of questions that

could be successfully addressed were static in nature. Primarily this meant answering

staffing questions: "How many operators, ambulances, et c., are needed to provide

some minimum quality of service?" The dynamic questions, i. e., how agents should

react to real-time information, were left to the human decision makers.

5.2.2 Dynamics

The proliferation of information technology circa 1990 put a great deal of pressure on

the Operations Research community to handle the dynamics of information. Notwith-

standing the Internet, a number of important enabling technologies created this em-

phasis including the GPS, highway monitoring systems, and improved mobile com-

munications infrastructure. Simultaneously, just-in-time production and e-commerce

were emerging as important business models. This precipitated what could be called a

"Operations Research Renaissance" during which Vehicle Routing Problems (VRPs)

gained substantial commercial import.

For many problems the static formulation is obviously unsatisfactory. This recog-

nition led to a surfeit of new problem formulations as researchers tried to tack dy-

namics onto well-understood problems. Early attempts like [53, 50, 19] were offline

algorithms designed to handle a priori uncertainty and did not adapt to real-time

information. Dynamics were handled with queuing theory and spatial problems were

solved statically.

It wasn't until [79] that the interplay was recognized. This paper introduced

the modern notion of Dynamic Vehicle Routing (DVR) and the Dynamic Traveling

Salesman Problem (DTSP) as an instance of it. In the Dynamic Traveling Salesman

Problem (DTSP) the region was a graph and the arrival process was temporally

Poisson supported by the nodes. Subsequently, [21] extended the problem with the

Dynamic Traveling Repairperson Problem (DTRP) in which the region was a compact

convex subset of the Euclidean plane. Initially they considered only Poisson processes

120



as well, but in a later paper [23] they extended their analysis to separable processes

with Lipschitz continuity in the spacial component.

This capstone works of this research thrust came shortly after with [22, 23, 93, 72].

These provided

" asymptotically optimal results in the light-load limit as well as

" constant-factor optimal results in the heavy-load limit,

for requests arriving on

" a convex subset of the plane with seperable, Lipschitz continuous demand or

" the nodes of a graph.

The surveys [80] and [20] discuss the crossroads at which the vehicle routing

community subsequently found itself. They were frank in admitting only a few first

steps had been made and recognizing the need for real-time algorithms that exploited

the dynamic information. Having seemingly exhausted the available theoretical tools,

however, this research thrust largely dried up.

5.2.3 Combinatorial Optimization

Meanwhile, work on many of the other VRP variants continued apace and are tax-

onomized by [41, 62].

Coming from the VRP (and before that the TSP), as opposed to queueing theory,

these researchers brought a "cost-oriented approach," i.e., one concerned with finding

policies in which the agent accrues the minimum cost. This cost is typically the total

time taken or distance covered. Since these algorithms were originally developed for

non-dynamic problems, the algorithms strengthen dramatically if more information

is available up front. For instance

e if some fraction of the requests' locations and arrival times are known initially

(with that fraction referred to as the "degree of dynamism" [66, 63]), or

121



9 if we are given some temporally advanced notice of them [51, 2].

To characterize the quality of these approaches, the most widely accepted theo-

retical tool is competitive analysis, as defined in Section 2.1.3. This framework was

introduced by [85] and popularized by [7]. A thorough survey of its use in DVR can

be found in [52].

5.2.4 Scheduling

A closely related branch of queueing theory examines Polling Systems of which [88]

is an excellent survey. In a polling system a server moves on a network between a

finite set of queues to provide some service. Traditionally, the goal has been to find

an optimal static polling schedule that visits all the queues.

In the case of Continuous Polling Systems (CPSs) (see, e.g., [4, 33]), there may

be uncountably-many queues distributed over a continuum of the form considered in

Chapter 3, typically in a single loop. As with ordinary polling systems, the work

has focused on finding optimal static policies. Dynamic results are restricted to the

heavy-load limit, in which the optimal policy can be shown to converge to the solution

to the static problem[32]. Notably, [70] considers a simple dynamic polling problem

and also approaches it from the perspective of Whittle Indexability.

5.2.5 Multi-Agent Control

More recently, mounting excitement about cheap, capable robots, has spurred new

in interest spatial queueing. With [39], the control community started to talk about

robots providing a "service layer" and rediscovered the DTRP.

A number of important extensions have been made adding realism to the problem,

a good summary of which can be found in [77, 34]. Much of the work has focused on

the control aspect of the problem and has worked to incorporate realistic dynamics,

not only of the vehicles but also of human operators. Particularly relevant extensions

include sensing constraints in [34] and the addition of deadlines in [74].

122



A related area of research is focused on coverage problems. This includes the work

described Section 4.3.1 but more recently has been extended to refer to problems

involving the efficient deployment of a fleet of mobile sensors, as described in [30].

In this extension, the solution space is, likewise, the set of control policies, but the

system objective is to perform a "locational optimization," the solution to which are

fixed locations to which the agents should converge. We discuss such optimization in

some length in Section 5.5.

5.2.6 The Intermediate-Load Regime

All the work on DVR described in Sections 5.2.2 and 5.2.5 focuses on asymptotic

optimality and leaves open the intermediate-load regime in which the load factor (i.e.,

the fraction of the time in which the agents are busy doing something) is neither very

low nor very high. This is problematic because

" in the light-load limit, agents are severely under-utilized, and

" as one approaches the heavy-load limit optimal performance quickly becomes

unacceptably poor.

The implication is that for many practical cases, existing work does not provide a

definitive answer.

Far be it to say that existing work is not applicable to the intermediate-load

regime, however. Algorithms have been presented (e.g., in [72] and more recently

in [74]) that are both optimal in the light-load limit and within a constant factor of

optimal in the heavy-load limit. It is certainly plausible that such algorithms perform

well in the intermediate-load-in fact, [72] explicitly conjectures as much.

5.3 The Persistent Patrol Problem

In the Persistent Patrol Problem (PPP), all that is required of the agents is that

they "detect" requests by coming within a minimum distance, which we refer to as

the sensor radius, r,. The goal is to determine a routing policy that minimizes the

123



expected amount of time a randomly selected request goes undetected. We will refer

to problems with this character as PPPs using the formalism presented in [48].

The literature on the PPP is largely contained in the thesis [34] and it's recent

extension, [48], who restricted their attention to smooth measures on convex subsets

of the Euclidean plane. These works propose a number of algorithms for the PPP

problem and analyze them in the heavy-load (i.e., dA/dt -+ oo) and zero-sensor-

radius limits. Among other contributions, [34] extends the search results discussed

in Section 4.3.1 to the case of dynamic arrivals. Interestingly, the ideal sweep rate is

proportional to the square root of the arrival density, due to random incidence.

As with the non-dynamic search problem, the theoretical results do not address

the intermediate cases involving non-negligible sensor radii. Among the algorithms

presented, only one, based on ADP, remains theoretically sound without asymptotics.

5.3.1 Index Policy

The policy we here propose is unchanged from that of the MWLCP discussed in

Section 4.3.

Let pu(t) denote the spatial component of the belief at time t. Let x denote the

agent's location and let P be a closed path starting and ending at x. And let pQ(r)

measure the probability that a single point selected according to p(t) is detected by

an agent pursuing P from x a distance T.

The index function is

in fo -rdp(T) + 2(1 - Qv(t))t
t>0 Q lpt W

The index policy is to pursue the path minimizing this function. Refer to Section 4.3.2

for parametrizations the set of paths to make this minimization feasible.

5.3.2 Comparison to Optimal Sweeps

As was the case in the MWLCP, in Section 4.3.3 the most, stringent comparison we

can make is with a sweeping policy for the uniform distribution in the Euclidean unit

124



10.0

5.0-

u 3.0-
0)

.~2.0-

CLX
x

1.0-

0.5

index policy
sweep policy

I
3 5 10 20 30

one over sensor radius

Figure 5-1: Comparison of index and sweep policies in the unit square.

square. In the limit of small sensor radius such a sweep is optimal. Figure 5-1 shows

this comparison for range of sensor radii.

The latency values are very similar to those for the MWLCP in the same space. In

fact, the latency of the sweep policies is the same as expectation over starting location

of that for the MWLCP. On the other hand, the index policy is able consistently do

better comparatively. The reason for this being that the index policy does not visit

the corners and edges as often as the sweep policy. Figure 5-2 shows an initial portion

of the index policy's trajectory for a sensor radius of 0.2.

We do not include the so-called "smart sweep" policy from Section 4.3.3 in Fig-

ure 5-1, because it is no longer smart at all. It was able to improve the sweep by

leaving the corners and some areas near the edges until the end. Now that there is

no "end," this policy spends a disproportionate amount of time in these areas of low

search efficiency.

125



1.0

0.8

0.61[

"0.0 0.2 0.4 0.6 0.8

Figure 5-2: The initial portion of the index policy trajectory for r, =

indicates older locations while red indicates more recent ones.

126

1.0

0.2. Blue



5.4 An Intermediate Problem

This section considers the problem in which an agent must move to the location of a

request, but the on-site service requirement is zero. A new difficulty this raises is that

the agent now knows about requests that have not been dealt with yet. We address

this in the same fashion as in Section 3.3: by folding this information into the spatial

measure. Let (0(t), Z(t), p(t)) denote the belief at time t as defined in Section 5.1.

We construct a new spatial measure ^(t) by

1. multiplying p(t) by E [Z(t)],

2. adding unit atoms the location of each element in 0(t), and

3. re-normalizing

When computing the index function we now use 11 instead of [p.

5.4.1 Proposed Augmentations

The index policy is a "snapshot" planning algorithm. At each moment it solves a

static problem using the belief at that moment. In a dynamic environment, this does

not use all of the information available, in particular, information about the arrival

process. The following examples will demonstrate some of the problems this presents

and suggest modifications to solve them.

Forward Propagation of Belief

Consider the case shown in Figure 5-3a and assume the arrival process is Poisson with

rate A. Ignore for the moment that it would be impossible to reach this configuration

unless it was the initial condition; for the PPP this is an unusual state, but for the

DSRP it will not be. We would probably prefer the agent to take the slightly longer

path that services the customers who are likely to arrive at point P2 while the agent

is in transit.

To elicit this behavior, we propose the following. Rather than coifute the in-

dex function, Equation 5.2, using <Dp(t), use <b'(t, T) based on the posterior belief

127



agent 2 1 customer, A «< 1

1+e 1+e
0 customers, A > 1 1 customer, A,< 1 0 customers, A2> 1

(a) It is better to take the long route. (b) It is best to stay at the good end for a while.

Figure 5-3: Problematic Examples

21(t + rP([0, r])). That is, forward propagate the arrival process and conditioning on

following P a distance T and not observing any requests.

Loitering

Consider the case shown in Figure 5-3b, in which the agent has a small, non-zero

sensor radius, r.. Suppose that the agent last visited the left queue one time unit ago

and has just depleted the right queue. The subsidy required to move to the right is

infinite, and so the agent will move left. Assume that it goes a distance of r, before

a new target arrives at the right queue.

After moving a distance r, + 6 the agent will see the following subsidies.

(2 - J2) (r. + J)
To the right:

and to the left: (+)A 1
(J +1)A1

For sufficiently large A2/Al, the agent will change its mind and goes back. Any

requests that arrived during this out-and-back will be needlessly delayed-a better

policy would have been to stay at the right endpoint.

To address this we propose computing the index function on paths that move

to some location and wait there forever. With respect to a snapshot, that would

not have been finite, but with the above augmentation, it is well-defined. For the

example, the subsidy associated with staying at P2 would be 1/A2 which results in

the desired behavior. Furthermore this allows an agent with a large sensor radius to

move to the centroid of the region, which we will show to be optimal in the light-load

limit in Sect n 5.5.

In the results subsequently discussed, we implement only a limited version of these

128



augmentations for two reasons. First, computing posterior distributions is already

complicated-this projected conditional measure is even more complex. For simple

processes, specifically Poisson point processes, it can be simply done. But for general

temporal processes, particularly in the DSRP with the presence of external sensing,

it cannot. But for Poisson point processes it solves a largely non-existent problem.

The second reason is arguably aesthetic: the integral of <b' no longer has a natural

probabilistic interpretation. Since the edifice of this dissertation relies heavily on such

interpretations, we are loathe to sacrifice them.

The augmentation that we implement is to consider only one such infinite path

and that is the one that does not move at all. For all other paths we continue to use

the snapshot distribution.

5.4.2 Results

This section describes a simple experiment in which the region consists of a single

segment with length l on which there is a uniform, Poisson arrival rate A. Let m

denote the number of agents. The AUCTIONINGNETWORKINDEX algorithm was used

to generate multi-agent plans.

Consider the case in which the agent can sense the entire region. In the limit of

A -+ oo, any optimal policy achieves an expected waiting time of 21/3m. In the light-

load limit, any optimal policy achieves an expected waiting time of l/4m. Figure 5-4,

which considers only a single agent, shows the transition. The "interesting" arrival

rates encompass more than an order of magnitude. That is, there is a wide swath of

operating conditions in which the asymptotic cases are not indicative of performance.

With zero sensor radius, the optimal policy is to sweep, which has the same

expected waiting time as the high-rate limit. Figure 5-5 shows the progression from

light-load behavior as the sensor radius decreases.

As we increase the number of agents, the quality of service in the zero on-site case

should improve at least linearly with 1/m, since we can subdivide the region. We will

explore this possibility at length in Section 5.5. However, Figure 5-6 is suggestive of a

super-linear improvement regime in the range of three to five agents for this particular

129



-2 10~1 0 101

arrival rate A

Figure 5-4: System time as a function of arrival rate for a single agent
segment. The sensor radius is one and the on-site requirement is zero.

on the unit

130

0.70

0.65 |-

60 |-

0.55-

0.50 -

0.45-

0.40-

0.35-

0.30-

0.25'
10

0*

*

4

4 4

4

10 102 10 3



W 0.8-
E

U 0.6-

E 0.4-

0.2

0. 0 0.2 0.4 0.6 0.8 1.0
sensor radius

Figure 5-5: System time with increasing sensor radius. The arrival rate, A = 1.

131



C

E 0.6

0.4

0 i.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1/n agents

Figure 5-6: Wait time as function of the number of agents. The sensor radius was 0.1
of the region and the arrival rate was held constant. There appears to be a super-
linear improvement between three and five agents, after which the system approaches
the light-load limit.

example.

5.4.3 Segue

One might argue that the range of achievable performance is rather narrow-the

best possible performance is eight-thirds of the worst performance. This level of sub-

optimality might be acceptable. However, when we include the on-site service time,

s, it can have a dramatic effect on performance. In the light-load, latency is only

increased by -, but the optimal performance in the heavy-load limit is proportional

to
1

1 - A

132



1.4 1

*. , pcXo

- p=10
1.2- P=100

ci 1.0-
E

E
t0.8-

E 0.6-

.9*

0.4 -

0.2 -
102 10~1 100 10' 102 10

arrival rate A

Figure 5-7: System time with increasing arrival rate for two different service rates [L.

as we will prove in Section 5.6. We refer to the quantity )s as the load factor.

Even when the service rate is large compared to the arrival rate, it can still play a

large role in the system time as evinced in Figure 5-7. The on-site service requirement

was assumed to be poisson with rate p = 10 and y = 100, with the time unit being

the time required to traverse the region. The effect of service time can be seen at

load factors around 0.03 and they become very prominent by a load factor of 0.2.

5.5 The Light Load Limit

The light-load limit is characterized by the absence of queueing; when new requests

arrive, there is almost surely an agent available to move to its location and serve

it immediately. This is a natural model for systems that deal with rare, high-value

events. For example, emergency services or high-value repair services are lightly

133



loaded.

The light-load limit is defined as the limit in which the rate at which requests

arrive, E [dA/dt], goes to zero. Strictly speaking, we must also require that the
t

arrival process not be too bursty for the absence of queueing. A sufficient condition

is that the inter-arrival times are i.i.d.. Poisson point processes, for instance, satisfy

this requirement.

5.5.1 Voronoi Partitions

Definition 5.5.1 (Centroid, Median). Given a metric space A, d(-, -) a monotone

function f : R+ -+ R+ and a measure <( A*) -+ R+, we will refer to

arg min f(d(a, x*))d(b(a)
x* G A ,JaeA

as a centroid. The special case of centroid in which f is the identity function will be

referred to as the median.

Definition 5.5.2 (m-Partition). We define a m-partition, ', of a set A, to be a

set of m subsetsPi C A, for i G 1,...,m, such that

" P nPj=0 for izj, and

- UmlPz=A-

If the value of m is clear from context we will omit it.

Definition 5.5.3 (Voronoi Partition, generator). Given a metric space A, d(-,-)

and a finite set ci G A for i E 1,...,m, a Voronoi partition, P(c) is an m-partition

of A such that

a E P(c); ---> d(a, ci) < d(a, cj) Vj

We refer to c as the generators of P(c) and ci to be the generator of the P(c)j.

Note that Voronoi partitions need not be unique.

134



Given generators c = {ci E A" for i = 1,... ,m}, let Gc(a) denote the set of

closest elements of c to location a.

Gc(a) ={ci E c s.t. d(ci, a) d(c, a) Vi}

Similarly, let C(c)i denote the set of points that are no further from ci than any other

generator.

C(c) - {a c A s.t. d(ci, a) < d(cj, a) Vj}.

Remark 5.5.4. From these definitions it should be clear that,

ci c Ge(a) -#=> a C C(c)j.

It should also be clear that any partition P satisfying

is a Voronoi partition generated by c.

Lemma 5.5.5. Let A be a length space and let c be a set of generators. Suppose

that a' C A is on a shortest path between ci and some a E C(c)j.

a' E C(c)i

Proof.

This implies that

d(ci, a) < d(cj, a) from a E C(c)i

d(ci, a) = d(ci, a') + d(a', a) from the shortest path principle

d(cj, a) < d(cj, a') + d(a', a) from the triangle inequality

5 d(c3 , a') + d(a', a) from substitution

d(ci, a') < d(ci, a')

135

P(c)i ; C(c)j

d(ci, a') + d(a', a)



Lemma 5.5.6. Assume ai c C(c)i and aj C C(c)3 . If aj is on a shortest path from

ci to aj, then

d(ci, aj)

d(ci, aj)

d(cj, aj) and

d(cj, aj).

Proof. First statement:

d(ci, aj)

d(ci, aj)

d(ci, a3 ) + d(aj, aj) from the shortest path principle

d(c3 , aj) + d(aj, aj) from Lemma 5.5.5

d(ci, aj) ;> d(c3 , aj) from the triangle inequality

d(ci, aj) < d(c3 , aj) from ai E Ci

d(ci, a?) = d(cj, a)

Second statement:

d(ci, aj) < d(cj, aj) from Lemma 5.5.5

d(ci, aj) > d(cj, a1 ) from a1 G Cj

d(ci, a) = d(cj, a)

Theorem 5.5.7. Given any generators c in a length space there exists a Voronoi

partition each element of which is a length space.

Proof. We construct the Voronoi partition P as follows. For notational compactness

we drop the argument from C(c).

i-1

P4 = Ci\ C
j=1

From Remark 5.5.4, this construction gives a Voronoi partition.

Assume by way of contradiction that P is not a length space. There exists some

136



as E Pi such that for every shortest

that a3 V cl(Pi).

Consider such an aj. Since P is

Lemmas 5.5.5 and 5.5.6 aj, a, E Ci

constructed. In particular,

9 suppose i < j; aj would not

partition with index at most i.

path P(ci, aj) there exists a aj E P(ci, ai) such

a partition, aj falls into Pj for some j j i. By

n Cj, but this is inconsistent with how P was

be in partition j, rather, it would be in some

* Otherwise i > j. In this case, a would not be

be in some partition with index at most j.
in partition i. Instead, it would

0

5.5.2 Partition Policies

Theorem 5.5.8 (light-load optinality). In the light load limit in a bounded re-

gion, a policy is optimal if and only if it almost always behaves as follows:

1. In the absence of requests, the system is almost always in configurations that

maximize the expected reward of the first future request, and

2. when a request arrives it is served in such a way as to maximize its immediate

reward.

Proof. From Theorem 1.2.1 we can assume that the policy is a function only of the

location of the agents and of the requests. In the light-load limit the probability

that there will be more than one request is vanishing. Therefore we can restrict our

attention to policies 11 that are a deterministic function of the locations of the agent

and of a single request location.

[ > ]. Consider the performance of policy H with both properties on a randomly

selected request r. Almost surely II maximizes the reward of r. Maximizing the

expected per request reward is the definition of optimality. L

137



[ 4--- ]. By way of contradiction, consider some optimal policy that lacks either

property. Obviously, a policy lacking the first can be improved by improving the

service of the first request and and then emulating the optimal policy.

Consider an optimal policy lacking the second property. Specifically, for some

non-vanishing fraction of the time, the system has no outstanding requests but is

in a configuration in which the expected reward of the first future request is not

maximized.

Consider a randomly selected inter-request interval. Note that in the light-load

limit, the length of this interval goes to infinity. We can construct a new policy that

replaces a non-vanishing portion of the sub-optimal interval with one that moves into

some optimal configuration (or an optimal sequence of configurations), stays there

(or follows the sequence), and then rejoins the original policy. Since the region is

bounded, the probability that a request will arrive during the transition is negligible.

However, there is a non-negligible probability that a request will arrive during an

interval in which the new policy will have lower expected latency than the optimal

policy. Therefore the original policy could not have been optimal. E

Definition 5.5.9 (Partition Policy). Given a partition P, and a list of m loitering

locations, c G A m (i.e., generators) we define a light-load partition policy, U pc as any

control policy in which

e agent i loiters at ci in the absence of requests,

" if agent i is loitering at ci and a single request appears at location a E Pi, the

agent will immediately move to a and service the request, and

* subsequent requests cannot preempt this first request.

Theorem 5.5.10. An optimal light-load partition policy is light-load optimal with

respect to all policies.

Proof. From Theorems 5.5.8 it is sufficient to show that there exists a stationary

point that maximizes the expected reward for the first request to arrive.

138



Consider the expected reward E [R] for the first request in a time interval [to, t1 ] for

some optimal policy. Assume that to is sufficiently large that we can ignore transient

behavior and examine,

E[R] - E [d(s(r), r)] dA(r).
to (

Consider in particular the expectation as a function of -r and let s* be location of the

minimizer on this interval. Since the location of the request does not vary by T, s* is

also a minimizer of the expectation. Since <D is stationary in time, we have

E[R] ;> -E [d(s*, r)] dA(r). (5.3)ft1

ito

Thus a policy can do no better than loiter at the median of the set of locations where

it would serve the first request to arrive. 0

Corollary 5.5.11. The generators of the optimal partition policy are the medians of

their individual partitions, from Equation 5.3.

Lemma 5.5.12. Let P be an optimal partition. There exists a Voronoi partition Vp,

equivalent up to a set of measure zero, viz., one for which

<b UPi \ Vp(i) =0, (5.4)

i.e., they differ only in sub-regions with no arrivals.

Proof. Assume by way of contradiction that there exists a E Pi such that

* d(ci, a) > d(cj, a) for some j, and

0 e > 0 -P> <D( nE (a)) > 0.

Consider E > 0 such that d(ci, a) > d(cj, a) + 3c. Let P' = P everywhere except

P'= Pi \ B(a) and P)'=P pU (Pi nB(a)).

139



Consider the expected wait time in the event that a request falls in Pi n Be(a) at

location aj. Under partition P, we have a wait time

d(ai, ci) + d(ai, a) > d(a, ci) (5.5)

d(ai, ci) + E > d(cy, a) + 3e (5.6)

d(ai, ci) + e > d(cj, aj) + 3e - d(a, aj) (5.7)

d(ai, ci) - d(cj, aj) > E (5.8)

Hence, the difference in wait time is bounded away from zero in the event of an arrival

falling in this region. Since lirn4.o #(Pi n Bj(ai)) > 0, we have #(?P n Be(ai)) > 0,

i.e., this event has non-vanishing probability. Therefore 7(c, P') < W(c, 7) which

contradicts that P maximizes Equation 5.3. 0

Lemma 5.5.13. Any Voronoi partition policies with the same generators as an op-

timal partition policy is optimal.

Proof. Consider two Voronoi partitions, V1 (c), Vp(c) generated by c. Consider a

randomly selected request at location a E )4(c)n Vp(c)j. By Remark 5.5.4 d(a, ci)

d(a, cj) = d. In the light load, under either partition policy, the wait time will be d and

the service will subsequently by identical. If one of these is optimal, Theorem 5.5.8,

establishes the optimality of both. E

Theorem 5.5.14. To within sets of measure zero, any optimal light-load partition

policy is a fixed point, P, c, where

" 7 is a Voronoi partition with generators c, and

" ci is the median of 'Pi for all i.

Proof. follows from Lemmas 5.5.11-5.5.13.

Corollary 5.5.15. Lemma 5.5.12 and Theorem 5.5.14 imply that we need not si-

multaneously search for optimal partitions and generators: Instead it is sufficient to

search for generators whose whose Voronoi partitions are optimal.

140



Having established Corollary 5.5.15, it is clear that the various ingenous algorithms

(e.g., [6, 39]) available for generating partitions in the Euclidean plane remain theo-

retically sound in length spaces.

5.6 The Heavy-Load Limit

In this section we will consider the limit in which the expected number of outstanding

requests present in the system goes to infinity under an optimal policy.

5.6.1 Preliminaries

Theorem 5.6.1 (Little's Law[65]). In any stable queueing system the expected wait

time w of a request is related to the expected number of requests N in the the system

by

N = Aw

wherein A is the mean arrival rate

limE [A(t)]
t-+oo t

Definition 5.6.2 (Heavy-Load Constant Factor). Define the load factor p =A s.

In the DTRP, the heavy-load limit is the limit of p -+ 1. A policy U1 is said to be

Heavy-Load Constant Factor if
w*

lim- > 0

wherein w* denotes the expected latency under an optimal policy and wn denotes the

expected latency under policy H.

Definition 5.6.3. Pointwise Dimension

141



The pointwise dimension, Dp(<b, x) of a measure <b at point x E S is

Dp(4>,x) - Hilog <b(Be(x))
e-+O log E

wherein Be(x) denotes the c-ball centered at x.

Definition 5.6.4. Hausdorff content

The d-dimensional Hausdorff content of a subset S of metric space A is defined

Cid(S) - inf rZ s.t. ri arethe radii of balls that cover

Definition 5.6.5. Hausdorff Dimension

The Hausdorff dimension of a subset S of a metric space A is

H(S) - inf{d > 0 s.t. Ct(S) = 0}

The Hausdorff dimension of a measure t is the infimum of the Hausdorff dimensions

of sets with measure 1.

H(p) inf{ H(S) s.t. p (S) = 1}

The pointwise dimension and Hausdorff dimension are related as follows [29]

H(p) = inf{# s.t. Dr(x) < # Vx c S s.t. p(S) = 1}.

5.6.2 Asymptotic Nearest Neighbor Distance

Suppose that a set n points, aj, are drawn i.i.d. according to probability measure pz in

length space A. The quantity of interest is the distance between a randomly selected

142

S



point and its nearest neighbor. In particular, we are interested in the functional form

of this distance as n becomes very large.

The general relationship between nearest neighbor distance and various notions

of "dimension" in metric spaces is intimate, and is beyond the scope of this disserta-

tion. Instead, we place the following restrictions on measures that we will consider

in this section. First, we assume that 0 < H(t) < oo, and second, we make Assump-

tion 5.6.6.

Assumption 5.6.6. We will restrict our attention to measures whose pointwise di-

mension acheive a maximum within the region.

Assumption 5.6.6 holds, even for fractals, as long as there is some set S for which

1 (S) > 0 such that for all x E S Dp(x) = H(p). In particular we will denote by S'

the largest such set.

For a point at x, the probability that a point randomly selected according to pt is

within a distance E is given by [p(BE(x)). In the limit of E -+ 0 this is related to the

pointwise dimension by

pz(BE(x)) E 6(,P(px)). (5.9)

The relationship between pointwise dimension and nearest neighbor distance is well-

known (see, e.g., [29]).

dNN(x,rn) G E(n Dp,) (5.10)

Lemma 5.6.7. Under Assumption 5.6.6, in the limit of n -4 00, the expected nearest

neighbor distance shrinks as

E [dNN(x, n)] E 6(n ) (5.11)

[]. From Equation 5.10 there exists k(x)- > 0 such that

I NN - px1jA dN(x, n) d(x) jA k-(x)nlp ) d,1x)

143



From the definition of Hausdorff dimension,

k~(x)nDp ,x) t(x)
>JLEA

> min k-(x)nH(p)
xEA

[0]. From Equation 5.10 there exists k(x)+ < oo such that

I dNN(x,n)dM(x) <JxEA J~ + (x)n DP(,x djt(x)JxEA

Restricting our attention to the set SD implied by Assumption 5.6.6

- RLSD+) jXES+D

< I
p A(S2) JxES+

k D (x)n , d t(x)

k+(x)n7 Adpt(x)

< + maxk+ (x)n HQA

p(SD) xEsD

Theorem 5.6.8. In the heavy-load limit, there exists some c < oo such that the

expected waiting time is lower bounded by

(5.12)

Proof. The proof mirrors that of Lemma 2 from [23]. In the following we will drop

the argument from H(p).

If the queue is unstable then the bound holds trivially since the expected wait is

infinite. For the queue to be stable, we must have

-
IT+ D< (5.13)

wherein D is the expected distance between two requests served consecutively by the

agent.

144

LxEA
k-(x)m H p dp(x)

LEA

W = )
,\ (1-p

k+(xyn Dp A,x) dtX



Consider a randomly tagged request conditioned on the request being at location

xCE S and consider the set S - BE(x) n S". From the definition of SD, S must have

a non-empty interior, specifically, the dimension of S must be H.

Let n4(S) denote the number of requests in S at the moment of the completion

of the service of the tagged request, and let Ns(S) denote the time average number

of requests in S. Let W(S) denote the expected wait time for a randomly selected

request in S. From Little's law we have AW(S)p(S) = Ns(S). Define

O(X) = lim t(Bx)
e->0 EH

with 0 < #(x) < oo for x E SD. Hence, we have

AW(S)&(x)EH = Ns(S)

By Lemma 1 of [23] (a "law of small numbers" argument), we assume that the arrivals

into S are approximately Poisson. Specifically,

E [ne(S)] - Ns(S) + o(EH).

Let z* denote the distance from the tagged request to its nearest neighbor at the

time of its completion of service. Since n+ is non-negative integer-valued, we have

P [z* < cIx] = P [n+ (B (x)) = 0] < E [n (Be(x))].

Since S has a non-empty interior, we have p(Be(x) \ S) = 0 for almost all x E S+.

Therefore

P [z* < EQx] < E [ns(S) -

145



Let c - NO(x)

E [z*|x] = (1 - P [z* < ejx]) de

>J max{0, 1 - Nq(x)eH H

> 1/H H de - N J1|H H

H -1 -11H- o(N-1|H)

Now we uncondition on x, but continue to restrict ourselves to SD.

E [z*|x G SD+] = H 1 c-1 Hdx - o(N 1 |H
s H + 1

H i
E [z*Ix G S,] = H 1N-1|H q(X- 1 |Hdx - o(N-1H)

H +1 fs+D

Define k -= fs+ 4(x)-1/Hdx. From 0 < #(x) < o0 we have 0 < ko < oo. Removing

the restriction on x E SD we arive at

E [z*] =E (z*|x GSD] pt(S+) + E (z*|x 0 SD+] (1 - (SD+)

SE [z*|x IX S ]p(SD)

> k H N-1H - o(N-1H)
-H + 1

= k'N-1|. (5.14)

For some k' and large enough N.

Since D > E [z*] and N = WA by Little's law, the theorem follows from Equa-

tion 5.13 and Equation 5.14. E

Corollary 5.6.9. By comparing Equations 5.14 and 5.11 it is clear that a sufficient

condition on a policy being Heavy-Load Constant Factor is that the average inter-

request travel distance is O(D).

Corollary 5.6.9 can be used to prove that many of the heavy load policies developed

for the Euclidean plane remain constant factor optimal in length spaces.

146



Lemma 5.6.10. The index policy is Heavy-Load Constant Factor.

Proof. For path P visiting np requests, the index function can be bounded by

-- -1 TSP(P) < -y(P) < - - 1 TSP()

wherein TSP denotes the length of the TSP on the nodes covered by the path. In the

limit of large ne the length of the minimum spanning tree has length proportional

to npdNN [61]. Since a traversal of a spanning tree is a tour with length twice that

of the tree, this ensures that the length of the TSP tour is O(n-dNN). Since every

node must be connected to two neighbors we have that the lengh of the TSP tour is

O(npdNN)

Assume by way of contradiction that the path minimizing the index function

has an inter-request distance in w(dNN). Clearly this path must include a vanishing

fraction of all requests for this to be possible, letting us approximate "- 1 as -

and giving us -y(P) E w(ndNN).

On the other hand, there exits the path, P', that visits every request for which

-/(P') E O(ndNN). Therefore we have, for sufficiently large n, -y(P) > -y(P') which is

a contradiction since P was selected by the index policy. O

Corollary 5.6.11. The simplified index policy is Heavy-Load Constant Factor.

Proof. Because the length of the minimum spanning tree also grows as 6(ndNN), the

proof is identical to that of Lemma 5.6.10 replacing the TSP length with twice the

spanning tree length. O

Remark 5.6.12. The nearest neighbor algorithm is not Heavy-Load Constant Factor.

Proof. We show this in the following example. Let the region be the unit interval

and let the arrival process be supported by only the endpoints with arrivals being

equally probable on each. Let the service time be deterministically T < 1 and let the

temporal arrival process be Poisson with rate A = p/;.

147



Consider the moment at which the agent has finished the last outstanding re-

quest at the zero-endpoint and begins traveling towards the other endpoint. With

probability

p= exp [--
the agent makes it halfway before a new request arrives at the zero endpoint. For any

p < 1 and we can choose a sufficiently small s (hence sufficiently large A) that this

probability is as small as we want. As a result we can make the expected number of

requests at the other endpoint excede Equation 5.12 for any fixed c. D

However, we present the following modified nearest neighbor algorithm, BOUND-

EDNN.
Data: Agent location, x, outstanding requests 0, distance threshold d-

Result: A request to visit next

r <-- arg minEo d(x, r);

if d(x, r) ; d- then

3 return r

else

5 return a randomly selected request

end
Procedure boundedNN

Lemma 5.6.13. Letting
-1

d- = k(AW) H7

wherein k > 0 and W is as defined in Equation 5.12, Algorithm BOUNDEDNN is

Heavy-Load Constant Factor.

Proof. Let

A 1 -p

and assume the contrary, i.e. that under this algorithm the wait time is in w(W*).

By Little's law, the number of outstanding requests is therefore in w(AW*). From

148



Equation 5.14 we have that the expected nearest neighbor distance is therefore in

8((AW)-HT )). Since this distance is bounded below by zero and above by the diameter

of the region, it must have finite variance. Hence with probability one there will be

a neighbor closer than d-.

As a result we can neglect the occasions when a random request is visited when

computing the expected inter-request distance. This distance is in 8(n )) which by

Corollary 5.6.9 contradicts our assumption. 0

Algorithm BOUNDEDNN relies on having being able to compute an appropriate

d- from the problem specification. In Algorithm MODNN we use the realization of

the process to estimate the nearest-neighbor distance.

Data: Agent location x, set of outstanding requests 0, Parameter # > 2.
Result: plan consisting of a single request to visit next
dNN <- the mean nearest neighbor distance within 0;
return Algorithm BOUNDEDNN with x, 0, #dNN

Procedure modNN

Theorem 5.6.14. Algorithm MODNN is Heavy-Load Constant Factor.

Proof. Assume by way of contradiction that the expected inter-request distance d E

w(NNH(I) under this policy and expected wait time W E w . The inter-

request distance for requests returned in Line 3 are shorter than d by design. The

inter-request distance returned by Line 5 is bounded by the diameter of the region.

To show a contradiction, we will demonstrate that Line 3 is almost always applied.

Let N* = c ( -H(p), for some c such that an upper bound on the expected

number of requests under an optimal policy. Let dNN* = N*H"GN) be a lower bound

on the nearest neighbor distance under an optimal policy.

Consider a ball of radius #dNN*/2 around a request at location a returned in

Line 5. Let N E w(N*) denote the number of requests in the region and let n denote

the number of requests in that ball. We have E [n] > Ny(B6dNN*12 (a)) since the

request was chosen at random. By assumption on W, Little's law, and Equation 5.11

we have E [n] c w(1) i.e. it goes to infinity.

149



Consider the expected number of requests visited under Line 3 before the next

application of Line 5. For this to happen, either all n requests have been served or

the agent has left the ball. Since n goes to infinity, we need only examine the later

case.

The path taken by the agent must have length exceeding #/ 2 dNN and consist of

a sequence of nearest neighbors. Recall that the expected nearest neighbor distance

within this ball is bounded by

dNN(x, N) < kN-l/D(a) < kN-1H

The expected number of nearest neighbors in the sequence is bounded by

IpdNN*d NN* > k (N/N*) 11H
2dNN(x, N) -

which also goes to infinity for finite H. 0

5.6.3 Multi-Agent Policies

Conjecture 5.6.15. Let U be a Heavy-Load Constant Factor single-agent policy and

f be a scheme for assigning requests to agents. Let ni(t) denote the number of requests

assigned to agent i at time t and let n(t) denote the total number of outstanding

requests. If, in the limit of n(t) -+ oo

E Ein~)> 0
t . n(t)

i.e., a non-vanishing fraction of outstanding requests are assigned, and

E (ni(t) - ny (t))2 -o fori/j
t I ni(t) I

i.e., there is bounded inequity between agents, then the multi-agent policy in which each

agent runs U on the requests it has been assigned by f is also Heavy-Load Constant

150



Factor.

Examples of such assignment schemes are

* equitable spatial partitions,

e sequential assignment, and

e random assignment.

See [75] for an extensive discussion of equitable partitioning schemes.

5.7 Search and the Intermediate Load Case

We do not consider the asymptotic cases of the DSRP in isolation.

9 The light-load limit corresponds exactly to the PPP.

* In the heavy-load limit the sensor is no longer relevant.

The former is clearly the case since when a request is detected it is almost surely the

only request in the region and the only reasonable thing to do is to serve it. The latter

is true not simply because agents are sure to see requests, but because the number

of requests in places they cannot see becomes predictable. This was formally proven

in [34].

Furthermore, we do not give special treatment to the intermediate load case of

the DTRP. Instead we will do as we did in Section 3.3 and treat the observable case

as just another probability measure in the DSRP.

We will continue to focus on the single-agent case, with the presumption that

we can use an algorithm such as those described in Section 3.5 or the partition and

assignment schemes described in Sections 5.5-5.6 to adapt a single-agent policy into

a multi-agent policy.

151



5.7.1 Index Policy

The question at hand is if and how we are to modify the index function to handle

the particular difficulties that differentiate the DSRP from the PPP. As before, we

do so by analogy. The numerator of the index function represents cost incurred by an

agent paying unit cost for motion. Previously, time and distance were interchangeable,

now we must make the distinction that the agent must pay unit cost per unit time.

Previously the agent expected to terminate its search receive its reward the moment

that it found a goal. Now we include the additional time required to move to it and

serve it. Having made these changes the index function 7(') has a clear interpretation

as the minimum price -y at which the agent will accept a "path service contract" with

the following character.

* A single request is drawn according to the spatial distribution.

" The agent pays unit cost per unit time.

" If the agent finds the request along that path, it will deviate to service it.

" If it does so, it is paid -y upon completion of that service and stops.

The index policy is to pursue the path of minimum price. Also recall from Sec-

tion 5.4.1 we also consider the path that does not move. Specifically, we assume that

7(0) corresponds to loitering until the next request to arrive within r, of the agent's

location.

5.7.2 Intermediate Load

Recall from Section 3.3.1 that the Nearest Neighbor Algorithm performed very well on

the MLTP for randomly generated instances in the Euclidean plane. In the DTRP

being far-sighted is likely to help even less than in the MLTP. This suspicion is

confirmed by examining the performance of the Nearest Neighbor Algorithm on the

DTRP in the Euclidean plane.

Figures 5-8a.i-5-8c.ii are taken from [21] and [72] which compare various algo-

rithms being proposed. The definitive winner for all but the light-load case was the

152



p (from\to) 0.10 0.19 0.28 0.37 0.46 0.54 0.63 0.72 0.81 0.90
0.10 n n n n n n y y y y
0.19 n n n n y y y y y
0.28 n n n n y y y y
0.37 n n n y y y y
0.46 n n y y y y
0.54 y y y y y
0.63 y y y y
0.72 y y y
0.81 y y
0.90 y

Table 5.1: Statistical significance (p = .001) of the difference between the index policy
and the Nearest Neighbor Algorithm.

Nearest Neighbor Algorithm. Using the theory from Section 5.5 it is clear that one

could make the Nearest Neighbor Algorithm perform optimally in the light load case

simply by having it return to the median in the absence of requests.

Figure 5-9 shows the degree to which the index policy improves on this perfor-

mance. The service times were assumed to be negative exponential as were the

inter-arrival times. The service time mean was held fixed at 0.1 while the arrival rate

was varied. Each point represents a realization of either a million requests (shown by

an 'o') or one hundred thousand requests (shown by an 'x') on which both policies

were run.

In the absence of requests, both policies loitered at the location of the last request

to be serviced for consistency with Figure 5-8. In any case, having the agents return

to the center did not appear to affect the comparison.

For larger service rates, there was significant variation in the expected service time

between realizations, but the performance of the policies was always very similar.

Table 5.1 shows the results of the Wilcoxon signed-rank test on the data shown

in Figure 5-9, normalizing at each level of load. A "y" in row i column j indicates

a 99.9% confidence in the statement, "The index policy has lower expected latency

than the Nearest Neighbor Algorithm for load-factors between i and j." An "n," so

located, indicates the lack of such confidence. Nowhere is there substantial confidence

in the negation of these statements.

153



System
Time

TSCM 0.28 --

0.26-

0.24-

0.22-

CF 0.2-

TSF 0.18 -

T??4
0.16 -

TLB

0.14-

0 oH000 002 0.04 0.06

(a.i) Light-load

System
Tinto

2

FCPS

~ SQM

- - - - - -- GEN

0.02 0.04 0.06

Traffic Intensity

(a.ii) Light-load

---- FART

MWD

0.s 0.6 0.7 OS

(b.i) Intermediate-load

0.3 0.35 .4 AS 0.5 0.55 06 0,5 0.7

Tmffc Intensity

(b.ii) Intermediate-load

I s

j40

100 200 300 092S 0.93 0.3$

1 g 1 4- 119 . .

014 (kW4 0,93 0.955 0.96 0965 097 O$75

XAI(I-p)2 Trafhe intensity

(c.i) Heavy-load (c.ii) Heavy-load

(i) [21] (ii) [72]

Figure 5-8: Comparison of algorithms on DTRP [used with permission]

154

0.08 0.1

I

/

/



0.025

0.020

0.015

0.010

0.005

0.000

-0.005

-0.010

-0.015

-0.02g.
0.6 0.7 0.8 0.9 1.0

Figure 5-9: Comparison of the index policy and Nearest Neighbor Algorithm. Circles
indicate sequences of one million requests, while x-symbols represent sequences of one
hundred thousand requests and are shown to better describe the variability.

155

0.1 0.2 0.3 0.4 0.5
load factor

x

x X

X

x x
X 'X

X
X-

)



5.7.3 Multi-Class Requests and Preemptive Service

Suppose that the on-site service requirement, s does not have a non-increasing con-

ditional mean. It is possible that after having provided some amount of service to a

request, continuing to service that request might require a higher subsidy than mov-

ing to another request. Figure 5-10 shows a probability distribution for the on-site

service requirement, s, for which this is the case. For such a distribution an agent

should only work on the "hard ones" if it is relatively certain that there are no "easy

ones."

A similar effect can be acheived if we will allow the ability to distinguish between

different types of service requests. In this case we will assume each request comes

from a set of classes, T. Assume that the class of a request is drawn i.i.d. from P

that is both spatially and temporally constant. Each class i may have a different

service time distribution si, and a different priority, qi, the meaning of which we now

define.

Rather than minimize the expected latency of requests, we modify the overall

objective to minimize the expected prioritized latency of requests, wherein the latency

of a request of a particular class is scaled by the "priority" of that class. For simplicity,

we assume that when a request is detected its class is is also detected, although this

is not strictly necessary.

This section will broach these issues but does not resolve them.

First note that, the subsidy scheme described in Section 5.7.1 handles these cases

conceptually: The agent gets its reward when it completes service, and scaling that

Figure 5-10: A probability distribution lacking a non-increasing conditional mean.

156



reward by a class's priority is natural. But at an algorithmic level, the index function

we have presented does not handle them. We have all along been representing the

spatial distribution of requests with a single, normalized measure. Once we are able

to differentiate requests this becomes immediately inadequate.

Instead we propose tracking the actual (unnormalized) spatial distribution of each

request type. Then to apply the index policy, one must consider not only a path, but

a decision rule for whether a request will be served. Consider a request r of type i

a distance d away from the agent. Ignore the issue of preemption for the moment.

Serving it corresponds to a price of

qi

We propose the following decision rule. A request, r encountered along path P at

time t is serviced if y,. is less than the subsidy of P from t onward. To compute the

subsidy of the path, therefore, we must now condition on the fact that an encountered

request is actually serviced.

Preemption further complicates the issue since we now must also condition on the

completion of service. Let -y(P) denote the break-even price for the best path that

leaves the location of a request r. The agent will only be willing to work on r as long

as
E [si - t~si > t ]

j 7(P)

Let tmax(y) the largest t for which this holds for all r < t. With probability

P [s < tmax] the agent will complete the service, but otherwise it will introduce tmax

of delay. When determining the break even price of a path, this potential delay must

also be accounted for. We have not yet found a general and tractible way of determin-

ing, or even estimating, this price. Doing so would constitute an important extension

of this research.

We conclude with the following remark.

Remark 5.7.1. Assume that service is either non-preemptive or that agent's can

157



resume tasks without penalty, i.e., request i is "serviced" after the cumulative time

spent on it is equal to si.

If the arrival process is supported by a single point, the index policy is optimal.

Proof. The subsidy of observed requests will be qi/Ti. The queueing policy that sorts

using this rule is known to be optimal for non-spatial multi-class queueing.[64] L

Conjecture 5.7.2. In the limit of the agent's speed to infinity, the index policy is

optimal.

5.8 Flight Testing

Now, finally, we are able to completely describe the policy that we developed for a

scenario of interest for the Air Force Research Lab (AFRL). A long standing goal

in military UAV control is to allow a single operator to effectively control a team of

UAVs. Currently UAV operators control only one UAV, in fact often several operators

are required for a single vehicle. These operators give commands at the waypoint level,

i.e., by telling the vehicles exactly where to go. The vehicles have extremely capable

autopilots, but currently lack the necessary decision-making abilities to behave more

autonomously.

One of the programs aimed at providing these abilities is called Intelligent Control

and Evaluation of Teams (ICE-T) the goal of which is to allow operators to monitor

and evaluate teams of UAVs while controlling them at a much higher operational

level. The operator interacts with the autonomy via the Vigilant Spirit Control

Station (VSCS) which is described as follows.

The Vigilant Spirit Control Station (VSCS) is a multiple UAV ground

control station. It has been developed by the Human Effectiveness Direc-

torate to allow a single operator to control a team of UAVs. It connects

to the UAVs via the STANAG 4586 messaging standard. Automation

services connect to VSCS using Common Mission Automation Services

158



Interface (CMASI) which is a proof-of-concept messaging protocol for so-

called "mission-level" messages. One could think of CMASI as the control

architecture-it describes what tools are available to the operator to con-

trol multiple UAVs.[58]

The CMASI architecture allows for the discovery and use of high-level auton-

omy services. We implemented an autonomy service that, given a description of a

DSRP,provides a multi-agent controller using the algorithms described in this disser-

tation. The various details of this controller are described in Algorithm IMPLEMEN-

TATION. This controller issued waypoints to the vehicle and also communicated with

the operator via the VSCS.

The VSCS and associated autonomy services were used in the 2009 Talisman Saber

Exercise (TS) which was the largest force-on-force military exercise in the world[67]

and our autonomy is planned on being included in the 2011 TS.

The scenario of interest involves the aerial surveillance of a road network. Targets,

formerly "requests," arrive in the network according to a known random process and

the UAVs must collect imagery of them so that a human operator could classify the

target as "lethal" or "benign." The system objective is to minimize the expected

time between a random target's arrival and its classification. These targets may

be detected in one of three ways: completely exogenously (i.e., at the request of

unmodelled assets), exogenously via known assets (e.g. fixed ground sensors), or by

the UAVs themselves.

Since Automated Target Recognition (ATR) is not a viable option, the search

aspect of the problem involves the help of the human operator. When not collecting

imagery of a known target, the UAVs collect imagery so as to maximize the probability

that it will collect imagery of an unknown target. The presumption is that the human,

coupled with whatever decision support services are available, constitute the perfect

sensor we have been assuming throughout. Incorporating a model for the human's

calculable flaws is a rich and ongoing research endevour, see, e.g., [82].

We assumed a model for the human operators' decision time which lacked non-

increasing conditional mean giving the vehicles the ability to preempt, however under

159



realistic arrival rates such preemption was an unlikely occurance. We allowed the road

network to be embedded in an airspace with nearly arbitrary no-fly zones, requiring

only the assumption of symmetric distances.

Figure 5-11 depicts the state of a specific simulation in which two UAVs are

responsible for a security perimeter at Vandenburg Air Force Base (AFB), shown in

red. The UAVs under consideration are Bat-3, with six-foot wingspans and capable

gimballed cameras. This simulation assumes that the arrival process is supported

by the perimeter and is very non-uniform. There are ground sensors at points of

interest, such as where roads intersect the perimeter, and in this simulation they are

very accurate.

At the moment depicted in Figure 5-11 there are no known outstanding requests.

The expected target density is shown as yellow vertical bars. The blue lines indicate

the ground track of the sensor for the planned trajectories, specifically the paths that

minimize the index function: The inland UAV plans on searching to the high density

peak while the more coastal UAV plans on searching the entire shore.

Since there is no point of comparison for our policy, the performance metric under

consideration is qualitative. Ultimately the goal is to have a control policy that the

operator trusts. We would like for the operator to decide that he or she need not

routinely intervene in path planning, specifically because this would provide little to

no improvement.

Systematic human experiments using our algorithms in the VSCS are not yet being

planned. Anecdotally though, there is little to find fault with in the simulated results.

We are entirely confident that operators would trust the autonomy sufficiently well

to rely on it for path planning at any time when they have other tasks requiring their

attention.

160



Figure 5-11: Surveillance region at Vandenburg AFB. The yellow vertical bars indicate
expected target density. The blue lines indicate the paths with minimum subsidy.

161



162



Chapter 6

Conclusions and Possible Future

Directions

6.1 Summary

This dissertation presents a unified approach to search based on a single metric, which

we call the "index function," by which we compare partial search paths in a length

space A. This metric evaluates paths that search a subset of the region. If the path

is finitely long it must be closed. The index function is the expected time spent

searching the path divided by the probability of success.

Specifically, "time spent searching" is the time at which the agent finds (and in

the case of the DSRP services) a single goal drawn according to a spatial probability

measure pL, or the time required to traverse the entire path, whichever is shorter. By

restriction or assumption we represented the spatial distribution of relative agent-goal

positions in the region with a single probability measure pa.

Given a path P : R+ - A define Ip(-r) as an indicator of whether an agent

that pursues path P will be "successful" before time -r if exactly one goal is drawn

according to p. In most cases "successful" simply means finding the goal, but in the

case of the DSRP it means both finding and servicing it. Let [ denote the length of

163



the path, potentially infinite. The index function is given by

E [fT(1 - Ip(T))d-r]
7('P) =(6.1)

Ip(E)

The "index policy" is to select the path that minimizes Equation 6.1. In addition to

defining this function, this dissertation presents a collection of recipes for performing

this minimization efficiently--describing how to do so in a number of distinct search

problems in various classes of length spaces.

6.2 Possible Extensions

Amongst the myriad ways in which this research could be extended and improved

upon, we believe the following to be the most fruitful.

" Foremost, theoretical characterization of the index policy, to the extent possible,

would be very valuable, as would be a formal proof of the impossibility of such

characterization.

" There could be better collaboration in multi-agent policies. We don't doubt

that AUCTIONINGNETWORKINDEX can be improved upon.

" We do not address the problem of enumerating paths in high-dimensional spaces.

We suppose that the space of paths can be searched incrementally to maintain

tractability.

" Section 5.7.3 supposes that the index policy can still be applied to multi-class

and preemptive service although its computation would require significant mod-

ification.

" The search policies discussed here could be integrated into a more general path

planning policy.

We elaborate on the last point: Given a policy for search, path planning can some-

times be dramatically simplified as was the case in the example of aiming off.

164



Suppose that there is information available in the environment in the form of

features. That is, if the agent detects a feature it is able improve it's state estimate.

An irreducibly difficult problem is judging whether this improvement is worth the

cost of trying to detect the feature. But given a search strategy, we can attempt to

make some headway.

Problem 6.2.1 (Challenge Problem). Suppose that there are n distinct features

qi C A in which the agent can detect presence, with q0 being the goal G. Assume

that this measurement is noiseless, but suppose that the agent's dynamics are subject

to noise. The problem is to find a control policy that takes the agent from an initial

location distribution yu, to the goal set G in minimum expected time.

An initial proposal

Let U(qi) denote the uniform distribution over the boundary of qi and let ya indicate

the robot's position distribution. For each # E {U(qi)Vi} U {j} and S E {qVi}

compute the expected search time, dT(4, S), from # to S according to the index

policy.

One could form a completely-connected, weighted, directed graph (V, E, L) with

vertices corresponding to the the features (plus the agent's current state) and edge

weights corresponding to dT. At each moment the agent can recompute the edge

weights corresponding to dT(L, q) and then search for the next feature in the shortest

path to the goal in this graph.

A direction for extension

The important assumption is that when the agent exits feature q, U(q) is a good

approximation of p. This is clearly not a sound assumption in general. This precludes

a number of intelligent strategies, like wall-following, which use a feature to hone the

state estimate.

The most exciting direction for extension, we feel, incorporates the index policy

as an atomic action or "behavior" in a path planning methodology such as that

165



in [81], that does attempt to solve Bellman's Equation, and is capable, at least in

principle, of estimating the value of information. The index policy could add valuable

abstractions-for instance making the decision tree much shorter. At an intuitive

level, the policy would replace long sequences of conditional motion controls with

components such as "Search for feature qi until you find it or the variance of the state

estimate exceeds oa."

We believe that such an approach should be able to directly handle the following

scenario, without resorting to the artifice of Section 2.3. Consider a two wheeled

robot whose motion has much greater directional accuracy than angular accuracy. If

the robot is trying to reach a goal in minimum expected time, it might be preferable

to aim to one side of the goal, travel the correct distance, and then turn 90 degrees to

search for the goal. When including search as an atomic action, the two-stage nature

of the problem can fall out: the robot should get close, and then it should search.

The fundamental difficulty with such an approach is the one which we have re-

peatedly pointed out: it is difficult to know a priori what constitutes an adequate

description of the state distribution for effective planning. Although the index policy

might make it tractable to use a higher-dimensional description, it does not address

this issue. We suspect that a general algorithm for path planning in the same sense

as this dissertation presents a "general" algorithm for search could be a white whale.

6.3 Contributions

The major contribution of this dissertation is to develop a general index heuristic for

search and show its applicability to a host of problems.

We make the following secondary contributions.

" We prove the Whittle Indexability of the CPP.

" We characterize the practice of aiming off.

* We unite a several problem formulations as MWLCPs.

* We improve on the state of the art in the PPP for large sensor radii.

166



* We extend existing light-load DTRP partitioning theory to length spaces.

" We extend existing heavy-load DTRP theory to length spaces and complex,

e.g., fractal, measures.

" We present modified Nearest Neighbor Algorithms that are Heavy-Load Con-

stant Factor for the DTRP.

" We demonstrate improved performance on the uniform DTRP for the intermediate-

load regime for load-factors greater than about 0.5.

" We present the DSRP as an interesting and relevant problem formulation.

We spent the majority of this dissertation discussing a small number of relatively

easy special cases. We did this because these are the problems for which there are

the most general answers against which we can compare our own. Each comparison,

on its own, was unimpressive. When taken together, however, we believe they consti-

tute something remarkable. Consider that essentially the same algorithm produced

Table 2.3 and Figure 4-6. In the former we approximate the solution to an elabo-

rate system of differential equation and in latter we approximate the solution to an

elaborate geometric optimization.

Only in Section 2.3 when we characterized aiming off and Section 5.8 when we

described a realistic scenario did we use our policy to do anything new. But it is

here the significance of this dissertation lies: the set of problems for which this work

represents a first step. Not only is this practically significant, it also represents a

point of comparison against which future work may be judged. A common complaint

is that there are no benchmarks for the sort of continuous problems covered in this

dissertation. Although the fundamental problem presented by the size of the problem

space remains, there is now a benchmark algorithm, at least.

167



168



Appendix A

Algorithms

Throughout this section we will talk about transformations of geometric networks,

e.g., adding nodes or breaking edges. This entails some bookkeeping to maintain the

association between the networks. To avoid distracting the reader we will keep this

bookkeeping implicit. For completeness, we provide one example in which we provide

this bookkeeping. This example is Algorithm NETTOTREE, which is otherwise very

simple.

Data: Tree-shaped geometric network A = (V, E, L), probability measure yu on
A, root vertex ao.

We assume that the agent location is the root and that edges are oriented such
that (e, 0) corresponds to the parent.
Result: A connected sub-region containing ao maximizing Equation 3.3.
If Equation 3.3 is maximized by the limit of a sequence converging to a tree
containing only the root we return the tree {(e, O)} where e is the edge on
which the limit occurs.

T, r, c +- DENSESTSUBTREEHELP(ao,0,0,)
return T

Algorithm DensestSubtree: Finds the densest connected sub-tree containing the
root.

Theorem A..1. Algorithm DENSESTSUBTREE solves the DSP in polynomial time.

Proof. It is easy to see that DENSESTSUBTREEHELP has polynomial complexity-we

only prove correctness. Assume by way of contradiction that Algorithm DENSEST-

SUBTREE returns T when the optimum is T', distinct. Recall the function -y from

169



Data: tree T, root node n, reward r, cost c, reward density pL
Result: (T', r', c') A connected sub-region S,r' = E [r(S)] + r,c' = L(S) + c

IL

minimizing d'/r'
queue <- 0
for e c &o(n) do

3 a - minde[o,11 C+a (e)
r±,I(UXE[O,d](e~x))

'T <- {(e, x) s.t. x E [0, a]}

r1 -r + f dp((e,x)), ci <--c+caL(e)

T2,r2, c2 4-
DENSESTSUBTREEHELP((e, 1), r + pL(e), c + L(e), /)

8 if ci/r, > C2/r2 then
INSERT (queue,(ci /ri, (T, ri, ci)))

else
INSERT (queue,(c2/r 2 , (T2, r2 , c2))

end
end
T' +-- {n}
r', c ' 

+- r, C

while queue 4 0 do
Tsrs, cs +- EXTRACTMIN (queue)

if cs/rs ;> c/r' then
19 | return (T', r', c')

else

r'+-r'+rs-r, C'+-C'+Cs-C

end
end
return (T, r', c)

Algorithm DensestSubtreeHelp: A recursive helper function for DENSESTSUB-
TREE

170



Equation 3.4 and note that we have 7(T) > -(T') by assumption. Let x be a point

where they diverge, i.e. x is the root of two non-intersection trees, Tx E T and

T' C T'. Note that we have -/(T) < 7(T') by the optimality of T'.

Suppose that x is a node and consider the point at which Algorithm DENSEST-

SUBTREE returns from the recursion at which x is the root. At this point we have

c'/r' > -y(T), but there is a sub-tree, T', in the queue with cs/rs < c'/r'. Therefore

this tree would be added before returning and it is impossible for Algorithm DENS-

ESTSUBTREE to return a tree containing r but not containing T.

Suppose that x is not a node, so that x 71. We break this into two cases, de-

pending on whether T' contains a node or not. Suppose it does not. This contradicts

that T is the minimizer found in Line 3.

If it does contain a node, T2 = T U T' will be returned in Line 19 and, as we will

show, will be preferred in Line 8. Let c';,r denote c's - c, r/ - r.

We have c/r > c'1/r', c/r c2/r', and (c1)/(ri) > -y7T) c2/r'. Therefore

ci c+c'1+c 2 _c 2

ri r+r'+r2 r2

This implies that 7F would be added instead of T contradicting our assumption. O

Lemma A.0.2. The solution to the DSP has a unique first edge, therefore it can be

interpreted unambiguously as a policy.

Proof. At the root node, when the first sub-tree is popped from the queue, ret and

cost are both zero. Let r, c be the reward and cost of this first sub-tree, with c/r

being minimum over such sub-trees. When any subsequent sub-tree is popped with

r', c', we have c/r < (c + c')/(r + r') and therefore it will not be added. O

We should point out that although {(e, 0) s.t. e E J(ao)} are not distinct elements

of A, a distinction is made between them when interpreting the output from Algo-

rithm DENSESTSUBTREE. The output {(e, 0)1 is to be interpreted as the case in

which the sub-tree that minimizes Equation 3.3 does not exist, rather it is limit of

sequences of trees limto Ui 0 i (e, r).

171



Data: A geometric network A, measure ,, starting location x
Result: A dense sub-tree containing x
A' +- NETToTREE(A, x)
return DENSESTSUBTREE(A', p, x)

Algorithm DenseSubnet: Finds a dense subnet containing x by creating a tree
and calling DENSESTSUBTREE

Data: geometric network G, spatial measure p, tree F = (VT, CT) g G with
root x

Result: A new tree T' also rooted at x with equal or lower weight, with no
branchings outside of T

P10 +-the path in TF from the first branching (or only leaf) of T- to x
t* +- Equation 3.6

7* +L(T)/(T)
G' - C with vertex vi added at Pio(t*)
L'(e) +-- L(e) - y*t(e) Ve E E'
return REPLACEPREFIX(G', T, x, vi)

Algorithm PrefixReplacement: Tries to improve on the solution returned by
DENSESUBNET

Data: A weighted graph, G = (V, E, L), a subtree T = (VT, ET) rooted at vo
and containing vertex v1

Result: A new tree T' also rooted at vo with equal or lower weight, with no
branchings outside of T

G' +- G
Poi +- the path from vo to vi in T
T' +- T \ Po1

Modify G' by collapsing T' in G' to a single node v*
repeat

Run the Bellman-Ford algorithm on G'
if There is a negative cycle C then

if vo E C then

I return C \ {arg maxec5(vo)nc (e)}
else
I C' +- C' \ {arg maxeec L(e)}

end
else
| return T'U the shortest path from vo to v* in G'

end
until Forever
Algorithm ReplacePrefix: Tries to replace a specific prefix of the plan.

172



Data: A geometric network G, measure y over goal location, agent location x
Result: A direction
G' G G with x as a node
Z <- DENSESUBNET(G', y, x)

7,' <- PREFIXREPLACEMENT(G', p, T, x)
return 'T,

Algorithm NetworkIndexPolicy: The simplified index policy.

Data: region A, belief I over the region, m starting locations s, single-agent
planning algorithm PLANNER

Result: A path for each agent.
I' +- I
U+ I set of unassigned agent indic
P[i] 0 for i Eu set of pati
-y*[i] = o for i E u
while u / 0 do

for i c u do
P[i] +- PLANNER(A, T, ao)

7*[i] - (P[i]) // Equation 3.

es

hs

3
end
ia= arg ming y*[i]
U +- u \ {ia}

T +- ZEROOUT(T, P[ia])

end
return P

Algorithm auctionPlanner: Creates a multi-agent planner out of a single-agent
planner by repeatedly running winner-take-all auctions.

Data: region A, belief I, agent locations s
Result: multi-agent plan
return AUCTIONPLANNER(A, I, s, NETWORKINDEXPOLICY)

Algorithm AuctioningNetworkIndex: A multi-agent polynomial-time index
policy for networks

173

12



Data: Region A, belief I, agent locations, s, a set of planners, 17
Result: a plan
y <- the normalized spatial measure consistent with I

7min +- oo
for PLANNER E H do

P +- PLANNER(S,I)

l * +- //Equation 3.3

if 7Y* < 7min then

P 4- PLANNER(A, I, s)

P* < P, 7min +- 7*
end

e nd
return P*

Algorithm MultiPlanner: Compares multiple planning algorithms using the in-
dex function

Data: Region A, belief I= (0(t), Z(t), I(t)), agent locations s, multi-agent
observed planner OBS : (0, s) -+ P, multi-agent search planner,
UNOBS : (I, s) - P

Result: a multi-agent plan P
P 4- OBS(0, s)

I" +- i E 1, . . . , m s.t. plan[i) = <p}
I' - zEROOUT(I, P)

SU +- {xi Vi E I"} PU +- UNOBS(2/, Su)

P[Iu[j]] +- Pu[j] Vj E |I"| return P
Algorithm ObservedFirstMultiPlanner: a multi-agent planner that first as-
signs observed requests according to algorithm OBS and then runs a finds plans for

agents which are not assigned requests according to algorithm UNOBS

174



With multiple agents, the natural analogue of the Nearest Neighbor Algorithm is

the minimum matching algorithm. For the observable case, we were able to occasion-

ally improve on the winner-take-all nature of Algorithm AUCTIONPLANNER by com-

bining it into a multi-planner (Algorithm MULTIPLANNER) with Algorithm MATCH-

ING.

Data: agent locations s, requests 0
Result: a plan assigning each agent to at most one request
return the minimum matching in the bipartite graph formed by connecting
each agent to each request with an edge whose length is the distance between
them

Algorithm MinMatchingPlanner: An observed planner that computes a mini-
mum matching between agents and requests

Data: agent locations s, belief I= (0(t), Z(t), pL(t))
Result: a multi-agent plan P
return OBSERVEDFIRSTMULTIPLANNER(A, s, I, MINMATCHINGPLANNER,

AUCTIONINGNETWORKINDEX)
Algorithm Matching: a multi-agent planner that first assigns observed requests
via a minimum matching and then uses the auctioning index policy for the remaining
agents

Data: region A, belief (0(t), Z(t), pt(t)),agent locations s
Result: a multi-agent plan P
return MULTIPLANNER(S, I,

[MATCHING, AUCTIONINGNETWORKINDEX])
Algorithm ConsiderMatchingPlanner: a planning algorithm consisting of two
planners, MATCHING and AUCTIONINGNETWORKINDEX being compared using
MULTIPLANNER

175



Data: metric space A, d(., -), geometric network G C A, agent locations s,
parameters Jo, E1

Result: A geometric network approximating the connectivity of G
G' <-G;

+- a Jo discretization of the edges;
+ - {(vo, v) s.t. vo V+ U C V E ,vo v} \ E;

sort E+ by increasing length;
for (vo, v1) E E+ do

d A +- d(vo,v1)A, dG' <- d(vo,v1)G;
if dG' - dA > Eo ard (dG' - dA)/dA > 1 then

| G' <- G with an edge between vo and vi (adding vertices if necessary);
end

end
return G'

Algorithm MetricEmbedding: An algorithm for creating a one dimensional re-
gion approximating the connectivity of a higher dimensional region.

Data: Metric space A, belief I spatially supported by network G, agent
locations s

Result: A plan for each agent
A' <- METRICEMBEDDING(A, G, s)

return CONSIDERMATCHINGPLANNER(A', I, s)
Algorithm Implementation: The planner used in the flight-tests described in
Section 5.8

176



Data: Geometric network A = (V, E, L) with measure p, price 'y
Data: A new equivalent geometric network in which the minimum cost path

(at subsidy -y) is a circuit
A' <-- A
for e E £ do

f+ C (e)
?P <-A(t) : (e,1t/E)
-Pe- +-A(t) : Ie - t/f)
t+ <-maxte[,] 2tW(e) - p (P ([O, t]))
t +- maxtE [0,] 2(1 - ) N -A D)
for a E {?P (t+) Pe-(t-)} do

if a V V then
A' t- ADDNODE(a)

end
end

end
return A'

Algorithm NodeAdding: An algorithm for adding vertices to a geometric network
such that the minimum ratio circuit only changes directions at vertices

177



Data: network G = (V, E, d) and root ao.
Result: a tree-shaped network T = (V', E', d') and a function f : T -+ G

preserving the distance from the root to each location
V' <-- V
MST +- MINIMUMSPANNINGTREE (V, E, w)
E'+- MST
for v C V do

| f(v)=v
for e C MST do

I f(e, d) +- (e, d)Vd E (0, 1)
for (e, n1, n2) C E\ MST do

le +- w (e), d1 +- d((, n) 1, root), d2 +- d((, n) 2, root)
if d2 = le + dl then

define new labels v', e'
V' +- V' U {v'},E' +- E' U {(e', n1, n2) },w'(e') +- le

f(v') +- n2, f(e', d) <- (e, d)Vd E (0, 1)
else if dl = le + d2 then

define new labels v', e'
V' <- V' U {v'}, E' <- E' U {(e', n2, n1)}, '(e') +- le

f(v')Oundefined, f(e', d) +- (e, d)Vd E (0, 1)
else

define new labels vl', v2', el', e2'
a +- (d2 - dl)/(21e)

V' +- V' U {vl', v2'}, E' +- E' U {(el', n1, vl'), (e2', v2', n2)}
w'(el') +- ale, w'(e2') +- (1 - a)le
f(v1') <- (e, a), f(v2') +- (e, a) (or undefined)
f(el', d) <- (e, ad)Vd C (0, 1)
f(e2', d) <- (e, a + (1 - a)d)Vd E (0, 1)

return T, f
Algorithm NetToTree: An algorithm for creating an "equivalent" tree shaped
network that preserves the length of shortest paths from a root node. Includes the
details associated with the association between the tree and the original network.

178



Data: A weighted graph G, root r
Result: a spanning path of G, starting at r, with low latency
Find the tree T of minimum weight, spanning G, in which r has odd degree.;
Find the minimum matching M1 of odd-degree nodes in T.;
Add M1 to T to make Eulerian graph E1 .;
Find any traversal Si of E1 and Sr its reverse;
/* We use the greedy heuristic, selecting the shortest edge when

facing a choice */
Find M2 the minimum matching of odd-degree nodes except r.;
Add M2 to T to make a graph E2 with exactly two odd degree nodes.;
Find any traversal S2 of E2;
// same choice applies
return the path among S1, Sr, and S2 with minimum latency

Algorithm ModKoutsoupias: Our modification of the algorithm from [60]

179



180



Bibliography

[1] S. Albers. Online algorithms: a survey. Mathematical Programming, 97(1):3-26,
2003. 30, 31

[2] L. Allulli, G. Ausiello, and L. Laura. On the power of look-ahead in on-line
vehicle routing problems. In Lecture notes in computer science, volume 3595,
page 728. Springer, 2005. 122

[3] S. Alpern and S. Gal. The theory of search games and rendezvous. Springer,
2003. 30, 31, 47, 48, 50, 56, 105

[4] Eitan Altman and Sergei Foss. Polling on a graph with general arrival and service
time distribution. Technical report, INRIA, 1993. 122

[5] P. S. Ansell, K. D. Glazebrook, J. Nifno-Mora, and M. O'Keeffe. Whittle's index
policy for a multi-class queueing system with convex holding costs. Mathematical
Methods of Operations Research, 57(1):21-39, 2003. 25, 44

[6] A. Arsie and E. Frazzoli. Efficient routing of multiple vehicles with no explicit
communications. International Journal of Robust and Nonlinear Control, 18(2),
2008. 141

[7] G. Ausiello, E. Feuerstein, S. Leonardi, L. Stougie, and M. Talamo. Algorithms
for the On-Line travelling salesman. Algorithmica, 29(4):560-581, 2001. 122

[8] R. Baeza-Yates, J. Culberson, and G. Rawlins. Searching with uncertainty ex-
tended abstract. first Scandinavian workshop on algorithm theory, pages 176-189,
1988. 30

[9] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins. Searching in the
plane. Information and Computation, 106(2):234-252, October 1993. 45

[10] J. S. Banks and R. K. Sundaram. Switching costs and the gittins index. Econo-
metrica, 62(3):687-94, 1994. 24

[11] A. Beck and M. Beck. The revenge of the linear search problem. SIAM Journal
on Control and Optimization, 30:112, 1992. 28

[12] Anatole Beck. More on the linear search problem. Israel Journal of Mathematics,
3(2):61-70, 1965. 28

181



[13] Anatole Beck and Micah Beck. Son of the linear search problem. Israel Journal
of Mathematics, 48(2-3):109-122, 1984. 28, 29, 32, 47, 48, 56

[14] Anatole Beck and D. J. Newman. Yet more on the linear search problem. Israel
Journal of Mathematics, 8(4):419-429, 1970. 28

[15] R. Bellman and R. Kalaba. On adaptive control processes. Automatic Control,
IRE Transactions on, 4(2):1-9, 1959. 20

[16] Richard Bellman. Minimization problem. Bulletin of the American Mathematical
Society, 2(3):270, 1956. 87

[17] Richard Bellman. An optimal search. SIAM Review, 5(3):274, 1963. 28

[18] D. Bertsimas and J. Nifio-Mora. Restless bandits, linear programming relax-
ations, and a primal-dual index heuristic. Operations Research, pages 80-90,
2000. 25, 44

[19] D. J. Bertsimas, P. Jaillet, and A. R. Odoni. A priori optimization. Operations
Research, pages 1019-1033, 1990. 120

[20] D. J. Bertsimas and D. Simchi-Levi. A new generation of vehicle routing research:
robust algorithms, addressing uncertainty. Operations Research, pages 286-304,
1996. 121

[21] D. J. Bertsimas and G. Van Ryzin. A stochastic and dynamic vehicle routing
problem in the euclidean plane. Operations Research, pages 601-615, 1991. 19,
116, 120, 152, 154

[22] D. J. Bertsimas and G. Van Ryzin. Stochastic and dynamic vehicle routing in the
euclidean plane with multiple capacitated vehicles. Operations Research, pages
60-76, 1993. 121

[23] D. J. Bertsimas and G. Van Ryzin. Stochastic and dynamic vehicle routing
with general demand and interarrival time distributions. Advances in applied
probability, pages 947-978, 1993. 19, 121, 144, 145

[24] A. S. Besicovitch. On arcs that cannot be covered by an open equilateral triangle
of side 1. Math Gazette, 49:286-288, 1965. 89, 102

[25] T.F. Bruce and J.B. Robertson. A survey of the linear-search problem. The
Mathematical Scientist, 13, 1988. 29, 30, 56

[26] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar. Paths, trees, and minimum
latency tours. In Foundations of Computer Science, 2003. Proceedings. 44th
Annual IEEE Symposium on, pages 36-45, 2003. 76, 78

[27] H. Choset. Coverage for robotics-A survey of recent results. Annals of Mathe-
matics and Artificial Intelligence, 31(1):113-126, 2001. 105

182



[28] David Chudnovsky and Gregory Chudnovsky, editors. Search Theory. Marcel
Dekker, inc., 1987. 104

[29] K. L Clarkson. Methods for Learning and Vision: Theory and Practice, chapter
Nearest-neighbor searching and metric space dimensions, pages 15-59. MIT
Press, 2006. 142, 143

[30] J. Cortes, S. Martinez, T. Karatas, and F. Bullo. Coverage control for mobile
sensing networks. Robotics and Automation, IEEE Transactions on, 20(2):243-
255, 2004. 123

[31] John Davis. Seaman's Secrets. Gartrude Dawson, 8th edition, 1657. 56

[32] R. D. Van der Mei and E. M. M. Winands. Polling models with renewal arrivals:
a new method to derive heavy-traffic asymptotics. Performance Evaluation,
64(9-12):1029-1040, 2007. 122

[33] I. Eliazar. From polling to snowplowing. Queueing Systems, 51(1):115-133, 2005.
122

[34] J. J. Enright. Efficient routing of Multi- Vehicle Systems. PhD thesis, University
of California at Santa Barbara, 2008. 116, 122, 124, 151

[35] S. R Finch and J. E Wetzel. Lost in a forest. American Mathematical Monthly,
111(8):645-654, 2004. 88, 89

[36] Steven R Finch and John A Shonder. Lost at sea, 2004. 90, 98, 100

[37] Rudolf Fleischer, Tom Kamphans, Rolf Klein, Elmar Langetepe, and Gerhard
Trippen. Competitive online approximation of the optimal search ratio. The
12th Annual European Symposium on Algorithms, pages 335-346, 2004. 31

[38] Wallace Franck. An optimal search problem. SIAM Review, 7(4):503-512, Oc-
tober 1965. 28, 53, 54

[39] E. Frazzoli and F. Bullo. Decentralized algorithms for vehicle routing in a
stochastic time-varying environment. Atlantis, 2004. 122, 141

[40] Shmuel Gal. Search Games. Academic Press, 1980. 33, 69, 105

[41] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Real-time vehicle rout-
ing: Solution concepts, algorithms and parallel computing strategies. European
Journal of Operational Research, 2003. 121

[42] H. Gimbert. Pure stationary optimal strategies in markov decision processes.
24th Annual Symposium on Theoretical Aspects of Computer Science, pages 200-
211, 2007. 21

[43] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the
Royal Statistical Society, Series B, 41(2):148-177, 1979. 23

183



[44] K. D. Glazebrook, H. M. Mitchell, and P. S. Ansell. Index policies for the
maintenance of a collection of machines by a set of repairmen. European Journal
of Operational Research, 165(1):267-284, August 2005. 25, 36, 44

[45] K. D. Glazebrook, D. Ruiz-Hernandez, and C. Kirkbride. Some indexable families
of restless bandit problems. Advances in Applied Probability, 38(3):643, 2006. 34,
35

[46] B. Gluss. An alternative solution to the "lost at sea" problem. Naval Research
Logistics Quarterly, 8(1):117-122, 1961. 90, 99, 100, 101, 102

[47] B. Gluss. The minimax path in a search for a circle in a plane. Naval Research
Logistics Quarterly, 8:357-360, 1961. 89, 99

[48] V. Huynh, J. J. Enright, and E. Frazzoli. Persistent patrol and detection with
limited on-board sensors. In IEEE Conf. on Decision and Control, 2010. 124

[49] J. R. Isbell. An optimal search pattern. Naval Research Logistics Quarterly,
4(4):357-359, 1957. 88, 89, 99, 100

[50] P. Jaillet. A priori solution of a traveling salesman problem in which a random
subset of the customers are visited. Operations Research, pages 929-936, 1988.
120

[51] P. Jaillet and M. R. Wagner. Online routing problems: Value of advanced infor-
mation as improved competitive ratios. Transportation Science, 40(2):200-210,
2006. 122

[52] P. Jaillet and M. R. Wagner. The Vehicle Routing Problem: Latest Advances
and New Challenges, chapter Online Vehicle Routing Problems: A Survey. Op-
erations Research Computer Science Interfaces. Springer, 2008. 30, 122

[53] Antoine Jezequel. Probabilistic vehicle routing problems. PhD thesis, Mas-
sachusetts Institute of Technology, 1985. 120

[54] D. S Johnson and L. A McGeoch. The traveling salesman problem: A case study
in local optimization. Local search in combinatorial optimization, pages 215-310,
1997. 19

[55] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning
and acting in partially observable stochastic domains. Artificial Intelligence,
101:99-134, 1998. 21

[56] M. Y. Kao and M. L. Littman. Algorithms for informed cows. In AAAI-97
Workshop on On-Line Search, 1997. 29, 31, 32

[57] W. Kern and G. Woeginger. Quadratic programming and combinatorial min-
imum weight product problems. Mathematical programming, 110(3):641-649,
2007. 72

184



[58] Kingston. 2010. Personal Communication. 159

[59] Bernard Koopman. Review of theory of optimal search. SIAM Review, 19(2):361,
1977. 104

[60] E. Koutsoupias, C. Papadimitriou, and M. Yannakakis. Searching a fixed graph.
Automata, Languages and Programming, pages 280-289, 1996. 77, 179

[61] G. Kozma, Z. Lotker, G. Stupp, et al. The minimal spanning tree and the upper
box dimension. Proceedings of the American Mathematical Society, 134(4):1183-
1188, 2006. 147

[62] A. Larsen, 0. B. G. Madsen, and M. M. Solomon. The Vehicle Routing Problem:
Latest Advances and New Challenges, chapter Recent Developments in Dynamic
Vehicle Routing Systems. Operations Research Computer Science Interfaces.
Springer, 2008. 33, 121

[63] A. Larsen, O.B.G Madsen, and M. M. Solomon. Partially dynamic vehicle
routing-models and algorithms. Journal of the Operational research Society,
pages 637-646, 2002. 121

[64] R. .C. Larson and A. R. Odoni. Urban Operations Research.
Prentice Hall, New Jersey, 1981. out of print. Available at
http://web.mit.edu/urban-or.book/www/book/. 119, 158

[65] John D. C. Little. A proof for the queuing formula: L= w. Operations Research,
9(3):383-387, June 1961. 141

[66] K. Lund, O.B.G Madsen, and J.M. Rygaard. Vehicle routing problems with
varying degrees of dynamism. Technical report, Department of Mathematical
Modelling, Technical University of Denmark, Lyngby, Denmark, 1996. 121

[67] Mark Mears. ICE-T program description. AFRL Public Clearance 88ABW-
2010-3796, July 2010. 159

[68] Nimrod Megiddo. Combinatorial optimization with rational objective functions.
Mathematics of Operations Research, 4(4):414-424, November 1979. 72

[69] Z. A. Melzak. Companion to Concrete Mathematics. Wiley, 1973. 99

[70] J. Le Ny, M. A. Dahleh, E. Feron, and E. Frazzoli. Continuous path planning
for a data harvesting mobile server. In 47th IEEE Conference on Decision and
Control, 2008. CDC 2008, pages 1489-1494, 2008. 122

[71] C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov decision
processes. Mathematics of operations research, pages 441-450, 1987. 21

[72] J. D. Papastavrou. A stochastic and dynamic routing policy using branching
processes with state dependent immigration. European Journal of Operational
Research, 95(1):167-177, 1996. 19, 121, 123, 152, 154

185



[73] Don Paul. The Green Beret's Compass Course. Path Finder Publications (CA),
10th edition, January 2006. 64

[74] M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic
vehicle routing problem with time windows and customer impatience. ACM
Mobile Networks and Applications, 2008. 122, 123

[75] M. Pavone, E. Frazzoli, and F. Bullo. Distributed policies for equitable parti-
tioning: Theory and applications. In IEEE Conference on Decision and Control,
2008. 151

[76] M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for
vehicle routing in a stochastic and dynamic environment. IEEE Transactions on
Automatic Control, 2009. 19

[77] M. Pavone, S. Smith, F. Bullo, and E. Frazzoli. Dynamic multivehicle routing
with multiple classes of demands. In American Control Conference, 2009. 122

[78] G. Poole and J. Gerriets. Minimum covers for arcs of constant length. Bulletin
of the American Mathematical Society, 79(2), 1973. 88

[79] H. N. Psaraftis. Dynamic vehicle routing problems. Vehicle routing: Methods
and studies, 16:223-248, 1988. 120

[80] H. N. Psaraftis. Dynamic vehicle routing: Status and prospects. Annals of
Operations Research, 61(1):143-164, 1995. 121

[81] N. Roy, W. Burgard, D. Fox, and S. Thrun. Coastal navigation-mobile robot
navigation with uncertainty in dynamic environments. In Robotics and Automa-
tion, Proceedings. 1999 IEEE International Conference on, volume 1, 1999. 23,
57, 166

[82] K. Savla, C. Nehme, T. Temple, and E. Frazzoli. On efficient cooperative strate-
gies between UAVs and humans in a dynamic environment. In Proc. of the AIAA
Conf. on Guidance, Navigation, and Control, 2008. 159

[83] Barry Schiff. Proficient Pilot, Volume 1. Aviation Supplies & Academics, Inc.,
second edition, September 2001. 11, 55

[84] R. Sitters. The minimum latency problem is NP-hard for weighted trees. Integer
Programming and Combinatorial Optimization, pages 230-239, 2006. 70

[85] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28(2):202-208, 1985. 122

[86] Lawrence Stone. Theory of Optimal Search. Academic Press, 1975. 104

[87] U.S. Army, Washington, D.C. Map Reading and Land Navigation, FM 3-25.26
edition, July 2001. 64

186



[88] V. M. Vishnevskii and 0. V. Semenova. Mathematical methods to study the
polling systems. Automation and Remote Control, 67(2):173-220, 2006. 122

[89] A. Washburn. Dynamic programming and the backpacker's linear search prob-
lem. Journal of Computational and Applied Mathematics, 60(3):357-365, 1995.
29, 48, 50, 56

[90] R. Weber and G. Weiss. On an index policy for restless bandits. Journal of
applied probability, 27(3):637-648, 1990. 25

[91] J. E. Wetzel. Fits and covers. Math. Magazine, 76:349-363, 2003. 103

[92] P. Whittle. Restless bandits: Activity allocation in a changing world. Journal
of Applied Probability, 25:287-298, 1988. 24, 35

[93] H. Xu. Optimal policies for stochastic and dynamic vehicle routing problems.
PhD thesis, Massachusetts Institute of Technology, 1995. 121

[94] V. A Zalgaller. A discussion about a question of bellman. Zap. Nauchn. Sem.
S.-Peterburg. Otdel. Mat. Inst. Steklov (POMI), 299(Geom. i Topol. 8):54-86,
327-328, 1961. 88, 90, 98, 100

187



188



Acronyms

ADP Approximate Dynamic Programming. 19, 22,
26, 113, 124

AFB Air Force Base. 160, 161
AFRL Air Force Research Lab. 26, 158
AMDP Augmented MDP. 22, 57
ATR Automated Target Recognition. 159

CMASI Common Mission Automation Services Inter-
face. 158, 159

CNP Coastal Navigation Problem. 57
CPP Cow Path Problem. 3, 15, 16, 25, 27, 30-32,

34, 35, 41, 53, 56, 58, 64, 70, 78, 83, 84, 166
CPS Continuous Polling System. 122

DSP Densest Sub-Tree Problem. 73, 75, 169, 171
DSRP Dynamic Search and Repair Problem. 25,

115-117, 127, 129, 151, 152, 159, 163, 167
DTRP Dynamic Traveling Repairperson Problem. 3,

17, 19, 25, 116, 119, 120, 122, 141, 151, 152,
154, 167

DTSP Dynamic Traveling Salesman Problem. 120
DVR Dynamic Vehicle Routing. 119, 120, 122, 123

GPS Global Positioning System. 55, 120
GSP Graph Search Problem. 3, 16, 69, 69

i.i.d. independent, identically-distributed. 115,
116, 134, 142, 156

ICE-T Intelligent Control and Evaluation of Teams.
158

IED improvised explosive device. 115

LFP Lost in a Forest Problem. 3, 16, 25, 85, 87,
90, 90, 92, 94, 96, 103, 104

LSP Line Search Problem. 3, 16, 27-30, 50, 56

189



MABP Multi-Armed Bandit Problem. 23, 24
MDP Markov Decision Problem. 20, 20, 21, 24, 31-

33, 189
MLTP Minimum Latency Tour Problem. 3, 16, 19,

25, 65, 69, 69, 70, 76-78, 152
MPPP Minimum Price Path Problem. 69, 70, 73, 80
MRCP Minimum Ratio Circuit Problem. 71, 72, 77
MRPP Minimum Ratio Path Problem. 71-73
MWLCP Minimum Weighted Latency Covering Prob-

lem. 68, 68, 69, 70, 85, 104, 104, 124, 125,
166

PCSP Prize Collecting Stroll Problem. 77, 78
PCSTP Prize Collecting Steiner Tree Problem. 76-78
PDE partial differential equation. 28, 56
POMDP Partially-Observable Markov Decision Prob-

lem. 21, 22, 57, 118
PPP Persistent Patrol Problem. 3, 17, 116, 119,

123, 124, 127, 151, 152, 166

RBP Restless Bandit Problem. 24, 35

TS Talisman Saber Exercise. 159
TSP Traveling Salesman Problem. 18, 70, 72, 76,

121, 147

UAV Unmanned Arial Vehicle. 25, 158-160

VRP Vehicle Routing Problem. 120, 121
VSCS Vigilant Spirit Control Station. 158-160

190



27, 55, 56, 74, 82, 113, 164, 166

belief state
best-possible

competitive analysis
competitive ratio
Constant-Factor Approximation
coverage

generator
geodesic
geometric network
Geometric Spanning Tree

Hausdorff dimension
Heavy-Load Constant Factor
heavy-load limit

intermediate-load regime

length space
light-load limit
light-load partition policy
Lipschitz continuity
load factor

Min-max Escape Problem
Min-mean Escape Problem

Nearest Neighbor Algorithm
non-increasing conditional mean
NP-complete
NP-hard

118
31, 31, 32, 44, 45

122
31, 32, 44
18, 18
105, 123

134, 138
87, 91
67, 82
73-75

142
141, 146-150, 167
121-124, 141

123, 167

25, 67, 67, 85, 86, 107, 115, 135, 136, 141
121, 123, 128, 133
138, 138, 140
29, 66, 66, 121
123, 133, 141

87, 88
87, 87, 90

18, 19, 25, 152, 153, 155, 167, 175
116, 117, 156, 159
18, 20
21, 70, 72, 76, 77

191

Index

aiming off



optimal control

particle filter
partition
path metric space
pointwise dimension
Poisson CPP
Polling System
preemption
PSPACE-hard

receding horizon
return counter
Riemannian Manifold

separable
simplified index policy

Tramp Steamer Problem

uniform path

Whittle Indexability

85; 109, 114

94, 96, 99
134
67
142
35, 35, 37, 41
122
116, 156
21, 30, 42

16, 19, 118
36
85, 87, 87, 90, 91, 94, 107

41, 115, 121
76

72

66, 66, 68

16, 24, 24, 25, 27, 34, 35, 41, 42, 65, 122

192


