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Abstract

Traditional trajectory design approaches apply optimal control techniques to maxi-
mize desired performance, subject to specified constraints. Normal metrics and con-
straints are composed of the deterministic states and controls in the plant dynamics,
so classical design methods do not directly address trajectory robustness in the pres-
ence of system uncertainties. This work explores the introduction of uncertainty
directly into the trajectory design process. The state transition (sensitivity) and co-
variance matrices both measure the impact of plant uncertainty, and each of these
mathematical constructs can be adjoined to the trajectory optimization problem to
generate solutions that are less sensitive to prevalent uncertainties. A simple Zermelo
boat problem is used to compare the methodologies for any combination of state
initialization errors, state process noise, parametric biases, and parametric process
noise, under any predefined feedback control law. The covariance technique is shown
to possess several advantages over the sensitivity technique. Subsequently, the co-
variance method is used to simultaneously design reference trajectories and feedback
control laws with closed-loop performance constraints for the Zermelo problem.

The covariance trajectory-shaping technique is then applied to a generic hyper-
sonic recoverable reentry vehicle. The trajectories include uncertainties in atmo-
spheric density, axial and normal force coefficients, commanded attitude, and initial
position and velocity. Reachability footprints with uncertainty bounds are generated
by the trajectory-shaping methodology, and shown to extend the vehicle’s range of
confidence. Relative to a fixed recovery site within the footprint boundary, the co-
variance technique improves the circular error probable (CEP) radius by almost 50%.
Lastly, by segmenting the problem, trajectory designs successfully reach the recovery
site using a balance of dispersion penalties and maximum intermediate maneuvers.
Improvements in final CEP are shown to require sacrifices in planned maneuvering.
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Chapter 1

Introduction

Guidance and mission planning applications begin with the design of a reference
trajectory to provide a set of desired states for a system to follow. The reference
trajectory can be designed in a multitude of ways, but a common method is to for-
mulate and solve an optimal control problem. The optimization process guarantees
that the trajectory optimizes a desired performance index while satisfying any speci-
fied constraints. In particular, dynamic constraints ensure the state trajectory evolves
in a feasible manner. Guidance and mission planning applications typically generate
reference trajectories for two basic scenarios. The first is a fixed-target problem, in
which all of the trajectory’s initial and final conditions are fixed, and performance
metrics are formulated to find different ways to guide the system between fixed termi-
nal conditions. The second is a maximum capability problem, in which one or more
of the terminal conditions are left open, and performance metrics are intended to
maximize a system capability dependent on the open states. Although not necessar-
ily all-inclusive, this dichotomy provides an important distinction for two significant
classes of trajectory design goals.

The trajectory design process can be applied to virtually any system, ranging
from chemical mixing processes to electrical circuit problems to atmospheric reentry
profiles. Regardless of the application, a set of states are selected to characterize the
system, differential equations are chosen to model the dynamic behavior of the selected
states, and performance goals and additional constraints are constructed as functions
of those states. The dynamics, performance metric, and additional constraints are
combined in an optimal control problem whose solution is optimal for the specified
metric and feasible given each constraint. However, the design process does not
directly account for any system uncertainties, and differences between the modeled
system and actual system cause dispersions about the reference trajectory during
implementation.

Common system uncertainties include initialization errors, modeling errors, and
measurement errors. Initialization errors represent inaccuracies in the trajectory’s ini-
tial conditions caused by processes that occur before the scope of the posed problem.
Modeling errors represent discrepancies between the plant dynamics and the true sys-
tem which arise from uncaptured state dynamics, model simplifications, or parametric
uncertainties within the plant dynamics. If measurements are taken along a trajec-
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tory to improve knowledge of the actual states, sensor noise leads to measurement
errors that corrupt estimation updates and contribute to imperfect state knowledge.
Each of these uncertainties and their associated dispersions can be characterized with
statistical models.

Dispersions accumulate differently along different trajectories through the state
space, and in problems with sufficient complexity, many feasible trajectories exist
which satisfy every constraint. However, the optimal control problem only provides
the single optimal solution for the specified performance index. Discovering alterna-
tive trajectories requires alternative performance metrics, but in the standard design
problem, the metrics may only be functions of the states and control variables in-
cluded in the plant dynamics. To design trajectories with smaller expected errors,
the designer can attempt to infer how particular uncertainties translate to functions
of the states and controls, and formulate metrics appropriately, but even in relatively
simple systems, this often proves ineffectual. Instead, the responsibility of error re-
duction is relegated to the feedback controller design. Once a reference trajectory
has been designed and expected uncertainties have been characterized, feedback con-
trollers are constructed in an independent design process to correct deviations from
the reference trajectory. Ultimately, the success with which the actual system tracks
the reference trajectory during implementation depends on the errors in the assumed
plant dynamics, how those errors accumulate over the particular reference trajectory,
and the efficiency with which the feedback controller can mitigate dispersions. Robust
feedback schemes can often provide sufficient closed-loop tracking along a predefined
reference trajectory, but nonetheless, the controller’s performance is limited by the
error characteristics it inherits from the independent reference design process.

The goal of this thesis is to augment the standard trajectory design process to di-
rectly generate solutions that are less sensitive to expected uncertainties, and therefore
induce smaller dispersions from the reference. One such method has been championed
by Kumar and Seywald [15] and Seywald [13, 14], while another has been supported
by Zimmer [18]. Kumar and Seywald define the sensitivity matrix, which mathe-
matically represents the sensitivity of the reference to perturbations in the states.
When this matrix, along with its required dynamics, is adjoined to the optimal con-
trol problem, the trajectory designer may include functions of the sensitivity matrix
in the performance metric and additional constraints. In a similar process, Zimmer
augments the optimal control problem with the covariance matrix and Riccati equa-
tion dynamics, which allows the designer to include functions of the covariance matrix
in the performance metric and constraints. The sensitivity and covariance matrices
can both be used to express either the open-loop or closed-loop effects of system un-
certainties along a reference trajectory, but each provides a different mathematical
perspective and addresses the problem slightly differently.

The authors test their respective techniques on several applications, ranging from
simple two-dimensional Zermelo boat problems to orbital insertion scenarios, but nei-
ther provides a detailed comparison of the two trajectory-shaping techniques on a
common problem. Zimmer cites References 13-15 in his dissertation [18] and claims
that the sensitivity method lacks the ability to account for process noise and measure-
ment noise uncertainties, but does not provide direct evidence to support this claim.

12
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Figure 1-1: Fixed-target trajectory design illustration: Multiple feasible trajectories
connect a single pair of initial and final conditions, although optimization techniques
only provide the single optimal trajectory for the performance metric used. For a given
set of uncertainties, the expected dispersions accumulate differently over different
trajectories through the state space, and trajectory-shaping techniques directly solve
for trajectories that reach the target with smaller expected dispersions.

To justify a preferred technique. this thesis attempts to convey a more complete com-
parison of the sensitivity and covariance trajectory-shaping methods, demonstrating
their strengths, weaknesses, capabilities, and limitations in a simple problem using
both fixed-target and maximum capability design goals. For a fixed target with mul-
tiple feasible trajectories, the trajectory-shaping technique allows the designer to di-
rectly solve for trajectories that reach the target with smaller expected dispersions, as
illustrated in Figure 1-1. For maximum capability problems, the trajectory-shaping
technique allows the designer to balance penalties on nominal capabilities and ac-
cumulated dispersions. When the correct balance is struck, it is possible to find
trajectories that actually extend the expected capability, as illustrated in Figure 1-2.

Kumar and Seywald [15] also mention the ability of the sensitivity method to
simultaneously design reference trajectories and feedback control laws, but they do
not actually implement this concept . The covariance method possesses the same
capability, but Zimmer [18| also chooses not to explore it . Using the same simple
problem, this thesis demonstrates the simultaneous design of reference trajectories
and feedback controllers, as well as the ability to penalize and constrain the sys-
tem’s closed-loop performance characteristics associated to the matching reference
trajectory.

Once the comparisons are complete, a preference for the covariance method is
defended, and this technique is applied to a significantly more complex problem in-
volving the design of hypersonic reentry vehicles. In previous work, Undurti [17)
conducted research on the capabilities of axisymmetric skid-to-turn (STT) reentry
vehicles with lift-to-drag ratios (L /Ds) of approximately one and two, and Abraham-
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Figure 1-2: Maximum capability trajectory design illustration: When at least one of
the initial or final conditions are left open, trajectories can be found which maximize
some function of the open states. For a given set of uncertainties, the expected
dispersions accumulate differently over different trajectories through the state space,
and trajectory-shaping techniques directly solve for trajectories that may actually
extend the confident range of the system.

son [1] looked at axisymmetric STT vehicles with L /Ds of approximately two. Recent
research in reentry capabilities, however, has gravitated towards high-performance
vehicles that use asymmetric characteristics to achieve even greater L/Ds and ma-
neuverability |6, 11]. The performance data gathered from testing such vehicles will
be useful for future high-performance reentry missions of all types, from manned
exploration capsules to unmanned payload carriers.

While Abrahamson and Undurti used the standard optimization problem to char-
acterize reentry vehicle maximum capabilities, they did not incorporate uncertainty
considerations into the design process. Following recent research trends and extend-
ing the work completed by Abrahamson and Undurti, this problem poses a fictitious,
small-scale, asymmetric recoverable reentry vehicle with a slightly higher L/D of ap-
proximately 2.5. To remain generic, the vehicle is not tied to any existing body, and
its shape is not even specified in the problem formulation. The basic mission profile is
invented to allow the vehicle to collect valuable aerodynamic performance data before
deploying a guided parachute that returns it safely to the test crew.

The initial conditions of any endoatmospheric reentry scenario are dictated by
an insertion method, but the remaining reentry constraints and the performance
metrics can be varied to accomplish different trajectory design goals. For a reentry
vehicle intended to gather performance data and test the system’s limits, it is highly
desirable to characterize the maximum downrange and crossrange capabilities by
leaving the final recovery location open. In practice, however, final recovery sites
may be established before the flight, and the vehicle may be expected to exercise
its performance capabilities before reaching the recovery zone. In this case, it may

14



be desirable to maximize the precision with which the vehicle can reach the site,
or maximize a certain type of maneuver along the trajectory before the vehicle is
recovered.

Whatever the mission, uncertainties inevitably exist in the plant dynamics used to
generate reference trajectories, and increasing the complexity of the system simply in-
creases the potential sources of uncertainty. For maximum capability exercises, these
uncertainties shrink confidence in the vehicle’s maximum range. In fixed target cases,
they degrade the precision with which the vehicle reaches the recovery site, and limit
the size of achievable maneuvers that retain reasonable recovery precision. When
typical reentry uncertainties are identified and modeled, the covariance trajectory-
shaping technique can successfully address both fixed-recovery site and maximum
capability design goals. As in the simple test problem, trajectories can be designed
that are expected to reach recovery zones with increased precision, maximize achiev-
able maneuvers before recovery, and even extend the vehicle’s expected downrange
and crossrange capabilities. Although this study poses a particular vehicle model to
demonstrate these concepts, the problem can easily be extended to account for many
different reentry scenarios — whether manned or unmanned — by simply exchanging
the particular vehicle model and updating trajectory constraints appropriately.

1.1 Thesis Overview

The rest of the thesis is organized as follows. Chapter 2 provides background in-
formation on the sensitivity and covariance trajectory-shaping techniques. It sum-
marizes the important properties of the sensitivity and covariance matrices, explains
their mathematical significance, and describes how to augment the standard reference
trajectory design process to include sensitivity and covariance considerations. Both
techniques are then applied to the same simple problem in Chapter 3 to compare
and contrast the mechanics of each implementation, and demonstrate their ability
to handle different types of uncertainty models. Fixed-target problems are solved to
obtain trajectories with reduced dispersions at fixed terminal conditions, and max-
imum capability problems are solved to more accurately depict the system’s maxi-
mum capabilities with open terminal conditions. The simple problem is then used to
demonstrate simultaneous design of optimal reference trajectories and linear feedback
control laws, including the application of constraints on the system’s closed-loop per-
formance characteristics. Chapter 4 addresses the hypersonic reentry problem and
applies the covariance trajectory-shaping technique to demonstrate fixed-terminal
condition and maximum capability improvements in a significantly more complex,
but realistic system. Chapter 5 summarizes final conclusions and proposes areas of
future work.
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Chapter 2

Sensitivity and Covariance
Trajectory-Shaping Methods

As described in Chapter 1, the traditional reference trajectory design process employs
optimal control techniques to generate reference trajectories without addressing ro-
bustness to system uncertainties. The state transition (sensitivity) and covariance
matrices both measure the impact of uncertainty. Each of these mathematical con-
structs can be adjoined to the trajectory optimization problem to allow penalties and
constraints on the trajectory robustness to identified uncertainties.

This chapter begins with a definition of the standard reference trajectory design
problem without uncertainty considerations, and then introduces the sensitivity and
covariance trajectory-shaping techniques. The sensitivity and covariance matrices are
defined along with their dvnamics and key mathematical properties, followed by an
explanation of how to augment the standard trajectory design process to include sen-
sitivity and covariance considerations under various uncertainty models and feedback
schemes. Then, since the sensitivity and covariance matrices only account mathe-
matically for state perturbations, the problem is updated once more to address un-
certainties in other system parameters. Finally, a mathematical connection between
the sensitivity and covariance matrices sheds further insight into the relationship of
these two trajectory-shaping techniques before moving on to an example problem in
Chapter 3.

2.1 Nominal Reference Trajectory Design

For any nominal system with state vector
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and control vector
U

Uz
u= | . : (2.2)

Um

the nominal reference trajectory design process solves for the states and controls that
optimize any desired cost function of form

J=U (x(to), x (t) . to.ty) + /V(x (1), u(t),t)dt, (2.3)

subject to the dynamic constraints given by an assumed plant dynamics

x=g(x(t),u(t),b). (2.4)

Within the cost metric, the endpoint cost U can be any function of the terminal states
and time, while the integrated cost V can be any function of the states, controls, and
time along the entire trajectory. Event constraints, path constraints, state constraints,
and control constraints can also be applied to the optimization. Event constraints
can be written as

el <e(x(to),x(t;) to.ts) <e', (2.5)

which require any function e of the terminal states and time to remain between the
lower and upper bounds given by e’ and eV, respectively. Path constraints can be
written as

dl <d(x(t),u(t),t) <d", (2.6)

which require any function d of the states, controls, and time to remain between
the lower and upper bounds given by d” and dY, respectively, everywhere along the
trajectory. State bounds can be written as

xF <x(t) <xY, (2.7)

which require the states everywhere along the trajectory to remain within the lower
and upper bounds given by x” and xU, respectively. Lastly, control bounds can be

written as
ul <u(t) <uY, (2.8)

which require the controls everywhere along the trajectory to remain within the lower
and upper bounds given by u” and uV, respectively. It is important to note that the
cost metric and each of the constraints listed above can only be functions of time,
the nominal states x, and the nominal controls u included in the plant dynamics.
As a result, the standard trajectory optimization cannot directly penalize or con-
strain system responses to uncertainty. However, if the cost and constraints can be
augmented to include functions of the sensitivity or covariance matrices, then the
system’s expected responses to uncertainty under various feedback control schemes
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can be directly optimized to improve reference trajectory robustness.

Myriad solution techniques exist for solving optimal control problems. Betts pro-
vides a comprehensive overview of the most widely used techniques, including discus-
sions of their specific strengths and weaknesses [2]. As a simplistic dichotomy, most
techniques can be classified as either direct or indirect methods. Indirect methods
attack the optimization as a traditional two-point boundary value problem. However,
to ensure optimality with respect to the cost metric and feasibility with respect to
each of the problem constraints, indirect methods require the analytic derivation of
the necessary and boundary conditions, which requires expressions for the costates
associated with each differential constraint and the Lagrange multipliers associated
with each event and path constraint. For a complex system, these derivations can be-
come very difficult and tedious, particularly because the switching behavior between
active and inactive path constraints must be defined before executing the optimiza-
tion. The two-point boundary value problem must also be initialized with guesses
for the costates and multipliers, and appropriate guesses can be difficult to intuit.
In addition, indirect methods generally demonstrate smaller convergence radii when
compared to their direct method counterparts.

Direct methods, on the other hand, convert the trajectory optimization problem
into a nonlinear programming problem. These methods employ an iterative search
algorithm which requires an initial guess for only the states and controls, and the
underlying nonlinear programming software calculates gradients with respect to the
cost and constraints to adjust the trajectory until the metric is minimized and all
constraints are satisfied within set tolerances. Direct methods generally display larger
convergence radii, handle inequality path constraints, and do not require expressions
and guesses for the costates or Lagrange multipliers, so they are more appropriate for
application to the complex hypersonic test vehicle problem investigated in Chapter
4. Within the direct method branch itself, many different optimization techniques
exist. However, for ease of problem formulation and convergence considerations, the
DIDO direct pseudospectral collocation technique [12] is used to generate the results
presented in this thesis.

2.2 Sensitivity Matrix

Kumar and Seywald [15] and Seywald |13, 14] introduce and utilize the sensitivity
matrix for the purposes of robust reference trajectory design. Specifically, the math-
ematical properties of the sensitivity matrix allow it to represent the sensitivity of
any function of the nominal states at any particular time to perturbations in any
nominal states at any other times along the reference trajectory. As long as system
uncertainties can be characterized as state perturbations, this capability can be used
to explicitly characterize how the reference trajectory can be expected to respond to
particular uncertainties. If the optimal control problem formulation is augmented to
include the sensitivity matrix elements as additional states and the sensitivity matrix
dynamics as additional dynamic constraints, then the cost metric, event constraints,
and path constraints used in the optimization process can specifically penalize or con-
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strain any desired functions of the sensitivity matrix. The dynamics of the sensitivity
matrix also allow for uncertainty analysis under any linear feedback control law, and
the trajectory designer can link the reference trajectory and controller design phases
as closely as desired for a particular guidance or mission planning application.

2.2.1 Dynamics

When the plant dynamics given by Eq. (2.4) are linearized along a particular state
trajectory X (t), the state transition matrix ® (¢,t,) describes how changes in the
initial condition X (ty) = xo cause linear dispersions from the nominal solution. In
other words, the state transition matrix represents the sensitivity of the nominal
state trajectory X (f) to perturbations in the initial condition x,. This is exactly the
definition of the sensitivity matrix S (¢|tg,%o) introduced by Seywald and Kumar [15].
In this context, the sensitivity matrix and the state transition matrix are synonymous,
so that

S (t | to,XO) = (t,to) . (29)

The dynamics which govern the sensitivity matrix are thus equivalent to the well-
known dynamics of the state transition matrix, which can be written as the differential
equation

S(t ] to,%0) = GS (t | to,%o) , (2.10)
with the initial condition
S (fo | to,XO) = ], (211)
where G is the Jacobian 5 .
G = _g(x_’l_l_’_) (2.12)
ox x=%(t)

evaluated along the nominal state solution. The initial condition given by Eq. (2.11)
is always true, because the nominal trajectory evaluated at time ¢, is always equivalent
to the initial condition xg, so that X (¢g) = x¢ by definition. If the initial condition is
altered, the nominal trajectory shifts to satisfy this relationship.

The Jacobian G represents the linearization of the system dynamics about the
nominal trajectory. However, if an allowance is made for the existence of a linear
feedback control law, the controls are expressed as functions of the states as well as
time, and the Jacobian calculation is expanded to

_ %, o8
B [8){ auK}

Og (x,u(x,t),t)

Ge = ox

. (2.13)

x=x(t), u=ua(x.t) x=x(t), u=a(x.t)

where @ (X, t) denotes the control set along the nominal trajectory, and the matrix
du

K = o (2.14)

represents the gain matrix for a linear feedback control scheme. The sensitivity dy-
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namics with the updated Jacobian calculation are rewritten as
S (t ] to.X0) = GeS (t | to, Xo) - (2.15)

Note that the sensitivity dynamics require the definition of a linear control law K,
and that the problem changes depending on how K is defined. From the perspective
of the plant dynamics, the nominal controls selected by the optimization are simply
commands given as functions of time, no matter how K is selected. The nominal
trajectory is a purely open-loop entity that does not change with the presence of
feedback. However, feedback does affect the closed-loop response of the system to
perturbations about the nominal trajectory. The feedback commands depend on
the functionality between the states and controls given by the K matrix, and the
sensitivity matrix dynamics capture the closed-loop behavior. Three major options
exist for utilizing K in the desensitized trajectory design process::

1. Set K = 0 to omit feedback control and design a reference trajectory using the
sensitivity matrix to characterize open-loop responses to perturbations about
the nominal trajectory.

2. Predefine K to specify a feedback control law and design a reference trajectory
using the sensitivity matrix to characterize closed-loop responses to perturba-
tions about the nominal trajectory.

3. Include K in the optimization to simultaneously design the reference trajectory
and the feedback controller using the sensitivity matrix to characterize closed-
loop responses to perturbations about the nominal trajectory.

Each option is more complex to implement than its predecessor, so the designer must
decide how much synergy is worth the effort.

2.2.2 Mathematical Properties

The sensitivity matrix shares all of the well-known mathematical properties of the
state transition matrix, some important ones of which are adapted from Kumar and
Seywald |15] and summarized in this section. These properties help describe the phys-
ical meaning of the sensitivity matrix, and together they can be used to express the
sensitivity of any function of the states at any particular time to state perturbations
anywhere else along the nominal trajectory.

1. S(t|to,x0) represents the sensitivity of a nominal state trajectory to pertur-
bations in its initial conditions, a relationship that can also be expressed math-
ematically as the partial derivative

0% (t)

8X0

S(f | t(),X()) = (216)
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2. S (t ] to,%o) is nonsingular for all ¢ so that its inverse exists, which represents
the sensitivity of the initial conditions to state perturbations everywhere else
along the nominal trajectory.

3. For all t and t1 c [t(), tf], with and X = )-((fl),
S(t | t(),Xo) = S(t ‘ tl,)-il) S(tl l to,Xo) . (217)

Here, X; is defined as the nominal trajectory state evaluated at time ¢;. This
property can also be expressed and understood as the product of the partial

derivatives

ox(t)  0x(t) 0%

8x0 N 8)_(1 8X0 .
In words, this property demonstrates that the sensitivity of the nominal tra-
jectory to initial condition perturbations is equivalent to the product of two
sensitivities: 1) The sensitivity of the nominal trajectory to perturbations at an
intermediate time ¢; and 2) The sensitivity of the nominal trajectory at time ¢;
to initial condition perturbations.

(2.18)

4. For all t and t; € [to, ts], with X1 =% (1)
0%

S(t]t,%) ' = %00

(2.19)

This property shows mathematically that S (¢ |t;,%;)” " represents the sensi-
tivity of the nominal trajectory evaluated at time t; to perturbations along the
entire rest of the trajectory.

5. For any arbitrary, smooth, scalar function h (x,t) with ¢, € [to,t;], the sensitiv-
ity of h (X1,t;) with respect to perturbations at any time ¢ along the nominal
trajectory can be specified as

N oh (}_(1, fl) . oh (X, t)

-1 .
At ty) = % (1) o St %) . (2.20)

X=Xi, t=t1

This final property provides a mathematical method for expressing the sensi-
tivity of any smooth function of the nominal states at any particular time to
perturbations anywhere else along the nominal trajectory

Using these properties, the designer can fully describe the sensitivity characteristics
of the nominal trajectory. However, the nominal optimal control problem can only
include functions of the nominal states and controls within its cost metric and con-
straints, so the problem must be augmented to allow the designer to penalize and
constrain functions of the sensitivity matrix. These properties allow the designer to
formulate sensitivity functions to appropriately address reference trajectory design
goals with uncertainty considerations.
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2.2.3 Sensitivity Problem Augmentation

Including functions of the sensitivity matrix within cost metrics and constraints can
be accomplished by expanding the problem state vector to include each element of
the sensitivity matrix S(¢) — where the simplified notation S (t) is used to denote
S (t ] to,x0) — and augmenting the differential constraints to include the sensitivity
matrix dynamics. For a system with n nominal states, the sensitivity matrix has
n X n dimension. The expanded state vector becomes

Xg = [ VeCX(S) ] (2.21)

and the augmented set of differential constraints becomes

Xs = [Vec}ZS) } , (2.22)

where vec is simply a function that reshapes any n x n matrix into a column vector
with n? rows, with each row representing an individual element of the matrix. The
augmented optimization problem contains n? additional states with an equal number
of new differential constraints and costates. Numerically solving the augmented prob-
lem requires evaluating the sensitivity dynamics, which in turn requires linearizing the
system about the nominal trajectory. The linearization can be computed analytically
by deriving the Jacobian or it can be done numerically with automatic differentiation
software or finite differencing. Either way, including the sensitivity dynamics sig-
nificantly increases the problem complexity, even without optimizing feedback gains
simultaneously. Regardless of the control law, the expanded problem formulation
allows the cost metric, event constraints, path constraints, and state constraints to
include functions of the sensitivity matrix as well as the nominal states, which can
be written as

ty
‘]S = U (XS (tO) , Xs (tf) 7th tf) + /V (XS (t) ,u (2‘> 3 t) dt7 (223)
to
eg < eg(xs(to) . xs (tf) . to,ty) < e, (2.24)
d§ <dg(xs(t),u(t),t) <d¥, (2.25)
and
x5 < xg(t) <xY, (2.26)

respectively. The designer’s primary task then becomes determining the most impor-
tant or influential uncertainties in the system, choosing functions of the nominal states
which require reduced sensitivities, and using the propertics of S (t) to mathematically
formulate cost functions and constraints to match the design goals appropriately. It is
important to note that the sensitivity matrix does not provide a statistical measure of
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expected errors due to uncertainties. Rather, the sensitivity matrix describes exactly
how the trajectory would respond to differential state perturbations at any given
time. Statistical models of the uncertainties do not even appear in the sensitivity
dynamics or the augmented cost function.

Although the sensitivity problem formulation does not require explicit statisti-
cal definitions, the designer must still have detailed knowledge of the nature of the
system uncertainties in order to appropriately select and weigh sensitivity penalties
and constraints. For instance, some states may have greater uncertainty than others,
and sensitivities to perturbations in these states should be more heavily penalized or
constrained. The mechanics of appropriate cost selection are illustrated in the simple
example problem explored in Chapter 3.

2.3 Covariance Matrix

Unlike the sensitivity matrix, the covariance matrix statistically expresses expected
state dispersions from a nominal trajectory induced by uncertainties in the plant
dynamics. Utilizing its mathematical properties, the covariance matrix can be trans-
formed to express expected dispersions in terms of almost any arbitrary smooth func-
tions of the nominal states without the need to reformulate the plant dynamics. When
the optimal control problem is augmented to include the covariance matrix elements
as additional states and its dynamics as additional dynamic constraints, the cost
metric, event constraints, and path constraints can specifically penalize or constrain
any desired functions of the covariance matrix. Like the sensitivity dynamics, the
covariance dynamics can adapt to various linear feedback control laws, and allow the
trajectory designer to link the reference trajectory and controller design phases as
closely as required for a particular guidance or mission planning application.

2.3.1 Dynamics

The nominal states are modeled deterministically by the dynamics given in Eq. (2.4).
However, uncertainties in that model can be expressed as random variables. The
random variables can then be applied to the deterministic system through any appro-
priate functionality to create a stochastic system in which the states are functions of
random variables. The covariance matrix captures the expected statistical behavior
of the stochastic system, and when appropriate assumptions are made regarding the
functionality and distribution of the stochastic state uncertainties, the Riccati equa-
tion governs its evolution along nominal trajectories. When the underlying statistical
assumptions are adequate for the problem, the covariance matrix and the Riccati
equation can be adjoined to the optimal control problem to directly penalize and
constrain functions of the system’s covariance matrix.

For a stochastic system in which the states are functions of random variables, the
state covariance is most generally expressed as the expectation

P=E [(X-E[x])(x_E[x])T , (2.27)
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where E [x] denotes the expected value, or mean value, of the state vector subject to
random variable uncertainty. Replacing F [z;] with y; to represent the mean values
of each state, the covariance matrix for a system of n states is

El(z1 —p) (@1 —m)] Ellzr —pm)(z2 —p2)] - E[(@1 —p1) (zn — un))
Ef(z2 ~p2) (@1 —m)]  Ellzy —p2)(x2 —p2)] - E[{z2 — p2) (Tn — pn)]

P= . : . : (2.28)
El(an —pn) @ — )] El@n —pn) (w2 — )] -+ El(@n = n) (2 = pn)]

The diagonal elements provide the variances for each state, which measure how far
the states are expected to deviate from their mean values. The off-diagonal elements
express the correlations between each state combination, which measure the linear
interdependence in the expected behavior of each state. The general form of the co-
variance matrix can account for random variable uncertainties with any distributions
and functional relationships to the deterministic states. Allowing the uncertainties
to act nonlinearly within the nominal state dynamics, the stochastic system can be
written as

x=g(x(t),u(t),w,t), (2.29)

where w is a random variable accounting for nonlinear process noise. In practice, how-
ever, the covariance-trajectory shaping technique updates the status of any uncertain
parameters within the plant dynamics to states with trivial dynamics, as explained
in Section 2.4. This process shifts the linearization of the noise to the Jacobian and
allows a simple additive functionality to sufficiently describe the uncertainty models.
The stochastic system can thus be reduced to

x=g(x(t),u(t),t)+w, (2.30)

so that w acts additively on the deterministic dynamics.

A common choice for characterizing uncertainty distributions is the normal (Gaus-
sian) probability distribution. Many random processes in the physical world naturally
resemble normal distributions, partly because they are often combinations of many
smaller unobserved random events. The central limit theorem states that as the
number of independent, similarly distributed random variables increases, the com-
bined distribution approaches a normal distribution [3]. If the distribution also has
zero mean, then the expected values of the stochastic dynamics are equivalent to the
nominal deterministic dynamics. If the distribution is also assumed to be completely
uncorrelated with time, then the combination of each of these assumptions allows
the random variable uncertainty to be classified as additive white Gaussian noise
(AWGN). Satisfying these assumptions, w then possesses the statistical properties

E[w(t)] =0 (2.31)

and
E [w (t)w” (T)] =QWt)o(t—1), (2.32)

in which @ (t) is the spectral density of the white noise and & (f — 7) is the dirac
delta function representing an impulse at time 7. Since the expected state values are
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guaranteed to match the deterministic state trajectory under AWGN assumptions,
Ex(t)]=x(t) . (2.33)

The difference between the stochastic state realizations and the deterministic states
represent dispersions from the deterministic state trajectory, written as

ox(t) =x(t) —x(t) . (2.34)
The covariance for the stochastic system becomes
P:E(x—x@xx—xmf}=Ewmfj, (2.35)

which shows that the covariance of the stochastic system and the covariance of the
state dispersions are equivalent under AWGN assumptions. In a continuous system
without measurements, the linear evolution of the covariance matrix along a nominal
trajectory is defined by the well-known Lyapunov equation

P=GP+PG"+Q (2.36)

with initial condition
P(tg)=PF. (2.37)

Here, (Q is the process noise spectral density given by Eq. (2.32), G is the linearization
of the system model about the nominal trajectory as defined in Eq. (2.12), and F,
contains the initial expected covariance of the states. Without measurements, the
covariance is driven purely by the process noise model, the nominal system dynamics,
and the particular trajectory about which the dynamics are linearized.

As with the sensitivity matrix, an allowance can be made for the existence of
linear feedback control laws by using the expanded Jacobian calculation given by Eq.
(2.13), so that the Lyapunov equation becomes

P=G.P+PGT+Q. (2.38)

The expanded Jacobian calculation requires the definition of the linear feedback gain
matrix K to establish the functionality between the states and controls. As with the
sensitivity matrix, K can be 1) set to zero to evaluate open-loop covariances about
the reference, 2) predefined to evaluate closed-loop covariances about the reference
for a specific feedback control law, or 3) optimized along with the trajectory.

In real-world trajectory implementation, estimates of the actual states are often
improved by optimally combining propagated states with measurements taken along
the actual trajectory. Errors or uncertainties in the system dynamics lead to differ-
ences between the propagated and actual trajectories, and measurements are used to
reduce this error. In most cases, rather than detecting the state quantities directly,
sensors measure some function of the states. If continuous measurements are taken
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along a trajectory, they can be modeled continuously as
y=m(x,t) . (2.39)

However, sensor models also contain uncertainties that corrupt the accuracy of their
outputs, and these uncertainties can also be modeled as random variables. If measure-
ment uncertainty is assumed to be AWGN, the stochastic continuous measurement
model becomes

y=m(x,t)+ v, (2.40)

where v is a random variable accounting for additive measurement noise. The mea-
surement noise then possesses the statistical properties

E[v(t)]=0 (2.41)

and
E[v(t)v" (M]=R#)s(t—T1), (2.42)

where R is the measurement noise spectral density. If the state propagation and
measurements are combined optimally with a continuous extended Kalman filter, the
linear evolution of the covariance matrix along a nominal trajectory is defined by the

Riccati equation .
P=G.P+PGr'+Q—-PMTR'MP, (2.43)

where M is the linearization of the deterministic portion of the continuous measure-
ment model along the nominal trajectory, calculated by

_om(x.1)

AJ ax lx:i(t) ’

(2.44)
With continuous measurements, the covariance along a trajectory is driven by process
noise (()), measurement noise (R), measurement models (M), the deterministic dy-
namics (G), and the particular trajectory about which they are linearized. If discrete
measurements are taken along the trajectory, the discrete Kalman filter can be used
to augment Eq. (2.43) to account for covariance updates, but this process will not be
utilized in this thesis.

In summary, when uncertainties in the plant dynamics and measurement mod-
els can be characterized as AWGN, the covariance of the state dispersions about the
nominal trajectory are governed by the Lyapunov equation in the absence of measure-
ments, and by the Riccati equation in the presence of measurements. The covariance
matrix and its dynamics can then be augmented to the optimal control problem to
penalize and constrain expected dispersions from the reference trajectory. However,
the covariance matrix only contains statistical representations of state dispersions.
The following section describes the additional mathematical properties which allow
the final augmented optimal control problem to penalize and constrain the covariance
of almost any function of the nominal states.
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2.3.2 Mathematical Properties

The covariance matrix exhibits several mathematical properties that facilitate the
augmentation of the optimal trajectory design process, including one which allows the
designer to apply linear transformations to represent expected dispersions of almost
any other function of the states.

1. The covariance matrix is symmetric, so that
p=PT. (2.45)

Thus, for a system with » nominal states, the covariance matrix only has %

unique elements. Augmenting the optimal control problem with the covari-
ance matrix requires only ﬂ";—l) additional states, differential constraints, and

costates, while the sensitivity matrix augmentation requires an additional n?.

2. The covariance matrix is positive semi-definite, so that
P>0, (2.46)

which implies several others, e.g., all eigenvalues of a covariance matrix are
greater than or equal to zero.

3. The diagonal terms of the matrix are the variances for each state, and the
off-diagonal terms are products of the standard deviations and correlation co-
efficients for each state combination, so that

2
0y P120102  +++ P1pn010p
2
P120102 05 T Pon020n
P = . . . . . (2.47)
2
P1n010n P00y - g,

For all state pairs, —1 < p;; < 1, where p;; = 0 denotes uncorrelated states, and
|pi;| = 1 denotes perfectly linearly dependent states. Knowledge of this property
allows the trajectory designer to directly calculate variances and correlation
coefficients from a covariance matrix, and use them within cost metrics and
problem constraints.

4. The covariance of any arbitrary, smooth function h (x) can be calculated at any
time with the linear transformation

P, = APA” (2.48)
applied to the covariance of the original states. A is calculated as

PRICY . (2.49)

8X x=x%(t)
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A must be continuous with a continuous inverse and must not be an explicit
function of time [18]. Using this transformation, the designer can apply penalties
and constraints on the covariance of almost any function of the states without
the need to reformulate the dynamics and Riccati equation in terms of the new
variables.

2.3.2.1 Proof of Covariance Transformation Equivalence

The validity of the linear covariance transformation can be proven by demonstrating
its equivalence to the direct integration of the Riccati equation in terms of the new
variables. An explanation of Zimmer’s proof [18] is provided here.

Since the new variables h (x) are functions of the states, their dynamics can be
related to the state dynamics through the linear transformation

h =f(h) = 4x, (2.50)

with A defined in Eq. (2.49). It is important to note that despite the change of vari-
ables, the underlying system remains unchanged. The states provide one description
of the system behavior, and the new variables simply capture an alternative per-
spective. Since the transformation of the dynamics is linear, the AWGN uncertainty
model is preserved and the stochastic dynamics of the new variables can be expressed

h =f (h) + wp, (2.51)

where wy, is the random variable accounting for process noise in the deterministic h
dynamics, with the statistical properties

Elwn(t)] =0 (2.52)

and
E [wn (1) Wi ()] = Qa(0)3 (t— 7). (2.53)

It is important to note that the process noise acting on the transformed dynamics
differs from the noise acting on the state dynamics. The Riccati equation for the
covariance of h can now be written as

Py =FPy+ PoiFT 4+ Qn — PuM R 'MypP, . (2.54)

The Riccati equation governing the covariance of h differs from the Riccati equation
governing the state covariance given in three important ways. First, the Jacobian G
of the state dynamics has been replaced by the Jacobian F of the h dynamics. Sec-
ond, the ) matrix characterizing process noise in the state dynamics is replaced by
the (Qn matrix characterizing process noise in the h dynamics. Third, the M matrix
representing the linear transformation of the measurement quantities to equivalent
state values is replaced by the M) matrix, which transforms the same measurements
into equivalent h values. The necessary relationships between the G and F matri-
ces, Q and @y matrices, and M and My, matrices for establishling equivalence can
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be determined by finding the time derivative of the covariance transformation and
equating it to the new Riccati equation.

The time derivative of the covariance transformation is calculated by applying the
product rule to Eq. (2.48), which gives

Py = APAT + APAT + APAT . (2.55)
The inverse of the covariance transformation provides
P=A"1'PAT. (2.56)

Substituting Eq. (2.43) for P and Eq. (2.56) for P and collecting terms appropriately
vields

. . . T
Py = (AA—l + AGA‘I) Po+ Py (AA—1 + AGA-l) +AQAT - P A" TMTRIMA™R, . (2.57)

Comparing this expression to Eq. (2.54) shows that the covariance of h provided by
the transformation is equivalent to the covariance of h provided by the integration of
the Riccati equation if

F=AGA™ + AA7!, (2.58)
Qn = AQAT, (2.59)

and
My =MA™. (2.60)

Proofs for each of these expressions are now sketched:
1) Proof of Eq. (2.58) begins by defining the F' Jacobian as the matrix of partial
derivatives

oh
F=—. .
oh (2.61)
The linear transformation h = Ax allows
d (Ax)
F= . )
oh (2.62)
and applying the chain rule leads to
0 (Ax) _ d(Ax)% _ J (Ax) 1 (2.63)
oh ox 0h ox
The product rule then guarantees that
0(Ax) , ., O0A_ ox . 4
o A = 8xXA + A(‘?—)EA . (2.64)

The partial derivative % is already known to be the Jacobian G of the state dynamics.
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If A is not an explicit function of time, so that

. 0A.
A= %, (2.65)

it is finally shown that _
F=AAT+ AGA™. (2.66)

to satisfy the first condition for equivalence.
2) Proof of Eq. (2.59) begins by applying the linear transformation of Eq. (2.50)
directly to the stochastic state dynamics to show that

h=Ax=A(g(x(t),t) +w) = Ag (x (t) ,1) + Aw. (2.67)

The stochastic dynamics for the new variables have already been established in Eq.
(2.51), and for these two expressions to be equal it must be true that

Substituting this into Eq. (2.53) shows that the spectral density of the process noise
in the h dynamics can be written

Qn = E [AwwT AT] = AQA” (2.69)

to satisfy the second condition for equivalence.

3) The proof of Eq. (2.60) begins by recognizing that a change of variables does
not change the quantities that are actually measured by any system observers, so the
function

y=m (X, t)
describing the measurement model in terms of the states is still valid. However,
instead of requiring the linear transformation
om (x,t
M = _(__) :
ox

which converts the measured quantities into equivalent state values, the new Riccati
equation requires the linear transformation

My, = : (2.70)

which converts the measured quantities into equivalent values of h. Applying the

chain rule shows that om (x)
m (X) 0x

1. = —Z—MA! 2.71

My ox oh 4 (2.71)

to satisfy the third and final condition for equivalence.
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2.3.3 Covariance Problem Augmentation

Like before, the nominal trajectory optimization problem can only include functions
of the nominal states and controls within the cost metric and problem constraints.
Penalizing and constraining functions of the covariance matrix can be accomplished by
expanding the problem state vector to include each unique element of the covariance
matrix ” and augmenting the differential constraints to include the Riccati equation.
Since the covariance matrix is symmetric, it is fully defined by the elements in its
upper triangle. Thus, for a system with n nominal states, the expanded state vector
becomes

Xp = [ X J , (2.72)

symvec (P)

and the augmented set of differential constraints becomes

X
Xp = :
P symvec (P)
where symvec is simply a function that reshapes an n x n matrix into a column vec-

tor with @ rows, with each row representing an element of the upper triangle.
n{n+1)
2

, (2.73)

The augmented optimization problem contains additional states with an equal
number of new differential constraints and costates. Numerically solving the aug-
mented problem requires evaluating the covariance dynamics, which in turn requires
linearizing the system about the nominal trajectory. As in the sensitivity dynam-
ics, the linearization can be done analytically by deriving and evaluating the partial
derivatives that comprise the Jacobian or numerically with automatic differentiation
software or finite differencing. Either way, including the covariance dynamics sig-
nificantly increases the problem complexity, even without optimizing feedback gains
simultaneously. Regardless of the control law, the expanded problem formulation
allows the cost metric, event constraints, path constraints, and state constraints to
include functions of the covariance matrix as well as the nominal states, so they can
be written as

ty
Jp =U (Xp (to) , Xp (ff) s to,tf) + /V (Xp (t) , U (f) s t) dt, (274)
to
ep < ep(xp(to)  xp (tf) to,ty) < €f, (2.75)
db <dp(xp (t).u(t),t) <dy, (2.76)
and
xp < xp (t) < X5, (2.77)

respectively. The designer’s primary task then becomes determining the most im-
portant or influential uncertainties in the system, selecting appropriate Py, @), and
R matrices to model those uncertainties, choosing functions of the nominal states in
which to reduce the covariance, and using the mathematical properties of the covari-
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ance matrix to formulate cost metrics to match the design goals.

2.4 Parametric Uncertainties

As formulated above, the sensitivity and covariance matrices account for the effects
of state uncertainties, but uncertainties are often more accurately attributed to other
parameters within the system dynamics. For example, in a rocket ascent problem
with atmospheric drag, it may desirable to account for the uncertainty associated
specifically to atmospheric density. However, the sensitivity matrix can only provide
information on system responses to perturbations in each of the states along the nomi-
nal trajectory — not perturbations in other parameters. If atmospheric density is only
a parameter within the dynamics, then the sensitivity matrix cannot directly address
any uncertainty in atmospheric density. Likewise, the covariance matrix provides ex-
pected state dispersions. Even if the nonlinear noise model specified in Eq. (2.29) is
used to account for nonlinear parametric process noise, other types of uncertainties
such as biases and initialization errors can only be assigned as state dispersions — not
dispersions in other parameters. In the augmented problem formulations, the designer
could attempt to couch parametric uncertainties in terms of state uncertainties, but
the transformation of a parametric uncertainty to a state uncertainty can be difficult
to express accurately across the entire state space of a nonlinear system, making only
crude approximations of the desired uncertainty models possible.

One method to circumvent this problem is to update the status of uncertain
constant parameters to that of states with trivial dynamics [15]. For a constant
parameter p within the system dynamics, p can be assigned its own dynamics

p=0 (2.78)

with initial condition
p(to) =po. (2.79)

where pg is the nominal value of the parameter used in the original state dynamics.
The parameter p is then augmented to the state vector

X
X, = 2.80
B -
and the state dynamics

g (x (1) u(x,1).1) } , (2.81)

%o = g0 (X (1), u(x, ). ) = [ :

For both the sensitivity and covariance dynamics, the Jacobian must be recalculated
as

G, (2.82)

_ aga (Xaa u, t) _ {aga i aga R’j|

0, Xa=Rq(t), u=1(Xq.t) 0%, du

Xq=Xq(t), u=0(Xgq,t)
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to include the additional state. Now the sensitivity matrix also includes sensitivities
of each original state to perturbations in the parameter p, which can be included in
the cost metric to specifically address uncertainties in that parameter. Likewise, the
covariance matrix now accounts for expected dispersions in p and any correlations to
dispersions in the original states. Due to its trivial dynamics, including p in the state
vector does not alter the nominal system dynamics, so it does not need to be directly
solved in the optimization process.

2.5 Mathematical Link

Although the physical and mathematical meanings of the sensitivity and covariance
matrices differ, the augmented problem formulations use them to accomplish the same
task, which is to generate trajectories that are more robust to system uncertainties.
Both perspectives on addressing the problem — reducing sensitivities and reducing
expected dispersions — are closely connected because one implies the other. Both
intuitively and mathematically, a reference trajectory that is less sensitive to a par-
ticular uncertainty deviates less from its design when those uncertainties are realized,
and smaller deviations from the nominal trajectory by definition means smaller co-
variances. The mathematical connection is ultimately rooted in the link between the
sensitivity matrix and covariance matrix dynamics. Recalling that the state transition
matrix and sensitivity matrix are equivalent, a general solution for the covariance ma-
trix of a continuous system subject to AWGN without measurements can be written
as an explicit function of the state transition matrix as

P(t) = ®(t.te) P(to) ® (1, t0) + / O (t.7)Q(r)® (t.7) dr . (2.83)

to

Thus, in the absence of measurement updates, propagating the state transition matrix
and using it to evaluate Eq. (2.83) is equivalent to directly integrating the Lyapunov
equation. In fact, the Lyapunov equation can be obtained directly from Eq. (2.83).

First the covariance given by Eq. (2.83) is rewritten as a string of discrete time
steps

P (tk+1) = (tk+1, tk) P (tk) 0] (tk+1, tk)T+ / P (tk-b—la 7') Q(T)(I) (tk—i—la T)T dr . (284)

7%

Next, a Taylor series expansion is applied to the state transition matrix. The Taylor
series expansion of any function f(x) about an operating point a is defined as

— [ (a n
f(x) = z; W“) (x—a)" . (2.85)
With an infinite number of terms, the full Taylor series provides an exact solution for
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the function f (x) for all  within the radius of convergence of the series. However,
in regions near the operating point, fewer terms are usually sufficient to approximate
the solution, and if the region surrounding the operating point shrinks infinitesimally,
the linear approximation provided by the first-order expansion becomes an exact
solution. The first-order Taylor series expansion of the state transition matrix about
any operating point f; is written as

d (t, tk) =3 (tk, tk> + (I) (tk, tk) (t — tk) . (286)

Using the properties and dynamics of the state transition matrix, Eq. (2.86) can be
rewritten as

O(t,ty) =T+ G (t) (t—ty) . (2.87)

Applying a first-order expansion of the state transition matrix at each discrete time
interval At = ¢, — t; gives

D (tpir, tr) =T+ G (ty) At (2.88)
for any k, which can then be substituted back into Eq. (2.84) and expanded to give
P (tir1) = P (tx) + G (tx) P (tx) Ot + P (tx) G (k)T At + G (tx) P (1) G (t)T A7 + Qi (2.89)

With the intention of shrinking At infinitesimally, the second-order term can be
ignored and Eq. (2.89) can be rewritten as

P (tee1) — P (te) _
At

G (tx) P (tn) + P (tx) G (ts) + % (2.90)

When At approaches zero, the left-hand side of the equation becomes the time deriva-
tive of the covariance, giving the Lyapunov equation

lim P (tyy1) — P (te)

A5 At =Pt)=GOPO+PHGH+Q(1). (2.91)

The leap to the Riccati equation depends on a similar derivation using measurement
updates and extended Kalman filtering techniques, but the nature of the connection
between the state transition matrices and the covariance dynamics is established
without measurements.

As shown by Eq. (2.83), the covariance matrix propagates according to the state
transition matrix, and according to Eq. (2.15), the state transition matrix (sensitivity
matrix) propagates according to the linearized system dynamics and the particular
trajectory about which they are linearized. Thus, shaping a reference trajectory
shapes the propagation of its associated sensitivity matrix, which in turn shapes the
propagation of the linear covariance.
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Chapter 3

Zermelo Boat Problem

Although it is clear from Chapter 2 that sensitivity and covariance are intimately
related, the trajectory-shaping techniques contain significant differences in implemen-
tation. Although their mathematical connection makes it likely, it is unclear whether
or not penalties and constraints on sensitivity and covariance can actually produce
equivalent results for common design goals and uncertainty models. Zimmer claims
that the sensitivity matrix cannot be used to address process noise [18], but he does
not provide direct evidence to support this claim. Using a simple two-dimensional
problem, this chapter directly tests the ability of both methods to achieve equivalent
results in both open-loop and closed-loop environments for any system with state
and parametric process noise, parametric biases, and state initialization errors. The
results of this test are used to identify the strengths, weaknesses, capabilities, and
limitations of each method and justify a preferred technique.

The methods are compared using a common design goal intended to improve con-
fidence in the final states at a fixed target. The test problem is augmented using
both the sensitivity and covariance matrices, and cost metrics are developed in both
realms to achieve the common design goal for each posed uncertainty model. The first
three uncertainty scenarios utilize parametric uncertainties only, and the trajectory-
shaping methods are compared with both open-loop and fixed-gain feedback control.
The remaining uncertainty scenario includes a comprehensive combination of state
and parametric uncertainties, but is addressed using fixed-gain feedback only, be-
cause the first three cases sufficiently establish the method’s versatility under various
feedback scenarios.

Following the fixed-target cases, a comparison of both methods is used to justify
a preferred technique, which is then applied to a second design goal crafted to more
accurately reflect the maximum capabilities of the system with open terminal con-
straints. Cost functions and constraints are developed to maximize a function of the
open terminal states while balancing improvement in their confidence.

Finally, the fixed-target scenario is revisited to demonstrate simultaneous opti-
mization of linear feedback control schemes and reference trajectories. Constraints are
applied to closed-loop response characteristics to ensure realistic feedback commands
are generated. The problem is solved assuming constant gains, but the extension to
the variable gain problem becomes apparent.
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Figure 3-1: Zermelo Problem Physical Hlustration [15]

3.1 Zermelo Problem Setup

The same problem used by Kumar and Seywald [15] to introduce desensitized tra-
Jectory optimization is adopted here to allow verification of the current sensitivity
formulation against their original results before extending the test cases. The sys-
tem dynamics are meant to simulate a typical Zermelo boat problem, in which a
boat begins at a designated point along the shore, travels along a flowing river, and
returns to shore at another location. The boat’s two-dimensional down-stream and
cross-stream position is defined by the z; — x5 plane, with the shore given by the x,
axis. The boat moves at a constant relative speed with unity magnitude at an angle
6 measured counterclockwise from the down-stream (+x;) direction. The angle 0 is
the boat’s single control variable in this problem, and the total travel time is fixed to
unity for all cases investigated in this chapter. Although the down-stream () axis
simulates a shoreline, the cross-stream position z, is not constrained to be positive,
which allows the boat to actually travel through the virtual shoreline. Kumar and
Seywald allow this behavior in their problem setup, and it is adopted here for the
sake of consistency. The nominal strength of the water current increases linearly away
from shore, where the slope of this increase is the constant parameter

p=10. (3.1)

Figure 3-1 provides a visual representation of the problem setup. The Zermelo dy-
namics can be written as
Ty = cos (6) + pza, (3.2)

T9 =sin () ,
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subject to the conditions
r1(0) =0, 22(0)=0, and t;=1. (3.3)

It is assumed, however, that the current strength p is not known precisely, and
may even change during the boat’s trip. Since p is a constant parameter but not a
state within the original system dynamics, its status can be updated to that of a state
with the trivial dynamics

p=20 (3.4)

and the initial condition
p(0) =10.

The full state vector for the problem then becomes

I
Xqg = T s (35)
p

which allows for the sensitivity and covariance matrices to account for parametric
uncertainties in p as well as the original states x; and x,. Feedback control can also
be applied to dispersions about the boat’s nominal position trajectory by using the
gain matrix

K=[K K)]. (3.6)

As noted in Section 2.2.3 of this thesis, the gains within the sensitivity and covariance
dynamics can either be 1) set to zero to characterize open-loop responses, 2) prede-
fined to characterize closed-loop responses with a specific controller, or 3) optimized
as part of the trajectory design process. The Jacobian of the augmented system with
feedback control is derived by taking the partial derivatives of the dynamics with
respect to each state, vielding

—K;sin(u) —Ksysin(u)+p xo
G.= | Kjcos(u) K cos (u) 0 : (3.7)
0 0 0

w

x=x(t), u=ua(x,t)

The sensitivity matrix dynamics are then written as
S =G5S

with the initial condition
S(te) =1,

and the covariance matrix dynamics without measurements are written as
: T
P=G.P+ PG, +@Q

with the initial condition
P(ty) = F.
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Both the sensitivity and covariance matrices are 3 x 3 in dimension.

3.2 Fixed-Target Precision

To compare the abilities of the sensitivity and covariance trajectory-shaping methods
to improve confidence in the final states at a fixed target, a common design goal must
be specified so that any solution can be compared against a single benchmark. For
this case, given a specific target location and uncertainty model, the goal is to find
the trajectory that minimizes the unweighted sum of the variances of the boat’s final
expected position dispersions.

Kumar and Seywald show that for fixed unity time, the boat can reach a maximum
down-stream point along the shore of approximately 2.8 units from the launch point
when uncertainty considerations are ignored [15]. Choosing the target location to be
2.25 units downshore of the launch point — well within the maximum capability of
the boat — the terminal constraints are written as

I (ff) =2.25 and I (tf) = 0. (38)

To test the ability of both methods to address various types of uncertainty, the fol-
lowing four models are considered:

1. Constant parametric bias
2. Parametric process noise
3. Parametric bias and process noise combination

4. State insertion error, state process noise, parametric bias, and parametric pro-
cess noise combination

To provide a basis from which to judge the improvement achieved by the sensitivity
and covariance trajectory-shaping methods, an attempt is first made to achieve the
design goal using cost metrics that are only functions of the nominal states and con-
trols. Although such metrics do not directly take into account system uncertainties,
the responses of the solutions to various uncertainty models can still be evaluated ex
post facto because nominal trajectories are always dynamically independent from the
sensitivity and covariance dynamics. This independence exists because the dynamics
of the original states are not functions of the sensitivity or covariance, even though
the sensitivity and covariance are functions of the original states.

For the nominal fixed-target trajectory design problem, the Zermelo dynamic and
initial constraints are completely defined by Egs. (3.2) and (3.3). Without sensitivity
or covariance penalties, the designer can only attempt to infer which nominal metrics
may lead to reduced position dispersions for each particular uncertainty model. In
this case, due to the linear relationship of p with cross-stream distance, the current
has a greater impact on the boat’s down-stream rate as the boat travels away from the
shore, so the effects of p on the boat’s trajectory become magnified as x» increases.
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Figure 3-2: Optimal trajectories for nominal cost metrics. The Jy; trajectory opti-
mizes the integral of the cross-stream distance, and the Jy, trajectory optimizes the
integral of the square of the cross-stream distance.

Thus, it seems reasonable to infer that for any of the uncertainty models listed above,
trajectories which stay closer to the shore accumulate smaller errors. Two possible
metrics, then, would be the integrated cross-stream distance and the integrated square
of the cross-stream distance along the trajectory. Mathematically, these metrics can
be written as

ty
JNl = /.‘1‘2 (f) dt (39)
0
and
ty
JIno = /,;5 (t)dt. (3.10)
0

As shown in Fig. 3-2 greater penalties on cross-stream distance result in optimal
solutions that stay closer to shore.

3.2.1 Parametric Uncertainties
3.2.1.1 Constant Bias

The first uncertainty scenario to be investigated assumes that p maintains a constant
value, but is not precisely known. The trivial dynamics of p account for its constancy,
but uncertainty in this value translates to uncertainty in the initial condition pg. In
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other words, p has a constant bias. Otherwise the state dynamics are assumed to be
ideal.

The sensitivity method is applied to this scenario by first finding the most appro-
priate sensitivity metric. For any problem, the most appropriate sensitivity metric
links the sensitivity of the design goal to perturbations in the uncertain states and
parameters. In this case, the design goal seeks to minimize a function of the final
position dispersions, and the only uncertainty exists with the initial condition pg, so
the best sensitivity metric minimizes a function of the sensitivities of the final states
x1 (t;) and z4 (tf) to perturbations in the initial value py. The sensitivity matrix for
the Zermelo dynamics can be expanded as

o (t)  Bxi(t)  Oai(t)
_ dr1(to) Owalte) Oplt
S(t) = ox(t) B?z(to)) a?g((f)) aii{%% (3.11)
7 0Xy T | Omilto)  Oza(to) 3p(t0% ? :
Ox3(t) Ox3(t) Oxa(t
Ozi(to) Oz2(to)  Ipl(to)

and the desired sensitivities for this case are found by simply evaluating the sensitivity
matrix at the final time and picking off the (1,3) and (2, 3) elements.

More specifically, since the design goal seeks to minimize the unweighted sum
of the final position wvariances, and since the final position variances are squares
of the final position standard deviations, the sensitivity metric should penalize the
unweighted sum of the squares of these sensitivity terms. This metric can be expressed
mathematically as the endpoint cost

Although this sensitivity metric was crafted to address a particular uncertainty model,
it is important to recall that statistical representations of the uncertainties do not
appear anywhere in its evaluation. Thus, for a given set of nominal state dynamics
and a given feedback control scheme, this metric produces a unique trajectory that
does not change unless the metric is reformulated to address a different uncertainty
model.

The covariance method is applied to this scenario by first translating the uncer-
tainty model into appropriate initial covariance and process noise matrices. Since the
only initial condition uncertainty exists with py, and since no uncertainties act along
the rest of the trajectory, this model can be expressed in the covariance realm as

0
Py, = 0 (3.13)

o O O

0 0
0 and Q=10
0 0

o O O
o OO

Cp

where ¢, is a positive constant selected to represent the variance of the assumed
uncertainty in the initial condition py.

Next, the most appropriate covariance metric is developed for the current design
goal and uncertainty model. The covariance matrix contains the variances of each
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state along its diagonal, written as

2
011 pl‘1$20-1'10-332 pl’lpallap
__ 2
P=| p2,2,00,04, Oy PropCx0p |
2
Px1p0z:10p  Prapla,0p Op

and since the design goal seeks to minimize the final position variances, the most
appropriate cost metric simply sums the first two diagonal elements of the final co-
variance matrix. This metric can be expressed as the endpoint cost

Jp1 = 07, (tg) + 0%, (tf) - (3.14)

It is important to note that unlike the sensitivity metric, this metric does explicitly
feature a statistical representation of the uncertainty values in its evaluation. Any
changes in the uncertainty model will be reflected as changes in P, and @, which
alters the covariance solution to the Riccati equation. Unlike the sensitivity metric,
the covariance metric produces different results for different uncertainty models.

Applying Jg; as the cost metric with zero feedback gains, the resulting optimal
trajectory matches the solution associated with the Jy; integrated cross-stream met-
ric. Similarly, applying Jp; as the cost metric with zero feedback gains and the I
and () matrices specified in Eq. (3.13) also results in the same optimal trajectory,
no matter what magnitude of ¢, is selected to represent the bias. The magnitude
of ¢, does not affect the optimal solution in this scenario because there are no other
uncertainties acting along the trajectory, and a shift in the value of ¢, simply scales
the relative magnitude of the covariance profile without altering its shape. Choosing
¢, = 1, the open-loop covariance dynamics are propagated along the optimal open-
loop and the optimal Jyo trajectory to verify that the optimal open-loop trajectory
does in fact provide a smaller final position variance.

Although it is now known which trajectory optimizes the open-loop design goal, it
is not immediately evident whether the same trajectory also optimizes the design goal
in the presence of feedback control. When the closed-loop covariance is propagated
along both the optimal open-loop and the Jyo trajectory with the unity gain matrix

K=[-1 -1], (3.15)

the optimal open-loop trajectory does in fact accumulate smaller final position vari-
ances than Jys. However, it is still possible that another trajectory exists with even
smaller unity-gain-matrix variances. To test this possibility, the trajectories are re-
shaped using the Jg; sensitivity metric and the Jp; covariance metric with the same
P, and Q matrices, but this time with the unity gain matrix included in the sensitivity
and covariance problem dynamics to account for the controller’s presence. Both meth-
ods again converge to an identical solution, but one that is different from the optimal
open-loop trajectory. Figure 3-3 plots the optimal open-loop, unity-gain-matrix, and
Jno trajectories.
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Figure 3-3: Optimal trajectories with a constant parametric bias. The optimal open-
loop trajectory optimizes the final open-loop position variance sum, and the optimal
unity-gain-matrix trajectory optimizes the final closed-loop position variance sum
with unity-gain-matrix feedback. The Jy, trajectory optimizes the integral of the
square of the cross-stream distance, as defined before.

Figure 3-4 shows the position variance sums along each trajectory when the co-
variance is propagated with the parametric bias using both zero feedback and unity-
gain-matrix feedback. Table 3.1 lists the improvements in open-loop and closed-loop
variance achieved by the trajectory-shaping method. The data show several interest-
ing results.

First, as expected, feedback control alone dramatically improves the position vari-
ances along each of the individual trajectories. Along each trajectory, simply closing
the loop with the unity gain matrix improves the final position variance sum by over
92%.

Second, the improvements from trajectory-shaping appear more dramatic in a
closed-loop environment. Trajectory-shaping improves final unity-gain-matrix posi-
tion variance by 29%, while it only improves final open-loop position variance by
1.66%.

Third, the trajectory that provides the optimal open-loop final position variance
does not also provide the optimal variance with unity-gain-matrix control, and vice
versa. As expected, in the presence of unity-gain-matrix feedback, the optimal unity-
gain-matrix trajectory accumulates smaller errors than both the optimal open-loop
and Jy9 solutions. In fact, the optimal unity-gain-matrix trajectory reaches the target
with an improvement in final position variance of more than 29%, while the final
variance sums of the optimal open-loop and nominal Jy, solutions differ by less than

44



0.025¢

JN2 Trajectory
Optimal Open-Loop
0.02+ Trajectory
Optimal Unity-Gain-
Matrix Trajectory
Nb,(“ 0.015¢
+
oL %
" 0.01f
0.005¢
0 .
0 0.2 0.4 0.6 0.8 1
Time
=3
x 10
7=
JN2 Trajectory
6H Optimal Open-Loop
Trajectory
Optimal Unity-Gain-
5H Matrix Trajectory
NDKN 4 |
+
o xT 3
2t
1t
0 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1

Time

Figure 3-4: Position variance sums propagated along each trajectory given in Fig. 3-3
with a constant parametric bias in which ¢, = 1. The top figure shows the open-loop
propagations, while the bottom figure shows the closed-loop propagations with unity-
gain-matrix feedback. As expected, the final open-loop variance is smallest along the
optimal open-loop trajectory (given in black), and the final closed-loop variance is
smallest along the optimal unity-gain-matrix trajectory (given in green).
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Table 3.1: Final position variance sums with a constant parametric bias in which
¢p = 1. The first column lists the trajectories given in Fig. 3-3, the second column
provides their final propagated open-loop position variance sums, and the fourth
column displays their final propagated closed-loop position variance sums with unity-
gain-matrix feedback. The third and fifth columns show the open-loop and unity-
gain-matrix improvement percentages, respectively, using the Jy» trajectory as the
basis of comparison. Degradations in performance are depicted as negative values,
and the optimal results for each column are emphasized in bold.

Trajectory OL Sum | OL Improvement | CL Sum CL
Improvement
Tna 0.01931 N/A 0.001051 N/A
Optimal 0.01899 1.66% 0.001053 -0.190%
Open-Loop
Optimal Unity- | 10004 -8.39% 0.0007461 29.0%
Gain-Matrix

0.2%. Also as expected, when feedback is omitted, the optimal open-loop trajectory
accumulates smaller dispersions than both the unity-gain-matrix and nominal Jy»
trajectories.

However, the optimal open-loop solution appears better suited to handle the addi-
tion of feedback than the optimal unity-gain-matrix solution is able to cope with a loss
in feedback. Perhaps not as expected, the optimal unity-gain-matrix trajectory actu-
ally reaches the target with significantly worse precision than even the Jy, solution
in an open-loop environment. Using the Jys trajectory as the basis of comparison,
the optimal open-loop trajectory improves the final open-loop position variance sum
by approximately 1.7%, but the optimal unity-gain-matrix trajectory degrades the
final position variance sum by 8.4%. This scenario provides a preliminary indication
that the trajectory-shaping process can be highly dependent on the assumed feed-
back control scheme — solutions can be optimal for particular feedback laws, but
they take full advantage of the controller dynamics to craft trajectories that may not
perform as well when the feedback dynamics change significantly. These results ap-
pear to demonstrate that the optimal open-loop solution possesses a qualitative edge
in robustness over the optimal unity-gain-matrix solution when applied in feedback
control environments other than those for which they were specifically designed.

Fourth, these results demonstrate that the sensitivity and covariance methods are
both able to achieve equivalent results with appropriate cost metric selection. Specif-
ically, this case showed that when the only uncertainty is a constant parameter bias,
minimizing the sum of the final position sensitivities to perturbations in the initial
parameter value is equivalent to minimizing the sum of the final position variances.

For the simple open-loop scenario, it proved possible to infer a simple cost metric
that achieved the design goal without directly using uncertainty considerations. Since
the x5 dynamics are independent of both r, and p, open-loop system errors will only
manifest themselves through the pr; term within the z; dynamics, and the uncertainty
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in this term will grow as either the uncertainty in p grows or the magnitude of x,
grows. Minimizing the final open-loop position variance amounts to minimizing the
cumulative effect of the uncertainty in pz, over the entire trajectory, and since p has
a constant uncertainty, this cumulative effect can be captured purely as the integral
of zo. Deviations from the optimal integrated cross-stream solution only serve to
increase the integrated effect of the uncertainty associated with the px, term, which
results in greater cumulative position errors.

Nevertheless, the sensitivity and covariance trajectory-shaping methods actually
prove the optimality of the Jy; trajectory with respect to the open-loop design goal.
Without implementing the sensitivity and covariance metrics, this optimality could
only have been inferred.

3.2.1.2 Process Noise

The next uncertainty scenario assumes that the value of p is not precisely known and
in fact changes over the course of the trajectory. Otherwise the state dynamics are
assumed to be ideal. If the mean of these changes is assumed to be uncorrelated in
time with zero mean, then the dynamics of p can be modeled stochastically as AWGN.
To apply the sensitivity method to this case, the sensitivity metric must be recast to
ensure that it makes sense for the new uncertainty type. The sensitivity metric defined
for the constant bias scenario does not quite make sense, because it only minimizes
the sensitivities of the final position states to perturbations in the initial value po.
The design goal remains the same, but now uncertainty exists in p over the entire
trajectory rather than just its initial value. Instead, the most appropriate metric
here should minimize the sensitivities of the final position states to perturbations in
all values of p along the trajectory. Utilizing the third and fourth properties of the
sensitivity matrix defined in Section 2.2.2 of this thesis, this particular sensitivity can
be formulated as
0x (tf) . 0x (tf) 8x0

ox(t)  0xo Ox(1) =S(t)S®H™ (3.16)

which can be expanded as the matrix of partial derivatives

oxy(ty)  dxi(ty) Oxi(ty)

_ Oz (t) dx2(t) ap(t)
OX(ty) _ | oua(ty) owalty) 0ea(ts) (3.17)
0x (t) dui(t)  Dma(t)  Op(t) ' ’

X1
0.7,'3(tf) 8I3(tf) afl'.’i(tf)
ox1(t) Ox2(t) ap(t)

in which the elements of interest are the (1,3) and (2, 3) elements. Since the design
goal is to minimize the unweighted sum of the final position variances, and since the
(1,3) and (2,3) elements of the appropriate sensitivity matrix are functions of time
along the entire trajectory, the metric should be the integral of the unweighted sum
of the squares of the sensitivities. Also, since the uncertainty in p (t) is assumed to
be uncorrelated in time with constant power spectral density, the integral does not
need to explicitly weigh perturbations in p (t) more heavily at any particular times.
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This metric can be represented as the integral cost

ty

B oz, (ty)\ (3952 (tf))2

= | {( i) (o) o (318
to

Like Jg1, this metric will provide a unique trajectory for fixed dynamics and feedback
control schemes, unless its structure is altered to reflect changes in the underlying
uncertainty model.

To apply the covariance method to this scenario, the uncertainty model must be
translated into appropriate initial covariance and process noise matrices. Since the
uncertainty in p follows AWGN assumptions with no bias present, this uncertainty
model can be expressed in the covariance realm as

00 0 00 0
P=|000| ad Q=]00 0 |, (3.19)
000 00 w,

where w,, is a constant selected to represent the variance of the noise acting on the
dynamics of p. Since the design goal has not changed, Jp; is still the most appropriate
covariance metric for this scenario.

Implementing the Jg, sensitivity metric without feedback results in the same
optimal trajectory as implementing the Jp; covariance metric without feedback, no
matter what magnitude of w, is selected to represent the noise strength in (). The
magnitude of w, does not affect the optimal solution in this scenario, because there are
no other uncertainties acting along the trajectory, and a shift in the value of w, simply
scales the relative magnitude of the covariance profile without altering its shape.
Both the sensitivity and covariance methods also lead to identical solutions when
the trajectories are reshaped using the unity gain matrix, although this trajectory
differs from the optimal open-loop solution. Figure 3-5 shows the optimal open-loop
and optimal unity-gain-matrix trajectories for this parametric process noise scenario,
along with the optimal Jy; and Jy trajectories for comparison.

Arbitrarily choosing w,, = 1, both the open-loop and unity-gain-matrix covariance
dynamics are propagated along each of the trajectories to verify that the smallest final
position variance sums accumulate along the trajectories shaped specifically for each
feedback control scheme. Figure 3-6 shows the position variance sums along each
trajectory when the covariance is propagated with the parametric process noise using
both zero feedback and unity-gain-matrix feedback. Table 3.2 compares the open-loop
and closed-loop final variance improvements using the Jy, trajectory as the basis of
comparison.

For this uncertainty model, the Jy; and Jy, trajectories did not match either the
optimal open-loop or optimal unity-gain-matrix trajectories, demonstrating the value
of using the trajectory-shaping techniques to directly improve targeting precision. In
both feedback environments, the optimal trajectories traveled farther from shore early
in the trajectory in order to stay closer to shore late in the trajectory. This behavior
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Figure 3-5: Optimal trajectories with parametric process noise. The optimal open-
loop trajectory optimizes the final open-loop position variance sum, and the optimal
unity-gain-matrix trajectory optimizes the final closed-loop position variance sum
with unity-gain-matrix feedback. The Jy; and Jy, trajectories are unchanged from
before.

Table 3.2: Final position variance sums with parametric process noise in which w, = 1.
The first column lists the trajectories given in Fig. 3-5, the second column provides
their final propagated open-loop position variance sums, and the fourth column dis-
plays their final propagated closed-loop position variance sums with unity-gain-matrix
feedback. The third and fifth columns show the open-loop and unity-gain-matrix im-
provement percentages, respectively, using the Jy; trajectory as the basis of compar-
ison. Degradations in performance are depicted as negative values, and the optimal
results for each column are emphasized in bold.

Trajectory OL Sum | OL Improvement | CL Sum L
Improvement
Jn1 0.007106 N/A 0.0008787 N/A
Jno 0.007118 -0.169% 0.0009308 -5.93%
Uptimial 0.006686 5.91% 0.0006250 28.9%
Open-Loop
Optimal Unity- | 157099 -9.62% 0.0005030 42.8%
Gain-Matrix
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Figure 3-6: Position variance sums propagated along each trajectory given in Fig. 3-5
with parametric process noise in which w, = 1. The top figure shows the open-loop
propagations, while the bottom figure shows the closed-loop propagations with unity-
gain-matrix feedback. As expected, the final open-loop variance is smallest along the
optimal open-loop trajectory (given in black), and the final closed-loop variance is
smallest along the optimal unity-gain-matrix trajectory (given in green).
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can be explained in both the context of covariance and sensitivity. In the covariance
context, the constant strength parameter process noise causes the variance of p and its
correlated covariances to grow larger along the trajectory as time progresses. Since
uncertainty in the system enters through the px, term, less total position error is
accumulated by minimizing z, late in the trajectory when the uncertainty in p is
highest. The velocity and travel times of the boat are both fixed, so the trajectory
sweeps farther from shore early in the trajectory. In the sensitivity context, the Jg;
metric penalizes the integral of the sensitivities of the final position to perturbations
in p at each point in time along the trajectory. However, perturbations early in a
trajectory naturally have more impact on the final states than perturbations late in
a trajectory, a property which the sensitivity matrix captures mathematically within
its dynamics. The sensitivity metric integrates the asymmetric integrand, resulting
in an asymmetric trajectory.

Several aspects of the process noise trajectory-shaping results are consistent with
the bias results. First, applying a simple feedback controller alone reduces the ac-
cumulated dispersions along each trajectory by over 86%. Second, the trajectory-
shaping improvements are significantly more pronounced in the closed-loop environ-
ment, although the improvement percentages are higher in the parametric process
noise case. With parametric process noise only, trajectory-shaping in the open-loop
environment improves the final position variance by 5.91% (as compared to 1.66%
for a pure parametric bias), while the technique improves the unity-gain-matrix vari-
ance by 42.8% (as compared to 29.0% with the bias). Third, the trajectory which
optimizes the open-loop position variance still does not optimize the closed-loop po-
sition variance with the unity gain matrix, nor vice versa. Once again, the optimal
open-loop solution appears better suited to handle the addition of feedback than the
optimal unity-gain-matrix solution appears able to cope with a loss of feedback.

In this scenario, however, the open-loop robustness advantage appears even more
exaggerated. With process noise and feedback, the optimal unity-gain-matrix trajec-
tory improves targeting precision in the unity-gain-matrix environment by over 42%
from the nominal Jy; trajectory, but the optimal open-loop trajectory — which was
not even designed with feedback in mind — still provides a noteworthy improvement
of almost 29% when propagated with the unity gain matrix. In the parametric bias
scenario, the optimal open-loop trajectory did not improve the final closed-loop posi-
tion variance. On the other hand, when the open-loop covariance is propagated along
the optimal unity-gain-matrix trajectory, its final dispersion statistics are significantly
worse than even the nominal Jy; and Jy» trajectories, similar to the parametric bias
scenario.

Lastly, these results demonstrate the ability of both trajectory-shaping techniques
to handle the presence of process noise in the system model and achieve equivalent
results when the cost metrics are formulated appropriately. This is contrary to Zim-
mer’s assertion that the sensitivity method can only provide equivalent results to the
covariance formulation when both measurement noise and process noise are omitted.
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3.2.1.3 Bias and Noise Combination

The next uncertainty scenario combines the previous two and assumes that the value
of p contains a bias as well as uncertainty along the rest of the trajectory. Other-
wise, the state dynamics are still assumed to be ideal. With this combined uncertainty
model, the sensitivity metric must again be restructured to match the design goal. As
before, since p is nominally modeled as a constant, the bias portion of the uncertainty
model translates to uncertainty in the initial condition pgy, and if the perturbations
in p throughout the rest of the trajectory are assumed to be uncorrelated in time
with zero mean, the process noise portion of the uncertainty model can be repre-
sented stochastically as AWGN acting on the dynamics of p. The most appropriate
sensitivity metric for minimizing the final position variance sum with the combined
uncertainty model must therefore address the sensitivities of the final position states
to perturbations in both py as well as p (¢) . On one hand, the cost metric Jg, already
takes into account perturbations in py as part of its integral evaluation, but since the
bias can cause uncertainties in py independent of uncertainties due to process noise, a
more suitable cost metric has the ability to levy additional penalties on sensitivities
to perturbations in py. Such a metric can be formulated as the weighted combination

Js3 = aJs + BJss, (3.20)

where the values of o and 3 can be adjusted to account for different bias and process
noise uncertainty magnitudes, respectively. Setting a = 0 recovers the Jgo metric
formatted to exclusively handle parameter process noise, and setting 3 = 0 recovers
the Jg; metric formatted to exclusively handle a constant parameter bias. Any other
combination of positive o and 3 creates a Jg3 metric formatted to handle a parameter
bias and process noise combination, in which a should reflect the variance of the
bias uncertainty and /3 should reflect the variance of the process noise. While the
adjustable weights in the Jg3 metric allow it to account for all possible bias and
process noise combinations, it still only produces a single trajectory for a given set
of weights, and these weights must be selected based on knowledge of the bias and
process noise magnitudes before solving the trajectory. In addition, due to the specific
sensitivity terms included, the Jg3 metric is only designed to handle bias and process
noise uncertainties in p. For uncertainty models that include state uncertainties, the
metric must be reformatted once again to include sensitivities to state perturbations.

Applying the covariance technique requires selecting another set of appropriate
Py and () matrices. As before, the bias in p can be represented within the P, matrix,
and the process noise can be expressed in the () matrix. These conditions can be
written as

000 00 0
P=100 0 and Q=100 0 [, (3.21)
00 ¢ 0 0 w

where ¢, is a constant that determines the variance of uncertainty in py provided by the
bias, and w, is a constant representing the variance of the parametric process noise.
Since the design goal has not changed, the Jp; metric is still the most appropriate
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Figure 3-7: Optimal trajectories for combined parametric bias and process noise un-
certainty in which ¢, = 1 and w, = 2. The optimal open-loop trajectory optimizes
the final open-loop position variance sum, and the optimal unity-gain-matrix tra-
jectory optimizes the final closed-loop position variance sum with unity-gain-matrix
feedback. The Jy; and Jy, trajectories are unchanged from before.

covariance metric for this scenario.
Without feedback, the Js3 sensitivity metric and the Jp; covariance metric provide
identical optimal trajectories when
a c
— =12 (3.22)
,8 Wy

When the trajectories are reshaped using the same uncertainty magnitudes with
unity-gain-matrix feedback, both methods again produce an identical trajectory, but
one that differs from the optimal open-loop trajectory. It is important to note that
in order for the sensitivity and covariance methods to produce equivalent results for
this combined model, o need not exactly match ¢, in value, and neither must 3 ex-
actly match w, in value, so long as their ratios remain equivalent. Thus, although
the sensitivity method does not include a statistical representation of the bias or pro-
cess noise in the evaluation of its dynamics or cost metric, specific knowledge of the
relative variances of these uncertainties must still be known in order to generate the
most appropriate sensitivity metric and achieve the best results. Figure 3-7 shows
the optimal open-loop and unity-gain-matrix trajectories for a specific uncertainty
combination in which ¢, = 1 and w, = 2.

The open-loop and unity-gain-matrix covariances are propagated along each tra-
jectory with the combined uncertainty to confirm that the optimal solutions for each
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Table 3.3: Final position variance sums with combined parametric bias and process
noise in which ¢, = 1 and w, = 2. The first column lists the trajectories given
in Fig. 3-7, the second column provides their final propagated open-loop position
variance sums, and the fourth column displays their final propagated closed-loop
position variance sums with unity-gain-matrix feedback. The third and fifth columns
show the open-loop and unity-gain-matrix improvement percentages, respectively,
using the Jy; trajectory as the basis of comparison. Degradations in performance are
depicted as negative values, and the optimal results for each column are emphasized
in bold.

Trajectory OL Sum | OL Improvement | CL Sum CL
Improvement
Jn1 0.03320 N/A 0.002811 N/A
JIno 0.03355 -1.05% 0.002913 -3.63%
Optimal 0.03278 1.27% 0.002334 17.0%
Open-Loop
Optimal Unity- | 4515 -8.95% 0.001779 36.7%
Gain-Matrix

controller actually produce the smallest final position variances within their respective
feedback environments. Figure 3-8 shows the position variance sums along each tra-
jectory when the covariance is propagated with the combined parametric uncertainty
using both zero feedback and unity-gain-matrix feedback. Table 3.3 compares the
open-loop and closed-loop final variance improvements generated by the trajectory-
shaping techniques, using the optimal Jy; trajectory for comparison. The conclusions
drawn from the results in this scenario are very similar to those from the previous
uncertainty model investigations. First, applying unity-gain-matrix feedback alone
improves the final position variances for each trajectory by over 91%. Second, the
trajectory-shaping improvements are much more considerable in the closed-loop envi-
ronment. In the open-loop environment, the final position variance sum improves by
only 1.27% with trajectory-shaping — even less than the 1.66% improvement with a
pure bias. With unity-gain-matrix feedback, the final position variance sum improves
by 36.7% — between the 29% improvement for a pure bias and the 42% improvement
for pure process noise. Third, the percentages indicate once again that the optimal
open-loop solution appears better suited to handle the addition of feedback than the
optimal unity-gain-matrix solution can cope with a loss of feedback. When prop-
agated in an open-loop setting, the optimal unity-gain-matrix trajectory generated
almost 9% worse final position variances than the Jy; trajectory. When the covari-
ance is propagated along the optimal open-loop trajectory with the unity-gain-matrix
feedback, however, it still enhances the final expected targeting precision 17% more
than the Jy; trajectory. Ultimately, these results show the ability of both methods
to equivalently handle combinations of parameter bias and process noise when their
relative variances can be estimated beforehand.
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Figure 3-8: Position variance sums propagated along each trajectory given in Fig. 3-7
with combined parametric bias and process noise in which ¢, = 1 and w, = 2. The top
figure shows the open-loop propagations, while the bottom figure shows the closed-
loop propagations with unity-gain-matrix feedback. As expected, the final open-loop
variance is smallest along the optimal open-loop trajectory (given in black), and the
final closed-loop variance is smallest along the optimal unity-gain-matrix trajectory

(given in green).
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Figure 3-9: Optimal open-loop Zermelo trajectories for each of the three parametric
uncertainty models investigated in this chapter. The blue trajectory is optimal for
a parameter bias, the red trajectory is optimal for parameter process noise, and
the green trajectory is optimal for a parameter bias-noise combination in which the
process noise variance is specifically twice as large as the bias variance.

3.2.1.4 Parametric Uncertainty Comparison

At this point, three separate parametric uncertainty models have been investigated,
but the results for each model have been shown individually. The optimal open-loop
and unity-gain-matrix trajectories have been compared under each feedback scheme,
but always with the same uncertainties for which they were specifically designed.
When the optimal open-loop trajectories for each of the three parametric uncertainty
scenarios are plotted together, their relationships become more apparent. Figure 3-9
plots the optimal open-loop trajectories for each of the three parametric uncertainty
models investigated. The optimal open-loop trajectory for a constant parameter bias
is equivalent to the minimum integrated cross-stream trajectory, which is symmet-
ric about the vertical line passing through its maximum cross-stream point. The
optimal open-loop trajectory for parametric process noise travels farther away from
shore early in the trajectory, causing a noticeable asymmetry about the vertical line
passing through its maximum cross-stream point. The shape of the optimal open-
loop trajectory for the combined parametric uncertainty model appears to blend the
shapes of the pure bias and noise solutions. Recalling the formulation of the sensitiv-
ity metrics, the set of combined parametric uncertainty solutions can be visualized as
a continuum bounded by the pure bias and pure noise cases in the extremes. As the
magnitude of the bias grows larger relative to the magnitude of the process noise, the
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Table 3.4: Comparison of optimal open-loop trajectories for each parametric un-
certainty case. The first column lists the optimal open-loop trajectories for each
parametric uncertainty scenario, while the second, third, and fourth columns provide
their final position variance sums when subjected to each of the three parametric un-
certainty models individually with zero feedback. As expected, trajectories that were
optimized for the bias, noise, and combination, respectively, each produce smaller
final position variances when applied to the uncertainty models for which they were
designed, as emphasized in bold.

Final OL Final OL Final OL
Trajectory Variance with | Variance with | Variance with
Bias Noise Combo
Optimal OL
Trajectory with 0.01899 0.007105 0.03320
Bias
Optimal OL
Trajectory with 0.01980 0.006687 0.03318
Noise
Optimal OL
Trajectory with 0.01918 0.006791 0.03278
Combo

bias dominates the error propagation until the uncertainty model approaches a pure
bias. To account for a shift in this direction, the relative value of « within the sensi-
tivity metric grows until the relative size of 5 becomes zero, and the metric reduces to
Jg1. The opposite is true when the magnitude of the process noise increases and the
uncertainty model approaches the pure noise case — /3 grows until « is diminished to
zero, leaving Jg9 as the metric. The optimal trajectories for the combined uncertainty
are directly coupled to these shifts in uncertainty, and the solutions slide along the
continuum linking the optimal bias and optimal noise solutions. When the open-loop
covariance is propagated along each of these three trajectories using each of the three
investigated parametric uncertainty models, the optimality of each solution for its
intended uncertainty model is verified.

A similar continuum is visible for the optimal unity-gain-matrix trajectories, as
demonstrated in Fig. 3-10, but the established bounds are now the optimal unity-
gain-matrix solutions for the pure bias and pure noise cases. When the covariance is
propagated along each of these three trajectories using each of the three investigated
uncertainty models with unity-gain-matrix feedback to verify the optimality of each
solution.

Along the open-loop and unity-gain-matrix continua, the trajectories that are most
robust to changing sources of uncertainty lie somewhere in the middle. Table 3.4 lists
the final open-loop position variance sums propagated along the optimal open-loop
and unity-gain-matrix trajectories with each of the investigated parametric uncertain-
ties, and Table 3.5 lists the unity-gain-matrix feedback variances. The trajectories
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Table 3.5: Closed-loop final position variance sums with unity-gain-matrix feedback.
The first column lists the optimal unity-gain-matrix trajectories for each parametric
uncertainty scenario, while the second, third, and fourth columns provide their final
position variance sums when subjected to each of the three parametric uncertainty
models individually with unity-gain-matrix feedback. As expected, trajectories that
were optimized for the bias, noise, and combination, respectively, each produce smaller
final position variances when applied to the uncertainty models for which they were
designed, as emphasized in bold.

Final CL Final CL Final CL
Trajectory Variance with | Variance with | Variance with
Bias Noise Combo
Optimal CL
Trajectory with 0.0007451 0.0005426 0.001830
Bias
Optimal CL
Trajectory with 0.0007866 0.0005030 0.001793
Noise
Optimal CL
Trajectory with 0.0007617 0.0005086 0.001779
Combo

that optimize a bias-noise combination always accumulate final position variances
that fall somewhere between the variances of the pure bias- and noise-optimal tra-
jectories. Practically speaking, when shaping trajectories to reduce susceptibility to
errors, the designer must decide upon the uncertainty types and magnitudes for which
to account in the optimization process. Any trajectory will be specifically tuned to
minimize the uncertainty model assumed in its generation, but it will be sub-optimal
for any deviations in that uncertainty climate. Thus, if the designer is unsure ex-
actly which uncertainties are likely to manifest themselves during implementation,
these results suggest that including an average of each uncertainty type during the
trajectory optimization will at least guarantee that the trajectory is partially suited
to combat each particular uncertainty type.

3.2.2 State and Parametric Uncertainty Combinations

The final uncertainty model demonstrates the versatility and effectiveness of both
trajectory-shaping techniques by combining the parametric uncertainty types inves-
tigated above with state initialization errors and process noise. In the context of the
Zermelo problem, initialization errors mean that the initial location of the boat is not
precisely known, and state process noise means that the dynamics governing the po-
sition rates of the boat contain inaccuracies or perturbations along the trajectory. If
state perturbations along the trajectory are assumed to be uncorrelated in time with
zero mean, they can be modeled stochastically with AWGN acting on the dynamics.
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Beginning with the covariance formulation, if the noise and initialization errors
both have zero correlation coefficients, this uncertainty model can be represented as

¢z, 0 O wy, 0 O
Po=] 0 ¢, 0], Q= 0 w, 0 |, (3.23)
0 0 ¢ 0 0 w,

where the off-diagonal terms are zero. Here, ¢,, and c,, represent the variances of the
expected down-stream and cross-stream initialization errors, respectively, ¢, gives the
variance of the parameter bias, w,, and w,, provide the state process noise variances
in the down-stream and cross-stream rate equations, respectively, and w, sets the
variance of the parametric process noise. For the covariance method, Jp, is once
again the most appropriate covariance metric, since the design goal still seeks to
minimize the final position variance sum.

Implementing the sensitivity formulation requires an extended application of the
logic used to develop the Jg1, Js9, and Js3 sensitivity metrics. A new metric must be
crafted that considers how each component of the present uncertainty model impacts
the intended design goal, and penalizes each term according to the relative magnitudes
among them. Since the design goal seeks to minimize the unweighted sum of the final
position variances, the metric should include the sensitivities of the final position
states, and since this model assumes that initial errors and process noise exist for
each variable, these sensitivities should be taken with respect to perturbations in
both the initial values and time-varying values of each state. Like Jgs, the new
metric should be able to penalize the initial condition uncertainties independently of
the process noise uncertainties. Applying this logic, the most appropriate sensitivity
metric for this scenario becomes

JS4_a< 0 ) +(g_%)> (3.2)
(Gt (st

o (Gt (2t

< [((38) + (525) )«

o f () (2
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Or: (t;)\> [0z (t;)\?
o f (20" (2200YY a,
Op (t) op (1)
to
where the values of each weight «, 3, v, {, n, and 6 can be adjusted to account for
different relative magnitudes among the initial condition and process noise uncertainty
strengths.
The sensitivity and covariance formulations produce identical optimal trajectories

when
& = Cy, /3:6127 Y = Cp,
(= Wy, 1N = W,,, and 0 = w,.

Choosing a particular case with unity-gain-matrix feedback, in which
a=cy = 1.5, B = ¢z, = 1.5, v =c,=0.5, (3.25)

( = w,, =3, N=wg, =2, and § =w, =1,
1 2 p

the resulting trajectory is significantly different from any of the optimal unity-gain-
matrix trajectories for the previous parametric uncertainty models. The general shape
and performance of the trajectory more resembles those associated with the nominal
cost metrics Jy; and Jyo than any others. Figure 3-11 show the optimal unity-gain-
matrix trajectories for every uncertainty model investigated to this point, as well
as the original Jy; and Jyo trajectories. When the closed-loop dispersion statistics
are propagated along each trajectory with the unity gain matrix and the uncertainty
magnitudes specified in Eq. (3.25), the newfound trajectory indeed minimizes the
final position variance sums, providing improvements greater than 9.95% over the
other optimal unity-gain-matrix trajectories, though only 0.96% and 0.24% better
than the Jy; and Jy, trajectories, respectively.

3.2.3 Sensitivity vs. Covariance Summary

The preceding uncertainty models were applied to the simple Zermelo problem in an
effort to better understand the capabilities, limitations, strengths, and weaknesses
of each method. Ultimately, it was discovered that as long as measurements are ex-
cluded, the sensitivity and covariance methods can achieve equivalent results when
applied correctly. Both methods can directly desensitize trajectories to any combi-
nation of parametric biases, parametric process noise, state initialization errors, and
state process noise. Even for such a simple system without much flexibility in feasi-
ble trajectories, the improvements can be dramatic. Both methods can also directly
shape trajectories to take full advantage of specific linear feedback controller dynam-
ics. Nevertheless, the implementations of each method contain significant differences.

First, for a system with a total of n nominal states, the sensitivity matrix adds
n(2 e>l<)tra variables and differential constraints, while the covariance matrix adds only
n{n+

—5— extra variables and differential constraints due to its symmetry. The simple

Zermelo problem only requires three more variables than the covariance method, but
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Figure 3-11: Optimal unity-gain-matrix trajectories for each uncertainty model in-
vestigated in this chapter. The blue trajectory is optimal for a parameter bias, the
red trajectory is optimal for parameter process noise, the green trajectory is optimal
for a parameter bias-noise combination in which the process noise variance is specif-
ically twice as large as the bias variance, and the cyan trajectory is optimal for the
state-parameter uncertainty combination specified in Eq. (3.25). The black trajec-
tory optimizes the cross-stream integral, while the magenta trajectory optimizes the

cross-stream square integral.
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as systems grow more complex with greater numbers of nominal states and updated
parameters, this difference becomes much more substantial and greatly impacts the
viability of many numerical optimization techniques.

Second, the sensitivity method does not provide a statistical measure of the ex-
pected dispersions along a trajectory as part of its solution. As demonstrated above,
dispersion statistics can be calculated ex post facto along any trajectory, but this re-
quires formulating and propagating the covariance dynamics. Thus, if the trajectory
is solved using the sensitivity method, its associated dispersions are analyzed using the
covariance dynamics. On the other hand, the covariance method accomplishes both
tasks at once, without using the sensitivity matrix at all. In the covariance realm,
the Riccati equation is used in both the design and analysis phases, and responses to
different uncertainties can be propagated along trajectories by simply tweaking the
Py, ), and R matrices.

Third, although the sensitivity matrix does not require statistical uncertainty
models in the evaluation of its dvnamics or cost metrics, they must still be known in
order to format sensitivity metrics in the most appropriate manner. The sensitivity
method requires a significantly different cost metric for each individual uncertainty
model — each metric must be crafted to include sensitivities of the design goal with
respect to perturbations in the uncertain states and parameters. Even if the design
goal remains fixed, the metric must be rederived when the uncertainty model changes,
and appropriate weights for each term must be founded on statistical knowledge of
the uncertainties. On the other hand, the covariance method only requires a single
metric for a given design goal, no matter which uncertainty models are used. The
sensitivity method only provides equivalent results when the sensitivity penalties
match the relative variance magnitudes in the initial covariance and process noise
matrices. Both methods require statistical knowledge of the uncertainty models, but
the sensitivity metric formulation process is significantly more complicated. As shown
in the final example, when state insertions errors, parameter biases, and process noise
are all combined, the sensitivity metric can grow very large and complex.

Lastly, while the covariance method can account for measurement updates within
the Riccati equation dynamics, the sensitivity matrix cannot account for measure-
ments, at least not when applied as shown here.

For these reasons, the covariance method is selected as the preferred trajectory-
shaping technique, and is used exclusively throughout the remainder of this thesis.

3.3 Maximum Capability Confidence

Now, rather than fixing the boat’s final location, a new trajectory design goal seeks
to characterize the boat’s maximum down-stream capability. The boat is still con-
strained to return to shore in fixed unity time, but the down-stream coordinate of
the final landing site is left open, and the endpoint cost metric

JN3 = —I (tf) (326)
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is used to maximize the boat’s down-stream capability.

In reality, however, system uncertainties induce final down-stream dispersions
about the optimal landing site. Standard deviation is defined as the square root
of variance, so the standard deviation of the final down-stream dispersion can be cal-
culated by propagating the covariance matrix to the final conditions and taking the
square root of the first diagonal element. The standard deviation of the final down-
stream dispersion measures the expected distance from the nominal landing site inside
which the boat is expected to land. The confidence in the final dispersions captured
within one standard deviation depends on the probability distribution of the final dis-
persions. Although the system dynamics are nonlinear, the covariance is propagated
along the linearized trajectory. The linearization preserves the Gaussian nature of
the uncertainties throughout the propagation, although the covariance only provides
an approximation of the dispersion statistics subject to linearity assumptions. For a
Gaussian distribution, one standard deviation (o) defines a confidence region about
the nominal state that encloses 68.27% of the expected dispersions, and three stan-
dard deviations (30) provides a 99.73% confidence range. Thus, while the nominal
maximum down-stream trajectory characterizes the boat’s maximum capability if no
uncertainties are realized during its journey, the confident or useful down-stream ca-
pability only extends to the worst-case, inner boundary of the boat’s downstream
confidence region.

Using Eq. (3.26) as the metric, the boat’s nominal maximum down-stream dis-
tance is 2.781. Assuming, for example, that a constant parametric bias exists in which
¢p = 1, the covariance is propagated with unity-gain-matrix feedback to produce a
final down-stream standard deviation of 0.05667. Scaling to 30 and subtracting from
the nominal down-stream landing site, the boat’s 99.73% confident down-stream ca-
pability is actually only 2.611. However, the covariance trajectory-shaping technique
can be used to solve for different trajectories with smaller expected final position
dispersions. A trade between intended landing site and final position error can be
conducted by combining the maximum down-stream metric with a final position co-
variance penalty, in which a weighting factor a can be used to scale the covariance
penalty relative to the down-stream penalty. Thus when a = 0, the original maximum
down-stream metric Jys3 is recovered, but as « grows, the resulting trajectories aim for
closer landing sites which tend to generate smaller final position errors. As the final
position covariance shrinks, so does the confidence region surrounding the intended
landing location. Figure 3-12 shows a series of maximum down-stream trajectories
for different values of a, and plots the 30 confidence range surrounding the nominal
landing sites. Table 3.6 compiles the landing data, including the nominal site, the
size of the 30 confidence regions, and the resulting useful ranges for each. In fact, as
the figure and table demonstrate, for certain values of «, the resulting 30 confidence
region lies completely within the original maximum down-stream confidence region,
so the useful range of the boat is actually extended.
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Figure 3-12: Maximum down-stream trajectories with various weights on the final
position variance, shown with their 30 down-stream confidence regions: The blue
trajectory purely maximizes the intended down-stream landing site, while the red,
green, and magenta trajectories respectively increase the penalty on the final position
covariance trace. When the weights are chosen appropriately, the confidence region of
shaped trajectories can lie completely within the original confidence region, depicted
here by the red confidence region within the blue.

Table 3.6: Maximum down-stream data for optimal trajectories generated with var-
ious penalties on final position covariance: The first column lists various penalty
weights on the final position covariance trace, the second column shows the targeted
down-stream landing site locations for each solution, the third column gives the size
of the 30 down-stream confidence region surrounding each intended landing site, and
the fourth and final column lists the 3¢ maximum range of the boat as determined
by each case, calculated by subtracting the 30 down-stream error from the intended
landing location. Note that for @ = 100, the boat’s maximum range is actually
extended.

{ o , Targeted Landing Site | 3o down-stream Error [ 3o Maximum Range |
0 2.781 0.17 2.611
100 2.746 0.117 2.629
1000 2.089 0.008 2.081
10000 1.305 0.016 1.289
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3.4 Simultaneous Feedback Optimization

The results in Sections 3.2 and 3.3 demonstrate the ability of trajectory-shaping
techniques to optimize both open-loop targeting precision and closed-loop targeting
precision with predefined feedback control laws. For both of these scenarios, although
the reference design depends upon a specific control law, the controller design remains
independent of the reference. To further merge the reference trajectory and feedback
controller design processes, the optimization problem can be augmented to choose
optimal feedback gains in conjunction with the reference trajectory. This process
specifically tailors the design of the controller to the reference trajectory, offering two
key advantages. First, by increasing the synergy of the reference and controller de-
signs, even greater dispersion reductions can be achieved. Second, and perhaps more
importantly, performance characteristics of the feedback controller can be constrained
to ensure the closed-loop system behaves in reasonable manners. Revisiting the fixed-
target Zermelo boat problem, the covariance-trajectory shaping technique is used to
demonstrate the optimization of feedback gains and reference trajectories simultane-
ously, as well as the ability to ensure realistic controller performance. Although this
technique applies to any uncertainty scenario, the combined parametric uncertainty
model investigated in Section 3.2.1.3 will be employed in this demonstration.

In order to select the feedback control gains as part of the trajectory optimization
process, the problem formulation must be slightly expanded to include the elements
of the feedback gain matrix as additional design parameters. This expansion can take
several forms, depending on whether or not the designer wishes to utilize constant
or variable gain profiles. Constant gains can be included in the problem formulation
as states with trivial dynamics, which reduces them to constant parameters. The
augmented state vector for the Zermelo problem with the covariance matrix and
constant linear feedback gains thus becomes

_ . -
T2

Xa, = ]f(’l , (3.27)
K
| symvec (P) |

where the trivial dynamics for the gains are written as
Ki=0 and K,=0, (3.28)

and the rest of the dynamics are defined as before. Cost metrics, event constraints,
and path constraints can now include the feedback gains as well as the nominal states,
controls, and covariance, which ultimately allows the designer to tune the system’s
closed-loop response characteristics.

Section 3.2.1.3 shows the reference trajectory that minimizes the final position
variance with a combined parametric uncertainty model and constant unity-gain-
matrix feedback. When the constant gains are allowed to vary anywhere between 410
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and the trajectory is reshaped, a different trajectory and set of gains are discovered
which reduce the final position variance 97.5% more than the optimal unity-gain-
matrix solution. The optimal gains for the reshaped trajectory are

Ky=-10 and K,= —6.319. (3.29)

Although arbitrary for now, the bounds on the gains were selected with the knowledge
that higher gains typically lead to faster feedback corrections, which require increased
control authority to execute. In this problem, the control variable is the boat’s heading
angle, so feedback corrections correspond to additional changes in the boat’s course.
Changing the feedback gains adjusts the system’s closed-loop poles that dictate the
rates of the angular correction commands. Natural limits exist on the speed at which
a boat can command a new course, and the gain bounds here are set to £10 to simply
allow an increase in control authority by roughly a factor of 10. As expected, the
optimization utilizes the ability to increase the gains and system response time, but
it is worth noting that both gain bounds are not active in the optimal solution.

Although the covariance trajectory-shaping and simultaneous feedback design pro-
cesses have garnered vast improvements in expected targeting precision, the closed-
loop performance characteristics of each controller along the designed trajectories
have not been carefully considered to this point. The optimization routine exploits the
performance allowed by the gain bounds, but the gain themselves do not sufficiently
guarantee system stability or performance. Since the linearized Zermelo dynamics are
time-varying, rigorous stability and closed-loop performance analysis warrants the use
of Lyapunov’s direct stability methods. The definition of stability for a time-varying
system contains subtleties that cannot be fully captured its instantaneous eigenval-
ues. However, it is assumed for now that the instantaneous stability and closed-loop
performance characteristics defined by the time-varying eigenvalues provide a useful
approximation of system stability and performance, though they guarantee neither.
With this fact in mind, the time-varying eigenvalues of the linearized closed-loop dy-
namics are evaluated along each trajectory with their respective controller designs.
When unity-gain-matrix feedback is applied along the optimal trajectory for that
control law, the eigenvalues of the linearized closed-loop system are shown to have
positive real parts for the first 0.25 sec of the 1.0 sec journey. When the optimal
constant feedback gain matrix is applied along its matching optimal trajectory, the
linearized system displays instantaneous instability for the first 0.31 seconds. Al-
though instantaneous instability does not guarantee time-varying system instability,
it suggests unfavorable closed-loop stability characteristics along the trajectory and
controller pairs designed to this point.

To rectify unfavorable closed-loop performance, additional constraints can be ap-
plied to the constant gain problem to ensure that the closed-loop responses meet
reasonable specifications. The linearized closed-loop Zermelo dynamics conveniently
reduce to a second-order system with two non-trivial poles, so its closed-loop re-
sponses can be approximated with simple instantaneous second-order damping ratio
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and response time calculations. The two poles of the system can be written as

§=—cwp twovesZ—1, (3.30)

where ¢ is the damping ratio and wy is the natural frequency. When ¢ < 1.0, the poles
are complex conjugates, and the system exhibits oscillatory underdamped closed-loop
responses. When ¢ > 1.0, both poles are real, and the system displays critically or
overdamped closed-loop responses. The response time can be examined by

Fo (3.31)

Wo

which physically represents the time at which an applied impulse would cause a
step in the system [4]. This calculation provides a measure of the quickness of a
system’s response time, meaning lower values of ¢ correspond to faster systems, and
it approximates the 63% rise time with 20% accuracy for damping ratios greater than
0.7 [4].

When the instantaneous system is unstable along the current trajectories, the
damping ratios and response times are actually negative, and when the instantaneous
system is stable, their damping ratios are positive but relatively small to create fast
responses that reduce dispersions more quickly. Along the instantaneously stable
portion of the unity-gain-matrix solution, the damping ratio varies between 0 and
0.25, and along the instantaneously unstable portion of the optimal constant gain
trajectory, the damping ratio remains between 0 and 0.7. Even during their stable
portions, both solutions possess highly oscillatory tendencies, and in both cases, the
response times never exceed 0.2 sec. To dictate slower, less oscillatory behavior,
path constraints can be placed on the damping ratios and response times along the
entire trajectory. When the damping ratio along the entire trajectory is constrained to
remain above 0.7, the optimization finds a different trajectory along with the constant
gains

K, =-2815 and K, =-10 (3.32)

Due to the interdependence among the closed-loop performance characteristics, the
damping ratio constraint ensures the response times naturally remain above 0.28 along
the entire trajectory. Figure 3-13 shows the reference trajectories generated with
simultaneous constant feedback optimization. Unlike the other optimal trajectories,
the peak cross-stream point of the newly constrained trajectory occurs more than
halfway down-stream towards the target. Figure 3-14 plots the damping ratios along
each trajectory, showing the significant impact of the performance constraint.

As expected, the increased damping and slower response times dictated by the
feedback performance constraints significantly hurt the achievable final position vari-
ances. With the constrained trajectory-feedback pair, the improvement in final po-
sition variance over the optimal open-loop scenario is only 86.5%, while the original
constant-gain trajectory-feedback pair provides a 99.9% improvement. Figure 3-15
and Table 3.7 compare the final position variances of each trajectory with the feedback
controllers for which they were designed. With minimal constraints on closed-loop
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Figure 3-13: Optimal trajectories for various feedback schemes with a combined para-
metric uncertainty model in which ¢, = 1 and w, = 2. The black trajectory is optimal
without feedback, the green trajectory is optimal for constant unity-gain-matrix feed-
back, the blue trajectory is optimal for constant feedback gains bounded by +10, and
the red is optimal for constant feedback gains bounded by +10 and damping ratios
greater than 0.7.

Table 3.7: Final position variance sums for each trajectory with its respective feedback
control scheme and combined parametric uncertainty in which ¢, = 1 and w, = 2.
The first column lists the optimal trajectory-controller pairs investigated, the second
column provides the final expected position variances for each specific pair, and the
third column provides the improvement percentages with respect to the optimal open-
loop trajectory applied without feedback.

Improvement
Trajectory Final Variance Sum | over Open-Loop
Variance Sum
Lpttria] 0.03278 N/A
Open-Loop
Optimal Unity- %
Gain-Matris 0.001779 94.6%
Optimal 5
Constant Gain 0.00004361 99.9%
Optimal
Constant Gain 0.004414 86.5%
with Constraints
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Figure 3-14: Damping ratios along each trajectory optimized with various feedback
schemes and a combined parametric uncertainty in which ¢, = 1 and w, = 2. Without
applying a constraint on damping ratio, the optimization provides reference-controller
pairs that are unstable for a significant interval of the trajectory, and maintain rela-
tively small damping ratios during the stable portions to produce rapid closed-loop
responses.
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Figure 3-15: Position variance sums propagated along each trajectory with the con-
troller for which it was optimized and combined parametric uncertainty in which
¢, = 1 and w, = 2. When compared against the other trajectory-controller pairs, the
constrained closed-loop performance case provides higher errors than the pairs with-
out closed-loop performance constraints, but still significantly improves upon the
open-loop scenario, and demonstrates the ability of the trajectory-shaping techniques
to incorporate realistic feedback response constraints into the design process.
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performance and control authority, the closed-loop responses along the original unity-
gain-matrix and optimal constant-gain trajectories may be too unrealistic with their
associated feedback controllers, and the real system may actually perform significantly
worse if it cannot keep up with the feedback commands. For the established feed-
back performance constraints, the newest reference trajectory provides the optimal
final position variances, and presents a much more realistic and applicable solution.
Without constraints on the closed-loop performance, the optimization process simply
finds controllers that ask for the fastest and most aggressive corrections, without any
regard to the system’s actual ability to execute those commands.

These results specifically demonstrate the ability of the investigated trajectory-
shaping techniques to not only combine the reference and feedback controller design
process but to allow the designer to incorporate closed-loop performance constraints
on the optimization process, ensuring realistic control authority specifications. Al-
though results are only demonstrated here for a constant-gain feedback law, this
technique can easily be extended to account for variable-gain laws. Rather than in-
cluding the elements of the feedback gain matrix as additional states with trivial
dynamics, the variable gain problem simply requires including the gains as additional
control variables so they can vary freely with time.
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Chapter 4

Hypersonic Reentry Vehicle Problem

This chapter introduces a mission profile for a recoverable hypersonic reentry vehicle.
The investigated flight profile allows the vehicle to collect valuable aerodynamic per-
formance data during the supersonic portion of its flight, before deploying a guided
parachute for a safe recovery. Undurti conducted research on the maximum capa-
bilities of axisymmetric skid-to-turn (STT) reentry vehicles with lift-to-drag ratios
(L/Ds) of approximately one and two [17], and Abrahamson looked at axisymmetric
STT vehicles with L/Ds of approximately two [1]. Recent research in reentry capa-
bilities, however, has gravitated towards asymmetric vehicles that can achieve even
greater L./Ds and maneuverability |6, 11]. Performance data gathered from testing
such vehicles will be useful for future reentry missions of all types, both manned and
unmanned

Undurti and Abrahamson used nominal trajectory optimization techniques to gen-
erate footprints characterizing the maximum range capabilities of their vehicles. How-
ever, neither included uncertainty considerations in the trajectory design process.
Following the recent research trend and extending their work, this problem poses
a generic recoverable vehicle with a slightly higher L/D of approximately 2.5, and
generates a footprint to exhibit the vehicle’s nominal maximum range capabilities.
Then, the covariance trajectory-shaping technique is applied to the footprint bor-
der trajectories to more accurately represent and even extend the vehicle’s confident
range. Although knowledge of the vehicle’s maximum capabilities is useful for mis-
sion planning purposes, test flight trajectories are likely to target recovery zones well
within the footprint. Following the maximum range study, a fixed recovery site is
selected, and the covariance trajectory-shaping technique is used to accomplish two
fixed-target trajectory design goals. In the first, the particular path taken by the
vehicle is not important, but it must reach the recovery site with as little expected
error as possible. In the second, the vehicle must gather flight test data by performing
the largest turn possible, but it must still reach the site within a specified precision
tolerance to ensure satisfactory recovery. This particular study demonstrates these
trajectory design concepts with a generic small-scale asymmetric vehicle model, but
the problem can easily be extended to account for many different reentry scenarios by
simply exchanging the particular vehicle model and updating trajectory constraints
appropriately.
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The first section in this chapter presents the nominal reentry problem. The plant
dynamics contain equations for describing the 3 degree-of-freedom (3 DOF) motion
of a body above the Earth’s surface, and uses analytic expressions for atmospheric
density and asymmetric vehicle aerodynamic coefficients. Physical constraints are
imposed upon the trajectory optimization to ensure the vehicle remains controllable
throughout the trajectory, and to ensure it attains satisfactory final altitude and ve-
locity conditions for safe, recoverable parachute deployments. The second section
uses the nominal problem setup to characterize the maximum downrange and cross-
range capabilities by generating a footprint without taking into account any system
uncertainties. The third section characterizes probable uncertainties in the nominal
reentry model, chooses appropriate models for each, and augments the nominal ref-
erence design process to include the covariance matrix. The fourth section applies
the covariance trajectory-shaping technique to more accurately represent the vehicle’s
useful range subject to confidence constraints. The fifth and final section selects a
fixed recovery location within the vehicle’s footprint and generates trajectories for
both fixed-target design goals. The covariance trajectory-shaping technique provides
the machinery for directly solving these problems, and results are presented.

4.1 Nominal Trajectory Design

The nominal equations governing the six degree-of-freedom (6 DOF) translation and
rotation of any body traveling above the Earth’s surface are derived by Bollino [9] and
Abrahamson [1]. Each uses several important Cartesian coordinate frames to derive
the translational dynamics of the system in spherical coordinates. These frames also
provide convenient alternatives for expressing position and velocity vectors, and the
transformation matrices given here allow the designer to transform spherical coor-
dinate covariances into Cartesian coordinate covariances in any desired frame. The
applicable frames are summarized here, but visual representations of each frame and
more detailed explanations can be found in Chapter 2 of Abrahamson’s thesis [1].

4.1.1 Coordinate Frame Summary
4.1.1.1 Earth-Centered-Inertial (ECI)

The ECI frame provides the fundamental inertial basis for the body’s motion above
the Earth’s surface. The ECI frame originates at the center of the Earth, with the
zgcr direction pointing to the location of the Sun during the Vernal Equinox (also
known as the Vernal Point), the zgc; direction pointing through the North pole, and
the ypcr direction completing the right-handed orthogonal system. The ECI frame
provides the inertial reference for the remaining frames because the direction of the
Vernal Point remains fixed in space despite the Earth’s rotations and revolutions.



4.1.1.2 Earth-Centered-Earth-Fixed (ECEF)

The ECEF frame also originates at the center of the Earth, but unlike the ECI frame,
it rotates with the Earth. The zpcgr direction points to 0 deg latitude and 0 deg
longitude at all times, the zpcgp direction points through the North pole, and the
yecer direction completes the right-handed orthogonal system. The zgc; and zpcer
axes are always aligned, and approximately every 24 hours when the Earth completes
a rotation, the rgcr and xpcpr axes become aligned. Thus the transformation between
these two frames is a single rotation about the z axis which depends on the Earth’s
angular rotation rate (g and the amount of time ¢ that has passed since the last frame
alignment. This transformation from the ECI to the ECEF frame can be written as

cos (Qgt)  sin(Qgt) O
TECI—)ECEF = —sin (QEt) COs (QEt) 0 N (41)
0 0 1

where the Earth’s angular rotation rate is given by the constant

Qp = 7.292115 x 10 °rad/s . (4.2)

4.1.1.3 Up-Downrange-Crossrange (UDC) and Up-East-North (UEN)

The models derived by Abrahamson and Bollino diverge slightly in the definition of
the next frame — the Up-Downrange-Crossrange (UDC) frame. For both authors,
the UDC frame originates at the body’s center of mass, with the xypc direction
pointing upwards along the line connecting the center of the Earth to the body,
the yypc direction pointing downrange with respect to a specified reference plane,
and the zypc direction pointing crossrange with respect to the same reference plane.
However, Abrahamson allows the UDC frame to specify downrange and crossrange
directions with respect to any desired reference plane, while Bollino simply references
the equatorial plane. For applications in this chapter, the reference plane will always
be defined as the equator, so the UDC frame becomes the Up-East-North (UEN)
frame, in which the zygy direction still points upward away from the center of the
Earth, but the yygpy direction now points due East, and the zygpy direction points
due North. The UEN frame is obtained from the ECEF frame by a sequence of two
rotations:

1. Positive rotation about the zpcgr axis by the body’s longitude
2. Positive rotation about the East direction by the body’s spherical latitude A

This transformation can be combined as

cos (M) cos (p)  cos(A)sin(p)  sin(A)
TECEFSUEN = —sin (u) cos (1) 0 i (4.3)
—sin (M) cos () —sin(N)sin (p) cos(A)
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4.1.1.4 Velocity (V)

The velocity (V) frame also originates at the body’s center of mass, with the zy
direction pointing along the velocity vector, the y direction pointing perpendicular
to both the body’s position and velocity vectors, and the zy direction completing the
right-handed orthogonal system. The V frame is obtained from the UEN frame by a
sequence of four rotations:

1. Positive rotation about the yygy axis by 90 deg

2. Positive rotation about the radial direction by 90 deg.

3. Positive rotation about the radial direction by the body’s heading angle 1
4. Negative rotation about the yy axis by the body’s flight path angle ~

The radial direction is defined as the direction pointing from the center of the Earth
upward through the body’s center of mass, the heading angle is measured counter-
clockwise from the East direction to the local horizontal component of the velocity
vector, and the flight path angle is measured from the local horizontal to the velocity
vector itself. This transformation can be combined to write

sin ()  cos(7)cos(¢)  cos(y)sin (v)
TUEN—>V = 0 —sin (’l/)) Ccos (L/)) . (44)
cos (y) —sin(y)cos (¢) —sin(y)sin ()

4.1.1.5 Non-Rolling Body (B)

Finally, the non-rolling body (B) frame originates at the body’s center of mass, with
the xp direction fixed along the vehicle’s nose. The body yp and zp definitions depend
on the particular method used to control the vehicle’s motion. The asymmetric body
used in this study has a preferred zero-roll orientation for maintaining straight and
level flight in which the entire lift vector acts in the local vertical plane. For such
vehicles, the yp axis is fixed to the body’s side direction in the preferred zero-roll
orientation and the zp axis is fixed to the body’s vertical direction in the preferred
zero-roll orientation. The B frame is obtained from the V frame by a sequence of two
rotations which depend explicitly on the vehicle’s attitude:

1. Positive rotation about the zy axis by the body’s yaw angle ¢
2. Negative rotation about the yp axis by the body’s pitch angle 6

The yaw angle is the angle between the velocity direction and the component of the
body’s nose direction (zp axis) in the xy-yy plane, while the pitch angle is the angle
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between the zy-yy plane and the body’s nose direction (zp axis). This transformation
can be combined and expressed as

cos () cos (¢)  cos(f)sin(p) sin ()
Tv_p = — sin (¢) cos (@) 0 ) (4.5)
—sin (0) cos (¢) —sin () sin (¢) cos ()

While the body’s attitude in any zero-roll orientation can be represented by the pitch
and yaw angles, it can also be expressed in terms of total angle of attack and bank
angle. Total angle of attack « is defined as the direct angle between the body’s nose
direction (zp axis) and the velocity vector (xy axis), and the bank angle o is defined
as the angle between the lift vector and the velocity-vertical plane (zy-zy plane). In
order to fully characterize the attitude of a body, however, a third aerodynamic angle
8 must be used to represent sideslip. However, in this particular set of dynamics, the
body is assumed to always perform perfectly coordinated turns so that 8 = 0 and no
sideslip occurs. Pitch and yaw are related to angle of attack and bank angle by purely
trigonometric functions. These relationships can be manipulated many different ways
using trigonometric identities, with one such representation defined by

sin () = cos (o) sin () (4.6)

and
cos (0) sin (¢) = sin (o) sin (a) . (4.7)

4.1.2 3 DOF Dynamics

The 6 DOF model provided by Abrahamson and Bollino can be reduced to 3 DOF
by simply omitting the rotational dvnamics, which reduces the state vector to

r
7
A
v
Y
¥

Each of the states describe the position and velocity vectors of the body in spherical
coordinates, so they inherently neglect the oblateness of the Earth’s surface. Here,
r represents the distance from the body’s position to the center of the Earth, pu
represents the body’s longitude, A represents the body ’s spherical latitude, v denotes
the body’s speed within the ECEF and UEN coordinate frames, v denotes the body’s
flight path angle relative to the local spherical horizontal, and ¥ denotes the body’s
heading angle counterclockwise from the East direction. The dynamics governing this
system, as derived by Abrahamson and Bollino for an equatorial reference plane, are
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written as

75.
f
) A
x=| 2], (4.9)
7
LY
where
7 =wvsin (v) ,
_wvcos () cos ()
- rcos () ’
§ _ veos () sin (v)
= ’r b
. D G, .
V= —E — 78111 (7) +QQETF1 ?
_ LCO—S(U)+ <E— GT> cos () + 20£Cy + Q3 F27
mu roorw
Lsin (0) v QQEC3 QETF3
T mvcos(y) T (7) cos () tan (A) = =5 (v)  wveos(y)

While the position rates are solely trigonometric functions of the states themselves,
the velocity rates contain terms that describe several different forces acting on the
body. First, the speed, flight path angle, and heading rate equations all contain terms
which account for the Coriolis and centrifugal accelerations acting on the body due
to the Earth’s rotation. The representation of these forces within the equations of
motion are simplified by the coefficients

Fy = cos? (A) sin (y) — cos () sin (A) cos () sin (¢) ,
F, = cos® (A) cos () + cos (A) sin (\) sin (7) sin (¥) |
F5 = cos (\) sin (A\) cos (¢)

Cy = cos (A) cos (¢)

C'3 = sin (A) cos (7) — cos (A) sin () sin (¢) .

Second, the speed and flight path rate equations each contain terms which describe
the effects of gravitational accelerations acting on the body, utilizing the gravitational

constant
G,, = 3.9860064 x 10'* m*/s%. (4.10)

Lastly, the speed dynamics depend explicitly on accelerations due to drag, while
the flight path and heading angle dynamics depend explicitly on accelerations due
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to lift. Although the 3 DOF model solely describes translational dynamics, the lift
and drag forces still depend on the attitude of the body, as well as its particular
aerodynamic capabilities. The lift and drag forces acting on any body are proportional
to the local atmospheric density, the body’s speed squared, the reference area exposed
to the relative wind, and the particular lift and drag coeflicients, respectively. For all
cases investigated here, the total angles of attack are constrained to remain relatively
small (< 15 deg), meaning the vehicle’s nose remains pointed nearly in the direction
of the velocity vector. This constraint helps avoid stalls and unstable supersonic
behavior, while also allowing the body’s reference area S to be modeled adequately
as a constant. When the local atmospheric density and the body’s speed squared are
combined to express dynamic pressure as

1
q=-pv?, (4.11)
2
the lift and drag forces can be written as
L= QSCL (412)
and
D =qSCp. (4.13)

respectively. Cp and Cp represent the lift and drag coefficients which are resolved
from the vehicle’s axial and normal body force coefficients using the trigonometric

relationships
Cp, = Cy cos (a) — Cx sin (o) (4.14)

and
Cp = Cysin (a) + Cx cos (a) . (4.15)

The axial force coefficient C'x and the normal force coefficient C'y reflect the aero-
dynamic performance characteristics for the vehicle. Tables of coeflicients are typ-
ically gathered through empirical performance testing and generally given in terms
of Mach number and angle of attack. Undurti and Abrahamson provide analytic
approximations that capture the basic functionalities of tabular data for representa-
tive axisymmetric hypersonic reentry bodies trimmed to stabilize at a = 0 during
flight. George extends this model slightly to account for asymmetric bodies with
different trim angles and lift characteristics [5], so the models for axial and normal
force coeflicients become

Cx = Cxqe CxeM=Ccd) 4 Cyy 4+ Cxyp () (4.16)

and
Cn = Cno + Cnacr. (4.17)

The constant parameters Cx,, Cxb, Cxe, Cxday Cxr, Cno, and Cy, are selected to
appropriately model the vehicle’s desired L /D and trim characteristics. Mach number
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M is a function of the body’s speed and the speed of sound s,, which can be calculated
as

v
M=—. (4.18)
ss
The speed of sound depends on local atmospheric conditions including temperature
and density, but for the purpose of this reentry scenario it will be assigned the constant

value
Ss =330m/s. (4.19)

Since dynamic pressure depends on atmospheric density, this problem also requires
an atmospheric density model. Many types of atmospheric density models exist, with
varying degrees of accuracy and simplicity. MATLAB provides the atmoscoesa pro-
gram which computes atmospheric density values as a function of geopotential altitude
based on the work of the 1976 Committee on Extension to the Standard Atmosphere
(COESA) [16]. This model is valid for the range of controllable altitudes in a typical
reentry problem, but the execution of atmoscoesa is relatively slow, and in a direct
collocation optimization method, the atmospheric density must be recalculated every
time the system dynamics are evaluated. To speed up the process, an analytic fit of
the COESA density data is created to avoid direct calls to atmoscoesa itself. The
density data resembles an exponential decay as altitude grows, so a polynominal fit
is applied to the logarithm of the density output for the range of valid geopotential
altitudes, and the analytic density model becomes

p= ea0+a1hp+02h§+...anh;’ ’ (420)
where n denotes the order of the polynomial fit and h, represents geopotential alti-
tude.

It is important to note that although geopotential altitude approximates geomet-
ric altitude, these two quantities are not equivalent. This difference is intuitively
explained in part by describing what it means to fiz each respective height. Fixing
geometric height corresponds to fixing the physical altitude above the Earth’s sur-
face, as detected by any distance-measuring device, while fixing geopotential height
equates to fixing the gravitational potential energy per unit mass [16]. This dis-
tinction is important in the context of atmospheric modeling because in actuality,
the Earth’s oblateness means that gravitational forces acting on the surface along
the equator are weaker than gravitational forces acting on the surface at the poles.
Due to this phenomenon, gravitational forces compress the atmosphere differently
around the Earth, and make geopotential altitude a more appropriate functionality
for atmospheric density. Geopotential and geometric altitude are analytically related
by

_ hRg
Poop + Ry ’

where h is the geometric altitude, and R, represents the radius of the Earth at 45

(4.21)
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deg latitude, approximated as
Ry = 6356766 m . (4.22)

The geopotential altitude calculation requires geometric altitude above the ellipsoidal
Earth, and this quantity can be approximated from the spherical radius r and spher-
ical latitude A by

h=r+R, (%f(l—cos(Q/\))+f2 (%—%

) (1 — cos (4X)) — 1) , (4.23)
where R, is the Earth’s mean equatorial radius and f is the Earth’s flattening coef-
ficient. These two constants are approximated to seven significant figures as

Re = 6378137 m (4.24)

and
f =0.003352811. (4.25)

Using Egs. 4.9-4.25, the 3 DOF dynamics for a hypersonic body traveling above the
surface of the ellipsoidal Earth are completely defined.

4.1.3 Vehicle Model

As mentioned above, this scenario will investigate an asymmetric reentry vehicle with
a maximum L/D of 2.5. To demonstrate the ability to handle vehicle asymmetries,
the angle of attack trim condition will be set squarely between the upper and lower
bounds at 7 deg. To model these particular L/D and trim characteristics, the axial
and normal force coefficient fitting constants are chosen as

Cxa = 0.317,
Cxp = 0.550,
Cxe = 1.00,
Cxq = 0.0830,
Cxr = 1.00,
Cvo = 0.0200,
Cna = 3.00.

Hypersonic reentry vehicle sizes and shapes span a very wide spectrum, but this
scenario arbitrarily chooses a small-scale 500 1b model so that

m =5001b = 2268 kg.. (4.26)

For the purpose of the 3 DOF dynamic calculations, the dimensions of the vehicle
do not matter except in the calculation of an appropriate reference area. However,
rather than explicitly defining a vehicle shape, a reference area is selected so that
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the body’s nominal ballistic coefficient at the reentry condition is approximately 3000
Ib?/ft?, or 14,650 kg?/m? in metric units. The ballistic coefficient can be calculated

as
m

ﬂzﬁa

and using Eqgs. 4.15 and 4.16 to find Cjy at the initial conditions given by Eq. (4.35)
in the next section, an appropriate reference area can be calculated approximately as

(4.27)

S = 1.969 ft* = 0.1829 m?. (4.28)

4.1.4 Nominal Optimization Problem

To make the numerical values for radial distance a little more intuitive, the distance
r from the center of the Earth to the body will be replaced by the altitude a of the
body above the spherical Earth model. These two quantities are related simply by

r=a-+ Re . (429)
In this relationship,
dr =da, (4.30)
which means
F=a, (4.31)

so this change of variables does not affect the dynamic constraints given by Eq. (4.9).
Using the spherical position and velocity components as the state vector, the opti-
mization’s control variables become the body’s total angle of attack and bank angle.
However, while control bounds applied according to Eq. (2.8) restrict the magnitudes
of the control variables along the trajectory, they do not restrict their rates of change.
In the pure 3 DOF model, the body’s rotational dynamics are unconstrained, so the
optimization has the ability to change the aerodynamic angles instantaneously. In
reality, the vehicle’s attitude is governed by the rotational dynamics included in the
6 DOF model, which naturally imposes limits on the rates at which the vehicle can
rotate. 6 DOF limitations can be partially addressed by expanding the state vector
to include total angle of attack and bank angle, and defining the control variables as
their respective rates. The state vector then becomes

- -

a

I
A

x=|" (4.32)

Y
P
«

ag
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with the control vector

!
u=| ] . (4.33)
The dynamic constraints given by Eq. (4.9) are also expanded as
-4
a
A
. v
x=1.1, 4.34
5 (4.34)
(&
o}
e O.- -

4.1.4.1 Initial and Terminal Constraints

This scenario assumes that the reentry vehicle has already been lofted to an altitude
of 150,000 ft and begins its descent traveling along the equator at 13,000 ft/s and
0 deg flight path angle. The spherical and ellipsoidal Earth models are equivalent
at the equator, so the initial altitude condition does not need to be adjusted for
the Earth’s oblateness. Similarly, the ellipsoidal Earth model assumes the Earth is
flattened along the polar axis so that spherical and ellipsoidal longitudes are always
equivalent. In fact, p does not appear anywhere in the 3 DOF dynamic constraint
calculations. For all practical purposes, the initial longitude does not matter because
the longitude state solutions can be shifted ex post facto without corrupting the rest
of the trajectory. In metric units, the initial conditions become

[ 150,000 ft ] [ 45,720m |
0 deg 0 rad
0 deg 0 rad

13,000 ft/s 3962.4m/s
X0 = 0 deg / - 0 rad / ' (4.35)

0 deg 0 rad
0 deg 0 rad
Odeg | | Orad |

This scenario assumes that the reentry vehicle will deploy a guided parachute for safe
recovery. Many chutes require relatively slow subsonic speeds for safe deployment,
and to ensure that this is possible, this problem requires the vehicle to pitch straight
up at the end of its flight, reduce its speed, and trigger a parachute at an appropriate
velocity as it falls back down toward Earth. Unfortunately, the analytic expressions
for axial and normal lift coefficients given by Eqs. 4.16 and 4.17 are derived explicitly
to model the aerodynamic characteristics of a hypersonic vehicle at supersonic speeds,
and they provide poor approximations when the vehicle’s speed drops much below the
speed of sound. To retain the fidelity of the model, the trajectory design will cease
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near the subsonic transition, leaving the remaining ascent and subsequent parachute
descent for other simulations. In the Apollo program, drogue chutes were typically
released at an altitude of 24,000 ft although they were designed for deployments as
high as 40,000 ft [10]. To give this vehicle a similar altitude cushion, the reference
trajectory will cease when the vehicle is traveling in the upward direction at a speed
of 1000 ft/s and an altitude of 15,000 ft. The heading rate equation has a singularity
when the flight path angle is 90 deg, so the terminal condition will be near-vertical
with an 85 deg flight path angle. Propagating from these terminal conditions along
the equator with a simple drag model at zero angle of attack, the vehicle can be
expected to reach an apogee of just over 25,000 ft before falling back down to Earth,
meeting the desired altitude cushion.

The terminal altitude condition describes the final height of the body above the
Earth’s surface, but the states only provide the vehicle’s position in terms of spherical
coordinates. Since the final recovery location may be located off the equator where
the spherical and ellipsoidal Earth models are no longer equivalent, the final altitude
condition must be expressed as an event constraint using Eq. (4.23) to calculate the
final ellipsoidal altitude. The ellipsoidal altitude A is a function of a and A, so the
altitude event constraint can be evaluated as

€Ep = h (af, )\f) s (436)
with the upper and lower bounds pinned to the desired altitude, so that in meters
ey = el = 15,000 ft = 4572 m . (4.37)

Although the flight path angle v actually refers to the local sphere, the difference
between ~y and the flight path angle relative to the local ellipsoid at any given location
is equivalent to the difference between the spherical and ellipsoidal (geodetic) latitudes
at that location. Since the trajectories in this scenario stay near the equator, the
differences in flight path angle are considered small enough to be neglected for this
problem. Thus, the final speed and flight path angle constraints can be written simply
as final state bounds, where

vr = 1000 ft /s = 304.8 m/s, (4.38)

and
vr = 85 deg = 1.4835 rad . (4.39)

The vehicle’s time of flight is measured relative to the beginning of its trajectory, so
the initial time is fixed to zero. The final time, however, is left unconstrained to allow
as much maneuvering as desired before reaching the terminal state conditions.
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4.1.4.2 Interior Constraints

The 3 DOF dynamics given by Eq. (4.9) contain singularities at

r=20,
T
A ==+—rad
2ra,
v=0,
s
= +—rad,
0 2ra
m=0,

so spherical radius, latitude, speed, and flight path angle must each be bounded away
from their respective singularities to prevent the numerical algorithm from attempt-
ing undefined calculations anywhere along the trajectory. Realistically, the smallest
possible value of r would occur on the Earth’s surface at each of the poles. Solving
Eq. (4.23) for spherical altitude when h = 0 and A = 7 rad demonstrates that a
can never decrease below -70,160 ft without dipping below sea level at the poles, so
this value will be used as the lower bound for a. Values for the other states with
singularities are chosen near but away from their unstable values to keep the problem
as unconstrained as possible. Longitude, heading angle, and bank angle do not con-
tain singularities, but since numerical optimization techniques typically require finite
bounds for each variable to limit the scope of the search algorithms, their bounds are
set to £360 deg to leave them essentially unconstrained. The total angle of attack
is bounded by 0 and 15 deg, which forces the vehicle to roll over in order to pitch
downwards. The complete lower interior state bounds can thus be written as

[ 70,160 ft ]| [ —21,384m |
—360 deg —27 rad
—89 deg —1.5533 rad
L 5 ft/s 1.5240m/s
X" = _89deg | = | —1.5533rad (4.40)
—360 deg —27 rad
0 deg Orad
| —360 deg | | —2mrad |

and the complete upper interior state bounds can be written as

[ 10,000,000 ft | [ 3,048,000 m |
360 deg 27 rad
89 deg 1.5533 rad
U 100,000ft/s | | 30,480m/s
X = 80 deg =1 15533rad (4.41)
360 deg 27 rad
15 deg 0.26180 rad
| 360deg | | 2wrad
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While the final altitude is constrained by the event given in Eq. (4.36), a path
constraint must be included to prevent the vehicle from hitting the Earth’s surface
at any other time during the trajectory. Such a constraint is particularly important
in this scenario because the vehicle will be plunging toward the ground before pulling
into a vertical climb near the trajectory’s end. The path function is simply the body’s
altitude above the ellipsoid calculated using Eq. (4.23), so the path function can be
written as

dn=h(a(t), (1)) . (4.42)

Neglecting terrain features on the surface of the Earth, a lower bound of zero prevents
the vehicle from flying below sea level anywhere around the globe. The upper bound
can be set to a large number to keep the vehicle’s maximum altitude unconstrained,

so that the path bounds become
dr =0 (4.43)

and
di’ = 10,000, 000 ft = 3,048,000 m .

Although the vehicle’s maximum altitude is unconstrained, it is desirable to en-
sure the body remains controllable throughout its flight, and this reentry vehicle
depends on aerodynamic lift and drag forces to control its trajectory. The lift and
drag forces are proportional to dynamic pressure, reference area, and the aerodynamic
coefficients. For the speeds and altitudes investigated in this problem, dynamic pres-
sure dominates the lift and drag calculations governing the vehicle’s controllability.
Placing a lower bound on dynamic pressure along the trajectory provides a useful con-
trollability metric linked to adequate airflow over the body. Intuitively, this makes
sense, because if the vehicle is either traveling too slowly or too high above the at-
mosphere, it will not be able to utilize aerodynamic forces to control its motion. The
dynamic pressure path bound can thus be written as

dy=q(t) . (4.44)

The dynamic pressure at the initial condition is just under 14,300 N /m?, while the
dynamic pressure at the final condition is just over 36,400 N/m?. A dynamic pres-
sure lower bound of 10,000 N/m? ensures that the vehicle satisfies the controllability
requirement as it begins its unpowered glide, while still giving it the freedom to skip
slightly higher in the atmosphere if desired. The minimum dynamic pressure guaran-
tees that the vehicle remains in the presence of drag, and without a source of thrust,
its total energy and speed will monotonically decrease. A sufficiently large upper
bound must be set to keep the maximum dynamic pressure unconstrained. Although
impossible, if the vehicle could somehow reach the ground at a speed of 13,000 ft/s,
the dynamic pressure would be smaller than 9,700,000 N /m?, so an upper bound of
10,000,000 N /m? ensures the dynamic pressure upper bound will never be active. The
dynamic pressure path bounds can thus be written as

dy = 10,000 N/m? (4.45)
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and
di/ = 10,000,000 N/m?.

Finally, bounds must be chosen to limit the angle of attack and bank angle rates. In
reality, the rate limits depend on the magnitudes of the vehicle’s moments of inertia,
as well as the forces generated by its control actuators. Since this problem utilizes
a fictitious vehicle model to simply demonstrate concepts for any trajectory design
application, the angle of attack rate limit is set arbitrarily to £10 deg/s , forcing the
vehicle to take at least 1.5 sec to rotate between its minimum and maximum angle
of attack orientations. The moment of inertia about the vehicle’s longitudinal axis
is assumed to be smaller than the moments about the other body axes, so the bank
rate limit is arbitrarily set to +30 deg/s, allowing the bank angle to change three
times more rapidly than the angle of attack. Applying these limits, the lower control
bounds are written as

ol = { —10deg/s ] [ —0.17453 rad /s

B [ —0.52360 rad/s } (4.46)

—30 deg/s

and the upper control bounds are written as

o’ { 10 deg/s }

B [ 0.17453 rad/s
30 deg/s

N [ 0.52360 rad /s } ‘

Although this completes the set of constraints for this particular investigation, con-
straints can be altered or added to satisfy any particular mission scenario. For in-
stance, when designing manned reentry trajectories, g-loading considerations become
extremely important because the human body cannot handle as much strain as the
vehicle structure itself. To account for human g-loading capacities, an additional
path constraint could be formulated with bounds set to ensure g-loads remain within
human tolerances for the duration of the flight. Heat loads, heating rates, and any
other imaginable constraints can also be used to alter the trajectory application.

4.1.4.3 Scaling

As explained by Ross |12], the efficiency of numerical solution techniques depends
highly on the scaling of the design parameters. Numerical methods rely on gradients
that relate changes in the states and controls to deviations in the cost metric and
constraints to produce search directions and step sizes for minimizing the metric and
satisfying the constraints. When a problem is numerically well-conditioned, good
gradients provide efficient paths to extremal solutions. However, when a problem is
ill-conditioned, poor gradients generate paths that either take significantly more time
to navigate or break the optimization algorithm altogether. As the number of design
parameters grows in size, and the cost and constraints grow in complexity, the effects
of poor scaling are magnified.

The states, controls, and time variables in any system possess natural units, and
this system mixes distances, speeds, angles, angular rates, and time. Specifically,
the spherical altitudes and ECEF speeds are given in meters and meters per second,
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respectively, the rest of the states are angles given in radians, and the two control
variables are given in radians per second. A typical trajectory, for instance, could very
easily spend 100 sec at altitudes above 30,000 m and speeds above 8000 m/s, but never
attain latitude and longitude values greater than 0.25 rad. When the design variables
differ by orders of magnitude, the cost, constraint, and and gradient magnitudes
also vary greatly, and the numerical algorithm quickly becomes ill-conditioned. This
disparity certainly occurs in the reentry problem, and attempting to solve it using
a direct pseudospectral collocation method with natural units proves painfully slow
and oftentimes impossible, particularly when the problem is broken into multiple
segments. To address this issue, the states, controls, time, cost, and constraints can
each be scaled separately so that the problem solved by the optimization routine is no
longer in natural units. Different techniques exist, but applying constant linear scales
to the states, controls, and time provides tremendous improvements in the solution
speed and quality. Using this concept, the scaled states can be written as

X, = 5;'x, (4.47)
the scaled controls can be written as

u, = S ', (4.48)
and the scaled time can be written as

te=St. (4.49)

Sy is a constant n x n diagonal matrix with each diagonal element providing a unique
scale for each individual state. Similarly, S, is a constant m x m diagonal matrix
containing scales for each control variable, and S; is a scalar time scale.

Scaling the state, control, and time variables within the optimization routine
requires equivalently scaling the initial state conditions, terminal state conditions,
interior state bounds, control bounds, and time bounds. The optimization algorithm
then processes the scaled variables and passes them into the cost and constraint eval-
uations. However, the cost and constraints are functions of the unscaled variables,
so the design parameters must be unscaled before proceeding with the evaluations.
After the evaluations, the cost and constraint functions pass unscaled cost and con-
straint values to the optimization machinery. Additional scales may be applied to the
cost, event, and path outputs if desired, but they are not required. When the cost
metric, event constraints, and path constraints remain unscaled, the optimization al-
gorithm simply calculates gradients with respect to the original unscaled functions.
However, the output from the dynamic constraint evaluation cannot be left unscaled.
The state and time scales implicitly scale the state rates, so the rates passed back to
the optimizer must be scaled to match the states and times visible to the optimizer.
Using Eqs. 4.47 and 4.49, the relationship between the scaled and unscaled rates can

be written
x5 = 5,57 1%, (4.50)
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which must be applied at the end of the dynamic constraint evaluation.

Multiple concepts and opinions exist for selecting the most appropriate set of
scales. For instance, Ross advises that the scales should be selected so that the
scaled states and costates are roughly the same order of magnitude [12]. The costates
represent the sensitivity of the cost metric to changes in the dynamic constraints, so
this is one way to condition the gradients. For this problem, the scales are simply
chosen to normalize the range of each variable as much as possible. First, S; is chosen
to normalize the vehicle’s time of flight from 0 to 1, which requires that

S, =t (4.51)

However, since ¢ is free, S; must also be allowed to vary. This can be accomplished
by defining S; as an additional constant parameter chosen within the optimization
scheme. This parameter can then be scaled independently, choosing a constant to
estimate the value of ¢; for the particular problem.

4.2 Nominal Maximum Capabilities

Now that the nominal dynamics have been completely defined, cost metrics can be
formulated to find trajectories that characterize the vehicle’s maximum downrange
and crossrange capabilities without accounting for any uncertainties in the system.
Since the vehicle’s initial velocity carries it eastward along the equator, and since the
UEN frame is used to define the downrange and crossrange directions, metrics which
penalize downrange distance and final longitude provide the same result. The metric

J = —pu(ty) (4.52)

can be used to find the attainable recovery zone with the maximum downrange dis-
tance, and the metric
J = ult) (4.53)

can be used to find the attainable recovery site with the minimum downrange (or
maximum uprange) distance. Similarly, metrics penalizing maximum crossrange dis-
tance and maximum final latitude provide equivalent results in this scenario, so the
metric

J=-=X(ty) (4.54)

can be used to find the attainable recovery zone with the highest crossrange distance.
Although spherical and geodetic latitudes are slightly different, geodetic latitude in-
creases monotonically as a function of spherical latitude, and vice versa, so both
metrics produce the same results.

The vehicle footprint is defined as the space of downrange-crossrange locations
which the vehicle can reach from a particular initial condition while satisfying every
en route and terminal constraint. The maximum downrange, uprange, and crossrange
cases define three important points on the footprint boundary, and the rest of the
boundary can be filled in using several methods. In one method, the northern half is
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Table 4.1: Nominal values for maximum downrange, uprange, crossrange recovery
zone locations: The first column lists each respective case, the second and third
columns list the recovery zone locations in geodetic latitude and longitude coordi-
nates, respectively, and the fourth and fifth columns list the recovery zone downrange
and crossrange components in kilometers, respectively. Values are given with four
significant figures.

| Solution | Lat [deg] | Lon [deg] | Downrange [km] | Crossrange [km] |
Max Downrange 0 13.88 1544 0
Max Uprange 0 1.848 205.7 0
Max Crossrange 3.325 8.232 916.4 367.6

solved using the maximum latitude metric while simultaneously fixing final longitudes
between the maximum downrange and uprange solutions. Here, the final longitudes
are selected as intermediate degree integers, so for this problem the set becomes

pp=[23 456 7 8 9 10 11 12 13] deg. (4.55)

A separate solution is found for each individual p; by applying the metric given in
Eq. (4.54). The same process can be used to solve for the southern half, but the sign
of the metric is switched to minimize the terminal latitude of each solution.

Figure 4-1 shows the resulting footprint boundary in terms of latitude and longi-
tude as well as in terms of downrange and crossrange distance. Table 4.1 summarizes
the maximum downrange, uprange, and crossrange capabilities. For this particular
set of initial conditions, the footprint is conveniently symmetric about the equator.
This phenomenon occurs because the body’s initial heading angle is both aligned
with and located on the equatorial plane, and the Coriolis and centrifugal accelera-
tions are symmetric about the Earth’s plane of rotation. When the initial conditions
do not meet these criteria, however, the footprint becomes slightly asymmetric. For
this scenario, the footprint demonstrates that from these initial reentry conditions,
the vehicle can reach recovery zones inside a swath nearly 735 km wide and 1338 km
long, making its achieveable downrange distances twice as long as its crossrange dis-
tances. This disparity arises because turns dissipate energy and speed more quickly
than straight and level flight, and the vehicle has a finite energy budget. The pitch-up
maneuver at the end places an additional tax on the system capabilities because the
vehicle must perform an extra banking maneuver to roll upright before pitching once
more, and must also save enough speed to survive this maneuver with the appropriate
final conditions.

It is interesting to note that the maximum uprange recovery zone is over 200 km
downrange of the insertion point — a phenomenon that is primarily a function of
the 0 deg flight path angle insertion. The vehicle’s initial velocity is pointed entirely
downrange, and the vehicle must roll over before it can pitch downward and dive into
the atmosphere. Due to the bank angle rate limit, the time required to roll over is not
negligible, so the vehicle covers significant downrange distance before it can redirect
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Figure 4-1: Nominal footprints without uncertainty considerations: The figure on top
gives the footprint in terms of geodetic latitude and longitude, while the figure on
bottom gives it in terms of downrange and crossrange position in kilometers.
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its velocity vector downwards. In addition, while much of the footprint has a relatively
ellipsoidal shape, the uprange quarter is constricted in a bottleneck shape. Similar
behavior is observed in some of Undurti’s footprints, particularly in his low- reentry
scenarios without g-load and heating constraints [17]. However, the elongation is
exaggerated here, again due to the vehicle’s banking limitations and the extra energy
required to perform the additional pitch-up maneuver. Widening the uprange portion
of the footprint requires executing the banking maneuvers more quickly to reduce
energy dissipation, but the rate limits and extra turning requirements constrain this
performance.

The three fundamental trajectories for this footprint — the maximum downrange,
uprange, and crossrange solutions — effectively encapsulate the range of characteris-
tics displayed in the full set of footprint border solutions. The altitude profiles given
in Fig. 4-2 each demonstrate different skipping behaviors. The maximum downrange
trajectory is able to skip twice, staying as high in the atmosphere as possible to min-
imize energy and speed losses due to drag, and each successive skip reaches a slightly
lower altitude as the vehicle bleeds more speed. As required, each trajectory stays
above the Earth’s surface. The maximum uprange trajectory digs deeper into the
atmosphere before the final pitch-up than the maximum crossrange trajectory, and
the maximum crossrange trajectory dips farther than the maximum downrange case.
This phenomenon occurs because as the trajectory penalizes downrange distance,
the dives become steeper to reduce the downrange groundtracks. Nevertheless, the
maximum uprange trajectory remains more than 2700 ft above the ground.

Slower speeds activate the lower dynamic pressure limit at lower altitudes where
the atmospheric densities are greater. Figure 4-3 plots the dynamic pressure profiles.
The lower bounds are met at the peaks of the final skips in both the maximum
downrange and uprange cases as the vehicle attempts to minimize drag and increase
glide. As expected, the upper dynamic pressure bounds remain inactive. Figure 4-4
provides the speed and flight path angle profiles for each trajectory. Also as expected,
the speed profiles decrease monotonically due to nonconservative drag forces acting
on the unpowered vehicle. The flight path angle profiles prove that each trajectory
meets the final 85 deg requirement. The maximum downrange and crossrange profiles
remain near zero during the high-altitude glides, and then decrease to approximately
-45 deg during the final dives before the pitch-up maneuver. Steeper dives result in
quicker speed losses that curb the trajectory’s groundtrack, so unlike the other two
trajectories, the maximum uprange case achieves a minimum flight path angle of -65
deg to take advantage of this behavior. The vehicle could dive even more steeply if
the aggressiveness of the final pitch-up maneuver were not constrained by angle of
attack and angle of attack rate limits.

Figure 4-5 gives the angle of attack and bank angle profiles, which demonstrate
the aerodynamic orientations of the vehicle required to fly the respective optimal tra-
jectories. In the maximum downrange and crossrange cases, the vehicle maximizes
its glide distance by oscillating gently about its 7 deg trim angle of attack during
the high-altitude skips. In fact, for both of these trajectories, the angles of attack
approach near-trim conditions as quickly as possible to maximize glide. However, in
the maximum uprange case, the angle of attack remains near zero for the first 2.5
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Figure 4-2: Altitude profiles for the maximum downrange, uprange, and crossrange
trajectories shown with the footprint boundary: The figure on top displays an an-
gled view in terms of downrange distance, crossrange distance, and altitude above
the ellipsoid in kilometers. The figure on bottom shows the same data strictly in
terms of downrange distance and altitude. Each trajectory displays different skipping
behavior, with the magnitudes of each final peak limited by the dynamic pressure
controllability constraint, and each trajectory pulls into the final pitch-up maneuver
well before striking the ground.
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Figure 4-3: Dynamic pressure profiles for the maximum downrange, uprange, and
crossrange trajectories: The figure on top displays the entire profile, proving the
maximum bound remains inactive throughout the entire trajectories. The figure on
bottom displays the same data but focuses on the regions of smaller dynamic pres-
sures, demonstrating that each trajectory satisfies the controllability path constraint,
but the lower bound is active at the peak of the final skips in the maximum downrange

and crossrange cases.
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Figure 4-4: Speed and flight path angle profiles for the maximum downrange, uprange,
and crossrange trajectories: The velocity profiles decrease monotonically to the ter-
minal conditions, while the flight path angle profiles reflect the skipping, diving, and
pitching-up characteristics.
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seconds while the bank angle immediately increases to 180 deg. Once this flip occurs,
the vehicle pitches into a downward dive. Reducing the angle of attack during the flip
minimizes the lift generated in the upward and out-of-plane directions, which prevents
unnecessary altitude gains and out-of-plane deviations. Although the maximum up-
range trajectory executes this flip immediately, similar flips are observed at the ends
of the other two trajectories. After spending significant time near trim during the
high-altitude glides, the angles of attack plummet as the vehicle flips over. However,
unlike the maximum uprange case, the angle of attack rate limit prevents the angles
of attack from reaching zero during the flips along the other two trajectories. In all
three cases, once the flip is executed and the dives begin, the angles of attack begin
growing again to steepen the dives as much as possible. In the maximum uprange
case, the angle of attack activates the maximum bound during much of the dive to
maximize the steepness and minimize the downrange distance covered. The maxi-
mum downrange and crossrange trajectories also steepen their dives, but not quite as
much as the maximum uprange case because downrange motion is still beneficial to
them. Finally, for the final pitch-up maneuvers, all three trajectories force the angles
of attack back to zero, perform efficient rolls, and then utilize the maximum angle of
attack to climb as steeply as possible and reach the required 85 deg final flight path
angle.

While the trajectories presented in this section exhibit the vehicle’s maximum
capabilities for the given plant dynamics, none of these trajectories incorporate un-
certainty considerations in their designs. Before such considerations can be included
in the designs, though, appropriate system uncertainties must first be identified.

4.3 Model Uncertainties

Of the myriad uncertainties that plague the reentry problem, several important ones
will be considered in this demonstration. First, reentry vehicles reach the beginning
of their glide phases by means of powered insertions, and the insertion methods are
unlikely to deliver the vehicle exactly to the desired position with the intended veloc-
ity. Dispersions from the intended reentry conditions can be characterized as random
processes with zero mean normal probability distributions, whose standard deviations
describe how far from the desired initial conditions the vehicle tends to be delivered.
For example, for normal distributions, pure 1o standard deviation values describe the
initial errors within which the vehicle will be delivered with 68.27% confidence, while
30 values extend the dispersion boundary to demonstrate 99.73% confidence. The
standard deviation values depend on the particular insertion method’s uncertainties,
but this scenario assumes the 30 confidence regions for each of the initial reentry
states are given by Table 4.2, in which the 3¢ latitude and longitude values corre-
spond to approximately 3000 m downrange distance error and 1000 m crossrange
distance error. With the zero mean assumption, squaring the standard deviations
provides the variances of each initial state, and assuming the initial state dispersions
are uncorrelated, these variances can be placed along the diagonals of an 8 x 8 matrix
to form an initial covariance matrix.
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Figure 4-5: Angle of attack and bank angle profiles for the maximum downrange,
uprange, and crossrange trajectories: The angle of attack profiles oscillate gently
about the trim angle of attack when trying to maximize glide distances, but peg the
upper bound when trying to maximize the dive and climb inclinations. The bank
angle profiles for the maximum downrange and uprange cases stay as near to 0 and
180 " as possible to reduce wasted energy from out-of-plane motion and minimize
the banking required to flip the vehicle during dives and climbs, while the maximum
crossrange maintains a positive bank to execute its turn.
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Table 4.2: 30 State Insertion Error Assumptions

| State | 30 Insertion Errors |

r 300 ft
1 0.027 deg
A 0.009 deg
v 600 ft/s
¥ 3deg
Y 1.5 deg
Q@ 0 deg

o 0deg

Second, the Earth’s atmosphere is continually expanding and contracting, which
means the densities at any given location and altitude are not actually constant.
Although models like COESA provide accurate fits to meticulous sets of empirical
data, fixed density models never fully capture the atmosphere’s daily, seasonal, and
geographic fluctuations. While density errors may be represented with simple bias
and process noise models, significant research has shown that uncertainties in the
atmosphere can be characterized much more realistically as functions of altitude.
Like the COESA model, the code for NASA’s Earth Global Reference Atmospheric
Model (GRAM) is too slow and cumbersome to evaluate during each iteration of
the optimization routine. However, in addition to providing nominal density profile,
this program can generate statistical dispersions about the nominal density model at
various altitudes [8]. According to the statistical GRAM density outputs, the standard
deviation of the dispersions rises in an exponential fashion until approximately 330,000
ft, after which is begins an exponential decay, and then flattens out at a constant
value near 660,000 ft. Since the trajectories in this scenario stay well below 330,000
ft, a simple exponential fit can be applied to the GRAM density standard deviations
between 0 and 330,000 ft. The resulting 1o confidence model for atmospheric density
dispersions, given in terms of percentage and as a function of altitude, is written as

0, (x) = 0.003517 exp ( (4.56)

h
873681t )

where h is altitude above the ellipsoid, as defined in Eq. (4.23). Figure 4-6 provides
a plot of the atmospheric density 1o confidence model. Atmospheric density is not a
state in the original 3 DOF dynamics, however, so its uncertainties cannot be directly
incorporated into the nominal covariance matrix. In addition, the technique explained
in Section 2.4 augments a system with constant parameters, but p is not a constant
in the current dynamics model. To circumvent this problem, the density calculation
is rewritten as

Pact = (1 =+ Cpap (X)) P (457)

in which p is the nominal atmospheric density given by the COESA fit, C), is a constant
parameter, o, is the standard deviation of the expected density dispersion given as
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Figure 4-6: Standard deviation model for expected atmospheric density dispersions:
An exponential fit is used to model the statistical GRAM density dispersions for the
altitudes applicable to the current problem, and the dispersion standard deviations
are given as percentages from the nominal values.

a percentage, and p,. is the realized density after applying a dispersion. Using this
calculation, the variable p can be assumed to be deterministic and the uncertainty in
atmospheric density can instead be captured by making C, stochastic. Since C, is
a constant, it can be updated to a state with trivial dynamics. In addition, if C, is
given a normal probability distribution with mean

E[C,]=0 (4.58)

and constant variance
E [CpCp] =il (4.59)

the nominal atmospheric density calculation remains unchanged, but the atmospheric
density uncertainty still gets incorporated into the covariance dynamics, where it
impacts the rest of the state errors through correlations.

Third, it is extremely difficult — if not impossible — to develop an aerodynamic
model that completely characterizes a vehicle’s performance envelope with perfect
precision, despite extensive wind tunnel testing and other modeling efforts. Although
vehicle models actually degrade over time as ablation disfigures the original structure
and control surfaces, the aerodynamic errors in this scenario are assumed constant.
For this particular scenario, it is assumed that the 3¢ confidence in the vehicle model
axial and normal force coefficients are each 5%, so that the standard deviations of
each coefficient can each be written simply as

gc, (X) = o¢, (x) = 0.01667 (4.60)

However, as with atmospheric density, the axial and normal force coefficients used to
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describe the vehicle’s aerodynamic properties are not constants, so the axial coefficient
calculation can be rewritten as

CXact = (1 + CCXUCX (x)) CX 7 (461)
and the normal force coefficient can be rewritten as
CNact = (]' + C(C'No-CN (X)) CN ) (4'62)

where Cx and Cy are the nominal coefficients, C¢, and Cg,, are constant param-
eters, o¢, and o¢, are the standard deviations of their expected dispersions given
as percentages, and Cx,, and Cl,,, are the realized force coefficients after applying
dispersions. When the stochastic nature of the coefficients is shifted solely to Ce¢,
and C¢,, with normal probability statistics given by

E [CCX] =0, E [CCN] = 07 (463)

E [CCX CCX] = 1, and F [CCNCCN] = 1, (464)

the nominal axial and normal force calculations remain unchanged, but the uncer-
tainties given by o¢, and o¢, get incorporated into the covariance dynamics where
they impact the rest of the state errors through correlations.

Lastly, factors such as ablation and unmodeled high frequency dynamics typically
prevent vehicles from executing commanded changes in attitude with perfect precision
throughout the trajectory. In this set of dynamics, the attitude rates are control
variables, so unmodeled attitude accelerations can be treated as process noise in the
angular rate dynamics. Although factors like ablation can easily degrade control
authority as a function of time or control effort, this scenario assumes that the 3o
confidence in the angle of attack and bank angle rate dynamics are each approximately
5% of their respective maximum rate limits.

After augmenting the original system to include C,, C¢,, and C¢, as additional
states, the augmented state vector for the covariance trajectory-shaping problem be-
comes

(4.65)

P
|
NQaoaoeoz>xw e

Con

Applying the uncertainty models for insertion errors, atmospheric density, axial and
normal force coefficients, and control error, the diagonal elements of the initial co-
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variance matrix can be written as

1002t 7 [ 30.482ft?
0.009? deg? 0.00015712 rad?
0.003? deg? 0.000052362 rad?
2007 ft? /s? 60.962 ;m?/s?
12 deg? 0.017452 rad?
diag (Py) = | 0.5%deg® | = | 0.0087272 rad? (4.66)
0 0
0 0
1 1
1 1
- 1 - L 1 -

and the diagonal elements of the process noise matrix can be written as

0 0
0 0
0 0
0 0
0 0
diag (Q) = 0 = 0 (4.67)
0.15% deg? /s? 0.002618% rad?/s?
0.52 deg? /s> 0.008727% rad?/s?
0 0
0 0
- 0 = L. O -

Finally, in order to evaluate the covariance matrix dynamics, the system must be
linearized along the nominal trajectory. For this problem, each partial derivative is
derived analytically and then verified numerically for accuracy, as shown in Appendix
A. Each required element of the Riccati equation is now available, so the covariance
can be propagated along any nominal trajectory and added to the optimal control
problem formulation to directly penalize and constrain expected errors along the
reference.

4.3.1 Covariance Propagation vs. Discretization

While direct pseudospectral collocation methods generally exhibit very good conver-
gence speeds and radii, large numbers of design variables easily overwhelm and render
them useless. The DIDO direct collocation method employed here easily handles the
nominal reentry problem, which contains 1 constant parameter (S;), 2 control vari-
ables, 8 states, and 8 differential constraints. However, adding the covariance matrix
requires the definition of 66 more states to capture each unique element of the full
11x 11 covariance matrix, each with an extra differential constraint of its own. On top
of that, each covariance state must be scaled appropriately, which proves extremely
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difficult because the magnitudes of the covariance elements vary tremendouslv both
over time and with respect to each other.

However, the structure of the direct collocation method provides a relatively simple
solution to its own problem. Rather than discretizing each element of the covariance
matrix and including the Riccati equation as a differential constraint, the covariance
can simply be propagated forward during each cost or constraint evaluation [14]. The
state dynamics do not depend on the covariance matrix, and while the covariance
matrix does depend on the state and control values at each point in time, these values
are easily obtained from the nominal problem formulation. While propagating the
covariance makes each cost and constraint evaluation significantly more complicated
and time-consuming, the problem can be solved without increasing the number of
collocation design parameters, and this trade turns out to be supremely worthwhile for
complicated problems. In Chapter 3, the Zermelo trajectories were each successfully
shaped by discretizing and scaling the covariance and sensitivity states appropriately,
but this proves highly unsuccessful for the much more complex reentry problem.
Revisiting the Zermelo problem with propagated covariance metrics, the propagated
and discretized methods are shown to in fact provide equivalent results. Thus, every
reentry trajectory shaped with covariance considerations in the subsequent sections
is solved by propagating the covariance within the cost and constraint evaluations.

At this stage, it is worth providing a few more details about the specific propa-
gation algorithm used within the cost and constraint functions. MATLAB provides
several variable-step integrators, which provide high accuracy but relatively long run
times. Since the cost and constraint functions are often called thousands of times
by DIDO before reaching an extremal solution, the time required for MATLAB’s
variable-step integrators to propagate the covariance matrix along an entire reen-
try trajectory proves unacceptable. Although not available as part of MATLAB’s
toolbox, simple 4th-order fixed-step Runge Kutta algorithms provide vastly superior
speed, retain sufficient accuracy, and allow the designer to manually alter the time
steps and trade one for the other if necessary. Given a general set of dynamics

X =g (x(t).u(t).t) (4.68)

and an initial condition
X (to) = Xo (4.69)

the 4th order Runge Kutta method propagates the states forward in time according
to

1
Xnp+1 = Xp + EAt (k‘] + 2ky + 2ks + k4) , (470)
where At is the desired time step and

kl = g (xnv unatn) ’ (471)

1 1 1
kg =g (Xn + —Q'klAt u, + §l€1At, tn + §At) s
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1 1 1
k3 =g (Xn + §]€2AIL, u,, + §k2At t, + §At> s

and
ky = g (Xn + k3t uy, + kst t, + At)

For the covariance propagation problem, x contains the elements of the covariance
matrix, g is the Riccati equation, and u is the set of nominal states and controls. The
nominal states and controls can be obtained at each necessary time in several ways,
but the most effective way seems to be interpolating the discretized state and control
solution, particularly with a spline. Propagating the nominal states simultaneously
with the Runge Kutta method seems to encourage the optimization routine to select
choppy control variables, degrade their interpolation, and corrupt the nominal state
propagation in a way that artificially lowers the covariance metric. Interpolating the
states rather than propagating them significantly reduces this behavior and more
closely aligns the propagated covariance in each iteration to the current state and
control solutions.

4.4 Maximum Range Confidence

Now that the reentry uncertainties and covariance dynamics have been established,
the covariance can be propagated along each of the trajectories comprising the nom-
inal footprint boundary. However, an appropriate representation of the final position
dispersions must be extracted and linked to the range capabilities demonstrated by
the nominal footprint. The circular error probable (CEP) provides an intuitive and
useful representation.

4.4.1 Circular Error Probable (CEP)

At the terminal conditions, the 2 x 2 submatrix containing the spherical latitude
and longitude covariances can be extracted from the full matrix. This submatrix
defines the final latitude-longitude error ellipse at the terminal conditions, and its
eigenvalues and eigenvectors determine the lengths and orientations of the principal
axes, respectively. Although the ellipse itself provides a measure of the final two-
dimensional position confidence at the terminal altitude, the circular error probable
provides a more intuitive graphical representation of confidence regions, which proves
particularly useful for depicting the nominal footprint regression. Given any two-
dimensional error ellipse, the CEP calculation provides the equivalent circular radius
which encloses 50% of the expected errors, and using an appropriate application of
the chi-square probability distribution, this circle can be scaled to enclose any desired
probability.

While the CEP can be calculated in terms of spherical latitude and longitude
directly from the state covariance submatrix, it can also be desirable to calculate the
CEP in terms of geodetic latitude and longitude as well as UEN position. However,
these CEP calculations first require transforming the state covariance matrix into
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covariances of the geodetic and UEN position variables by utilizing Property 4 defined
in Section 2.3.2. Longitude is equivalent in the spherical and ellipsoidal Earth models,
but geodetic latitude is approximated from spherical latitude according to

Ageo = A+ f& sin (2A) + fQ&sin (4X) (& - l) : (4.72)
T T r 4
The matrix for transforming the state covariance into geodetic latitude and longitude
covariance is the 2 x 11 matrix containing the partial derivatives of geodetic latitude
and longitude with respect to each of the spherical states. This matrix can thus be
written as

Ageo = ! axogeo ) axoseo ’ ] ' (4.73)
o 0 . 0
where
aAgeo Re . 2 Re . Re 1 2 Re . Re
Phgeo __ pte _ p2lle Te_Z) o pelgnan) 2 (474
B fr2 sin (2A\) — f — sil (4X) ( . 4) f . sin (4X) = (4.74)
and ) R R R 1
8% = —c — —=—--. 4.
B 1+2f " cos (2A\) +4f . cos (4X) ( " 4> (4.75)

The geodetic latitude and longitude covariance matrix can finally be written as

Pgeo = AgeOPAT

geo

(4.76)

where P is the full 11 x 11 spherical state covariance matrix. As expected, since the
difference between spherical and geodetic latitudes are slight, numerical differences
in the transformed covariance are small.

Similarly, the matrix for transforming the state covariance matrix into East and
North position covariance is the 2 x 11 matrix containing the partial derivatives of the
East and North position vector coordinates with respect to each of the spherical states.
This calculation can be broken down into two steps, the first of which transforms the
spherical state covariance into ECEF position covariance, and the second of which
transforms the ECEF position covariance into UEN position covariance. First, the
vehicle’s ECEF position vector in terms of the spherical states can be written as

TECEF rcos (i) cos (A)
yecer | = | rsin(u)cos(A) |, (4.77)
ZECEF 7sin ()

so the 3 x 11 matrix for transforming the spherical covariance to ECEF position
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covariance can be written as

cos () cos () —rsin (p) cos (A) —rcos(u)sin(A) : 0
Agcer = | sin () cos(\)  rcos (i) cos(N)  —rsin(u)sin(A) ¢ 0 | - (4.78)
sin (A) 0 rcos () : 0

Second, the matrix for transforming the ECEF position covariance to UEN position
covariance is simply the transpose of the rotation matrix given by Eq. (4.3), which
is written as

cos (A) cos(p) —sin(u) —sin(N)cos (u)
Aueny = | cos(N)sin(p)  cos(u) —sin(A)sin(u) | . (4.79)
sin (A) 0 cos (A)

The 3 x 3 UEN position covariance matrix can finally be calculated as
Puen = AvenAecer PALcerAGen (4.80)

and the bottom right 2 x 2 submatrix of Pygy provides the East-North position
covariance. The CEP for geodetic latitude and longitude dispersions can now be
calculated using Fge,, and the CEP for East and North position dispersions can be
calculated using the bottom right 2 x 2 submatrix of Pygn.

4.4.2 Shaping to Reduce CEP

In the Zermelo problem results, reference trajectories shaped with open-loop covari-
ance still improved expected errors when applied in closed-loop environments, al-
though the reverse did not appear to be true. For this reason, and also because a
linear feedback control algorithm has yet not been designed for this reentry scenario,
open-loop rather than closed-loop covariance is used to characterize and shape reentry
trajectories.

Before shaping new trajectories, the open-loop covariance is propagated along
each existing trajectory in the footprint boundary, and CEP radii are calculated and
scaled to enclose 90% of the expected position dispersions at the final location. When
the 90% circular confidence regions are superimposed along the original footprint, the
band of rings intersect and form a new outer boundary enclosing all recovery zones
achievable with 90% confidence, as shown in Fig. 4-7. As expected, the 90% confident
footprint encompasses a significantly smaller area that the nominal footprint. In fact,
the swath of recovery zones achievable with 90% confidence is approximately 190 km
(14%) shorter in the downrange direction, and about 220 km (30%) shorter in the
crossrange direction. In addition, while the nominal footprint’s uprange bottleneck
conveys the vehicle’s limitations regarding quick crossrange maneuvers with steep
dives, the CEPs demonstrate that these maneuvers also induce higher dispersion
variances. In fact, the boundary trajectories with the largest CEPs are located in
the uprange half of the footprint. Although the downrange trajectories have longer
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flight times that allow the control command process noise to accumulate longer, quick
banking maneuvers and steep descents generate larger dispersions. For instance, the
maximum uprange trajectory has a shorter flight time than several of its neighboring
boundary trajectories, but it executes a steeper banks and dives, and generates greater
dispersion variances.

The nominal footprint perimeter is characterized by trajectories with various
CEPs, but in reality it may be desirable to define a maximum allowable CEP and
find the footprint that defines the vehicle’s maximum capabilities while satisfying this
condition. Discovering which recovery sites the vehicle can reach within certain error
bounds can be instrumental in designing test flights that ensure safe and efficient ve-
hicle recovery. When the problem is augmented to include the covariance matrix, the
cost metrics and constraints may be any function of the covariance, including CEP. A
new footprint can then be solved subject to the final dispersion constraint. Along the
nominal footprint, the smallest and largest 90% CEPs, respectively, are 0.00995 deg
and 0.0265 deg in geodetic latitude and longitude coordinates, or 63.35 km and 169.0
km in UEN coordinates. When the problem is augmented to include the covariance
matrix and an additional event constraint is developed to limit the 90% CEP to 0.01
deg (approximately 63.37 km), the trajectory-shaping process produces a new foot-
print. As expected, the added constraint shrinks the new footprint completely inside
the original footprint. However, the new 90% confident range actually extends farther
than the nominal 90% confident range for much of the uprange portion — in some
places up to 80 km. Figure 4-8 compares both footprints and their 90% confident ve-
hicle ranges. By reining in the intended recovery sites and reshaping the trajectories,
the useful range of the vehicle can be increased, and the covariance-trajectory shaping
technique allows the designer to directly quantify and solve for range extensions that
are impossible to discover with the nominal problem formulation.

4.5 Fixed-Recovery Site Precision

Now, rather than allowing the final recovery zone to remain open, a fixed site is se-
lected within the vehicle’s footprint, and two distinct goals are elaborated for reaching
it. In the first, the vehicle must reach the recovery zone with the greatest precision
possible. The particular trajectory flown does not matter, as long as it produces the
smallest possible final position errors. In the second, the vehicle is tasked with per-
forming the largest crossrange turning maneuver possible. However, a constraint is
placed on the final position error so that the vehicle reaches the recovery zone within
a specified confidence region. The recovery zone location is chosen at a geodetic lati-
tude of 1.5 deg and a longitude of 9 deg, which correspond to a downrange distance of
1000 km and a crossrange distance of 167.8 km from the insertion point, well within
the 90% confidence range of the vehicle. Converting the final latitude from geodetic
to spherical at the terminal altitude, the final position states can be fixed to

pr = 9deg=0.1571rad (4.81)
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Figure 4-7: Nominal footprint with CEPs: The top figure shows the nominal foot-
print with 90% CEPs for each boundary trajectory depicted in blue. The bottom
figure shows the nominal footprint once again as the outer boundary, with the inner
boundary representing the 90% confident footprint obtained from the union of rings.
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Figure 4-8: Nominal and shaped footprints with CEPs: The top figure shows the
newly shaped footprint with the 90% CEP constrained to be below 63.67 km. The
bottom figure compares the nominal and shaped footprints, along with their respective
90% confidence footprints. The nominal footprint is given in black with its 90%
confidence region defined in black, while the newly shaped footprint is drawn in red
with its 90% confidence region depicted in green. Even though a cost metric was
not formulated specifically for this purpose, the CEP constraint actually extends the

vehicle’s 90% confident range in the uprange half, demonstrated where the green
footprint lies outside the blue footprint.
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and
Ay = 1.490 deg = 0.0260 rad , (4.82)

and these conditions will be used for both the maximum precision and maximum
turning capability scenarios.

4.5.1 Maximum Precision

To form a basis from which to judge improvements in targeting precision given by the
covariance trajectory-shaping technique, two reference trajectories are solved using
purely nominal metrics. One reasonable cost metric seeks to minimize the accumu-
lated control exertion, where control effort is be defined as commanded angular rates
and deviations from the trim angle of attack. Normalizing the penalties on each
variable according to their upper limits, this metric can be written as an integral of

squares such that
/ O = Qprim \ a\’ a\°
o E(C S R E RS YR
to

where oV, &, and ¢V represent the upper bounds on each respective variable. Omit-
ting the penalty on deviations from the trim condition yields an alternative metric

written as
ty .
@\ 2 g\ 2
J = /{(@) + (F) }dt, (4.84)
to

which minimizes the vehicle’s rotations by simply penalizing any changes in attitude.

Since these two nominal metrics do not directly penalize expected errors, it is un-
clear at first whether minimum control effort actually translates to minimum position
errors. However, using the covariance trajectory-shaping technique, a cost metric is
formulated which propagates the state covariance matrix to the terminal conditions,
transforms the final state covariance into UEN position covariance and penalizes its
trace to improve altitude, downrange, and crossrange errors simultaneously. In spher-
ical coordinates, the latitude and longitude variances are given in rad?, so they have
significantly smaller orders of magnitude than the altitude variance given in m?. The
final position covariance is transformed to UEN coordinates so that the units are
equivalent along each axis when the trace is taken.

The two trajectories produced with the nominal metrics have similar state and
covariance profiles. In fact, their final CEPs are almost identical at the recovery site.
Both trajectories skip once, meet the dynamic pressure limit at the peak, and then
dive straight down until the final pitch-up maneuver for recovery. Their altitude,
velocity, flight path angle, and heading profiles demonstrate only slight differences,
although greater variations are noticed in the angle of attack and bank angle profiles.
The trajectory generated with trim deviation penalties stays very near 7 deg for the
duration of the flight until the dive and pitch-up maneuvers demand otherwise. This

U
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is the only trajectory obtained so far that does not maximize its angle of attack
during the final pitch-up maneuver. Instead, it stays closer to the trim condition,
which means the vehicle plunges within 800 ft of the ground before climbing back
upwards. The trajectory generated without trim deviation penalties demonstrates a
more dynamic angle of attack profile, which slightly softens vehicle’s maneuvers. For
instance, during the final dive, its flight path angle stays above -35 deg , while the
other nominal trajectory drops more steeply at -45 deg.

The trajectory which minimizes the trace of the final UEN position covariance
demonstrates markedly different behavior, which reduces the final CEP from a radius
of over 96 km to a radius of under 49 km — an improvement of more than 48%.
Figures 4-8 through 4-11 compare the downrange-crossrange, altitude, speed, flight
path angle, angle of attack, and bank angle profiles of the minimum covariance and
minimum control effort trajectories. The altitude profile of the shaped trajectory
still executes one major skip, but chooses to dig into the atmosphere sooner than the
other trajectories, and remains below the dynamic pressure limit at its peak. When it
dives toward the ground on its final approach, it does not take as direct a path to the
recovery site. The vehicle pitches slightly near 30 km altitude, resulting in a notch
in the altitude profile, before continuing a direct plunge until the pull-up recovery
maneuver.

Since the vehicle dips into the atmosphere sooner, its loses speed earlier than the
other trajectories, but still reaches the terminal conditions at the correct velocity.
The flight path angle also reflects the different character of the skip, and the notch
during the final dive is seen as a temporary increase in the flight path angle before
it tips over to nearly -45 deg. The shaped downrange-crossrange groundtrack also
exhibits slight heading angle oscillations as it travels toward the recovery zone, a
behavior reflected in the bank angle profile. The bank angles of the two minimum
effort trajectories remain positive throughout the entire flight, meaning the heading
angle increases monotonically and consistently turns the vehicle counterclockwise.
However, the bank angle of the covariance-shaped trajectory undulates, and actually
goes negative twice during the flight, causing the vehicle to oscillate slightly between
counterclockwise and clockwise turns. The shaped angle of attack profile also exhibits
more dynamic behavior to reflect the rises and falls in the altitude and flight path
angle profiles.

The covariance trajectory-shaping technique designs trajectories that take advan-
tage of the natural system dynamics to reduce expected dispersions in ways that would
be virtually impossible to infer from simply looking at the equations of motion.

4.5.2 Maximum Crossrange Turn

Since the vehicle’s initial heading points along the equator, the size of its turn can
be characterized by how far south the vehicle travels before heading back toward the
intended recovery site. However, endpoint cost metrics may only be posed in terms
of the initial and terminal states, and since the point of maximum turn may occur
anywhere along the trajectory, the single-segment problem formulation is inadequate
to handle this design. Instead, the reentry problem must be broken into two segments
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Figure 4-9: Downrange-crossrange and altitude profiles for the maximum precision
fixed recovery zone scenario: The top figure shows downrange vs crossrange in kilo-
meters, with the 90% CEPs plotted at the final location. The bottom figure shows
altitude vs downrange in kilometers. The blue trajectory minimizes a combination
of aerodynamic angular rates and deviations from trim, the green trajectory uses the
same metric but omits the trim deviation penalty, and the red trajectory minimizes
the trace of the final UEN position covariance.
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Figure 4-10: Speed and flight path angle profiles for the maximum precision fixed
recovery zone scenario: The top figure shows speed vs time, while the bottom figure
shows flight path angle vs time. The trajectory definitions remain from before.
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Figure 4-11: Angle of attack and bank angle profiles for the maximum precision fixed
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figure shows bank angle vs. time. The trajectory definitions remain from before.
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to be solved simultaneously. The first segment retains the initial reentry conditions
defined for the single segment problem, but each final state is allowed to vary freely.
Similarly, the second segment retains the fixed-site recovery conditions, but its initial
states are permitted to vary freely. To ensure both segments properly connect a single
continuous flight, a set of event constraints are generated to enforce continuity. The

event is defined as
X1 (tf) — X9 (to) = O, (485)

where x; is the set of states describing the first segment, and x, is the set of states
describing the second segment. The dynamic constraints are equivalent for both
segments, but the event ensures that the second segment begins where the first begins.
In the two-segment problem, the maximum turn can be solved with the cost metric

J=\(t), (4.86)

which minimizes the latitude at the end of the first segment.

In the resulting solution, the vehicle’s maximum turn carries it approximately 26.6
km south of the equator, before turning north towards the recovery zone. However,
the 90% CEP radius at the end is over 107 km. When the same maximum turn metric
is used with a maximum allowable CEP of 0.01 deg (corresponding to 63.37 km), the
resulting solution only reaches 12.2 km south of the equator. However, the solution
satisfies the required position error constraint, improves the 90% CEP by over 40%,
and provides the largest possible turn given the problem. Figure 4-12 shows the
downrange-crossrange and altitude plots for both trajectories.
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Figure 4-12: Downrange-crossrange and altitude profiles for the maximum turn fixed
recovery zone scenario: The top figure shows downrange vs crossrange in kilometers,
with the 90% CEPs plotted at the final location. The bottom figure shows altitude
vs downrange in kilometers. The blue trajectory provides the maximum turn without
incorporating uncertainty considerations, while the red trajectory uses the same met-
ric but constrains the final CEP. The constained solution does not turn as far south,
but it represents the best solution given the requirements.
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Chapter 5

Conclusions

Ultimately, the covariance trajectory-shaping technique successfully improved the ro-
bustness of hypersonic reentry trajectories to various types of uncertainty. For the
posed reentry flight profile and recoverable vehicle, the covariance trajectory-shaping
technique actually ertended the performance confidence of the vehicle up to 80 km
in some regions of the footprint, when subject to uncertainties in atmospheric den-
sity, axial and normal force coefficients, commanded attitude, and initial position
and velocity. At a fixed recovery site within the footprint, and subject to the same
uncertainties, the covariance trajectory-shaping technique improved CEP radius by
nearly 50% when compared to the minimum control effort trajectories obtained with
the nominal optimization process. Finally, covariance trajectory-shaping allowed the
designer to balance penalties on final dispersions with maximum intermediate maneu-
vering capabilities. At the same recovery site, a 40% improvement in CEP required a
sacrifice of 14 km in planned maximum out-of-plane turns. Using the same method-
ology, the vehicle model, trajectory constraints, and uncertainties can be recast to
apply covariance trajectory-shaping to any desired reentry scenario.

Prior to the reentry application, the simple Zermelo boat problem was used to
compare the methodologies of the sensitivity and covariance trajectory-shaping tech-
niques. For a wide range of uncertainties including state process noise, parametric
process noise and biases, as well as state insertion errors, the sensitivity and covariance
techniques were formulated to produce equivalent results. However, the covariance
technique possesses several significant advantages over the sensitivity technique. First,
the covariance matrix is symmetric, so it requires fewer additional design parameters
and dynamic constraints for the augmented optimal control problem. Second, its
statistical representation of dispersions along a reference trajectory provides a more
useful and intuitive measure of the impacts of uncertainty on a system. Third, the
covariance matrix is able to address common design goals with much simpler perfor-
mance metrics than those required for the sensitivity matrix. Finally, the covariance
Riccati dynamics can include measurement updates and navigation error, while the
sensitivity dynamics cannot easily do so. For these reasons, the covariance technique
was defended as the preferred method.

Using the Zermelo application to prepare for the reentry problem, the trajectory-
shaping techniques demonstrated improvements in both fixed-target precision and
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maximum capability characterization. In the fixed-target scenario, covariance- and
sensitivity-shaping techniques produced trajectories that reached the final conditions
with optimal dispersion variances, and in the maximum capability scenario, met-
rics with appropriate penalty weights extended the confident down-stream range of
the boat. The Zermelo problem demonstrated that both trajectory-shaping tech-
niques can desensitize trajectories to both open-loop and closed-loop dispersions.
Subsequently, the feedback controller design process was successfully merged with
the reference trajectory design process to produce even greater synergistic improve-
ments. More importantly, closed-loop performance constraints were implemented
to ensure the trajectory-controller pairs stabilized the system and respected reason-
able control authority limitations. However, it was ultimately determined that while
shaping a reference trajectory for a specific feedback controller produces the greatest
improvements, such trajectories do not necessarily respond well when the feedback
environment changes from the one for which they were designed. On the other hand,
trajectories designed using open-loop dispersion considerations may not be optimal
in closed-loop settings, but they still produced significant improvements over trajec-
tories obtained without uncertainty considerations at all. For this reason, the reentry
problem was addressed using open-loop uncertainty considerations only.

5.1 Future Work

Although this thesis successfully implemented the trajectory-shaping techniques to
improve fixed-target precision and maximum capability characterizations for a com-
plex hypersonic reentry vehicle application, the following additional work would
strengthen the results:

1. Test Variable-Gain Controller Design: Although the combined reference-controller
design technique was demonstrated using the Zermelo problem, it was only im-
plemented with constant gains. The extension to variable gain selection is not
complicated theoretically, but should still be tested.

2. Independently Design Reentry Feedback Controller: The trajectories shaped in
this work only took open-loop dispersions into consideration, so an appropri-
ate next step would be to begin working feedback into the design process. This
could begin by designing a realistic feedback controller independently of the ref-
erence design process, which could be used to evaluate closed-loop performance
along the current trajectories, and even reshape new trajectories specifically
accounting for the controller’s presence.

3. Monte Carlo Analysis: The trajectory-shaping techniques reduce expected er-
rors about the linearized system, but the expectations do not actually simulate
a true nonlinear flyout of the trajectory with randon processes imposed upon the
system. Seywald applies Monte Carlo analysis to his nominal and desensitized
trajectories in [13| to demonstrate the correspondence between the expected
and realized improvements. Similar closed-loop Monte Carlo analysis should be
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conducted along the reentry trajectories to prove that the trajectory-shaping
techniques produce real improvements in flyability.

. Merge Reentry Reference Trajectory and Feedback Designs: As predicted in
the Zermelo results, this process may produce even greater synergistic improve-
ments. However, constant gains could be unreasonable for full reentry trajecto-
ries, so variable gain schedules would have to be worked into the design process.
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Appendix A

Reentry Jacobian Calculations

The Jacobian for the reentry problem dynamics is comprised of the partial derivatives
of each rate equation with respect to each state. While finite differencing or auto-
matic differentiation software can be used to numerically generate the values of the
Jacobian everywhere along a nominal trajectory, analytic evaluations provide faster
computation speeds in MATLAB. In the covariance trajectory-shaping problem, the
Jacobian will be evaluated thousands of times by the direct collocation method, so
increased speed is highly desirable. Since the plant dynamics are entirely analytic, so
is its Jacobian.

The full state vector is given by Eq. (4.65), which includes C¢,, Ce,, and C,
used to account for uncertainties in axial force coeflicient, normal force coefficient,

and atmospheric density,

respectively. The full 11 x 11 Jacobian is expressed as

S Y S Y S S S
or ou A v oy oY o Jdo oC, 0Ccy 9Ccy

op  oa  on  oa  da  O9a 04 O Op i 0
ar ou oA v Oy e da do aC, 0Cc,  OCcy

aA 9A oA 22 2D oA o) o BA oA _o\
or on O v oy o da Oo oC, 0Cc,  0Ccy

90 o ek} [0 feli} v oy o) 00 v o
ar ou OX dv Oy oY Jda oo oC, 0Ccy  OCcy

O T A A
ar ou A ov oy oY O do oC, ICc,, ICcy

S O Y S0 Ve
G = or oy E)) ER Dy EM) dax Do aC, BCc, 9Ccy

oa  9a 94  da  da  9a  da  da  da _od 94
or o oA v Iy N e do aC, 9Cc, OCcy

06 96 06 o s 96 o6 06 05 08 _og
or du oA v Iy e da do oC, 0Cc, 0Ccy

aC, aC, aC, 9Cy ac, aC, ¢y aC, 9C, aC, aC,
or ou B2 v oy oY O do oC, ICcy  OCcy
8Cc, 0Cc, 9Co, Cey OCc, 9Coy 9Co, 9Cc, o, o,  ICoy
or ou oA v v N da do aC, 9Ccy  0Cc N
aCcy 0Ccy 0Cey 9Coy ICcy  O0Ccy  OCcy OCcy  OCcy  0Coy ey
| Or ou 2 v vy o da do 0C, 9Ccy  9Ccy

.

First, C,, Cc,, and C¢, have trivial dynamics, so the last three rows are full of zeros.
Next, the 8 x 8 upper left submatrix represents the Jacobian of the original system.
Since the Jacobian is evaluated along the nominal trajectory, and since C,, C¢,, and
C¢, have nominal values of zero, the additional parameters do not alter the Jacobian
of the original system.
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Treating this submatrix first, the partials of 7 are

or

Z "
& sin).
G = veos().
g—;:o,
%:o,
52:0.

In the second row, the partials of ;1 are

O wcos(y) cos (¢)

ar rZcos(\) '

Op

on "

O wceos () cos (¢)sin (A)
o rcos? (A) '
O cos () cos (¥)

v rcos(A)

Op _ wsin(y)cos (¢)

oy rcos(A)
O wcos(y)sin (¥)

oy rcos(A)

or

da "

or

9 = 0.

In the third row, the partials of A are

8_)\ __wcos(y)sin(¥)
or 72 ’
o

on =
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I

o

Bi_ cos(3)sin (1)
ov r ’
Op _ wsin (y)sin (¢)
oy r ’
O veos (v)cos ()
oy r ’
or

90 =0

or

% - 0 .

The next three rows contain the partials of @, %, and 1, respectively, which be-
come significantly more complicated because the lift, drag, centrifugal, and Coriolis
acceleration terms require complex chain rule applications. The chain rule identities

oD 9D dq dp dh, Ok

ON g OpOh, Oh OX

are used to simplify the final expressions. The partial derivatives of each of the
centrifugal and Coriolis variables are expressed as

% = —2cos (\) sin (M) sin (v) — cos (7) sin () (cos® (A) —sin® (A)) |
381;1 = cos? () cos (7) + cos (A) sin (\) sin () sin ¢,

%‘% = — cos (A) sin (X) cos () cos (¥) |

% = —2cos (A) sin (X) cos () + sin () sin () (cos® (A) — sin® (1)) ,
88—1;2 = — cos’ (A) sin () + cos (A) sin (A) cos (y) sin ¢,

%];; = cos (A) sin (\) sin () cos (¢) .

% = cos (¢) (cos® (A) — sin® (A))
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0F3

5y = s (M) sin (A) sin (¥) ,

% = —sin (A) cos (¥) ,

%_f; — —sin (A) cos (1)) .

% = cos () cos (7) + sin (A) sin (7) sin (¢)
_38% = —sin (A) sin () — cos (A) cos (7) sin () |
%% — — cos (\) sin (7) sin (¢) .

Other necessary partial derivative relationships include

o _ 1
oD m’
9y _ cos(o)
BL_ mu
oY sin(o)
OL  mucos(y)’
oD
a_q _SCD7
oD
aCD _qS7
oL
E _SCL7
oL
%L‘ = qS,
dg 1,
o 2
99 _ .
v PO
oh, R}
Oh  R2+h2’
Oh R2 f?
= 1-— 1,2 (1 —cos (4))) ,
oh , o (R 1Y\ .
E3) = R.fsin (2\) + R.f (-—T—— 4) sin (4) ,
oCp
30~ = cos (@) ,
oCp = sin ()
OCy ’
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oCp
Do
oCy,
0Cx
oCy,
9Cx
ocCy,
da
0Cx
Do
0Cx
e

N
% = CNaa

oM 1
ov Sy

0 ~ n
an e (a1 + 2a2h,, 4+ ...+ nanhz_l) 8a0+alh”+azh127+“'a"hp ,
P

= Cy cos (o) — Cx sin (a) ,

= —sin(a) ,

= cos (a) ,

= —Cysin(a) — Cx cos (a) ,
= 2Cxav,

—Cxp(M—Cx
= —CxaCxpe xb( Xe) ,

where n is the order of the polynomial used to fit COESA atmospheric density to
geopotential altitude.

Utilizing the chain rule in conjunction with these identities, the partial derivatives
of v are

v 0v 9D 9 2G, .

E = a—DE +QEF1 -+ —7“2 Sin (’)/) ,
ov

o=

@ — @8_1) + QQ Q..}jl
ox oD or T CE N
00 06 dDdq v 9D ACpICx IM

90 0D og v T 9D OCH9Cx OM dv

ov _ Gm . 2 8-Fl

o cos (v) + Qpr 0y

ov oF

R O P it

o oy

@ B @ oD (0Cp N 0Cp 0Cx N dCp 9Cy
Ja B oD dCD 8a 80}( 8a 8C’N Oa ’
ov

%0 0.
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The partial derivatives of + are

. % L 2
oy _ 0oL + (—i 2Gm) cos () + el

)

or OL or r2 r2y v

oy

o

9 930L 8Cy 1 OF,

ON  OL O + 2053 o\ + %7 v O

9 Lceos(o)  979Ldq 97 L 9CL ICx OM
ov mu? OL 0qdv  OLOCL0Cx OM 0Ov

1 Gn
+ ( + ————) cos (y) — EFQ%,

QZ:—(E——G—> sm(“/)-i-QZraF?,
v v

oy roor? oy

¥ 0C, o T OF

% = 20— BN + Q% 81/

9y _ 9y oL <8CL N 0Cpr 0Cx N oCy, aCN)
da OLOCL \ Oa dCx Oa  0Cy Oa
0y  Lsin(o)

90 mv

The partial derivatives of ¢ are

N OPOIL v 0% Fy

o Lo + 5 cos () cos () tan (A) — veos(7)

o B

7

8@/} 81/) OL  wcos () cos (v) 20p 0C3  Qfr OF3
X OLAx  rcos?(A)  cos(y) OX  wvcos(y) OA

o __ Lsin(o)  0¢0Ldg Y IL 9CH» ICx IM
ov maw?cos(y) OLOgdv  OLOC,ICx OM Ov
cos () cos (¢) tan () O2rF3
— + ,
r v2 cos ()

o . .
% _L ij(;)sfl(”vg” + gsin () cos (1) tan (A) —
205 0C3  QprFssin(y)

cos () Oy v cos? ()

oY w . 2Qr 00, O%r OF;

o = () sin () tan (A) — cos (y) Oy v cog(“/) o’

9 _ 9 oL (8CL | 9CpL0Cx | 0C, 8CN)

da  OLOC, \ da ' 9Cx da @ OCy Oa

2QpCysin ()

cos? ()

9

126



N _ Lcos (o)
do  mucos(y)’
Now, the partial derivatives of the 8 original states are taken with respect to the

3 additional uncertainty model parameters. Utilizing Eqs. (4.57), (4.61), and (4.62),
the partial derivatives of each original state rate with respect to C, are

o
ac, ="

O

ac, "

oA

56 =

o0 00 9D dq

aC, ~ oD dq 9p"° % (x)
87 0y OL 0q

8C ﬁd_q@_pp o, (%)
Q) 0YOL Yy

3¢, = aL g 9y ™
dq

8—q— )

e

a_qzo'

The partial derivatives of each original state rate with respect to C¢, are

or

9Cor
o

0Ce, =90,
O\

9o, =

0Cc,  0DOCLOCKx -\
0y _ 9% OL 9Cy

3Cc. — OLOC, 00y xXoex ()
oY dw oL 0C;

GCc. ~ GLOCT 0y CXoex &)
dé

9oy ~
96

s =0
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The partial derivatives of each original state rate with respect to C¢, are

o7
oo,
op
9Cen
)
=0
oCey
o _ @iD_aCD (x)
9Cey 0D ACHOCy N7\ *)
oy 0% D aCp
3Co. ~ DD 30, a0y CNew X -
8¢ — ?_@b_@_D_BC’DC ocy (X)
9Cc,  ODOCpACy N N
dix
OCcy 0,
i
56 ="

Now, each element of the full 11 x 11 Jacobian is expressed analytically, and the
Jacobian can be coded and evaluated along nominal trajectories during covariance
propagations.

Since the analytic derivation of the reentry problem Jacobian is relatively complex
and prone to mistakes, the coded expressions are checked for accuracy with finite dif-
ferencing. Forward-differencing and central-differencing are popular methods which
provide first- and second-order derivative estimates, respectively. However, their ac-
curacy can be highly dependent on step size. Large steps allow significant truncation
errors, but small steps result in subtraction errors. Both problems can be avoided
using the complex step derivative calculation method [7]. For any function f (z), the
complex step method calculates the derivative with respect to x by

df _ imag(f(z+ih))
de A

where ¢ is the unit imaginary number, A is the selected step size, and the imag
operation extracts the imaginary portion of the complex number on which it operates.
This finite difference method provides much more consistent results for any step size,
and is easy to implement in MATLAB. For the reentry problem Jacobian calculation,
the analytic and complex step derivatives along any given solution agree to within an
order of magnitude of 1 x 10713,
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