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Abstract

Sickle cell disease is a genetic disorder that alters red blood cells such that their

hemoglobin cannot effectively bind and release oxygen. This causes issues that

affect how the cell operates in the smallest vessels of the body. In the past,

computational models have been used to study the microcirculation to gain a better

understanding of blood disorders such as sickle cell disease. A fast, time efficient

computational model has been developed to analyze perturbations in the

microcirculation caused by sickle cell disease. The model uses a finite difference,

Crank-Nicholson scheme for the flow and oxygen computation, while using the level

set computational method to advect the red blood cell membrane on a staggered

grid. A number of initial and boundary conditions were tested in the model. The

simulation data shows several important parameters to be significant in the

perturbation of the blood flow and oxygen concentration profiles. Specifically, the

Hill coefficient, arterial oxygen partial pressure, oxygen partial pressure at 50%
hemoglobin saturation, and cell membrane stiffness are significant factors.

Thesis Supervisor: Wesley L. Harris
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Symbols

x, y spatial coordinates
t time

v two dimensional velocity vector

p plasma density

p plasma pressure

y' plasma viscosity
u, v x & y velocity components

Vavg average RBC velocity
Dcap diameter of capillary

Rk capillary centerline to end of tissue length

R, capillary centerline to capillary wall length
Re Reynolds number for plasma flow

c oxygen concentration
DOX oxygen diffusion constant

D Hb diffusivity of hemoglobin

DMb diffusivity of myoglobin
R oxygen generation/consumption

R Hb oxygen generation inside the RBC by hemoglobin

R Mb oxygen consumption inside the tissue by myoglobin

Rplasma oxygen generation/consumption in plasma
M metabolic oxygen consumption in tissue
[Hb 4 08] concentration of oxyhemoglobin
[Hb4] concentration of deoxyhemoglobin
[Mb02] concentration of oxymyoglobin
[Mb] concentration of deoxymyoglobin
[H b4]tot concentration of total hemoglobin
[Mb]tot concentration of total myoglobin

Hb hemoglobin dissociation rate constant

k"? myoglobin dissociation rate constant

k1 hemoglobin association rate constant
kfH' myoglobin association rate constant

KMb hemoglobin equilibrium constant

Keqb myoglobin equilibrium constant
H-b

Hb oxygen concentration at 50% hemoglobin saturation

Mb oxygen concentration at 50% myoglobin saturation

p5H0b oxygen partial pressure at 50% hemoglobin



Mb
P50% oxygen partial pressure at 50% myoglobin
SHb hemoglobin saturation
SMb myoglobin saturation
n Hill coefficient
U, V x & y velocity components in computational domain
P pressure in computational domain
h discrete spatial grid length

# level set function
F magnitude of velocity
n velocity unit vector
fl level set domain
a pressure jump across membrane

J jump matrix, containing all pressure jump values

Po2  partial pressure of oxygen
a- red blood cell membrane stress
K red blood cell membrane curvature
kRBC red blood cell membrane stiffness
i,j reference spatial indices
n reference timestep
a Henry's Law constant

i stiffness index
a semi-major axis
b semi-minor axis



1 Introduction

Sickle cell disease is a genetic blood disorder which degrades the oxygen carrying

capacity of a Red Blood Cell (RBC). Sickle cell disease affects the entire body

because reduced oxygen in the blood leads to lower oxygen in vital tissues and

organs throughout the body, leading to hypoxia and acute pain. Individuals with

sickle cell disease are expected to live only into their mid 40s. [ 1 1 Not only is the

life expectancy shortened, but the quality of life is also extremely diminished.

Affected individuals must be careful so as not to cause the onset of a crisis, which

involves extremely painful acute pain, usually in the extremities. This generally

involves avoiding rigorous physical activity, staying well hydrated, maintaining a

healthy diet, and avoiding low-oxygen atmospheres (aircrafts, high elevations, etc.).

1.1 Genetics and Pathophysiology of Sickle Cell

Sickle cell disease is caused by a hereditary mutation in a gene causing altered

hemoglobin proteins in the erythrocytes. As blood is pumped from the heart

through the lungs, oxygen molecules bind to the hemoglobin creating a complex

called oxyhemoglobin. The oxygen breaks its bond with the hemoglobin and

diffuses through the RBC membrane to the tissue, providing the body with oxygen.

The unbound hemoglobin molecules are then referred to as deoxyhemoglobin. A
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healthy adult erythrocyte contains the hemoglobin A (HbA) protein within its

cytoplasm; however a sickle RBC contains sickle hemoglobin, the hemoglobin S

(HbS) protein. An HbA molecule contains two a-chains and two p-chains as shown

in Figure 1.1. The genetic mutation in HbS causes a change in the p-chains, replacing

a hydrophilic amino acid with a hydrophobic amino acid, thus changing the binding

affinity between hemoglobin molecules. The increased binding affinity between

HbS molecules results in anemia, or decreased binding of oxygen molecules. Under

conditions of low oxygen concentration, there is a far greater probability of the HbS

molecules bonding to each other.

Hemogobn A iemok*n S

0o"02 
Oh20 02

02" 02 02" 0D Oxyhemoglobin under high [02]

02 02

02"0 2 2

Deoxyhemoglobin under low [02]
02

02 02

Figure 1.1 - Oxyhemoglobin and Deoxyhemoglobin A & S [ 2 ]
The Pink circles represent hemoglobin a-chains; the blue and green represent the
HbA and HbS p-chains respectively. The HbS protein molecules polymerize under
low oxygen conditions, forming long chains.
(Source: http://www.bio.davidson.edu/people/midorcas/animalphysiology/

websites/2005/Eppolito/)
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Sickle cell primarily affects populations from tropical and subtropical regions that

are heavily stricken by malaria. Highest concentrations of sickle cell are found in

Africa, the Mediterranean, India, and the Middle East. In the United States, nearly

85% of all sickle cell cases presented are found in people of African descent. [ 2 1

Figure 1.2 shows a comparison between malaria stricken regions and areas of high

concentrations of sickle cell disease in Africa. This correlation is due to the fact that

individuals with sickle cell disease are resistant to Plasmodium falciparum, the

parasite that causes malaria. Typically, malaria is acquired when a mosquito

carrying the parasite bites a human. The parasite travels through the bloodstream

to the liver, infecting erythrocytes and liver cells (hepatocytes). Healthy RBCs have

a lifespan of 90 to 120 days, whereas a sickle cell only lives 10 to 20 days. In a

healthy erythrocyte, the parasite will typically survive long enough to reproduce;

however, in a sickle erythrocyte the cell will die before the parasite undergoes

reproduction. [3 ]



Figure 1.2 - Distribution of Sickle Cell gene and Malaria parasite
(source: http://images.encarta.msn.com)

Sickle cell is an evolutionary advantage in humans to protect from malaria. Humans

have two sets of all genes; therefore there are two sickle cell genes. Individuals with

one HbS gene, and one HbA gene, are said to be carriers of the sickle cell trait. A

fraction of their erythrocytes will be sickle, but not enough to result in anemia or

other sickle cell disease symptoms, but enough such that the malaria parasite

cannot reproduce effectively enough to thrive. An individual having two HbS genes

will have all sickle erythrocytes and suffer from the disease. Therefore an individual

with only one HbS gene has an advantage because they are both resistant to malaria,

and they do not exhibit the disease symptoms.

- 1111111111", ............... . . .. .. ....... .................



1.2 Blood Flow Dynamics

In the human body, blood is pumped from the lungs to the rest of the body, moving

from the large arteries, to smaller arteries, then finally into the smallest capillaries.

In the larger arteries, both healthy and sickle erythrocytes are free to flow in groups

without altering their natural shapes. The internal diameter of a capillary is roughly

8ptm; whereas the erythrocyte diameter at rest is about 10km. The erythrocytes

must flow single-file and squeeze into a "bullet-like" shape as they pass through

these narrow passages. [ 4]

For individuals with sickle hemoglobin, this process is slightly different.

Throughout this process, the sickle cells are releasing oxygen and the hemoglobin

molecules are beginning to polymerize, forming branching chains. Over time, the

erythrocytes will continue to diffuse oxygen and the hemoglobin will continue to

polymerize, forming longer and longer fibers until they begin to affect the shape of

the cell. The membrane begins to stiffen and take the shape of the fibers. Figure 1.3

and Figure 1.4 show the HbS polymerization and the sickle erythrocyte shape.

The sickle erythrocytes have stiff membranes and are not flexible enough to flow

smoothly within the capillaries. They can become stuck in the capillary causing a

vaso-occlusion. The occlusion prevents the flow of blood and thus oxygen to the

tissue downstream, causing ischemia, pain and restricted oxygen to tissue. In some

cases a sufficient number of vessels are occluded, causing organ damage or even
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failure. This phenomenon is known as a vaso-occlusive crisis. Vaso-occlusive crises

are extremely painful and unpredictable events. This unpredictability makes it very

difficult to manage.

Figure 1.3 - Normal vs. Sickle RBC
The sickle cell takes the shape of the

polymerized hemoglobin.

i 20

Typical rults of two-dimesioma simulation. b - 0.06 do-
flecdos per polymer per secg 6 X 10-' mudention eenms per inor-
porated monomer per second, and -0.11 pm/s. As can be seen, he domain
giows longer and wider. Because of the random cwvaoure of the polymer,
the psueis nwe generully skewed to one side or the other. The number of
mosomers polymerized in a typia smuladon is sabout 106

Figure 1.4 - HbS Polymerization
This model illustrates the
polymerization of HbS over time. [5 ]

t=9.5 (sec)
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1.1 Current Treatment

At the moment, there is no cure for sickle cell disease. Affected individuals must live

with this illness for their entire life. There are treatments that aim to treat the

symptoms of the disease and prevent the onset of crises; however, none of these

treatments are completely effective in all sickle cell patients.

Drug therapies include anti-sickling drugs such as Hemoxin and Hydroxyurea.

These drugs prevent the erythrocytes from sickling by triggering the production of

fetal hemoglobin (HbF). [ 6 ] Fetal hemoglobin is produced by the body during the

prenatal and infancy period, but is stopped around 18 to 24 weeks after birth. [ 7 ]

HbF does not polymerize and will not cause the blood cell to sickle. Unfortunately,

the long-term effects of these drugs are unclear. Sickle cell crises are typically

treated symptomatically. Patients are treated with pure oxygen to stop hypoxia and

opioids to manage the pain. Blood transfusions can also be carried out to resupply

the body with healthy HbA carrying erythrocytes.

There are some promising remedies that are undergoing testing. Bone marrow

transplants have been shown to be effective among children. It is believed that

healthy transplanted bone marrow can produce healthy erythrocytes; however, the

complications from a bone marrow transplant can be life-threatening.



1.2 Previous Blood Flow Models

A properly functioning blood microcirculation system is critical to the health of

humans. There exist several macro-level models of the fluid dynamics of the blood

microcirculation system. These models have provided useful information and an

improved understanding of the blood microcirculation system. However, these

models do not include some analytical details corresponding to a critical

microscopic description of the physical, dynamical, and chemical diffusion, which

are necessary to predict the behavior of some diseases such as sickle cell anemia.

These models are based on empirical results combined with simplified physical

descriptions that often neglect the microscopic complexity of blood cell structure

and oxygen transport through the blood cell membrane into the surrounding tissue.

Specific numerical methods and empirical results have advanced sufficiently to the

point where more realistic models of the blood microcirculation systems may be

developed.

The Le Floch-Harris [ 8 ] model is a novel methodology, developed to address sickle

cell disease, based on highly descriptive mathematical models for blood flow in the

capillaries. The investigations focus on the coupling between oxygen delivery and

red blood cell dynamics, which is crucial to understanding sickle cell crises and is

unique to this blood disease. The model entails an extensive study of blood

dynamics through simulations of red cells deforming within the capillary vessels,



and relies on the use of a system of equations describing oxygen transfer, blood

plasma dynamics and red cell membrane deformation mechanics.

The Le Floch-Harris model aims to achieve an improved understanding of the

complex interaction and interdependence of blood plasma dynamics, red blood cell

membrane deformation, and oxygen transport from the red blood cells to the

surrounding tissue. A physically plausible model of this complex interaction and

interdependent state of the blood microcirculation constitutes the first product of

the proposed coupled, multi-scale numerical simulation. The results/models are

expected to lead to the development of new research strategies for sickle cell

disease. The Le Floch-Harris simulation models could be used not only to assess

current researched remedies, but also to spur innovative research initiatives, based

on the study of the physical properties coupled in sickle cell disease.

The Le Floch-Harris model uses a 5-layer model which incorporates the following 5

domains: RBC cytoplasm, blood plasma, endothelium (capillary wall), the

interstitium (space between the capillary vessel and the surrounding tissue). [ 8 ]

Le Floch's model assumes constant radius, circular cross section along the length of

the capillary. This assumption allows the approximation of the flow as being a 3-D,

axially symmetric flow. The erythrocytes are assumed to be symmetric about the

centerline.



1.3 Mathematical Model

The primary objective this research is to create a simplified mathematical model of

the healthy and sickle microcirculation in the capillary and surrounding tissue. This

model would serve as a proof of concept for a simplistic model that can demonstrate

similar results to more complex models such as the Le Floch-Harris model. The

results will be compared to those of more complex models to either validate or

refute it. If indeed, our model is shown to have merit, it can then serve as a first

order approximation for more complicated models, saving time and providing some

indication of the specific ranges of parameters that might lead to crisis within

individuals with sickle cell disease.

We will begin with the following set of governing fluid dynamics equations for our

system: (1) the continuity equation, (2) Navier-Stokes equation, and (3) Fick's Law

of mass diffusion, which we will refer to as the oxygen diffusion equation.

V-=0 , (1.1)

a V
p + V -Vv)= Vp + yV 2 v, (1.2)

+ V - (cv - DxVc) = R(c) , (1.3)

Our unknown field quantities are v, the velocity vector field, c, the oxygen

concentration field, and p, the pressure field. R represents the oxygen
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generation/consumption function which is a function of oxygen concentration and

will be explained later.

The flow of the blood within the capillary is completely characterized by these

governing equations and is constrained by the boundary and initial conditions of the

flow. A no-slip/no-flux condition will be used for the plasma at the capillary wall

while periodic boundary conditions are used at the inlet and outlet. The oxygen

concentration will use Neumann boundary conditions at the tissue boundaries. The

initial conditions will be constant field values everywhere for the oxygen

concentration and velocity field. These initial and boundary conditions will be

discussed in further detail in chapter 2.

Our flow equations represent a flow in two dimensions, using a Cartesian coordinate

system. For simplicity, we will approximate the three dimensional axial capillary

flow and oxygen diffusion as a two dimensional flow between two long, parallel, flat

plates. The healthy microcirculation flow will represent a mean, baseline flow.

Perturbations in the flow parameters and cell membrane characteristics will be

introduced to model the sickle nature of the RBC and plasma flow.

We seek to show that the simplified, two dimensional system of equations will

produce results comparable to results determined computationally from the set of

nonlinear partial differential equations. From our solutions, we will be able to



characterize and identify the physiological parameters that can be modified,

changing the flow dynamics to produce more favorable outcomes in the blood flow.

There will be some degree of uncertainty due to the nonlinearities in the governing

equations. If we can show that these nonlinearities produce small or negligible

results for the physiological parameters within the boundaries of the human

tolerance, we will have proved that a simpler, less computationally expensive

method can yield similar results. If however, we cannot show that the effects of the

nonlinear terms are small, we will be able to show that the nonlinear terms play a

large role in the physics of the blood flow, meaning that even small perturbations

may have large, resounding effects. This may open up the discussion of the

involvement of chaos in fluid dynamics during the onset of crisis.



2 Microcirculation Model

2.1 Physical System

The general hemodynamics of the microcirculation includes the arterioles,

capillaries, and venules. Our particular area of interest is within the smallest blood

vessels of the circulatory system, the capillaries. As oxygen rich erythrocytes enter

the capillaries from the arterioles, oxygen molecules are unbound from the

oxyhemoglobin complexes. The hemoglobin molecules continue to release oxygen

as the erythrocyte traverses axially along the capillary and into the venules. In the

sickle case, the erythrocyte membrane stiffness will increase as the hemoglobin

saturation decreases due to the hemoglobin polymerization phenomenon.

The heart comprises four chambers surrounded by cardiac smooth muscle. The

cardiac muscle contracts around these chambers to pump blood into the lungs and

throughout the body. Oxygen rich blood is carried from the left ventricle of the

heart, downstream into the smaller vessels to deliver oxygen and other nutrients to

tissue throughout the body. The periodic contraction of the left ventricle causes the

blood pressure to vary in time creating pulsating oscillations. These oscillations can

be seen in Figure 2.1.

The blood leaves the left ventricle, entering the aorta, the largest artery in the body.

From the aorta, the blood travels into smaller arteries, which then branch into
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several arterioles and eventually millions of capillaries. [ 9 ] Although a capillary

has a much smaller cross section than the aorta, the total cross sectional area of all

capillaries is orders of magnitude larger, thereby reducing the flow velocity and

greatly dampening the oscillations in pressure.

Systernic Circulation

Figure 2.1 - Systemic Circulation Pressure
Pressure oscillations are dampened out by
the time the blood reaches the capillaries. [
10]

The plasma flow is driven by the beating of the heart. In the capillary, the flow

pressure drops about 20mmHg (2666 Pa) across an average length of 8mm. This

yields a pressure gradient in the capillary of, d = 3.33 x 10s a. [ 10 ] This
dx m

calculated value is consistent with the Le Floch-Harris model value of
dx

3.3 05a m 1

..... . ........ . ... ...........



In addition to erythrocytes, the blood also contains many other components. In

addition to oxygen delivery, the circulatory system serves as the delivery pathway

for the leukocytes and platelets. The relative amount of erythrocytes in blood is

defined by the hematocrit. The hematocrit is a ratio of red cell volume to total blood

volume. In healthy adult humans, the hematocrit is roughly 0.45 which means that

about 45% of blood is RBC by volume. About 55% of blood volume is plasma. [ 11 ]

Therefore, blood volume of leukocytes and platelets is less than 1%. By this

rationale, we will assume that our capillary flow model contains only plasma and

erythrocytes.

To accurately capture the dynamics of the oxygen diffusion and plasma flow, it is

critical that we appropriately model the physical system by defining the boundary

conditions at every interface. The capillary flow model must comprise the contents

within the capillary as well as the capillary wall itself in addition to the surrounding

tissue. The plasma and RBCs do not cross through the capillary walls; however the

oxygen molecules will diffuse into the surrounding tissue.

First we determine the specific regions or "layers" in our model. In the Vadapalli,

Goldman, and Popel [ 12 ] 5-layer model, the interstitium and vascular wall are

accounted for in addition to the RBC cytoplasm, blood plasma, and tissue. The

relative thicknesses of each of the regions are shown in Table 2.1. As illustrated in



Figure 2.2 and Table 2.1, the interstitium and vascular wall layers are very thin in

comparison to the other regions.

Table 2.1 - Relative Thickness of Regions

Region Thickness [m] % Thickness

Plasma

Endothelium

Interstitium

Tissue

3.5E-6

0.30E-6

0.35E-6

15.9E-6

17.5%

1.5%

1.7%

79.3%

The oxygen consumption rates in the smallest regions, the endothelium and

interstitium, are small in comparison to that of the tissue. Due to small size and low

oxygen consumption rates, these two regions will be neglected in our calculations.

We will instead use a 3-layer representation for our model.



Figure 2.2 - 5-Layer and 3-Layer Models
In addition to the RBC, plasma and tissue, the 5-layer
model also incorporates the interstitial space and the
vascular wall, which are both very thin.

In reality, the blood flow in the capillary is not absolutely axially symmetric. Small

oscillations in the flow due to fluctuations in the flow speed, pressure variations,

and changes in the capillary wall radius or curvature can cause the flow to be non-

31
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symmetric, leading to tangential velocity components and unexpected radial and

axial flow profiles.

In order to simplify the three dimensional nature of our system, we will assume that

these small oscillations are negligible. Unlike the Le Floch or the Krogh cylinder

model, we will assume vertically symmetric flow between two, long, flat plates

instead of a three dimensional axisymmetric flow. This representation can then be

modeled as a two dimensional flow on a rectangular domain.

The plasma flow is governed by the incompressible Navier-Stokes and continuity

equations. Applying constraints of two dimensional Cartesian coordinates, and

separating the Navier-Stokes equation into its components, equations (1.1) and

(1.2) become,

ux + Vy = 0 ,

p(ut + uu, + vuY) = -Px + p(uxX + u y,)

P(Vt + uvX + vvy3) = -Py + P(VXX + vyy)

(2.1)

(2.2)

(2.3)

The plasma flow boundary conditions applied are no-slip/no-flux at the capillary

wall, and periodicity at the entrance and exit of the channel.

Ewalt = 0 ,( (2.4)



Etentrance = Yexit , (2.5)

The RBC serves as the oxygen delivery vehicle for the body, delivering fresh oxygen

from the lungs throughout the body via the circulatory system. At the level of the

capillary, the oxygen diffuses through the RBC membrane, through the plasma and

into the tissue. At the same time, the tissue is consuming the oxygen by binding the

oxygen molecules to the myoglobin complexes, thereby reducing the concentration

of oxygen in the tissue. Therefore, we can model the moving RBC as an oxygen

source and the tissue as an oxygen sink.

Within the RBC cytoplasm there are several organelles, however our only interest is

in the hemoglobin protein because it makes up 97% of the entire RBC dry content [

9 ] and it directly influences the oxygen production rate. Therefore, we will only

model the hemoglobin within the RBC and assume it is evenly distributed

throughout the cytoplasm. Similarly, the myoglobin is considered to be evenly

distributed throughout the tissue. Furthermore, we will assume that oxygen can

diffuse freely from the RBC cytoplasm through the cell membrane and into the

tissue.

The plasma and RBC are in motion while oxygen is diffusing through the layers;

however we assume there is no moving fluid in the tissue. Our oxygen transport

must have an advection term to account for the fluid flow in the capillary.



Simplifying equation (1.3) by applying 2D Cartesian coordinates, and the constraint

of continuity, we obtain equation (2.6).

(2.6)

(2.7)

The oxygen generation/consumption function, , represents the rate at which

oxygen is produced, therefore it can be calculated as the oxygen concentration time

derivative, must be calculated at each layer of our model. These can

rates can be derived from the chemical kinetics of the oxygen-hemoglobin and

oxygen-myoglobin association reactions.

Hb 4 + 40, k Hb 4 08'
-1

(2.8)

(2.9)

Mb + 0., Mbov'
oil

(2.10)

(2.11)

, also written as , is the oxygen concentration field. and are forward

are the kinetic dissociation raterate reaction constants, while and



constants, or the kinetic reaction rate constants for the reverse reactions. KHb and

Keqbare the equilibrium constants. Using these equations, RHb and RMb can be

derived.

RHb - 4ki [H b4 0] - 4k+b [H b4 ]c4

dt chem =4_ H48 1 4

RMb = - Mb k_"[MbO 2 ] - kf"'[Mb]c
t chem

(2.12)

(2.13)

As mentioned in chapter 1, the hemoglobin protein is a tetramer containing two a-

chains and two -chains, each of which includes an oxygen-binding heme group.

This allows each hemoglobin protein to bind four oxygen molecules. Conversely,

each myoglobin protein contains only one heme group, limiting it to binding only

one oxygen molecule.



Figure 2.3 - Hemoglobin and Myoglobin Saturation Curves
The cooperative binding properties of hemoglobin lead to

a stronger affinity for oxygen than that of myoglobin. The
Hemoglobin curve is accurate above 1kPa.

At 50% saturation, equations (2.9) and (2.11) become

k Hb

(C Hb)4 = ( = Ke1 (2.15)
k+1

kMb'csMb/ = M (K41 (2.15)
k+1

Saturation is defined as,

SHb - [Hb4 0 8  (2.16)
[Hb4]tot
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[MbO2 ]
SMb = [Mb 0 1 (2.17)

(Mb]tot'

In the cell cytoplasm, R = RHb. Free oxygen is produced as the oxyhemoglobin

complex unbinds, releasing oxygen; therefore, RHb is a function of the local

hemoglobin saturation. In the plasma, oxygen is neither consumed nor produced

and the function is zero in this region. In the tissue, R depends on the rate at which

oxygen is consumed by binding to the myoglobin, RMb, in addition the constant

consumption rate of the tissue, M, due to general metabolic activities.

RHb c Hb C n
Rh Hb- [Hb] J _ (2.18)

chem C50%

OCplasma
Rplasma - 0 ,plam , (2.19)

at chem

RMb - - kMb Mb -(1- sMb) Mb
chem ( (C%))

[Hb] and [Mb] are the concentration of hemoglobin subunits inside the RBC and the

concentration of myoglobin in the tissue respectively. n is the Hill coefficient, which

is an empirically found value. Finally, R is then given by the sum of values in each

region from equation (2.7),



c
R = ki [Hb] SHb - (1 - SHb) Hb )

C50%

(2.21)

+ kMb[Mb] SMb - (1 - SMb) M + M
C50%

Each of the quantities in equation (2.21) are known constants in each region with

the exception of the oxygen concentration, which we are solving for, and the

hemoglobin and myoglobin saturation values, which are functions of oxygen

concentration. By the principle of conservation, the total number of hemoglobin

proteins and myoglobin proteins in the system do not change.

To calculate the hemoglobin and myoglobin saturation values, we use a similar

diffusion analysis. Looking at the diffusion of the saturation of hemoglobin and

myoglobin, we obtain equations similar to equation (2.6).

SIb + uSHb + VSHb Rb(SxHb 4ZHb [Hb
. t X -D x(S +S?) [Hb] (2.22)

+ +b Sb b ~DMb(S~b +Qb) RMb
St + uS + vSy - D (x"yb [Mb] (2.23)

Substituting equations (2.18) and (2.20), we get



SeHb + uSHb SYH b - Db(SxHb + SHb)

= -k ( SHb - (1 - SHb)

SeMb + uSMb + vsyMb - Db(Sbx + Syyb)

b M(2.25)
= -k_1 Mb

Using equations (2.6), (2.21), (2.24), and (2.25), we can completely define the

oxygen concentration and rate of oxygen diffusion everywhere in the system.

2.2 Computational Model

The computational model for the capillary flow was constructed using Matlab@

software. The blood plasma flow and oxygen concentration calculations are solved

using a finite difference method on a static, staggered, Marker-and-Cell (MAC) grid.

The finite difference scheme used to solve the blood plasma flow conditions is based

on a Navier-Stokes solver [ 13 ] developed by Benjamin Seibold of the Mathematics

Department at MIT. The plasma and RBC membrane interactions are implemented

using the level set method. [ 141



Table 2.2 - Plasma Flow Parameters

Parameter Value

p

Vavg

Dcap

It

Re = PVavgDcap
p

1025 g3

10-1 M
S

8 x10- 6m

1.5 x10- 3 Pa -s

5.47 x 10-3

A Cartesian coordinate system is used because the physical system is approximated

as a 2D plasma flow on a rectangular surface, as shown in Figure 2.2. The RBC is

modeled as an elastic membrane with a bending stiffness kRBC. The properties of

the blood flow and RBC membrane are listed in Table 2.2.

2.2.1 Blood Plasma Flow

The compactness and efficiency of Seibold's method results from the fixed geometry

and static discritization of the grid in time. Therefore, the system matrices are the

same at each time step and need to be computed only once. [ 13]



The blood plasma follows the 2D incompressible Navier-Stokes equations, (2.2) and

(2.3), and is constrained by the incompressible 2D mass continuity, equation (2.1).

The dimensionless, scalar component versions of these equations are shown below.

u+v, = 0 , (2.26)

1
Ut = -(u) - (uv), + -(uxx + uyy) -px , (2.27)

1
Vt = - -uv), (v 2 )y + _ + vYY) py , (2.28)

The time step updates for velocity components U' and V' will be computed in a

series of steps, by incorporating each term in the Navier-Stokes equations. First, we

will incorporate the nonlinear advective terms from equation (2.27), [-(u 2)x -

(uv)y], and equation (2.28), [-(uv)x - (v 2 ),]. The first updated values of velocity

will be denoted as U* and V*. These values are solved explicitly using an upwinding

scheme as shown in equations (2.29) and (2.30).

Ut = -((U)2 _ (U"Vn), , (2.29)

V* = -(U"V4), 2)y (2.30)

At

Next we update velocity by incorporating the viscosity terms, -(ux + U and

[(vxx + vyy)j, implicitly.



U U*

At
(2.31)

(2.32)* -V Vxx* + VAt Re (xx yy),

Finally, we can update the velocity by including the pressure terms, [-px] and

[-Py], implicitly.

Un+1 - U**

At

Vn+1 - V**

.- (Pn+1)x ,

-(pn+l)y 
,

(2.33)

(2.34)

Equations (2.33) and (2.34) can be rewritten in vector form as,

Un+1 -U**
-. - = -vPn+1 (2.35)

The pressure is found by computing the divergence of both sides, which eliminates

the Un+1 term due to the continuity constraint, and you are left with

- = -APn+1
At

(2.36)

-( *x+ U*) ,



Applying the inverse Laplacian operator to equation (2.36) then gives the pressure

at the new time step (Pn+1). Finally, we can take the gradient of the pressure field

to obtain the velocities.

Gn*1 = -VPn+, (2.37)

Un+1 = U** + AtGn+1 , (2.38)

As mentioned previously, the efficiency of these calculations is in large part due to

having calculated the system matrices only once before marching through the finite

difference scheme. The system matrices for our system are essentially inverse

Laplacian operators. These system matrices are implemented using the Crank-

Nicolson scheme, which is second-order accurate in time and space.

2.2.1.1 Spatial and Time Discritization

The advection term calculation above uses a centered difference scheme, which is

second order accurate as opposed to a forward or backward difference scheme.

Despite the higher order of accuracy, using a centered difference scheme can create

oscillations due to the coupling of the variables because they are all calculated at the

same points. To eliminate this phenomenon, we use a staggered grid. [ 13 ]



x x x x x

X X X X X X
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Figure 2.4 - Staggered MAC Grid
Interior cells are shown in black and
boundary cells are shown in gray. Crosses
denote cell centers where fluid pressure
and other quantities are calculated. The
circles denote the cell borders where
velocity components are calculated (U-
velocity in filled circles and V-velocity in
unfilled circles)

Consider a rectangular domain, which is discretized into rectangular elements on a

staggered grid. In this grid, the velocities are defined on the boundaries and the

pressures are defined in the centers of the cell as shown in Figure 2.4.

For our solution to converge with stability, we must satisfy the Courant-Friedrichs-

Lewy (CFL) condition. The limiting time step will be for the explicit upwind

calculation of the advection terms. The diffusion terms are calculated using a

second-order accurate, Crank-Nicolson scheme which is unconditionally stable. [ 15

] Therefore, to ensure overall stability, the following conditions must hold true.

1OPP41"Wr ___ -- - _=_ 12



CFL condition for advective term:

At At
Umax+t+ ax - 1A (2.39)

The horizontal and vertical grid sizes are the same; Ax = Ay = h, therefore,

At
(Umax + Vmax) - 1 , (2.40)

h

At (Umax + Vmax) (2.41)

We desire a time step as large as possible to reduce computational time for the

simulation, but small enough to ensure stability. Equation (2.41) shows that the

maximum time step is related to the grid spacing and maximum speed of the flow

within the capillary, which changes in time. Instead of choosing a new time step at

each iteration, we can choose a time step small enough such that it always satisfy

the CFL condition.

Since we are using non-dimensional equations for our model, all quantities are

relative and the actual values are meaningless before they are dimensionalized. By

design, we can set the initial velocity at all points within the flow to unity, and the

maximum velocity should not exceed this value by much more. Test cases of the

model with very small time steps have shown that the maximum velocity does not
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exceed three. For total certainty, we will use the value of four for the maximum

velocity.

Next, we must calculate the grid size. All of our equations have been non-

dimensionalized using the capillary diameter as a reference length. Therefore the

diameter of the capillary will be set to unity and all other values will be

proportional. The length of our channel will be set to be a multiple of the diameter.

South

Tissue

Figure 2.5 - Computational domain in 3-Layer Model
Coordinate axes at the center of the computational domain

Based on computational time and accuracy, the optimal grid step size is determined

to be . Using equation (2.41) and the values determined for grid step size

................ I ...... .... .................



and maximum velocity, the time step is calculated, At = 0.0050. Test simulations

however, show much smoother results for a lower time step of At = 0.0025,

therefore we will be using this value.

For our flow calculations, it is important that we can calculate velocities, pressures,

and their derivatives at the same points. We can find these values at neighboring

locations by averaging or by finding first or second differences for the derivatives.

2.2.1.2 Flow Boundaries

The flow is bounded by two other regions. The first, on the north and south

boundaries, is the capillary wall. At the capillary wall, the plasma velocity is zero

because we impose a no slip / no flux condition. The east and west border of the

computational domain are set to be periodic. The flow velocities and pressure

gradient are also periodic such that the flow properties are continuous on the east

and west boundaries of the capillary channel.

Y-N Y-S= 0(2.42)

EEs = Ew , (2.43)

The second boundary is the RBC membrane. The flow properties for this boundary

and inside the RBC will be discussed in the next section.



2.2.2 RBC Membrane

The level set method is used to dictate the advection of the RBC membrane. A

function #(x,y) is produced in the mesh space such that #(x,y) = 0 defines the

boundary between the cell and the plasma. The domain inside the boundary, f-, is

defined by #(x,y) < 0, and the domain outside the boundary, fl', is defined by

#(x, y) > 0. Our zero level set function is initially approximated as an ellipse with

the semi-major axis along the diameter of the capillary and the semi-minor axis

along the axis of the capillary.

The rate at which the level set function propagates depends on the flow speed. This

propagation will follow the convection equation:

#t+v- #= 0 ,(2.44)

By definition, the gradient of the level set function is parallel to the velocity vector.

Therefore, we can rewrite our velocity vector as the product of the magnitude of the

velocity, F, and unit vector in the direction of the level set function, --. Substituting

these quantities into equation (2.44) yields the level set function.

#t + FIV#I = 0 , (2.45)



In order to determine F, the propagation rate, we can use the dot product of the

velocity and gradient of the level set:

v -V# = Fn - V#, (2.46)

(u, v) - (#, # = F V# , (2.47)
|v#|

uPx + vby = FIV#| , (2.48)

uqx + v(y = F , (2.49)
u _x + 4)Y#

F = qx , (2.50)

The propagation rate, F, is calculated at each iteration, and as shown in equation

(2.50), F is dependent on the plasma flow velocity. For greater accuracy, the level

set function is moved onto a finer mesh and propagated on this grid at a

proportionally smaller time step. It is then returned to the original, coarser mesh.

This allows us to have a more accurate advection scheme while saving time by

running the rest of the simulation at such a coarser mesh.

The fluid both inside and outside the RBC are governed by the Navier-Stokes

equations, however, the RBC membrane acts on the fluid as an additional body force.

Unlike the capillary wall, the RBC membrane does not have a no-slip condition. In

our computational model, the flow is discontinuous at the boundary due to the



reactionary body force of the membrane acting on the cytoplasm. These membrane

stresses on the fluid can be expressed as a jump in pressure across the fluid;

therefore, they can be incorporated into the Navier-Stokes calculations of the

plasma flow. This pressure jump must be accounted for when calculating the

pressure of a fluid element that accesses a pressure of a neighboring cell that is on

the opposite side of the membrane.

Figure 2.6 - Jump condition at RBC boundary
Jump conditions and are shown on a 5-point
stencil. Jump conditions are applied for points on the
stencil that lie in a different domain than the center
point.



Figure 2.6 illustrates an example of a point (i,j) which has two points in its stencil

on the opposite side of the level set boundary. The stencil for the 2nd difference of

the pressure would be written as

1 1
2 (Pi-1,1 - 2pij + pi+1,j) + 2(Pi-1, - 2pi, + pi+1,j)

(hx) 2(hy)

(2.51)

= f +R +
(hX)z 2(hy)2

The aR and aT terms account for the pressure jump, across the boundary for the

right-hand (i + 1,J) and top (i,j + 1) points respectively, caused by the stress

applied on the fluid by the RBC membrane. Notice that there are no additional

terms for the left-hand (i - 1,J) or bottom (i,j - 1) points because there are on the

same side of the boundary as the center point (i,j) on the stencil.

RBC membrane stiffness is a uniform value across the membrane, but varies for

healthy and sickle erythrocytes. We use a value of kRBC = 1.9 X 10~5 N for healthy
m

erythrocytes. [ 16 ] In sickle erythrocytes, the membrane stiffness is dependent on

local oxygen concentration. As the oxygen diffuses out of the cell, the

oxyhemoglobin complexes are unbound, producing free oxygen and consequently,

change their molecular conformation, leaving them vulnerable to polymerization in

the sickle case. Although my model does not directly simulate the polymerization of



HbS and its affect on the RBC shape, this model does capture the increase in cell

membrane rigidity for the oxygen-reduced sickle RBC.

Berger and King propose an inverse exponential relationship between stiffness and

oxygen concentration.

kRBC __ C _P02O (2.52)
(kRBC) 0 C0 (pOz 0O)-

In equation (2.52), (kRBC)o represents the stiffness of a normal cell; c0 and (p 2 ) 0

represent the oxygen concentration and oxygen partial pressure when the cell is

fully oxygenated at the arterial end of the capillary. The stiffness index, j, is a

positive constant. Berger and King use data from an experiment conducted by

Usami et. al., to justify the stiffness index value. Figure 2.7 shows the non-

dimensional resistance, which we refer to as kRBC plotted against the oxygen(kRBC)o' potdaantteoye

partial pressure in both linear and log-log axes. Based on these plots, it appears that

a stiffness index of j = 2 is reasonable. Based on the slope from the best-fit line on

the logarithmic plot, it appears that a stiffness index of j = 2 is reasonable value.



P (mmHg)

Figure 2.7 - RBC Membrane Stiffness vs. 02 Partial Pressure [ 18]
Membrane stiffness for healthy and sickle RBCs are plotted on linear and

log-log plots. The plots indicate an exponential relationship between

membrane stiffness and 02 partial pressure for sickle RBCs, and no change

in membrane stiffness for healthy RBCs.

This value, however, serves as an upper bound for the stiffness index because in the

experiment, the sickle blood was "allowed sufficient time to equilibrate with the

oxygen tension" [ 17 ]. Therefore, the stiffness index will vary in the range

The membrane stress is calculated as the product of the membrane stiffness and the

curvature of the membrane.
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a' =kRBCK , (2.53)

where the curvature, K, is calculated from the level set function,

-2 OYp + py2

K= (pOXp3 ' (2.54)

This is another simplification in our model. Creating a stress function that is directly

proportional to curvature assumes that at rest, the membrane would take the shape

of a circle, the shape that would minimize overall stress on the object. However in

reality, at rest, the RBC has a bi-concave shape. As the fluid within and exterior to

the cell moves, it will deform the RBC, causing different stress levels on the cell

membrane.

This could have some impact on the results of this simulation, by creating the

appearance of higher stress values at the points of greatest curvature. Additionally,

this model might slightly decrease the apparent surface area of the RBC, which could

impact the velocity profiles. This would not impact the oxygen diffusion however,

because the diffusion calculations are dependent on the volume of the RBC, not the

surface area, which is controlled to remain unchanging with each time step.



The membrane stress at each point adjacent to the membrane is calculated to

account for the total pressure jump. These values are summed into a matrix, J,

which is then added to the pressure term when P"' is calculated.

2.2.3 Oxygen Diffusion

The oxygen diffusion is incorporated into our computational model, allowing us to

observe the oxygen concentration throughout the system as the RBC traverses the

capillary. The oxygen diffusion component must model the oxygen-hemoglobin

interaction, oxygen diffusion throughout the RBC, plasma, and tissue, the oxygen-

myoglobin interaction (binding of free oxygen), and the consumption of free oxygen.

Like the fluid pressure, the oxygen concentration will be calculated at the cell

centers in our computational grid. Therefore, all saturation values, flow velocities

and oxygen concentration derivatives must be averaged or differenced to provide

values at the cell centers as well. Equation (2.6) is rewritten in the computational

domain as

Cn+1 - Cn

At + UC +VC - Dx(Cx + C) = R(C) , (2.55)



The first spatial derivative of the oxygen concentration is calculated using an explicit

centered difference scheme. The second spatial derivatives are derived using an

implicit Crank-Nicolson scheme. The oxygen concentration update can then be

calculated as,

Cn+1 = C" + At[R(C") - U"Cx" -V"C,"

(2.56)
+ x D(Cxnx + Cy,Y|]

SHb and SMb updates are calculated in a similar fashion. Equations (2.24) and

(2.25) in the computational domain are written as,

5 Hbnl tSHbn + UnSx b" + VnSy7b" -DHb(Sxxbf+Syb")

(2.57)

S ~ k"- - Pb
1~~Sbn(~ Hb

SMbn±'t SMbn + UnSxb" + VnS,"bn -DMb(Sxxbn + Sybn)

= -k_ SMb" - (1 - SMbn) (2.58)

R contains no derivatives and is calculated explicitly according to equation (2.21).

In the computational domain, it is rewritten as,



R= kH[Hb] SHb _ _ SHb

(2.59)

+ k Mb[Mb] SMbn _ (1 _ SMbn)(M,

Table 2.3 lists all of the oxygen diffusion constants used in this model for the normal

blood and their values in comparison with those of the Le Floch-Harris model. Most

parameter values are nearly identical with the exception of the Hill coefficient and

the oxygen concentration at 50% hemoglobin and myoglobin saturation.



Table 2.3 - Oxygen Diffusion Parameters for normal blood
Tekleab-Harris model vs. Le Floch-Harris model

Value
Tekleab-Harris Model | LeFloch-Harris Model

_______________ i ____________ I ______________ I

02 diffusion constant

Diffusivity of
Hemoglobin

Diffusivity of
Myoglobin

Hb dissociation rate
constant

Mb dissociation rate
constant

Hb concentration in
RBC

Mb concentration in
tissue

02 concentration at
50% Hb saturation

02 concentration at
50% Hb saturation

02 consumption rate
in tissue

2.40 x 10-9
S

m 2
1.40 x 10~11 sS

6.10 x 10-11 s
S

44s-1

15.6s-1

mol
21.099-

m 3

mol
0.4

mol
3.430 x 10-2

mol
3.271 x 10-3 30

-6.1321
mol

X 10-3 M01
m 3-s

m 2

2.41 x 10-

1.38 x 10-11

6.10 x 10-11

S

2

s

44s~1

N/A

mol
21.099-

m3

mol
0. 4

4.412 x 10-2 3

mol
7.981 x 10-3 3

-6.1321
mol

x 10~ 3  
-01

m3 -s

Constant Symbol

D Hb

DMb

[Hb]

[Mb]

HbC5 0%

MbC50 %

M



Henry's law constant

Hill coefficient [ 19 ]

1.029

x 10-s mol
M3- Pa

2.7

1.130

x 10- mol
M3- Pa

2.2

To simulate the sickle blood, we modify four parameters. The diagram in Figure 2.8

shows the relative values of these four parameters between the normal and sickle

cases.
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Figure 2.8 - Healthy vs. Sickle RBC
Notice the increased membrane stiffness, increased P02 at 50% Hb

saturation, increased Hill coefficient, and decreased arterial P02 for the

sickle RBC.

The changes in these values in the sickle case cause a right-shift in the hemoglobin

oxygen saturation curve. Figure 1.9 shows the shifted hemoglobin saturation curve

for the sickle case.

Red Blood Cells

Healthy
RBC

-- --- .... ........



Normal and Sickle Hemoglobin Saturation Curves
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Figure 2.9 - Normal vs. Sickle Hemoglobin Saturation
The increased pQ5O% increased Hill coefficient, and decreased

arterial values cause a right-shift in the hemoglobin saturation
P02
curve.
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3 Results

In this chapter, the data is presented for both the normal and sickle

microcirculation. The simulations were run by varying the sickle microcirculation

conditions, including the RBC membrane stiffness. The 24 test cases are explained

in detail below.

3.1 Test Cases

The microcirculation numerical code was designed to run two simple cases, the

normal microcirculation and the sickle microcirculation. The simulation for the

normal and sickle cases are identical with the exception of four critical parameters.

These four parameters and their values for both the normal and sickle blood

scenarios are listed in Table 3.1.

Table 3.1

Parameter

Microcirculation Simulation Parameters

| Normal Case Value | Sickle Case Value
____________ ____________ I ____________

Hill coefficient (n)

Po2 at 50% Hb

saturation (pH2

Po2 in arteries

2.7

3.33 x 103Pa
(25 mmHg)

1.27 x 104 Pa
(95 mmHg)
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3.0

5.33
(40

1.07
(80

x 103Pa
mmHg)

x 104Pa
mmHg)



rpgterial

stiffness index U) 0.0 0.0; 0.2; 0.5; 1.0; 2.0

The stiffness index is zero for the normal case, meaning that the stiffness of the RBC

membrane is a constant value everywhere, regardless of local oxygen concentration.

The sickle case, however, is simulated at a variety of stiffness indices ranging

between 0 and 2. At stiffness index values greater than 0, the RBC membrane

stiffness is related to the local oxygen concentration. The sickle case is tested at five

different stiffness indices, thereby creating six test cases in total - five sickle

microcirculation test cases and one normal microcirculation test case.

The microcirculation model approximates the RBC's initial shape as an ellipse,

which eventually reaches a steady shape. The geometry of the RBC membrane is

defined by the function #. The RBC is defined by the region # < 0. The function is

initialized as an ellipse, according to the equation,

#(x,y) = Ib2(x - O)2 - a 2 (y - yo) 2 - ab (3.1)

where (xo,yo) are the coordinates for the center of the ellipse, and a and b are the

semi-major and semi-minor axes. Before entering the capillary, the RBC at rest has

a biconcave disc shape, which is approximated as an ellipse. In the simulation, as

the RBC begins to move, it morphs into a biconcave shape. It would also be of
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interest, for comparison, if the simulation began with the asymptotic value for the

geometry as shown in Figure 3.1. The asymptotic shape may affect the speed at

which the RBC traverses the capillary as well as its ability to deliver oxygen to its

surroundings.

Steady State RBC GeometryElliptical RBC Geometry
0.5

01

-0.5
-1

- 0.5

0

- -0.5-
0 -1 -0.5

Figure 3.1 - RBC initial geometries
Test cases #01-#06 and #13-#18 use the elliptical geometry to define the RBC
shape, while test cases #07-#12 and #19-#24 use the asymptotic RBC shape.
The asymptotic geometry was obtained by running the elliptical RBC until the
cell reached an asymptotic geometry.

Using two different initial geometries doubles the number of test cases, giving us 12

test cases.

The periodicity of our model allows the RBC to exit the frame of reference and enter

on the opposite boundary. Although the plasma and cell in the capillary are flowing,

the tissue does not, so the cell is flowing past same tissue segments repeatedly as its

................... ..... ............ ...................... - ...... . .......



oxygen content diminishes. The periodic boundary conditions will be used to

analyze the oxygen consumption in a specific region of tissue, so for a portion of the

test cases, a short, fixed-length segment of capillary will be used.



Table 3.2 - Microcirculation Test Cases

Channel Length RBC initial Normal/Sickle Stiffness
(l ) & Boundary .Test Case

C&ondn geometry (<p) Parameters index (j)Conditions
Normal 0.0 #01

0.0 #02
0.2 #03

e elliptical
Sickle 0.5 #04

1.0 #05
2.0 #06

Normal 0.0 #07
0.0 #08
0.2 #09

asymptotic Sickle 0.5 #10
1.0 #11
2.0 #12

Normal 0.0 #13
0.0 #14
0.2 #15

elliptical
Sickle 0.5 #16

1.0 #17
0 2.0 #18

Normal 0.0 #19
0.0 #20
0.2 #21

asymptotic Sickle 0.5 #22
1.0 #23
2.0 #24

It would also be interesting to see the behavior of the system as the cell flows

beyond new segments tissue. Therefore, I present a test case in which the length of

the channel the RBC flows through is increased. The new length must be long

enough that the simulation will end before the RBC reaches the end. For this long

capillary, a fixed boundary condition at the east boundary (arterial end of the

capillary) will be enforced. The oxygen concentration at this boundary will be set to
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the arterial oxygen concentration value. The west boundary will have a Neumann

boundary condition.

Varying each of these parameters gives us a total of 24 test cases. These test cases

are described in Table 3.2.

3.2 Simulation Results

Each test case was run for four seconds and data was collected at several intervals.

Pressure, u-velocity, v-velocity, oxygen concentration, and RBC geometry were

plotted.

3.2.1 Pressure

The pressure profiles for all test cases are nearly identical. The pressure variations

due to the membrane reaction forces on the flow are small enough that the pressure

gradient across the channel does not change. There is a large pressure gradient

created by the pumping of the heart. Only this imposed pressure gradient is visible.

Figure 3.2 shows the pressure profiles for the short and long capillaries.



Test Cases #01 - #12
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2000
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> 0 7-z0
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

Test Cases #13 - #24
0.5

>10

-0.5
-5 -4 -3 -2 -1 0 1 2 3 4 5

x
Re = 0.007, t = 4.00

Figure 3.2 - Fluid Pressure Profile in Capillary

3.2.2 Velocity Profiles

The velocity profiles indicate a Poiseuille flow as expected in x-direction. Of the four

different test case parameters (normal/sickle parameters, stiffness index, initial

RBC geometry, channel length), the stiffness index has the largest impact on the U

and V velocity. The V velocity values are orders of magnitude smaller than the U

velocity. This is true for all test cases. The velocity profiles for both U and V are

presented below. Only the normal cases, and the sickle cases with the smallest and

...... ... ..................................... - - ------------- -



largest value for the stiffness index are presented in this section. A complete set of

the data can be found in Appendix A.



Figure 3.3 - U-Velocity, Test Case #01, #02, #06
Lx = 2, Elliptical Initial RBC Geometry
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Figure 3.4 - U-Velocity, Test Case #07, #08, #12
Lx = 2, Asymptotic Initial RBC Geometry

TC07 - Nominal case, j = 0.0
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Figure 3.5 - U-Velocity, Test Case #13, #14, #18
Lx = 10, Elliptical Initial RBC Geometry
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Figure 3.6 - U-Velocity, Test Case #19, #20, #24
Lx = 10, Asymptotic Initial RBC Geometry

TC19 - Normal case, j = 0.0
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Figure 3.7 - V-Velocity, Test Case #01, #02, #06
Lx = 2, Elliptical Initial RBC Geometry
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Figure 3.8 - V-Velocity, Test Case #07, #08, #12
Lx = 2, Asymptotic Initial RBC Geometry
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Figure 3.9 - V-Velocity, Test Case #13, #14, #18

Lx = 10, Elliptical Initial RBC Geometry
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Figure 3.10 - V-Velocity, Test Case #19, #20, #24
Lx = 10, Asymptotic Initial RBC Geometry
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3.2.3 RBC Geometry and 02 Concentration

The RBC Geometry and oxygen concentration profiles were superimposed onto one

figure. This overlay will help identify the impact of the geometry on the oxygen

concentration profile. Only the normal cases, and the sickle cases with the smallest

and largest value for the stiffness index are presented in this section. A complete set

of the data can be found in Appendix A.



Figure 3.11 - 02 Concentration, Test Case #01, #02, #06
Lx = 2, Elliptical Initial RBC Geometry
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Figure 3.12 - 02 Concentration, Test Case #07, #08, #12

Lx = 2, Asymptotic Initial RBC Geometry
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Figure 3.13 - 02 Concentration, Test Case #13, #14, #18

Lx = 10, Elliptical Initial RBC Geometry
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Figure 3.14 - 02 Concentration, Test Case #19, #20, #24

Lx = 10, Asymptotic Initial RBC Geometry
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4 Discussion of Results and Implications

This section discusses the numerical simulations results and any conclusions we can

draw from the data. Specifically, we investigate the RBC and its interaction with the

surrounding environment. The plasma velocity profiles and oxygen concentration

profiles are analyzed for both sickle and normal RBCs. This analysis helps us

characterize the most influential factors that determine the flow of RBCs and the

state of their surrounding environments.

4.1 Velocity Profiles

As stated previously, the velocity profiles indicate a quasi-steady Poiseuille flow.

Virtually zero difference is seen in the velocity profile between the normal case and

the sickle case with stiffness index j = 0. This similarity in the profiles can be

explained by these two test cases having the same stiffness, and thus the same

stress, across the RBC membranes. Because the membrane stress is directly

correlated to the fluid pressure drop across the membrane, we do not expect there

to be any difference between two test cases with identical stiffness indices.

Figure 4.1 and Figure 4.2 illustrate this point by comparing the normal test cases,

#01 and #07, with their sickle case counterparts, test cases #02 and #08, both at a

stiffness index values of zero (healthy RBC membrane stiffness). Although test cases



#03-#06 and #09-#12 are also sickle test cases, the stiffness indices is larger than

that of the test cases #02 and #08, ranging from j = 0.2 to j = 2.0. By comparing

these cases, we can assess the impact of the sickle parameters, independent of the

RBC membrane stiffness. It is important to note that there is no perceivable

difference between these plots, which indicates that the flow velocity perturbations

are due purely to the stiffness index, and not an effect of the altered Hill coefficient,

Hb arterial
P 0 2 ,50% or p0 . It is important to note that other factors not tested in these

simulations may also cause perturbations to the mean flow, for example RBC size or

variability in capillary diameter. These variations may be tested with this model in

the future.
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Differences are observed, however, between sickle test cases at different stiffness

indices. As expected, higher stiffness indices produce larger perturbations in the

Poiseuille flow because the less compliant sections of the cell membrane create

greater resistances to the flow. The resistance to the flow is manifested as a

pressure drop across the cell membrane. This is most readily apparent in a

comparison between test cases #02 and #06, and also between test cases #08 and

#12.

In Figure 4.3, it is apparent that the perturbations in the Poiseuille flow are caused

by the RBC membrane stresses. Test cases #02 and #08 show nearly straight,

horizontal U-velocity contour lines, with slight perturbations around the edges of

the RBC membrane. Test cases #06 and #12, however, show very large changes in

the velocity contours from a normal Poiseuille flow. This is also apparent in Figure

4.4 for the V-velocity profiles. In a true Poiseuille flow, the profile for the V-velocity

component would be zero everywhere. While the V-velocity values are extremely

small, we see some perturbations near the tail and nose of the RBC. The pressure

jump across the membrane is greatest at these points due to the large curvature of

the membrane at these points. These perturbations create small, weak vortices in

the flow, causing small eddies at the tail ends of the RBC as seen in Figure 4.4. The

V-velocity values are an order of magnitude larger in test cases #06 and #12

(greatest stiffness index) than they are in #02 and #08 (smallest stiffness index) due

to the increase in the RBC membrane stiffness.
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Figure 4.3 - U for low and high stiffness sickle cases
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Figure 4.4 - V for low and high stiffness sickle cases
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Table 4.1 - Perturbation in Velocity Profile

Perturbation
Normal/Sickle Stiffness ielocity

Test Cases Paaees idx() in VelocityParameters index (j) Profile

#01, #07, #13, #19 Normal 0.0
#02, #08, #14, #20 0.0
#03, #09, #15, #21 0.2 +
#04, #10, #16, #22 Sickle 0.5 ++
#05, #11, #17, #23 1.0 +++
#06, #12, #18, #24 2.0

Table 4.1 shows the relative level of perturbation of the velocity profile with respect

to the normal RBC case. From the U and V-velocity profiles we can determine the

level of perturbation from the mean flow. The normal case has some level of

perturbation; however it is much smaller than the sickle cases with higher levels of

membrane stiffness.

From these observations we can conclude that the stiffness index has an impact on

the profile. High stiffness regions of the membrane can cause perturbations in the

flow. However, we do not see a perturbation to the mean flow large enough to

retard the motion of the RBC. In all cases, the RBC reaches approximately the same

position at any time point in the simulation. Perhaps for longer duration

simulations, we may notice a small difference, although it most likely would not be a

significant change.



4.2 02 Concentration Profiles

The oxygen concentration profile is constant throughout the system initially, at t=0.

Over the next 1600 iterations through t=4, the oxygen dissipates from the system as

it is consumed by the tissue. The flow of oxygen from the RBC, through the plasma

and into the tissue is represented by contour lines in the plots of Figure 4.5. These

plots show the system early in the simulation at t=1 and at later time t=4. Notice the

highest concentration of oxygen is inside the RBC. These profiles only consider free

oxygen, and not hemoglobin bound oxygen.

The oxygen profiles for all sickle RBC cases, regardless of the stiffness index, are

almost identical. There are slight differences very close to the sickle RBC due to the

difference in shape of the membrane; however, far away from the sickle RBC, in the

tissue, we find that the profiles are very similar. The normal RBC case however,

shows a very different oxygen profile from the sickle RBC case. The oxygen

concentration throughout the system is significantly higher in the normal case

except very close to the cell center. This indicates that the impact of the sickle

parameters (increased Hill coefficient, increased p'oso, and decreased paterial) is

much greater than that of the membrane stiffness.

This is consistent with our understanding of the dynamics of the cell and oxygen

transport. Although the increased stiffness of the cell causes membrane rigidity and
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changes the flow velocity near the cell, these changes are very small in the oxygen

transport equations. The oxygen transport equation has a diffusion term, a

advection term, and a generation/consumption terms for the different regions of the

plasma. The changes in the velocity profile caused by the increased stiffness are

only found inside the plasma. However, the slight perturbations that we observe are

small enough that the diffusion, and generation/consumption terms dominate the

oxygen concentration profile in the system. In larger vessels with higher speed

flows and greater levels of turbulence, this may not be the case.
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TC13 - Normal case, j = 0.0
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As seen in Figure 4.5, the oxygen concentration profile of the normal RBC case

indicates higher oxygen concentration values at all points in the tissue and most of

the plasma with respect to the sickle RBC case. Near the cell, however, the sickle

RBC case shows higher values of oxygen as time elapses. This seems counter

intuitive due to the lower initial (arterial) pressure in the RBC. In fact, at earlier

times, we notice the normal case has higher oxygen concentration values

everywhere with respect to the sickle RBC case. These increased levels of free

oxygen inside the sickle RBC occur because the hemoglobin saturation levels drop

more quickly than in the normal RBC. This happens because the increased Hill

coefficient and increased Pos cause a right-shift in the hemoglobin saturation

curve. The relationship between the two curves can be seen in Figure 4.7.

Although there is a lower amount of total oxygen content in the sickle RBC case,

both bound and unbound, the low saturation of the sickle RBCs yields more free

oxygen around the cell. This occurs because the sickle hemoglobin proteins are

much weaker at binding oxygen molecules, so they lose whatever oxygen they may

have rather quickly. After releasing the oxygen molecules, the sickle oxyhemoglobin

change conformation, becoming sickle deoxyhemoglobin. The sickle

deoxyhemoglobin bind to one another, creating long branches in the RBC, and thus

have a much lower probability of rebinding other oxygen molecules in their

surroundings. Therefore, we expect to see more free oxygen around the cell, but not

throughout the system.
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The sickle Hemoglobin curves shifts right due to a

higher Hill coefficient and an increased po5so%-

Figure 4.6 shows the simulation for a longer, non-periodic capillary with one cell

flowing down the channel. In this case, the left boundary is fixed at the arterial

pressure value, which represents the arterial end of the capillary. The initial

condition is a linear oxygen concentration gradient across the capillary. As the

simulation runs, the oxygen is consumed by the tissue and advected by the plasma

flow. Although the profile looks different from the short, periodic capillary, the

results are consistent. The oxygen concentration throughout the system is much

higher in the normal case except very near to the center of the RBC.
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4.3 Comparisons with Previous Models

It is important to compare our model to previous models. The Le Floch-Harris

model [ 8 ] and Secomb's model [ 4] are used for comparison. Although this model

simulates capillary blood flow, there are several differences between this model and

the two models to which it is being compared. These differences must be taken into

consideration when comparing the results. First, the major difference in this model

is that we only look at an individual erythrocyte traveling down the axis, and its

impact on the oxygen profile, whereas the Le Floch-Harris and Secomb models

account for multiple cells, periodically spaced along the length of the capillary. The

spatial period is based on the hematocrit level.

4 VRBC
L = ,VR (4.1)

H ct ic D2za

Despite these differences, in both cases we should see a drop in P0 2 along the length

of the capillary as well as radially outward from the centerline of the capillary, into

the tissue. First, let's examine the Le Floch-Harris model. In Figure 4.8, Le Floch

demonstrates the experimental results from case (4a), which is most similar to this

model.



- t=4.1920me (Iteration 28800)

i4al distaneIn metrs

Figure 4.8 - Le Floch's results
02 contours show the P0 2 in the RBC, capillary, and tissue.

The oxygen partial pressure contour lines indicate a significant drop in Po2

downstream, both in the capillary as well as in the tissue, and a slight radial drop in

the oxygen levels.

Secomb's model shows similar behavior as seen in Figure 4.9.
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Figure 4.9 - Secomb's results
A: Drop in average P0 2 along the length of the capillary.
B: P0 2 at radial sections of the capillary. Z indicates position along
length of capillary

The differences in the models are readily apparent when comparing the oxygen

contour lines from our model. For comparison, we will use test case #19. Figure

4.10, shows the oxygen concentration and RBC geometry.
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By looking at Figure 4.8, Figure 4.9, and Figure 4.10, we can identify major

differences in the oxygen concentration profiles in the capillary and tissue. Let us

first consider the profile in the axial direction. In Secomb's figure, this data would

be represented by plot A. All three figures show an axial decrease in oxygen

concentration (directly proportional to oxygen partial pressure). Le Floch's data

shows a nearly constant, linear drop in oxygen concentration axially, both in the

tissue and in the capillary. Further away from the capillary, the values are slightly

lower, but the axial trend is consistent. Secomb's data, along with the data from this

model, indicates a non-linear decrease in oxygen concentration. In fact, they both

report a higher drop in oxygen concentration towards the entrance of the capillary.

As the RBC moves further down the capillary, the oxygen concentration begins to

slowly level off. Therefore in the axial direction, our data is more consistent with

that of Secomb than Le Floch. However, the concentration drop in our data is much

more significant than that of both Secomb and Le Floch. This is primarily due to the

fact that our model can only account for one RBC in the capillary. This is a major

difference in these models. In order to make a more fair comparison between the

models in the future, it must be updated to account for multiple RBCs in the

capillary at once.

Next let us consider the profiles in the radial direction. In Secomb's figure, this data

would be represented by plot B. In the radial direction, there are major difference

between our data and that of Le Floch and Secomb. Secomb's and Le Floch's data
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both show a logarithmic drop from the capillary wall into the tissue. The radial

concentration drops are consistent along the axis of the capillary, but the values are

lower as you move downstream. In the data from this model, there is also a radial

drop from the capillary into the tissue, however, the oxygen concentration levels are

much lower with more significant drops further away from the entrance of the

capillary. The region closest to the capillary entrance is least affected because a

fixed oxygen concentration boundary condition is used on the left boundary. This

significant drop is in large part due to the fact that our model has only one RBC.

This idea is supported by the fact that we can see small increases in the regions

closest to the RBC. Notice that in Figure 4.10, at x = 0, the oxygen concentration

values are slightly higher than a little further upstream at x = -1. Further into the

tissue, this is less apparent because it takes some time for the oxygen to diffuse into

that region.

It appears that most of the differences between this model and Le Floch's and

Secomb's models arise from the fact that the tissue everywhere is consuming

oxygen, while only the tissue near the single red blood cell is receiving oxygen.

Notice the higher regions of oxygen near the entrance of the capillary have contour

lines that are more vertical like that of Le Floch. Because only one cell is used, less

oxygen is being diffused throughout the system. Also, the middle regions of the

tissue (-2 < x < 2), has lower oxygen levels than the region near the entrance of

the capillary at the right boundary as seen in Figure 4.10. Using a multi-cell model
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may produce results that are even more consistent with that of Secomb and Le

Floch.
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5 Conclusion

This model was designed to serve as a fast and efficient method for calculating

capillary flow conditions and local oxygen concentration for both healthy and sickle

RBCs. The model utilizes computational domain representative of a capillary

surrounded by muscle tissue. Given specific initial and boundary conditions, the

model produced overall results consistent with the basic understanding of flow

conditions and oxygen concentration profiles in human capillaries. Perturbation

analysis allows us to determine differences in flow conditions and oxygen profiles

from the mean flow. For the purpose of this perturbation analysis, the mean was

determined to be ideal flow conditions and oxygen concentration levels found in

healthy RBCs systems.

5.1 Findings

Comparing the simulation results between the various test cases have led to several

conclusions. First, the perturbations in the flow velocity are due primarily to an

increase in cell membrane stiffness. A variety of RBC membrane stiffness values

were simulated in different test cases. Regardless of initial and boundary conditions

used, the flow velocities showed similar trends between the test cases. It was clear

that perturbations to the mean Poiseuille flow were more apparent as the stiffness

of the membrane was increased.
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The perturbations in the oxygen concentration are largely a function of the three

sickle parameters, the Hill coefficient (n), poo and p arterial. The cell membrane

stiffness does however, play a small role in the oxygen concentration very close to

the RBC. Of the 24 test cases, the first half were simulated with periodic boundary

conditions using a smaller computational grid while the second half were simulated

with a fixed boundary on the left end and a Neumann boundary condition on the

right end. In both sets of test cases, the sickle parameters played the largest role in

the oxygen concentration. In the sickle RBC case, the system as a whole has

noticeably lower oxygen content than the healthy RBC case. The concentration

values are lower in the tissue and the plasma region far from the RBC. This,

however, is not the case very close to the RBC. In the plasma region very close to

the RBC, and inside the RBC, we observe higher oxygen concentration levels than

the healthy case, due to the sickle RBC's poor ability to carry oxygen. The sickle RBC

cannot saturate its hemoglobin as much as a healthy RBC due to the right-shift in the

saturation curve as illustrated in Figure 4.7.

The oxygen concentration follows general trends as seen in Le Floch's and Secomb's

work. As we move downstream in the system, the oxygen content of the RBC, the

plasma, and the surrounding tissue diminish. Additionally, at any axial cross section

in the capillary, the highest level of oxygen can be found at the center and it

diminishes radially such that the tissue furthest away has the lowest concentration.
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5.2 Recommendations

To gain a better understanding of the dynamics of sickle cell using this model,

several test cases can be developed. In these simulations, the flow parameters were

unchanged, such as the density and viscosity of plasma. It may be of interest to test

whether small changes in these values in both the sickle and healthy cases may

impact the perturbations in the flow or the oxygen concentrations. It may also be

interesting to simulate moderate exercise, in which there may be slightly faster

speed flows and larger oxygen consumption rates in the tissue.

Several modifications can be made to improve this microcirculation model. The first

suggested modification would be to change the model to allow multiple cells. We

would then be able to more accurately replicate the oxygen delivery system in real

human capillaries. We would be able to vary the hematocrit level for sickle and

healthy cases, as well as any other stressing cases we may like to consider.

The capillary in this system is model as a two-dimensional fluid flow between two

flat plates, using a Cartesian coordinate system. Although it may be more

computationally intensive, in the future we might consider creating a model that

uses a three-dimensional axisymmetric flow, using a cylindrical coordinate system.
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Capillaries in the human body do not have constant diameters. In reality, they have

converging and diverging cross sections. Allowing variable capillary radius

(diverging or converging capillaries) would make the model more authentic.

In a real sickle RBC, the membrane stiffness is not fixed throughout its life, or even

the duration it traverses a capillary. In fact, it is indirectly related to the hemoglobin

saturation levels. As the RBC releases oxygen, the membrane becomes more rigid.

By creating a time-dependent, or oxygen saturation dependent membrane stiffness

model, we would be able to capture the dynamic nature of the membrane stiffness.

With these changes to the model, it would be good to see how the data compares to

that of other models, such as Le Floch's or Secom's model. These changes would

allow more direct comparisons to be made. It would also be very insightful to

compare our data to experimental data conducted either in microfluidic devices or

in biological samples.
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Figure A.1 - U-Velocity, Test Case #01 - #03
Lx = 2, Elliptical Initial RBC Geometry
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Figure A.2 - U-Velocity, Test Case #04 - #06

Lx = 2, Elliptical Initial RBC Geometry
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Figure A.3 - U-Velocity, Test Case #07 - #09

Lx = 2, Steady State Initial RBC Geometry

TC07 - Nominal case, j = 0.0
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Figure A.4 - U-Velocity, Test Case #09 - #12

Lx = 2, Steady State Initial RBC Geometry
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Figure A.5 - U-Velocity, Test Case #13 - #15
Lx = 10, Elliptical Initial RBC Geometry
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Figure A.6 - U-Velocity, Test Case #16 - #18

Lx = 10, Elliptical Initial RBC Geometry
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Figure A.7 - U-Velocity, Test Case #19 - #21

Lx = 10, Steady State Initial RBC Geometry
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Figure A.8 - U-Velocity, Test Case #22 - #24

Lx = 10, Steady State Initial RBC Geometry
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Figure A.9 - V-Velocity, Test Case #01 - #03

Lx = 2, Elliptical Initial RBC Geometry
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Figure A.10 - V-Velocity, Test Case #03 - #06

Lx = 2, Elliptical Initial RBC Geometry
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Figure A.11 - V-Velocity, Test Case #07 - #09

Lx = 2, Steady State Initial RBC Geometry

TC07 - Normal case, j = 0.0
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Figure A.12 - V-Velocity, Test Case #10 - #12

Lx = 2, Steady State Initial RBC Geometry
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Figure A.13 - V-Velocity, Test Case #13 - #15

Lx = 10, Elliptical Initial RBC Geometry
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Figure A.14 - V-Velocity, Test Case #16 - #18

Lx = 10, Elliptical Initial RBC Geometry
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Figure A.15 - V-Velocity, Test Case #19 - #21

Lx = 10, Steady State Initial RBC Geometry
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Figure A.16 - V-Velocity, Test Case #22 - #24

Lx = 10, Steady State Initial RBC Geometry
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Figure A.17 - 02 Concentration, Test Case #01 - #03

Lx = 2, Elliptical Initial RBC Geometry
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Figure A.18 - 02 Concentration, Test Case #04 - #06

Lx = 2, Elliptical Initial RBC Geometry
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Figure A.19 - 02 Concentration, Test Case #07 - #09

Lx = 2, Steady State Initial RBC Geometry
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Figure A.20 - 02 Concentration, Test Case #10 - #12

Lx = 2, Steady State Initial RBC Geometry
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Figure A.21 - 02 Concentration, Test Case #13 - #15

Lx = 10, Elliptical Initial RBC Geometry
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Figure A.22 - 02 Concentration, Test Case #16 - #18
Lx = 10, Elliptical Initial RBC Geometry
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Figure A.23 - 02 Concentration, Test Case #19 - #21

Lx = 10, Steady State Initial RBC Geometry
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Figure A.24 - 02 Concentration, Test Case #22 - #24

Lx = 10, Steady State Initial RBC Geometry
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Appendix B - Code

function microcirculation(lx,ss, periodic_flag)
%NAVIERSTOKES -- > MICROCIRCULATION

% Solves the incompressible Navier-Stokes equations in a rectangular
%6 domain with prescribed velocities along the boundary. The solution
% method is finite differencing on a staggered grid with implicit
% diffusion and a Chorin projection method for the pressure.
% Visualization is done by a colormap-isoline plot for pressure and
% normalized quiver and streamline plot for the velocity field.
% The standard setup solves a lid driven cavity problem.

% 07/2007 by Benjamin Seibold, http://www-math.mit.edu/-seibold/
% Feel free to modify for teaching and learning.

% 04/2010 Modified by Yonatan Tekleab (ytekleab)
%0 This code has been modified to simulate the flow of a red blood cell
% (RBC) within a capillary.
%6 -level-set method implemented to create RBC boundary
% -jump matrix to incorporate jump in fluid pressure due to membrane
%- stresses
% -boundary conditions changed to periodic flow on the E & W
%- boundaries and no-flux/no-slip along N & S boundaries
% -axial pressure gradient applied
% -oxygen diffusion incorporated

% Last modified: ytekleab Jan 23, 2011 16:25:00
%------------------------------------------------------------------------
close all; clc;
if nargin < 3

periodic_flag = 0;

end
if nargin < 2

ss = 0;

end
if nargin < 1

lx = 10;

end

% DEFINE MICROCIRCULATION PARAMETERS
% reference values
pHb50_0 = 3.333e3; % reference pHb50 [Pa]
pO2aO = 1.2666e4; % reference pO2a [Pa]

% sickle/normal RBC, 02 parameters
sickle = -logical(input('Sickle RBC [0] or Normal RBC [1--default] case? '));
if -sickle,

fprintf(['\n***NORMAL RBC CASE***\nEntering stiffness index of "'',...
' will give normal RBC Membrane stiffness\n']);

n = 2.7; % Hill coefficient for normal blood
pHb50 = pHb50_0; % p02 at 50% Hb saturation [Pa] for normal blood
pO2a = pO2a_0; % Arterial p02 [Pa] for normal blood

else
fprintf(['\n***SICKLE RBC CASE***\nEntering stiffness index of "0"',...
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' will give normal RBC Membrane stiffness\n']);
n = 3.0; % Hill coefficient for sickle blood
pHb50 = 5.333e3; % p02 at 50% Hb saturation [Pa] for sickle blood
p02a = 1.0666e4; % Arterial p02 [Pa] for sickle blood

end
index = 0; % Stiffness index (0 for normal RBC)
in = input('\nEnter the stiffness index (between 0 and 2): ');
if in > 2 || in < 0,

fprintf(['\nBad index! Must be [0 2]\nWill proceed using index value of
',num2str(index)]);
else

index = in; clear in;
end

% fluid, capillary & RBC parameters
rho = 1025;

Vavg = le-3;
Dcap = 9e-6;

mu = 1.4e-3;

Re = rho*Vavg*Dcap/mu;
Rk = 20.10e-6;

tissue [m]
V rbc = 9e-17;

a = 0.45;

direction)
b = Vrbc/((4/3)*pi*(a^2)*Dcap^3);
direction)
k mem = 1.9e-5;

dpdx = -(3.4e5)*(Dcap/(rho*Vavg^2));

dimensionalized)

% plasma density [kg/m^3]
% mean plasma velocity [m/s]
% capillary diameter [m]
% plasma viscosity [Pa-s]
% reynolds number
% capillary centerline to end of

% RBC volume [m^3]

% semi-major axis (vertical

% semi-minor axis (horizontal

% membrane stiffness [N/m]
% pressure gradient [Pa/m] (Non

% oxygen concentration parameters
Dox = 2.40e-9; % 02 diffusivity in plasma/tissue [m^2/s]
DHb = 1.40e-11; % diffusivity of oxyhemoglobin [m^2/s]
DMb = 6.10e-11; % diffusivity of oxymyoglobin [m^2/s]
alpha = 1.029e-5; % Henry's law constant [mol/(mA3-Pa)]
pMb50 = 3.179e2; % p02 at 50% Mb saturation [Pa] (Schenkman et.
al.)
cHb50 = pHb50*alpha;
cMb50 = pMb50*alpha;
cHb const = 21.099;

cMb const = 0.4;

kinvHb = 44;

kinvMb = 15.6;

M = -6.1321e-3;
cO2a = pO2a*alpha;
cHb50_0 = pHb50_0*alpha;
cO2aO = pO2aO*alpha;

% 02 concentration at 50% Hb saturation [mol/m^3]
% 02 concentration at 50% Mb saturation [mol/m^3]
% Hb concentration in RBC [mol/m^3]
% Mb concentration in Tissue [mol/m^3]
* Hb inverse rate constant [sec^-l]
% Mb inverse rate constant [sec^-1]
* tissue 02 consumption rate [mol/(m^3-s)]
% arterial c02 [mol/m^3]
% reference cHb50 [mol/m^3]
% reference cO2a [mol/m^3]

pO2v = 5.333e3;

cO2v = pO2v*alpha;

% -------- --T-
% DISCRITIZATION
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dt = le-2; % time step
tf = 0.4e+1; % final time
ly = 1; % height of capillary
nx = lx*50; % number of x-gridpoints
ny = ly*50; % number of y-gridpoints
nsteps = tf; % number of steps with graphic output
nyc = round(ny* (2*Rk/Dcap)/2)*2;
lyc = nyc/ny;

x = linspace(-lx/2,lx/2,nx+l); hx = lx/nx;
y = linspace(-ly/2,ly/2,ny+1); hy = ly/ny;
yc = linspace(-lyc/2,lyc/2,nyc+l);
[X,Y] = meshgrid(y,x) ;
ax = [min(x) max(x) min(y) max(y)]; axc = [min(x) max(x) min(yc) max(yc)];

k cfl = 1; Umax = 4;

if tf/ceil(tf/(kcfl*min(hx,hy)/(2*Umax)))<dt;
dt = kcfl*min(hx,hy)/(2*Umax);

end
nt = ceil(tf/dt); dt = tf/nt;

% fine grid discritization (f times finer than coarse grid)
f = 2; dtf = dt/f;

xf = linspace(min(x),max(x),f*nx+l); hxf = lx/(f*nx);
yf = linspace(min(y),max(y),f*ny+1); hyf = ly/(f*ny);
[Xf,Yf] = meshgrid(yf,xf);

% INITIALIZE RBC BOUNDARY - using level-set method
num shifto = 0; num shifti = 0;

nr = 3; % number of
reinitialization steps
x0 = -(lx/2)+b; y0 = 0; % ellipse center
phi = sqrt((b^2)*((X-y0).^2)+(a^2)*(Y-x0).A2)-a*b; % eqn of ellipse
if ss -= 0,

if lx == 2,

load('lx2_phiss.mat');
elseif lx == 10,

load('lx10_phi_ss.mat');
else

sprintf(['Steady State geometry only saved for lx=2 and lx=10\n'...
'Using elliptical geometry']);

end
end
phif = interp2(X,Y,phi,Xf,Yf); volf_0 = length(find(phif<0));

%---------------------------------------------------------------------------

% INITIAL/BOUNDARY CONDITIONS

% initial conditions

if periodicflag -= 0,

C = (cO2a/cHb50_0)*ones(nx,nyc);

else

C = linspace(c2a/cHb50_0,cO2v/cHb50_0,nx)'*ones(l,nyc);

end

135



SHb = HbSat(pO2a,pHb5O,n)*ones(nx,nyc);
SMb = 0.57*ones(nxnyc);
U = ones(nx-l,ny); V = zeros(nx,ny-1);

Pmax = abs(dpdx*lx/2); Pmin = -abs(dpdx*1x/2);
Pgrad = linspace(Pmax,Pmin,nx)'*ones(1,ny);
cMb = cMbconst*ones(nx,nyc);cMb(:, (nyc-ny)/2+1:(nyc-ny)/2+ny) = 0;
M = M*ones(nx,nyc)*(Dcap/(cHb5O0*Vavg));M(:, (nyc-ny)/2+1:(nyc-ny)/2+ny) = 0;

% boundary flow conditions
uN = x*0+0; vN = avg(x)*0;

uS = x*0+0; vS = avg(x)*O;

uW = avg(y)*0+1; vW = y*0+0;
uE = avg(y)*0+1; VE = y*0+0;

% ----- -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% INITIALIZE OPERATORS
fprintf('initialization')
% Pressure
Lp = kron(speye(ny),K1(nx,hx,lO))+kron(Kl(ny,hy,l),speye(nx));
perp = symamd(Lp); Rp = chol(Lp(perp,perp)); Rpt = Rp';
% U-Velocity
A = (1/Re)*(kron(speye(ny),K1(nx-l,hx,2))+kron(Kl(ny,hy,3),speye(nx-1)));
Lu speye((nx-l)*ny)+dt*A;
peru = symamd(Lu); Ru = chol(Lu(peru,peru)); Rut = Ru';
% V-Velocity
A = (1/Re)*(kron(speye(ny-1),Kl(nx,hx,3))+kron(Kl(ny-l,hy,2),speye(nx)));
Lv = speye(nx*(ny-1))+dt*A;
perv = symamd(Lv); Rv = chol(Lv(perv,perv)); Rvt = Rv';
% 02 Concentration
A =
(Dox/(Vavg*Dcap))* (kron(speye(nyc),Kl(nx,hx,1))+kron(K1(nyc,hy,l),speye(nx)))

Lc = speye((nx)*nyc)+dt*A;
perc = symamd(Lc); Rc = chol(Lc(perc,perc)); Rct = Rc';

% Hemoglobin Saturation
A =
(DHb/ (Vavg*Dcap) ) * (kron(speye (nyc) ,K1 (nx,hx, 1)) +kron(Kl (nyc,hy, 1) , speye (nx)))

Lshb = speye((nx)*nyc)+dt*A;
pershb = symamd(Lshb); Rshb = chol(Lshb(pershb,pershb)); Rshbt = Rshb';
% Myoglobin Saturation
A =
(DMb/(Vavg*Dcap))*(kron(speye(nyc),Kl(nx,hx,l))+kron(Kl(nyc,hy,l),speye(nx)))

Lsmb speye((nx)*nyc)+dt*A;
persmb = symamd(Lsmb); Rsmb = chol(Lsmb(persmb,persmb)); Rsmbt = Rsmb';

% ITERATE TO CALCULATE MICROCIRCULATION VALUES (phi,U,V,P,C)
fprintf(', time loop\n--20%%--40%%--60%%--80%%-100%%\n')
for k = 1:nt

% CALCULATE RBC GEOMETRY USING LEVEL-SET EQUATION
% boundary velocities
Ubc = dt/Re*([2*uS(2:end-l)' zeros(nx-l,ny-2) 2*uN(2:end-

1)']/hx^2+[uW;zeros(nx-3,ny);uE]/hy^2);
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Vbc = dt/Re*([vS' zeros(nx,ny-3) vN']/hx^2+[2*vW(2:end-1);zeros(nx-2,ny-
1);2*vE(2:end-1)]/hy^2);

% velocities(Ua,Va) and derivatives(Ud,Vd) at grid points
Ue = [uW;U;uE]; Ue = [2*uS'-Ue(:,l) Ue 2*uN'-Ue(:,end)]; %#ok<AGROW>
Ve = [vS' V vN']; Ve = [2*vW-Ve(l,:);Ve;2*vE-Ve(end,:)]; %#ok<AGROW>
Ua = avg(Ue')'; Ud = diff(Ue,1,2)/2;
Va = avg(Ve); Vd = diff(Ve,1,1)/2;

% transfer to fine grid
phif = interp2(X,Y,phi,Xf,Yf);
Uaf = interp2(X,Y,Ua,Xf,Yf); Vaf = interp2(X,Y,Va,Xf,Yf);
for i = 1:f,

phixf = (phif([2:end 1],:)-phif([end 1:end-1],:))/(2*hxf);
phiyf = (phif(:,3:end)-phif(:,l:end-2))/(2*hyf); phiyf = phiyf(:, [1

1:end end]);
F = (Uaf.*phixf+Vaf.*phiyf)./sqrt(phixf.^2+phiyf.A2+eps);
F = (F([end 1:end-l],:)+F([2:end l],:)+F(:,[l 1:end-1])+F(:,[2:end

end]))/4;

% level-set update & reinitialization steps
phif = phif-dtf*FabsgradP(phif,0.5*(hxf+hyf),F);
for ir = 1:nr

phif = phif-

dtf*FabsgradP(phif,0.5*(hxf+hyf),phif./sqrt(phif.^2+(hxf+hyf)^2),l);
end
if periodicflag -= 0,

% periodicity
phif (1,:) = phif (end,:);

end

% adjust for RBC volume loss/gain
volff = length(find(phif<O));
while(l-volff/volf_0)<-10*hxf*hyf

phif = phif + hxf*hyf;
volff = length(find(phif<o));
num shift1 = num shiftl-l;

end
while(l-volff/volf_0)>10*hxf*hyf

phif = phif - hxf*hyf;

phif = phif + hx*hy*[ones(nx*f+1,1)
ones (nx*f+1,1)];

volff = length(find(phif<o));
num shiftO = num shift0+1;

end

zeros(nx*f+l,ny*f-1)

end
% transfer to back to coarse grid
phi = interp2(Xf,Yf,phif,X,Y);

% CALCULATE VELOCITIES AND PRESSURE USING NAVIER-STOKES EQUATION
% treat nonlinear terms
gamma = min(l.2*dt*max(max(max(abs(U)))/hx,max(max(abs(V)))/hy),l);
UVx = diff(Ua.*Va-gamma*abs(Ua).*Vd,1,1)/hx;
UVy = diff((Ua.*Va-gamma*Ud.*abs(Va)),1,2)/hy;
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% calculate velocities(Ua,Va) and derivatives(Ud,Vd) at cell center
Ua = avg(Ue(:,2:end-1)); Ud = diff(Ue(:,2:end-1),1,1)/2;
Va = avg(Ve(2:end-l,:)')'; Vd = diff(Ve(2:end-l,:),1,2)/2;
U2x = diff(Ua.^2-gamma*abs(Ua).*Ud,1,1)/hx;
V2y = diff((Va.^2-gamma*abs(Va).*Vd),1,2)/hy;
U = U-dt*(UVy(2:end-l,:)+U2x+dpdx*ones(nx-l,ny));
V = V-dt*(UVx(:,2:end-l)+V2y);

% implicit viscosity
rhs = reshape(U+Ubc, [],1);
u(peru) = Ru\(Rut\rhs(peru)); %#ok<AGROW>
U = reshape(u,nx-l,ny);
rhs = reshape(V+Vbc, [],1);
v(perv) = Rv\(Rvt\rhs(perv)); %#ok<AGROW>
V = reshape(v,nx,ny-1);

% pressure correction
phia = avg(avg(phi') ');
phia = [phia(end,:);phia;phia(l,:)]; %#ok<AGROW>
curv = curvature(phia,hx,hy);
Cplas = C(:, (nyc-ny)/2+1:(nyc-ny)/2+ny); Cplas =

[Cplas(end,:);Cplas;Cplas(l,:)]; %#ok<AGROW>

stmem = (kmem*(Cplas/(cO2aO/cHb5O_0)).^(-index)).*curv; % stress on
RBC membrane

thetax = abs(phia(2:end-l,:))./(abs(phia(2:end-l,:))+abs(phia(3:end,:)));
thetay = abs(phia(2:end-1,1:end))./(abs(phia(2:end-

1,1:end))+abs(phia(2:end-l,[2:end,end])));

JL = zeros(nx,ny); JR = JL; JB = JL; JT = JL;
for i = 1:nx,

% Jump matrix

ii = i+1;

for j = 2:ny-1,
if sign(phia(ii-l,j)) > sign(phia(ii,j)),

JL(i,j) = JL(i,j) + (thetax(i,j)*stmem(ii-1,j)+(1-
thetax(i,j))*stmem(ii,j))/hx^2;

elseif sign(phia(ii-1,j)) < sign(phia(ii,j)),

JL(i,j) = JL(i,j) - (thetax(i,j)*stmem(ii-1,j)+(1-
thetax(i,j))*stmem(ii,j))/hx^2;

end
if sign(phia(ii+l,j)) > sign(phia(ii,j)),

JR(i,j) = JR(i,j) + (thetax(i,j)*stmem(ii+1,j)+(1-
thetax(i,j))*stmem(ii,j))/hx^2;

elseif sign(phia(ii+1,j)) < sign(phia(ii,j)),

JR(i,j) = JR(i,j) - (thetax(i,j)*stmem(ii+1,j)+(1-
thetax(i,j))*stmem(ii,j))/hx^2;

end
if sign(phia(ii,j-1)) > sign(phia(ii,j)),

JB(i,j) = JB(i,j) + (thetay(i,j)*stmem(ii,j-1)+(1-
thetay(i,j))*stmem(ii,j))/hy^2;

elseif sign(phia(ii,j-1)) < sign(phia(ii,j)),
JB(i,j) = JB(i,j) - (thetay(i,j)*stmem(ii,j-1)+(1-

thetay(i,j))*stmem(ii,j))/hy^2;
end
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if sign(phia(ii,j+1)) > sign(phia(ii,j)),
JT(i,j) = JT(i,j) + (thetay(i,j)*stmem(ii,j+1)+(l-

thetay(i,j))*stmem(ii,j))/hy^2;
elseif sign(phia(ii,j+1)) < sign(phia(ii,j)),

JT(i,j) = JT(i,j) - (thetay(i,j)*stmem(ii,j+l)+(l-
thetay(i,j))*stmem(ii,j))/hy^2;

end
end

end
phia = phia(2:end-1,:);

J = JL+JR+JB+JT;
rhs = (1/dt)*reshape(diff([uW;U;uE],1,1)/hx+diff([vS' V vN'],1,2)/hy +

J, [] , 1);

p(perp) = Rp\(Rpt\rhs(perp)); %#ok<AGROW>
P = reshape(p,nx,ny); P = P+Pgrad;
U = U-dt*diff(P-Pgrad-JL*hx^2-JB*hy^2,1,1)/hx;
V = V-dt*diff((P-Pgrad-JL*hxA2-JB*hyA2),1,2)/hy;
Ue = [uS' avg([uW;U;uE]')' uN']; Ve = [vW;avg([vS' V vN']);vE];

CALCULATE 02 CONCENTRATION USING THE OXYGEN DIFFUSION EQUATION
% calculate velocities at cell center; Hb concentration only inside RBC
Ua = avg(avg(Ue')'); Va = avg(avg(Ve')');
Ua = [zeros(nx, (nyc-ny)/2) Ua zeros(nx, (nyc-ny)/2)]; %#ok<AGROW>
Va = [zeros(nx, (nyc-ny)/2) Va zeros(nx, (nyc-ny)/2)]; %#ok<AGROW>
cHb = cHbconst*ones(nx,ny);cHb(phia>O) = 0;
cHb = [zeros(nx, (nyc-ny)/2) cHb zeros(nx, (nyc-ny)/2)]; %#ok<AGROW>

% calculate hemoglobin saturation
if periodic flag -= 0

SHbx = (SHb([2:end 1],:)-SHb([end 1:end-l],:))/(2*hx);
else

SHbx = [(SHb(2,:)-SHb(l,:))/hx; (SHb(3:end,:)-SHb(l:end-2,:))/(2*hx);
(SHb(end,:)-SHb(end-l,:))/hx];

end
SHby = [zeros(nx,l) (SHb(:,3:end)-SHb(:,l:end-2))/(2*hy) zeros(nx,l);];
rhs = -kinvHb*(SHb-(l-SHb).*(C*(cHb50O_/cHb5O)).^n)*(Dcap/vavg) - Ua.*SHbx

- Va.*SHby;

SHb = (SHb([end 1:end-1],:)+SHb([2:end l],:)+SHb(:,[l 1:end-
l])+SHb(:,[2:end end]))/4 + dt*rhs;

rhs = reshape(SHb, [],1);
shb(pershb) = Rshb\(Rshbt\rhs(pershb)); %#ok<AGROW>
SHb = reshape(shb,nx,nyc);

% calculate myoglobin saturation
if periodic flag -= 0

SMbx = (SMb([2:end l],:)-SMb([end 1:end-l],:))/(2*hx);
else

SMbx = [(SMb(2,:)-SMb(l,:))/hx; (SMb(3:end,:)-SMb(l:end-2,:))/(2*hx);
(SMb(end,:)-SMb(end-1,:))/hx];

end
SMby = [zeros(nx,l) (SMb(:,3:end)-SMb(:,l:end-2))/(2*hy) zeros(nx,l);];
SMby(:,(nyc-ny)/2) = (SMb(:,(nyc-ny)/2)-SMb(:,(nyc-ny)/2-1))/(hy);
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SMby(:, (nyc-ny)/2+ny+1) = (SMb(:, (nyc-ny)/2+ny+2)-SMb(:, (nyc-
ny)/2+ny+1))/hy;

SMby(:, (nyc-ny)/2+1:(nyc-ny)/2+ny) = 0;
rhs = -kinvMb*(SMb-(l-SMb).*C*(cHb5O_0/cMb5O))*(Dcap/Vavg) - Ua.*SMbx -

Va.*SMby;

SMb = (SMb([end 1:end-1],:)+SMb([2:end 1],:)+SMb(:,[l 1:end-

l])+SMb(:, [2:end end]))/4 + dt*rhs;
rhs = reshape(SMb, [1,1);
smb(persmb) = Rsmb\(Rsmbt\rhs(persmb)); %#ok<AGROW>
SMb = reshape(smb,nx,nyc);

% calculate 02 concentration
if periodic flag -= 0

Cx = (C([2:end 1],:)-C([end 1:end-1],:))/(2*hx);
else

Cx = [(C(2,:)-C(1,:))/hx; (C(3:end,:)-C(1:end-2,:))/(2*hx); (C(end,:)-
C(end-1, :))/hx]

end
Cy = [zeros(nx,l) (C(:,3:end)-C(:,1:end-2))/(2*hy) zeros(nx,1);];

% rate of hemoglobin 02 production, myoglobin 02 absorption
RHb = kinvHb*cHb.*(SHb-(1-

SHb).*(C*(cHb50_0/cHb5O)).An)*(Dcap/(cHb5O_0*Vavg));
RMb = kinvMb*cMb.*(SMb-(1-SMb).*C* (cHb50_0/cMb5O))*(Dcap/(cHb5O_0*Vavg));
R = RHb+RMb+M;

rhs = R - Ua.*Cx - Va.*Cy;

C = (C([end 1:end-1],:)+C([2:end l],:)+C(:,[1 1:end-1])+C(:,[2:end

end]))/4 + dt*rhs;
rhs = reshape(C,[],1);
c(perc) = Rc\(Rct\rhs(perc)); %#ok<AGROW>
c(c<0) = 0; %#ok<AGROW>
C = reshape(c,nx,nyc);

% VISUALIZATION
if floor(25*k/nt)>floor(25* (k-i)/nt),

fprintf('.')

end
if k==l||floor(nsteps*k/nt)>floor(nsteps* (k-1)/nt)

t sec = round(k*dt);
eval(['save Data\MicroData_',num2str(tsec),'.mat x y yc Ue Ve C P phi

st mem']);
figure(1), contourf(x,y,-phi', [0 0],k-');hold on;

contour(x,y,Ue',20);colorbar;caxis([O 31);hold off;
title(sprintf('U at t=%0.2f',tsec));xlabel('x');ylabel('y');

saveas(figure(l), ['Data\U_ ',num2str(tsec)],'fig');saveas(figure(1), ['Data\U_
',num2str(tsec)],'png');

figure(2), contourf(x,y,-phi', [0 0],'k-');hold on;
contour(x,y,Ve',20);colorbar;caxis([-0.05 0.05]);hold off;

title(sprintf('V at t=%0.2f',tsec));xlabel('x');ylabel('y');
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saveas(figure(2), ['Data\V_ ',num2str(t sec)], 'fig');saveas(figure(2), ['Data\V_
',num2str(tsec)],'png');

figure(3), contourf(avg(x),avg(y),P',20,'w-');hold on;
Len = sqrt(Ue.^2+Ve.^2+eps);
quiver(x,y, (Ue./Len)', (Ve./Len)',.4,'k-');
hold off, axis equal, axis(ax), colorbar;
p = sort(reshape(P,1, [])); caxis(p([8 end-7]));
title(sprintf('Re = %O.lg t =

%0.2f',Re,tsec));xlabel('x');ylabel('y');

saveas(figure(3), ['Data\P_ ',num2str(tsec)], 'fig');saveas(figure(3), ['Data\P_
',num2str(tsec)],'png');

figure(4), contourf(x,y,-phi', [0 0],'k-');hold on;
[-,hl=contour(avg(x),avg(yc),C',0:0.25:4);colorbar;caxis([O 4]);axis

equal,axis(axc);hold off;
set(h,'ShowText','on', 'TextStep',get(h,'LevelStep')*2);
title(sprintf('O 2 Concentration and RBC geometry at

t=%0o.2f',t-sec));xlabel('x');ylabel('y');

saveas(figure(4), ['Data\C_ ',num2str(t sec)], 'fig');saveas(figure(4), ['Data\C_
',num2str(tsec)],'png');

drawnow;
end

% boundary conditions
uE = mean([U(1,:);U(end,:)]); uW = uE;
VE = [(vN(1)+vN(end))/2 mean([V(1,:);V(end,:)]) (vS(1)+vS(end))/2]; vW =

VE;
if periodic flag ~ 0

C(1,:) = C(end,:);
else

C(1,:) = (cO2a/cHb500); C(end,:) = (cO2v/cHb50 0);
end

end
fprintf(['\nRBC Volume Retained = ',num2str(100*volf f/volf 0),'%% \n']);
fprintf(['\nlevel-set shifted down ',num2str(-num shift1),' times and shifted
up ',num2str(numshifto),' times by ',...

num2str(hxf*hyf),' units in ',num2str(tf),' seconds\n']);

function B = avg(A,k)
if nargin<2,

k = 1;

end
if size(A,1)==1,

A = A';

end
if k<2,

B = (A(2:end,:)+A(1:end-1,:))/2;
else

B = avg(A,k-1);

end
if size(A,2)==1,

B = B';
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end

function A = Kl(n,h,all)
% all: Neumann=l, Dirichlet=2, Dirichlet mid=3, Periodic = 10;

if all == 10,

A = (spdiags(ones(n,l)*[-l 2 -1],-1:1,n,n) + spdiags(ones(n,1)*[l 1], [-

n+l n-1] ,n,n) )/h^2;

else
A = spdiags([-l all 0;ones(n-2,1)*[-l 2 -1];0 all -l],-l:l,n,n)'/hA2;

end

function F = curvature(P,hx,hy)
% computes curvature by central differences

Pxx = diff(P([l 1:end end],:),2,1)/hxA2;
Pyy = diff(P(:,[l 1:end end]),2,2)/hy^2;
Px = (P([2:end l],:)-P([end 1:end-l],:))/(2*hx); %periodic along x;

Py = (P(:,3:end)-P(:,l:end-2))/(2*hy); Py = Py(:,[l 1:end end]);

Pxy = (Px(:,3:end)-Px(:,l:end-2))/(hx+hy); Pxy = Pxy(:,I[l 1:end end]);

F = (Pxx.*Py.A2-2*Px.*Py.*Pxy+Pyy.*Px.A2)./(Px.A2+Py.A2).A.5;
F = min(max(F,-l/(0.5*(hx+hy))),l/(0.5*(hx+hy)));

function dP = FabsgradP(P,h,F,c)
% level-set update function

if nargin<4,
c = 0;

if nargin<3,
F = 1;

end
end
DxP = diff(P,1,1)/h; DxmP = DxP([l 1:end],:); DxpP = DxP([l:end end),:);
DyP = diff(P,1,2)/h; DymP = DyP(:,[l 1:end]); DypP = DyP(:,[l:end end]);
Np = sqrt(max(DxmP,O) .2+min(DxpP,O) .2+max(DymP,0).A2+min(DypP,0).^2);
Nm = sqrt(min(DxmP,0) .2+max(DxpP,0) .2+min(DymP,0) .^2+max(DypP,O).^2);

dP = max(F,0).*(Np-c)+min(F,O).*(Nm-c);

function SHb = Hb_Sat(PO2_pa,pHbSOpa,n)
P02 = PO2_pa/133.322368; pHb5O = pHb50_pa/133.322368; % Pa -- > torr

SHb = (P02.An)./(pHb5OAn+P02.An);
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