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Abstract

The dream of pervasive computing is slowly becoming a reality. A number of projects around the
world are constantly contributing ideas and solutions that are bound to change the way we interact
with our environments and with one another. An essential component of the future is a software
infrastructure that is capable of supporting interactions on scales ranging from a single physical
space to intercontinental collaborations. Such infrastructure must help applications adapt to very
diverse environments and must protect people’s privacy and respect their personal preferences. In
this paper we indicate a number of limitations present in the software infrastructures proposed so
far (including our previous work). We then describe the framework for building an infrastructure
that satisfies the abovementioned criteria. This framework hinges on the concepts of delegation,
arbitration and high-level service discovery. Components of our own implementation of such an
infrastructure are presented.

This work was supported by Acer Inc., Delta Electronics Inc., HP Corp., NTT Inc., Nokia
Research Center, and Philips Research under the MIT Project Oxygen partnership and by DARPA
through the Office of Naval Research under contract number N66001-99-2-891702.
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1 Introduction

Numerous systems have been proposed as software middleware for pervasive computing (see Section
5 for a brief survey). Many of these system provide mechanisms for resource discovery and some of
them claim that these mechanisms are intended to scale to extremely wide area pervasive computing
environments. In practice, most of these system, including our own previous work, have actually
dealt with simple scenarios involving, for example, a few users in a single physical space or a small
number of people with mobile personal computing devices. These limited scenarios fail to raise a
set of issues that become critical when the set of users and spaces expands drastically. We believe
that very few of the existing systems possess the mechanisms necessary to deal with these contexts.

We begin this paper by presenting a simple scenario similar to those previously used by ourselves
and other researchers; we then identify a number of issues raised by this scenario and show that
these issues cannot be addressed without new mechanisms that enhance the capabilities of the
existing systems. Finally, we present our own answers to these problems in the form of subsystems
for high-level service discovery, delegation and arbitration.

1.1 Scenario

Let us consider prevalent approaches to building pervasive computing software infrastructures by
analyzing a simple scenario, very similar to those presented Mark Weiser [28], MIT Project Oxygen
[9] or the Portolano Project at University of Washington [1].

Anne is sitting in one of the shared work rooms in her office building. She is alone,
preparing a presentation. Her work is displayed on one of the two large displays in the
room. She also has her handheld device with her. Meanwhile Bob is sitting in his office
reading news. At some point he comes across an item he wants to share with Anne. He
asks his office to connect him with Anne. The room Anne is working in tells her she has
a communication request from Bob, and asks if it should make the connection. Anne
agrees to a video connection and Bob’s face shows up on the unoccupied display. After
a brief exchange, Bob asks his office to forward the interesting news item to Anne and
it gets displayed on her handheld.

1.2 Problems

We would like to concentrate here on how Bob’s office can locate appropriate communication devices
in Anne’s vicinity regardless of whether she is in her office, a shared work room, or just taking
a walk in the park with only her universal handheld device. Some suggest that Bob’s system
should discover a communication device near Anne and try to establish a connection with it. The
infrastructure proposed for the Portolano Project [10] would send an event addressed descriptively
to an appropriate device. It would be the responsibility of the network to route the information to
the correct destination. A similar solution is proposed by the Intentional Naming System [3] with
the added flexibility of choosing between early binding (where Bob’s system obtains the address
of the device and communicates with it directly) and late binding (where Bob sends information
to the descriptive address and every time the appropriate destination is chosen by the network).
There are several problems with such approaches:

1. How can the infrastructure know what the devices in Anne’s vicinity are? Note that in a one-
step discovery process proposed by INS, as well as in data-centric network routing proposed
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by Portolano, the devices in Anne’s vicinity would need to advertise themselves as being close
to Anne. Alternatively, Anne would need to advertise her location and then Bob’s system
would look for devices at that location. Both solutions hinge on reducing Anne’s privacy –
her location can be deduced from the information available in the system. Both solutions also
require updates to the advertised descriptions of either the devices or Anne every time she
changes her location. Finally, both solutions require that all devices advertise themselves to
the global discovery network.

2. How can we ensure that Anne always has the right to accept or reject the connection? If
Bob tries to establish communication with devices in Anne’s environment and not with Anne
herself, how can we ensure that Anne has the ability to accept or reject a call? Or, even more
fundamentally, if an hour earlier, while still in her office, she said to her environment, “I do
not want to respond to any calls for the next two hours,” how can we ensure that the new
environment she is in also respects her wish? What is the pervasive computing equivalent of
the off button on a cell phone?

3. Who gets to decide how the information is presented to Anne? Even if we extended the dis-
covery process with a step where Bob’s software has to ask Anne explicitly about her location
giving her a chance to decline an answer or to just point Bob to her “mobile environment,” it
is still not clear how Anne can impose her personal preferences on how she wants to commu-
nicate with Bob, and how the information he sent her is presented to her. Anne may prefer
short text items to be spoken to her rather than displayed. And if they are displayed, she may
have a preference regarding which devices are to be used. In a one-step discovery mechanism
there is no clear place where such options could be easily defined, especially if we take into
account the fact that Anne can be in an anonymous location, such as a shared work room,
or in her private office or home (which, in contrast to the work room, can be permanently
configured to suit her needs). Note that “loading Anne’s preferences” does not necessarily
solve the problem unless the devices in a space can change how they advertise themselves to
ensure that the right ones will be chosen for the right tasks.

4. How do we avoid resource conflicts? In other words, how do we make sure that when the
connection between Bob and Anne gets established, the free display is used as opposed to
the one taken by Anne’s presentation? And when Bob sends over the news item, how do
we ensure that it gets displayed on the only remaining free display? In a one step discovery
mechanisms it would be possible to change the descriptions of all of the used resources to
indicate that they are currently not available. But in such a case, what would happen if Anne
did not have her handheld with her? How could the system decide on its own which of the
occupied displays to borrow?

5. What do we do if Anne is in an environment where the access control mechanisms permit her
to access all of the devices but deny access to Bob? When pervasive computing becomes truly
pervasive, access control mechanisms will need to be put in place to ensure that a prankster
next door does not make my stereo play music in the middle of the night or that telemarketers
do not put information about their latest products on all the walls of my office. In such an
environment, how can we make it clear that under those particular circumstances presented
in the scenario, Bob can access a device for displaying information to Anne?

In short, currently available software infrastructures would have problems scaling up to large
numbers of people and physical spaces. Furthermore, current mechanisms largely violate people’s



2 THE IDEAL INFRASTRUCTURE 4

privacy, social norms and do not respect individual preferences.

2 The Ideal Infrastructure

We can synthesize observations made in the previous section by listing the most important require-
ments for a resource management middleware for pervasive computing.

2.1 Adaptivity

There are several aspects of adaptivity that the software infrastructure should address. First,
software should be able to adapt to new environments. The same application should be able to
function in a highly-instrumented conference room, an office, a living room, a car or even on a small
portable device that the user is likely to travel with. Different kids of environments are very likely
to have completely different kinds of hardware and software resources available. A conference room
might have large public displays, smaller displays for individual participants, speech capabilities
as well as peripheral information presentation devices such as scrolling LED signs. A car, while
being driven, would only have speech available for many applications, displays being deemed too
distracting for safe driving. In short, it is critical to perform resource management at the level of
services such as information delivery rather than at the level of particular devices such as a display.

Software also needs to adapt to changes in the environment. Environments may change dynam-
ically: devices may come and go at any time and some components may fail. Hence the resource
management service needs to observe the changes to the set of available services in order to, on
one hand, make sure that requesters may get better resources as they become available and, on the
other hand, that failing components are replaced on the fly with functioning substitutes.

Finally, the choice of methods for satisfying service requests needs to depend on the current
activity context. For example, important email alerts may be delivered by speech if one is reading
a book, but visual environmental devices should be used if the person is on a phone, and a personal
handheld while in a meeting.

2.2 Scalability

There are two distinct ways in which we wish to address scalability. The first has to do with the
sheer numbers of participating components. A global pervasive computing system would need to
deal with millions of people and probably orders of magnitude more devices. It needs to be possible
for a person to interact with all of the devices in his or her immediate surroundings and for people
to locate one another across continents.

In addition, we need to address the scalability at the level of the number of simultaneously
executing applications in any single environment. Large numbers of applications running concur-
rently are likely to contend for the same resources. In order to cope with the scale of complexity
of interactions in pervasive computing, we need to provide arbitration mechanisms that will allow
applications running in the same environment to coexist “peacefully” and to make the best use of
available resources.

Consider the following example: in an office equipped with an on-wall projector and a TV set,
I request to watch the news. The projector is assigned to the job because it produces the largest
image and has the best resolution. Then, while watching the news, I request to have access to my
email agent. This agent has to use the projector because this is the only display that can be used
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by a computer. Therefore the projector is taken away from the news. The change may be made
less inconvenient, however, if instead of stopping the news, the system moves it to the TV set. We
discuss this topic in detail in [13].

2.3 Respect For Privacy And Personal Preferences

Privacy and security are important issues in computing and they cannot be ignored in development
of pervasive computing infrastructures. In particular, resource discovery mechanisms need to work
closely with access control tools. Whenever a request is made for a service or a resource, access
control mechanisms need to evaluate what resources, if any, the requester is allowed to have access
to given the identity of the requester, the current state of the resource, the location of the requester
and many other conditions [26]. At times, the user will have to be asked to make a decision [4]
but in any case, the user needs to be fully informed how his or her personal information (such as
location, current activity) is being used [2].

As argued before, the software needs to adapt its actions to the different environments it might be
running in. It also needs to adapt itself to the personal preferences of individual users. For example,
I may prefer not to receive any communication requests while in a meeting with the exception of
urgent requests from my family. Such requests, if they happen, should be satisfied with a text-based
interface rendered on my handheld device. It is important to note that such preferences would be
very difficult to enforce in a world, where potential callers communicate directly with the devices
in my surroundings.

It is important thus, to structure the middleware in such a way that the access control and
personal preference mechanisms can influence the handling of service requests and the allocation of
resources.

2.4 Ease of engineering

As argued by Pell, et al. [22] and by Gajos, et al. [13], a high-level resource management abstraction
makes it easier to build large systems out of individual components. Many of the interactions do
not need to be defined by the designer but, instead, are determined at runtime by the system itself.

3 Building The Ideal Infrastructure

We have used a new approach to building pervasive computing middleware that addresses the issues
discussed in the previous section. The infrastructure we have already mostly deployed is designed
to provide the following three mechanisms:

Delegation In short, let Anne make decisions that concern Anne. Thus we need to establish an
abstraction barrier that coincides with the boundaries of what concerns any entity (be it a
person, a physical space, an institution or a group of people). Entities have the autonomy of
deciding if and how they wish to interact with the rest of the world.

High-level service discovery Discovery and negotiation are performed at a high enough level of
abstraction to allow adaptivity and flexibility in exercising personal preferences.

Arbitration Arbitration mechanisms are established within each entity to allow numerous tasks
to coexist.
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In Section 4 we outline the engineering details of the components of this infrastructure. First,
however, we discuss the abovementioned mechanisms individually.

3.1 Delegation

For convenience, we introduce the concept of a “society” [23, 8] to mean a collection of software
components acting on behalf of a single entity. Hence, all of the software acting on behalf of Bob,
such as his scheduler, information delivery and management, email alert system, etc, are understood
to belong to a single society. The software managing interactions in his living room belongs to a
different society. There can also be societies representing information providers, institutions, groups
of people, etc.

In our system, we separate the high-level resource discovery and management processes taking
place within and among societies. The basic principle is simple: if we want to find a service that
does scheduling for Bob, we first need to locate Bob’s resource discovery and management system.
It is then the responsibility of Bob’s software to decide how (and if) the scheduling service is to be
provided. If we need to discuss a product purchase, we first contact the manufacturer and request
a sales service. It is then up to the manufacturer to decide how to fulfill the request: we may be
directed to one of the sales specialists or to an automated sales agent.

The advantages of such arrangement are three-fold. First of all, it allows the society’s owner
to make the decisions about the access to its/his/her resources and information. If the society
represents a physical space, it can then use its access control policies to decide what service requests
to grant and which to deny. It can also decide whether or not it wants to divulge the information
about what resources it has at its disposal: after all it would not be desirable to advertise to the
entire world all of the A/V components and displays one has in one’s living room. Yet if a friend
calls, we do want to use that high-definition digital TV. If a society is owned by a person, the
resource management system of that person can decide if to respond to service requests and if so –
how. In both cases, as argued in [4], the decision may be referred all the way up to the person if
the system determines it does not have the necessary information to decide automatically.

Finally, hiding all the individual devices and services from the global (world-wide) discovery
system, greatly reduces the scale at which the global discovery needs to be performed. Firstly, the
sheer number of elements registered with the global discovery service is reduced. Secondly, the
complexity of the descriptions can be reduced: instead of advertising all the parameters of every
device, it may be sufficient to advertise the name and kind of each entity with the option of naming
some of the major services provided (for example, shared conference rooms may want to advertise
their size, and kinds of capabilities).

Also, the concept of meta-societies representing institutions and groups of people, allows us to
hide from the rest of the world many of the internal resources available within such meta-societies.

In case of our Lab, for example, only the public resources, such as the publications service,
and the identities of individual researchers should be visible to the world. Other resources, such
as conference rooms, A/V equipment, or location of the espresso machines are kept internal to the
Lab.

3.2 High-level service discovery

Many of the systems summarized in Section 5 have the capability for describing resources at a high
level as the semantics of the description language is not restricted; few of them, however, suggested
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using descriptions at a level higher than a single taxonomy: printer, display, audio input. As argued
before, communication in terms of high level tasks or services is necessary for applications to be
able to adapt to a wide variety of environments and to individual user’s preferences. If a request is
for a display device, we can only choose between a projected display or a handheld device. If, on
the other hand, the request is framed in terms of delivering a short text message, it can be rendered
through speech, display on an LED sign or on a private device, or even by printing it on a printer.
The choice of the method would depend on the available resources and on the preferences of the
recipient of the message.

We are not unique in suggesting that device-level descriptions are insufficient in pervasive com-
puting. For example, Winograd [29] argues against using the concept of device drivers, Schubiger-
Banz et al. [25] suggest “addressing by concept” in all ubiquitous computing environments (both
spaces and/or collections of mobile devices) and the aforementioned INS [3] uses “intentional names”
for all networked resources.

3.3 Arbitration

Arbitration is essential in any larger system that allows multiple applications running simultaneously
to share scarce resources. It allows individual applications to be written without having to take
other applications’ needs into consideration. Most of the current pervasive computing projects
demonstrate the capabilities of their systems using single task scenarios, which allow researchers
to ignore the problem of resource conflicts altogether. As pervasive computing becomes a fact
of everyday life, independently written applications such as teleconferencing, entertainment, news
updates, etc, will have to function simultaneously in the same environments. The middleware needs
to ensure that applications do not “steal” resources from one another unnecessarily.

3.4 Back To The Scenario

Let us return to the scenario from Section 1.1 and illustrate how that interaction could happen if
we incorporated the mechanisms proposed above.

Figure 3.4 illustrates the discovery steps taking place in this scenario. In our system, when
Bob asked his system to contact Anne, his communication agent would first reserve the necessary
communication resources in Bob’s environment (steps 1 and 2). It would then request of Bob’s
resource manager a service for communicating with Anne (step 3). Bob’s resource manager would
use the global discovery system to establish communication with Anne’s resource manager and
it would then make a request for a communication service of Anne’s resource manager (step 4).
Anne’s software would then verify that Bob was allowed to make such a request. Assuming that
the answer was positive, it would return a handle to an appropriate service. Bob’s software would
communicate with Anne’s communication agent which, in turn would make a request of its own
resource manager for audio and video devices (step 5). Anne’s resource manager would realize that
it controls only a low quality screen and a camera on the handheld device, but knowing that Anne
was in the work room, it would ask the work room for better resources (step 6). The room, having
one display free, would allow Anne’s software to use it. Later, when Bob tried to show a piece
of news to Anne, Anne’s resource manager would again check with the work room if it had any
available resources. Given that both displays in the room were taken, Anne’s resource manager
would decide that the difference in quality between Anne’s handheld device and a large display was
not crucial in this case and would resort to the small screen on the handheld.
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Figure 1: Conceptual flow of the discovery process: initially Bob’s communication agent asks Bob’s
resource manager for appropriate resources needed to establish a video call to Anne (step 1). Bob’s
resource manager forwards the request to the resource manager of Bob’s office (step 2). Once these
resources are reserved, Bob’s communication agent gets in touch with Anne’s communication agent
– the process is mediated by Bob’s and Anne’s resource managers (steps 3 and 4). Finally, Anne’s
communication agent obtains appropriate resources from Anne’s surroundings (steps 5 and 6).

It is assumed that Anne’s software does not really need to be collocated with her. In fact, parts
of her society are probably running at a static location at her home or office thus aiding dicovery.

The multiple steps of delegation arguably make the protocol more complex but let us revisit the
problems raised after this example was originally presented:

1. How can the infrastructure know what the devices in Anne’s vicinity are? This is no longer
necessary – all that Bob’s software needs to do, is discover the entry gateway into Anne’s
“society.” Once this has been accomplished, it is the responsibility of Anne’s software to find
out where Anne is and what devices are available to her.

2. How can we ensure that Anne always has the right to accept or reject the connection? In
the framework proposed here, the request for a connection service comes to Anne’s software
and not to the devices surrounding her. Hence it is up to Anne to set up her software in a
way that it makes automated decisions when appropriate and asks her otherwise. If she has
instructed her software an hour earlier that she did not wish to take any calls for the next
two hours, her software would automatically deny Bob’s request, and there would be no need
to transfer Anne’s preferences from one location to another.

3. Who gets to decide how the information is presented to Anne? Now the decision is clearly
in Anne’s hands. Anne’s resource manager decides whether to use any of Anne’s personal
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devices or to forward the request to whatever environment Anne is in. The request for a
conversation from Bob was delivered to Anne’s communication agent. That agent, in turn,
could decide how to handle the request: whether to use just audio or both audio and video.
In either case it also got to decide whether to accept the connection at all. In case of the news
item provided by Bob, Anne’s personal preferences might cause the system to try to display
the item (as happened in the scenario) but if she were driving, the system would be more
likely to offer to read the news item to her instead.

4. How do we avoid resource conflicts? Organizing resources into societies makes it possible
to build resource management mechanisms that oversee all resources within each society in
a conceptually centralized manner. This arrangement makes it possible for Anne’s resource
manager to see all of the devices available to it (i.e. the handheld device) and the best resource
offered by the work room and to decide what to use.

5. What do we do if Anne is in an environment where the access control mechanisms permit
her to access all of the devices but deny access to Bob? When information is delivered to
Anne’s information presentation service, the subsequent requests for devices come from Anne’s
software and not from Bob’s. Once Anne decided to accept the communication request, it is
now up to her to obtain appropriate resources. The resources are requested on Anne’s behalf
and not Bob’s.

4 Engineering Details Of A Scalable Pervasive Computing
System

For several years the Intelligent Room Project [16] has been developing components of a pervasive
computing infrastructure that fit within the framework described above. We have extensive infras-
tructure to support communication, discovery and arbitration within individual societies. We have
also implemented a prototype system for inter-society discovery and communication, and we are
currently working on a negotiation mechanism that will allow resource managers of different soci-
eties to negotiate use of scarce resources. In the following sections we will describe the individual
components of our infrastructure in more detail.

4.1 Metaglue

Metaglue [23, 8] is a multi agent system implemented in Java. It provides the low level communica-
tion infrastructure for each society. It has a low-level discovery service, called the “Catalog”, that
allows agents to locate one another on the network based on agents’ unique identifiers. Metaglue
supports direct communication via remote method calls using Java RMI mechanism. The coupling
among agents is not as tight as the mechanism might imply – the method calls are mediated through
special proxy objects [27], which, in case of the failure of the destination agent, can contact the
Catalog to retrieve the new location of the failed agent or the closest substitute. The proxy objects
are also used by the resource management system (described below) to occasionally swap the re-
sources granted to agents. Hence, although agents keep executing method calls on the same proxy
object, the real targets of the calls may change. The agents are, of course, notified of significant
changes.
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In addition to synchronous method calls, Metaglue has mechanisms for a publish-subscribe model
of communication. It also provides mechanisms such as persistent storage, automatic restarting of
failed components, customization and support for multimodal input and output.

Metaglue has been successfully deployed in a number of locations: a small conference room, a
small living room, a number of student and faculty offices as well as a bedroom and an information
kiosk [17]. It was the deployment of our software in a number of different locations that made
the need for more adaptive mechanisms real. It also motivated the work on wide-scale discovery
mechanisms that would allow various spaces and users to interact with one another.

4.2 Rascal

Rascal [12] performs two major functions within a Metaglue society: high-level resource discovery
and arbitration among requests for services. It is composed of three major parts: the knowledge base
(implemented in Jess [11]), the constraint satisfaction engine (JSolver [7]), and the framework for
interacting with other Metaglue agents. Resource discovery is performed entirely by the knowledge-
based component of Rascal. Arbitration begins in the knowledge-based part (where relative cost
and utility of various resources are determined) but most of the work on arbitration is done by the
constraint satisfaction engine. The components for interacting with the rest of the Metaglue agents
facilitate communication with service providers and requesters, and enable enforcement of Rascal’s
decisions (i.e., taking previously allocated services away from requesters).

Upon startup, information about all available resources is loaded into Rascal’s knowledge base
(if more resources become available later on, they are added dynamically). Rascal relies on all
resources having the descriptions of their needs and capabilities separate from the actual code
because components in Metaglue are started on demand so Rascal needs to be able to reason about
their capabilities even before they are brought to life. Those external descriptions provide a list
of services that the agent or other resource can provide. For each service provided, agents may
in addition specify what other resources they, in turn, will need in order to provide the service.
For example, the MessengerAgent that provides a message delivery service will need one or more
resources capable of providing text output service. Agents may also specify their startup needs, i.e. a
list of requests that need to be fulfilled for the agent to exist. For example an agent providing speech
recognition service will need a computer, with appropriate speech recognition software installed, in
order to be able to start and configure itself properly.

When Rascal considers candidates for a request, it not only needs to make sure that those
candidates are adequate and available – it also needs to make sure that the needs of those candidates
can be satisfied, and that the needs of the resources satisfying the needs of the candidates can be
satisfied as well, and so on. The final selection of candidates for requests is performed by the
constraint satisfaction engine. Therefore the knowledge-based part needs to evaluate all possible
candidates for all possible requests. This request chaining proves to be extremely valuable: when
the email alert agent, for example, requests a text output service, several different agents are
considered: for example the LED sign and the speech output. The email alert agent may have its
own preference as to what kind of rendition of the text output service it prefers. However if the
communication link with the actual LED sign is broken, the needs of the agent controlling the LED
sign will not be satisfied and so it will not be assigned to the request.

Arbitration in Rascal is based on need estimates provided with each service request, in conjunc-
tion with the concept of utility of a service to the requester and the cost to others. This is a very
simple and arbitrary scheme. It could easily be replaced by a different system (e.g. market-based
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Figure 2: The most common use of Hyperglue. If a resource manager of society A needs to negotiate
resource use with society B, it requests of its local Catalog a handler for communicating with the
resource manager of B (step 1). The Metaglue identifiers for resource managers follow a standard
format so this process can be referred to the low level lookup service such as the Catalog. The
Catalog of society A then realizes that it does not know how to communicate with B so it queries
Hyperglue for the network location of B’s Catalog (step 2). After this query is fulfilled, the Catalog
of A contacts its counterpart in B (step 3) and obtains the handler for B’s resource manager. After
that the resource managers of the two societies can communicate directly (step 4).

mechanisms such as [5]) should there be a need for that. This simple model is sufficient for the
current implementation of Rascal if we assume that all agents within a society can be trusted.

The basic assumption of this schema is that, given a request, each candidate resource has some
utility to the requester. This utility depends on how badly the requester needs a particular request
fulfilled and on how well the resource matches the request. The same method is used to calculate
the utility of the already allocated resources to their owners. When a resource is taken from its
current user, the system as a whole incurs a cost equal to the utility of that resource to its ex-user.
Also when a resource, currently allocated to fulfill a request, is replaced with a different resource,
cost is incurred. This cost is a sum of a fixed “change penalty” and the difference in utilities between
the new resource and the old one (if this difference is negative, it is set to zero).

The arbiter has to make sure that whenever it awards a resource to a new request, the cost
of doing so should never exceed the utility of the awarded resources to the new requester. Rascal
provides a number of methods for calculating utility and for evaluating matches between requests
and resources. Each resource or request description can also be accompanied by its own custom
tools for performing those calculations.

4.3 Hyperglue

Hyperglue has been designed as a low-level inter-society discovery mechanism. It uses the Inten-
tional Naming System (INS) [3] at its core. As argued before, INS is not sufficient as the resource
discovery mechanism for pervasive computing but it can be successfully used as a dynamic, wide-
scale system for locating entry points of individual societies.

Figure 2 shows the most common use of Hyperglue. If a resource manager of society A needs to
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negotiate resource use with society B, it requests of its local Catalog a handler for communicating
with the resource manager of B (step 1). The Metaglue identifiers for resource managers follow a
standard format so this process can be referred to the low level lookup service such as the Catalog.
The Catalog of society A then realizes that it does not know how to communicate with B so it
queries Hyperglue for the network location of B’s Catalog (step 2). After this query is fulfilled,
the Catalog of A contacts its counterpart in B (step 3) and obtains the handler for B’s resource
manager. After that the resource managers of the two societies can communicate directly (step 4).

This picture illustrates the distinction between the low-level and the high-level discovery mech-
anisms. The former is used to establish the communication between societies and their resource
managers, while the latter is used to negotiate if and how user tasks should be performed.

4.4 Inter-Society Service Requests

We are currently designing the protocol for resource managers of individual societies to negotiate
resource use among themselves. This protocol is an extension of the one used to request resources
within a society. The additions have to do with the fact that when two resource managers commu-
nicate, neither of them knows about all the resources that are available to the two of them. If we
look back at the scenario, when Bob sent Anne a news item to look at, Anne’s resource manager
knew that it had a little handheld device that was not being used. It knew also that it was only a
good but not perfect resource for the task. It asked the resource manager of the work room then to
find out if it could offer it a better alternative. The two resource managers needed to communicate
to one another that Anne’s society had a free resource of medium quality, that the resource request
was of average importance, and that the work room had better resources available but they were
currently in use. If Anne did not have her handheld and if it was really important for her to see
the news item, Anne’s resource manager could have negotiated the use of one of the displays given
that Anne’s presentation did not need a display while Anne was talking to Bob.

The situation gets even more complicated when there is more than one person in a room and
each needs resources.

5 Survey Of Existing Infrastructures

The Open Agent Architecture (OAA) [21] is one of the oldest middleware systems that was suggested
explicitly for developing interactions in smart spaces. As the name implies, OAA is an agent
based system, where agents, providing various capabilities are organized into larger applications
at runtime. All communication in OAA is conducted through a central agent called the facilitator
which registers agents’ capabilities and brokers requests. Requests are expressed as tasks that can
be arbitrarily complex. The facilitator will often break them down into simpler sub-tasks before
delegating them to appropriate agents. OAA lacks explicit mechanisms for reserving resources and
for arbitrating among conflicting requests. This seems to stem from the fact that OAA is primarily
used for building complex multi-modal applications (e.g. [6]) but rarely for constructing systems
involving several independent applications. It is implicitly assumed in OAA that all agents own the
physical resources they use and that all tasks are atomic and can be serialized. OAA is apparently
not intended to scale beyond a single environment.

The infrastructure behind the SmartOffice project [15, 14] is organized similarly to OAA: dis-
tributed components communicate through a centralized supervisor. The communication is some-
what more loosely defined than in OAA: messages can be announcements of events (recognition



5 SURVEY OF EXISTING INFRASTRUCTURES 13

event, system event) or requests for tasks or resources. The communication is defined at a high level
and allows loose coupling of components. Somewhat surprisingly, the middleware of SmartOffice
does not address the issue of arbitration even though it is supposed to mediate all interactions
happening in a smart space. The examples presented in the papers include many tasks that are
nearly point-like in time (such as requesting a camera to obtain a picture of an entering person)
and no mention is made of how the infrastructure would cope with activities that require long time
ownership of resources (such as watching a movie or listening to an email being read to the user).

Smart Platform [31] is an architecture currently used in the Smart Classroom project [30].
The project initially used OAA but recently proposed a new approach. Smart Platform, uses
a “hybrid” communication scheme: messages are sent through a central broker using a publish-
subscribe mechanism, but streamed data is sent directly between components. Current descriptions
of Smart Platform do not address the issues of resource or task management directly. Only lower
level communication protocols are described. The project proposes to use two kinds of speech acts
for all messages: the inform and query, thus suggesting a high-level communication model, which
would allow loose coupling.

The Gaia Operating System [24] has a discovery and resource management component [18] that
deals with resources at the level of CPU cycles, available memory and communication bandwidth.
It employs a number of mechanisms that are of interest to us. Most importantly, unlike many
other discovery systems, it allows the components to specify in their descriptions not only services
they provide but also the services they, in turn, need to function properly. They are called the
“prerequisites.” This allows the resource manager to allocate only those resources to a request that
are likely to be really able to provide the service. Unfortunately, it is unclear how the system deals
with multiple applications contending for the same resources. On one hand there is a mention of
“reservations” but on the other hand there is a description of a mechanism for notifying applications
if another application has taken over some of the resources previously allocated to them (thus
implying that the reservations are not necessarily honored).

One of the solutions proposed for the Portolano project [1] involves the concept of “data-centric
networking” [10]. In such a system, various communicating components would no longer send data
packets to individual network addresses. Instead, they would send events addressed by complex
descriptions of capabilities of the receiver. The network would actively route the events toward
appropriate destination.

The Intentional Naming System (INS) [3] is a resource discovery system, in which various
participating resources advertise their capabilities as opposed to their network address. INS was
intended as a more dynamic and more expressive alternative to DNS. Typically, a resource such
as a printer, would advertise its location, basic capabilities as well as current queue length to the
INS. INS can then use this information to route queries such as “find me a least-loaded color
printer nearby.” INS supports two options for discovery: early and late binding. The first returns
an network address of a resource in response of a query. The latter finds the best match for a
description every time a message is sent to it. Late binding offers added robustness in cases when
a device changes its location or if a better device becomes available. This system is, at least in
principle, supposed to scale beyond a single organization. According to the current design, all
participating devices are visible throughout the network.

The SHARP Resource Coordination Protocol takes a very different view of resources and re-
source management in an agent system controlling an intelligent home [20]. SHARP is the only
system described in this paper that operates in a simulated rather than real environment [19].
As a consequence, its designers could ignore some of the real-world challenges that other groups
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needed to address but could, instead, attempt to identify further challenges. In contrast to other
systems described here, SHARP manages such resources as hot water, noise, coffee beans and other
physical products and needs of agents operating in an intelligent home. In terms of mechanisms,
SHARP assumes that in case of resources such as hot water, the agent responsible for heating the
water would be in charge of managing it. Agents are allowed to make reservations but the concept
of priority allows agents with urgent needs for a resource to override reservations made by other
agents. Other resources, for example noise, are supposed to be managed by all concerned agents
collectively. The exact mechanism was not specified. One striking limitation of SHARP has to do
with a lack of mechanism for managing a resource if more than one agent can provide it. Hence
if we added a second water heating agent in the house, it is not clear how the two agents would
negotiate which one of them should fulfill which requests to ensure maximum utility of the entire
system.

6 Contributions

In this paper we have indicated a number of ways in which prevailing approaches to building software
infrastructure for pervasive computing fall short of delivering on their promise. In particular we
have indicated that low-level resource discovery mechanisms proposed by a number of projects are
not sufficiently adaptive, scalable or respectful of social norms, personal preferences, or protective
of people’s privacy.

We have sketched out a framework for building an infrastructure that, we believe, will allow us
to make pervasive computing truly pervasive. The framework hinges on the concepts of delegation,
arbitration and high-level service discovery.

We have built and tested a majority of the components of the proposed infrastructure.
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