Giving Directions to Computers via Two-handed Gesture,
Speech, and Gaze

by
Edward Joseph Herranz

S.B. Mathematics with Computer Science
Massachusetts Institute of Technology
Cambridge, Mass.

1990

SUBMITTED TO THE MEDIA ARTS AND SCIENCES SECTION,
SCcHOOL OF ARCHITECTURE AND PLANNING
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
July 1992

(© Massachusetts Institute of Technology 1992
All Rights Reserved

4
Signature of Author e e ey
Media Art%md Sciences Section
July 2, 1992
Certified by C, e

~ “Richard A. Bolt
Senior Research Scientist, MIT Media Laboratory
Thesis Supervisor

N N [ 4
( —_
Accepted by. P e — v o —
MAS Stephen A. Benton
sﬁﬁ’}‘éﬁﬁ‘,}’&_g‘gywm Chairman, Departmental Committee on Graduate Students
NOV 23 1992

s
PP Lo



— Room 14-0551
- — 77 Massachusetts Avenue

. . Cambridge, MA 02139
MITL|brar|eS Ph: 617.253.2800
. Email: docs@mit.edu
Document Services http://libraries.mit.edu/docs

DISCLAIMER NOTICE

The accompanying media item for this thesis is available in the
MIT Libraries or Institute Archives.

Thank you.



Giving Directions to Computers via Two-handed Gesture, Speech, and Gaze
by
Edward Joseph Herranz

Submitted to the Media Arts and Sciences Section,
School of Architecture and Planning
on July 2, 1992, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract
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Chapter 1

Introduction

One of the principal goals of the Advanced Human Interface Group (AHIG) at MIT’s Media Lab
is to make it possible for people to communicate with computers through concurrent speech,
gesture and gaze. Refer to [1] for a discussion of some of the issues that this research group
is involved in. Not everyone can use a keyboard or a mouse, or program a computer, but
most of us commonly use speech, gestures and gaze in order to communicate. The current
input technologies allow: eye-tracking, gesture-tracking and discrete speech recognition. The
modes for machine output are: computer graphics and speech synthesis. The integration of
such technologies is a task far from trivial, and there are many complex issues to deal with.
The technologies used are often not extremely dependable, so their imperfections have to be

taken into account, and sometimes some hardware has to be built.

The AHIG has developed a system which allows a user to communicate to a machine via con-
current two-handed gestures, speech and gaze (see Figure 1). The interaction environment
deals with the arrangement of three-dimensional figures. The interactions consist of scalings,
rotations and translations. This environment will allow to demonstrate the types of desired
communication, with a stress on two-handed gestures. Gazes consist mainly of fixations. Fixa-
tions are used to determine reference, a form of “visual deixis.” The gestures studied consist of

a variety of two-handed actions. The types of gestures allowed are spatiographic and kinemimic.
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Figure 1-1: Diagram of Overall System

Refer to Section 1.1 for more details.

1.1 Historical Perspective

An ancestor of this work was “Put That There,” ! a system developed by the former Architecture
Machine Group at MIT, which used speech and a hand-held three dimensional pointer as the
modes of interaction [2]. Another precursor was Starker’s Gaze-directed Graphics World with
Synthesized Narration, which allowed a user to obtain information about objects located on a
revolving planet by simply looking at them [31]. The current work combines all three modes
of input— speech, gesture and gaze— with gestures expanded to two handed actions, not simply

pointing.

Most of the prior work done in gesture recognition by computer has dealt with one-handed

1Gee section 2.5.2 for a more detailed discussion on this project.
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direct manipulation interfaces. Examples of this work are Weimer’s and Ganapathy’s synthetic
visual environment [37] and work by Sturman et al on interaction with virtual environments
[33]. The latter work classifies interacting with virtual environments using hand-gestures into
three modes. The first mode consists of the user “reaching” into the simulation to manipulate
elements of the graphical world. In the second mode, the gesture-trackers can be thought of
as abstracted graphical input devices such as a button or a locator. In the third mode, hand
movements can be thought of as a stream of tokens in some language, e.g., the American Sign
Language. The current work is not concerned with these three modes of interaction, but rather

with having the computer “listen” and “look” at the user and “understand” him or her.

In the present study, interaction between human and machine occurs outside of the graphical
environment. The interaction is one of delegation or indirect manipulation: describing how
something is to be done to the machine as “agent” rather than using computer “tools” to

perform a “direct manipulation.”

This work views computers as “agents” that help humans accomplish tasks. The sense of the
interaction is not that of “interface as mimesis,” in the way described by Laurel in [19], where
the computer interface becomes “transparent” to the user and the user “performs” all the tasks

by himself or herself; instead, the user’s requests are performed by the “agent.”

The computer should be able to understand our “gestural language”; the user shouldn’t have
to learn a “new language” to interact with a computer. The types of gestures that will be

analyzed will be deictic, spatiographic and kinemimic, which are all coverbal gestures.

Nespoulous references a gestural typology in [26] that includes the type of coverbal gestures,
which most closely describes the kinds of gestures that will be studied in this work. Cover-
bal gestures can be illustrative, expressive or paraverbal. Illustrative gestures can be deictic,
spatiographic, kinemimic, or pictomimic. Deictic gestures consist of pointing at objects which
are the referent of a lexical item found in the subject’s speech. Spatiographic gestures consist
of the outlining of the spatial configuration of the referent of one of the lexical items. Kine-
mimic gestures outline the action referred to by one of the lexical items. Finally, pictomimic

gestures outline some formal properties of the referent of one of the lexical items. The other
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types of coverbal gestures—expressive and paraverbal gestures—will not be covered in this current
study. Expressive gestures are facial expressions and arm/hand movements to convey emotion.

Paraverbal gestures are head or hand movements accompanying speech intonation and stress.

1.2 Thesis Objectives

The performed work consists of building a system that allows a user to interact with a graphical
environment using two-handed gestures, speech and gazes. People communicate with each
other via speech gesture and gaze; this work will attempt to allow users to communicate with

a machine in a similar fashion.

The chosen context of interaction is one such that all the discussed concurrent modes of human-
computer communication can be demonstrated extensively. The context consists of a three-
dimensional graphical world with objects. The user can refer to the objects via fixations.

Different kinemimic gestures can be used to modify the location of objects.

Although this section may give the impression that the integration of the system is a herculean
task, it should be noted that a couple of similar systems, which have concurrent speech, gestures
and gaze, have already been implemented. So most of the modules described in this section
already exist. The novelty of this thesis is that it is the first time that two-handed gestures

are incorporated with speech and gaze.

1.3 System Components

1.3.1 Abstraction of Device Input

There should be at least one level of abstraction above the raw data from the input devices,
otherwise it would be hard to make any sense out of the continuous stream of raw information

that “pours” from the input devices. For speech the lowest level is words. Then, sentences are
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formed which translate into actions. For eyes, the raw data is translated into fixations. For
gestures, this abstraction process is more complex for many reasons. Several different techniques
are under study by our group. One consists of looking at the velocity plots of the positions of
the hands to locate points of interest. This approach was used in one of the prototypes of the

system.

1.3.2 Eye-tracking

The current eye-tracking method, code and hardware, used for this work is as documented
by Thorisson [35]. The current eye-tracking hardware is a head-mounted system, giving the
user a considerable amount of freedom of movement. The code associated with the eye-tracker

performs calibration and interpolation of data, as well as detection of fixations.

1.3.3 Gesture-tracking

The existing software to drive the DataGloves was used. As discussed recently in Section 1.3.1,
some work is being done now to detect “gesture features.” Refer to Appendix 3 for details on

the hardware.

1.3.4 Hardware to Sync Eye-tracker and Two DataGloves

Digital circuitry was designed and built in order to allow the head mounted eye-tracker to
function in unison with the two DataGloves. All three devices use Polhemus magnetic sensing
cubes as their spatial locators. These cubes need to be synchronized in order to work properly

in unison, without interference.

In order to be able to operate both DataGloves and the head-mounted eye-tracker all at once,
the maximum update frequency of any of these devices has to be reduced to 20 Hz. This is a

considerable limitation, but did not prevent the ideas presented here from being realizable.
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1.3.5 Parser

A natural language parser was developed in C. The parser itself is not very sophisticated; there
was no real need to build a powerful parser because the sentence format is very limited. Refer

to Section 4.7 for details.

1.3.6 Coordinating Multi-modal Input

All of the information from the input devices has to be coordinated somehow and interpreted
together as a whole. This was to be done in a way similar to that described and implemented
by David Koons [18]. All the three input modes, speech, gesture and gaze are individually time
stamped. Then this multi-modal information is included in a frame. Frames are then analyzed

to see if a significant action by the user took place.

1.3.7 Input Interpreter and Graphics World

Different modules have been implemented that will piece together all of the information obtained
from the different modes of communication and perform the desired action on the objects in
the graphical world. Mverse, an object-oriented graphical manager was developed by the AHIG
for general purposes. The “interpretation” code was the most complex part of the system, as

well as the hardest to implement.

1.4 Justification

It is natural for humans to interact with other humans using speech, glances and gestures.
Thus, it is be useful to assess whether such type of interaction between human and computer is
feasible with today’s available technology. The context of transforming objects in space suggests

itself because of its richness of interaction possibilities.
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The interface implemented in this thesis is powerful. It would be very hard to emulate it with
today’s “standard” interface tools, such as the keyboard, the mouse, and knobs. Interacting
with objects in space is complicated; if one were to “link” graphical transformations to such
things as an array of knobs, the resulting interface would be non-intuitive and large. For
example, if a given knob translates an object along its horizontal axis in “object space,” 2 then
the direction of movement which is viewed depends on the object’s orientation; Turning the
knob clockwise does not guarantee the same result, sometimes the object may move to the

right, other times to the left, depending on which way the object is facing.

1.5 Relevance of Gaze, Gesture and Speech

In order to justify this thesis it is necessary to show that the communication modes that will
be used have proven to be useful. It must be shown that these modes convey information when
used in human-human conversation and that the current technology is capable of obtaining
accurate enough data from these modes. The three corﬁmunication modes used in this work

are: gaze, gesture and speech.

1.5.1 Gaze

Moving the eyes is natural; it requires little conscious effort. When a human is interested in a
nearby object he or she tends to look at it. The retina of the eye is not uniform. The central
part of the retina, the retina, is the only section that allows sharp vision. Eye movements can
be broadly classified into fixations and saccades. Saccades consist of rapid motion to locate
the fovea in a different portion of the visual scene. During fixations the eye does not remain
still, several types of small, jittery motions occur [15]. The eyes are always active, so all eye-

movements cannot be interpreted as intentional.

The AHIG has used different eye-tracking setups. These setups have all employed corneal /pupil

2See Section 4.9.1.
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reflection technology. They require that a camera is focused on one of the user’s eyes, and that
an infra-red light source is aimed at the same eye. Refer to Appendix 3 for details. The first
eye-tracker used immobilized the user’s head by forcing him or her to use a chin rest. The
second one had servo-driven mirrors attached to the camera, allowing the system to follow
the user’s pupil without the need of a head restraining device. This latter tracking method,
developed as a Master’s thesis by Tim McConnell [21], did not prove to be accurate enough.
The current eye-tracking system consists of a small head mounted camera, with an infrared
LED light source, along with a Polhemus locating-cube, to sense the position of the user’s head

in space.

India Starker developed a system in which a user could interact with a graphical environment
with the use of gazes; refer to [31] for details. The system would communicate information to

the user about objects selected by the user’s gaze.

1.5.2 Gesture

Gestures are bodily movements that are considered expressive of thought or feeling. They
add information to speech. Gestures are natural forms of communication between humans.
Due to hardware limitations, only hand gestures were analyzed in this work. Gestures are a
manifestation of a spontaneous mode of representation of meaning, and such representations can
become standardized and transformed into arbitrary symbolic forms (American Sign Language)
[25]. Arbitrary gestures are not considered in this work. Nespoulous and Lecours give a
taxonomy of gestures in [26]. Gestures can be one of three different types: arbitrary, mimetic

or deictic gestures.

Humans often use both their hands when gesturing; therefore both hands ought to be tracked.
Buxton and Myers show that certain tasks, representative of those found in CAD and office
information systems, can be significantly improved by the use of two hands as opposed to
one [5]. Some previous work using two-handed gestures and speech in the context of narrative
episodes has been done at the AHIG [3]. In this work, a simple example of an episode of vehicles

in motion was implemented, which also allowed the user to spatially lay out static objects with
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the use of gesture. Please refer to Appendix 3 for details on the hardware used for gesture

tracking.

1.5.3 Speech

Speech is the most powerful communication channel, but it is often insufficient alone. In human-
to-human conversation, many details are left out because they are part of an “obvious” context,
which could be picked up if the computer knew where the individuals were glancing at, and
how they were gesturing, what they were pointing at, and so on. This does not imply that
the computer would be able to pick up the entire context of the conversation, but it would do

significantly better than if all it could do was listen to the conversation.

It is common for humans to describe spatial relationships to each other, and aid the description
with hand gestures. For example, everybody has experienced being given directions by someone
who uses his hands to describe the path we should take. It almost seems that one could not give
directions without using hand gestures, for they are a very “natural” mode of communication

to use.
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Chapter 2

Background

2.1 Justification of Gestural Interfaces

Originally, our hands were nothing but pincers used to hold stones: Man’s genius
has been to turn them into the daily more sophisticated servants of his thoughts as
a homo faber and as a homo sapiens.—André Leroi-Gourhan, Gesture and Speech,

1964-1965 1

Hauptmann conducted an experiment with people using gestures and speech to manipulate
graphic images on a computer screen in 1989 [13]. A human was used as the “recognition
device.” The analysis showed that people strongly prefer to use both gestures and speech for
the graphics manipulation, and that they intuitively use multiple hands and multiple fingers
in all three dimensions. A surprising amount of uniformity and simplicity in the gestures
and speech was discovered. Hauptmann concluded that the evaluation of his results strongly

indicates the development of integrated multi-modal interaction systems.

Users were asked to perform three types of operations: rotation, transposition, and scaling

1 As quoted by Nespoulous and Lecours in [26]

20



operations. The users averaged the use of 1.2 hands for rotation, 1.1 hands for transposition
and 1.5 hands for scaling. Out of all the gestures used by the 36 subjects who participated in
the experiment, 199 gestures were classified as rotations, 137 as translations and 128 as scaling
gestures. 58% of the subjects preferred the use of gesture and speech, 19.4% preferred gestures

alone and 22.2% liked speech alone the best.

In 1986, Buxton and Myers conducted two experiments to study two-handed input [5]. The
experimental tasks were representative of those existing in CAD and office information sys-
tems. The first experiment consisted in evaluating the performance of a compound selec-
tion/positioning task. The two subtasks were performed by different hands using separate
transducers. Novice users quickly learned to accomplish both tasks simultaneously, without
any suggestion. The speed at which the task was accomplished was directly related to the
degree of parallelism which the test subject used. This experiment showed that users are able

to cope with using both hands at once to their advantage in the right environment.

Their second experiment consisted of evaluating the performance of a compound navigation/selection
task. It compared a one-handed versus a two-handed method for selecting words in a document.
People who used both hands did significantly better than those using only one, but very few of

the subjects used both hands simultaneously (the ones that did had the fastest times of all).

2.2 Gestural Interfaces: Introduction

Gestures are defined by Webster’s VII Dictionary as the use of motions of the limbs or body as
a means of expression. They are not random components of the communication process; they
have varying degrees of specification. Gesture is a fundamental part of direct interpersonal-

communication, just as speech and facial expressions.

Not everyone can use a keyboard or a mouse, or program a computer, but most of us use speech,
gestures and gazes in order to communicate. It seems important to develop technology to allow
computers to recognize these modes of communication in order to investigate the potentials of

this type of interface. None of these interpersonal-communication modes is independent of each
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other but, obviously, speech is the most powerful one, when considered alone.

This section is a study of gestures and their potential use as an interface to a computer. Gestures
are not considered alone, though; they are analyzed together with speech. Gestures usually “fill-
in” elements omitted in speech, but they can also convey full meaning, independent of speech.
For example, one might ask someone “Which of these objects do you prefer: the blue one or

the red one?” to which he responds by merely pointing at the red object.

This is a review of current gesture taxonomies and the work up-to-date toward building com-
puter interfaces which use gestures. This section also proposes future work in the field of

gestural interfaces.

2.3 Gestural Taxonomy

Where ignorance ezxists theories abound.—Leucippus, ca. 460 B.C. 2

There doesn’t seem to be a widely agreed taxonomy of gestures; however, if one closely ana-
lyzes the different taxonomies in the literature, many similarities occur. Bernard Rimé and Loris
Schiaratura have recently published a gestural taxonomy which collects and organizes most sig-
nificant previous ones which have appeared in the literature [28]. These authors present what
they refer to as the revised Efron system of speech-related hand gestures which is divided into
three main categories: “ideational” gestures, depictive gestures, and evocative gestures. Efron’s
original system proposed in 1941, which was in part based by a classification of gestures intro-
duced by Wundt (1900/1973) [39], contains virtually all gestures proposed in all the taxonomies

thereafter.

2 As quoted by Mary Ritchie Key in {16]
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2.3.1 Gestures Referring to the Ideational Process

Gestures referring to the ideational process mark the speaker’s pauses, stresses and voice into-
nations. According to Efron, there are two major subclasses in this category: speech-marking

hand movements, and ideographs.

Speech-marking hand movements comprise what Efron named batonlike gestures; these time the
stages of the referential activity. There are a number of gestures referred to in the literature
which are a variant of baton movements. Freedman (1972) refers to punctuating movements
which relate to the emphatic components of speech and minor qualifiers which are stylized
accentuation movements [12]. McNeill and Levy (1982) distinguished batonic movements which
stress some linguistic item that the speaker wishes to emphasize [22]. Ekman and Friesen
(1972) defined batons as accenting a particular word or phrase. McNeill (1987) mentioned
small uniform movements, which he called beats. Such movements appear with clauses that are
performing an extranarrative role, such as anticipating a story. Cosnier (1982) gathers under

paraverbal gestures those that stress speech emphasis, or mark the major stages of reasoning [8].

Efron considered a second class referring to the ideational process which he named ideographs.
They consist of gestures which sketch in space the logical track followed by the speaker’s think-
ing. Similarly, McNeill & Levy(1982) recognized what they called metaphoric gestures, which

convey some abstract meaning occurring in speech [22].

2.3.2 Gestures Referring to the Object: Depictive Kinds

There are two types of gestures in this class, according to Efron: physiographic and pantomimic

gestures. Physiographic gestures can also be named iconic gestures.

Iconic gestures consist of hand movements which parallel the speech by providing a figural repre-
sentation of the object being referred to. Freedman (1972) included this type of gestures under
the label of motor primacy representational movements [12], McNeill & Levy (1982) named

them iconic hand gestures [22] and Cosnier (1982) mentioned them in his class of illustrative
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gestures [8].

The class of iconic gestures is subdivided into three categories: pictographic, spatiographic, and
kinetographic gestures. Pictographic gestures outline some formal property of the referent of
one of the lexical items. For example, an upward spiraling movement of the finger of person may
be used to signify a spiral staircase. Spatiographic gestures outline the spatial configuration
referred to by one of the lexical items. For instance, a speaker may use his hands to indicate
the relative location of buildings or streets, when giving directions to someone. Kinetographic
gestures outline the action referred to by one of the lexical items. These kind of gestures
correspond to such movements of the hand as a descending motion which parallels the use of

the expression “falling down.”

The other category of depictive gestures proposed by Efron are pantomimic gestures, which
consist of true mimetic actions. For instance, to illustrate the words “he grasped the hammer,”
the speaker’s hands shape an imaginary hammer. Pantomimes often engage the whole body, so
the speaker also becomes an actor. Pantomimes, in their strongest form, may not require any

speech whatsoever, becoming autonomous.

2.3.3 Gestures Referring to the Object: Evocative Kinds

Efron’s last two classes of gestures can be put under the same category, according to their
evocative aspect. These gestures no longer depict the referent, but rather, simply evoke it. The

two types of gesture in this category are deictic and symbolic gestures.

Deictic gestures are hand gestures which refer to objects that are visually or symbolically
present. In lay terms, they are referred to as “pointing” gestures. This type of gesture has
been considered by every gesture classification scheme. Pointing gestures can be relatively
easily interpreted by a computer, with the appropriate hand-sensing hardware, and become a

powerful interface tool, as will be discussed later.

Symbolic gestures, named emblems by Efron, are gestural representations which do not have a

morphological relationship with the object that is being represented. A typical example is the
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waving of the hand to signify a greeting. According to Ekman and Friesen (1972), they are
verbal acts that (1) can be directly translated into one or two words, (2) have a precise meaning
to a group of people, and (3) are always used intentionally for the purpose of communicating a

particular message to the receiver.

2.4 Direct Versus Indirect Manipulation

Some authors consider other types of gestures besides the ones referred to in Section 2.3. These
kinds of gestures are what I refer to as direct manipulation gestures. For example, Buxton [6]

refers to a range of gestures that are almost universal, and lists a few:

pointing at objects

o touching objects

e activating objects such as controls, for example by pushing, pulling, or twisting

¢ moving the position or orientation of objects

o mutating the shape of objects by squeezing or stretching

¢ handing objects to others
The only one of these gestures that can be found in the previously discussed taxonomy consists
of pointing gestures, more properly named deictic gestures.

Direct manipulation gestures are an interesting and useful mode of interaction; they are espe-
cially well suited for applications were a great need of precision is needed, such as computer
aided design, but they are not true gestures. There is nothing to be interpreted about turning a
dial, it is simply turned a certain amount and that is all there is to it. This thesis is concerned

with gestures that require interpretation, not with direct manipulation interfaces.
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The ultimate “direct manipulation metaphor” is perhaps best described by Brenda Laurel

in [19]. She believes that the computer interface should become “transparent” 2 to the user.

In Sturman’s doctoral dissertation [34], the mapping of the hand to various complex objects,

such as a crane, is studied in a “direct manipulation” sense.

2.5 Systems with Gestural Interfaces

2.5.1 Hand-Sensing Hardware

The rigorous study and application of gestures has not been possible until relatively recently,
simply because there were not any devices which allowed a somewhat reliable and not too
obtrusive “measurement” of hand gestures. Perhaps the most widely hand gesture tracking
device in use currently are the VPL DataGloves, though other devices are currently out there
in the market. It is important to note that these tracking devices alone do not recognize gestures
in the sense discussed in Section 2.3 by themselves, they only provide information about the

hand’s shape and location in space (See Section 3.1 for details).

Several Polhemus cubes can be used in unison, but the maximum sampling rate becomes 60/n,
if there are n cubes. This would be necessary, for example, if one were interested in tracking
the position of the entire upper body. A new company, Ascension Technology, has developed a
similar sensor, using different magnetic technology, which allows to use several cubes at once,
e.g., five, in parallel without diminishing the sampling rate, which is 100 Hz. The problem
then becomes dealing with too much input. Another company, Exos, makes extremely accurate

hand and wrist-shape trackers, but they are considerably cumbersome.

There are other ways of doing body tracking: The Architecture Machine Group at MIT, devel-
oped a full-body optical tracking suit [4] in the early 1980’s. This suit also included a glove,
perhaps the first hand-tracking device: it used infrared LED’s (light-emitting diodes) and a

3Gee Section 1.1.
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pair of cameras with infrared filters to do the positioning. VPL also has a full-body suit, which

employs the same fiber-optic technology as the DataGlove.

2.5.2 “Put That There”

Perhaps the first system developed which made use of hand gestures was “Put That There,”
designed with Bolt developed by the MIT Architecture Machine Group in 1979 [2]. This work
allowed a user to command simple shapes about a large-screen display surface with the use of
deictic gestures and speech. Pointing was detected using Polhemus sensing-technology. This
project allowed the free usage of pronouns, since voice can be augmented with simultaneous

pointing.

Users could create, move, change, name, interrogate and delete shapes via the concurrent use of
speech and deixis. The level of accuracy of the speech recognition hardware was about 65% [2].
Chris Schmandt and Eric Hulteen, who programmed “Put That There,” did everything possible
so that the user would not have to repeat words unnecessarily. Computer visionary Alan Kay, in

an interview in Psychology Today, described interacting with the system as being “like dealing

with a friendly, slightly deaf butler...From the standpoint of your expectations you are willing
to deal with it.” “Put That There” was one of the first steps, if not the first one, towards

multi-modal interaction involving speech and gesture combined.

2.5.3  “Virtual Environments”

The concept of a “virtual environment” is an abstract space in which the user places himself
“inside.” Sturman, Zeltzer and Pieper [33] classify interacting with virtual environments using
hand-gestures into three modes: The first consists of the user “reaching” into the simulation
to manipulate elements of the graphical world. For the second one, the gesture-trackers can
be thought of as abstracted graphical input devices such as a button or a locator. In the last
mode, hand movements can be thought of as a stream of tokens in some language, e.g., the

American Sign Language.
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The issue of “virtual environments” distracts us from our goal of analyzing gestural interfaces.
Gestures have to be interpreted whether the user places himself “inside” or “outside” of the
computer. Some of the work that has been done in “virtual reality” consists of connecting a
number of users into a common “virtual world” where they can interact. Users can then use
gestures and body language to communicate with each other-it is the hope of the author that

computers will be able to understand them as well.

2.5.4 Systems with Gesture and Speech Input

Neal et al [24], developed the CUBRICON system (Calspan-UB Research Center Intelligent
CONversationalist). This system was part of the Intelligent Multi-Media Interfaces project,
which is devoted to the application of artificial intelligence methods to further the develop-
ment of human-computer interface technology which will integrate speech input and synthesis,
natural language text, graphics and deictic gestures for interactive man-computer dialogues.
CUBRICON incorporated pointing and simple drawings with speech input; a mouse was used

for input, not the free hand.

At the same time, a different system was developed by the MIT Media Lab’s Advanced Human
Interface Group (AHIG) 4 [18]; it incorporated free-handed pointing, eye-tracking and speech.
This system represents a step forward in functionality over “Put-That-There” in that it allows

the user to indicate the referent by either hand or eye, or both.

Cohen and Sullivan et al [7] developed two systems similar to CUBRICON, also in the late 80’s.
SHOPTALK, an intelligent interface system in the domain of circuit manufacturing, developed
at SRI ,and CHORIS, a similar system, at Lockheed. Natural language and deixis can be used to
interact with these two systems. The advantage of these systems with respect to CUBRICON is
that they are better equipped to deal with the difficult problems of natural language anaphora,
the phenomenon of parts of speech referring back to previous parts; it can be considered as

“verbal deixis.” Anaphora is resolved via graphical rendering and deictic gestures.

4Both CUBRICON and the AHIG’s multi-modal interface system were funded by DARPA and monitored by
the Rome Air Development Center
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Weimer and Ganapathy developed a practical synthetic visual environment for use in CAD and
teleoperation in 1989, at AT&T Bell Laboratories [37]. Hand gesturing was used to implement
a virtual control panel, and some three-dimensional modeling tasks. The addition of simple

speech significantly improved the interface.

Also in the late 1980’s Herranz implemented some of Bolt’s ideas about two-handed gestures

with speech [3]:

e indicating graphical manipulations (kinemimic)
e specifying static layouts (spatiographic)

e describing dynamic situations (kinemimic)

2.5.5 Using Neural Nets for Symbolic Gesture Detection

In 1990, Fels & Hinton, from the University of Toronto, developed Glove Talk. The system
consisted of a VPL DataGlove connected to one end of a neural net, and a speech synthesizer
on the other. The result is a system that can, in real time, recognize a subset of American Sign
Language (ASL), and generate continuous speech (with control of stress and speed through

gesture).

Murakami and Taguchi developed a similar method for recognition of Japanese sign language
in 1991 [23]. A basic neural network was trained to recognize an alphabet of 42 symbols. Then,
a recurrent neural network was used to detect words, which are specific combinations of the

forementioned symbols.

Neural networks cannot be effectively used to detect coverbal gestures because they are not as
well defined as sign-language (symbolic) gestures are. There would be infinitely many training

samples. Please refer to Appendix C for details on the back propagation algorithm.
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2.6 Gesture Recognition

Action is a sort of language which perhaps one time or other, may come to be

taught by a kind of grammar-rules.— William Hogarth (1753), Analysis of Beauty 5

Detecting specific gestures is not extremely complicated in sign language, as we will see in
Section 2.5.5, but most other types of gestures are hard (because “templates” cannot be used).

Work must be put into developing ways of abstracting three-dimensional gesture data.

2.6.1 Feature Extraction: Searching for the “Phonemes” of Gestures

Current hand-tracking technology can provide a measure of the hand’s position in three-
dimensional space and the hand’s shape. It is very hard to detect complex types of gestures,
such as coverbal gestures, directly from this data. Perhaps the simplest type of gestures con-
sist of signs, that are easily recognized. Signs, typically, are inflexible gestures. For example,
consider the gestures of sign language: if they were too flexible they could not function. Signs
are easily recognized because data from the device can be mapped directly to the sign: a direct

template matching. Murakami and Taguchi [23] developed such a system in 1989.

In order to facilitate the interpretation of complex coverbal gestures, there should be at least
one level of abstraction beyond the raw data provided by the tracking device. This level of
abstraction can be thought of as an an attempt to distinguish some characterizing components

of all gestures: in other words, the “phonemes of gestures,” or “gestural features.”
g p g g

The following discussion on feature extraction is based on some initial work done at the AHI ©
Group of the MIT Media Lab. The gesture-tracking hardware employed by this research group
consists of the VPL DataGlove (Refer to Section 2.5.1 for details). This device provides the
x,y,z coordinates and euler angles (roll, pitch and yaw) of a small sensor located on the hand,

and angle values of the first two joints of all the fingers. The position sensor is located on the

®As quoted by Mary Ritchie Key in [16]
8 Advanced Human Interface
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part opposite the palm. All of these sensors are actually attached to a flexible-cloth glove which

the user wears.

If attention is paid only to the raw device data when analyzing a complex gesture, such as a
kinemimic gesture, we are faced with a large stream of positional coordinates and finger-joint
values which is very hard to make sense out of. One of the first requirements of extracting
generalized features out of gestures was to somehow develop a mechanism that could divide a
gesture into “strokes.” David Koons, a PhD candidate at the AHI Group, suggested simply

calculating the magnitudes of three dimensional velocity and acceleration vectors.

Changes in velocity and acceleration of the hand typically mark the beginning and ending of
gestures, as well as characterizing the subparts of gestures. Most of the analyses done by the
AHI Group have concentrated on velocity. It may prove useful to pass the magnitude of the

velocity through a “filter,” using the normal, or Gaussian, distribution.

Another “filter” which could be used is the inverse of the sigmoid function (the inverse of
the standard threshold function used in neural networks trained with the back propagation

method).

The filter smoothens inaccuracies of the hardware 7. The filtered data also seems to provide
a more accurate depiction of what actually happens because when the velocity increases the

number of data records received per unit time decreases as the device sampling rate is a constant.

"Glitches in the data occur randomly.
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Chapter 3

Hardware

This chapter describes the hardware that was used for this project.

3.1 Gloves

The DataGlove is a device, produced by VPL, Inc, which can transmit, in serial, the location,
orientation and shape of a given user’s hand. The location and orientatioﬁ is calculated by the
Polhemus cubes (P-cubes) an instrument constructed by Polhemus Navigational Sciences, Inc.
The P-cubes provide three-dimensional coordinates and the three Euler angles of the sensor-
cube with respect to a basis set up by the base-cube, with an accuracy of 1/60th of an inch.

The P-cubes use magnetic field-sensor technology.

The shape of the hand is determined using VPL’s own VPL fiber-optic technology: Optic fibers
are used to measure the degree of flexion of finger-joints. Light is emitted through one end
of the fiber and the amount of light received on the other end is also recorded. As a finger-
joint is bent, the amount of light transmitted via the fiber decreases. The relation between
the bending of the fingers and the light loss is not linear, as what would seem a good initial

guess, but quadratic. After a simple calibration has been made, the DataGlove can figure out
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with great precision how many degrees a certain finger-joint has been flexed. In the standard
configuration, each dataglove has ten optic fibers, two for the first two inner joints of each

finger.

The data record sent out by the glove-box consists of sixteen fields. The first ten fields corre-
spond to the angles of the finger joints (there are two angles for each finger). The next three
fields correspond to the three-dimensional location of the Polhemus sensor attached to the glove.
The last three indicate the roll, pitch and elevation of the Polhemus sensor. The glove-box can

send these data records at a rate of 30 Hz or 60 Hz.

3.2 Head-mounted Eye-tracker

The eye-tracker is an instrument which measures the user’s visual line of gaze (where he is
looking in space). Tracking the position of the user’s eye in space is not sufficient for human-
computer dialogue. To illustrate the difference, suppose that the tracker detected a small
vertical motion of the pupil. This could either indicate that the user’s head moved, therefore,
he would still be looking at pretty much the same point; or that the user’s eyeball rotated with

respect to his head, causing a large change in where the eye is looking.

There exist different technologies to perform visual-line-of-gaze tracking. The eye-tracking
hardware used by the AHIG, an RK-426 developed by ISCAN, Inc., uses pupil/corneal reflection
technology. The RK-426 requires a video camera (with an infrared filter) focused on one of the
user’s eyes as input, and an infrared light source aimed at the same eye 1. The eye-tracker
locates the pupil, which is conveniently the darkest spot on the field of view of the camera, and

the corneal reflection of the infrared source, which is the brightest spot on the field of view.

Pupil/corneal reflection technology is based on a few approximations about the “mechanics”
of the eye, and a mathematical derivation: Assuming that the user’s head is relatively still,

and that the exterior rotating section of the eyeball is hemispherical, there exists a one-to-one

1The levels of infrared radiation have been medically proven to be harmless to the user.
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correspondence between two vector spaces. The first vector space consists of all the vectors
formed by the position of the pupil and the corneal reflection on the hemisphere of the eye-ball.
The second vector space consists of all the vectors which are a result of projecting the vectors
in the first vector space onto a plane tangent to the the eye-ball hemisphere and normal to the

“principal” axis of the forenamed hemisphere.

Now, from the “pupil/corneal-reflection plane,” another one-to-one correspondence can be es-
tablished with a plane in cartesian three-dimensional space. It is important to notice that the
vectors in “pupil/corneal reflection space” have no absolute meaning, they cannot be thought

of as vectors in the same cartesian space as where the user is actually gazing at.

3.2.1 Eye-tracking Calibration

In order to go from a pupil/corneal reflection vector to the user’s visual line of gaze, or point
that he’s looking at on a plane, some form of calibration of the system has to be performed.
Then, an interpolation can be performed from “pupil/corneal-reflection space” to “gaze space”.
One way of performing a calibration to allow such as interpolation would be to record the
output by the eye-tracker when the user looks at a set of known points, one at a time, on a
given plane (screen). Then, a simple linear interpolation can be performed. Since assumptions
are made in order for the pupil/corneal reflection technique to work, the more points on the

plane, or screen, that the user is calibrated on the more accurate the results will be.

In the current setup, with a head-mounted eye-tracker, slightly different methods must be
used. One considerable method is to force the user’s head still during calibration, and use the
previously described method, recording also the distance of the user’s head to the plane he was
calibrated on. Afterwards, a vector from the eye to the “floating” precalibrated plane can be
calculated, and the intersection of this vector with some other surface ahead can be computed
as well. Dave Koons, a PhD candidate at the AHIG, has developed a calibration method which

does not require the user to keep his head still at first.
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3.3 Speech Recognizer

The AHIG currently uses a DragonDictate board, developed by Dragon Systems, Inc., running
on a NorthGate 386 machine. It is a discrete speech recognition system with an 80,000 word

vocabulary, that adapts itself to the user’s voice.

3.4 Scheduling Workstation

Leon, a Hewlett-Packard (HP) 835 workstation is the central coordinating element of all of
the previously discussed hardware. Attached to Leon is a real-time interface board (RTT) that
runs on its own, whose sole purpose is to collect all data from the input devices and “time-
stamp” it and buffer it so that different input modes can be compared to each other. All of the

communications run using the RS-232 protocol.

The HP 835 workstation also serves as a graphics engine. It is equipped with hardware to do
graphic transformations in real time. All of the code for this project runs on this machine. Work
is currently being done at the AHIG to “parallelize” gesture, gaze and speech detection as much

as possible: this would allow to divide the “work-load” among several networked machines.
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Chapter 4

System

4.1 Overview

The final system I developed for this thesis allows a user to scale, rotate and translate figures in
a graphical environment-with the use of gestures, speech and gaze. Three different prototypes
were developed: The first one allowed interaction with a single object using “gestlets” code ! to
“prefilter” hand gestures. All of the processes ran on the same machine, rendering the overall
system slow. The second prototype read the hand data directly from the VPL DataGlove boxes,
increasing the total speed significantly. The final prototype incorporated the use of eye-tracking

to enable users to interact with multiple objects, using gaze as the mode of reference.

Ideally, the final code should use the “gestlets” processes, for it only makes sense to pay attention

to gesture data when it is significant. Refer to Section 4.5 for details on ‘gestlets.’

l«Gestlets” were developed by fellow graduate student Carlton Sparrell. See Section 4.5 for details on
« »
gestlets.
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Figure 4-1: Hardware Block Diagram

4.2 Hardware

Figure 4-1 is a block diagram of the hardware used. The major components 2 are as follows:
Two VPL DataGlove Boxes, a Dragon Dictate Speech Recognition System running on an IBM
compatible, an ISCAN RK-426 eye-tracker running on an IBM AT, a Polhemus system con-
nected via RS232 to the same IBM AT, and an HP835 workstation.

The VPL DataGlove boxes provide the system with the shape, position and orientation of the

user’s hands. The ISCAN eye-tracker provides the system with the vector between the center of

?Refer to Section 3 for details on these components.
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Figure 4-2: The Graphical Environment of the Prototype with Eye-Tracking: Two Jet Airplanes
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the pupil and the center of the cornea reflection (Dx,Dy). Along with this vector , the position
and orientation of the user’s head, provided by a Polhemus system, is tagged along. From
this information, it is possible to determine where on the screen the user is looking, after the

eye-tracker has been successfully calibrated.

The two DataGloves and the head Polhemus must all be synchronized in order for them to

function correctly. This is done by my sync circuitry. Refer to Section 4.3 for details.

The HP835 has a Real Time Interface (RTI) board on it which handles all input devices. This
board buffers all input and “timestamps” it as it comes in for further relative comparisons.
Much of the code which handles the RTI is owed to Chris Wren’s  work. The RTI is connected
to the HP835 via HP’s high speed bus, the HPHIB.

The HP835 also is equipped with graphics accelerator, the TURBOSRX, which makes it a good

machine for rendering images in real time, which is an essential part of this project.

4.3 Sync Circuitry

The VPL glove box provides a computer with the shape, position and orientation of a user’s
hand. The position and orientation values are obtained with the use of a Polhemus 3Space
system [27], which is contained within the VPL hardware. Refer to Section 3 for details on
their operation. The Polhemus board uses magnetic field technology to function. Not more than
one Polhemus system can function at any given moment due to mutual magnetic interference
(they all work on the same frequency). If it is necessary to operate more than one in unison,

then it is imperative to “multiplex,” or synchronize all of the systems to avoid interference.

As is suggested in the VPL Manual [36], if n Polhemus systems are to operate concurrently,

then the synchronization frequency should be % Hertz, to avoid noise. Thus, if we are to

run three Polhemus (two DataGloves, and a Polhemus board) the sync frequency should be 20

3UROP Student with the Advanced Human Interface Group.
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Hertz. These sync signals have to be of TTL * levels.

Different methods to generate a 20 Hertz pulse were considered, but the one that is about to
be described was the cleanest of all. A great deal of help in the design of this circuitry came

from Carlton Sparrell >.

The VPL DataGlove boxes provide two out-of-phase 30 Hertz signals. They are intended to
synchronize two DataGloves. It is not trivial to generate three out-of-phase 20 Hertz signals

from a 30 Hertz one, though.

Ideally, if we had a 60 Hertz signal, it would be possible to use a universal shift register, such
as an LS194, and continuously shift the sequence “100” in the same direction, after carefully
connecting the correct carry-out pin to the correct carry-in pin. If we then looked at the three
least significant outputs of the register, they would each be one of the desired three out-of-phase

20 Hertz signals. See Figure 4-4 for a timing diagram of these signals.

Then, it would be necessary to either develop additional circuitry to load the sequence “100”
at startup time or take into account all different power-up states so that this sequence is
eventually loaded, which is easier. The second approach was taken. This means that there
may be a certain number of iterations right after power up in which the sync circuitry does
not operate correctly, but they can be overcome. With the skillful use of a NOR gate, all of
this was accomplished, with only a maximum number of two bad cycles, which implies that the
sync circuitry is guaranteed to operate correctly in slightly over three hundredths of a second.

Refer to Figure 4-3 and Table 4.1 for details.

4.3.1 Generating a Sixty Hertz Pulse

But why would it be easy to generate a 60 Hertz signal? Well, you cannot simply go into a
parts store and ask for it. The traditional way is to get a clock, a crystal oscillator, of some

particular speed which divides evenly into 60 by some number:%%;1 = 60. Then, we can achieve

*Transistor-Transistor Logic
5Graduate student in the Advanced Human Interface Group.
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Figure 4-3: The Sync Circuit

Table 4.1: The Transition Table
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Figure 4-4: The Three 20Hz Sync Signals

the desired rate by using a certain number of decrementers in parallel (this is only because most
decrementers cannot handle quantities larger than 4 bits). These decrementers load num, and
continuously decrement the value, one by one, using the crystal’s original frequency as their
input-clock. When the value reaches 0, then this is a high pulse of the desired 60 Hertz signal,
otherwise the 60 Hertz signal should be low.

There is a much simpler way of generating a 60 Hertz pulse: Take one of the two 30 Hertz
signals provided by the DataGlove unit. Feed it as one of the inputs of a 2-input XOR © gate.
Take the same 30 Hertz signal and “delay” it by some amount of time using a delay line 7,
Feed the output of the delay line as the other input of the XOR gate. The output of this
XOR gate is a 60 Hertz pulse. Refer to Figures 4-3 and 4-5 for details. Using delay-lines to
generate high frequency signals is generally not considered good practice, but due to the low
frequency requirements of this application there is nothing wrong with this approach, especially
considering that it reduces the final size of the circuit by a factor of three using standard TTL

level gates.

A logic diagram of the discussed circuit can be found in Figure 4-3. A detailed diagram for

%A XOR B=(A AND (NOT B)) OR ((NOT A) AND B)
A delay-line is a “buffer” which simply delays its input by a specific amount of time.
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CLK30_1

CLK30_1’

CLK30_1
XOR
CLK30_1’

Figure 4-5: Generation of 60 Hz Clock

wiring purposes can be found in Figure 4.3.1. The size of the final circuit could have been
reduced further by using a PAL (Programmable Logic Array) instead of the two logical gates
employed, the XOR gate and the NOR gate.

4.4 Software Issues

A significant amount of software by many different programmers was used either directly or
indirectly for this project. An object-oriented graphical system which runs on its own and
can be communicated with via the network was used. This is Mverse, developed by UROP
students Michael Johnson and Chris Wren, for the use of AHIG. (I thank Chris for continuously
implementing my never ending additional demands of the system.) The “Gestlets” code from
graduate student Carlton Sparrell was used in one of the prototypes of the one-object version.
The code which reads and decodes the DataGlove information was originally written by me,
and then modified for the RTI board by UROP Student Michael Johnson. The process which
calculates the point of intersection of the eye gaze with the screen was developed by graduate
student Kris Thorisson. Besides some borrowed libraries and functions, the rest of the code

was written by me. All of these programs were developed in C. Some original work was begun
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in Lisp, such as code for parsing sentences; but, in the interest of speed, it was all developed in

C.

4.4.1 Data Flow

Figure 4-7 is an attempt to show the flow of data between the major “modules” of the project.
The term “module” is in quotes because it is used loosely here: some of the “modules” consist
of functions; but others are large sections of code, which can contain a significant number of
functions within themselves; others are independent processes. The reason for such a loose

definition is so that Figure 4-7 would be more intelligible.

The basic input to the system is speech, gesture and gaze. Speech is the driving mode of
communication; that is, it is input in speech that results in some user command or request
being performed. Speech is read as it becomes available on the RTI port. Gestures can be
read “filtered” from a FIFO (First In First Out) file generated by the “gestlets” processes 8 or
directly from the RTI port. They are read continuously, so that the information is not lost.
Gazes are read from a FIFO file, which is generated by the “eyevector” process. Gazes are read

at the end of a sentence, and enough space is allocated in the fifo file so it does not overflow.

The main “module” is rawwingest.c. This module initializes Mverse, calls the parser, which
then in turn parses the multimodal input, interprets it, and performs the user’s commands. All
of the system was developed under the X windowing environment. There are a couple of reasons
for this: X allowed the incorporation of a small window which echoes the user’s spoken words
(for debugging purposes), and it allowed a simple mechanism to poll the DataGlove records in

timed intervals, using X WorkProcs.

The interactions implemented by me consist of scaling, rotation and translation requests by
the user. After the gazes and gestures are decoded, together with the spoken sentence, Mverse
is requested to perform the expressed transformation. The connection to Mverse is done with

Berkeley sockets, allowing any machine on the net to use this graphics package.

8See gestlets section, 4.5
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INPUT:

Rglove pos+orient
Lglove pos+orient
Speech
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rawwingest.c

rawcommands.c X routines

do_path()| ido_scale()] |turn.c
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AN

geometry.c a
!HHHHHH

Figure 4-7: Dataflow Diagram
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4.5 Gestlets

Gestlets ® consists of a number of processes which “prefilter” the gesture data, and attempt to
characterize gestures into “features.” The filtering is of two types: The first filter is a “discrete”
filter. If the user is not moving his hands, then there are no gestures. The velocity !© of the
gloves is analyzed and if it does not exceed a minimal threshold then no gesture is generated.
The second filter attempts to clear somewhat the “noise” in the data. A Gaussian distribution

of the last three samples is used 1.

Each hand has a ‘gestlets’ process running, which puts the ‘gestlet’ into a FIFO file as it occurs.
At the same time there is a third process which looks at both hands’ FIFO files and generates
two-handed gestlets in another FIFO file. Two-handed gestlets contain an additional number

of “features,” describing the relationships between the gestlets of the individual hands.

“Features” consist of the following: whether the glove moved or not, which way the palm faces,

12

whether the user pointed at the screen "* or not and whether the hand is “relaxed” or not.

4.6 Mverse

13 is a powerful objected-oriented network-based graphics system built on top of HP’s

Mverse
Starbase graphics library. It allows a process running on a machine on the net to perform

graphical transformations on objects.

Mverse can define, load and store graphical primitives. It was also designed with the animation
of objects in mind. Animation is controlled by a world clock to allow complex interactions be-

tween multiple objects. When this thesis research project began, the goals were more numerous.

®Gestlets was developed by Carlton Sparrell

107Using velocity of gestures as the quantity to study was originally suggested by David Koons, of the AHIG,
many years ago.

11 Refer to Section 2.6.1.

12Tn order for this to be possible the screen must be calibrated in Polhemus space.

13Mverse was developed by UROP students Michael Johnson and Chris Wren working at the AHIG

47



Mverse was initially conceived to accommodate all of those goals, as well as other goals of the
Advanced Human Interface Group. Unfortunately, since the accomplishment of goals always
takes longer than originally planned, all of Mverse’s capabilities were not used, not reflecting
the hard work which the authors of the package put into developing it. For details on Mverse
refer to Appendix A.

4.7 Parsing Multi-Modal Inputs

4.7.1 Time Stamping

In order to coordinate all multimodal-input, the system “time-stamps” data upon entry into its
central I/O processor, the RTI (Real Time Interface) board attached to the central workstation.
This board runs a special operating system, PS-OS, which is designed for I/O applications. This
way, it is insured that the data is not lost and is properly buffered. It is assumed that the time
which the data takes to get from the input devices themselves to the RTI board is negligible

and constant.

The “timestamps” allow the system to perform time-relativistic judgements of the data when
necessary, such as when “parsing” the multi-modal input. “Timestamps” are measured in

hundredths of a second 4.

4.7.2 “Parsing”

The driving mode in this system is speech. No actions can be initiated without speech; all
gestures and gazes get “parsed around” speech. The current prototypes look for specific words,
or “tokens” (the term used in the natural language processing community), and attempt to

find the gestures and gazes closest in “timestamp” to them. By and large, people tend to

14The “timestamp” is reset to 0 every day at midnight, thus running the system around that time of the day
will produce unaccounted bugs!!
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look at what they are talking about (if the item is present) and/or at whom they are talking
with (again, if present). The approach I chose assumes that the correlation between tokens
and gestures or gazes is parallel, but it is not necessarily clear that this always be the case in
human-human interaction. We could glance at an object when trying to get someone’s attention
to it and then glance at the person and say “that one.” At the moment we are saying “that
one” we are looking at the person, but we are referring to the object. Such complicated issues
in reference are being studied at the Advanced Human Interface Group by David Koons, a

doctoral candidate [18].

The parse method used by this system is very simple. It can be thought of as a state-machine
parser. A state-machine parser uses the current state of the sentence to predict what type of
word may follow. The grammar of interaction is so simple that there are no recursive constructs,
so in a sense the parsing used could be considered pattern matching at the lowest level. Refer
to [30] for a detailed discussion on natural language using C. See Figure 4.7.2 for a the parse()
function, which “chops” a sentence into tokens and returns the number of them. See Figure 4.7.2

for an example of a type of sentence recognized by the system.

Because parsing sentences in multi-modal Natural Language is a synergistic effect when merg-
ing gestures, gaze and speech, a relatively simple procedure for parsing speech input may serve

very well.

4.8 “Natural” Transformation Gestures

The gestures which the system recognizes were chosen because they seemed “natural.” Perhaps
there are no gestures which are “innate” in humans '°. “Pointing,” the quintessential deictic
gesture, may well be taboo or at least impolite in some cultures, and may not denote the same
intentions as it does in the “Western world,” but otherwise it is widely and “automatically”

understood, and requires very little interpretation.

15 Anthropologists and developmental psychologists may argue this point...
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/% The function parse() parses a sentence and counts how many words are in
it. It returns an array of words. A word is similar to a string, with
A0’ in it

*/

char *sparse(sent,w_num)

char ssent; /+ Sentence to be parsed */

int *w_num; /+ Keeps track of the number of words in the sentence */

{

char sword, **wrd_a, #xinit;

static char ter[]=" .7;:!"; /* List of possible termination chars */
void xmalloc();

char *strtok();

char xstrepy();

wrd_a=malloc(sizeof(char *) * MAX_W);

init=wrd_a;

word = strtok(sent,ter);

sw_num=0; /* The 1st word is the Oth one */

while(word!=NULL)

{
[+ printf(”%s\n”,word); */
swrd_a=malloc(sizeof(char) * (strlen(word)+STR_E));
strcpy(*wrd_a,word);
word = strtok(NULL,ter);

wrd_a++;
(*w_num)++;
}
return(init);

Figure 4-8: parse() function
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/* Rotations x/
/* ”Rotate/turn that/this prism/object (like this/that)/ (this way)” */

int recognize_rotation(psent,wtime,w)
char *xpsent;
int *wtime,w;
{
int matchstr();
void do_rotate();

if(w<5) return(0);

if(matchstr(psent[0],"rotate") || matchstr(psent[0],"turn"))
if(matchstr(psent[1],"this") || matchstr(psent[1],"that"))
if(matchstr(psent[2],"object") || matchstr(psent[2],"prism"))
if(matchstr(psent[3],"1ike"))
if(matchstr(psent[4],"this") || matchstr(psent[4],"that"))
{
do_rotate(wtime[1],wtime[2],wtime[4]);
return(1);

}

else return(0);

Figure 4-9: Sample type of sentences recognized
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v =

Figure 4-10: Scaling Gesture

Figure 4-11: Translation Gesture

The scaling gesture consists of indicating the original size of the object with both hands sep-
arated, palms facing each other, a certain distance apart, and then indicating the final size of

the object in the same manner. See Figure 4.8.

The translation gesture consists of referring to one of the “sides” of the object via holding
out both hands, a certain distance apart, palms facing each other. Then, both hands are
moved, in parallel, to the new location of the object. The reason which it was decide to have
the user specify a side was so that the move could be “scaled,” relative to the “size” of that
side of the object. Perhaps it could be argued that this is the least “natural” of the gestures
chosen. See Figure 4.8. An additional type of translation was developed. It is one of “dynamic”
characteristics. The user can specify with one of his hands, a linear path which an object must

carry out.

There are three different types of rotation gestures, named wrist-rotations, base-rotations and
dual-hand-rotations. Wrist-rotations consist of holding out both hands, with palms facing each
other, as always, and rotating the wrists in parallel, in one direction or the other, without

moving the location of the hands much at all. See Figure 4.8.
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Wrist-Rotation

Figure 4-12: Wrist-Rotation Gesture

W IBase—Rotation >

Figure 4-13: Base-Rotation Gesture

Base-rotations consist of holding both hands out, palms facing each other, and then moving

only one of the two hands around the other, which stays pretty much in the same place. See

Figure 4.8.

Dual-hand-rotations consist of holding both hands out, palms facing each other, and then
turning both hands, in parallel, around a circle. The hands typically end up with only one
palm facing the other, but they need not. See Figure 4.8.

ﬁ Dual-Hand Rot.

Figure 4-14: Dual Rotation Gesture
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4.9 Design Concepts

Users can scale, rotate and translate figures. After the user communicates to the system, via
gesticulating, speaking and glancing, it interprets this input. The spirit of the exchange is one
of delegation vs. direct manipulation: the user describes how something is to be done to the

machine as “agent,” rather than perform it themselves in a “hands-on” sense.

4.9.1 “Principal Axes” of an Object

It is standard in computer graphics to refer to different spaces ®. There is modelling space,
the space in which the original object was designed, also referred to as object space. There is
world space, the space in which “everything in the world,” in the context of the drawing, is
represented. There is virtual device-coordinate space, an idealized device coordinate range, and
finally there is device-coordinate space, limited by the physical characteristics of the graphics
hardware. Any graphical operation performed in one of these spaces must be finally converted

into device-coordinate space.

The graphical objects of this system are dealt within object space, as well as world space. Since
the moment of their creation onwards, objects keep their “principal axes.” “Principal axes”
are a determinate number of axes of symmetry of the object. For the current prototypes, they
are three mutually perpendicular axes which go through the center of the object 17; but, the

number of axes do not have to be limited to these three.

” regardless of what

Rotations and scalings of an object can occur around its “principal axes,’
position and orientation the object has in world space. Translations occur in world space, but
they use the object’s “principal axes” in an interesting manner: translations are scaled. The
user first indicates, which “side” of the object he is referring to with his hands, and the system

uses that initial distance between his hands to scale the move accordingly.

16Refer to Starbase Techniques Programming Manual [14].
"When designing the graphical object attention should be paid to this.
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4.9.2 The (Coordinate) “Spaces” of the System

As we have seen, there exist a number of graphics spaces within the system, from virtual spaces
to the hardware-dependent device coordinates. Then, there is “real space,” the space in which
the user gesticulates about. Then, there are approximations to the “real space,” the coordinates
provided by the left DataGlove, the right DataGlove and the head cube. Each of these spaces
has its own origin. Both glove sources, origins, are simply offset by an amount in the y axis.
For simplicity’s sake, we consider the glove sources almost parallel to the virtual graphics space;

the only difference is that the z axis is reversed.

For the head cube, a slightly more rigorous approach is taken, because we must find the inter-
section of the user’s gaze, a vector which “comes out” of the user’s eye with the screen. The
display screen is “calibrated” in head-cube space, this way a more accurate measurement is

made than just assuming the spaces are parallel 8.

Figure 4.9.2 is an attempt to clarify all the mentioned spaces. It should be noted that most of

the decisions about the arrangement of these spaces are arbitrary.

4.9.3 Mathematics of “Principal Axes”

All series of graphical transformations, such as every combination of translations, scalings and
rotations, can be expressed mathematically as sequences of matrices which are multiplied to
produce the current viewing transformation 1°. Quaternions are used for rotations in Mverse.
A quaternion is a four parameter quantity representing a vector and a scalar. The quaternion
¢ = (q1, 92, 43, go) Tepresents an axis in three dimensional space, as well as an additional quantity
which can signify the angle of rotation around that axis. The formal definition of quaternion is

the algebraic structure which fits the set of all possible rotations.

A quaternion can be used to express the the orientation of an object without the use of trigono-

18This approach should also be used with the DataGlove units, for a more robust system.
19See Foley and Van Dam for details [11].
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metric functions. The orientation of the object is, in a sense, the “location” of the object’s

” 20 within world space, after the series of graphical transformations

original “principal axes
in question has been performed. This “orientation” is what is commonly referred to as the

attitude matrix of an object.

An attitude matrix has the following form:

a, by, ¢

ay by cy

And can be viewed as the following:

' = ay + a9 + a2

Y = by + byd + bu?

2 = cyZ + oY + CwZ

where (93’ , 3}' , 2’) are the “principal axes” of the object defined in world space terms.

It is possible to generate the attitude matrix from a quaternion in the following manner 2!:
Given a quaternion (e, f, g, h), where (e, f, g) represent the axis, and h the angle of rotation the

attitude matrix is as follows:

(h? + €2 — f2 - g?) 2(ef — gh) 2(eg + fh)
2(gh+ef) (R —er + f2—¢g?) 2(fg — eh)
2(eg — fh) 2(eh + f9g) (h? —e® - f2 +4%)

20Tt is assumed that the “principal axes” of the object are the same as the “world’s axes” at the moment
of object’s definition, or modelling, for simplicity’s sake. It was discussed that only three “principal axes” are
required, though if more were chosen, then this technique would have to change.

2 Refer to [27]
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4.10 Gesture-Detection Algorithms Details

Notation Details

This section contains pseudocode to describe the gesture-detection algorithms more rigorously

than in plain english. The following conventions are followed:

Functions start with the function name in capital letters, and the parameters, or inputs,

in parentheses.

o Lines which begin with I are comments, the rest of the lines are statements to be

executed.
e A ‘~’ symbol indicates an assignment 22,

o Ais a vector (A, Ay, Az).

e Ais a unit vector (4,, Ay, 4,), ie., \/AT,2 + A2 + A,? equals 1.
e AB is a vector (Az = Bz, Ay — By, A, — B,).
o Algorithmic constructs are in bold. These are: do, if, and, then, and else.

e i X v represents the cross product of @ and ¥. The cross product of two vectors is another
vector perpendicular to both, which follows the “right hand rule.” 2> The order of the

vectors in the cross product is relevant. The cross product of two parallel vectors is 0.

o i - ¥ indicates the dot product of vectors # and 4. The dot product of two vectors is a

scalar, a number. The dot product of two perpendicular vectors is 0.

e DISTANCE(A, B) represents the distance between the two points A, B. DISTANCE(E, ﬁ) =
\/Aa: - Bx2 + Aa: - Ba:2 + A:c - B:c2

22The ‘=" symbol is confusing because one cannot tell for sure if it means assignment or test of equality.
23Refer to Strang for a detailed explanation of these principles [32].
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4.10.1 Scalings

The first step is when doing a scaling transformation is to calculate the vector between both
hands’ initial position. The initial distance between both hands and the final distance between
them are stored. The vector between both hands is used to find the “principal” axis which
the user is referring via doing a “parallelism” test, which is taken care by MAJ PAR_AXIS().
Then, Mverse is request to scale the object along that axis by the ratio of the final distance to

the initial distance.

SCALE(4, B,C, D)
1. > A =Initial location of RGlove, B =Initial location of LGlove, C =Final location of
RGlove, D =Final Location of LGlove
2. 4 — AB
3. init.d — DISTANCE(4, B)

4. B is a unit vector parallel to AB, init_d is the initial distance between both hands.
4 is a unitary vector

find — DISTANCE(C, D)
» — MAJ_PAR_AXIS(d)

b Find out which principal axis the user is referring to

® N>

Request Mverse to scale object by ;%‘3 along the 9 axis of the object

MAJ_PAR_AXIS() loops through all of the “principal objects” of the object in question and
records the modulus of the cross product of the vector which came in as a parameter, and
records the value. Upon exit, this function choose the “principal axis” which resulted in a

bigger modulus of the discussed cross product, and returns it.

MAJ_PAR_AXIS(A)

1. b This function returns the “principal axis” of an object which is most parallel to
A

2. Vi € {i,, 9} do

3. b The “principal axes” of the object are i, v, w
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(a) Mm—AXH
(b) b Take the cross product of A and #
(c) by « \/m,c2 + my2 + m,?

4. | « 7 in which b; has the largest value

5. > This chooses the 7 which is most parallel to A

4.10.2 Rotations

Rotations are the most complex of the three types of transformations studied. There were
three different types of rotations implemented: wrist-rotations, base-rotations and dual-hand-

rotations.

WHICH_ROTATION() takes in four points as parameters. They are the initial and final po-
sitions of both hands. Its goal is to determine which type of rotation, out of these three, was
requested. If both hands hardly move at all, then it is assumed that a wrist-rotation gesture
was performed. If both hands moved, then it is assumed that a dual-hand-rotation gesture
was performed. Otherwise, it is assumed that a base-rotation gesture was performed. Depend-
ing on the gesture WHICH_ROTATION() calls either WRIST_ROTATE(), BASE_ROT(), or
DUAL_ROTY().

WHICH_ROTATION(A, B, C, D)
1. b A =Initial location of RGlove, B =Initial location of LGlove, C =Final location of

RGlove, D =Final Location of LGlove

2. rhand_move — DISTANCE(A,C)

3. b quantized movement of right hand

4. lhand_move — DISTANCE(B, D)

5. b quantized movement of left hand

6. if rhand_move <threshold and lhand_move <threshold then WRIST _ROTATE(A, B,C, D)

7. else if rhand_move >threshold and [hand_move >threshold then DUALROT(K, B,C, ﬁ)

8. else BASE_ROT(A4, B, C, D)
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WRIST_ROTATE() calculates the degrees of wrist rotation, and translates the initial vector
between both hands to object space in order to make find out the sign of the rotation. It is
explained in the next sub Section why this is done. The degrees of rotation are estimated from
the change in yaw of the right hand from the initial to the final position. Mverse is requested

to rotate by the degrees calculated the object around the established “principal axis.”

WRIST-ROTATE(4, B,C, D)
1. > A =Initial location of RGlove, B =nitial location of LGlove, C =Final location of
RGlove, D =Final Location of LGlove
@ — AB
i — MAJ_PAR_AX(a)
a « degrees of wrist rotation
Translate 4 to object space to find sign of rotation

Make a negative if necessary

No o s

Request Mverse to Rotate object o degrees around 7

BASE_ROT() and DUAL_ROT() are very similar. DUAL_ROT() calculates the cross product of
the initial and final vectors between both hands. The difference is that BASE_ROT() calculates
the cross product of the first vector and a vector from the original position of the hand which
did not move to the final position of the hand which moved. The resulting cross product vector
is fed to MAJ_PAR_AXIS() as input, to discover which “principal axis” the user is referring to.
The cross product vector is also transformed into object space, to obtain the correct sign of
rotation. The amount of rotation consists of the arc cosine of the dot product of the two vectors
which were previously “crossed.” Mverse is requested to rotate by the degrees calculated the

object around the established “principal axis.”

BASE_ROT(4, B, C, D)

1. b A =Initial location of RGlove, B =Initial location of LGlove, C =Final location of
RGlove, D =Final Location of LGlove

2. i — AB
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# « either AD or CB depending on which hand moved

W4 XD

b Take the cross-product of the initial and final “hands” vectors
ft — MAJ_PAR_AX(w)

I — 4 transformed into ob ject space

m « ¥ transformed into object space

© W N oW

a « arccos (I - )

10. Request Mverse to Rotate object o degrees around 7

DUAL_ROT() is slightly more flexible than BASE_ROT() because it does not force the assump-

tion that one hand does not move.

DUAL_ROT(4, B,C, D)
1. > A =Initial _}ocation of RGlove, B =Initial location of LGlove, C =Final location of
RGlove, D =Final Location of LGlove
@ — AB
b CD
W e 4 XD
> Take the cross-product of the initial and final “hands” vectors
i — MAJ_PAR_AX(®)
I — 4 transformed into object space

m « ? transformed into object space

© NPT AW

Q «— arccos (f m)

p—
e

Request Mverse to Rotate object o degrees around 7

Correct Sign of Rotations: Transforming into Object Space

In order to obtain the correct sign of rotations, which is typically determined by the arccos()
function, it is important to transform the axis of rotation which the user indicates into object
space. If the figure has already been rotated it is important that the “principal axis” of the

figure and the axis which the user is referring to, are not only matched by a parallelism check,
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but also have the same direction, otherwise the sign of the rotation would be reversed; this is

why a transformation from world space to object space is done.

(,9, 2) are the axes of the world space. (.i’,g}’,z") are the object space axes, which in the

current implementations of the system are equivalent the the object’s “principal” axes.

The following three equations represent the object space coordinate system in terms of the

world space coordinate system.

' =a+ ayz + a, i+ a2

Y =b+byd + by§ + byi

Z=cH cuZ + ¢+ cy2

To go from world space to object space the following matrix product must be performed:

1 1 0 0 O 1
z’ e a a ay x
2 B TR W I
z C Cy €y Cy z

4.10.3 Translations

TRANSLATE() takes in four points as input, which consist of the initial and final locations
of both hands, as is the case in all of these transformation functions. The initial distance
between both hands and the distance of movement of the right hand are recorded. The initial
vector between both hands is fed to MAJ_PAR_AX() to see which side of the object the user
is referring to, which is reality a “principal axis.” Then, Mverse is asked for the “size” of the
object along this “axis.” Then, Mverse is requested to translate the object in the direction of
the vector from the original position of the right hand to the final position of the right hand.

The amount of translation along this direction is determined by a double ratio of the distance
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which the right hand moved to the original distance between both hands to the “size” of the

object along the established “principal axis.”

TRANSLATE(A, B, C, D)
1. > A =Initial location of RGlove, B =Initial location of LGlove, ¢ =Final location of
RGlove, D =Final Location of LGlove
2. i — AB
3. init.d — DISTANCE(A, B)

4. P is a unit vector parallel to /fB, init_d is the initial distance between both hands.
4 is a unitary vector

mv_d — DISTANCE(A4, §)
> This is the amount which the right hand moved

mu_d
9 Tnitd
D — MAJ_PARJ-\XIS(&)

& Find out which principal axis the user is referring to

© x> o

10. f « size of object along ¥
11. g «~ %
12. Request Mverse to translate object in the @ direction by ¢ units in world space

Paths: “Dynamic” Translations

The other type of translations developed are “dynamic” in nature. They allow a user to specify
a linear path which an object must carry out. They are very simple: they consist of finding the
direction between the original and final positions of the hand, when the user says something
like “That object moves like this,” and request mverse to animate the object indefinitely in

that direction.

4.11 “Intersection” of Gazes and Gestures: The “Fishing”

Story

As a simple demonstration to show that gazes can be “intersected” with gestures, using most

of the code developed for this thesis, the “fishing story” was developed. It allows the user to
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say a phrase such as “The fishing is Lake Tahoe was great” and detects whether the user was
looking at his hands or not; if he was looking at his hands, the user was obviously referring to
the size of the fish (which the system indicates by displaying a fish on the screen), otherwise

any gestures are considered of emphatic nature.

A gross estimation of the intersection of the eye gaze vector with the “gesturing space” is made.
See Figure 4.11 to see what the computer displays when it has “decided” that the user was

looking at his hands, vs. elsewhere, when he said the sentence “The fishing was great.”

This example is a minor milestone in human-computer communication: it is the first time a
computer, listening to user speech input, also pays attention to the eyes to determine whether

the user’s hands may or may not be referential, and thus convey additional information.

4.12 Sample Interaction Session on Video

Along with this document, a sample interaction session with this system was recorded. The
“script” of the video is as follows: First the single-object prototype is demonstrated. The
user performs two scalings, three rotations, one of each of the three types: a wrist-rotation, a

base-rotation and a dual-hand-rotation. Then, he performs a translation.

The second fragment of the video consists of a demonstration of the dual-object prototype,

with eye-tracking. He performs a scaling on one of the objects and a rotation on the other.

Finally, the “fishing story” is shown. See Section 4.11 for details.
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Figure 4-16: “Fishing Story”: computer display of the “fish” and user’s hands.
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Chapter 5

Final Notes and Conclusions

5.1 State-Of-The-Art “Multi-Modal” Equipment

Today’s multi-modal detection equipment-speech recognizers, DataGloves, eyetrackers—is not
extremely reliable, nor accurate. The hardware in the future ought to be less cumbersome to
use. The head-mounted eye-tracker is the most flexible eye-tracking system which has been
used at the AHIG, yet it is very tedious to operate. The head-attachment is bulky, and must
be fastened tightly to the user’s head for correct operation !. Omne cannot simply wear the
eye-tracker and use it. A long calibration process must be followed. Eye-tracking will not be

practical for everyday use until one can do without calibrations.

For gesture and gaze detection, the ideal hardware would simply consist of a video camera
aimed at the user. Image processing on the video signal would be done in real time to “pick

out” the position and shape of the user’s body as well as his “line of gaze.”

An interesting method to pick out viewpoint-independent characteristics of three dimensional

objects with neural networks has been studied by Zemel and Hinton [40]. This is an example of

T have had to take many aspirins after long sessions with this device.

67



the type of image processing necessary to accomplish the development of this futuristic gesture
and gaze recognition hardware. Refer to Section C for an introduction to back propagation,

the standard method of training neural networks.

5.2 Discussion

The style of manipulating objects implied by this thesis results in relatively “coarse” or approx-
imate positioning, which may be sufficient where the user’s aim is that of broad planning or
“roughing out” ideas. Where more exact positioning or scaling is needed, approaches include,

but are not confined to:

o Agent’s knowledge of situation: For example, if we were in the context of rearranging
furniture in a room, then the computer “agent,” or interpreter, could have “knowledge”

i

about how to locate furniture about, such as having a “sense of proportion,” or “being

aware” that chairs cannot go upside down.

e “Manipulation space” is not analog (continuous) but is quantized according to different

scales of “coarseness.”

¢ Dialogue step: For example, we could say “a little more..., more” to converge on a desired

position or scale.

(A fallback is simply to latch onto a mouse!!)

5.3 “Demo”

The system developed for this thesis was “demoed” live for DARPA at the MIT Media Lab,
on May 28th, 1992. Out of three demonstration sessions, one worked flawlessly, and the other
two had glitches. The reason for these errors, which occurred mainly when demonstrating the

rotations was the fact that our DataGloves had been functioning very poorly for the last month,
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making the “debugging” process very cumbersome. For the day of the “demo” we borrowed

the Media Lab’s Computer Graphics and Animation’s DataGloves.

A video of a sample session is included together with this thesis for reference purposes. See

Section 4.12 for a “script” of the video.

5.4 Future Projects

The next logical step to enhance this system would be to develop the capability of grouping
and ungrouping objects, to form “higher-level” objects, that one can manipulate. This is not
a trivial project, for one would have to decide on a “piecing” scheme: One could allow objects
to “go through” each other, or one could implement collision detection methods, or have key
“glue dots” % on objects which other objects would snap on to (it would be sort of a “virtual

Lego” environment).

Another interesting project would be to choose a graphical model of a very complex object, such
as a human body, an object which has “too many things” to control with standard interfaces,
and adapt the interface from this thesis to be able to control the object. As fellow graduate

student Carlton Sparrell has suggested, this would be a very useful tool for computer animators.

5.5 Conclusion

The type of interface implied by this thesis would give scientists, architects, animators, and
other professionals who need to visualize geometric constructs, capabilities which would be
hard to achieve simply with the use of “traditional” interface tools such as keyboards, mice,
knobs, etc. Such an interface would give the user the ability to sit in front of a computer and
describe a layout of objects, perform transformations on them, have the ability to group them,

all without the need of programming skills.

2This was suggested by fellow graduate student David Koons
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But this additional “power” need not be for the forementioned professionals; they typically
have programming skills, and sometimes even enjoy programming. Non-technologically oriented

people would perhaps benefit most from this type of interface.

To my knowledge, this is the first prototype ever developed to integrate two-handed coverbal
gestures, in a non direct-manipulation sense, with speech and gaze. This work’s intent was not
to find a replacement for standard interface tools, such as a keyboard or a mouse, but to study
the possibility of a system which would be able to interpret “natural” gestures. The goals of
this system were to make it appear “natural” to the user, to spare the user from having to learn

a new vernacular, and a new operating paradigm.
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Appendix A

Multiverse Graphics Manager

The mverse ! program is intended to give high level access to the Starbase resources via the
network. Mverse has the ability to load primitives from standard vertex/face files and has the
ability to define, load and store classes of objects that can be constructed using primitives and
other objects. The program allows you to change attributes of the object including: color in
the RGB space, location, orientation, and scaling. It allows animation of objects relative to
world coordinate space or relative to any known object’s coordinate space, including its own.
Animation is coordinated and controlled by a world clock. Mverse also has the ability to pick

objects based on references to screen coordinates, both in an explicit and an iterative fashion.

Mverse is set up as a network service to leon. This means that connecting to its reserved
socket (15001) on leon (18.85.0.88) will cause the program to be started automatically by
inetd. Connection to this socket can be accomplished manually with the telnet command
or by programs using the appropriate commands (socket and connect in the case of C - see

/ahi/src/world /sockconn.c for an example).

Please note that in accordance with graphics standards the world coordinate system is right

! Christopher R. Wren is the author of this Section. Mverse was developed by Michael Johnson and Christopher
R. Wren.
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handed, but the camera coordinate system is left handed (x positive to the right, y positive up,

and z positive forward—into the screen).

Any command that has “[id]” as an argument will act on the current object if the argument is

omitted, or on the object with the object id given.

All commands return a 0 on failure. Success is associated with the appropriate output, or a 1
on commands that don’t produce outout. Some commands will also attach error messages, so

programs should read the entire line when grabbing results.

Once connection is established, the following commands (with appropriate arguments and a

newline) are understood:

A.1 Camera Movement

e ORBIT z y z—move the camera in the camera coordinates while leaving the reference

point fixed. (ie. attend to the same point in world coordinate space while moving.)

¢ PAN z y >—move the camera and the fixation point the same distance and direction in
the camera coordinate system. (ie. move camera and attend to the same point in camera

coordinate space.)
¢ SET_EYE z y z—set the position of the camera to global coordinates (x y z).
e GET_EYE z y >—get the position of the camera in global coordinates (x y z).
o SET_REF z y z—Set the fixation point of the camera to global coordinates (x y z).
e GET_REF =z y >—get the fixation point of the camera in global coordinates (x y z).

e LOOKAT [id]—Alter the fixation coordinates so that they coincide with center of the

current object, or the object with the optional id.

o AIM c deg—where ce{XY Z} and deg is expressed in degrees. Rotates the camera about

the given axis.
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A.2

HOME—Return camera to default location and fixation in world coordinates. EYE =
(0-50 0) REF =(000) UP = (00 1).

Database Manipulation

LOAD_CLASSES file—given a filename, this command will load the primitives and
classes that are listed within. A full pathname is a good idea—but the program will
check for the file in /ahi/src/world, and /ahi/demo/mverse for the file if the filename

doesn’t begin with a slash.

SAVE_CLASSES path—new classes are saved in files named: path/name.class. The
name of the file is then added to the current classfile (the one used in LOAD_CLASSES).

DEFINE_CLASS name—defines a new class with the given name. All objects currently

in the world are made part of the new class. The object will have its center at (0,0,0).

RESET—executes the following commands: HOME, DELETE_ALL, STOP_CLOCK,
SET_TIME 0.

QUIT—closes the socket and shutsdown Starbase.

A.3 Object Manipulation

SET_CLASS classname—creates a new object at (0,0,0) with orientation (0,0,0) and

color 50% grey.
GET_CLASS [id/—returns the class of the given object.

SET_CURRENT id—sets the current object to the one that has the given id. ID’s are

assigned in order of creation beginning at one.
GET_CURRENT—Returns the id of the current object - or 0 if there are no objects.
DELETE [id]—delete current object.
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o DELETE_ALL—deletes all objects. Resets id counter to 1.
¢ SET_LOCATION z y z [id/|—Places the object at (x,y,z) in world coordinates.

e SET_COLOR r g b [id|—Changes the color of the object. if the color values are set to

-1 then the object will take on any default coloration it might have.

¢ SET_ORIENTATION gz gy ¢z qu [id]
SET_ORIENTATION al! a2l a31 a12 a22 a32 al3 a23 a33 [id]— Sets the orientation
of the object. It is possible to either specify a quaternion or a 3x3 matrix description of

the orientation.

e SET_LABEL label [id|—Sets the objects label to the given string. The string should

contain no white space.
e SET_STATUS s [id]—Sets the status of the object to the given integer.
e SET_SCALE sz sy sz [id]—Sets the scale of the object in the objects coordinate space.

¢ GET_LOCATION, COLOR, ORIENTATION, LABEL, STATUS, SCALE, CLASS—

Returns the requested information about the current object.
e ROTATE gz qy ¢z quw [id|—Rotates the object about the given quaternion.

e TRANS z y z [id|—Translates the object.

A.4 Animation Manipulation

e SET_TIME time—sets the integer clock to the given time.
¢ GET_TIME—returns the current time on the clock.
o START_CLOCK—starts the clock running—allows animation to progress.

o STOP_CLOCK —freezes clock at current tick. Freezes all animation.
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¢ GET_WL—Prints the current worklist one line at a time with a NULL at the end of the
list. Each line contains the fields: id (the object being animated), rid (the object id of
the reference frame, or zero for world), dx, dy, dz, qx, qy, qz, dqw, t (time left to the end

of the animation).

¢ RM_WL n—will delete the nth entry in the worklist. If n is zero the worklist will be

cleared.

e ANIMATE id start rid n !z y z qz qy qz qw dt . . .—adds animation items to the worklist.
New item(s) will cause the object with number id to be animated starting at start in the
coordinate space of object rid (or world coords if rid = 0.) N items will be added to the
worklist with start-times that will cause them to happen sequentially. The object will
move to the new coordinates and orientation in a linear fashion in the number of frames
specified by dt. Items on the worklist are started as soon as their start-times are less
than the world clock, and continue for the appropriate number of frames regardless of the
clock. This means that if items are submitted to the worklist that are tagged with old

start-times, they will begin immediately, and possibly concurrently!
real objects (id > 1) (x y z) is position and (gx qy gz qw) is a rotation to be carried out.

camera (id = —1) (x y z) is position and (gqx qy qz) is point of reference. Both are in

reference to the position of the object described by rid.

A.5 Picking Objects From the Screen

e SET_LOOK z y r—performs a search for objects in the window centered at the screen
coordinates (x,y) with radius of an inscribed circle of 1. Returns a count of found objects
and the radius. If r is 0.0 then the program performs a search that expands out from the
point of interest until at least one object is found. Repeated calls to SET_LOOK with
the same x y will continue to expand the search until at least one new object is found or

until the entire screen is being searched—for each call to SET_LOOK.

¢ GET_LOOK—returns the next object id in the list of objects that were found to lie in
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the last search window, or a zero if there are no more objects in the list. The objects are
sorted by id, not by “closeness,” however, the “found-list” for an expanding search will
not contain the objects that were found in the previous call. The search list is cleared

before each new search.
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Appendix B

Selected Portions of Code

All of this code is in the C programming language.

B.1 geometry.c

/* This file contains basic vector operations */
#include "geom.h"
F#define square(x) (x)*(x)

[* distance() calculates the distance between vectors pa and
pb and creates pc, a unitary vector, in the direction from pa
to pb. */
float distance(pa,pb,pc)
struct threed *pa,*pb,*pc;
{
double sqrt(),pow();
float tempdiff;

tempdiff = (float) pow((double)(pa—>x — pb—>x),2.0);

tempdiff += (float) pow((double)(pa—>y — pb—>y),2.0);
tempdiff += (float) pow((double)(pa—>z — pb—>2),2.0);
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tempdiff = (float) sqrt((double)(tempdiff));
pc—>x=(pa—>x — pb—>x)/tempdiff;
pc—>y=(pa—>y — pb—>y)/tempdiff;
pc—>z=(pa—>z — pb—>z)/tempdiff;
return(tempdiff );

}

/* modulus() finds the "magnitude” of vector vec x/
float modulus(vec)

struct threed vec;
{

float tempdiff;
double pow(),sqrt();

tempdiff = (float) pow((double)vec.x,2.0);
tempdiff += (float) pow((double)vec.y,2.0);
tempdiff += (float) pow((double)vec.z,2.0);

tempdiff = (float) sqrt((double)(tempdiff));
return(tempdiff);

}

/* crossproduct() calculates the cross—product of vectors pa and pb
and stores the result in vector pc */

crossproduct(pa,pb,pc)

struct threed *pa,*pb*pc;

{
pc—>x=(pa—>y*pb—>z — pa—>z+pb—>y);
pc—>y=(pa—>z+pb—>x — pa—>x*pb—>z);
pc—>z=(pa—>x*pb—>y — pa—>y*pb—>x);

}

/* dotproduct() finds the dot—product of vectors pa and pb and returns
the result as a float */

float dotproduct(pa,pb)

struct threed *pa,*pb;

{
float temp=0;
temp += pa—>x¥pb—>x;
temp += pa—>y*pb—>y;
temp += pa—>z+pb—>z;
return(temp);
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B.2 raw.c

#include <stdio.h>
#include <math.h>

#include "glove.h"
#include "geom.h"

#define LGLOVE 1
#define RGLOVE 2
#define FALSE 0

extern int rglovehead,lglovehead;
extern GloveRecord **dgright,*xdgleft;

int fdleft, fdright;

[* setupGloves() initializes and calibrates a DataGlove */
setupGloves(which)
int which;

{
/* Note instead of null, a filename of a calib table can be used */
InitBox(which, enablePolhemus|enableFlex, NULL);
if(which == 2)
printf("right complete\n");
else
printf("left complete\n");
[* get3p(a,b,c, NEW3,which); */
/* CalibrateGloves( which, NULL);
printf(”got the points\n\n”); %/

}

/* GetClosest() obtains a glove record closest in time to the “time”
input */

int GetClosest(which,time)

int which,time;

{

int i,0ldh;

if(which==1)
{
oldh=lglovehead;
for(i=0;i<lglovehead;i++){
if(abs((dgleft[i]—>time) — time) <
abs((dgleft[oldh]—>time) — time))
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oldh=i;
return(oldh);

else
{
oldh=rglovehead;
for(i=0;i<rglovehead;i++){
if(abs((dgright[i]—>time) — time) <
abs((dgright[oldh]—>time) — time))
oldh=i;
}

return(oldh);

}

B.3 rawcommands.c

Finclude<stdio.h>

#define TRUE 1
#define FALSE 0
#define OBJ_1 1
#define RGLOVE 2
#define LGLOVE 1

/* rec_gest() is used for debugging purposes, it allows to record gesture
data */

int rec_gest(psent,w)

char **psent;

int w;

{/+

if(matchstr(psent[0],”start”))

LogGest = TRUE;
return(1);

}
else if(matchstr(psent[0],”stop”))

{
LogGest = FALSE;
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return(1);

}
*/
return(0);

}

[* Transpositions I: Scaled moves */
[* ”Move/locate this/that [object/prism] here/there.” x/
int recognize_move(fd,psent,wtime,w)
char **psent;
int *wtime,w,fd;
{
int matchstr();
void do_move();

if(w<5) return(0);

if(matchstr(psent[0],"move") || matchstr(psent[0],"locate")
|| matchstr(psent[0],"put"))
if(matchstr(psent[1],"this") || matchstr(psent[1],"that"))
if(matchstr(psent[2],"object") || matchstr(psent[2],"prism"))
if(matchstr(psent[3],"this") || matchstr(psent[3],"that"))
if(matchstr(psent[4],"way") || matchstr(psent[4],"direction"))

do_move(fd,wtime[1],wtime[0],wtime[4]);
return(1);

}

else return(0);

/* Transpositions II: Paths %/
/* ”That/this prism/object moves/ (is moving) like this/that.” */
int recognize_path(fd,psent,wtime,w)
char *xpsent;
int xwtime,w,fd;
{
int matchstr();
void do_path();

if(w<5) return(0);

if(matchstr(psent[0],"this") || matchstr(psent[0],"that"))
if(matchstr(psent[1],"object") || matchstr(psent[1],"prism"))
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if(matchstr(psent[2],"moves"))
if(matchstr(psent[3],"1ike"))
if(matchstr(psent[4],"this") || matchstr(psent[4],"that"))

do_path(fd,wtime[0],wtime[1],wtime[4]);
return(1);

}

else return(0);

/* Rotations */
/* ”Rotate/turn that/this prism/object (like this/that)/ (this way)” */
int recognize_rotation(fd,psent,wtime,w)
char *xpsent;
int fd,xwtime,w;
{
int matchstr();
void do_rotate();

if(w<5) return(0);

if(matchstr(psent[0],"rotate") || matchstr(psent[0],"turn"))
if(matchstr(psent[1],"this") || matchstr(psent[1],"that"))
if(matchstr(psent[2],"object") || matchstr(psent[2],"prism"))
if(matchstr(psent([3],"1ike"))
if(matchstr(psent[4],"this") || matchstr(psent[4],"that"))

do_rotate(fd,wtime[1],wtime[0],wtime[4]);
return(1);

}

else return(0);

/* Rescalings */
[* 7Scale this object like this/that.” */
int recognize_rescaling(fd,psent,wtime,w)
char *xpsent;
int *wtime,w,fd;
{

int matchstr();

void do_scale();
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if(w<5) return(0);

if(matchstr(psent[0],"scale"))
if(matchstr(psent[1],"this") || matchstr(psent[1],"that"))
if(matchstr(psent[2],"object"))
if(matchstr(psent[3],"1ike"))
if(matchstr(psent[4],"this")|| matchstr(psent[4],"that"))
{
do_scale(fd,wtime[1],wtime[0],wtime[4]);
return(1);

}

else return(0);

/+ do_move() obtains the correct glove records, selected with respect to
the speech’s timing patterns, and calls translate() */
void do_move(fd,twhich,tbegin,twhere)
int fd,twhich,tbegin,twhere;
{

void translate();
int GetClosest(),irw,ilw frw,flw;

printf("-----------------=--- \n");
printf("do_move \n");
printf("begin:\n");
irw=GetClosest(RGLOVE,tbegin);
ilw=GetClosest(LGLOVE,tbegin);

printf("where:\n");
frw=GetClosest(RGLOVE,twhere);
flw=GetClosest(LGLOVE,twhere);

translate(fd,0BJ_1,irw,ilw,frw flw);

/* do_path() selects the correct glove records, select with respect to the
time of key speech “tokens”, and calls path() */
void do_path(fd,twhich,tbegin,tpath)
int fd,twhich,tbegin,tpath;
{

void path();

87



int GetClosest(),irw,ilw,frw flw;

printf("-------------ceoooono \n");
printf("do_path \n");
printf("begin:\n");
irw=GetClosest(RGLOVE,tbegin);
ilw=GetClosest(LGLOVE,tbegin);

printf("path:\n");
frw=GetClosest(RGLOVE,tpath);
flw=GetClosest(LGLOVE,tpath);

path(fd,0BJ_1,irw,ilw, frw,flw);

}

/* do_rotate() selects the correct glove records, select with respect to the
time of key speech “tokens”, and calls which_rotate() */
void do_rotate(fd,twhich,tbegin,trotmode)
int fd,twhich,tbegin,trotmode;
{

int GetClosest(),irw,ilw frw flw;
void base_rot(),wrist_rotate(),dual_rot(),which_rotate();

printf("do_rotate \n");

printf("begin:%d\n" tbegin);
irw=GetClosest(RGLOVE,tbegin);
ilw=GetClosest(LGLOVE,tbegin);

printf("scale:%d\n" trotmode);
frw=GetClosest(RGLOVE, trotmode);
flw=GetClosest(LGLOVE,trotmode);

/* for debugging purposes we look at first object x/
which_rotate(fd,OBJ_1,irw ilw frw flw);

/* do_scale() selects the correct glove records, select with respect to the
time of key speech ”tokens”, and calls scale() */
void do_scale(fd,twhich,tbegin,tscale)
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int fd,twhich,tbegin,tscale;

{
int GetClosest(),irw,ilw,frw flw;
void scale();

printf(" --------------------- \nn);
printf("do_scale \n");

printf("begin:%d\n" tbegin);

irw=GetClosest(RGLOVE,tbegin);
ilw=GetClosest(LGLOVE,tbegin);

printf("scale:%d\n" tscale);
frw=GetClosest(RGLOVE,tscale);
flw=GetClosest(LGLOVE,tscale);

[* for debugging purposes we look at first object */

scale(fd,0BJ_1,irw ilw frw flw);
printf("--=--mmmmmcomc e \n");

B.4 rawtransform.c

/* Ed H. 5/5/92 %/

#include "rotation.h"

#include "geom.h"

#include "glove.h"

#define BUF_SIZE 200

#define SRC_DIFF —8.0 /* Eight inches: Y—difference between both sources x/

extern int rglovehead,lglovehead;
extern GloveRecord #*dgright ++dgleft;
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[* sign() returns —1 is the input is negative, otherwise it returns 1 */
sign(val)
float val;
{
if (val<0.0)
return(—1);
else
return(1);

/* Translation: Performs a scaled translation. First the ”principal azis”
which the user is referring to is found, and then the translation is done
in a ”scaled” manner, with respect to the initial distance between the
user’s hands */

void translate(fd,obj_id,initrf,initlf finrf finlf)

int fd,obj_id;
int initrf,initlf finrf finlf;

float init_dist,fin_dist,init_mid_pt,fin_md_pt;

struct threed ir,il,fr fl,temp,temp2,cur_pos;

float distance(),modulus(),d,find_width(),tempf,tempf2;
void get_cur_pos(),smsg();

char tmp[BUF_SIZE];

ir.x = (dgright[initrf]—>Pos—>x);
ir.y = (dgright[initrf]—>Pos—>y);
ir.z = (dgright[initrf]—>Pos—>z);

il.x = (dgleft[initlf]—>Pos—>x);
iLy = (dgleft[initlf]—>Pos—>y) — SRC_DIFF;
ilL.z = (dgleft[initlf]—>Pos—>z);

fr.x = (dgright[finrf]—>Pos—>x);
fr.y = (dgright{finrf]—>Pos—>y);
fr.z = (dgright(finrf]—>Pos—>z);

(]

fl.x = (dgleft{finlf]—>Pos—>x);
fi.y = (dgleftffinlf]->Pos—>y) — SRC_DIFF;
fl.z = (dgleft[finlf]—>Pos—>z);

init_dist= distance(&ir,&il,&temp);
fin_dist = distance(&fr,&fl,&temp);

/* see which side of the figure user is referring to in order to establish
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width of object */
d=find_width(fd,ir,il);

get_cur_pos(fd,&cur_pos);
tempf=distance(&fr,&ir,&temp);
temp2.x = ir.x—il.x;

temp2.y = ir.y—il.y;

temp2.z = ir.z—il.z;

tempf2=modulus(temp2);

printf("I->(x=Yf y=hf z=Uf) id=lf F->(x=if y=Uf z=if) fd=if\n",
temp.x,temp.y,temp.z,tempf,temp2.x,temp2.y,temp2.z,tempf2);

tempf = tempf/(tempf2 * d);
temp.x temp.x * tempf 4 cur_pos.x;

temp.y = temp.y * tempf + cur_pos.y;
temp.z = —temp.z * tempf + cur_pos.z;

if(temp.x <=-10.0) temp.x= —10.0;
if(temp.x >= 10.0) temp.x= 10.0;

if(temp.y <=-10.0) temp.y= —10.0;
if(temp.y >= 10.0) temp.y= 10.0;

if(temp.z <=-10.0) temp.z= —10.0;
if(temp.z >= 10.0) temp.z= 10.0;

sprintf(tmp,"SET_LOCATION %f %f %£\n" temp.X,temp.y,temp.z);
smsg(fd,tmp);

/% get_cur_pos() requests Muerse for the location of the current object */
void get_cur_pos(fd,cp)

int fd;

struct threed *cp;

{
char buf[BUF_SIZE];

void gmsg(),smsg();
float x,y,z;

smsg(fd,"SET_CURRENT 3\n");
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gmsg(fd,"GET_LUCATI ON\n" ,buf);
sscanf(buf,"hf %f Uf" &x,&y,&2);

CPp—>X=X;
Cp—>y=y;
Cp—>2=12;

/* Find out which main azis is parallel to ir—il and then
figure out what d is based on GET_SCALE from mverse */
float find_width(fd,ir,il)
struct threed ir,il;
int fd;

int maj_par_ax(),rval;
struct threed tmp,sc;
char temp[200];

tmp.x = irx — il.x;
tmp.y = ir.y — ily;
tmp.z = irz — il.z;

rval = maj_par_ax(fd,tmp);

/* Get current scaling factors */
gmsg(fd,"GET_SCALE\n" temp);
sscanf(temp,"%f %f %E",&(sc.x),&(sc.y),&(sc.2));

switch(rval){

case 1:
return(sc.x);
break;

case 2:
return(sc.y);
break;

case 3:

return(sc.z);
break;

}

return(1.0);

}

/* scale() looks at the initial distance between the user’s hands, which
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?principal azis” the user is referring to, and the final distance
between the users hands and scales accordingly */
void scale(fd,obj_id,initrf,initlf finrf,finlf)
int fd,obj_id;
int initrf,initlf,finrf,finlf;

float idist,fdist,distance(),newx,newy,newz;
struct threed temp,sc,ir,il,fr fl;

void smsg();

char tmp(BUF_SIZE];

int maj_par_ax(),rval;

ir.x = (dgright[initrf]—>Pos—>x);
iry = (dgright[initrf]—>Pos—>y);
ir.z = (dgright[initrf]—>Pos—>z);

il.x = (dgleft[initlf]—>Pos—>x);
ily = (dgleft[initlf]—>Pos—>y) — SRC_DIFF;
il.z = (dgleft[initlf]—>Pos—>z);

fr.x = (dgright[finrf]—>Pos—>x);
fr.y = (dgright[finrf]—>Pos—>y);
fr.z = (dgright[finrf]—>Pos—>z);

fl.x = (dgleft[finlf]—>Pos—>x);
fly = (dgleft[finlf|[->Pos—>y) — SRC_DIFF;
fl.z = (dgleft{finlf]—>Pos—>z);

[* Get current scaling factors */
gmsg(fd,"GET_SCALE\n",tmp);
sscanf(tmp,"%f %f %E",&(sc.x),&(sc.y),&(sc.z));

printf("init r (x=4f,y=Uif,z=%f)\n",ir.x,ir.y,r.z);
printf("init 1 (x=%f,y=%f,z=%f)\n" il.x,il.y,il.z);
printf("final r (x=Yf,y=Uf,z=%f)\n" fr.xfr.y,fr.z);
printf("final 1 (x=Yf,y=%f,z=%f)\n" fl.xf.yfl.z);

idist = distance(&ir,&il,&temp);
printf("init_dist=%f\n" idist);
fdist = distance(&fr,&fl,&temp);
printf("fin_dist=%f\n" fdist);

rval=maj_par_ax(fd,temp);
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switch(rval){

case 1:
printf("scale in x %f\n" sc.x);
newx=fdist/idist * sc.x;
sprintf(tmp,"SET_SCALE %f %f %f\n",newx,sc.y,sc.z);
smsg(fd,tmp);
break;

case 2:
printf("scale in y %f\n",sc.y);
newy=fdist/idist * sc.y;
sprintf(tmp,"SET_SCALE %f %f %f\n",sc.x,newy,sc.z);
smsg(fd,tmp);
break;

case 3:
printf("scale in z %f\n" sc.z);
newz=fdist/idist * sc.z;
sprintf(tmp,"SET_SCALE %f %f %f\n",sc.x,sc.y,newz);
smsg(fd,tmp);
break;

}

}

[* The maj_par_az() function returns 1 if the azis ezamined is most
parallel to the object’s X—azis, 2 if Y—axis, 3 if Z—azis */
int maj_par_ax(fd,ax)
int fd;
struct threed ax;
{
struct threed x_ax,y_ax,z_ax,the_ax,temp;
float xval,yval,zval,modulus();
int rval;
int crossproduct();

char buf[500];

/*get mverse azes x/
gmsg(fd,"GET_ORIENTATION\n" buf);

sscanf(buf,"%f %f Uf Uf UL Uf UL UL Uf",
&x_ax.x,&y_ax.x,&z_ax.x,&x_ax.y,&y_ax.y,&z_ax.y,
&x_ax.z,&y_ax.z,&z_ax.z);

printf("x_ax = (%f,%f,%f)\n" x_ax.x,X_ax.y,X_ax.z);

printf("y_ax = (%f,%f,%f)\n",y_ax.x,y_ax.y,y_ax.z);

printf("z_ax = (Uf,%f,%f)\n",z_ax.x,z_ax.y,7z_ax.z);

/* transformed azis */

94



the_ax.x= ax.x;
the_ax.y= ax.y;
the_ax.z= — ax.z;

printf("the_ax = (%f,%f,%f)\n"the_ax.x,the_ax.y,the_ax.z);

crossproduct(&the_ax,&x_ax,&temp);
xval = modulus(temp);
crossproduct(&the_ax,&y_ax,&temp);
yval = modulus(temp);
crossproduct(&the_ax,&z_ax,&temp);
zval = modulus(temp);

printf("x_val = %f y_val = %f z_val = %f\n" xvalyvalzval);

if ((xval <= yval) && (xval <= zval)) rval = 1;
else

if ((yval <= xval) && (yval <= zval)) rval = 2;
else

rval =3;
return(rval);

[* path() peforms an animation of the object based on a vector determined
by two positions of one of the user’s hands, determined by the times of
elements of speech */

void path(fd,obj_id,initrf,initlf,finrf finlf)

int fd,obj_id;
int initrf,initlf finrf finlf;

float distance();

struct threed temp,way;
struct threed ir,il,fr,fl,temp2;
void smsg();

char tmp[BUF_SIZE];

float leftdist,rightdist;

ir.x = (dgright[initrf]—>Pos—>x);
ir.,y = (dgright[initrf]—>Pos—>y);
ir.z = (dgright[initrf]—>Pos—>z);

il.x = (dgleft[initlf]—>Pos—>x);

iLy = (dgleft[initlf]->Pos—>y) — SRC_DIFF;
il.z = (dgleft[initlf]—>Pos—>z);
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frx = (dgright[finrf]—>Pos—>x);
fr.y = (dgright[finrf]—>Pos—>y);
fr.z = (dgright{finrf]—>Pos—>z);

fl.x = (dgleft[finlf]—>Pos—>x);
fly = (dgleft[finlf|->Pos—>y) — SRC_DIFF;
fl.z = (dgleft[finlf]—>Pos—>z);

leftdist = distance(&fl,&il,&temp);
rightdist = distance(&fr,&ir,&temp?2);

if(leftdist >=rightdist){
way.x = temp.x;
way.y = —temp.y;
way.z = —temp.z;}

else{
way.x = temp2.x;
way.y = —temp2.y;
way.z = —temp2.z;}

sprintf(tmp,"ANIMATE 3 0 0 1 !%f %f %f 0.0 0.0 0.0 0.0 -1\n",
way.X,way.y,way.z );
smsg(fd,tmp);

smsg(fd,"START_CLOCK\n");

}

#define MAGIC_THRESH 5.0 [/ This threshold is used to distinguish between
the different types of rotations */

/* which_rotate() determines which type of rotation has been requested:
if both hands hardly move then it’s a wrist—rotation, if both of them
move, then it’s a dual—handed rotation, otherwise, it’s a base rotation x|/
void which_rotate(fd,obj_id,initrf,initlf finrf,finlf)
int fd,obj_id;
int initrf,initif finrf finlf;

float right_dist,left_dist,distance();
struct threed temp,ir,il,fr fl;
void wrist_rotate(),base_rot(),dual_rot();

irx = (dgright[initrf]—>Pos—>x);
ir.y = (dgright[initrf]—>Pos—>y);
irz = (dgright[initrf]—>Pos—>z);
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(dgleft[initlf]— >Pos—>x);
(dgleft[initlf]— >Pos—>y) — SRC_DIFF;
= (dgleft[initlf]—>Pos—>z);

l.x
y
l.z

fr.x = (dgright{finrf]—>Pos—>x);
fr.y = (dgright[finrf]—>Pos—>y);
fr.z = (dgright[finrf]—>Pos—>z);

fl.x = (dgleft{finlf]—>Pos—>x);
fly = (dgleft[finlf]—>Pos—>y) — SRC_DIFF;
flz = (dgleft[finlf]—>Pos—>z);

right_dist = distance(&fr,&ir,&temp);
left_dist = distance(&fl,&il,&temp);

printf("RDIST=Yf LDIST=Y%f\n" right_dist,left_dist);

if((right_dist<=MAGIC_THRESH) &&(left_dist<=MAGIC_THRESH))
wrist_rotate(fd,obj_id,initrf,initlf finrf finlf);
else
if((right_dist>MAGIC_THRESH) &&(left_dist>MAGIC_THRESH))
dual_rot(fd,obj_id,initrf,initlf finrf finif);
else
base_rot(fd,obj_id,initrf,initlf,finrf finlf);

/* wrist_rotate() rotates the object around the specified "principal azis”,
by the amount of "change in yaw” of the right hand cube */
void wrist_rotate(fd,obj_id,initrf,initlf finrf finlf)
int fd,obj_id;
int initrf,initlf finrf finlf;

float idist,fdist,distance(),newx,newy,newz,the_ang;
struct threed temp,sc,ir,il,fr fl;

void smsg(),get_cur_pos();

char tmp[BUF_SIZE];

int maj_par_ax(),rval;

irx = (dgright[initrf]—>Pos—>x);
ir,y = (dgright[initrf]—>Pos—>y);
ir.z = (dgright[initrf]—>Pos—>z);

il.x = (dgleft{initlf]—>Pos—>x);

97



ily = (dgleft[initlf]—>Pos—>y) — SRC_DIFF;
il.z = (dgleft[initlf]—>Pos—>z);

fr.x = (dgright[finrf]—>Pos—>x);
fr.y = (dgright{finrf]—>Pos—>y);
fr.z = (dgright[finrf]—>Pos—>z);

fl.x = (dgleft[finlf]—>Pos—>x);
fly = (dgleft{finlf]—>Pos—>y) — SRC_DIFF;
fl.z = (dgleft[finlf]—>Pos—>z);

o

printf("WRIST ROTATE\n");

printf("init r (x=Yf,y=Uf,2z=%f)\n" ir.x,ir.y,ir.z);
printf("init 1 (x=%f,y=%f,z=%f)\n",il.x,ily,l.z);
printf("final r (x=%f,y=4f,z=4f)\n" fr.x,fr.y,fr.z);
printf("final 1 (x=%f,y=%f,z=4f)\n" JA.xf.yflz);

fdist = distance(&fr,&fl,&temp);
printf("fin_dist=%f\n" fdist);

printf("temp (x=%f,y=%f,z=%f)\n" ,temp.x,temp.y,temp.z);
rval=maj_par_ax(fd,temp);
the_ang = ((dgright[finrf]—>Att—>azim)—(dgright[initrf]—>Att—>azim))/3.0;

switch(rval){
case 1:
printf("rotate in x %f\n",the_ang);
get_cur_pos(fd,&temp);
sprintf(tmp,"ANIMATE 3 0 0 1 '%f %f %f 1.0 0.0 0.0 %f 35\n",temp.x,
temp.y,temp.z,17.0 * sign(the_ang));
/+ sprintf(tmp,”ROTATE 1.0 0.0 0.0 20.0\n”); * [
smsg(fd,tmp);
break;
case 2:
printf("rotate in y %f\n",the_ang);
get_cur_pos(fd,&temp);
sprintf(tmp,"ANIMATE 3 0 0 1 !)f %f %f 0.0 1.0 0.0 %f 35\n",temp.x,
temp.y,temp.z,17.0 * sign(the_ang));
/* sprintf(tmp,”ROTATE 0.0 1.0 0.0 20.0\n”); */
smsg(fd,tmp);
break;

case 3:
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printf("rotate in z %f\n",the_ang);

get_cur_pos(fd,&temp);

sprintf(tmp,"ANIMATE 3 0 0 1 !%f %f %f 0.0 0.0 1.0 %f 35\n",temp.x,
temp.y,temp.z,17.0 * sign(the_ang));

[* sprintf(tmp,”ROTATE 0.0 0.0 1.0 20.0\n"); %/

smsg(fd,tmp);

break;

B.5 rawwingest.c

/* This file has a lots of differences with respect to Carlton’s original
wingest.c

*/

#include <rti/rtiio.h>
#include <fentl.h>
#include <time.h>
#include <termio.h>
#include <signal.h>
#define R 'R’

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <Xw/Xw.h>
#include <X11/Xaw/Label.h>
#include <Xw/SText.h>
#include <Xw/RCManager.h>
#include <Xw/PButton.h>
#include <Xw/TextEdit.h>
#include "1ibXs.h"
#include <stdlib.h>

#include <macros.h>
#undef length
#include <string.h>

#include <stdio.h>
#include <math.h>
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#include "geom.h"
#include "glove.h"

#define FALSE 0
#define TRUE 1
#define SPSEND 10
#define STR_E 2
#define MAX_W 50
#undef length

#define LGLOVE 1
#define RGLOVE 2

#define SCR_DIFF —8.0 /+ Eight inches: Y—difference between both sources x/

int speech,dectalk,rclock;

int nonblock_arg = NONBLOCKINGIO;/* uncomment for blocking readsx/
Widget edit;

int spidle = 0;

int letter_times[60];

int ltime_index=0;

void rtn();

void backup();

int gd; /* mverse socket descriptor */

extern int rglovehead,lglovehead;
extern GloveRecord xxdgright,++dgleft;

/* This main() is the principal loop of the entire system * /
main(argc, argv)
int argc;
char xargv(];
{
Widget toplevel;
Widget gorbag;
Arg wargs[1];
void dospeech();
int dogest();
void doupdate();
void periodic(),omain();

setupGloves(LGLOVE);
setupGloves(RGLOVE);
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dectalk = open("/dev/rti0/dectalk",0_WRONLY);

if(dectalk == —1) perror("Opening dectalk pipe"), exit(—1);
system("cat /dev/rtiO/speech > /dev/null");

speech = open("/dev/rti0/speech"”,0_RDONLY | O_NDELAY);

if(speech == —1) perror("Opening speech pipe"), exit(—1);
rclock = open("/dev/rti0/clock",0_RDWR);
if(rclock == —1) perror("Opening clock pipe"), exit(—1);

[* Start mverse */
omain(&gd);

/* create top level widget. This establishes
connection with X server. ’toplevel’ becomes the
root of the widget tree */

toplevel = XtInitialize(argv[0],"Wintest", NULL, 0,
&arge, argv);

XtSet Arg(wargs[0], XtNcolumns, 1);

XtSet Arg(wargs[0], XtNeditType, XwtextEdit);
edit = create_one_widget("edit", toplevel, wargs, 1);

XtAddInput(speech, XtInputReadMask, dospeech, edit);
XtAddWorkProc(dogest, edit);
periodic(NULL, NULL);

XtAddEventHandler(edit, KeyReleaseMask, FALSE, doupdate, NULL);
XtRealizeWidget(toplevel);
XtMainLoop();

}

/* dospeech() reads the speech (words) as it becomes available */
void dospeech(w, fid, id)
Widget w;
int xfid;
XtInputld =id;
{
char mesg[100];
int mytime,i;
XEvent myevent;
XwTextPosition begpos,endpos;

begpos = XwTextGetInsertPos(edit);
if(GetSpeech(speech,mesg,&mytime))
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{
/* printf(”speech input: %s(%d)\n”,mesg,strlen(mesg));x/
if( XwTextGetInsertPos(edit) == 0)
XwTextInsert(edit, mesg+1);
else
XwTextInsert(edit, mesg);
}

endpos = XwTextGetInsertPos(edit);
for(i=begpos; i< endpos; ++i)
letter_times[i] = mytime;
Itime_index = endpos;
spidle = 0;
}

/* This timer is used to know what the “timestamp” for the speech is if
it was typed in, instead of spoken */

int UpdateTimeCode()

{
int nowtime,i;
XwTextPosition endpos;

nowtime = GetTime(rclock);

endpos = XwTextGetInsertPos(edit);

for(i=Itime_index; i < endpos; ++i)
letter_times[i] = nowtime;

Itime_index = endpos;

}

/* This gets the time from the raw RTI clock, typically */
int GetTime(fd)

{
char buf[8];

write(fd," !",1);
read(fd,buf,7);

return(atoi(buf));

}

/* This function gets words, or “tokens” %/
int GetSpeech(fd, reply, mytime)

int fd;

unsigned char *reply;

int *mytime;

{
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int dummy=0, nbytes=0;
int index = 0;

int done = 0;

int i;

unsigned char tcode[9];

[* printf(”Looking for $\n”);x/
if((dummy = read(fd, reply, 1)) < 1)
{
perror("Reading leading byte:");
return(FALSE);
}

if(reply[0] '= 0x24) /* 0z24 = %', 0221 = 1 %/
return(FALSE);

read(fd, reply, 1); /*remove other §’x/

while(!done)
{
/* printf(”Looking for word\n”);x/
if((dummy = read(fd, reply+index, 1)) < 1)
perror("Reading leading byte:"); »
if(reply[index++4] == 0x21) /x 0z24 = %', 0221 = ’! %/

{
done = 1;
reply[index—1] = ’\0?;
/* printf(” is this the count? %d\n”,reply[0]);*/
reply[ 0 ] = 2 5
}
}
for(dummy=0; nbytes < 8; )
{
/* printf(”Looking for time\n”);*/

dummy = read(fd, tcode+nbytes, 8 — nbytes);
if (dummy > 0) (nbytes += dummy);
else perror("Reading buffer:");

}

for(i=1,+mytime=0;i<8;i++4) /«first char read should be a space!x|
smytime = xmytimex10 + (int)(tcode[i] — ’07);
/* printf(”Word received at %d\n”,xmytime); */
return(TRUE);
}
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/* Update the timer x/
void doupdate(w, client_data, event)
Widget w;
caddr_t client_data;
XEvent *event;
{
UpdateTimeCode();
spidle = 0;

}

/* this is so that X will pay attention to typing */
void periodic(w, id)
/* Widget w;x/
caddr_t w;
XtIntervalld id;
{
XwTextPosition pos;
pos = XwTextGetInsertPos(edit);

if(pos != 0)
{
if( spidle > SPSEND )
rtn(edit, NULL, NULL, 0);
else
spidle++;
}

XtAddTimeOut(250, periodic, NULL);
}

/* myparse() is the basic top—level parsing function */
int myparse(buf,blen)
char *buf;
int blen;
{
char *xp_s, **parse();
int i,w;
int p_t[20];
int p_indx = 0;
int recognize_move(),recognize_path(),rec_gest();
int recognize_rotation(),recognize_rescaling();

p_s=parse(buf,&w);

for(i=0;i<w;i++)
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p_t[i] = letter_times[p_indx];
p_indx += 14strlen(p_s[i]);
printf("%s (%d) @ %d \n",p_s[i],strlen(p_s[i]),p_t[i]);

}

if (recognize_move(gd,p_s,p_t,w))
if('recognize_path(gd,p_s,p_t,w))
if('recognize_rotation(gd,p_s,p_t,w))
if('recognize_rescaling(gd,p_s,p_t,w))
if('rec_gest(p_s,w))
printf("Sentence not recognized\n");

/* The function parse() parses a sentence and counts how many words are in
it. It returns an array of words. A word is similar to a string, with
A0’ in it.

*/

char xxparse(sent,w_num)

char xsent; /+ Sentence to be parsed */

int *w_num; /+ Keeps track of the number of words in the sentence */

{

char *word, **wrd_a, **init;

static char ter[|[=" .7;:!"; /x List of possible termination chars */
void *malloc();

char xstrtok();

char *strcpy();

wrd_a=malloc(sizeof(char *) + MAX_W);

init=wrd_a;

word = strtok(sent,ter);

xw_num=0; /+ The Ist word is the Oth one %/

while(word!=NULL)

{
/* printf(” %s\n”,word); x/
*wrd_a=malloc(sizeof(char) * (strlen(word)+STR_E));
strepy(*wrd_a,word);
word = strtok(NULL,ter);

wrd_a++;
(*w_num)++;
}
return(init);
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/* matchstr() returns 1 if both strings are equal, 0 otherwise x/
int matchstr(stl, st2)
char *stl, xst2;

{
int i;
for(i = 0;; i++)

if(st1[i] '= st2[i])

{
/* printf(’Not eq: %s <—> %s\n”,st1,st2); */
return(0);
}
if(st1[i] == ’\0?)
/* printf("Eq: %s <—> %s\n”,st1,st2); =/
return(l);
}
}
}

/* dogest() reads both DataGloves */
int dogest(w, fid, id)
Widget w;
int xfid;
XtInputld x*id;
{
void smsg(),gmsg();
float modulus(),retv;
char temp[200];
struct threed ir,il;
extern int rglovehead,lglovehead;
extern GloveRecord #xdgright, «xdgleft;

ReadRecord(LGLOVE, FALSE);
ReadRecord(RGLOVE, FALSE);

ir.x = (dgright[rglovehead]—>Pos—>x);
ir.y = (dgright[rglovehead]—>Pos—>y);
ir.z = (dgright{rglovehead]—>Pos—>z);

ilx = (dgleft[lglovehead]—>Pos—>x);
iLy = (dgleft|lglovehead]—>Pos—>y) — SCR_DIFF;
il.z = (dgleft{lglovehead]—>Pos—>z);
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retv = modulus(ir);
ir.x=10%ir.x/retv;ir.y=10#ir.y /retv;ir.z=10%ir.z /retv;

retv = modulus(il);
il.x=10%il.x/retv;il.y=10#il.y /retv;il.z=10%il.z /retv;

smsg(gd,"SET_CURRENT 1\n");
sprintf(temp,"SET_LOCATION %f %f %f\n",ir.x,ir.y,—ir.z);
smsg(gd,temp);

smsg(gd,"SET_CURRENT 2\n");
sprintf(temp,"SET_LOCATION %f %f %f\n",il.x,ly,—il.z);
smsg(gd,temp);

/*
printf("L.X=%f L.Y=%f L.Z=%f\n",il.z,il.y,il.z);
printf("R. X=%f R.Y=%f R.Z=%\n",ir.¢,ir.y,ir.z); */

smsg(gd,"SET_CURRENT 3\n");

return(FALSE);
}

B.6 sock.c

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <errno.h>
#include <varargs.h>
#include <string.h>

#include "geom.h"
#define MAX_RD 100

extern int errno;
extern char *sys_errlist(];

/* init_gsock() initializes a socket connection to Mverse on Leon */
init_gsock(s)
int xs;
{
struct sockaddr saddrl;
struct sockaddr_in *psaddr_in;
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int addrl, sta;
short portl;
char tmp_str[80];

char buf[256];
int rdfds, s_mask,s_bit,n, done = 0, doneeof= 0;

addrl = inet_addr("18.85.0.88"); /+ Leon’s InterNet addr */
portl= 15001;

*s = socket(AF_INET, SOCK_STREAM, 0);
if (xs == —1) { perror("creating socket"); exit(—1); }

psaddr_in = (struct sockaddr_in *) &saddrl;
psaddr_in —> sin_family = AF_INET;
psaddr_in —> sin_addr.s_addr = addrl;

psaddr_in —> sin_port = htons(port1);

sta = connect(xs, &saddrl, sizeof(saddrl));

if (sta == —1) { perror("connecting"); exit(—1); }

s_bit = 1L << s*s; /* Include connected socket. */
s_mask = s_bit | 1L; /¥ (1L is for std. input.) %/

sprintf(buf,"Connected to port\n\n");
write(0,buf,strlen(buf));

}

[** Utilities to support printing formatted strings to given file */

[+* descriptors. These are intended to make life easier when low—level x/
[** if/o commands (e.g., write(2)) are being used. In addition, perr() x/
/** provides a means quickly printing an error message to a log file %/
/** (since no stderr is open for the program). x/

pmsg(fd, strng) /* ‘strng’ must be null terminated. */
int fd; /* ‘fd’ must be open/write—valid. */
char strng(];

return(write(fd, strng, strlen(strng)));

}

void gmsg(fd,send,buf)
int fd;
char send[],buf]];

108



void smsg();
int stat;

smsg(fd,send);
printf("gmsg f£d=%d\n" fd);
stat=read(fd,buf, MAX_RD);
printf("s=%d\n" stat);
if(stat==—1) perror("Error reading to sock");
while(stat<0){
stat=read(fd,buf, MAX_RD);
if(stat==—1) perror("Error readiing to sock");
printf("s=%d\n" stat);
}
}

perr(fd, strng)
int fd;
char strng[];

char str1[80];

sprintf(strl, "%s: %s (%u)\n", strng, sys_errlistlerrno], errno);
return(write(fd, strl, strlen(strl)));

}

void smsg(fd, strng)
int fd;
char strngf];

{

if(pmsg(fd,strng)==—1) {perror("Writing to socket"); /* exit(—1); %/}

/* omain() initializes all of the objects in Muverse, the x29 plane, being
the most important one. the other objects are there for debugging
purposes [

void omain(gd)

int *gd;

{

void smsg(),gmsg(),get_cur_pos();
char temp[200];
struct threed cp;
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init_gsock(gd);

gmsg(+gd,"LOAD_CLASSES classfile\n" temp);
smsg(*gd,"SET_CLASS cube\n");
Smsg(*gd,"SET_LUCATION -6.0 0.0 0.0\Il");
smsg(+gd,"SET_COLOR 0.3 0.0 0.0\n");
smsg(+gd,"SET_SCALE 0.25 0.25 0.25\n");

smsg(+gd,"SET_CLASS cube\n");

smsg(*gd,"SET_LOCATION 6.0 0.0 0.0\n");

smsg(gd,"SET_COLOR 0.0 0.3 0.0\n"); /* Make them black for now x/
smsg(*gd,"SET_SCALE 0.25 0.25 0.25\n");

smsg(*gd,"SET_CLASS x29\n");
smsg(+gd,"SET_SCALE 0.25 0.25 0.25\n");
smsg(*gd,"SET_LOCATION 0.0 0.0 -5.0\n");
smsg(*gd,"SET_COLOR 0.0 1.0 1.0\n");
smsg(*gd,"ROTATE 1.0 0.0 0.0 15.0\n");

smsg(*gd,"START_CLOCK\n");

smsg(*gd,"SET_CLASS cube\n");
smsg(*gd,"SET_LOCATION 0.0 20.0 12.0\n");
smsg(*gd,"SET_COLOR 1.0 0.0 0.0\n");
smsg(*gd,"SET_SCALE 8.0 0.25 0.25\n");

smsg(*gd,"SET_CLASS cube\n");
smsg(*gd,"SET_LOCATION 0.0 20.0 12.0\n");
smsg(+gd,"SET_COLOR 0.0 0.0 1.0\n");
smsg(*gd,"SET_SCALE 0.25 0.25 8.0\n");

B.7 turn.c

#include <math.h>
#include "geom.h"
#include "glove.h"

#define R 0
#define L 1
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#define SCR_DIFF —8.0 /+ Eight inches: Y—difference between both sources x|

extern int rglovehead,lglovehead;
extern GloveRecord **dgright,xxdgleft;

void get_cur_pos();

/* find_angle() converts two vectors to object space, and finds the angle
between them =*/
float find_angle(fd,vecl,vec2)
int fd;
struct threed vecl,vec2;
{
float dotproduct(),modulus();
struct threed x_ax,y_ax,z_ax,tempvecl,tempvec2;
void gmsg();
char buf[500];

/* Switch to Object space first to get sign:
Get mverse azes */
gmsg(fd,"GET_ORIENTATION\n" buf);

sscanf(buf,"hf Uf %f %Uf Uf Uf U Uf Uf",
&x_ax.x,&y_ax.x,&z_ax.x,&x_ax.y,&y_ax.y,&z_ax.y,
&x_ax.z,&y_ax.z,&z_ax.z);

printf("x_ax = (%f,%f,%f)\n" x_ax.x,X_ax.y,x_ax.z);

printf("y_ax = (%f,%f,%f)\n",y_ax.x,y_ax.y,y_ax.z);

printf("z_ax = (%f,%f,%f)\n" z_ax.Xx,2_ax.y,z_ax.z);

tempvecl.x = dotproduct(vecl,x_ax);
tempvecl.y = dotproduct(vecl,y_ax);
tempvecl.z = —dotproduct(vecl,z_ax);

tempvec2.x = dotproduct(vec2,x_ax);
tempvec2.y = dotproduct(vec2,y_ax);

tempvec2.z = —dotproduct(vec2,z_ax);

return(180.0x(float)acos((double)(dotproduct(tempvecl,tempvec2)/
(modulus(tempvecl)*modulus(tempvec2))))/M_PI);

/* base_rot() performs a base rotation, by finding out the cross
product of two vectors from both hands, seeing which ”principal azis”
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they are most parallel to, and then requesting mverse to turn the
object */
void base_rot(mvfd,objid,initr,initl finr finl)
int mvfd,objid;
int initr,initlfinr, finl;
{
int initial,rval;
struct threed ir,il,fr,fl,vecl,vec2,temp;
float distance(),find_angle();
int crossproduct();
float the_ang;
char tmp[500];

ir.x = (dgright[initr]—>Pos—>x);
ir.y = (dgright[initr]—>Pos—>y);
irz = (dgright[initr]—>Pos—>z);

iL.x = (dgleft[initl]—>Pos—>x);
iy = (dgleft[initl]—>Pos—>y) — SCR_DIFF;
il.z = (dgleft[initl]—>Pos—>z);

fr.x = (dgright[finr]—>Pos—>x);
fry = (dgright[finr]—>Pos—>y);
fr.z = (dgright{finr]—>Pos—>z);

fl.x = (dgleft[finl]—>Pos—>x);
fly = (dgleft[finl]—->Pos—>y) — SCR_DIFF;
fl.z = (dgleft[finl]—>Pos—>z);

printf("BASE ROTATION\n");

printf("I->(rx=%f ry=4f rz=4f) F->(rx=if ry=if rz=Yf)\n",
ir.x,ir.y,ir.z,fr.x,fr.y,fr.z);

printf("I->(1x=%f ly=%f lz=%f) F->(1x=Uf ly=if 1z=if)\n",
il.x,il.y,il.z,fl.x,f.y,f1.2);

printf("base_rot\n");

if( distance(&ir,&fr,&temp)< =distance(&il,&fl,&temp))
initial=R;

else
initial=L;

if(initial==R) printf("initial=R\n");
else printf("initial=L\n");
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if(initial==R){

vecl.x = il.x — ir.x;
vecl.y = iy — ir.y;
vecl.z = il.z - ir.z;
vec2.x = flx — irx;
vec2y = flly - iry;
vec2.z = flz - ir.z;

}

else{
vecl.x = irx — ilx;
vecl.y = iry — ilLy;
vecl.iz = irz — ilz;
vec2.x = frx — il.x;
vec2.y = fr,y - ilLy;
vec2.z = friz — il.z;

}

crossproduct(&vecl,&vec2,&temp);

the_ang = find_angle(mvfd,vecl,vec2);
if(initial==L) the_ang = the_ang*—1;

rval=maj_par_ax(mvfd,temp);
switch(rval){
case 1:

printf("rotate in x %f\n",the_ang);

get_cur_pos(mvfd,&temp);

sprintf(tmp,"ANIMATE 3 0 0 1 !%f %f %f 0.0 1.0 0.0 %f 35\n",temp.x,
temp.y,temp.z,the_ang);

/* sprintf(tmp,”ROTATE 1.0 0.0 0.0 20.0\n”); */

smsg(mvfd,tmp);

break;

case 2:

printf("rotate in y %f\n",the_ang);

get_cur_pos(mvi{d,&temp);

sprintf(tmp,"ANIMATE 3 0 0 1 '%£ %f %f 0.0 1.0 0.0 %f 35\n",temp.x,
temp.y,temp.z,the_ang);

/* sprintf(tmp,”ROTATE 0.0 1.0 0.0 20.0\n”); */

smsg(mvfd,tmp);

break;

case 3:

printf("rotate in z %f\n",the_ang);

get_cur_pos(mvfd,&temp);

sprintf(tmp,"ANIMATE 3 0 0 1 '/f %f %f 0.0 0.0 1.0 %f 35\n",temp.x,
temp.y,temp.z,the_ang);

/* sprintf(tmp,”ROTATE 0.0 0.0 1.0 20.0\n”); */
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smsg(mvfd,tmp);
break;

}
}

/% dual_rot() performs a base rotation, by finding out the cross product of
the initial and final vectors between both hands, seeing which ”principal
azris” they are most parallel to, and then requesting mverse to turn the
object */

void dual_rot(mvfd,objid,initr,initlfinr finl)

int mvfd,objid;

int initr,initl,finr finl;

{

int initial,rval;

struct threed ir,il,fr,fl,vecl,vec2,temp;
float distance(),find_angle();

int crossproduct();

float the_ang;

char tmp[500];

irx = (dgright[initr]—>Pos—>x);
ir.y = (dgright[initr]—>Pos—>y);
irz = (dgright[initr]—>Pos—>z);

iL.x = (dgleft[initl]—>Pos—>x);
ily = (dgleft[init]]—>Pos—>y) — SCR_DIFF;
il.z = (dgleft[initl]—>Pos—>z);

frx = (dgright[finr]—>Pos—>x);
fr.y = (dgright[finr]—>Pos—>y);
frz = (dgright[finr]—>Pos—>z);

fl.x = (dgleft[finl]—>Pos—>x);

fly = (dgleft[fin]]—>Pos—>y) — SCR_DIFF;

fl.z = (dgleft[fin]]—>Pos—>z);

printf("DUAL HAND ROTATION\n");

printf("I->(rx=%f ry=hf rz=if) F->(rx=Yf ry=if rz=jf)\n",
ir.x,ir.y,ir.z,fr.x,fr.y,fr.z);

printf("I->(1x=Y%f ly=if lz=if) F->(1x=4f 1ly=%f 1z=if)\n",
iL.x,il.y,il.z f.x,fl.y,fl.2);

printf("dual_rot\n");
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vecl.x = ir.x — il.x;
vecl.,y = ir.y — ily;
vecl.z = ir.z — il.z;
vec2.x = frx — fl.x;
vec2.y = fry — flLy;
vec2.z = frz — fl.z;

crossproduct(&vecl,&vec2,&temp);
the_ang = find_angle(mvfd,vecl,vec2);

rval=maj_par_ax(mvfd,temp);
switch(rval){
case 1:
printf("rotate in x %f\n",the_ang);
get_cur_pos(mvfd,&temp);
sprintf(tmp,"ANIMATE 3 0 0 1 '%f %f /f 1.0 0.0 0.0 %f 35\n",temp.x,
temp.y,temp.z,the_ang);
printf("%s\n",tmp);
/* sprintf(tmp,”ROTATE 1.0 0.0 0.0 20.0\n"); */
smsg(mvfd,tmp);
break;
case 2:
printf("rotate in y %f\n",the_ang);
get_cur_pos(mvfd,&temp);
sprintf(tmp,"ANIMATE 3 0 0 1 !%f %f %f 0.0 1.0 0.0 %f 35\n",temp.x,
temp.y,temp.z,the_ang);
printf("%s\n",tmp);
/* sprintf(tmp,”’ROTATE 0.0 1.0 0.0 20.0\n”); */
smsg(mvfd,tmp);
break;
case 3:
printf("rotate in z %f\n" the_ang);
get_cur_pos(mvfd,&temp);
sprintf(tmp,"ANIMATE 3 0 0 1 !%f %f %f 0.0 0.0 1.0 %f 35\n",temp.x,
temp.y,temp.z,the_ang);
printf("%s\n",tmp);
/* sprintf(tmp,”ROTATE 0.0 0.0 1.0 20.0\n”); */
smsg(mv{d,tmp);
break;
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Appendix C

Back Propagation

The basic neural-network architecture consists of an input layer, a certain number of hidden
layers and an output layer. All nodes in the network are fully interconnected from one layer to
another. Each node connection has a weight attached to it. The forward step consists of the
dot product of the input vector by the weight vector of the first hidden layer. This number is
fed as an input to the threshold function, the sigmoid. Then the output of all nodes of the first
hidden layer will go through an identical process as the one just described to the next layer,
and so on, until the output layer is reached. Then the calculated outputs are compared to the
desired outputs, provided with the sample inputs, and the total error is determined. The error
is then propagated downwards using the back-propagation method, and finally, corresponding

changes are made to all the weights.

At every node the output, which can be considered the dot product of the input vector and the
weight vector, is fed as input to a threshold function before it makes it through the next level

of the network. Traditionally the sigmoid function has been used, but it is not a requirement.

For a more rigorous treatment of the error-correction procedure, also known as back-propagation,
see [38], [29], [17] and [20]. The following is a high-level description of the back-propagation

method of training feed-forward networks:
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o Initialize Network. All weights are set to random real numbers excluding 0. Set learning

rate constant R to an arbitrary value.
o Until performance is satisfactory do:

e For each example:

e Forward propagate positive example from input nodes to output node. This is
done by calculating the dot product of the inputs with the weights, call that o,
and calculate sigmoid(o) which is the output and then do the same at the next

level until everything is propagated to the top.

e Back Propagation: compute § for nodes in the output layer using 3, = desired_output,—

calculated output,. From now on calculated_output = o.
e Compute § for all other nodes using: 3; = >, wj—k0k(1l — 0k)Bk
e Compute weight changes using: Aw;_,; = Ro;0;(1 — 0,)0;

e Add up weight changes for each example and change weights.
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