
Scalable Video in a

Multiprocessing Environment
by

Gregory James Hewlett

B.S., Electrical and Computer Engineering, Rice University 1990

B.A., Art/Art History, Rice University 1990

Submitted to the Media Arts and Science Section, School of Architecture
and Planning, in Partial Fulfillment of the Requirements for the degree of

Master of Science

at the Massachusetts Institute of Technology

February 1993

© Masschusetts Institute of Technology 1992

All Rights Reserved

A
(Z /1

Gregory J. Hewlett
S0ptember 16,1992

Certified
by

V. Michael Bove
Assistant Professor of Media Technology

MIT Media Laboratory
r Thesis Supervisor

Stephen A. Benton
Chairman

Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

MAR 11 1993

Author

Accepted
by

c:11

Scalable Video in a

Multiprocessing Environment
by

Gregory James Hewlett

Submitted to the Media Arts and Science Section, School of Architecture and Planning, on
September 16, 1992 in partial fulfillment of the requirements for the degree of Master of

Science at the Massachusetts Institute of Technology

Abstract

This thesis furthers research in the area of Open Architecture Television, specifically the
feature of scalable video. A parallel processing software operating system was designed
for the Cheops Image Processing System with the goal of accommodating the needs of a
scalable video implementation. Several approaches to dividing the task of scalable video
for implementation in a parallel environment were analyzed. It was found that a spatial
division of the image was desirable for our system. A scalable video system was then
implemented within this new multiprocessing Cheops environment using the spatial divi-
sion approach.

Thesis Supervisor: V. Michael Bove

Assistant Professor of Media Technology, MIT Media Laboratory

V. Michael Bove
Assistant Professor of Media Technology

MIT Media Laboratory
Thesis Supervisor

Reader

David L. Tennenhouse
Assistant Professor, Electrical Engineering and Computer Science

MIT Laboratory of Computer Science

Reader

Kenneth W. Haase, Jr.
Assistant Professor of Media Technology

MIT Media Laboratory

I

Reader

Stephen A. Benton
Professor of Media Technology

MIT Media Laboratory

Reader

Contents

List of Figures 7

List of Tables 9

1 Introduction 10

1.1 Scalable Video .. 10

1.2 Previous W ork ... 11

1.3 Thesis Overview ... 13

2 Scalable Video 14

2.1 Definition ... 14

2.2 One Implementation: Subband Coding ... 15

3 The Platform: Cheops Image Processing System 19

3.1 Cheops Hardware .. 19

3.2 Cheops Software: The M agic Seven Operating System .. 21

3.2.1 M ultitasking Implementation ... 21

3.2.2 Interprocess Communication Implementation .. 23

3.3 Resource M anagement ... 25

4 A Parallel Operating System for Cheops 27

4.1 Previous W ork ... 27

4.2 Requirements ... 29

4.3 General Description of Implementation .. 31

4.3.1 Multitasking .. 34

4.3.2 Interprocess Communication .. 36

4.3.3 Semaphores ... 39

4.4 Overview of Requirements ... 40

5 The Decomposition of Scalable Video Algorithms 42

5.1 Scalable Video Guidelines ... 43

5.2 Pipeline Division Approach ..---.. 44

5.3 Temporal Division Approach .. 46

5.4 Spatial Division Approach .. 47

5.5 Overview of Division Approaches .. 49

6 Sample Application: Subband Decoding on Cheops 50

6.1 Description of Algorithm .. 50

6.1.1 Subband Representation: code2dl1 .. 51

6.1.2 Subband Retrieval: decode2dll .. 51

6.1.3 Performance Evaluation .. 55

7 Conclusions and Recommendations 57

Bibliography 59

Acknowledgments 62

Appendix 63

7.1 Notes for Cheops Multiprocessing Software Designers ... 63

7.2 Setting up the Hardware .. 63

7.3 Operating System Differences .. 63

7.4 Executing Different Processes on Different Boards .. 64

7.5 Downloading New Versions of the Operating System .. 64

List of Figures

1. Scalable video as river of data .. 15

2. Two-dimensional subband decomposition using one-dimensional filters. 17

3. Three levels of 2-D subbands arranged hierarchically ... 18

4. Cheops global, local, and Nile buses on a system with two processor modules
and one output module. .. 20

5. A process swap, initiated by a call to proc-sleep 0. Up arrows indicate
calls, down arrows, returns. ... 23

6. Typical process setup with three processes, each with a communication
port with each other process. ... 24

7. Magic Seven IPC Set-up with a host process, two local processes, and
ports betw een each. ... 25

8. Parallel global variables as accessed by Module One .. 32

9. Simplified proctable in memory, showing process' state, return
instruction pointer, and process name. .. 34

10. Each module's trans-proc table with simplified proctable. Addresses
marked by * are global bus addresses. .. 35

11. Port structure representation in memory on a single module. 37

12. Multiprocessing port structure .. 38

13. Multiprocessing sema structure .. 39

14. Pipeline division of two level subband decoding ... 44

15. Temporal division of three level subband decoding with each module
decoding two fram es .. 46

16. Spatial division of subband decoding with each module decoding an
im age segm ent .. 47

17. Three levels of 2-D subbands arranged into BAND format 51

18. Division of single level subband data for processing with two modules 52

19. Flow of one processor of subband retrieval system (the decode2dll
m ovie player) ... 53

20. Combination of two processor modules to reconstruct a one level
subband im age ... 54

21. Flow of data in subband decoding .. 55

List of Tables.

1. Magic Seven process states... 22

2. Overview of Pipeline division analysis ... 45

3. Overview of Temporal division analysis... 47

4. Overview of Temporal division analysis... 48

5. Overview of scalable video task division requirements and approaches................ 49

6. Timing results of single level subband decoding as scalable video
implementation on Cheops ... 56

Chapter 1

Introduction

This thesis furthers research in the area of Open Architecture Television, specifically the

feature of scalable video. A parallel processing software operating system is developed for

the Cheops hardware system with the goal of accommodating the needs of a scalable

video implementation. The existing multitasking operating system is modified to allow for

multiple processor modules while retaining transparence to those applications designed in

the single processor, multitasking system. A scalable video algorithm is then implemented

within this multiprocessing Cheops environment to demonstrate the usefulness of parallel

processing to a video display system. The specific algorithm implemented in this thesis is

single level subband decoding.

1.1 Scalable Video

The direction of television engineering has taken a sharp turn over the last several

years. Video is no longer described simply by the number of lines in a display. Many tele-

vision formats proposed to the FCC as the new television standard contain the feature

known as scalability. A scalable video format is that which is not confined to a unique res-

olution, framerate, or bandwidth.

The Entertainment and Information Group at the MIT Media Lab has proposed the

idea of Open Architecture Television(OAR) as the basic television system for the display

of scalable video. In the Open Architecture approach to television research, television is

described by the number of features or degrees of freedom in the system.[8]

The Entertainment Information Group has conducted many experiments in develop-

ing scalable video. (see, for example [17]). In keeping with the MIT Media Lab tradition

of creating the tools with which we can conduct research, the Cheops Imaging System, a

modular processor for scalable video decoding, has been developed.

Cheops was designed as a multiprocessing engine because scalable video lends itself

to a parallel environment. In this thesis, I develop the parallel processing operating system

to accommodate the special needs of a scalable video system. My approach was a direct

adaptation of the previous, single module operating system to a multiple processing sys-

tem. I then implement a scalable video algorithm, spatial subband decoding, within the

system. The parallelization of this implementation is shown to improve efficiency as the

number of modules used within the Cheops system increases.

1.2 Previous Work

In 1990, Watlington and Bove began developing the Cheops Imaging System in order to

demonstrate of the goals of Open Architecture Television.[20] Cheops fulfills this by pro-

viding an environment which readily accommodates a video representation which is scal-

able, extensible, and interoperable. Scalability means that the signal is coded in such a

way that the channel can vary in bandwidth or the receiver can vary in decoding capacity,

in order that images with differing picture quality can be represented by the same signal.

Extensibility means that the representation can expand as higher quality images become

available. Interoperability means that the video parameters of the receiver (such as resolu-

tion and frame rate) need not match those of the source.

Because of the extensive demands on such a system, we have found that general-

purpose computers have not been able to provide an environment where Open Architec-

ture Television techniques can be tested. Thus, Cheops, a compact, bus-oriented platform,

was developed to meet these demands. One feature of Cheops which makes it adaptable to

such an environment is its flexible expandability, consisting of a number processor mod-

ules, output modules, and/or input modules.

In his 1991 MIT Senior Thesis, Allan Blount completed work on an operating sys-

tem for a single processor module driving a single output module.[7] This operating sys-

tem, called Magic Seven, allowed for multitasking of up to eight processes through the use

of process swapping. Magic Seven included a monitor, useful for low level debugging and

performing multi-tasking process control operations.

The Magic Seven operating system was expanded to allow interprocess communica-

tion, including advanced communication with the host by Hewlett and Becker.[12] Appli-

cation software has been developed based upon the client-server model[6].

A resource manager for Cheops was recently completed by Irene Shen.[16] This

resource manager schedules and monitors application tasks for each stream resource. A

stream resource is a special purpose device located on a Cheops processor module. These

devices include a matrix transpose operation, various filter chips, a color space converter,

and a motion compensation device. The resource manager was show to greatly reduce the

complexity of using the stream processing system for video decoding.

My thesis will update the Magic Seven operating system to accommodate parallel

scalable video algorithms residing on multiple processor modules. Furthermore, parallel

algorithms for scalable video decoding will be investigated and demonstrated within the

Cheops System.

1.3 Thesis Overview

The following chapter will describe the concept of scalable video. One method of

implementing scalable video, subband decoding, is discussed. A description of the Cheops

Hardware and Software environment is presented in Chapter 3. The development of a par-

allel operating system is described in Chapter 4. Included in this chapter is a discussion of

the system requirements needed in the implementation of scalable video decoding algo-

rithms. A general description of the operating system developed is also presented. Finally,

I describe how such an operating system is implemented. Chapter 5 contains a discussion

of several approaches to dividing the algorithm of scalable video into parallel tasks. In

chapter 6, 1 describe an actual scalable video application which I have implemented. A full

description of the algorithm is followed by details of implementation followed by a per-

formance evaluation of the system. The final chapter is a conclusion of my work, includ-

ing suggestions for further optimization and possible further extensions to this thesis.

An appendix are also included. It contains a few notes for software developers who

wish to use multiprocessing on Cheops.

Chapter 2

Scalable Video

This chapter discusses the concept of Scalable Video. A definition is given as well as a

description of one coding scheme which is scalable: subband coding.

2.1 Definition

Scalability is perhaps the most important of the degrees of freedom allowed in an Open

Architecture environment. Scalability simply means that "the picture resolution can vary

smoothly with channel bandwidth, processing capability, or display line count...also that it

is not specified in terms of a fundamental frame rate of 24, 50, or 60 Hz. Instead, it is rep-

resented as a set of spatiotemporal components from which displays of almost any frame

and line rate can be constructed"[5] These variables are all adjusted by the receiver, not

defined by the transmitter. For a complete discussion of scalable video, see [8].

In a scalable television system, video data can be visualized as a flowing river of

information, from which each receiver can retrieve as much or as little information as it

wants. (see Figure 1.). If a receiver has limited processing ability or its channel has limited

bandwidth, it has the option to only retrieve the necessary data needed to construct a signal

of smaller resolution or lower framerate than the original transmitted signal. So it is not

necessary to decode the entire transmitted signal to obtain an image at lower resolution

than the source. In other words, each receiver need not drink the entire river, discarding

the unneeded portions. Each receiver only drinks the amount it needs.

scalable video data

640x480,
-- 10 fps,

lower resolution
320x240,30 fps,
higher resolution

0 640x480,
S30 fps,

higher resolution

Figure 1. Scalable video as river of data

Advantages associated with scalability have been expressed [8][14] and focus on the

utility of creating bitstreams that can be transmitted at high bandwidth for complex decod-

ers to produce high quality images, or at low bandwidth for relatively simple decoders to

produce low quality. This gives users the freedom to make their own quality/ cost choices

and facilitates interoperability of applications. The number and variety of choices that a

particular scalable system provides defines the degree to which the system is scalable.

2.2 One Implementation: Subband Coding

In order to implement a scalable video system it is desirable for the video signal represen-

tation to be hierarchical or multiresolutional. One coding technique which meets this

requirement is pyramid coding, developed by Burt and Adelson[9]. In their work, the

image is represented by a series of bands of descending resolution each sampled at succes-

sively lower rates. Pyramid coding is hierarchical in that these successive bands may be

sent progressively with the image improving as each band is received. Another advantage

to this system in video display system development is the reconstruction computations are

simple, local and may be performed in parallel.

Another similar coding scheme, and the one I have used in this thesis, is subband

coding, developed by Woods and O'Neil[23]. In subband coding, the bands are not

obtained interatively, but instead as parallel bands obtained through the use of bandpass

filters. This scheme is advantageous in that the reconstruction of the bands is obtained

through a simple filter-add operation, and the bands are the same size and parallel.

This coding scheme has been investigated in the Entertainment and Information

Groups.[8][17] Since Cheops is primarily designed for research of this group, the algo-

rithm which I parallelize in this thesis is the construction of an image (video) from bands

obtained through subband coding.

Through the use of high-pass and low-pass filters, the video image is divided into

four spatial-frequency subbands corresponding to low-pass in both directions, low hori-

zontal/high vertical, high horizontal/low vertical, and high in both directions. The process

is carried out recursively on the low/low band.

Vertical
Band-Split

fv Horizontal Vertical
Band-Split Band-Split

Horizontal
Band-Split

fh -- - -- -

Vertical
Band-Split

Horizontal
Band-Split

---- -- -

Figure 2. Two-dimensional subband decomposition
using one-dimensional filters.

The resulting blocks of data are referred to as subbands. They are arranged in a lat-

tice for hierarchical retrieval from most important to least (to the human eye). Thus, the

subband derived through only low-pass filters in both directions is retrieved first. For

means of clarity, one can view the subbands arranged hierarchically in the amount of

space of the original frame of data. Each subband is labelled as in Figure 3..

I will not go into extensive detail here describing the exact methods of filtering

because scalable video does not necessarily need to be represented by the use of subband

coding. Other hierarchical means of representation are available (such as Laplacian Pyra-

mids, see [2]) which are scalable in nature. Furthermore, the specific type of subband cod-

ing used in this research is not important. For reasons of convenience, I have chosen to use

2-D subband coding to effect scalable video, which I will describe later. Thus, the video

will be scalable in two dimensions (independent spatial resolution), but not in time (inde-

pendent frames per second).

LLLLLH

LLLLLL

LLLLHL LLLH

LLLLHH
LLHL LLHH LH

HL HH

Figure 3. Three levels of 2-D subbands arranged
hierarchically

Chapter 3

The Platform: Cheops Image

Processing System

Current Cheops hardware and software work are described in this chapter. I have used the

Cheops platform as the parallel processing engine to demonstrate the usefulness in adapt-

ing scalable video algorithms to a parallel processing environment.

3.1 Cheops Hardware

The essence of the hardware of Cheops is modularity and expandability. It is divided into

video digitizing processing modules, processor modules, and video display modules. Thus

it can be easily expanded to fill the demands of Open Architecture experiments. Currently

two versions of video display modules are available: 01 and 02, each suited to a particu-

lar display system. Two versions of processor modules are available: P1 and P2. This

work is centered around the use of the more powerful P2 unit.

The second output card mentioned above, 02, has recently been developed to drive

large 2000 line screens. Although I have used the 01 output card, the code I write should

work on 02 as well.

The modules communicate with one another via two separate data channels: the Nile

Bus and the Global Bus. The Nile Bus is used for high speed two-dimensional data block

transfers. The Global Bus is used for general purpose transfers. A local bus is also avail-

able within each processor module.

Global

Bus

Local Bus

P2 P2 02
processor module processor module output module

Nile Bus

Figure 4. Cheops global, local, and Nile buses on a system
with two processor modules and one output
module.

Cheops communicates with a number of host computers through a SCSI port. Thus it

looks like a disk drive to the host and can be communicated with using normal disk-drive

operations like read and write. An 1/0 port is planned for high-speed transfers with the

host for specific host architectures. I will deal primarily with the SCSI port as the channel

by which video data will be transferred into Cheops. In addition, Cheops has an RS232

port for testing purposes, thus allowing for a "window" into Cheops for debugging pur-

poses.

Although processor cards can vary in vast ways, I will deal primarily with P2. This

board contains 32 megabytes of memory closely tied to several special purpose chips,

such as filter and transpose engines, and a general purpose chip, the Intel 80960CA. The

P1 board has one filter chip.

Specifically, I will be using a Cheops system with two P2 boards. My project

explores how to utilize the combined power of both boards in a software system for

decoding scalable video signals. Ideally, this software will be written in such a way that it

can be easily adapted to the system as more boards are added.

3.2 Cheops Software: The Magic Seven Operating System

The Cheops Magic Seven operating system supports process multitasking. The multipro-

cessing system itself is referred to as Ra (named after the Egyptian Sun God in the tradi-

tion of our Ancient Egyptian nomenclature of the Cheops system). Processes

communicate with one another through an interprocess communication system based

upon double circular queues, referred to as ports. Magic Seven was developed with only

one processing module in mind, so no trans-board control or communication is supported.

3.2.1 Multitasking Implementation

Ra is the usual sort of time sharing system, one that gives each running process an occa-

sional slice of the processor's time. Because many of the applications on Cheops are very

time-critical (such as video decoding display), Ra gives the user's processes control of the

swap times. With this feature comes the responsibility of each process to sleep periodi-

cally.

Ra allows up to a fixed number of processes to be resident on Cheops simulta-

neously. They are written to a number of fixed-length spaces in memory. When a process

completes or is otherwise removed, its space is freed and another process may be down-

loaded into that space.

Ra gives the user control of process swapping at the procedure level with a proc_-

sleep () command. When a process has no urgent task to complete (such as between dis-

playing frames of a movie, or while waiting for a command) it may call procs loop ().

Before the function of proc loop() is described the notion of a process's status

must be introduced. A process may have one of five possible statuses, described in Table

1..

P_NULLThis slot in the process table is empty.

P_HALTEDProcess exists, but is not being executed. Process
swapper ignores this process.

P_ASLEEPThis process is not currently being executed, but the
process swapper will return control to it when its
turn comes around.

P_ACTIVE Process is currently being executed.

P_NAILEDThis process has been killed, but is still functioning
because it has not executed a proc_s loop .
When it does so, it will not return.

Table 1. Magic Seven process states

The function procsleep () works in three stages. Its first code segment is an

assembly language procedure that saves the process' state. The process' state consists of

the contents of the global and local registers, including the stack, frame, and previous

frame pointers, plus the arithmetic control, process control, and special function registers.

procsilp () then sets the process' status to PASLEEP, and calls ra (), the process

swapper, ra () finds another sleeping process (which may be the process just swapped

out) and calls restore (), which replaces the process' environment and returns it control.

The function ra (), which is of the kernel, uses a round-robin queueing algorithm to

determine which process goes next. All processes have the same priority level. A more

complicated process swapper could allocate processor time based on varied priority levels.

While the design and implementation of a priority based swapper would be simple, it was

deemed unnecessary because in applications requiring a large amount of the processing

power, the user is well aware of all processes executing. Furthermore, it is even desirable

in our case to have complete control of process swapping through the use of proc_-

sleep () because we would not like to hand over complete control to a swapper with no

knowledge about our processes. Processes that require frequent processing can be sched-

uled on interrupts, which already have a priority scheme.

ra ()

proc_sleep () restore ()

Process One IIProcess Two

Figure 5. A process swap, initiated by a call to
proc_s leep (). Up arrows indicate calls, down
arrows, returns.

The multiprocessing system uses a pair of data structures to store information about

all the processes resident on Cheops. They are the procstate structure and the

usrproctable. The proc-state contains the number of resident processes, the pro-

cess ID of the currently running process, and is also a catch-all for miscellaneous system

data and flags. The usrproc.table contains a copy of each process' state.

3.2.2 Interprocess Communication Implementation

Interprocess communication is accomplished within the Magic Seven Operating System

by the use of asynchronous message passing. Processes communicate with one another via

two-way communication channels referred to as ports. A variety of system calls are avail-

able to send and retrieve messages and conduct remote procedure calls from one process

to another.

K eKernel

proc1 proc3

ports: .4-*-
proc2

Figure 6. Typical process setup with three processes,
each with a communication port with each
other process.

The contents of the messages which are sent in ports can be constructed in any way

the programmer chooses. However, conventions have been set up which allow the "pack-

ing" of variables and strings together into a message for sending and the parsing of the

message once it has been received.

Figure 6. shows a typical situation with three processes interconnected by ports. In

this setup, each of the three processes is able to communicate with any of the other pro-

cesses. It may not always be necessary (and often is not) for there to be a port between

every process and every other process. For this reason, ports are not automatically setup,

but each must be initiated within a process itself.

A unique port is required for every communication channel desired between pro-

cesses. A port consists of two circular queues, one for each direction of communication.

Any process may establish a port connecting any two existing processes.

The host also has the capability to communicate with local processes on Cheops.

The M7 IPC system recognizes host processes, which reside on the host computer. Thus,

ports can be set up between the host and Cheops.

For example, when one uses the chex program to download and execute program

abc, a port is set up between local process abc and host process chex. All communication

between chex and the local process (i.e. printf, read, etc.) is done through the use of this

port.

Host Local

host*Gc Op oc aproc2proces

Figure 7. Magic Seven IPC Set-up with a host process,
two local processes, and ports between each.

3.3 Resource Management

The Cheops resource manager was written by Irene Shen.[16] It only needs to be

briefly described because it is used in my sample application, but details about it are not

necessary in a discussion of scalable video in a parallel processing environment.

A stream resource is a special purpose device located on a Cheops processor mod-

ule. These devices include a matrix transpose operation, various filter chips, a color space

converter, and a motion compensation device. The resource manager schedules and moni-

tors application tasks for each stream resource.

The resource manager is available for use by any process. The process simply cre-

ates a doubly linked queue of all of the operations and buffers needed in its filtering oper-

ations. A call to the resource manager is made with a timestamp requesting the transfer to

be made at the given time. A callback routine is called by the manager when the transfer is

complete.

The actual transfer is very fast. We have found that in practice, it is instantaneous

compared to all the overhead involved in reading in data, bitstream dequantizing it (i.e.

dequantization), and queue construction.

Refer to [16] for a complete description of the resource manager as well as a detailed

guide on how it is used.

Chapter 4

A Parallel Operating System

for Cheops

In order for Cheops to support scalable video applications operating in a parallel manner,

the Magic Seven Operating System must be able to accommodate multiple processes exe-

cuting and communicating with one another on more than one processor module. I have

described in this chapter the requirements for such a system, and the general description of

the system I have developed.

4.1 Previous Work

Several established approaches to parallel operating systems have been researched. These

have been developed for both loosely-coupled, network based systems and tightly-cou-

pled, shared memory systems. The following is a brief look at some features of operating

systems developed in parallel environments:

1 Distributed Implementations of Conventional Operating Systems. The

LOCUS System, developed and used at the University of California at Los

Angeles[15] and the Sun Network File System (NFS)[18] have demonstrated

the adaptation of previous, non-parallel systems to parallel environments. Both

of these systems provide transparent access of remote files. All UNIX file

access functions were necessarily adapted from existing systems to provide

access to remote file servers. The new Cheops Magic Seven Operating System

is developed with a similar goal. Many applications have been written previ-

ously on Cheops and must transparently be supported by the new operating

system.

2 Client-Server Model for Interprocess Communication and Message Pass-

ing Techniques. The LOCUS and NFS systems use a message passing system

which may be traced back to early systems developed at Carnegie Mellon such

as HYDRA, the kernel of an operating system for C.mmp[24], and StarOS, a

multiprocessor operating system for the support of task forces[13]. Cheops is

similar to these systems in that it is utilizes network based client-server com-

munication with remote procedure calling. Cheops utilizes a similar, scaled

down version of the client-server model for interprocess communication. How-

ever, it is not limited to network access, but allows for shared memory access

via the global bus. Thus, the new operating system on Cheops is not confined

to remote procedure calls or message passing as the only means of communi-

cation.

3 Multiple Threads of Control. Another feature of several developed parallel

operating systems is the support of multiple threads of control where code and

data are shared by multiple threads of execution. Implementation of multiple

threads can be seen in systems such as the Mach distributed system kernel

developed at Carnegie Mellon University[l] and Topaz, the software system

for the Firefly Multiprocessor Workstation developed at Digital Equipment

Corporation Systems Research Center.[19] Cheops hardware could support

multiple threads because memory on remote boards able to be accessed by any

processor. However, they are not supported in the new Cheops operating sys-

tem.

4.2 Requirements

The new Cheops Magic Seven Multiprocessing Operating System has been developed as a

direct adaptation of the existing single processor operating system. Because Cheops is

somewhat a special purpose machine, built for high-speed real-time image decoding and

coding, the operating system must have certain capabilities and may be scaled down from

larger, more developed, general purpose systems such as those described in the previous

section. Many considerations must be made in developing this multiprocessing operating

system. I discuss here those requirements which pertain specifically to a system specifi-

cally designed to accommodate scalable video. Bearing scalable video in mind, the fol-

lowing requirements are set forth for the multiprocessing system developed to

accommodate scalable video:

1 The system must accommodate multiple processes executing on one pro-

cessor module. This is referred to as multitasking. Some sort of process swap-

ping must occur between multiple processes each needing use of the same

processor. We do not want simply one process running on each processor, but

must allow for many processes to execute on each board.

2 The system must accommodate processes executing on more than one pro-

cessor module. This is referred to as multiprocessing. These processes must be

unique to allow for copies of software executing on different boards. Simple

information about each process must be available to any process residing on

any board. For instance, a process may need to know what the current state of a

certain server.

3 An interprocess communication(IPC) system must be provided to accom-

modate numerous processes on multiple boards. This IPC system must

allow for full message passing capabilities between any process with any other

process, regardless of the module in which either process resides. Ports must

be allowed to connect processes on the same board, processes on different

boards, and processes on any board to host processes.

4 A semaphore system must be developed. This is important for real-time

video decoding where different frame buffers are being filtered and shuffled

among modules primarily to allow transparence so that earlier video systems

developed on Cheops may still perform properly. Of course, the semaphore

acquires, releases, and polls must be atomic. Semaphores should be accessible

across boards.

5 The operating system should not depend upon how many processor mod-

ules are in the Cheops System. Because the Magic Seven operating system

will reside in ROM, it should perform properly whether it is the only module or

not. A Cheops software developer does not want to have to load a new operat-

ing system every time the number of processor modules used in his application

is changed. Furthermore, applications developed on one-module Cheops

should run on a multi-module Cheops.

6 The operating system executable code must be identical on each board.

This is for reasons of convenience. A processor module should be allowed to

be the only module on one system, while have the capability to be transferred

to another Cheops System as board number two. One ROM (the same ROM)

should be burned and copied for use on every processor module.

7 The system must provide a means for loading and executing code from

one board to another. This is so that not every module must have a direct link

with the host computer, which serves as a file server via SCSI. The system

must provide the means necessary for this to be accomplished, but does not

necessarily have to accomplish this directly.

8 As much as possible, the system must be an extension of the current one-

module system. System calls in this system must be supported with the same

interface as system calls from the original operating system. Ports and sema-

phores must have the same appearance to the user as in the old system. This

allows upward compatibility for all existing applications.

9 A means for debugging and updating the actual operating system itself

must be provided. This includes the capability of loading and executing a

modified M7 in RAM.

10 Interprocess communication should prefer the local bus over the global

bus for reasons of speed as well as availability. The global bus must be

shared, while each module has its own local bus.

4.3 General Description of Implementation

With the above requirements at hand, the new Magic Seven Operating System has been

completed. The the three major aspects affected in conversion to multiprocessing are mul-

titasking, interprocess communication, and semaphores. The conversion process to

accommodate parallel processing was similar in all three of these areas.

The basic approach takes advantage of the characteristic that the code on each board

is exactly the same. (requirement 6) Because the Magic Seven code in each module's

ROM is the same, the space reserved for global variables is in the same respective loca-

tions on each board.

Thus, to access a a global variable from another boards' memory, a global bus mask

is applied. For example, memory within module one is accessible by the local bus with

address 0x3abcdefg..., while also being accessible via the global bus as address Ox8abc-

defg.

In Figure 8., we see how a process on board one can access a global variable on each

board. Because it knows the location of its own global variables, a simple mask is applied

to access the parallel variable on other boards. Thus, it accesses its own addressing space

via the local bus, fulfilling requirement step 10, while accessing other boards via the glo-

bal bus.

80035boc temp 30035b00 a0035b00 tep b0035 _tem

Module 0 Module 1 Module 2 Module 3

Figure 8. Parallel global variables as accessed by
Module One

One important consideration is that of more than one module trying to write to the

same location at the same time. Since each of the processor modules must be capable of

initiating a bus transaction, a method is provided in hardware for bus masters to request

and arbitrate for possession of the global bus. The priority scheme gives lower board num-

bers priority. Thus, board zero is the primary board, always capable of controlling the glo-

bal bus.

The preliminary design of the multiprocessing Magic Seven system included a mon-

itor server, which accepts system call requests from the other modules. Thus if a process

on board one wanted to know if a certain process was executing on board zero, it would

send a proc-get request to board zero. The monitor server on board zero would then ser-

vice the request and return a message revealing whether or not the process in question was

executing on its board.

This approach presented several problems. One is that a process must always be

polling for messages on each board. This is not efficient, especially when the application

processes are in need of the maximum processing power available. A second shortcoming

is precious port space must be reserved for these module-to-module messages. Only three

bits are reserved in the message packing mechanism for the port number. Thus with only

eight ports, we cannot afford to have a unique port connecting each module's kernel. One

partial solution to this was to limit message passing to communication between each board

and the mother board (module zero). This reduces the total number of ports, but ports from

each kernel to the mother kernel (probably residing on module zero) module zero would

still have to be allocated, thus taking away port resources from applications.

However, further evaluation revealed that every system called on a remote board

could be handled by accessing that boards memory directly via the global bus as long as

there is knowledge of the location of all the magic seven global variables on the other

boards. This is done by taking advantage of the earlier discussed fact that each board's

operating system resides in exactly parallel memory locations.

Instead of requesting to another module's operating system that a system call be

made, we can simply bypass that operating system and execute the desired function upon

that boards global operating system variables directly. This is the approach taken in

approaching the modification of Magic Seven.

I describe this in more detail by discussing the implementations within three major

areas of operation: multitasking, interprocess control, and semaphore implementation.

4.3.1 Multitasking

This section deals with modifications to the multitasking system including all process

information system calls.

The method by which multitasking is accomplished on the single processor module

was explained earlier in section 3.2.1. Briefly speaking, system calls within the multitask-

ing system perform operations upon a table, which contains information about each pro-

cess. The simplified table is shown in Figure 9..

process return process label
state inst ptr

proc_table P_ACTIVE 600004b0 M7 monitor ROM

P_SLEEP 301004b0 hello

P_HALTED 301004b0 font-server

P_NULL 0 NULL

Figure 9. Simplified proctable in memory, showing
process' state, return instruction pointer, and
process name.

In the new Magic Seven system, a table of pointers, transaproc (see Figure 10.), is

created during boot time, which points to the proctable on each of the other boards.

This is done easily by masking the local proctable address with the respective module

global bus bits.

An example system call is proc-get. This call returns the process identification

number (PID), given the name of the process. It might be used in the case where a process

wants to know if a certain server is executing on the current module. Previously,

proc-get was simply a search through the process names in proctable. In the new mul-

tiprocessing system, procget first searches its own table. Then, using the trans-proc

pointers, it searches the tables from other modules directly. Thus, no processing power is

used from the other processors.

...

transproc 30064804
90064804

b0064804

trans.proc 8006804
30064804

transproc 800

90064804

b0064804

transproc 80064804
9004804f

30064804

80064804*

9 0064 8 04 *

a0064804*

b0064 804 *

PACTIVE
P _SLEEP
PNULL

F
PACTIVE
PSLEEP
PHALTED
P_NULL

PACTIVE
P NULL
P-NULL
P_NULL

600004b0
301004b0
301004b0
0

600004b0
300904a8
0
0

M7 monitor ROM
hello
fontserver
NULL

M7 monitor ROM
T-server
NULL
NULL

600004bO M7 monitor ROM
0 NULL
0 NULL
0 NULL

Figure 10. Each module's trans.._proc table with
simplified proctable. Addresses marked by *
are global bus addresses.

Care is taken to make sure a module's processor does not write to the table at a dan-

gerous time. For instance, when setting up a process in proc-start, the state (PAC-

TIVE) must be the last thing that gets set. Otherwise, a system call from another module

may try to access that process prematurely. A rule I used to prevent similar problems as

Module 0

Module 1

Module 2

Module 3

PACTIVE 600004b0 M7 monitor ROM
P_NULL 0 NULL
P_SLEEP 301004b0 fontserver
P_NULL 0 NULL

,

...

I

...

I

...

this when modifying proc_* system calls was to only read from remote modules. Only

the local operating system writes to its own memory, thus eliminating the problem dealing

with other remote processes destroying the flow of a local process. All necessary proc_*

system calls could be implemented in this way.

Another modification to the old operating system stems from the need of unique

PID's. In order to maintain uniqueness, each module will have its own reserved PID's.

Board zero is assigned ID's 0-15; board one, 16-31; board two, 32-47, and so on. System

calls were all changed to support this new numbering system. Parameters to these system

calls, as well as return values (where applicable) all use this new PID numbering system.

With reserved PID numbers, one can immediately know on which board a process is run-

ning given its PID, and vice versa.

System calls are thus handled by directly accessing other modules' global variables

with process information. The actual multitasking process swapping implementation was

untouched during the modification to the new multiprocessing Magic Seven system.

4.3.2 Interprocess Communication

Interprocess communication on the single processor operating system was described in

section 3.2.2.In our modification from a one module M7 to a multiprocessing M7, the

modification of the interprocess communication (IPC) portion is similar to that of the mul-

titasking part, described in the previous section. The knowledge that every module has a

replica operating system executing is used to directly access other module memory.

The essence of the IPC system within M7 is two-way ports. Each port consists of

two circular queues, and connects a source and a destination process. This structure is rep-

resented below.

port_min

port 0

port 1-----..--' dst-pid
.......... ** r - i

port2.- ..-...........-port 2 In-.begin*
In_.nd*

In_head*
j~ort 3 in-tail*

out-begin*
port 4 outend*

out-head*
o ut tail*

Figure 11. Port structure representation in memory on a
single module.

To access another module's port structure, the same global bus mask method is used.

The address port-min is masked to create a table of pointers, trans--port, to the port

structure of each separate module. Thus, the trans-port table can be used to directly

write to or read from any port on any board. For the diagram of this table, see Figure 12..

A convention is needed to determine the location of a port which connects processes

on different modules. The convention selected was the port will reside in the module con-

taining the process which creates the port.

While the multitasking part of Magic Seven can make the assumption that only the

local module's operating system needs write to its own memory, the IPC system does not

have the convenience. Each process on each board must have the ability to read from or

write to any other process, regardless of the module which the port resides. Circular func-

tions only advance head or tail pointers after the given operation was performed. Thus, no

data will be prematurely written or read. Furthermore, only one process writes to any

given circular queue

Module 0

transport

30004530
90004530

a0004530

b0004530]

80004530* Port 0
port 1
port 2

port 15

Module 1

trans_port

80004530

30004530

a0004530

b00045301

90004530* port 16
port 17
port 18

port 31

Module 2

trans_port
80004530
90004530

300045301

b00045301

a0004530* port 32
port 33
port 34

port 47

Module 3

transport
80004530
90004530
a0004530
30004530

b0004530" port 48
port 49
port 50

port 63

Figure 12. Multiprocessing port structure

One more problem that was addressed is that of the actual head, tail, begin and end

pointers for each queue. They were changed to be global bus pointers, so remote processes

could use them to access the port. If local bus pointers were used, the remote process

would alter a port within his own memory rather than the desired port. Circular queue

functions check if the given global bus pointer points to the local board. If so, it is con-

verted to a local bus pointer to allow for faster queue access.

4.3.3 Semaphores

Semaphore implementation was quite trivial after working through the multitasking and

IPC implementations. The same method is used of directly accessing memory of remote

modules through the use of global bus address masking.

The structure trans_sema is set up in the same way as transproc and trans_-

port. All semaphores have a unique ID. The resulting structure is shown below.

Module 0 Module 1 Module 2 Module 3

transsema trans_sema trans_sema trans_sema

30008ab0 80008ab0 80008ab0 80008ab0
90008ab0 30008ab0 90008ab0 90008ab0
aOO08abO aOO08abO 30008ab0 aOOOSabO
bO08abo b0008abO b0008abO 30008ab0

80008ab0o sema 0 90008ab0' sema 16 a0008ab0* sema 32 b0008ab0' sema 4
semai1 sema 17 sema 331 sema49H
sema 2 sema S sema sema 50

sema 1 9sema 31 sema 47 sema 63

Figure 13. Multiprocessing sema structure

The only concern with semaphores being acquired, released, and polled across mod-

ules is whether these operations are still atomic. Investigation showed that global sema-

phore atomic read/writes are supported within the hardware for the global bus as well as

the local bus.[21] This is accomplished through hardware bus locking.

By convention, the function sema-allocate allocates a semaphore of the module on

which the calling function resides.

4.4 Overview of Requirements

Once more, I will describe each of the requirements, followed by a description of how the

new system meets each requirement.

1 The proposed system must accommodate multiple processes executing on

one processor module. The multitasking aspect of M7 was retained.The same

sort of process swapping occurs between multiple processes on a given board

as before.

2 The proposed system must accommodate processes executing on more

than one processor module. The multiprocessing requirement of M7 is met.

Processes may execute in parallel on each board. Necessary information (all

that in proc.table) is available to any process on any board through the use of

trans_proc.

3 An interprocess communication(IPC) system must be provided to accom-

modate numerous processes on multiple boards. Because ports are set up

with the capability of connecting to processes on other boards this new IPC

system allows for full message passing capabilities between any process with

any other process, regardless of the module in which either process resides.

4 A semaphore system must be developed to allow synchronization among

processes. Because all semaphores are accessible via the global bus from any

board through the use of trans-sema, synchronization is possible among all

processes on any board.

5 The operating system should not depend upon how many processor mod-

ules are in the Cheops System. The beauty of this new system is that the code

on each board is exactly identical. Thus, the code for a single board will work

on a board among many boards.

6 The operating system executable code must be identical on each board.

Again, this system uses identical code on each board. We only need to burn one

type of ROM to be used on any board.

7 The system must provide a means for loading and executing code from

one board to another. This can be done by downloading the code (via global

bus) and then setting up the process using system calls on the remote pro-

cesses. The remote monitor will then recognize the new process and give it

processor time.

8 As much as possible, the system must be an extension of the current one-

module system. The new system has the same "look" as the old. All system

calls behave the same, therefore old applications execute properly on this new

system.

9 A means for debugging and updating the actual operating system itself

must be provided. In the same way as before (as described in current Cheops

Documentation), new versions may be loaded into RAM. Notice that it is very

important that the same version be loaded on every board in the system. Other-

wise, specific memory variables may not be in parallel locations.

10 Interprocess communication should prefer the local bus over the global

bus for reasons of speed as well as availability. System calls always check at

the beginning of the system function itself if the desired call may be completed

on the current board. If so, the local bus is utilized.

Chapter 5

The Decomposition of Scalable

Video Algorithms

The most important decision to be made in developing a scalable video system utilizing

parallel processing (or for any parallel process algorithm) is how to divide the task at hand

into different processes. This chapter contains a discussion of the issues involving divid-

ing a Scalable Video system for implementation in a parallel processing environment. A

set of characteristics are discussed as requirements for such a system.

Three approaches are considered as viable alternatives in the task division of a Scal-

able Video display system: Pipeline Division, Temporal Division, and Spatial Division.

For each approach, a description is given, as well as an analysis of how the process fits the

above characteristics.

5.1 Scalable Video Guidelines

In our situation, we would like a division scheme with the following characteristics:

1 Cheops Improvement. Primarily, parallel processing should allow Cheops to

do something it cannot already do. This thesis should yield means by which

work can be accomplished which was not previously possible.

2 Module Process Similarity. Each module should have similar (preferably the

same) processes running on it. This is due to the fact that our processor mod-

ules are, in fact, the same. An elegant solution to task division would have par-

allel "looking" processes running on parallel hardware. This is not completely

necessary, but desired to allow for easy adaptation of existing software to a

parallel environment.

3 Algorithm Adaptability. The division scheme should adapt to other scalable

video implementations other than subband decoding. (such as motion compen-

sation)

4 Hardware Extensibility. The given algorithm should be easily extended to

more or less modules than as designed.

5 Data Flow. Data passing between modules should be kept at a minimum. The

bus for intra-module transfers is much slower than that of local transfers. High

speed busses may be used, but a minimum of data transfer is desirable.

6 General Simplicity. A highly complex implementation is disadvantageous

because it not only does not easily transfer to other applications readily, but

because in a research environment, time should be spent on developing new

methodologies and algorithms, not debugging complex software.

5.2 Pipeline Division Approach

In the Pipeline approach, each module performs a unique task in line. A diagram of

how this may look is shown below.

dule 0
SI in/
quantize

...........

.E........i..
L Z....... ..
7......

LIZ
LIII
LIII
module 1 module 2: - moduliLIZ

display

module 1 module 2: modul
decode level 1 decode level 2 image

Figure 14. Pipeline division of two level subband decoding

e 3:
display

The pipeline approach meets the Cheops Improvement requirement, but only par-

tially. Cheops is only improved in efficiency. Bottleneck problem areas common on one

board, such as SCSI data in and image display rate, still exist because each area is still

handled by only one module.

The Module Process Similarity requirement is obviously not met due to the complete

differences in processes running on each board. This leads to extremely limited Hardware

Extensibility. If the number of hardware modules is increased or decreased, major changes

must be made to the implementation to adapt to the hardware change. This is not necessar-

ily a disadvantage because it allows for module specialization, which can lead to very effi-

mo
SC
de

cient processing. The Algorithm Adaptability requirement is not met because the task

division is so closely tied to the algorithm itself. Another disadvantage is that large

amounts of data flows between boards, thus the pipeline approach does not meet the Data

Flow requirement. Finally, General Simplicity is not met because the software to imple-

ment this division is quite complex. Comparatively Much time must be reserved in testing

new algorithms when implementing this division approach.

Task Division requirements met: Cheops Improvement
unmet: Module Process Similarity

Algorithm Adaptability
Hardware Extensibility
Data Flow
General Simplicity

Table 2. Overview of Pipeline division analysis

5.3 Temporal Division Approach

In the Temporal Division approach, the video is divided temporally, such that each module

individually and completely processes a given number of frames.

video frames

module one

time module one

Figure 15. Temporal division of three level subband
decoding with each module decoding two
frames

The temporal approach better meets the requirements set forth in this chapter. Each

module is performing identical task, thus Module Process Similarity is fully met. Hard-

ware Extensibility is also met because the division scheme can easily be adapted to any

number of hardware modules. Only synchronization and control signals are sent from

module to module via the global bus, so we have good Data Flow. The General Simplicity

requirement is met, with new algorithms relatively simple to design using this method.

Cheops Improvement is only partial met because only efficiency is increased in this

parallel system over a one module system. The bottleneck associated with SCSI may be

somewhat overcome in this method, but any display bottlenecks, which may limit the final

picture size, still exist. Finally, Algorithm Adaptability is only partially met. This division

breaks down significantly when the scalable video algorithm calls for processing one

frame given information about the previous frame. Such is the case with motion compen-

sation decoding systems.

Task Division requirements met: Module Process Similarity
Hardware Extensibility
Data Flow
General Simplicity

somewhat met: Cheops Improvement
Algorithm Adaptability

unmet: none

Table 3. Overview of Temporal division analysis

5.4 Spatial Division Approach

The final approach considered is to divide the image spatially. This method is shown

below.

Figure 16.

module one

module two display

module three -

Spatial division of subband decoding with each
module decoding an image segment

This method of division has many advantages over the previously discussed meth-

ods. Each module is performing identical tasks, thus we meet the Module Processes Simi-

larity requirement. Cheops Improvement is met because all bottlenecks are reduced. Each

module does essentially the same as if handling the entire operation alone, but every level

of processing work is reduced. The division scheme is Hardware Extensible because any

number of boards can be readily combined to contribute to the video decoding system.

This method also meets the Application Adaptability requirement because practically all

video display algorithms work at some level within the spatial domain. Finally, the Gen-

eral Simplicity requirement is met, with new algorithms relatively simple to design using

this method.

Some increase in Data Flow is required. This is due to problems at the edges. Either

some amount of edge data must be transferred among modules, or each module must read

in an overlap into other modules' regions. My particular application uses the latter

approach. This overlap edge problem is related to the size of the filter, range of motion

compensation vectors, or other factors which utilize spatial correlation information in the

coding/decoding.

Note that the Hardware Extensibility requirement, while met, is not trivial. The cod-

ing process may need to know how many modules will be used to decode the video. Alter-

natively, a relatively intelligent means must be used to parse the bitstream to access data

from each spatial image region.

Task Division requirements met: Module Process Similarity
Cheops Improvement
Algorithm Adaptability
Hardware Extensibility
General Simplicity

somewhat met: Data Flow
unmet: none

Table 4. Overview of Temporal division analysis

5.5 Overview of Division Approaches

Here is an overview of the requirements as met by each of the three presented task divi-

sion approaches.

Requirement Pipeline Temporal Spatial

Cheops Improvement met somewhat met met

Module Process Similarity unmet met met

Algorithm Adaptability unmet somewhat met met

Hardware Extensibility unmet met met

Data Flow unmet met somewhat met

General Simplicity unmet met met

Table 5. Overview of scalable video task division
requirements and approaches

An investigation into the advantages and disadvantages of the methods of division pre-

sented in this chapter leads to my decision to use the spatial division method. The only dis-

advantage to this is the Data Flow problem, or simply stated the "edges". This may be

solved at little loss by reading in the overlap the size of the filter. This is only 9 samples in

my subband decoding example, so spatial division is the obvious choice.

Chapter 6

Sample Application: Subband

Decoding on Cheops

To further illustrate the spatial division process, I will discuss a particular scalable video

implementation on Cheops. This specific implementation is that of subband decoding. The

issues dealt with in this chapter should be useful to those interested in a) expanding this

application, b) developing other parallel scalable video systems, and c) writing any paral-

lel process on Cheops.

6.1 Description of Algorithm

A detailed description of common subband decoding as commonly used by the Entertain-

ment and Information Group is discussed in [8][17], and thus is not repeated here.

6.1.1 Subband Representation: code2dll

A UNIX script has been created (called code2dll, for 2-D, one-level subband decoding),

which converts a datfile (the standard image representation in our lab) into the BAND for-

mat shown below.

LLLLLH

Figure 17. Three levels of 2-D subbands arranged into
BAND format

The BAND format show here only represents one frame of a movie. This representa-

tion is the file available from which the movie player may retrieve data. It is chosen as the

source for parallel scalable decoding because of the ease at which it divides spatially, as

well as in frequency. I use only one-level subband decoding in this implementation to

reduce complexity so that focus may be upon the parallel nature of this system, not the

subband coding itself.

6.1.2 Subband Retrieval: decode2dll

A program, decode2dll has been written which is a Cheops executable file to do the actual

scalable video simulation. The key to this decoder is making sure the code on each module

receives the correct data to decode. I have provided a function called get-subbana_-

dim 0 which does this. It takes as parameters the band_string (i.e. "LH","LLHL",...) and

an empty BAND structure. The function identifies the datfile submatrix where the proper

data is located and stores the information in the BAND structure. The following figure

shows how single level subband encoded data is divided into different modules.

Figure 18.

module 0 I/ module I

Division of single level subband data for
processing with two modules

This function actually identifies the submatrix slightly larger than shown. For exam-

ple, with two processor modules (as the above figure), the areas designated for each pro-

cessor actually overlap in the center of each band. This is so that the filters do not cause

the noticeable lines in the reconstruction of the final image. In this implementation, with

filters of 9 taps, required an overlap of 12 pixels (theoretically 9, but in my implementa-

tion, all transpose operations had to be multiples of 12).

The flow of decoding the four subbands in single level subband decoding is shown in

below.

LIZ
LII

.IZ LIII
prepare band one (LL)
read in band two (LH)

prepare band two
read In band three (HL

prepare band three
read In band four (HH)

5555555 7prepare band four
read in band one
(next frame)

prepare band one
read in band two
blit image to screen

resource manager/nile bus

data actively being prepared prepared data

Flow of one processor of subband retrieval
system (the decode2d11 movie player)

A few things must be noted about this diagram. Double buffering transfers into the

two SCSI buffers is handled by the SCSI DMA. Thus, a some degree of pipelining occurs

dequantize

SCSI/DMA

>4

Figure 19.

...

within each individual module. The dequantizing is done in my implementation by the

Intel 80960CA processor. Future plans are to have special bitstream decoding chips to

handle dequantizing or similar decoding techniques.

Data is read from the network via SCSI with the function, d.future-read (). This

function activates the SCSI DMA so that transfer will begin, but control is immediately

returned to the subband retrieval application. When all four bands are loaded, a

request_transfer () is called, which invokes the resource manager with the request to

do the proper filtering for subband decoding.

Working together, a two module system looks like the following figure:

LL LH

HL HH(m od ue tw -o)

Figure 20. Combination of two processor modules to
reconstruct a one level subband image

Proper output must be considered. All that is needed is to properly position the final

result of each module on the screen. This is trivial since the size of the segment is known

to the application.

Synchronization is handled easily through the use of Nile Bus transfer timestamps.

Every transfer is assigned a timestamp. Initialization of the program includes an agree-

ment of the time of the first frame to be displayed. According to the desired frames/second

of the movie, transfers are requested at the respective times. Unfortunately, synchroniza-

tion is not available until the Nile transfers are working properly. As of the writing of this

these, it was not quite ready, so the various segments of the image were not synchronized.

6.1.3 Performance Evaluation

In analyzing the performance of this implementation of single level subband decoding, I

will refer to the following figure:

E Daa InDequntizing Filtr Subband Screen Output

Figure 21. Flow of data in subband decoding

The Data In stage is the bottleneck in my implementation. However, SCSI is by no

means the only (or fastest) means by which video data will enter a video system. Cheops is

even projected to have a high speed bus connection to replace SCSI in the future.

The dequantizing stage is currently handled by the Intel 80960CA. This stage will be

replaced in future versions of Cheops with hardware bitstream decoding chips. Thus, this

is not a stage which presents a bottleneck problem.

The key stage is the subband decoding using filters. Investigations in implementa-

tions of scalable video will hinge upon this reconstruction phase of the display system.

This is the stage which I have successfully cut the execution time substantially (see Table

6.) when utilizing two processor modules.

The Nile Bus library, which handles high speed transfers to the screen from proces-

sor modules, did not work properly when I wrote this implementation, so a global transfer

was written to simulate the transfer. This is a much slower method of transfer. In figuring

the timing numbers in Table 6., I did not display to the screen because the global bus

caused a bottleneck which will disappear when the Nile Bus works properly.

The table refers to two tests executed, one with the decoding stage and one without.

From these two tests, I approximate the time Cheops takes to decode the bands. Four mod-

ules were not available, so the times are computed with one module doing the work it

would do if there were four modules available to run the tests.

number of modules: one two three four

test:

a. SCSI-deq.-decode 4.73 3.89 3.63 3.49

b. SCSI-deq. 4.41 3.67 3.47 3.40

c. subband decoding 0.32 0.22 0.16 0.09

(computed a-b)

d. percent of time used 100% 69% 50% 28%

by one module (c)

Times are seconds per frame of video (one 800x640 monochromatic image)

Table 6. Timing results of single level subband decoding
as scalable video implementation on Cheops

The key line of this table is line c. As the bottlenecks which will disappear in the

future are removed from the calculations, we see a significant improvement of efficiency

as more modules are utilized. I had expected a direct improvement, with 50% for two

boards, 33% for three, and 25% for four. The expected result occurred with four boards,

but not with two and three. The cause was not directly apparent to me at the time of writ-

ing, but the problem may be related to quantum effects. Certain pieces of the implementa-

tion may be more efficient in dealing with certain multiples of samples occurring in the

four module scenario. More investigation is required to determine the cause of this result.

Chapter 7

Conclusions and

Recommendations

The overall goal of this thesis was to further research in the area of Open Architec-

ture Television, specifically the feature of scalable video. A parallel processing software

operating system was developed for Cheops with the goal of accommodating the needs of

a scalable video implementation. The operating system was created to easily develop par-

allel image decoding algorithms. This platform, the newly updated Magic Seven Operat-

ing System, was developed with the scalable video researcher in mind. Several approaches

to dividing the task of scalable video for implementation in a parallel environment were

analyzed. It was found that a spatial division of the image was desirable for our system. A

scalable video system was then implemented within this new multiprocessing Cheops

environment using the spatial division approach.

Overall, the new Cheops Magic Seven Operating System, while a simple, direct

extension of the earlier, single processor version, provides a unique and sufficient platform

for the experimentation of scalable video experimentation within a parallel environment.

The Cheops system provides room for up to four processor modules. The multiprocessing

operating system was developed with this in mind. Many features of the system, as well as

of the scalable video implementation are geared towards a small number of processors (on

the order of 16 or less). I do not recommend adaptations of this operating system or scal-

able video decomposition for platforms with more than 16 processors.

I make several recommendations for further research related to the work described in

this thesis:

1 Only many experiments within this system will fully confirm the advantages of

the spatial division approach.

2 Considerable work could be done in the area of automation of the task divid-

ing. Given an algorithm for displaying a movie, what would go into an auto-

matic division according to the number of modules in the system? My example

application requires the user to manually execute the same process on each

module with different parameters telling the module which module number it

is and how many modules are present.

3 I found the Magic Seven Operating System to not have a very apt method of

synchronization. Other than timestamping with the use of the resource man-

ager, is there any good way to synchronize processes? This may be helpful

when audio is brought into play.

Finally, it is my hope that I have presented here a document which will serve as a

introductory overview for Cheops users and programmers.

Bibliography

[1] Acetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., and Young, M.,

"Mach: a new kernel foundation for UNIX development", Proceedings of USENIX 1986

Summer Conference, pp. 93-112.

[2] Adelson, Edward H., Simoncelli, Eero, and Hingorani, Rajesh, "Orthogonal pyramid trans-

forms for image coding". Proceedings SPIE, 1987.

[3] Allworth, S.T. and R.N. Zobel, Introduction to Real-Time Software Design, Springer-Verlag

New York, NY, 1987.

[4] Anderson, A.J., Multiple Processing: A System Overview Prentice Hall, New York, NY,

1989

[5] Bender, W., Bove Jr., V.M., Lippman, A.B., Liu, L. and Watlington, J.A., "HDTV in the

1990's: Open Architecture and Computational Video", in HDTV World Review, the journal

for high definition and advanced television technology, Volume 1, Number 3, 1990.

[6] Birrell, A. and B. Nelson, "Implementing Remote Procedure Calls", ACM Transactions on

Computer Systems, vol. 2, no. 1, February 1984, pp. 39-59.

[7] Blount, A., Display Manager for a Video Processing System, SB Thesis, MIT, Cambridge,

MA, 1991.

[8] Bove Jr., V.M., and A. B. Lippman, "Scalable Open Architecture Television," in A Televi-

sion Continuum- 1967 to 2017, pp. 210-218, SMPTE Journal, 101, White Plains, NY, 1991.

[9] Burt, P.J., and Adelson, E.H., "The Laplacian Pyramid as a Compact Image Code," IEEE

Trans. on Communications, COM-31, April 1983, pp. 532-540.

[10] Chambers, F.B., Duce, D.A., and Jones, G.P. (editors), Distributed Computing, London:

Academic Press, 1984.

[11] Coulouris, G.F. and Dollimore, J., 1989. Distributed Systems, Addison-Wesley Publishing

Company, Workingham England, 1989.

[12] Hewlett, G. and Becker S., The Cheops Software Reference Guide, MIT Media Lab Internal

Memo, Cambridge, MA, April 1992.

[13] Jones, Anita K., Chansler Jr., Robert J., Durham, Ivor, Schwans, Karsten, and Vegdahl,

Steven R., StarOS, a Multiprocessor Operating System for the Support of Task Forces,

Communications of the ACM, 1979, pp. 117-127.

[14] Lippman, A.P., "Perfectly Scalable Video" Technical Report, MIT Media Lab, May 1990

[15] Popek, G., and Walker, B. (editors), The LOCUS Distributed System Architecture, MIT

Press, Cambridge, Mass., 1985.

[16] Shen, Irene J., Real-Time Resource Management for Cheops: A Configurable, Multi-Tasking

Image Processing System, SM Thesis, MIT, Cambridge, MA, 1992.

[17] Stampleman, J.B., Scalable Video Compression, SM Thesis, MIT, Cambridge, MA, 1992.

[18] Sun Microsystems, Sun Network File System (NFS) Reference Manual, Sun Microsystems,

Mountain View, Calif., 1987.

[19] Thacker, Charles P., Stewart, Lawerence C., and Satterthwaite, Jr., "Firefly: A Multiproces-

sor Workstation", IEEE Trans. on Computers, Vol. 37, No. 8, August 1988.

[20] Watlington, J. and V.M. Bove, Jr., "Cheops: A Modular Processor for Scalable Video Cod-

ing," SPIE Vol. 1605, Bellingham, WA, 1991, pp. 886-893.

[21] Watlington, J., The Cheops Hardware Reference Guide, MIT Media Laboratory Internal

Memo, Cambridge, MA, 1990.

[22] Woods, J.W. (editor), Subband Image Coding, Kluwer Academic Publishers, Norwell, MA,

1990.

[23] Woods, J.W., and O'Neil, Sean D., "Subband Coding of Images," IEEE Trans. on Acoustics,

Speech and Signal Proc., ASSP-34, Oct. 1986, pp. 1278-1288.

[24] Wulf, W., Cohen, E., Corwin, W., Jones, A., Levin, R., Pierson, C., and Pollack, F.,

"HYDRA: The Kernel of a Multiprocessor Operating System", Communications of the

ACM, Vol. 17, No. 6, June 1974, pp. 337-345.

Acknowledgments

Many thanks go to all those in the Entertainment and Information Group for their

contributions to the work related to my thesis.

...to Allan Blount for a well-written (almost), and working initial version of the

Magic Seven Operating System

...to Irene Shen for her hard labor on the resource manager

...to John Watlington for keeping the machine running (most of the time) for me

...to Shawn Becker for meeting and far exceeding his title of Cheops Software Czar

...to Dr. V.M. Bove, my advisor, for his good humor, patience, guidance, and leader-

ship of the Cheops team

...to my readers, Dr. Steve Benton, Professor of Media Technology, MIT Media Lab;

Dr. David Tennenhouse, Assistant Professor, MIT laboratory of Computer of Science;

and Dr. Kenneth W. Haase, Jr., Assistant Professor of Media Technology, MIT Media Lab

...to Mom, Dad,.Susan & Julie for support and trying to understand "now what

exactly do you do"?

...to Christine. I love you.

Appendix

Notes for Cheops Multiprocessing Software Designers

I describe here a few important notes for multiprocessor Cheops software developers.

These are additional to the information in the Cheops Users Guide. The following sections

deal with two boards, but may be intuitively extended for up to four boards.

7.1 Setting up the Hardware

Two switches on the P2 processor module must

configuration:

be set properly. I suggest the following

The double SCSI cable (labelled SCSI Beast) must be plugged into both boards. Further-

more, the host computer must be booted with Cheops in this state.

7.2 Operating System Differences

All system call behave in the same manner as with the single processor Magic Seven

Operating System. All that changes is the identification numbers of processes, ports, and

Board one

SCSI ID switch: 4

Module ID switch: 0

Board two

SCSI ID switch: 5

Module ID switch: 1

semaphores. For example, board zero has processes 0-15, while board one's processes

have ID's 16-31.

7.3 Executing Different Processes on Different Boards

The chex utility still is used to download and execute code on Cheops. Type 'scsi4'

in the window which you want to run chex for downloading and executing on board zero.

(with switches set as prescribed earlier in this appendix). Type 'scsi5 in the window you

want to run chex for downloading and executing on board one.

7.4 Downloading New Versions of the Operating System

I recommend burning new ROM's for new versions, but while debugging, a utility has

been written to download and begin Magic Seven from RAM on two boards. Simply type

'm7-srcb'.

