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Abstract—This paper presents a scheme in which a dedicated
backup network is designed to provide protection from random
link failures. Upon a link failure in the primary network, traffic is
rerouted through a preplanned path in the backup network. We
introduce a novel approach for dealing with random link failures,
in which probabilistic survivability guarantees are provided to
limit capacity over-provisioning. We show that the optimal backup
routing strategy in this respect depends on the reliability of
the primary network. Specifically, as primary links become less
likely to fail, the optimal backup networks employ more resource
sharing amongst backup paths. We apply results from the field
of robust optimization to formulate an ILP for the design and
capacity provisioning of these backup networks. We then propose
a simulated annealing heuristic to solve this problem for large-
scale networks, and present simulation results that verify our
analysis and approach.

I. INTRODUCTION

Today’s backbone networks are designed to operate at very
high data rates, now exceeding 10 Gbit/s [1]. Consequently,
any link failure can lead to catastrophic data loss. In order to
ensure fast recovery from failures, protection resources must
be allocated prior to any network failures. This paper deals
with providing protection in networks from multiple random
link failures.

A widely used approach for recovery from a link failure is
preplanned link restoration [2], where a backup path between
the end nodes of a link is chosen for every link during the
network configuration stage. In the event of a link failure,
the disrupted traffic can be rerouted onto its backup path.
Preplanned methods of link restoration offer benefits over other
methods in terms of speed and simplicity of failure recovery,
as no additional dynamic routing is necessary at the time of a
failure [3]. In addition to designing a backup path for each link,
preplanned link restoration requires provisioning of sufficient
spare capacity along each backup path to carry the load of
failed links. Backup paths can share spare capacity and network
resources to reduce the total cost of protection.

Communication networks can suffer from multiple simul-
taneous failures, for example, if a second link fails before a
first failed link is repaired. Furthermore, natural disasters or

This work was supported by NSF grants CNS-0626781 and CNS-0830961
and by DTRA grants HDTRA1-07-1-0004 and HDTRA-09-1-005.

large scale attacks can destroy several links in the vicinity
of such events. Preplanning backup paths for combinations
of multiple failures can be complex and impractical, and can
lead to significant capacity over-provisioning. Consequently,
new approaches must be considered to offer protection against
multiple failures.

Spare capacity allocation for link-based protection has been
studied extensively in the context of single-link failures [1], [4],
[5], [6]. The objective of these works is to allocate sufficient
protection resources to recover from any single link failure.
Recently, the authors in [7] proposed the use of a dedicated
backup network to protect against a single failure on the
primary network. Upon such a failure, the load on the failed
link is routed on a predetermined path on the backup network.
The authors provide an Integer Linear Program (ILP) to design
an optimal backup network with minimal cost. They show that
the cost of the optimal backup network is small relative to that
of a large primary network. Specifically, they show that the
ratio between the total backup capacity and the total primary
capacity tends to zero as the network size grows large for
certain classes of networks.

For many applications, it is insufficient to protect against
only single-link failure events. Several authors have extended
the results of survivability for single link failures to dual-link
failures [2], [8], [9]. The work in [10] considers protecting
against up to three link failures. Most of these works require the
primary network to have multiple disjoint paths between node
pairs to survive multiple failures. This assumption is too restric-
tive when considering a large number of failures. Additionally,
[11] provides a spare capacity allocation approach based on a
specific set of failure events and restricted backup path lengths.
However, in all of these works, large amounts of spare capacity
are required if many links can fail simultaneously.

Survivability amidst multiple failures has also been ad-
dressed in the form of a Shared Risk Link Group (SRLG) [12].
An SRLG is a set of links sharing a common network resource,
such that a failure of that resource could lead to a failure of
all links in the SRLG. Many authors have proposed routing
strategies for path-based protection against SRLG failures [13],
[14], [15], [16]. These works assume that links in a SRLG all
fail simultaneously and deterministically. However, this line of
work does not extend to uncorrelated, nondeterministic failures.

In this paper, we introduce a new framework for providing



protection from multiple random link failures involving prob-
abilistic survivability guarantees. Since large-scale attacks and
natural disasters can result in multiple links failing randomly,
providing protection from any single failure is insufficient, and
networks designed for protection against single-link failures
often cannot protect against multiple failures. The straight-
forward approach of offering guaranteed protection against any
random failure scenario is to allocate capacity such that every
failure event is protected. However, this approach is impractical
as it requires enormous amounts of capacity to protect against
potentially unlikely events. By allocating capacity to offer
protection with high probability, the total cost of protection
is greatly reduced.

Motivated by the results of [7] and the simplicity of their
approach, we extend the use of a dedicated backup network
to deal with multiple random link failures. We show that a
dedicated backup network is a low-cost method of providing
protection against random failures, relative to large primary
networks. Additionally, we show that the structure of the
minimum-cost backup network changes with the reliability of
the primary network. Specifically, optimal backup networks for
primary networks with a low link-failure probability employ a
high level of link sharing amongst backup paths. On the other
hand, optimal backup networks for primary networks with a
high link-failure probability emphasize shorter backup paths,
and less capacity sharing.

To design a backup network under random link failures,
we develop a robust optimization approach to backup capacity
provisioning. Robust optimization finds a solution to a problem
that is robust to uncertainty in the optimization parameters [17],
[18], [19]. In [19], Bertsimas and Sim propose a novel linear
formulation with an adjustable level of robustness. These tech-
niques have previously been successfully applied to network
flow problems [20]. We apply these results to design backup
networks that are robust to the uncertainty in link failures. This
leads to an ILP formulation for backup capacity provisioning.
We also present a simulated annealing approach to solve the
ILP for large-scale networks.

The remainder of this paper is organized as follows. In
Section II, we present the network model and formulate the
problem of backup network design. In Section III, we consider
protection for uniform-load primary networks to investigate the
impact of link failure probability on backup network design
and the cost of protection. Robust optimization is introduced in
Section IV to formulate an ILP for general primary link loads,
and a heuristic based on simulated annealing is presented to
solve it for large networks. We provide simulation results in
Section V and concluding remarks in Section VI.

II. NETWORK MODEL

Consider a primary network made up of a set of nodes V and
a set of directed links L connecting these nodes. We assume
throughout that the links are directed, as the undirected case
is a specific instance of the directed link case.

Each link (s, d) ∈ L has a given primary link capacity CP
sd,

and a positive probability of failure p, independent of all other
links. Let the random variables Xsd equal 1 if link (s, d) fails
and 0 otherwise. This probabilistic failure model represents
a snapshot of a network where links fail and are repaired
according to some Markovian process. Hence, p represents the
steady-state probability that a physical link is in a failed state.
This model has been adopted by several previous works [6],
[21], [22], [23]. A backup network is to be constructed over
the same set of nodes V and a new set of links LB , by routing
a backup path for each primary link over the backup network
and allocating capacity to every backup link. We assume that
LB can consist only of links (i, j) if there is a primary link
connecting nodes i and j. An example backup network is
shown in Figure 1. Furthermore, the backup links are designed
such that failures can only occur in the primary network. For
each primary link (s, d) ∈ L, a path on the backup network is
chosen such that in the event that (s, d) fails, the traffic load
on (s, d) is rerouted over the backup path. Let bsd

ij = 1 if link
(s, d) ∈ L uses backup link (i, j) ∈ LB in its backup path.
Hence, bsd = {bsd

ij |∀(i, j) ∈ LB} represents the backup path
for the primary link (s, d) ∈ L.
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Fig. 1: Example backup network shown as solid directed links over
dotted bidirectional primary network.

A capacity CB
ij is allocated to each backup link (i, j) ∈ LB

such that (i, j) can support the increased load due to a random
failure scenario with probability 1− �, where � > 0 is a design
parameter. Naturally, as � becomes smaller, more capacity is
required on the backup network. Throughout this work we only
consider the case where p ≥ �, since no backup capacity is
required for p < �.

Each primary link has exactly one path in the backup
network for protection, and the links in this path can be shared
amongst backup paths for multiple primary links. The goal is
to construct a minimal cost dedicated backup network. The
problem can be formulated as follows:

Minimize: �

(i,j)∈LB

CB
ij (1)



Subject To:

P
� �

(s,d)∈L

Xsdb
sd
ij CP

sd > CB
ij

�
≤ � ∀(i, j) ∈ LB (2)

�

j

bsd
ij −

�

j

bsd
ji =






1, if s = i

−1, if d = i ∀(s, d) ∈ L, i ∈ V
0, o.w.

(3)
bsd
ij ,∈ {0, 1} ∀(s, d) ∈ L, (i, j) ∈ LB (4)

The constraint in (3) is a standard flow conservation con-
straint for the routing of a single backup path for each primary
link. The probabilistic constraint (2) is the capacity constraint,
from which the backup capacities are computed. Backup link
(i, j) must carry the load of each failed primary link that
it protects. Constraint (2) restricts the probability that the
load on (i, j) due to failures exceeds the backup capacity
provisioned on (i, j). This survivability metric, which considers
the reliability of each backup link independently, is referred to
as the backup-link survivability metric. There are a number of
possible survivability metrics that can be considered in this set-
ting; the choice of which will impact the network design. One
can consider survivability from a primary link perspective. In
this case, one constrains the joint probability that a primary link
fails and its backup path has insufficient capacity. Alternatively,
one can consider a survivability constraint on the entire backup
network, rather than on each backup link independently. The
backup-network constraint restricts the probability that any of
the backup links have insufficient capacity. It is straightforward
to show that the primary-link and backup-network constraints
can be written in the form of the backup-link constraint in
(2) using a union-bound argument. Therefore, we will use the
backup-link constraint of (2) throughout this paper.

We start by considering the backup network design problem
for networks with uniform primary link loads. In Section IV,
this is generalized to primary networks with arbitrary primary
link capacities.

III. UNIFORM-LOAD NETWORKS

Any primary network can be represented by a fully con-
nected graph, with CP

sd = 0 for links that are not in the primary
network. However, in order to form an intuitive understanding
of the general problem, we first explore the backup-network
design problem for the special case where each primary link
has unit capacity, i.e. CP

sd = 1 ∀(s, d) ∈ L. The capacity
required on each backup link is dictated by the reliability
constraint in (2). Let nij be the number of primary links for
which backup link (i, j) is part of the backup path. In other
words,

nij =
�

(s,d)∈L

bsd
ij (5)

Let Yij be a random variable representing the number of
failed primary links using (i, j) as part of their backup paths,
i.e.,

Yij =
�

(s,d)∈L

bsd
ij Xsd. (6)

Since each Xsd is an i.i.d bernoulli random variable with
parameter p, Yij is a binomial random variable with parameters
nij and p. Furthermore, as all the primary links have unit
capacity, equation (2) can be rewritten as

P
� �

(s,d)∈L

Xsdb
sd
ij CP

sd > CB
ij

�
= P

�
Yij > CB

ij

�
(7)

=
nij�

y=�CB
ij�+1

�
nij

y

�
py(1− p)nij−y ≤ � ∀(i, j) ∈ LB

(8)

Equation (8) uses the cumulative distribution function (CDF)
of the binomial distribution. For each link (i, j), let G(nij , p, �)
be the minimum value of CB

ij satisfying (8). Clearly, the
capacity required on a backup link increases with the number
of primary links it protects, and it decreases as the probability
of failure decreases. Additionally, as � decreases, more capacity
is required on each backup link.

A. Impact of Link Failure Probability

To gain intuition about the optimal backup network design,
we compare three backup routing schemes, shown in Figure
2, and show that backup network performance depends on
the link failure probability. In the cycle protection scheme of
Figure 2a, each primary link (s, d) has a backup path lying in
a single Hamiltonian cycle through the network. This is the
minimum-cost backup network providing protection against a
single link failure [7]. Each backup link in this cycle requires
unit capacity to protect against a single link failure, resulting
in a total cost of N for an N -node network. Due to network
symmetry, each backup link protects half of the primary links.
Therefore, in order to use this scheme to provide protection
from a random number of failures with high probability, a total
backup capacity of CB

total = N · G
�N(N−1)

2 , p, �
�

is required,
where G(n, p,� ) is the smallest value of CB

ij satisfying (8).
For large values of p, this capacity is N2(N−1)

2 , since
G(nij , p, �) = nij for p close to 1. This capacity can be
reduced by considering the scheme in Figure 2c, where the
backup network is a mirror of the primary network, and the
backup path for (s, d) is the one-hop path from s to d. Since
each backup link offers protection to a single primary link, the
total capacity required is CB

total = N(N −1) ·G(1, p, �). For all
values of p ≥ �, CB

total = N(N − 1). Thus, the mirror scheme
requires a factor of N less capacity than the cycle scheme for
primary networks with a high probability of link failure.

It is clear that for values of p close to 1, each link re-
quires dedicated backup capacity to protect against its probable
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Fig. 2: Sample backup network link placement to protect a 6-
node, fully-connected primary network. The dotted lines represent the
primary network, and the solid lines represent the backup links.

failure. Consequently, a shortest-path backup routing scheme,
as provided by the one-hop protection scheme, minimizes the
total backup capacity. While the one-hop protection scheme
is preferred in the high-p regime, other schemes are more
capacity-efficient for smaller values of p. Consider the two-
hop scheme in Figure 2b, where node 1 serves as a relay
node for every backup path. The primary links from node 2
to every other node share the backup link (2, 1) and similarly
the primary links from all nodes to node 2 share the backup
link (1, 2). Extending this to an N -node network, each backup
link protects N − 1 primaries, and there are 2(N − 1) backup
links. Thus, CB

total = 2(N − 1) · G(N − 1, p, �).
The three aforementioned routing schemes are compared

in Figure 3 for a fully connected network with 50 nodes
and varying probability of link failure. The cycle-protection
scheme, which is optimal in the single failure scenario, requires
excessive capacity when considering multiple failures. For
values of p close to �, the two-hop routing strategy outperforms
the other two strategies. Once p exceeds roughly 0.4, there is
no longer a benefit to sharing backup resources, and the one-
hop starts to outperform the two-hop schemes. Hence, it is
clear that the optimal backup network topology depends on
the reliability of the primary network. This is further analyzed
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Fig. 3: Comparison of three protection schemes for an N = 50
fully-connected network with unit load.

in Section IV where the problem is formulated for general
primary link capacities.

B. Scaling Properties of Backup Network Capacity

Consider the cost of the backup network with respect to that
of the primary network. Let ρ be defined as

ρ �
�

(i,j)∈LB
CB

ij�
(i,j)∈L CP

ij

. (9)

I.e., ρ is the ratio of the total capacity of the optimal backup
network to that of the primary network. In [7], the authors
show that this ratio tends to 0 asymptotically as the network
size gets very large for specific networks and single-failure
protection. For fully-connected, uniform-load networks, the op-
timal backup network under single-failure protection is shown
in Figure 2a, and for this topology

ρ =
N

N(N − 1)
=

1
N − 1

. (10)

Conversely, for protection against random failures, the ratio
in (9) can be upper bounded using the following proposition.

Proposition 1. Assuming a fully connected primary network

with unit-capacity on each link and probability of link failure

p, the ratio between the total capacity of the optimal backup

network and that of the primary network can be upper bounded

as the primary network size grows large by the following:

ρ ≤ 2p (11)

Proof: The optimal total backup capacity is bounded by
that of the two-hop scheme considered in Figure 2b.

ρ =

�
(i,j)∈LB

CB
ij�

(i,j)∈L CP
ij

≤ 2(N − 1)G(N − 1, p, �)
N(N − 1)

(12)

Consider the behavior of G(n, p,� ) when n is large. Recall
that G(n, p,� ) is the required number of primary links out of



n that need to be protected to ensure sufficient capacity with
probability 1− �. The Weak Law of Large Numbers (WLLN)
can be used to show that for large n, G(n, p,� ) ≈ n · p is
sufficient to meet the probability requirements (for any positive
�). In the limit of large N , the inequality in (12) reduces to

ρ ≤ 2(N − 1)Np

N(N − 1)
= 2p (13)

Therefore, the size of the backup network is a small fraction
of the size of the primary network, since p is usually small.
Consequently, a backup network designed using the backup-
link survivability constraint is a low-cost method of providing
protection against random failures in addition to single-link
failures. This result is consistent with [7], in that as the primary
network size grows large, p approaches zero under the single-
failure model.

IV. GENERAL-LOAD NETWORKS

Next, we develop a formulation for general primary link
loads. First, we apply the robust optimization results from [19]
to formulate a non-linear program for backup capacity provi-
sioning, and develop an equivalent integer linear formulation in
terms of new parameters Γij . We show that the choice of these
parameters affects the amount of capacity provisioned, and
hence the probability of insufficient backup capacity. Then, we
add constraints to directly compute these parameters, yielding
a solution satisfying the probabilistic constraint in (2).

A. Robust Optimization Formulation

In the case of uniform link loads, capacity is allocated to the
backup network by computing G(nij , p, �) for each link (i, j).
The backup capacity provisioned is the number of primary
link failures protected against, as a function of nij , p, and �.
However, this approach does not apply directly to non-uniform
primary link loads, as different links will require different
capacities to provide protection. In order to mathematically
formulate the problem for general link loads, we will use
techniques from the field of robust optimization.

Robust optimization finds a solution to a problem that best
fits all possible realizations of the data, when that data is
subject to uncertainty. In [19], the authors propose a novel
formulation with an adjustable level of conservatism for such
problems. Their approach is to introduce an optimization
parameter Γ, and provide sufficient capacity to support all
scenarios in which any Γ of the demands exceed their mean.
The solution is guaranteed to be robust for those scenarios,
and is shown to be robust for all other scenarios with high
probability, determined by Γ.

A similar approach can be applied to the problem of backup
network design for general link loads, where the uncertainty
is in the number of primary links that fail. Consider allocating
capacity on link (i, j) to protect against any scenario where
up to 0 ≤ Γij ≤ nij of the primary links utilizing (i, j)

for protection fail. Clearly, for the specific case of uniform
loads, the required backup capacity CB

ij is just Γij , and as
shown in the previous section, Γij is given by G(nij , p, �)
under the constraint in (2). For general loads, G(nij , p, �) is
not the bandwidth that needs to be allocated, as in Section III,
but rather the number of primary links to provide protection
for. To extend this idea, let Lij be the set of primary links
protected by backup link (i, j), i.e. Lij = {(s, d)|bsd

ij = 1}.
Let Sij be a set of Γij primary links in Lij with the largest
capacities. Thus, for any (s, d) ∈ Sij , we have

CP
sd ≥ CP

s�d� ∀(s�, d�) ∈ Lij \ Sij . (14)

The backup capacity required to protect against any Γij

primary link failures is given by

CB
ij =

�

(s,d)∈Sij

CP
sd. (15)

In a complete form, this constraint can be expressed as

CB
ij ≥ max

Sij |Sij⊆L,|Sij |=Γij

� X

(s,d)∈Sij

CP
sdbsd

ij

�
∀(i, j). (16)

The value of Γij determines the probability of protection.
While Γij should be chosen such that (2) is satisfied, for now
we fix the value of Γij for each link. The capacity constraint
in (16) replaces the probabilistic constraint in (2), leading to
the following non-linear optimization problem.

Minimize: �

(i,j)∈LB

CB
ij

Subject To:

CB
ij ≥ max

Sij |Sij⊆L,|Sij |=Γij

� �

(s,d)∈Sij

CP
sdb

sd
ij

�
∀(i, j)

�

j

bsd
ij −

�

j

bsd
ji =






1, if s = i

−1, if d = i ∀(s, d) ∈ L, i ∈ V
0, o.w.

bsd
ij ∈ {0, 1} ∀(i, j) ∈ LB

(17)

The above is non-linear due to the backup capacity constraint
in (16), but it can be reformulated as an ILP using duality
techniques similar to [19], detailed in the Appendix. The
following is an equivalent formulation to (17).

Minimize: �

(i,j)∈LB

CB
ij



Subject To:

CB
ij ≥ νijΓij +

�

(s,d)∈L

θsd
ij ∀(i, j) ∈ LB

νij + θsd
ij ≥ CP

sdb
sd
ij ∀(s, d) ∈ L, (i, j) ∈ LB

�

j

bsd
ij −

�

j

bsd
ji =






1, if s = i

−1, if d = i ∀(s, d) ∈ L, i ∈ V
0, o.w.

bsd
ij ∈ {0, 1} ∀(i, j) ∈ LB

νij , θ
sd
ij ≥ 0 ∀(s, d) ∈ L, (i, j) ∈ LB

(18)

Clearly, if fewer than Γij links in Lij fail, the capacity
allocated in (16) will be sufficient. Therefore, the probability
of insufficient backup capacity can be upper bounded using the
tail probability of a binomial random variable.

P
� �

(s,d)∈L

Xsdb
sd
ij CP

sd > CB
ij

�
≤ P

�
Yij > Γij

�
(19)

The capacity allocated in (15) is sufficient to meet the
reliability constraint in (19) with probability � if Γij =
G(nij , p, �). However, nij is an optimization variable, on which
Γij depends. Thus, the remaining task is to modify (18) to
directly compute the value of Γij for each link using an ILP
formulation.

B. Complete Formulation

Since Γij cannot be computed analytically, we create a
table a priori in which the mth entry Γ(m) equals G(m, p,� ),
computed numerically. We develop an ILP that leads to the
direct computation of nij in order to index the table.

To compute nij , let xm
ij = 1 if nij = m, and 0 otherwise.

The following constraints are introduced.

N(N−1)�

m=0

xm
ij = 1 ∀(i, j) ∈ LB (20)

Constraint (20) enforces xm
ij to be equal to 1 for only one value

of m for each backup link.

�

(s,d)∈L

bsd
ij =

N(N−1)�

m=0

m · xm
ij ∀(i, j) ∈ LB (21)

Constraint (21) ensures that the number of primary links
utilizing a backup link (i, j) is equal to the value of m for
which xm

ij = 1. Consequently, Γij can be represented by the
following.

Γij = G(nij , p, �) =
N(N−1)�

m=0

Γ(m)xm
ij (22)

The capacity constraint of (18) is rewritten as

CB
ij ≥

N(N−1)�

m=0

Γ(m)νijx
m
ij +

�

(s,d)∈L

θsd
ij (23)

Since the product νijxm
ij is non-linear, another set of opti-

mization variables is added to represent this product in linear
form. Let ym

ij be a nonnegative variable satisfying the following
constraints:

ym
ij ≥ νij + K(xm

ij − 1) ∀(i, j), m (24)
ym

ij ≤ Kxm
ij ∀(i, j), m (25)

ym
ij ≥ 0 ∀(i, j), m (26)

In the above equations, K is a large number such that K >
maxsd CP

sd. When xm
ij = 0, then xm

ij νij = 0, and constraints
(25) and (26) force ym

ij to 0. On the other hand, if xm
ij =

1, constraint (24) will force ym
ij ≥ νij , which at the optimal

solution will be satisfied with equality. These constraints lead
to an ILP formulation for backup network design, given in
(27).

The following is an ILP formulation for the design of a
dedicated backup network to protect against random failures.

Minimize: �

(i,j)∈LB

CB
ij

Subject To:

CB
ij ≥

N(N−1)�

m=0

ym
ij Γ(m) +

�

(s,d)∈L

θsd
ij ∀(i, j) ∈ LB

νij + θsd
ij ≥ CP

sdb
sd
ij ∀(s, d) ∈ L, (i, j) ∈ LB

N(N−1)�

m=0

xm
ij = 1 ∀(i, j) ∈ LB

�

(s,d)∈L

bsd
ij ≤

N(N−1)�

m=0

m · xm
ij ∀(i, j) ∈ LB

ym
ij ≥ νij + K(xm

ij − 1) ∀(i, j) ∈ LB , m

ym
ij ≤ Kxm

ij ∀(i, j) ∈ LB , m

�

j

bsd
ij −

�

j

bsd
ji =






1, if s = i

−1, if d = i ∀(s, d) ∈ L, i ∈ V
0, o.w.

bsd
ij , xm

ij ∈ {0, 1} ∀(i, j) ∈ LB , m

θsd
ij ≥ 0, νij ≥ 0, ym

ij ≥ 0 ∀(s, d) ∈ L, (i, j) ∈ LB , m
(27)

This formulation calculates the backup paths and capacity
allocation for a dedicated backup network satisfying the sur-
vivability constraint in (2).



C. Simulated Annealing

The ILP in (27) can be directly solved for small instances,
but becomes intractable for large networks. There are a number
of heuristic approaches to solving ILPs, such as randomized
rounding, tabu search, and simulated annealing. Here, we
employ a simulated annealing approach to estimate the backup
path routing in (27).

Simulated annealing (SA) is a random search heuristic which
can be used to find near optimal solutions to optimization
problems [24]. The algorithm begins with an arbitrary feasible
solution, with a cost computed with respect to an objec-
tive function. Then, a random perturbation is applied to the
solution, and the cost is reevaluated. The new solution is
probabilistically accepted based on the relationship between the
two costs. A positive probability of moving to a worse solution
avoids the problem of being trapped in a local minima. SA has
been used previously on network survivability problems [25].

For a fixed backup path routing, the computation of the
optimal backup capacity CB

ij is straightforward. Therefore, we
use simulated annealing to estimate the backup path routing.
For the problem in (27), the solution at each SA iteration is
the backup path for each primary link, and the cost is the
total backup capacity, computed using (16). Perturbations are
applied to this solution by randomly recomputing the backup
path for a randomly chosen primary link. The current network
with cost CB

total is modified by changing a single backup path,
and the network cost CB�

total is recomputed. The new backup
network is accepted with probability min(q, 1) where

q = exp
�

CB
total − CB�

total
T

�
. (28)

Hence, better solutions are unconditionally accepted and
worse solutions are accepted with probability q. The parameter
T in equation (28) represents the ”temperature” of the system.
At high temperatures, there is a high probability of accepting
a solution with a larger cost than the current solution. This
prevents the algorithm from getting trapped in a local minima.
The temperature decreases after a number of iterations depend-
ing on the network size by T � = ρT , for 0 < ρ < 1. SA
cannot escape local minima if ρ is too small, but high values
of ρ result in long computation times. Eventually, T becomes
small enough that the probability of accepting a worse solution
approaches zero. At this point, the algorithm terminates and
returns the resulting backup network.

There are only limited theoretical results on the convergence
time of SA, which is known to be highly problem dependent.
Regardless, SA approaches are widely used in practice [24].
The choice of parameters leads to an inherent tradeoff between
the accuracy of SA and its convergence time. As the number
of iterations before a temperature reduction increases, the
accuracy of the SA approach improves at the expense of
increased convergence time.
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Fig. 4: Optimal backup networks shown as solid links over dotted
primary networks for different probabilities of link failure. Designed
using � = 0.01.

V. SIMULATION RESULTS

To begin with, consider a five-node, fully-connected topol-
ogy where each primary link has unit-capacity. Due to the
small size of this network, the ILP in (27) can be solved to
compute the optimal backup topologies for different values of
p. These backup networks are shown in Figure 4. For small
values of p, the backup topology consists of few links, whereas
for large values of p, the backup network resembles the primary
network. Table I summarizes the results of the backup networks
for different values of p, using all of the design heuristics
discussed. Cycle protection, two-hop protection, and one-hop
protection refer to the strategies analyzed in Section III. The
optimal column refers to the solution returned by solving the
ILP in (27) using CPLEX, and the SA column refers to an
approach where simulated annealing is used to solve the ILP.

Strategy p = 0.025 p = 0.05 p = 0.075 p = 0.1 p = 0.25
optimal 7 10 13 16 20
cycle 10 15 15 20 30

two-hop 8 16 16 16 24
one-hop 20 20 20 20 20

SA 7 11 13 16 20

TABLE I: Backup network capacity required for topologies designed
using different strategies. � = 0.01 in each design.

The table shows that for p = 0.1, the two-hop protection
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Fig. 5: 14 Node NSFNET backbone network (1991)
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Fig. 6: Backup network (solid) shown for the NSFNET (dotted) with
the restriction that the backup network must be a subset of the primary
network. The primary network here assumes a probability of link
failure of 0.075, and the backup network is designed for � = 0.05.

scheme is optimal, and for p = 0.25, the one-hop protec-
tion scheme is optimal. Furthermore, the simulated annealing
heuristic performs very close to optimal for different values
of p. Clearly, the optimal topology depends on the probability
of link failure, and it is therefore necessary to use a different
backup routing scheme depending on the link failure probabil-
ities.

The heuristics can be extended to larger networks, but the
ILP in (27) cannot be solved directly for large networks. Thus,
we use the SA approach to solve the ILP for backup network
design for large primary networks.

Consider the NSFNET primary network shown in Figure 5.
Each link is bidirectional, with unit capacity in each direction.
Our goal is to construct a backup network consisting of links
(i, j) ∈ LB , where i and j are connected by a link in the
NSFNET. The survivability constraint in (2) must be satisfied
with probability � = 0.05. The SA algorithm, shown to be near-
optimal for smaller networks, is used to compute the backup
network for this larger example. The resulting backup networks
for probability of link failure p = 0.075 and p = 0.10 are
shown in Figures 6 and 7 respectively.

In the backup network of Figure 6, a total capacity of 24
is required. Most backup links protect up to 5 primary links.
In the case of Figure 7, where the probability of link failure
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Fig. 7: Backup network (solid) shown for the NSFNET (dotted) with
the restriction that the backup network must be a subset of the primary
network. The primary network here assumes a probability of link
failure of 0.1, and the backup network is designed for � = 0.05.

is higher, a total capacity of 28 is needed. The backup links
in this example protect an average of 3 primary links. If the
probability of link failure increases to p = 0.25, the resulting
backup topology is a mirror of the primary topology, requiring
a capacity of 42. As p increases, the number of backup links
needed rises, and similarly the number of primary links being
protected by each backup link falls, until the network follows
the one-hop protection scheme. These results are summarized
in Table II.

Link Failure Probability
�

(i,j)∈LB
CB

ij Average nij

p = 0.06 22 4.87
p = 0.075 24 4.42
p = 0.085 27 3.59
p = 0.10 28 3
p = 0.175 34 1.88
p = 0.25 42 1

TABLE II: Comparison of backup networks for NSFNET with
different probabilities of primary link failure. Networks were designed
using � = 0.05. Average nij refers to the average number of primary
links being protected by a backup link.

VI. CONCLUSIONS

Dedicated backup networks are a low-cost and efficient
method for providing protection against multiple (random)
failures. In the event of a failure, the load on the failed link
can be automatically rerouted over a predetermined path in
the backup network, providing fast recovery from network
failures. We formulated the backup network design problem as
an ILP for primary networks with general link capacities and
independent, identically distributed probabilities of link failure.
For primary networks with rare failures, backup networks are
shown to use fewer links, with more resource sharing among
backup paths. Conversely, when the primary network has a
high probability of link failure, the backup network consists of



shorter backup paths. For larger primary networks, a simulated
annealing approach was presented to solve the backup network
design ILP. This approach has been shown to perform near
optimally in designing dedicated backup networks. The SA
algorithm can be adjusted to trade-off between computation
time and accuracy.

Throughout this work, it has been assumed that the backup
network is free from failures. This assumption holds if the
backup links are physically designed such that they are more
robust to failures. It would be interesting to extend the approach
presented in this paper to a failure model in which the backup
links are also susceptible to failure.

VII. APPENDIX

The following steps are used to convert Formulation (17) to
Formulation (18) using a duality approach. For a fixed bsd

ij and
Γij , the backup capacity of link (i, j),

βij(bij,Γij) = max
Sij |Sij⊆L,|Sij |=Γij

� �

(s,d)∈Sij

CP
sdb

sd
ij

�
, (29)

can be written as the solution to the following LP.

βij(bij,Γij) = maximize
�

(s,d)∈L

CP
sdb

sd
ij zsd

ij

subject to
�

(s,d)∈L

zsd
ij ≤ Γij

0 ≤ zsd
ij ≤ 1 ∀(s, d) ∈ L

(30)

Assuming the number of primary links (s, d) satisfying
bsd
ij = 1 is larger than or equal to Γij , the LP will choose the

Γij of them with the largest capacities, by setting zsd
ij = 1 for

those links (s, d). This corresponds to choosing the set Sij in
(15). If there are fewer than Γij primary links (s, d) satisfying
bsd
ij = 1, then for each of these links zsd

ij = 1 and the other
(s, d) satisfying zsd

ij = 1 are chosen arbitrarily.
Let νij be the dual variable for the first constraint in (30), and

let θsd
ij be the dual variables for the second set of constraints.

The dual problem of (30) is formulated below.

minimize νijΓij +
�

(s,d)∈L

θsd
ij

subject to νij + θsd
ij ≥ CP

sdb
sd
ij ∀(s, d) ∈ L

νij ≥ 0
θsd

ij ≥ 0 ∀(s, d) ∈ L

(31)

Since there is zero duality gap between problem (30) and
its dual (31), then the optimal value of the objective function
in (31) is equal to βij(bij,Γij). Additionally, since problem

(17) minimizes βij(bij,Γij) for each (i, j), problem (31) can
be substituted into (17) to arrive at the formulation in (18).
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