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We study a time-reversal invariant non-Abelian spin-liquid state in an SUð2Þ symmetric spin S ¼ 1

quantum magnet on a triangular lattice. The spin liquid is obtained by quantum disordering a noncollinear

nematic state. We show that such a spin liquid cannot be obtained by the standard projective construction

for spin liquids. We also study the phase transition between the spin liquid and the noncollinear nematic

state and show that it cannot be described within the Landau-Ginzburg-Wilson paradigm.
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The concepts of ‘‘order parameter’’ and ‘‘symmetry
breaking’’ have been extremely successful for classifying
various phases of matter and their phase transitions at finite
temperature. Interestingly, the past 20 years have provided
us many examples where these notions break down in the
context of zero temperature quantum phases and phase
transitions and where one needs a totally different frame-
work. In particular, concepts such as ‘‘fractionalization’’
and ‘‘topological order’’ have been shown to be very useful
to describe the rich physics of various quantum Hall
systems, frustrated magnets, and many other strongly cor-
related systems [1].

Our current description of topological order draws heav-
ily on the projective construction using various slave bo-
sonor fermion techniques [1]. In this Letter, we present an
example of a non-Abelian quantum spin liquid with bo-
sonic spinons where the Schwinger boson construction
fails to capture even the mean-field state. The spin liquid
is obtained by quantum disordering a noncollinear nematic
state in a spin S ¼ 1 system on a triangular lattice.
Interestingly, the low-energy excitations in the spin liquid
have non-Abelian statistics. To our knowledge, this is one
of the few known examples of a time-reversal invariant
phase of matter that supports non-Abelian excitations
[2,3]. Furthermore, the phase transition between the ne-
matic phase and the spin liquid is also exotic and has a very
large value of the critical exponent � associated with
correlations of the nematic order parameter.

A general Hamiltonian describing a spin S ¼ 1 quantum
magnet on an isotropic triangular lattice takes the form

H ¼ J
X
hiji

Si � Sj þ K
X
hiji

ðSi � SjÞ2: (1)

Additionally, H may have other short-ranged interac-
tions consistent with SUð2Þ spin symmetry such as mul-
tiple ring exchange or second-nearest-neighbor Heisenberg
exchange.

Consider the Hamiltonian H for K > J > 0. At the
mean-field level, the ground state of this Hamiltonian in
this parameter regime has a three-sublattice nematic order
where the nematic directors on the three sublattices A, B,
and C of the triangular lattice are orthogonal to each other
(say, along x̂, ŷ, and ẑ, respectively) [4,5]. As argued by
Tsunetsugu and Arikawa [6], such a state may explain
many of the features [7] of the triangular lattice magnet
NiGa2S4, in particular, the lack of any dipole moment hSi,
low temperature specific heat CðTÞ � T2, and finite spin
susceptibility at T ¼ 0. The directors of the nematic
correspond to ‘‘hard axes’’; i.e., the spins on the three
sublattices fluctuate in the plane perpendicular to their
respective directors such that the average value
hSðrÞi ¼ 0. Such a state breaks spin-rotation symmetry
while preserving the time-reversal invariance. In terms
of the spin operators, the nematic order parameter at
site r could be described as a rank-two tensor: Q��ðrÞ ¼
1
2 hS�ðrÞS�ðrÞ þ S�ðrÞS�ðrÞi � 2

3���. The director at a site

r is along the eigenvector of Q�� that corresponds to the

zero eigenvalue.
The above ground state does not preserve any continu-

ous subgroup of the original SOð3Þ symmetry of the
Hamiltonian in Eq. (1). Thus the low-energy fluctuations
around the ground state consist of three Goldstone modes.
Interestingly, the ground state is invariant under the dis-
crete subgroupD2 � Rx

�; R
y
�; Rz

� of SOð3Þ, where Ra
� (a ¼

x; y; z) corresponds to a global � rotation of all spins about
the three orthogonal axes x, y, and z. Therefore the order-
parameter manifold M ¼ SOð3Þ=D2. This identification
of the order-parameter manifold allows one to characterize
the nontrivial topological excitations out of the ground
state. We recall that in two spatial dimensions the funda-
mental group �1ðMÞ of the order-parameter manifold M
is directly related to the combination law for the physical
point defects [8]. More precisely, the defects are classified
by the conjugacy classes of the fundamental group. To
calculate the fundamental group of M ¼ SOð3Þ=D2, one

PRL 107, 077203 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

12 AUGUST 2011

0031-9007=11=107(7)=077203(5) 077203-1 � 2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.107.077203


notes that the lift of D2 in SUð2Þ is the eight-element non-
Abelian quaternion groupQ. ThusM is homeomorphic to
SUð2Þ=Q. Since SUð2Þ is simply connected while Q is
discrete, by using the fundamental theorem on the funda-
mental group, �1ðMÞ ¼ Q [8]. As we will shortly see, the
two-dimensional representation of Q in terms of Pauli
matrices would be most relevant for our purposes. In this
representation the five conjugacy classes of Q are given by

C0 ¼ fIg; �C0 ¼ f�Ig; Cx ¼ �i�x;

Cy ¼ �i�y; Cz ¼ �i�z:
(2)

The class C0 corresponds to the trivial class, i.e., no
defect. The class �C0 corresponds to a 360� disclination
in two of the nematic directors, while the class Ca (a ¼
x; y; z) corresponds to defects where there is a 180� dis-
clination in all but a-axis directors.

We are interested in constructing a T ¼ 0 spin-liquid
state obtained by quantum disordering the nematic state.
Since proliferating topological defects in quantummagnets
often leads to breaking of various symmetries in the para-
magnet state, one of the simplest ways to obtain a spin
liquid is to destroy the nematic state without proliferating
any topological defects. To implement this, we use an
effective lattice model formulated as a gauge theory analo-
gous to the formulation of classical spin nematics as a
lattice field theory of a Z2 gauge field coupled to a vector
field [9].

The order-parameter space M ¼ SOð3Þ=D2 is equiva-
lent to a set of orthogonal axesn1, n2, and n3 at each vertex
of a bigger triangular lattice with the identification na �
Rna, where R is an element of the D2 group. The vertices
of this new triangular lattice could be taken as the centroids
of the triangular plaquettes of the original triangular lattice
(Fig. 1). Equivalently, by using the identification
SOð3Þ=D2 � SUð2Þ=Q, it could be described as a quater-
nion gauge-matter theory whose imaginary time action is

S ¼ �t
X

z�i qijzj þ �

�X
4
TrðqijqjkqkiÞ

þX
h

TrðqijqjkqklqliÞ
�
þ SB: (3)

Here z ¼ ½z"; z#�T is a two-component spinor with the

constraint zyz ¼ 1 which is minimally coupled to a qua-
ternion gauge field qij. z’s and q’s live at the vertices and

the links, respectively, of a stacked triangular lattice. The
first term in the action S is the kinetic energy term for the
spinons z, while the second term is the kinetic energy term
for the gauge fields at a spatial (4 ) or space-time (h)
plaquette. This term penalizes topological defects and
would automatically be generated from the kinetic energy
term. The term SB is the Berry phase term associated with
topological defects. Since the topological defects are
gapped in all the phases considered in this Letter, SB can
effectively be ignored for our purposes. The original SOð3Þ

symmetry of the spin HamiltonianH is realized as a SUð2Þ
symmetry acting on the spinor z. This also indicates how to
relate the spinor z’s to the axes n1, n2, and n3. Let us define
an SUð2Þ matrix U built from z’s:

U ¼ z" z�#
z# �z�"

 !
: (4)

The 3	 3 matrix R built from U

Rab ¼ 1
2 trðUy�aU�bÞ (5)

has n1, n2, and n3 as its first, second, and third columns,
respectively. Thus, all three directors na’s are quadratic in
z’s, and hence the nematic order parameterQ�� is of fourth

degree in z’s. We note in passing that, in the context of
collinear nematics, the appropriate low-energy theory is
described by spin-1 ‘‘slave triplons’’ (i.e., three species of
bosons) coupled to a Z2 gauge field [10].
Let us describe the phase diagram corresponding to the

action S in Eq. (3). First, consider S at finite temperature.
Since a continuous symmetry cannot be broken in two
dimensions with short-range interactions, no symmetry
broken phases can exist at any nonzero temperature.
Furthermore, since a pure quaternion gauge theory in two
spatial dimensions is confining at any nonzero temperature,
in terms of the original spin model only a paramagnet
phase without any topological order can exist at T > 0.
Next, consider the phase diagram at zero temperature.

Clearly, for t 
 �, the spinons would condense, yielding a

FIG. 1 (color online). The ordered state of the three-sublattice
nematic state. The directors on the three sublattices are shown as
three orthogonal differently colored rods (black, red, and blue).
As discussed in the text, one may also define the order-parameter
space in terms of spinons z, which reside at the vertices of a
bigger auxiliary triangular lattice. We take the vertices of this
auxiliary triangular lattice (marked as	) to lie at the centroid of
every third triangular plaquette of the original lattice.
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three-sublattice nematic state. As discussed above, this
phase would have three Goldstone modes. The non-
Abelian fluxes through plaquettes would exist as excita-
tions in this phase and correspond to the non-Abelian
disclinations in Eq. (2). These fluxes have a logarithmic
interaction with each other which is mediated by the spin-
wave magnons. Now consider quantum disordering this
phase without proliferating these defects. The resulting
phase would be a paramagnet that would correspond to
the deconfined phase of a pure quaternion gauge theory.
The excitations in this phase would correspond to
gapped spinons, quaternion fluxes, and their composites
(‘‘dyons’’), which would have interesting fusion and braid-
ing properties. Additionally, the ground state of this phase
would have topological degeneracy on a torus.

The topological properties of this phase are well under-
stood, and a detailed discussion of the particles and their
topological interactions was provided by Propitius and
Bais in Ref. [11]. The distinct magnetic fluxes are in
one-to-one correspondence with the topological defects
of the nematic phase; hence, they are classified by the
conjugacy classes of the quaternion group listed in Eq.
(2). As in any gauge theory, the electric charges are labeled
by the irreducible representations of the gauge group. In
particular, the spinons z" and z# transform under the two-

dimensional representation of the quaternion group, while
the flux composites of the form ji�a;�i�ai with zero net
flux also carry charge and transform under the one-
dimensional representation of the quaternion group.
Finally, one could have dyonic particles which correspond
to the bound state of a flux and an electric charge. The
dyons corresponding to a flux � are classified by the
irreducible representations of the centralizer corresponding
to the conjugacy class of � (one may recall that the
centralizer of a conjugacy class is the set of elements which
commute with all elements of that conjugacy class). Since
the centralizer of the �C0 conjugacy class is the whole group
Q, the bound state of a spinon and a �C0 flux is classified by
the irreducible representations ofQ. On the other hand, the
centralizer of theCx,Cy, andCz conjugacy classes is the Z4

group; hence, the corresponding dyons fall into four dis-
tinct classes corresponding to the four one-dimensional
representations of the Z4 group.

Next, consider the ground state degeneracy on a torus.
Since the deconfined phase is gapped, one could calculate
the degeneracy on a torus by restricting the system to a
single plaquette with periodic boundary conditions.
Thus, the number of ground states is proportional to the
number of inequivalent flux configurations that satisfyQ

h�ij�jk�kl�li ¼ 1. A simple counting shows that this

number is 22. As is well known, the ground state degener-
acy for a topological phase is equal to the number of
distinct particle excitations of the system. Thus there
must be 22 particles in a quaternion gauge-matter theory
as could be easily verified by direct calculation [11].

Since spinons transform under a two-dimensional rep-
resentation of the quaternion group, it is also interesting to
consider the effect of transportation of a spinon around
a magnetic flux. For example, when a spinon z carrying
spin up,

z � ½ 1 0 �T;
goes around a flux Cx, it is transformed to

z0 ¼ �xz ¼ ½ 0 1 �T;
i.e., a spinon carrying down spin. This may seem counter-
intuitive as it seemingly violates global spin conservation.
Since the ground state is a spin singlet, one needs to be
careful while discussing individual spinons. An instructive
thought experiment which resolves this paradox is the
following. Consider putting our system on a torus with a
�x vortex threading through one of the holes of the torus.
Next, an up-spinon, down-spinon pair is created out of the
vacuum and the up spinon is transported around the vortex
keeping the location of the down spinon fixed. Finally, the
up spinon is brought back to its original location. The
interesting question is whether the spinon pair remain in
the spin-singlet sector (and hence can be annihilated) at the
end of this process.
To answer this, we note that the gauge invariant wave

function for the pair is given by jc i ¼ zyr"qrr1qr1r2 . . .
qrjr0z

y
r0#j0i, where r and r0 are the locations of the up and

down spinon, respectively, and qrnrnþ1
’s are the values of

the gauge fields on the links connecting the two spinons.
For concreteness, let us assume that a Cx vortex threads
along the x axis and is parameterized by the gauge choice
qrr0 ¼ i�x for r ¼ ð0; rx̂Þ, r0 ¼ rþ ŷ 8 r, while qrr0 ¼ 1
otherwise. As the up spinon passes through the x axis, the
field operator z" transforms to z# while the string operator

S ¼ qrr1qr1r2 . . .qrjr0 connecting the two spinons trans-

forms as S ! �xS ¼ �x, since in the ground state the
only contribution to S comes from the vortex gauge field.
This implies that, at the end of the adiabatic transforma-
tion, the up spinon becomes a down spinon and vice versa
since the operator S acts on the down spinon and trans-
forms it to an up spinon. Hence the spinon pair behave like
an EPR spin singlet [12], and the spin is delocalized while
they are separated.
Having described various possible phases of the action

S, it is worthwhile to compare our approach to standard
methods for obtaining spin-liquid states. Our current
understanding of gapped spin liquids that do not have
edge states and preserve time-reversal invariance along
with lattice symmetries (‘‘symmetric spin liquids’’) draws
heavily on the projective construction [1,13]. In this ap-
proach, the bosonic spin liquids are described by represent-
ing the spin-S operator in terms of a two-component boson
b ¼ ½b1b2�T as S ¼ 1

2b
y�b. The Hilbert space of the

boson b is projected to the physical subspace of a spin
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by the relation byb ¼ 2S. All physical operators are in-

variant under the Uð1Þ local transformation bðrÞ !
ei�ðrÞðrÞ. The physical symmetries of the underlying spin
Hamiltonian are realized as transformation of spinons b
under these symmetries combined with a local gauge trans-
formation. The only symmetric gapped spin-liquid states
that are stable beyond the slave-particle mean-field theory
consist of spinons coupled to a discrete Abelian gauge
groups. One may consider other formulations such as
representing S in terms of slave ‘‘triplons’’ (i.e. ,three
species of bosons or fermions), though the conclusion
remains unchanged [1,4,13–15]. Therefore, the non-
Abelian quaternion spin liquid proposed in our Letter
cannot be described by the standard slave-particle
construction.

There is a more direct way to obtain the result that the
standard projective construction fails to describe the qua-
ternion spin liquid. We find that the spin operator cannot be
written as an operator quadratic in spinons z for the follow-
ing reason. The nematic order parameter Q�� is quartic in

z’s, and, since it transforms as a spin-two operator, one
needs to take its tensor product with itself to construct a
gauge invariant physical spin operator S. Explicitly, S is
given by Sa ¼ �i	abcQbdQdc, where the repeated indices
are summed over. Therefore S would be of degree eight in
z’s, which is very different than the usual slave boson
theories.

The phase transition between the three-sublattice ne-
matic phase and the non-Abelian spin liquid has also
many interesting features. This phase transition corre-
sponds to Higgs transition for the spinons z and, as we
argue, is not describable within the Landau-Ginzburg-
Wilson paradigm. Let us start by analyzing the symmetries
of the critical action. The symmetry under physical spin
rotation corresponds to the left multiplication of the matrix
U [defined in Eq. (4)] by an SUð2Þmatrix. Remarkably, the
action is invariant even under the right multiplication of U
by an SUð2Þ matrix, and thus the critical theory has in fact
Oð4Þ � SUð2Þ 	 SUð2Þ symmetry. This is because, under
the unit translation Tâ on the triangular lattice, the na

transform as

Tâ: n1 ! n2; n2 ! n3; n3 ! n1: (6)

One finds that the operation of right multiplication of U
by an SUð2Þ matrix corresponds to the rotation of na’s
among each other. The generators of these rotations Ka

(a ¼ 1; 2; 3) satisfy

½na; Kb� ¼ i	abcnc: (7)

Since the critical action must have both spin rotation and
translational invariance, it would be invariant under the
transformation U ! VRUVL, where VR; VL 2 SUð2Þ.
Hence the critical theory is

S ¼ 1

g

Z
d2xTr½ð@�UyÞð@�UÞ� ¼ 1

g

Z
d2xd
j@�z�j2

(8)

with zyz ¼ 1. We emphasize that the critical theory can be
written in terms of spinons z only because the topological
defects are suppressed, which renders them single-valued.
We note that the critical theory is very similar to that for the
phase transition between a spiral antiferromagnet and a Z2

spin liquid in a spin S ¼ 1=2 triangular lattice magnet [16].
The fact that the nematic order parameter Q�� is of

fourth degree in z has dramatic consequences for the
critical correlations. For example, the critical exponent ��
defined by

hQ��ðk;!ÞQ��ðk;!Þi � 1

ð!2 � k2Þ1� ��=2
(9)

would have a large value which equals � ¼ 3 in a large N
limit if one generalizes the Oð4Þ model to an OðNÞ model.
For finite N, one would obtain �> 3, whose precise nu-
merical value we do not calculate here. This is very large
compared to the anomalous exponents corresponding to
the order parameter in the usual Landau-Ginzburg-Wilson
theories.
Apart from the order parameter, the six conserved cur-

rents associated with the Oð4Þ symmetry would also have
power-law correlations at the critical point. Three of these,
the conserved total spin Stot ¼

P
rSðrÞ, are conserved mi-

croscopically, while the other three are the Ka’s defined
above, which are conserved only in the low-energy effec-
tive theory.
The conserved currents acquire no anomalous dimen-

sions and hence have scaling dimension d ¼ 2. Therefore
their correlations at the critical point are given by

hJaðr; 
ÞJað0; 0Þi � 1

ðr2 þ 
2Þ2 ; (10)

where J � fS;Kg. Comparing Eq. (9) with Eq. (10), one
notices that the conserved currents have a slower decay
than that for the order parameter, which is rather unusual.
One may ask, what interactions might one add in the

Hamiltonian H so as to destroy the nematic state? In the
absence of any concrete Hamiltonian, we speculate that the
following setting may realize stacked copies of the non-
Abelian spin liquid described in this Letter. Consider a
stacked triangular lattice spin S ¼ 1 system and add an
antiferromagnet interlayer interaction J?. When J? 

Jk; Kk; the intralayer couplings, one would obtain a trans-

lationally invariant paramagnet state corresponding to de-
coupled spin S ¼ 1 chains. On the other hand, when
J? � Jk; Kk, one obtains an ordered three-sublattice ne-

matic state. Thus one can quantum disorder the nematic
state by tuning J?=Jk and J?=Kk, and it is possible that a

stacked version of our non-Abelian spin liquid may be
realized in the intermediate regime.
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In summary, we have described a non-Abelian spin
liquid in a spin S ¼ 1 quantum magnet on a triangular
lattice which cannot be accessed within the standard slave
boson or fermion projective construction. The non-Abelian
phase has interesting topological features captured by the
ground state degeneracy on a torus and braiding and fusion
of its excitations. We also described a non-Landau phase
transition between this spin liquid and a noncollinear ne-
matic state. The nematic correlations near this phase tran-
sition are characterized by a large anomalous dimension.
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