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We study different quantum phases in integer spin systems with on-site D2h = D2 ⊗ Z2 and translation
symmetry. We find four distinct nontrivial phases in S = 1 spin chains despite the fact that they all have the same
symmetry. All four phases have gapped bulk excitations, doubly degenerate end states, and the doubly degenerate
entanglement spectrum. These nontrivial phases are examples of symmetry-protected topological (SPT) phases
introduced by Gu and Wen [Phys. Rev. B 80, 155131 (2009)]. One of the SPT phases corresponds to the Haldane
phase and the other three are new. These four SPT phases can be distinguished experimentally by their different
responses of the end states to weak external magnetic fields. According to the Chen–Gu–Wen classification, the
D2h symmetric spin chain can have a total of 64 SPT phases that do not break the symmetry. Here we constructed
seven nontrivial phases from the seven classes of nontrivial projective representations of the D2h group. Four of
these are found in S = 1 spin chains and studied in this paper.

DOI: 10.1103/PhysRevB.84.075135 PACS number(s): 75.10.Pq, 64.70.Tg

I. INTRODUCTION

Topological order was introduced to distinguish different
phases which cannot be separated by symmetry-breaking
orders.1 Using a definition of phase and phase transi-
tion based on local unitary transformations, Ref. 2 shows
that what topological order really describes is actually the
pattern of long-range entanglements in gapped quantum
systems.

For a long time, the Haldane phase3 for S = 1 spin
chains was regarded as a simple example of topological
order. The existence of string order (or hidden Z2 ⊗ Z2

symmetry breaking), nearly degenerate end states, and gapped
excitations were considered the hallmarks of the Haldane
phase.4 However, it was shown that even after we break the
spin-rotation symmetry which destroys the string order and
gaps the end states, the Haldane phase can still exist (i.e., it is
still distinct from the trivial phase). Furthermore, it was shown
that the Haldane phase has no long-range entanglements.5,6

In fact, all one-dimensional (1D) gapped ground states have
no long-range entanglements.7 Thus there are no intrin-
sic topologically ordered states in gapped 1D systems.6

This raises a question: What is the order in the Haldane
phase?

It turns out that when Hamiltonians have some symmetries,
even short-range entangled states with the same symmetry
can belong to different phases.2,5 Such phases are called
“symmetry-protected topological (SPT) phases“ by Gu and
Wen.5 In fact, the Haldane phase is not an intrinsically
topologically ordered phase, but actually an example of
SPT phase protected by translation and SO(3) spin-rotation
symmetries. This result is supported by a recent realization
that the existence of the Haldane phase requires symmetry
(such as parity, time-reversal, or spin-rotational symmetry).5,8

In other words, if the necessary symmetries are absent, the
Haldane phase can continuously connect to the trivial phase
without any phase transition. We would like to mention that the
topological insulators10–15 are not intrinsically topologically
ordered phases either. They are other examples of SPT phases
protected by time-reversal symmetry.

In this paper, we will study new SPT phases of a
spin chain protected by translational symmetry and on-site
D2h = D2 ⊗ Z2 symmetry, where D2 is a point group com-
posed of discrete spin rotations and Z2 is generated by the
time-reversal operation T . Here we assume that the physical
spin forms a linear representation of D2 and T 2 = 1. To see
an example of the new SPT phases, we study a simple spin-1
model with those symmetries:

H =
∑

i

[cos θSx,iSx,i+1 + sin θ [cos φ(Sy,iSy,i+1

+ Sz,iSz,i+1) + sin φ(Sxz,iSxz,i+1 + Sxy,iSxy,i+1)]], (1)

where Smn = SmSn + SnSm (m,n = x,y,z). As shown in
Fig. 1, this model has three phases, the Néel phase, the
T0 phase, and the Tx phase. The Néel phase breaks the
D2h symmetry, and the other two phases do not break any
symmetry. We can use sublattice spin magnetization as an
order parameter to distinguish the Néel phase. However,
the remaining two phases cannot be distinguished through
local order parameters such as sublattice spin magnetization.
Further, in both phases, the entanglement spectrum9 is doubly
degenerate, so both of them are nontrivial. However, the
entanglement spectrum is not a good order parameter to
separate them. Therefore, we need a new tool to distinguish
these two nontrivial phases that cannot be described by
symmetry breaking and the entanglement spectrum. It turns
out that the new tool is the projective representation of
the symmetry group. The two phases can be distinguished since
their doubly degenerate end states form different projective
representations of D2h. This has a physical consequence: The
doubly degenerate end states respond differently to a weak
external magnetic field.

To be more precise, the doubly degenerate end states can
be viewed as an effective spin-1/2 spin with asymmetric g

factors: gx , gy , and gz describing the coupling of the end spin
to an external magnetic field in the x, y, and z directions. We
find that gx,gy,gz �= 0 in the T0 phase and gx �= 0,gy = gz = 0
in the Tx phase. We would like to stress that such a property
is robust against any perturbations that do not break the D2h
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FIG. 1. (Color online) The phase diagram of model (1). The
transition between the Néel phase and the SPT phases are second
order, and the transition between T0 and Tx is first order.

symmetry (the perturbation may even break the translation
symmetry).

The D2h symmetric 1D spin system has very rich quantum
phases. It is shown that it can have 64 different gapped phases
that do not break the D2h and the translation symmetry.16

In fact, it is the projective representation theory that al-
lows one to find all the nontrivial SPT phases beyond the
symmetry-breaking description. In this paper, we will not
study all of them. We will use only eight classes of projective
representations of the D2h group to construct eight gapped
no-symmetry-breaking phases; one is trivial and the other
seven are nontrivial SPT phases. We find that four of the seven
SPT phases (labeled as T0,Tx,Ty , and Tz) can be realized in an
S = 1 spin chain. Here T0 is the usual Haldane phase (because
it includes the Heisenberg point), and Tx,Ty,Tz are the new
SPT phases. The states in different SPT phases cannot be
smoothly connected to each other without explicitly breaking
the D2h symmetry in the Hamiltonian. The remaining three
SPT phases cannot be realized for S = 1 chains; we will not
focus on them in the present paper.

The four SPT phases are experimentally distinguishable
due to the different behaviors of their end states. In the T0

phase, the end states can be considered as spin-1/2 free spins.
So the weak magnetic field couples to the end spins and lifts
the ground-state degeneracy at linear order. However, in the
Tx phase, the end states can no longer be considered as normal
spin-1/2 spins because they behave differently under time
reversal. As mentioned above, their g factors gy,gz = 0, which
means that By and Bz cannot split the degenerate ground states
in the Tx phase at linear order. Similarly, the end states of Ty (or
Tz) respond to only By (or Bz). According to these properties,
we propose an experimental scenario to distinguish these four
phases.

This paper is organized as follows. In Sec. II, we introduce
the four SPT phases for the S = 1 spin-chain models. In
Sec. III, we focus on the interaction of the end states to
weak external magnetic fields and propose an experimental
method to distinguish different SPT phases. In Sec. IV we
briefly summarize the relationship between the SPT phases
and the classes of projective representations, and leave detailed
derivations to the Appendices. Section V is devoted to
conclusions and discussions.

II. THE MODEL AND SPT PHASES

The D2h group has eight group elements, D2h =
{E,Rx,Ry,Rz,T ,RxT ,RyT ,RzT }, which is a direct product
of the 180◦ spin-rotation group D2 = {E,Rx = e−iπSx ,Ry =
e−iπSy ,Rz = e−iπSz} and time-reversal symmetry group Z2 =
{E,T }. Note that T inverts the spin (Sx,Sy,Sz) → (−Sx, −
Sy, − Sz) and is anti-unitary. D2h has eight 1D linear repre-
sentations (as shown in Table VI in Appendix B). Since T is
anti-unitary, the bases |φ〉 and i|φ〉 have different time-reversal
parities. This subtle property yields more than one SPT phase.

The most general Hamiltonian for an S = 1 spin chain with
D2h symmetry and with only a nearest-neighbor interaction is
given by

HD2h
=

∑
i

[
a1S

2
x,iS

2
x,j + a2

(
S2

x,iS
2
y,j + S2

y,iS
2
x,j

)
+ a3S

2
y,iS

2
y,j + a4

(
S2

x,iS
2
z,j + S2

z,iS
2
x,j

)
+ a5S

2
z,iS

2
z,j + a6

(
S2

y,iS
2
z,j + S2

z,iS
2
y,j

)
+ b1Sx,iSx,j + b2Syz,iSyz,j + c1Sy,iSy,j

+ c2Sxz,iSxz,j + d1Sz,iSz,j + d2Sxy,iSxy,j

+ e1S
2
x,i + e2S

2
y,i + e3S

2
z,i

]
, (2)

where j = i + 1, Smn = SmSn + SnSm (m,n = x,y,z), and
a1,a2, . . . ,e1,e2,e3 are constants. We are interested in the
parameter regions within which the excitations are gapped
and the ground states respect the D2h symmetry.

In general, for 1D systems with translation symmetry and
on-site symmetry group G, a gapped ground state that does not
break any symmetry can be approximately written as a matrix
product state (MPS)

|ψ〉 =
∑

{m1,...,mN }
Tr(Am1 ...AmN )|m1...mN 〉, (3)

which varies in the following way under the symmetry group∑
m′

u(g)mm′Am′ = α(g)M(g)†AmM(g), (4)

where g ∈ G is a group element and α(g)(M(g)) is its linear
(projective) representation matrix. Thus it is concluded that the
SPT phases are classified by (ω,α), where ω is the element of
the second cohomology group H 2(G,U (1)) (which describes
different classes of projective representations of the symmetry
group G).6

So in our case, the ground state can be generally written in
the forms of the MPS shown in Eq. (3). The requirement of
|ψ〉 being invariant under D2h is equivalent to the condition in
Eq. (4). The main task of this paper is to try to find different
kinds of states that satisfy this condition. In this paper, we
consider only the case α(g) = 1. The full classification (with
a different approach from this paper) is given in Ref. 16.

Let us first consider the on-site terms in Eq. (2). When |e1|,
|e2|, or |e3| is large, the ground state of HD2h

is simple. For
instance, when e3 → −∞, the ground state is a long-range
ordered state which breaks the D2h symmetry; when e3 → ∞,
the ground state is a product state |ψ〉 = ∏

i ⊗|0〉i , which is
trivial.17 Since we are interested in the nontrivial SPT phases,
we will set e1 = e2 = e3 = 0 in the following discussion.
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A. Exactly solvable models

The Affleck–Kennedy–Lieb–Tasaki (AKLT) model18 is an
exactly solvable model with SO(3) symmetry that falls in the
Haldane phase. The AKLT model contains all the physical
properties of the Haldane phase, and all other states in this
phase can smoothly deform into the AKLT state. Since the
ground-state wave function of this exactly solvable model
is a simple matrix product (sMP) state19 and is known in
advance, studying this model is relatively easy and helps us to
understand the physics of the Haldane phase.

In this section, we will introduce four classes of exactly
solvable models that have D2h symmetry. Analogous to the of
AKLT state, the ground states of these exactly solvable models
are nontrivial sMP states satisfying Eq. (4). We will show that
different classes of sMP states cannot be smoothly connected,
which indicates that each class corresponds to a phase.

The first example is a direct generalization of the AKLT
model. The ground state of the AKLT state is represented
by Ax = σx, Ay = σy, Az = σz, which has SO(3) symmetry.
When generalized to D2h symmetry, we obtain

Ax = aσx, Ay = bσy, Az = cσz, (5)

where a,b,c are nonzero real numbers (the same below). When
a = b = c = 1, the above state reduces to the AKLT state.
For this reason, we say that this model also belongs to the
Haldane phase. We label this phase as T0. Similar to the AKLT
model, the parent Hamiltonian of the above state is composed
of projectors (for details see Appendices A and B):

H0 =
∑

i

[(
1

4
+ b2c2γ

)
Sx,iSx,j +

(
1

4
+ a2c2γ

)
Sy,iSy,j

+
(

1

4
+ a2b2γ

)
Sz,iSz,j +

(
1

4
− b2c2γ

)
Syz,iSyz,j

+
(

1

4
− a2c2γ

)
Sxz,iSxz,j +

(
1

4
− a2b2γ

)
Sxy,iSxy,j

]
+h0, (6)

where γ = 1
2(a4+b4+c4) and

h0 = −
∑

i

[
c4γ

(
S2

x,iS
2
y,j + S2

y,iS
2
x,j

) + b4γ
(
S2

x,iS
2
z,j

+ S2
z,iS

2
x,j

) + a4γ
(
S2

y,iS
2
z,j + S2

z,iS
2
y,j

)]
.

At open boundary conditions, Hamiltonian (6) has exactly
fourfold degenerate ground states independent of the chain
length. The uniqueness of the ground state can be proved
following the AKLT model.18 The above exactly solvable
model is frustration free, that is, the expectation value of
the Hamiltonian is minimized locally in the ground states.
The excitations are gapped and all correlation functions of
local operators are short ranged. Furthermore, if a,b,c are
normalized, a2 + b2 + c2 = 1, then it is easily checked that∑

m

Am(Am)† = I,
∑
m

(Am)†
2Am = 
2;

here 
 = I , indicating that the entanglement spectrum of the
ground states is doubly degenerate. This informs us that the
state of Eq. (5) is nontrivial. Actually, the models in the vicinity
of Eq. (6) (the phase T0) have very similar properties unless

gap closing (second-order phase transition) or level crossing
(first-order phase transition) happens.

Now we consider another example of the sMP state,

Ax = iaσx, Ay = bσy, Az = cσz. (7)

Above the sMP state is also invariant under D2h group. As
will be shown later, it cannot be continuously connected to
Eq. (5) without breaking the D2h symmetry. This means that
it belongs to another phase which we label as Tx phase. The
parent Hamiltonian of Eq. (7) is given by

Hx =
∑

i

[(
1

4
+ b2c2γ

)
Sx,iSx,j +

(
1

4
− a2c2γ

)
Sy,iSy,j

+
(

1

4
− a2b2γ

)
Sz,iSz,j +

(
1

4
− b2c2γ

)
Syz,iSyz,j

+
(

1

4
+ a2c2γ

)
Sxz,iSxz,j +

(
1

4
+ a2b2γ

)
Sxy,iSxy,j

]
+h0. (8)

Similarly, the third example

Ax = aσx, Ay = ibσy, Az = cσz, (9)

belongs to the Ty phase and its parent Hamiltonian is

Hy =
∑

i

[(
1

4
− b2c2γ

)
Sx,iSx,j +

(
1

4
+ a2c2γ

)
Sy,iSy,j

+
(

1

4
− a2b2γ

)
Sz,iSz,j + (

1

4
+ b2c2γ )Syz,iSyz,j

+
(

1

4
− a2c2γ

)
Sxz,iSxz,j +

(
1

4
+ a2b2γ

)
Sxy,iSxy,j

]
+h0. (10)

The last example

Ax = aσx, Ay = bσy, Az = icσz, (11)

belongs to the Tz phase with its parent Hamiltonian given by

Hz =
∑

i

[(
1

4
− b2c2γ

)
Sx,iSx,j +

(
1

4
− a2c2γ

)
Sy,iSy,j

+
(

1

4
+ a2b2γ

)
Sz,iSz,j +

(
1

4
+ b2c2γ

)
Syz,iSyz,j

+
(

1

4
+ a2c2γ

)
Sxz,iSxz,j +

(
1

4
− a2b2γ

)
Sxy,iSxy,j

]
+h0. (12)

Above we have given four special models that belong to
different SPT phases. In the next subsection, we will show that
if one keeps the D2h symmetry, phase transitions must happen
when connecting these models.

B. Transitions between different SPT phases

To justify the four SPT phases, we will use a numerical
method to study more general Hamiltonians. The method
we adopt is one version of the tensor renormalization group
(RG) approach developed in one dimension by Vidal20 and
later generalized to two dimensions by Jiang et al.21 In this
method, the ground state is approximated by a MPS. For
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FIG. 2. (Color online) (a) The energy curve E(η), (b) the first and
second derivatives of E(η). All these curves are smooth, indicating
that these states are in the same phase.

an arbitrarily initialized state, we can act the (infinitesimal)
imaginary time-evolution operator U (δτ ) = e−Hδτ for infinite
times, finally obtaining the fixed-point matrix Am. If the
dimension D of Am is not too small, the corresponding MPS
is very close to the true ground state. In one dimension, the
ground-state energy, correlation functions, density matrix, and
entanglement spectrum can be calculated directly from the
matrix Am.

We have checked our tensor RG method by the simple
transverse Ising model H = ∑

i σ
z
i σ z

i+1 + Bσx
i . From the

analytic result, the transition point is at B = 1. Our numerical
result shows a high accuracy for this transition point, with an
error of less than 1% when we set D = 16. So we can use the
tensor RG method to distinguish different SPT phases given
in last section.

Notice that h0 is a common term in the four exactly solvable
models, which indicates that it is unimportant and can be
dropped. This can be numerically verified. For this purpose,
we add a perturbation to the models, such as in Eq. (8),

H (η) = Hx − ηh0, (13)

where η ∈ [0,1]. As shown in Fig. 2, the ground-state energy
E(η) and its derivatives E′(η),E′′(η) are all smooth functions,
indicating that all the Hamiltonians H (η) belong to the same
phase. Using the same method, one can also check that the
Hamiltonians (with D2h symmetry) in the vicinity of an exactly
solvable model fall in the same phase. For instance, the
Heisenberg model and H0 in Eq. (6) are in the same phase.

Now the question is whether the ground states of different
exactly solvable models can be smoothly transformed into each
other. To this end, we consider a more realistic model of Eq. (1)
which connects two exactly solvable models, such as H0 and
Hx . We are interested in the antiferromagnetic cases and will
focus on the parameter region θ,φ ∈ [0, π

2 ]. The point (π
4 ,0) is

the Heisenberg model. From the result of the last paragraph,
the Heisenberg model is in the same phase as Eq. (6), and
similarly (π

4 , π
2 ) is in the same phase as Eq. (8). If these two

points cannot be smoothly connected (i.e., if gap closing or
level crossing will unavoidably happen), then Eqs. (6) and (8)
belong to different phases.

Using the tensor RG method, we can calculate the ground-
state energy of Eq. (1) and the phase diagram is shown in
Fig. 1. When θ is less then 0.21π , the ground state is Néel
ordered. When θ increases, a second-order phase transition
occurs and we enter the SPT phases. Figure 3 shows the
entanglement spectrum, the energy curve, and its first and

second derivatives at φ = π
8 (or φ = 3π

8 ), which illustrate this
transition. Near the transition point, the trial energy decreases
with increasing D, which indicates that the ground state at
the transition point is described by a MPS with diverging
dimension D. Consequently, the ground-state entanglement
entropy diverges, which is a feature of second-order phase
transition.

The region φ ∈ [0, π
4 ) belongs to the T0 phase and φ ∈

(π
4 , π

2 ] belongs to the Tx phase. A first-order phase transition
between them happens at φ = π

4 .
The first-order phase transition occurs exactly at φ = π

4 .
This is because the whole phase diagram is symmetric above
and below the line φ = π

4 . This symmetry can be seen in the
Hamiltonian. Notice that, under a unitary matrix U , we get

U †SxU = Sx, U †SyU = −Sxz, U †SzU = Sxy, (14)

where U =
⎛
⎜⎜⎝

1
√

2e
i π

4
0 1√

2
e
−i π

4

0 1 0
1√
2
e
−i π

4 0 1√
2
e
i π

4

⎞
⎟⎟⎠.22 This means that Hamilto-

nian (1) satisfies (
∏

i ⊗Ui)†H (θ,φ)(
∏

i ⊗Ui) = H (θ,π
2 − φ),

which yields E(θ,φ) = E(θ,π
2 − φ), and their ground states

are transformed by the (local) unitary transformation
∏

i ⊗Ui .
But this unitary transformation is not invariant under time
reversal T , so the behavior of the ground state also changes
under time reversal. As a result, the state after the transforma-
tion belongs to a different phase.

The entanglement spectrum of the ground states can also
be obtained programmatically. We find that in both T0 and Tx

phases the entanglement spectrum is doubly degenerate [see
Fig. 3(a)]. This shows that the T0 and Tx phases are indeed
nontrivial. Similar to model (1), the phase transition between
T0 and Ty or between T0 and Tz can also be illustrated.

Now we will show that first-order phase transition also
exists between any two of Tx,Ty,Tz. As an example, we
consider the model that contains the transition between Tx

and Tz phases:

H =
∑

i

[
1

6
Sy,iSy,j + 5

6
Sxz,iSxz,j + cos θ (Sx,iSx,j

+ Sxy,iSxy,j ) + sin θ (Sz,iSz,j + Syz,iSyz,j )

]
.

(15)

When θ = tan−1 1
5 , the above Hamiltonian is in the same phase

as Hx as shown in Eq. (13), and when θ = tan−1 5, it is in the
same phase as Hz. The ground-state energy of Eq. (15) as a
function of θ can be obtained using the tensor RG method, and
the result is shown in Fig. 4. A first-order transition at θ = π

4
manifests itself. For the reason similar to that of Eq. (14), the
model also has a symmetry E(θ ) = E(π

2 − θ ).
From the above analysis, we can conclude that the four

exactly solvable models really stand for four distinct SPT
phases. All these SPT phases are protected by the D2h

symmetry. As will be shown in Sec. IV, no more SPT
phases exist for S = 1 spin chain models with D2h symmetry.
Furthermore, Eqs. (1) and (15) show that these SPT phases can
be obtained by much simpler Hamiltonians, which is hopefully
realized experimentally.
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FIG. 3. (Color online) (a) The first-order derivative (line with
circles) and the second-order derivative (line with crosses) of E(θ ) at
φ = π

8 (or φ = 3π

8 ). We have set D = 16. The dotted line is the
difference between the two biggest weights of the entanglement
spectrum 
1 − 
2. Since E′(θ ) is continuous but E′′(θ ) is not, the
transition is second order. The degeneracy of 
1 and 
2 indicates
that the T0 (and Tx) phase is nontrivial. (b) The refined energy curve
E(θ ) near the transition point with D = 8,16,24. The trial energy
decreases with increasing D, which is evidence of the factor that at
the transition point the ground state is a MPS with infinite D. (c) The
entanglement spectrum with different D. The black circles are for
D = 8, blue triangles for D = 16, and red crosses for D = 24. At
the transition point, the entanglement entropy increases with D and
diverges when D goes to infinity.

Now an interesting question arises: How do we distinguish
these SPT phases in a practical way? It is impossible to
distinguish these phases by linear response in the bulk since it is
gapped. However, the end “spins” localized at open boundaries
may have different behaviors in different SPT phases. In the

0 0.1 0.2 0.3 0.4 0.5
−1.35

−1.25

−1.15

−1.05

θ/π

E
ne

rg
y

FIG. 4. (Color online) The ground-state energy for the model
described by Eq. (15). A first-order phase transition is obvious.

next section, we will propose an experimental method to detect
each SPT phase.

III. DISTINGUISHING DIFFERENT SPT PHASES

We expect to distinguish the four SPT phases through their
different physical properties. Experimentally, all measurable
physical quantities are response functions, or susceptibilities.
So we need to add small perturbations and expect that (the
“end spins” of) different phases have different responses. The
simplest perturbation for a spin system is magnetic field H ′ =
gLμBB · S̃; here S̃ = ∑

i Si , gL is the Landé factor, and μB

is the Bohr magneton. We will study the linear response to
small B.

Since the states in the same phase have the same universal
properties, we will focus on the exactly solvable models first.
For simplicity, we consider the AKLT model, namely, H0 with
a = b = c = 1. In the MPS picture, the physical S = 1 spin
is divided into two J = 1/2 virtual spins. In the AKLT state,
the virtual spins pair into singlets (called valence bonds) on
each link between neighboring sites. Under open boundary
conditions, a free J = 1/2 spin at each end remains unpaired.
The two end spins account for the exact fourfold degeneracy
of the ground states. In this picture, it is easy to calculate the
total spin in the ground-state Hilbert space. The singlets in the
bulk have no contributions to S̃; only the two end spins j1 and
j2 contribute and, as aresult S̃ = j1 + j2. In this sense, the end
spins can be considered as impurity spins of a paramagnetic
material. Since the total spin of an open chain is 1

2 ⊗ 1
2 =

0 ⊕ 1, we expect that the eigenvalue of S̃x,S̃y,S̃z should be
1, −1,0,0. This can be verified by the exact diagonalizing of
a short chain. We denote these four degenerate ground states
as |ψ1〉,|ψ2〉,|ψ3〉,|ψ4〉. Then the matrix element of S̃m in the
ground-state Hilbert space is given by

S̃αβ
m = 〈ψα|S̃m|ψβ〉, α,β = 1,2,3,4. (16)

The eigenvalues of the matrices (S̃αβ) are exactly 1,

− 1,0,0, and these values are independent of the length of
the chain. Thus a small magnetic field along any direction
H ′ = gLμBBxSx or gLμBBySy or gLμBBzSz will split the
ground-state degeneracy and give rise to a finite magnetization.

075135-5



ZHENG-XIN LIU, MIN LIU, AND XIAO-GANG WEN PHYSICAL REVIEW B 84, 075135 (2011)

2 3 4 5 6 7
0

0.5

1

1.5

Length of the chain (L)

s(
L

)

FIG. 5. (Color online) The eigenvalues of S̃y and S̃z are s,

− s,0,0. The magnitude of s exponentially decays with the length
of the chain in the Tx phase. The dashed line is an exponential fit. The
results are obtained by exact diagonalization and we calculate only
up to seven sites.

At finite temperature, the susceptibility satisfies the Curie
law and is given by23

χ (T )  Ng2μ2
B

3kBT
, (17)

where N is the number of end spins, g = √
J (J + 1)gL, J =

1/2, and gL is the Landé g factor. If the spin-1 chains in the
sample are broken into long separate segments, then N can
be a considerable number. We also note that, in real samples,
the susceptibility also contains a temperature-independent part
coming from the bulk.

We see that, for the AKLT model, the spin susceptibility
diverges at low temperature along all directions. For a general
model in the T0 phase, the divergence of χx(T ),χy(T ),χz(T )
still holds, except that it is no longer isotropic.

However, in phase Tx , the end “spins” have absolutely
different physical properties. We consider the model Hx

in Eq. (8), and set a = b = c = 1. Then we calculate the
eigenvalues of operators S̃x,S̃y and S̃z in the ground-state
Hilbert space as before. We find that the eigenvalues of (S̃αβ )x
are still 1,−1,0,0, meaning that along the x direction the
spin-1/2 end spins still exist and χx(T ) diverges at T = 0.
The eigenvalues of (S̃αβ )y and (S̃αβ )z also have the structure
s, −s,0,0, but the magnitudes of the nonzero eigenvalues s

exponentially decay to zero with the increasing of the length
of the chain (see Fig. 5). This means that in the y and z

directions, there are no free spins coupled to the magnetic field.
In Appendix D we will show that this property is determined by
the projective representation carried by the virtual spins. In this
case, χy(T ) and χz(T ) are given by Eq. (17) with gy,gz ≈ 0.
The results that χx(T ) follows Curie law and χy(T ), χz(T ) has
effective gy,gz ≈ 0 are universal properties of all the models
in the Tx phase.

Similarly, one can check that only χy(T ) follows Curie law
in the Ty phase with the usual gy ≈ √

J (J + 1)gL (gx,gz ≈ 0),
and similarly only χz(T ) follows Curie law in the Tz phase
with the usual gz ≈ √

J (J + 1)gL (gx,gy ≈ 0). Therefore, by
measuring the temperature dependence of susceptibility and
the effective g in x,y,z directions, we are able to distinguish
the four SPT phases.

IV. PROJECTIVE REPRESENTATIONS AND SPT PHASES

In previous sections, we have given four SPT phases of
model (2) and studied their physical properties. In this section,
we will explain how the D2h symmetry supports the existence
of these phases. Then we will discuss other possible SPT
phases of spin systems with D2h symmetry.

The ground state of a gapped phase is written as Eq. (3). If
we require that the ground state MPS be invariant under the
symmetry group D2h, namely, g|ψ〉 = |ψ〉 (g ∈ D2h), then
under the action of the symmetry group the matrix Am must
vary in the following way.

(1) g is unitary, g ∈ {E,Rx,Ry,Rz},

∑
m′

u(g)mm′Am′ = M(g)†AmM(g); (18)

(2) g is anti-unitary, g ∈ {T ,RxT ,RyT ,RzT },

∑
m′

u(g)mm′KAm′ = M(g)†AmM(g). (19)

Here u(g) and M(g) are representations of the symmetry
group D2h. The matrices u(g) satisfy the same multiplication
law of the D2h group and are called linear representations.
The physical spin freedoms are linear representations of D2h.
M(g) and M(g)eiθ are equivalent and belong to the same
presentation. Up to a phase factor (which depends on the group
elements), M(g) satisfy the multiplication law of D2h, and this
kind of presentation is called a projective representation. The
virtual spins (and the end states) are projective representations
of D2h. More knowledge about projective representation can
be found in Refs. 6 and 24.

The D2h group has eight 1D linear representations (see
Table VI) and eight (and only eight) classes of projective rep-
resentations labeled by (111), (11-1),(1-11),(1-1-1),(-111),(-
11-1),(-1-11) and (-1-1-1) (see Table VII). The first class
of projective representation (111) is the eight 1D linear
representations, which are trivial (an example of the the
corresponding trivial phase is the case e3 → ∞). The other
seven projective representations are two-dimensional (2D) and
nontrivial. Since states supporting different projective repre-
sentations (or virtual spins) cannot be smoothly transformed
into each other, each projective representation corresponds to
a SPT phase. This means that there should be at least seven
different nontrivial SPT phases for spin systems respecting
D2h symmetry. [In fact, when considering different α(g) there
are more nontrivial SPT phases for spin systems respecting
D2h symmetry.16]

How can we obtain the projective representations? Math-
ematically, finding the projective representations of a group
G is equivalent to finding the linear representations of its
cover group, which is a central extension of G and is
called representation group R(G).24 The representation group
R(D2h) is available in literature,24 so we can calculate the
matrix elements of all the projective representations of D2h

(see Table VII).
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Once the matrices of the projective representations
are obtained, we can calculate the Clebsch-Gordan (CG)
coefficients for decomposing the direct product of two
projective representations. From the CG coefficients, we
can construct sMP states and their parent Hamiltonians.25

Models (6), (8), (10), and (12) are constructed ac-
cordingly and correspond to the (-1-1-1),(-1-11),(-11-1),
(-111) representations, respectively. From these models we
can know what kinds of interactions are essential for each SPT
phase.

As shown in Appendix B, the remaining three SPT phases
of (1-11),(11-1),(1-1-1) cannot be realized for S = 1 spin
chains. The reason is that the physical freedom is not
sufficient to support the direct product of two such projective
representations. However, these phases might be realized in
S = 1 spin ladders or S = 2 models, and this will be our
upcoming work.

V. CONCLUSION AND DISCUSSION

In summary, we have found four nontrivial SPT phases
T0,Tx,Ty,Tz of S = 1 spin chains which have on-site D2h

symmetry. These SPT phases have similar properties as
the usual Haldane phase, such as the bulk excitation gap,
short-range correlations, existence of end spins, and entangle-
ment spectrum degeneracy. However, the different projective
representations of the end spin under D2h indicate that
they do belong to different phases. The SPT order that
distinguishes them is the class of projective representations [or
the group elements of the second cohomology H 2(D2h,U (1))]
corresponding to the ground states (or the matrices Am).

We find that different SPT phases can be distinguished by
experimental method. The magnetic susceptibilities χx,χy,χz

obey Curie law and diverge at zero temperature. In the T0 phase
the effective g factors of the end spin have the usual values
for magnetic fields in the x, y, and z directions. But in the Tx

(or Ty or Tz) phase, the effective g ≈ √
J (J + 1)gL has the

usual value only for the magnetic field in the x direction (or y

direction or z direction). The effective g = 0 [see Eq. (17)] for
the magnetic field in the other two directions. We suggest other
numerical methods, such as the density matrix renormalization
group (DMRG), to verify the existence of these SPT phases
and their different responses to magnetic field.

The T0 phase (or the usual Haldane phase) can be realized
experimentally. The antiferromagnetic Heisenberg model,
which is the microscopic Hamiltonian of many quantum
magenets, belongs to the T0 phase. The T0 phase is robust
when the continuous spin-rotation symmetry is reduced to
D2h (by small anisotropic exchanging, single-ion anisotropy
term, easy-axis term, etc.). However, as shown in Sec. II, the
other three Tx,Ty,Tz phases require remarkable biquadratic
interactions. Currently, materials with such kind of interactions
seems not to be found. However, if the system has spin-orbital
interaction, it is possible that the ground state belongs to one
of these nontrivial phases.

From the seven nontrivial projective representations of the
D2h group, we constructed seven SPT phases. Four of them
are discussed above. The other three may be realized in S = 1
spin ladders or spin S = 2 models and are not discussed in
this paper. Some conclusion in this paper can be generalized
to larger spin systems and higher dimensions.

TABLE I. Multiplication table of D2

E Rx Ry Rz

E E Rx Ry Rz

Rx Rx E Rz Ry

Ry Ry Rz E Rx

Rz Rz Ry Rx E
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APPENDIX A: SPIN CHAIN WITH D2 SYMMETRY

In this Appendix, we will first study S = 1 spin systems
with D2 symmetry. The same method can be applied to the
D2h case.

1. General Hamiltonian with D2 point group symmetry

The point group D2 has only four elements, D2 =
{E,Rx,Ry,Rz}. The multiplication table is shown in Table I.

It has four 1D linear representations, whose matrix elements
and bases of representations are shown in Table II. From
quantum mechanics, we know that the 2S + 1 bases of integer
spin S span an irreducible linear representation space of SO(3)
group. This Hilbert space is reduced to a direct sum of 2S + 1
1D irreducible linear representation spaces of D2. For example,
when S = 1 (a vector), the bases

|x〉 = 1√
2

(| − 1〉 − |1〉),

|y〉 = 1√
2
i(| − 1〉 + |1〉),

|z〉 = |0〉
form the B3,B2,B1 representations of D2, respectively.

Here we focus on the S = 1 model with nearest-neighbor
interaction. The general Hamiltonian with D2 symmetry is
given by

HD2 = HD2h
+ f1(Sx,iSyz,j + Syz,iSx,j )

+ f2(Sy,iSxz,j + Sxz,iSy,j )

+ f3(Sz,iSxy,j + Sxy,iSz,j ), (A1)

where f1,f2,f3 are constants and HD2h
is given in Eq. (2). The

above Hamiltonian HD2 also has translational symmetry and
spatial inversion symmetry. The additional f1,f2,f3 terms are

TABLE II. Linear representations of D2

E Rx Ry Rz Bases or operators

A 1 1 1 1 |0,0〉 S2
x ,S

2
y ,S

2
z

B1 1 −1 −1 1 |1,z〉 Sz Sxy

B2 1 −1 1 −1 |1,y〉 Sy Sxz

B3 1 1 −1 −1 |1,x〉 Sx Syz
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TABLE III. Multiplication table of R1(D2). Notice that P 4 =
Q4 = E, P 2 = Q2 and QP = P 3Q.

E P 2 P 3 P Q P 2Q PQ P 3Q

E E P 2 P 3 P Q P 2Q PQ P 3Q

P 2 P 2 E P P 3 P 2Q Q P 3Q PQ

P 3 P 3 P P 2 E P 3Q PQ Q P 2Q

P P P 3 E P 2 PQ P 3Q P 2Q Q

Q Q P 2Q PQ P 3Q P 2 E P P 3

P 2Q P 2Q Q P 3Q PQ E P 2 P 3 P

PQ PQ P 3Q P 2Q Q P 3 P P 2 E

P 3Q P 3Q PQ Q P 2Q P P 3 E P 2

odd under time reversal and break the T symmetry of HD2 .
To study the SPT phases, we need to obtain the projective
representations of D2.

2. Projective representation and CG coefficients of D2

From Ref. 24, determining the projective representation
of a point group G is equivalent to determining the linear
representation of its representation group(s) R(G) (which
cover G integer times). There are two nonisomorphism
representation groups of D2, namely, R1(D2) and R2(D2),
both of which have two generators P , Q and eight group
elements. Their multiplication tables are listed in Tables III
and IV. In the following, we will mainly discuss the covering
group R1(D2), and leave the discussion about R2(D2) to the
end of this section.

To obtain all the irreducible representations, we only need
to block diagonalize the canonical representation matrices of
the two generators P and Q. In the canonical representation,
the group space itself is also the representation space. Each
group element g1 is considered as an operator ĝ1:

ĝ1(g2) = g1g2. (A2)

Here g2 and g1g2 are two vectors in the representation space
and ĝ1 becomes a matrix.

The canonical representation matrices of the generators of
R1 can be read from Table III:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To simultaneously block diagonalize the above matrices, we
need to identify the base vectors (or wave function) of each

TABLE IV. Multiplication table of R2(D2). Notice that P 4 =
Q2 = E and QP = P 3Q.

E P 2 P 3 P Q P 2Q PQ P 3Q

E E P 2 P 3 P Q P 2Q PQ P 3Q

P 2 P 2 E P P 3 P 2Q Q P 3Q PQ

P 3 P 3 P P 2 E P 3Q PQ Q P 2Q

P P P 3 E P 2 PQ P 3Q P 2Q Q

Q Q P 2Q PQ P 3Q E P 2 P 3 P

P 2Q P 2Q Q P 3Q PQ P 2 E P P 3

PQ PQ P 3Q P 2Q Q P P 3 E P 2

P 3Q P 3Q PQ Q P 2Q P 3 P P 2 E

irreducible representation (these base vectors form a unitary
matrix which block diagonalize P and Q simultaneously).
In quantum mechanics, we use good quantum numbers
(eigenvalues of commuting quantities) to label different states.
For example, |S,m〉 symbolize a spin state, where S(S + 1) is
the eigenvalue of the Casimir operator of the SO(3) group and
m is the eigenvalue of the Casimir operator of its subgroup
SO(2). A similar method has been applied to the representation
theory of groups.26 What we need to do is to find all the
commuting quantities, or the complete set of commuting
operators (CSCO).26

The Casimir operators of discrete groups are their class
operators. For R1(D2), there are five classes (hence there
are five different irreducible linear representations), and the
corresponding five class operators are given as:

C = {E, P 2, P + P 3, Q + P 2Q, PQ + P 3Q}.
The class operators commute with each other and all other
group elements. This set of class operators C is called CSCO-I
in Ref. 26. The eigenvalues of the class operators are greatly
degenerate, which can only be used to distinguish different
irreducible representations (IRs). To distinguish the bases in
each IR, we can use the class operators of its subgroup(s).
Group R1 has a cyclic subgroup

C(s) = {E,P,P 2,P 3};
each element forms a class. The set of class operators of
the subgroup is written as C(s). The operator set [C,C(s)]
is called CSCO-II, which can be used to distinguish all the
bases if every IR occurs only once in the reduced canonical
representation.

However, in the reduced canonical representation, a d-
dimensional representation occurs d times and it has the same
eigenvalues for CSCO-II. To lift this degeneracy, we need
more commuting operators. Fortunately, we can use the class
operators of the “intrinsic group” R̄1, whose group elements
are defined as

ˆ̄g1(g2) = g2g1. (A3)

Notice that ˆ̄g commutes, with ĝ as defined in Eq. (A2). The
class operators of R̄1 are identical to those of R1, C̄ = C. The
set of class operators for the intrinsic subgroup

C̄(s) = {Ē,P̄ ,P̄ 2,P̄ 3}
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is noted as C̄(s). The eigenvalues of C̄(s) provide a different
set of “quantum numbers” to each identical IR.

Now we obtain the complete set of class operators
(C,C(s),C̄(s)), which is called CSCO-III. The common
eigenvectors of the operators in CSCO-III are the orthonormal
bases of the irreducible representations, and each eigenvector
has a unique “quantum number”.

To obtain the bases, we need to simultaneously diagonalize
all the operators in CSCO-III and get their eigenvectors.
Actually, we need only a few of these operators; for example,
we can choose Q + P 2Q in C, P in C(s), and P̄ in
C̄(s). The matrices of these operators of R1(D2) are given
below:

Q + P 2Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1
1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P̄ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Practically, we can diagonalize a linear combination Ô =
(Q + P 2Q) + aP + bP̄ , where a,b are arbitrary constants
ensuring that all the eigenvalues of Ô are nondegenerate. From
the nondegenerate eigenvectors (column vectors) of Ô, we
obtain an unitary matrix U :

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
8

1√
8

1√
8

1√
8

1
2 0 0 1

2
1√
8

1√
8

1√
8

1√
8

− 1
2 0 0 − 1

2
1√
8

1√
8

− 1√
8

− 1√
8

− 1
2 i 0 0 1

2 i
1√
8

1√
8

− 1√
8

− 1√
8

1
2 i 0 0 − 1

2 i
1√
8

− 1√
8

1√
8

− 1√
8

0 − 1
2 i − 1

2 i 0
1√
8

− 1√
8

1√
8

− 1√
8

0 1
2 i 1

2 i 0
1√
8

− 1√
8

− 1√
8

1√
8

0 − 1
2

1
2 0

1√
8

− 1√
8

− 1√
8

1√
8

0 1
2 − 1

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A4)

The matrix U is the transformation that block diagonalizes P

and Q simultaneously:

U †PU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 −i 0 0 0

0 0 0 0 0 i 0 0

0 0 0 0 0 0 −i 0

0 0 0 0 0 0 0 i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A5)

U †QU =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 i 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 0 0 i

0 0 0 0 0 0 i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

There are four 1D IRs and one 2D IR (which occurs twice) in
the reduced canonical representation:

P2 =
(−i 0

0 i

)
= −iσz, Q2 =

(
0 i

i 0

)
= iσx. (A7)

So there is a total of five independent representations.
The eight elements in R1 can be projected onto D2, as shown

in Table V. And the linear representations of R1 correspond
to the projective representations of D2. The four 1D IRs
correspond to the linear IRs of D2, and the 2D IR stands for a
nontrivial projective IR of D2. Up to a phase factor, these 2D
matrices are the 180◦ rotation operators of a spin with J = 1/2
[which is a projective IR of the SO(3) group].

Now let’s look at the direct product of the projective IRs of
D2. For the 1D linear IRs, the direct products are still 1D IRs,
which satisfy the following law:

A × B1 = B1, A × B2 = B2, A × B3 = B3,

B1 × B2 = B3, B1 × B3 = B2, B2 × B3 = B1.

The direct product of 1D and 2D IRs are still 2D projective
IRs of D2. The direct product of two 2D projective IRs is
interesting. It reduces to four 1D linear IRs. Using the CSCO-
II, we can diagonalize the 4 × 4 matrices P2 ⊗ P2 and Q2 ⊗

TABLE V. Projection from R1(D2) to D2

R1(D2) E P Q PQ

P 2 P 3 P 2Q P 3Q

D2 E Rz Rx Ry

Rotation π of J = 1/2$up to a phase factor) I iσz iσx iσy
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Q2 with the following unitary matrix (the column vectors are
just the CG coefficients):

U4 =

⎛
⎜⎜⎜⎜⎝

− 1√
2

i√
2

0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

1√
2

i√
2

0 0

⎞
⎟⎟⎟⎟⎠ ,

U
†
4 (P2 ⊗ P2)U4 =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

U
†
4 (Q2 ⊗ Q2)U4 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

These CG coefficients of the projective IRs of D2 are analogous
to the decoupling of the direct product of two spins with J =
1/2, 1

2 ⊗ 1
2 = 1 ⊗ 0 except the three-dimensional(3D) IR of

spin 1 becomes a direct sum of three 1D IRs. If we label the
bases of the 2D projective representation of D2 as | ↑〉,| ↓〉,
then the CG coefficients are given as

|x〉 = 1√
2

(| ↓1↓2〉 − | ↑1↑2〉),

|y〉 = i√
2

(| ↓1↓2〉 + | ↑1↑2〉),

|z〉 = 1√
2

(| ↑1↓2〉 + | ↓1↑2〉),

|singlet〉 = 1√
2

(| ↑1↓2〉 − | ↓1↑2〉). (A8)

Repeating the above procedure, we obtain the IRs of
R2(D2). The four 1D IRs are the same as that of R1(D2),
while the 2D IR is given as:

P ′
2 =

(−i 0
0 i

)
= −iσz, Q′

2 =
(

0 1
1 0

)
= σx,

(A9)

The above representations and Eqs. (A7) differ only by a gauge
transformation P ′

2 = P2 and Q′
2 = iQ2, so they belong to the

same projective representation of D2. The CG coefficients for
the 2D IRs are obtained easily:

|x〉 = 1√
2

(| ↓1↓2〉 + | ↑1↑2〉),

|y〉 = i√
2

(| ↓1↓2〉 − | ↑1↑2〉),
(A10)

|z〉 = 1√
2

(| ↑1↓2〉 − | ↓1↑2〉),

|singlet〉 = 1√
2

(| ↑1↓2〉 + | ↓1↑2〉).

A. sMP state with D2 symmetry and its parent Hamiltonian

Before studying the model with D2 symmetry, let’s review
the S = 1 AKLT model18 [which has SO(3) symmetry] first.
The AKLT state is a sMP state given by Ax = σx,A

y =
σy,A

z = σz. The Am matrices are 2 × 2, meaning that the
physical spin S = 1 is viewed as a symmetric combination of
two J = 1/2 virtual spins [essentially projective representa-
tions of SO(3)]. Alternatively, we can write the state as

|φ〉 = Tr(W1W2...WN ), (A11)

where Wi = Ax |x〉i + Ay |y〉i + Az|z〉i . According to Ref. 25,
the matrices Am of a sMP state can be obtained by

Am = BT (Cm)∗, (A12)

where B is the CG coefficient combining two virtual spins
into a singlet |0,0〉 = Bm1m2 | 1

2 ,m1; 1
2 ,m2〉, and Cm is the CG

coefficient combining two virtual spins into a triplet |1,m〉 =
Cm

m1m2
| 1

2 ,m1; 1
2 ,m2〉.

Now we can generalize this formalism to the D2 case,
where the three states of S = 1 become a direct sum of
three IRs of D2. The D2 group has a 2D nontrivial projective
representation, and the direct product of two such projective
IRs can be reduced using the CG coefficients (B and Cx,y,z) in
Eqs. (A8). Similar to the SO(3) case, we can consider the two
2D projective IRs as “virtual spins”. From Eq. (A12), we can
construct the following matrix (a similar sMP state has been
studied in Ref. 27):

W = aσx |x〉 + bσy |y〉 + cσz|z〉, (A13)

where a,b,c are arbitrary nonzero complex constants. The
corresponding sMP state is given by |φ〉 = Tr(W1W2...WN ),
which is invariant under the group D2. Notice that the CG
coefficients in Eqs. (A10) give the same sMP state (up to
some gauge transformations). Notice also that Eqs. (A13)
are different from Eqs. (5), (7), (9), or (11). If a,b, and c

are to be arbitrary complex numbers, they are not invariant
under T .

The above sMP state is injective, and the parent Hamil-
tonian can be obtained by projection operators. We consider
a block containing two spins; the four matrix elements of
WiWi+1 span a four-dimensional Hilbert space. Suppose the
orthonormal bases are |ψ1,2,3,4〉i ; then we can construct a
projector

Pi = 1 −
4∑

α=1

|ψα〉〈ψα|i , (A14)

and the Hamiltonian H = ∑
i Pi . It can be easily checked

that the sMP state is the unique ground state of this
Hamiltonian.

The projector Pi is a 9 × 9 matrix that can be written
in forms of spin operators. Notice that any Hermitian op-
erator of site i,j can be expanded by the 81 generators of
U (9) = U (3)i ⊗ U (3)j , i.e., λαiλβj (α,β = 1,...,9). So, we
have

Pi =
9∑

α,β=1

ξαβλαiλβj , (A15)
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where ξαβ are constants. Further, the generators of U (3) can
be written as polynomials of spin operators.

λ1 = (Sx + Sxz)/
√

2,

λ6 = (Sx − Sxz)/
√

2,

λ2 = (Sy + Syz)/
√

2,

λ7 = (Sy − Syz)/
√

2,

λ4 = S2
x − S2

y ,

λ5 = Sxy,

λ3 = (
Sz + 3S2

z

)
/2 − I,

λ8 = (
3Sz − 3S2

z + 2I
)
/2

√
3,

λ9 =
√

2

3
I =

√
1

6

(
S2

x + S2
y + S2

z

)
,

where Smn = SmSn + SnSm,(m,n = x,y,z) and λ1 ∼ λ8 are
the Gellmann matrices of SU (3) generators. Finally, we can
write the Hamiltonian in the form of spin operators. For
simplicity, we first assume that a,b,c are real numbers; then
the Hamiltonian is given in Eq. (6), which is invariant under
T . The T symmetry goes away when a,b, or c becomes an
arbitrary complex number. For instance, if a → aeiθ , then
Hamiltonian (6) becomes

H =
∑

i

[ (
1

4
+ b2c2/2

a4 + b4 + c4

)
Sx,iSx,j

+
(

1

4
+ cos 2θa2c2/2

a4 + b4 + c4

)
Sy,iSy,j

− sin 2θa2c2/2

a4 + b4 + c4
(Sy,iSxz,j + Sxz,iSy,j )

+
(

1

4
+ cos 2θa2b2/2

a4 + b4 + c4

)
Sz,iSz,j

+ sin 2θa2b2/2

a4 + b4 + c4
(Sz,iSxy,j + Sxy,iSz,j )

+
(

1

4
− cos 2θa2b2/2

a4 + b4 + c4

)
Sxy,iSxy,j

+
(

1

4
− b2c2/2

a4 + b4 + c4

)
Syz,iSyz,j

+
(

1

4
− cos 2θa2c2/2

a4 + b4 + c4

)
Sxz,iSxz,j

]
+ h0. (A16)

When sin 2θ �= 0 the above Hamiltonian does not have T

symmetry.
Varying the values of a,b,c, we can transform the ground

state of the above Hamiltonian into that of the AKLT model
smoothly without breaking D2 symmetry. This means that
above sMP state also belongs to the Haldane phase. In
Appendix B we will consider the models with additional
time-reversal symmetry.

APPENDIX B: SPIN CHAIN WITH D2h SYMMETRY

In the last section we have studied the spin chain with
on-site D2 symmetry. Now we consider a S = 1 spin chain
with additional spin-inversion (or time-reversal) symme-
try. The complete on-site symmetry now becomes D2h =
{E,Rx,Ry,Rz,T ,RxT ,RyT ,RzT }. It has eight 1D linear real
IRs, as listed in Table VI. Notice the time reversal operator
T = e−iπSy K is anti-unitary, so the states |m〉 and i|m〉
(m = x,y,z) belong to different linear representations; the
former is odd under T and is noted by index u, and the latter
is even under T and noted by g. So we need to introduce
six bases |x〉,|y〉,|z〉 and i|x〉,i|y〉,i|z〉. To construct a sMP
state, at least one of the pair |x〉, i|x〉 (and also the pairs
|y〉, i|y〉 and |z〉, i|z〉) should be present in the physical
bases.

To obtain the projective IRs of D2h, we need to
study the linear IRs of the representation group R(D2h),
which also has three generators P,Q,R (corresponding
to Rz,Rx,T ) satisfying P 4 = Q4 = R4 = E and P 3Q =
QP,Q3R = RQ,R3P = PR.24 The total number of elements
in R(D2h) is 64. It has 8 1D representations (corresponding
to the eight linear IRs of D2h) and 14 2D representations
(corresponding to the seven classes of projective IRs of D2h).
To obtain the IRs of R(D2h), we only need to know the
representation matrix of the three generators P,Q,R. Using
the same method given in the last section, we obtain all the
IRs of R(D2h) (see Table VII).

Now we give the CG coefficients that reduce the direct
product of two projective IRs to a direct sum of linear IRs of
D2h.

E1 ⊗ E1 = E2 ⊗ E2 = Ag ⊕ B1g ⊕ Au ⊕ B1u; CAg = σx, CB1g = σz, CAu = iσy, CB1u = I ;

E3 ⊗ E3 = E4 ⊗ E4 = Ag ⊕ B3g ⊕ Au ⊕ B3u; CAg = I, CB3g = iσy, CAu = σz, CB3u = σx ;

E5 ⊗ E5 = E6 ⊗ E6 = Ag ⊕ B1g ⊕ B2g ⊕ B3g; CAg = σx, CB1g = iσy, CB2g = σz, CB3g = I ;

E7 ⊗ E7 = E8 ⊗ E8 = B1g ⊕ B3g ⊕ B1u ⊕ B3u; CB1g = σz, CB3g = iσy, CB1u = I, CB3u = σx ; (B1)

E9 ⊗ E9 = E10 ⊗ E10 = B1g ⊕ B2g ⊕ Au ⊕ B3u; CAu = σx, CB3u = I, CB1g = iσy, CB2g = σz;

E11 ⊗ E11 = E12 ⊗ E12 = B2g ⊕ B3g ⊕ Au ⊕ B1u; CAu = iσy, CB1u = σx, CB2g = I, CB3g = σz;

E13 ⊗ E13 = E14 ⊗ E14 = Ag ⊕ B2g ⊕ B1u ⊕ B3u; CAg = iσy, CB2g = I, CB1u = σx, CB3u = σz;
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and

E1 ⊗ E2 = B2g ⊕ B3g ⊕ B2u ⊕ B3u; CB3g = σx, CB2g = σz, CB3u = iσy, CB2u = I ;

E3 ⊗ E4 = B1g ⊕ B2g ⊕ B1u ⊕ B2u; CB1g = I, CB2g = iσy, CB1u = σz, CB2u = σx ;

E5 ⊗ E6 = Au ⊕ B1u ⊕ B2u ⊕ B3u; CAu = σx, CB1u = iσy, CB2u = σz, CB3u = I ;

E7 ⊗ E8 = Ag ⊕ B2g ⊕ Au ⊕ B2u; CAg = σz, CB2g = iσy, CAu = I, CB2u = σx ; (B2)

E9 ⊗ E10 = Ag ⊕ B3g ⊕ B1u ⊕ B2u; CAg = σx, CB3g = I, CB1u = iσy, CB2u = σz;

E11 ⊗ E12 = Ag ⊕ B1g ⊕ B2u ⊕ B3u; CAg = iσy, CB1g = σx, CB2u = I, CB3u = σz;

E13 ⊗ E14 = B1g ⊕ B3g ⊕ Au ⊕ B2u; CAu = iσy, CB2u = I, CB1g = σx, CB3g = σz.

Here all the coefficients are chosen to be real.
Now we construct sMP states from the CG coefficients

of Eqs. (B1), (B2), and (A12). Since all the CG coefficients
are real, the constructed matrices Am = BT (Cm)∗ are also
real (here B = CAg , m = B1g,B1u...B3u), and are invariant
under the anti-unitary operator K . However, the bases |B1g〉 =
i|z〉,|B2g〉 = i|y〉 or |B3g〉 = i|z〉 contain a factor i; this factor
i may be combined with Am when writing the matrix W =∑

m Am|m〉. So the definition of Am depends on the choice
of base. If we choose |m〉 = |x〉,|y〉,|z〉 as the physical bases,
then Am will absorb the factor i (if existent) and may be
either real or purely imaginary. This convention is adopted
in the main part of this paper. On the other hand, if we just
choose |m〉 = |B1g〉,|B1u〉,...|B3u〉 as the physical bases (and
forget about the fact that some bases, such as B1g and B1u, are
linearly dependent), then all the matrices Am are real. In the
following discussion, we will adopt the second convention.

Notice that the combinations E5 ⊗ E5, E9 ⊗ E10, E11 ⊗
E12, and E13 ⊗ E13 contain all the bases of S = 1
(|B1〉,|B2〉,|B3〉) and the singlet state (|Ag〉), we can construct
the sMP state by using these combinations. We will study them
case by case.

(1)E5 ⊗ E5

Up to an overall phase, the local matrix W is given by
W = aσx |x〉 + ibσy |y〉 + cσz|z〉; here a,b,c are real numbers.
The Hamiltonian can be constructed using the method given
in Appendix A, and the result is given in Eq. (10).

(2)E9 ⊗ E10

Up to an overall phase, the local matrix W is given by W =
aσx |x〉 + bσy |y〉 + icσz|z〉, and the Hamiltonian is shown in
Eq. (12).

(3)E11 ⊗ E12

TABLE VI. Linear representations of D2h

E Rx Ry Rz T RxT RyT RzT Bases Operators

Ag 1 1 1 1 1 1 1 1 |0,0〉 S2
x ,S

2
y ,S

2
z

B1g 1 −1 −1 1 1 −1 −1 1 i|1,z〉 Sxy

B2g 1 −1 1 −1 1 −1 1 −1 i|1,y〉 Sxz

B3g 1 1 −1 −1 1 1 −1 −1 i|1,x〉 Syz

Au 1 1 1 1 −1 −1 −1 −1 i|0,0〉
B1u 1 −1 −1 1 −1 1 1 −1 |1,z〉 Sz

B2u 1 −1 1 −1 −1 1 −1 1 |1,y〉 Sy

B3u 1 1 −1 −1 −1 −1 1 1 |1,x〉 Sx

Up to an overall phase, the local matrix W is given by
W = iaσx |x〉 + bσy |y〉 + cσz|z〉, and the Hamiltonian is given
in Eq. (8).

(4)E13 ⊗ E13

The local matrix W is given by W = aσx |x〉 + bσy |y〉 +
cσz|z〉, and the Hamiltonian is given in Eq. (6).

With the D2h symmetry kept, the ground states of the above
four exactly solvable models cannot be smoothly transformed
into each other, which indicates they belong to different SPT
phases (see Sec. III).

According to Ref. 6, there should be seven SPT phases
since there are seven classes of projective representations.

However, in the other three projective IRs, the reduced
Hilbert space of the direct product of two virtual “spins”
contains only one of the three bases for the physical S = 1
states (notice that the singlet |Ag〉 is necessary to construct a
sMP state), which means that these three SPT phases cannot
be realized in S = 1 systems.

APPENDIX C: INVARIANCE OF THE SMP STATE UNDER
THE SYMMETRY GROUP

First, we assume that all the operators of the symmetry
group G are unitary. The CG coefficients (of the representation
group) are defined as

|m〉 =
∑
α,β

Cm
αβ |α,β〉,

|singlet〉 =
∑
α,β

Bαβ |α,β〉, (C1)

where |m〉 belong to nontrivial linear IRs and |singlet〉 is a
trivial linear IR and α,β are bases of some 2D projective IR.
We will show that the sMP state given by Eq. (A12) is invariant
under the representation group R(G) (and hence the symmetry
group G). Suppose that g is a group element of R(G), and
u(g)/N (g),M(g) is the representation matrix for the physical
spin/virtual “spins”, then

ĝ|m〉 = um′m|m′〉,
ĝ|α〉 = Nα′α|α′〉, (C2)

ĝ|β〉 = Mβ ′β |β ′〉.
From Eqs. (C1) and (C2), we obtain∑

m′
um′mCm′ = NCmMT . (C3)
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TABLE VII. Projective representations of D2h. The numbers α,β,γ are obtained by α = P 2, β = Q2, γ = R2. The three generators P,Q,R

of R(D2h) will project to Rz,Rx,T of D2h, respectively.

P (Rz) Q(Rx) R(T ) · · · α = P 2, β = Q2, γ = R2

Ag 1 1 1 · · ·
B1g 1 −1 1 · · ·
B2g −1 −1 1 · · ·
B3g −1 1 1 · · · 1 1 1
Au 1 1 −1 · · ·
B1u 1 −1 −1 · · ·
B2u −1 −1 −1 · · ·
B3u −1 1 −1 · · ·
E1 I iσz σy · · · 1 -1 1
E2 = E1 ⊗ B3g -I iσz σy · · ·
E3 σz I iσy · · · 1 1 -1
E4 = E3 ⊗ B1g σz -I iσy · · ·
E5 iσz σx I · · · −1 1 1
E6 = E5 ⊗ Au iσz σx -I · · ·
E7 σz iσz iσx · · · 1 −1 −1
E8 = E7 ⊗ B1g σz -iσz iσx ...
E9 iσz σx iσx · · · −1 1 -1
E10 = E9 ⊗ Au iσz σx -iσx · · ·
E11 iσz iσx σz · · · −1 -1 1
E12 = E11 ⊗ B3g iσz iσx -σz · · ·
E13 iσz iσx iσy · · · −1 −1 −1
E14 = E13 ⊗ Au iσz iσx -iσy · · ·

The complex conjugate of above equation is∑
m′

u
†
mm′(Cm′

)∗ = N∗(Cm)∗M†. (C4)

Since the representation matrix u(g) [N (g), M(g)] is unitary,
the representation matrix of ĝ−1 is [u(g)]†([N (g)]†,[M(g)]†).
Replacing ĝ by ĝ−1 in Eqs. (C2)–(C4), we obtain∑

m′
umm′(Cm′

)∗ = NT (Cm)∗M. (C5)

Similar to Eq. (C3), we also have

B = NBMT ,

or equivalently BT = MBT NT . Thus we have

M†BT = BT NT . (C6)

From Eqs.(C5) and (C6), we have

ĝ

(∑
m

Am|m〉
)

=
∑
m,m′

um′mAm|m′〉

=
∑
m,m′

BT um′m(Cm)∗|m′〉

=
∑
m′

BT NT (Cm′
)∗M|m′〉

=
∑
m

M†BT (Cm)∗M|m〉

=
∑
m

M†AmM|m〉. (C7)

The above equation is nothing but Eq. (4), which indicates
that the sMP state constructed by Am = BT (Cm)∗ is really
invariant under the group R(G) (or equivalently, the symmetry
group G).

Now we consider the case that some group elements, such
as the time reversal operator T , of G are anti-unitary. Suppose
that by properly choosing the phases of |α〉 and |β〉, all the CG
coefficients B and Cm are real. In this case, the anti-unitary
operators behave as unitary operators when acting on Am, and
Eq. (C7) also holds for anti-unitary operators.

To obtain the complete representation of the anti-unitary
operators, we introduce an unitary transformation to the bases
|α〉,|β〉 of the virtual “spins” so that Am transforms into a
complex matrix:

|α〉 = Vα′α|α′〉,
(C8)

|β〉 = Uβ ′β |β ′〉;
then

|m〉 = Cm
αβ |αβ〉 = Cm

αβVα′αUβ ′β |α′β ′〉
= (V CmUT )α′β ′ |α′β ′〉 = C

′m
α′β ′ |α′β ′〉, (C9)

which gives C
′m = V CmUT . Similarly, we have B ′ = V BUT .

Since Am = BT (Cm)∗, so we get A
′m = UAmU †. When

unitary operator ĝu acts on A
′m|m〉, Eq. (C7) holds as expected:

ĝu

( ∑
m

A
′m|m〉

)
= Uĝu

( ∑
m

Am|m〉
)

U †

=
∑
m

UM†AmMU †|m〉

=
∑
m

(M ′)†A
′mM ′|m〉,
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TABLE VIII. Correspondence between physical operators and
effective operators in the T0 phase according to their transformation
property (parities) under D2h.

Linear IR η(g) B3u B2u B1u

Operators Ôm σx σy σz

Physical operators S̃x S̃y S̃z

where M ′ = UMU †. Now let us see what happens if an anti-
unitary operator ĝa acts on A

′m|m〉:

ĝa

(∑
m

A
′m|m〉

)
= ĝa

[
U (

∑
m

Am|m〉)U †

]

= U ∗ĝa

(∑
m

Am|m〉
)

UT

=
∑
m

U ∗M†AmMUT |m〉

=
∑
m

(M̃ ′)†A
′mM̃ ′|m〉,

where M̃ ′ = UMUT = U (MK)U †. Here we have used the
factor that Am are real matrices. So Eq. (C7) still holds for anti-
unitary operators, except that the representation matrix M(ga)
transforms into M̃ ′(ga) instead of M ′(ga), or equivalently,
M(ga) is replaced by M(ga)K . Thus for an anti-unitary
operator ĝ, we have

u(g)K(Am) = KM†AmMK. (C10)

This result will be used in Appendix D.
Notice that, to obtain a sMP state that is invariant under a

symmetry group G containing anti-unitary operators, the only
condition we require is that the CG coefficients B and Cm (for
the unitary projective IRs of G) can be transformed into real
numbers by choosing proper phases.

APPENDIX D: EFFECTIVE OPERATORS IN THE
GROUND-STATE HILBERT SPACE

From the projective representation, we can study the
effective operator of a usual operator (which acts on the
physical spin Hilbert space) on the ground-state Hilbert space,
or equivalently, the end “spins”. Naturally, the usual operator
and its effective operator should vary in the same way, or
respect the same linear representation, under the group D2h.
So we will study the effective operators from the symmetry
point of view.

TABLE IX. Correspondence between physical operators and
effective operators in the Tx phase according to their transformation
property (parities) under D2h.

Linear IR η(g) B3u B2g B1g

Operators Ôm σx σy σz

Physical operators S̃x S̃xz S̃xy

If the spin chain is long enough, the two end “spins” are
free (i.e., the interaction between them is neglectable). So
we expect that the effective operators on the end “spins” are
single-body operators instead of two-body interactions. Notice
that all the nontrivial projective representations of D2h are 2D;
we have only three choices of the effective operators, the Pauli
matrices. We will study them one by one.

First, we study the T0 phase, which corresponds to the
projective IR (−1 −1 −1). Under symmetry operation g, the
operator Ôm varies in the following way:

M(g)†ÔmM(g) = η(g)mm′Ôm′ , (D1)

where M(g) is the projective IR for the end “spin”. From the
conclusion in Appendix C and Table VII, we get M(Rz) = iσz,
M(Rx) = iσx , M(T ) = iσyK . η(g) is a linear representation
of D2h, which equals either 1 or −1. Actually, η(g) is the
parity of Ôm under g. For instance, η(T ) = −1 means that Ôm

has odd parity under time-reversal transformation and vice
versa. After simple algebra, we obtain the correspondence in
Table VIII: the operators in the same column transform in the
same way.

From Table VIII, we find that σm and S̃m (m = x,y,z)
have the same symmetry (or the same parity under symmetry
operations), so the former can be considered as the effective
operator of the latter. Since σm is the spin operator of the end
spins, the system will respond to a weak external magnetic
field (along any direction) effectively through the end spins.

However, things are different in the Tx phase, which
corresponds to the projective IR (-1-11). From Table VII, we
can substitute M(Rz) = iσz, M(Rx) = iσx , M(T ) = σzK into
Eq. (D1) and obtain the results in Table IX.

Notice that the end “spin” operators σy(σz) do not have the
same symmetry as that of S̃y(S̃z) because they have different
time-reversal parities. Since there are no single-body effective
operators corresponding to S̃y and S̃z, the models in the Tx

phase will not response to weak external magnetic fields along
the y and z directions.

Similar results can be obtained for the Ty and Tz phases and
will not be repeated here.
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