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We study the potential benefits of base-station (BS) cooperation for downlink transmission in multicell networks. Based on a
modified Wyner-type model with users clustered at the cell-edges, we analyze the dirty-paper-coding (DPC) precoder and several
linear precoding schemes, including cophasing, zero-forcing (ZF), and MMSE precoders. For the nonfading scenario with random
phases, we obtain analytical performance expressions for each scheme. In particular, we characterize the high signal-to-noise
ratio (SNR) performance gap between the DPC and ZF precoders in large networks, which indicates a singularity problem in
certain network settings. Moreover, we demonstrate that the MMSE precoder does not completely resolve the singularity problem.
However, by incorporating path gain fading, we numerically show that the singularity problem can be eased by linear precoding
techniques aided with multiuser selection. By extending our network model to include cell-interior users, we determine the
capacity regions of the two classes of users for various cooperative strategies. In addition to an outer bound and a baseline scheme,
we also consider several locally cooperative transmission approaches. The resulting capacity regions show the tradeoff between the
performance improvement and the requirement for BS cooperation, signal processing complexity, and channel state information
at the transmitter (CSIT).

Copyright © 2008 Sheng Jing et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

The growing popularity of various high-speed wireless appli-
cations necessitates a fundamental characterization of wire-
less channels. A significant amount of research effort has
been devoted to cellular systems,which are commonly
deployed for serving mobile users.Conventionally, the down-
link transmission in cellular systems is carried out through
single-cell-processing (SCP), which is limited by inter-
cell interference,especially for cell-edge users. The idea
of cooperative multicell transmission has been proposed
and studied in [1, 2] and references therein to mitigate
the inter-cell interference and enhance the cell-edge users’
performance. The cooperative multicell downlink channel
is closely related to the multiple-input multiple-output
(MIMO) broadcast channel (BC), whose capacity region
[3] is achieved by Costa’s DPC principle [4]. However, the
significant amount of processing complexity required by
DPC prohibits its implementation in practice. Therefore,
suboptimal BS cooperation schemes using cophasing [5, 6],

ZF, and MMSE linear precoders [7] have been proposed and
analyzed for both nonfading and fading scenarios [2].

In the first part of this paper, we study the single-
class network, which is a modified Wyner-type multicell
model [8] with users clustered at cell-edges. We consider
the nonfading scenario (also previously considered in [9])
with fixed path gains and random path phases. (Note that
the nonfading scenario in our paper has no path gain
fading but has random path phases, which is different
from the nonfading scenario in [10]. Our nonfading model
with random path phases represents the case where equal
transmitter power control is applied.) The addition of
random path phases represents the middle ground between
the nonfading scenario without random phases and the
fading scenario with random path gains that have been
considered in [10].With our nonfading model, we are able
to characterize the effect of random phases independent of
the path gain fading. Moreover, we introduce uniform asym-
metry controlled by a single parameter α, which is different
from [2], where all users see two symmetric BSs. The analysis
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for uniform asymmetry case motivates our algorithm design
for the fading scenario. We have obtained the analytical
sum rate expressions for several cooperative downlink
transmission schemes: intra-cell time-division-multiplexing
(TDM) combined with inter-cell DPC, cophasing, ZF, and
MMSE, respectively. Moreover, we analytically study the
finite-size Wyner-type model, which sheds some light on
the asymptotic behaviors of various precoding techniques in
large networks. In particular, we have shown that if each user
sees two equally strong paths, the sum rate performances
of the ZF and MMSE precoders (combined with intra-cell
TDM) deteriorate significantly in large networks, while the
performance deterioration is less severe if the two paths to
each user are of unequal strength. Therefore, to address this
singularity problem, we induce the path gain asymmetry by
incorporating path gain fading into our network model and
combining multiuser scheduling with the linear precoders.
For the Rayleigh fading case, we demonstrate through
Monte-Carlo simulation the satisfactory performance of the
linear precoders combined with the proposed multiuser
scheduling algorithm. Note that our numerical results for
the fading case serve the purpose of performance verification
only, while [2] also provides analytical bounds.

In the second part of this paper, we consider double-class
network (previously considered in [11, 12]) by extending
our network model to include cell-interior users. We have
characterized the per-cell sum rate region for the rate
pair of the cell-edge and cell-interior users for various
cooperative downlink transmission strategies. Besides an
outer bound and the baseline achieved by the cell-breathing
[13] scheme, we have also studied several hybrid strategies
to serve cell-interior users in each cell and cell-edge users
in alternating cells. The comparison between the achievable
rate regions of different cooperative transmission schemes
exhibits a tradeoff between the performance improvement
and the requirement for BS cooperation, signal processing
complexity and CSIT knowledge.

Some relevant research work on single-class networks has
been independently reported in [14, 15]. However, our main
contributions include that: we have proposed and studied a
modified network model based on the one proposed in [2],
incorporating two new elements: path asymmetry and ran-
dom phases. For the nonfading scenario with random path
phases, we have derived the analytical sum rate expressions
for several cooperative downlink transmission schemes,
identified a connection between the three linear precoders
(cophasing, ZF, and MMSE) and a singularity problem with
the linear precoding schemes in large networks. In the fading
scenario, we have proposed a multiuser scheduling scheme
to ease the singularity problem and verified its effectiveness
through Monte-Carlo simulations for the Rayleigh fading
case. Note that our work has focused on fully synchronized
networks, while the asynchronism of interference in BS
cooperation has been recently addressed in [16].

The remaining paper is composed of four sections. In
Section 2, we introduce the network model and formulate
our problem. In Section 3, we consider the single-class net-
works. In Section 4, we investigate the double-class networks.
We conclude the paper in Section 5.
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Figure 1: (4, 6, 5) double-class network.

2. NETWORK MODEL & PROBLEM FORMULATION

We consider two simplified Wyner-type network models:
one with cell-edge users only (single-class network), the
other with both cell-edge and cell-interior users (double-
class network). We will define both the downlink and the
dual uplink channels, since we will frequently use the uplink-
downlinkduality [17–19] in our analysis.

2.1. Double-class network

The (N ,Ki,Ke) double-class network is composed of N cells,
each with a single-antenna BS, a group of Ki single-antenna
cell-interior users, and a group of Ke single-antenna cell-
edge users. Note that the classification of users based on
their distances from the BSs was originally proposed in [11].
The BSs are located uniformly along a ring. The cell-interior
users are located close to their own BS. The cell-edge users
are located at the cell-edge between their own BS and the
adjacent BS. The cell-interior users see their own BS with
path gain β, while the cell-edge users see their own BS with
path gain 1 and the adjacent BS with path gain α. The paths
are of i.i.d. random phases. The (4, 6, 5) double-class network
is shown in Figure 1.

The downlink channel and the dual uplink channel (with
the BSs’ and the users’ roles reversed) of the (N ,Ki,Ke)
double-class network are represented as follows:

yd = H†xd + wd, (1)

yu = H xu + wu, (2)
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where yd = [yd
i
, yd

e
]T , xu = [xui , xue ]T , wd∼CN (0, IN(Ki+Ke)),

and wd∼CN (0, IN ). The channel matrix H has the following
form:

[Z | Z′], (3)

where

Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h†i,11 0 · · · 0 · · · 0 · · · 0 0 · · · 0
0 · · · 0 h†i,22 · · · 0 · · · 0 0 · · · 0

0 · · · 0 0 · · · 0
. . .

...
...

...
...

. . . h†i,N−1N−1 0 · · · 0
0 · · · 0 0 · · · 0 · · · 0 · · · 0 h†i,NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Z′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h†e,11 0 · · · 0 · · · 0 · · · 0 h†e,1N
h†e,21 h†e,22 · · · 0 · · · 0 0 · · · 0

0 · · · 0 h†e,32
. . .

...
...

...
...

. . . h†e,N−1N−1 0 · · · 0
0 · · · 0 0 · · · 0 · · · h†e,NN−1 h†e,NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

where hTi,mn = [hi,mn1, . . . ,hi,mnKi] collects the path gains from
BS m to the cell-interior users of cell n,which are specified as
follows:

|hi,mnk| =
{
β, ifm = n,

0, o.w.,

∠hi,mnk ∼ iid uniform in [0, 2π),

(5)

and hTe,mn = [he,mn1, . . . ,he,mnKe] collects the path gains from
BS m to the cell-edge users of cell n, which are specified as
follows:

|he,mnk| =

⎧⎪⎪⎨
⎪⎪⎩

1, ifm = n,

α, ifm = [n]N + 1,

0, o.w.,

∠he,mnk ∼ iid uniform in [0, 2π),

(6)

where [n]N means n modulo N .

2.2. Single-class network

The (N ,Ke) single-class network layout is the same as the
(N ,Ki,Ke) double-class network except that there are no cell-
interior users (Ki = 0). The (4, 5) single-class network is
shown in Figure 2.

The downlink and the dual uplink channels of the (N ,Ke)
single-class network are also expressed as (1) and (2) where
the channel matrix H simplifies to be

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

h†e,11 0 · · · 0 · · · 0 · · · 0 h†e,1N
h†e,21 h†e,22 · · · 0 · · · 0 0 · · · 0

0 · · · 0 h†e,32
. . .

...
...

...
...

. . . h†e,N−1N−1 0 · · · 0
0 · · · 0 0 · · · 0 · · · h†e,NN−1 h†e,NN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)
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Figure 2: (4, 5) single-class network.

hTe,mn = [he,mn1, . . . ,he,mnKe] collects the path gains from BSm
to the cell-edge users of cell n, which are separately specified
for two different scenarios as follows:

(i) nonfading scenario with random path phases

|he,mnk| =

⎧⎪⎪⎨
⎪⎪⎩

1, ifm = n,

α, ifm = [n]N + 1,

0, o.w.,

∠he,mnk ∼ iid uniform in[0, 2π),

(8)

(ii) fading scenario

EH[|hi jk|] =
{

1, if i = j,

α, if i = [ j]N + 1,

∠he,mnk ∼ iid uniform in[0, 2π),

(9)

where [ j]N denotes j modulo N .

2.3. Problem formulation

In the downlink channel, the information vector bd is
represented as follows:

bd =
[

bdi
bde

]
= [ bdi,11, . . . , bdi,NKi , bde,11 , . . . , bdi,NKe

]T
, (10)

with the following power allocation

Pd = EH
[

bdbd†
]

= diag
(
Pdi,11, . . . ,Pdi,NKi ,P

d
e,11, . . . ,Pde,NKe

)
.

(11)
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bdi,nk is a power-Pdi,nk information symbol intended for the kth

cell-interior user in the nth cell, and bde,nk is a power-Pde,nk
information symbol intended for the kth cell-edge user in the
nth cell. A linear downlink precoder is aN×N(Ki+Ke) matrix
U. Note that U can depend on the instantaneous channel
matrix H since we assume that the BSs have perfect CSIT.
Incorporating the precoding matrix, our downlink channel
expression (1) reduces to

yd = H†Ubd + wd. (12)

In the dual uplink channel, xu itself is the information
vector:

xu =
[

xui
xue

]
= [xui,11, . . . , xui,NKi , xue,11, . . . , xui,NKe

]T
, (13)

with the following power allocation:

Pu = EH
[

xuxu†
] = diag

(
Pui,11, . . . ,Pui,NKi ,P

u
e,11, . . . ,Pue,NKe

)
.

(14)

xui,nk is a power-Pui,nk information symbol from the kth cell-
interior user in the nth cell, and xue,nk is a power-Pue,nk
information symbol from the kth cell-edge user in the nth
cell. we use x̂u to denote the estimated information vector
at the BSs using aN×N(Ki+Ke) linear filter V. Incorporating
the filter matrix, our dual uplink channel expression (2)
reduces to

x̂u = V†H xu + V†wu. (15)

The sum power constraints on the downlink and the dual
uplink are as follows:

(i) downlink sum power:

Tr
(

EH
[

xdxd†
]) = Tr

(
UPdU†) ≤ N SNR, (16)

(ii) uplink sum power:

Tr(EH[xuxu†]) = Tr(Pu) ≤ N SNR, (17)

while the corresponding per-cell power constraints are as
follows:

(i) downlink per-cell power:
(

EH
[

xdxd†
])

ii =
(

UPdU†)
ii ≤ SNR, (18)

(ii) uplink per-cell power:

∑

k∈cell i

(
EH
[

xuxu†
])

kk =
∑

k∈cell i

(Pu)kk ≤ SNR. (19)

We mainly focus on the downlink channel under the per-cell
power constraint (18), where SNR is the BS-side signal-to-
noise ratio. The BSs are allowed to cooperate in transmission,
while the users are restricted to the single user receiver
without successive cancelation. Moreover, encoding and
decoding can spread over many fading blocks. For the

downlink channel (12), in each fading block, the cooperative
BSs choose the power allocation Pd and the precoding matrix
U based on the channel matrix H†. We then compute each
user’s signal-to-noise-and-interference ratio (SINR) SINRdi
and the associated maximal achievable rate log2(1 + SINRdi ).
We impose the per-cell power constraint (18) on each fading
block. Our objective in single-class networks is to maximize
the long-term ergodic per-cell sum rate:

R = 1
N

EH

[∑

i

log2

(
1 + SINRdi

)]
, (20)

where the summation is over all users. Our objective in
double-class networks is to optimize the long-term ergodic
per-cell sum rate pair:

(Ri,Re) =
(

1
N

EH

[ ∑

i∈interior

log2

(
1 + SINRdi

)]
,

1
N

EH

[ ∑

i∈edge

log2

(
1 + SINRdi

)])
.

(21)

3. SINGLE-CLASS NETWORK

In this section, we focus on the (N ,Ke) single-class network
described in Section 2.2. Our objective is to maximize the
ergodic per-cell sum rate (20) under the per-cell power con-
straint (18). We start by delimiting our working region for
the nonfading scenario with a baseline scheme and an upper
bound in Section 3.1. We then analyze several cooperative
downlink transmission schemes in Section 3.2. We conclude
this section with the fading scenario in Section 3.3.

3.1. Baseline & upper bound

To help demonstrate the performance of precoding schemes
investigated later, we first characterize our working region of
the ergodic per-cell sum rate with a baseline scheme and an
upper bound as follows.

3.1.1. Baseline: single-cell processing (SCP) with reuse

The performance baseline is achieved by the SCP with reuse
scheme, which proceeds as follows: at each time instance,
every other BS serves its right user group (equivalently, their
own user group with path gain 1) with full power SNR, while
the remaining BSs are turned off. The SCP with reuse scheme
is illustrated in Figure 3, and its performance is characterized
in the following lemma.

Lemma 1 (baseline). In the (N ,Ke) single-class network, the
ergodic per-cell sum rate achieved by SCP with reuse under the
per-cell power constraint SNR is as follows:

RLB(SNR) = 1
2

log2(1 + SNR). (22)

Proof. In the cells where the BSs are actively transmitting
information, their cell-edge users see no interference since
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Figure 3: SCP with reuse.

the neighboring BSs are turned off. Moreover, since the cell-
edge users see equally strong paths from their own BS, the
maximal sum rate is achieved by the BS transmitting to
any cell-edge user with full power SNR, which is log2(1 +
SNR). The ergodic per-cell sum rate expression (22) follows
immediately by incorporating the 1/2 factor since only half
of the BSs are active at any time instance.

3.1.2. Upper bound: dirty-paper coding (DPC)

In [19], the authors established a connection between sum
capacities of the downlink and the dual uplink channels
under linear power constraints (including the per-cell power
constraints (18) and (19) as a special case). We list their main
results here, which is slightly adapted to address the specific
scenario we are considering.

Theorem 1 (minimax uplink-downlink duality [19]). For a
given channel matrix H, the sum capacity of the downlink
channel (1) under the per-cell power constraint (18) is the same
as the sum capacity of the dual uplink channel (2) affected by
a diagonal “uncertain” noise under the sum power constraint
(17):

Csum(H,N , SNR) = min
Λ

max
Pu

log2
det

(
HPuH† +Λ

)

det(Λ)
, (23)

where Λ and Pu are N-dim and NKe-dim nonnegative diag-
onal matrices such that Tr(Λ) ≤ 1/SNR and Tr(Pu) ≤ 1.

Remark 1. The average per-cell sum capacity of the downlink
channel (1) under the per-cell power constraint (18) is
Csum/N . Note that this rate may not be simultaneously
achievable in all cells for a particular channel matrix H†.

We apply Theorem 1 to obtain the following perfor-
mance upper bound for the (N ,Ke) single-class network,
which is similar to [2].

Theorem 2 (upper bound). In the (N ,Ke) single-class net-
work, the maximal achievable ergodic per-cell sum rate under
the per-cell power constraint SNR has the following upper
bound:

C(N , SNR) ≤ RUB(SNR)

= log2(1 + (1 + α2)SNR).
(24)

Proof. The detailed proof is included in Appendix A.

Remark 2. Compared with the baseline scheme performance
(22), the upper bound (24) is superior in two perspectives.

(i) The upper bound enjoys full degrees of freedom,
while the baseline scheme suffers a half degree of
freedom loss.

(ii) The upper bound enjoys a power gain of (1 + α2) as
compared to the baseline scheme.

However, the upper bound can be approached only if the
number of users per cell Ke is large, and the complex DPC
scheme is used across the entire network over all NKe
users, which involves significant complexity and is hard to
implement in practice. In the following, we address this issue
by studying cooperative transmission schemes with lower
complexities but still achieve good performance.

3.2. Precoding with intra-cell time division
multiplexing (TDM)

For the following schemes in the single-class network, we
assume that TDM is used within each cell, that is, only
one user in each cell is actively receiving information at any
time instance. With intra-cell TDM, the channel matrix H
simplifies to be

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

e jθ11 0 · · · 0 αe jθ1N

αe jθ21 e jθ22 · · · 0 0

0 αe jθ32
. . .

...
...

...
...

. . . e jθN−1N−1 0
0 0 · · · αe jθNN−1 e jθNN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

We define several macro-phase parameters as follows:

φ1 = θ11 − θ21,
...

...
...

φN−1 = θN−1N−1 − θNN−1,
φN = θNN − θ1N ,

ϕ1 = θ11 − θ1N ,

ϕ2 = θ22 − θ21,
...

...
...

ϕN = θNN − θNN−1,

Θ = φ1 + · · · + φN = ϕ1 + · · · + ϕN.

(26)
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We first characterize the inherent performance loss incurred
by intra-cell TDM, which is accomplished by the following
inter-cell DPC performance characterization.

3.2.1. Inter-cell DPC

The inter-cell DPC scheme proceeds as follows: the N
BSs transmit to the N active users cooperatively using
DPC, which is essentially the capacity-achieving scheme
in the (N , 1) single-class network. The following theorem
characterizes the ergodic sum rate performance of the inter-
cell DPC scheme.

Theorem 3 (inter-cell DPC). In the (N ,Ke) single-class
network, the maximal ergodic per-cell sum rate achievable by
the inter-cell DPC scheme under the per-cell power constraint
SNR is as follows:

RDPC(N , SNR)

= log2SNR+EΘ

[
1
N

log2

(
2(−1)N+1αN

× cosΘ + γN+ + γN−
)]

,

(27)

where γ± are defined as follows:

γ± = 1 + α2

2
+

1
2SNR

±

√√√√ 1
SNR

+
(

1
2SNR

− 1− α2

2

)2

. (28)

Proof. The detailed proof is included in the Appendix B.
It is worth mentioning that,for the scenario without path
loss fading or random phases, the ergodic per-cell sum rate
performance of the DPC precoder (with or without intra-
cell TDM) under the per-cell power constraint has been
characterized in [2]. Assuming that intra-cell TDM is used,
the above theorem has extended the results in [2] to the
nonfading scenario with fixed path gain and random path
phases. Though Theorem 3 is proved along the same line
as in [2] based on Theorem 1, the key step is new, which
shows that |HPuH†+Λ| is rotational invariant in the diagonal
entries of Pu given that Λ = (1/N SNR)IN and |HPuH† + Λ|
are symmetrical in the diagonal entries of Λ given that Pu =
(1/N)IN . Some techniques used in proving this step were
reported in [20].

Remark 3. Examining (27), it is noted that γN+ and γN− are
the dominant terms as N increases. Therefore, the random
path phases effectΘ vanishes as the network sizeN increases.
Similar observations were also made in [20].

Corollary 1. In single-class network with a large number of
cells, the asymptotic performance loss incurred by intra-cell
TDM is

lim
N ,SNR→+∞

RUB(SNR)− RDPC(N , SNR) = log2(1 + α2) ≤ 1.

(29)

Proof. The detailed proof is included in Appendix B.

Cell-edge user

Base-station

SNR

1

Cell 1
α

Cell 2

SNR

SNR1
Cell 3

α Cell 4

SNR

Figure 4: Inter-cell cophasing with reuse, combined with intra-cell
TDM.

Remark 4. This corollary has significance in two folds:

(i) the performance upper bound (24) is tight within less
than one bit;

(ii) intra-cell TDM does not incur significant perfor-
mance loss.

3.2.2. Inter-cell cophasing with reuse

The inter-cell cophasing scheme [5, 6] proceeds as follows:
at each time instance, every other active user is receiving
information from its own BS and the reachable adjacent BS,
which coherently beamform to the targeted user; the other
active users remain silent in this time instance. The inter-cell
cophasing with reuse scheme is illustrated in Figure 4, and its
ergodic per-cell sum rate performance is characterized in the
following lemma.

Lemma 2 (inter-cell cophasing with reuse). In the (N ,Ke)
single-class network, the maximal ergodic per-cell sum rate
achievable by the inter-cell cophasing scheme under the per-cell
power constraint SNR is as follows:

RCoPhasing(SNR) = 1
2

log2

(
1 + (1 + α)2SNR

)
. (30)

Proof. Beamforming from the two neighboring BSs to the
active user provides a magnitude gain of 1+α. The cophasing
performance expression (30) can be confirmed by further
including the half degree of freedom loss incurred by only
serving every other active user.
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3.2.3. Inter-cell zero-forcing (ZF)

The inter-cell ZF scheme [7] proceeds as follows: the N
BSs cooperatively transmit to the N active users using
the ZF precoder. We assume that the channel matrix H
(N × N assuming intra-cell TDM) is nonsingular, since ZF
precoder is not well-defined otherwise. The un-normalized
ZF precoder is expressed as

UZF =
(

H†)−1
. (31)

The ergodic per-cell sum rate of the inter-cell ZF scheme is
characterized as follows.

Lemma 3 (ZF uplink-downlink duality). In the single-class
network with intra-cell TDM, the ergodic per-cell sum rate
achievable by ZF precoder in the downlink channel (1) under
the per-cell power constraint (18) is the same as the ergodic per-
cell sum rate achievable by ZF filter in the uplink channel (2)
under the per-cell power constraint (19).

Lemma 4 (inter-cell ZF). In the (N ,Ke) single-class network,
the maximal ergodic per-cell sum rate achievable by the inter-
cell ZF scheme under the per-cell power constraint SNR is as
follows:

RZF(N , SNR)

= EΘ

[
log2

(
1+

(
1+α2N

)
+ 2(−1)N+1αNcosΘ

1 + α2 + · · · +α2(N−1)
SNR

)]
.

(32)

Proof. The detailed proofs of Lemmas 3 and 4 are included
in Appendix C.

Corollary 2 (asymptotic inter-cell ZF performance gap). In
single-class network with a large number of cells, the high SNR
performance loss incurred by inter-cell ZF is bounded as follows:

lim
N ,SNR→+∞

RUB(SNR)− RZF(N , SNR) = log2
1 + α2

1− α2
. (33)

Proof. The detailed proof of this corollary is also included in
Appendix C.

Remark 5. As each user’s two reachable paths get increas-
ingly asymmetric (α→0), the asymptotic performance loss
incurred by inter-cell ZF shrinks. On the other hand, the
asymptotic performance loss of inter-cell ZF widens as each
user sees two increasingly symmetric paths (α→1). The
extreme case is when each user sees two equally strong paths,
which is detailed in the following corollary.

Corollary 3 (inter-cell ZF, α = 1). In the special (N ,Ke)
single-class network with α = 1, the maximal ergodic per-cell
sum rate achievable by the inter-cell ZF scheme under the per-
cell power constraint SNR is as follows:

RZF(N , SNR) = EΘ

[
log2

(
1 +

2 + 2(−1)N+1cosΘ
N

SNR
)]
.

(34)

Remark 6. For fixed SNR, the inter-cell ZF rate performance
(34) decreases to zero as network size N increases. Com-
pared with (27), the inter-cell ZF scheme incurs significant
performance loss in large networks, which echoes (33).
Since Wyner-type model approximates real networks only in
large networks, the significant performance loss (34) poses a
singularity problem for the inter-cell ZF scheme, which will
be addressed in the following sections.

3.2.4. Inter-cell MMSE

The inter-cell MMSE scheme proceeds as follows: the N BSs
cooperatively transmit to the active N users using the MMSE
precoder. The un-normalized MMSE precoder is

UMMSE =
(

1
SNR

IN + HH†
)−1

H. (35)

We characterize a lower bound to the maximal ergodic
symmetric rate achievable by the inter-cell MMSE scheme as
follows.

Lemma 5 (inter-cell MMSE). In the (N ,Ke) single-class
network, the maximal ergodic symmetric rate achievable by the
inter-cell MMSE scheme under the per-cell power constraint
SNR has the following lower bound:

RMMSE(N , SNR)

=EΘ

[
log2

(
(γ+−γ−)

(
γN+ +γN−+2(−1)1+NαNcosΘ

)

γN+ −γN−
SNR

)]
,

(36)

where γ+ and γ− are defined in (28).

Proof. The detailed proof is included in Appendix D.

3.2.5. Performance comparison

In the (32, 5) single-class network, we compare the above
cooperative transmission schemes (together with the perfor-
mance upper bound and lower bound) using Monte-Carlo
simulation. The comparison is carried out for the following
two α settings:

(i) α = 0.75 case shown in Figure 5,

(ii) α = 1 case shown in Figure 6.

Remark 7. Figures 5 and 6 echo the asymptotic performance
losses of inter-cell DPC (29) and inter-cell ZF (33).Moreover,
Figure 6 indicates an underlying relationship connecting the
performance of inter-cell cophasing, inter-cell ZF, and inter-
cell MMSE.

3.2.6. Connection: cophasing, ZF, and MMSE

It is observed in Figures 5 and 6 that the MMSE performance
approaches the cophasing performance in the low-SNR
regime, while it approaches the ZF performance in the high-
SNR regime. For the α = 1 single-class network with large
network size, we are able to analytically characterize this
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Figure 5: (32, 5) single-class network, α = 0.75.

observation in the asymptotic of SNR. We conjecture that
similar analysis carries over to the general α ∈ (0, 1) case.

Theorem 4 (cophasing, ZF, and MMSE connection). In the
single-class network where the network sizeN and the SNR scale
to infinity simultaneously as N = SNRη, we have the following
asymptotic characterization of the MMSE performance.

(i) If 0 < η < 1/2,

lim
SNR→+∞

RMMSE(SNR)− RZF(SNR) = 0; (37)

(ii) If η > 1/2,

lim
SNR→+∞

RMMSE(SNR)− RCoPhasing(SNR) = 0. (38)

Remark 8. For the 32-cell single-class network, the dividing
point of the above two regimes is SNR = N2 ≈ 30.1(dB),
which agrees with Figure 6.

Corollary 4. If the network size N is fixed,

lim
SNR→∞

(RMMSE(N , SNR)− RZF(N , SNR)) = 0. (39)

Remark 9. This corollary confirms that the MMSE precoder
coincides with the ZF in the high-SNR regime.

Corollary 5. In large networks with a fixed SNR,

lim
N→∞

RMMSE(N , SNR) = log2

(
2
√

SNR + o
(√

SNR
))
. (40)

Remark 10. The MMSE precoder loses half of the degrees of
freedom in the low-SNR regime (SNR < N2), which agrees
with Figure 6 and also agrees with the performance of linear
MMSE equalizer on 2-tap ISI channels [21].
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Figure 6: (32, 5) single-class network, α = 1.

In detection and estimation theory or filter theory, it
is well known that MMSE outperforms ZF in the low-
SNR regime, while the two are essentially the same in the
high-SNR regime. Therefore, the above results do not seem
surprising at the first glance. However, in our problem setting
with α = 1, the division between the low-SNR regime
and the high-SNR regime has an explicit characterization
and depends on the network size. Moreover, Theorem 4,
combined with Corollary 2, shows that although MMSE
improves over ZF, it however does not solve ZF’s singularity
problem in the α = 1 setting.In the following section, we will
try to avoid the singularity problem by incorporating fading
into our network model.

3.3. Fading scenario

To avoid the singularity problem with the ZF and MMSE
precoders in the α = 1 nonfading scenario (with random
path phases), we incorporate path gain fading into our
network model. We further apply multiuser scheduling to the
linear precoding schemes to induce the path gain asymmetry
missing in the α = 1 nonfading scenario (with random path
phases). They are listed here together with the performance
upper bound and lower bound. For each user, we use h1 and
h2 to denote the path gain to its own BS and the adjacent BS,
respectively.

(1) Upper bound: optimal DPC [22] across all NKe users
under the sum power constraint 6, which is different from
the upper bound (24) under the per-cell power constraint.

(2) Lower bound: in each cell, the user with the biggest
path gain |h1| is selected; the SCP with reuse scheme is then
applied to serve the selected users.

(3) Cophasing: in each cell, the user with the biggest
beamforming gain |h1| + |h2| is selected; the cophasing with
reuse scheme is then applied to serve the selected users.
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(4) ZF: in each cell, the user with biggest path asymmetry
|h1|/|h2| is selected; the optimal ZF precoder is then applied
to serve the selected users.

For the Rayleigh fading scenario, we use the Monte-Carlo
method to simulate the above precoding schemes in single-
class networks with different network size:

(i) (32, 4) single-class network shown in Figure 7;

(ii) (64, 4) single-class network (5 repetitions) shown in
Figure 8.

Remark 11. Note that our results are obtained form numeri-
cal simulation, which is different from the analytical bounds
obtained in [2]. From the simulation results, we observe that

(1) cophasing and the lower bound lose half of the
degrees of freedom, while ZF and the upper bound
achieve full degrees of freedom;

(2) ZF outperforms cophasing in the high-SNR regime
(8–40 dB), while cophasing outperforms ZF in the
low-SNR regime (0–8 dB);

(3) the performance gap of ZF precoder from the upper
bound in the α = 1 fading scenario (see Figures
7 and 8) is almost the same as that in the α =
0.75 nonfading scenario with random phases (see
Figure 5). Moreover, ZF precoder with the proposed
multiuser scheduling algorithm performs robustly
in different network sizes, as shown in Figures 7
and 8. Therefore, by incorporating path gain fading
and using multiuser scheduling, the ZF precoder no
longer exhibits the singularity problem;

(4) the MMSE precoder is not included in the simu-
lation, since the network symmetry is broken by
multiuser scheduling, and the MMSE precoder poses
a nonconvex optimization. However, by definition,
the optimal MMSE precoder should outperform both
cophasing and ZF precoders.

4. DOUBLE-CLASS NETWORK

In real cellular networks, not all users are located at the edge
of cells. In this section, we consider the (N ,Ke,Ki) double-
class network specified in Section 2.1, where the users are
divided into two categories, cell-interior or cell-edge. Our
objective is to characterize the ergodic per-cell sum rate
region (21) under the per-cell power constraint SNR (the
notation SNR emphasizes our assumption of unit variance
noise) as specified in (18). Recall that we use Re and Ri to
denote the ergodic per-cell sum rate for the cell-edge users
and the cell-interior users, respectively.

As in the previous section, we are particularly interested
in suboptimal linear precoding schemes without resorting
to DPC. Additionally, in this section, we break the circular
array into clusters composed of a few cells, so as to serve both
the cell-interior and the cell-edge users through localized BS
cooperation. In particular, we present linear precoders based
on two-cell clustering and three-cell clustering, respectively.
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Figure 7: (32, 4) single-class network with Rayleigh fading, Monte-
Carlo simulation with 20 repetitions.

Moreover, we compare their performance together with the
outer bound and a baseline scheme, which are first described
in the following subsections.

4.1. Performance outer bound

Lemma 6 (outer bound). In the (N ,Ke,Ki) double-class
network under the per-cell power constraint (18), an outer
bound to the achievable rate region of (Re,Ri) is: let Pe and
Pi denote the average per-cell power allocated to the cell-edge
users and the cell-interior users, respectively, then the rate pair
(Re,Ri) is bounded as follows:

Re ≤ log2

(
1 +

(
1 + α2)Pe

)
, (41)

Ri ≤ log2

(
1 + β2Pi

)
, (42)

Re + Ri ≤ log2

(
1 +

(
1 + α2)Pe + β2Pi

)
, (43)

where Pe + Pi = SNR.

Proof. The detailed proof is included in Appendix F.

4.2. Performance baseline: cell-breathing

We use a simplified cell-breathing strategy [13] as our base-
line scheme: at odd time instances, each odd BS transmits
to its own cell-edge user group with power Qe, and each
even BS transmits to its cell-interior user group with power
Qi, as shown in Figure 9. At even time instances, the odd
BSs and even BSs switch roles to satisfy the average per-
cell power constraint 8. Note that “cell-breathing” refers to
the strategy where BSs alternate which alternate between
serving its cell-edge user group and cell-interior user group.
The baseline scheme is illustrated in Figure 9, where solid
thick arrows denote intended transmissions, and dashed
thin arrows denote interferences (also for Figure 11). Note
that, the cell-breathing technique can be implemented over
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Figure 8: (64, 4) single-class network with Rayleigh fading, Monte-
Carlo simulation with 20 repetitions.

time to satisfy the average per-cell power constraint or over
carriers in a multicarrier system to satisfy the instantaneous
per-cell power constraint.

Lemma 7 (performance baseline: cell-breathing). The
achievable rate region of the cell-breathing strategy, RCB, has
the following boundary:

Re = 1
2

log2

(
1 +

Qe

1 + α2Qi

)
, (44)

Ri = 1
2

log2

(
1 + β2Qi

)
, (45)

where the power allocation parameters Qe and Qi satisfy that
Qi +Qe = 2SNR.

Proof. Equation (44) is the cell-edge user group’s achievable
rate when they are served by their BS (with power Qe),
facing the power-α2Qi interference from the neighboring BS.
Equation (45) is the cell-interior user group’s achievable rate
when they are served by their BS (with power Qi), without
interference.

Remark 12. . Compared with the performance outer bound
(41), (15), and (43), the baseline cell-breathing scheme is
inferior in two perspectives.

(i) The cell-edge users’ performance is affected by the
interference from cell-interior users’ power (the α2Qi

term);

(ii) both cell-edge users and cell-interiors suffer half of
the degrees of freedom loss.

Though the first issue could be addressed by introducing
DPC, we would rather not pursue this approach for the sake
of complexity. In the following, we would partially address

Cell-edge user

Cell-interior user

Base-station

Cell 1

1

Qe

Cell 2

α

β
Qi

Cell 3

1 Qe

β

α Cell 4

Qi

Figure 9: Cell-breathing.

the second issue by introducing several locally cooperative
transmission schemes.

4.3. Cophasing with super-position coding (SPC)

The cophasing with SPC strategy proceeds as follows: at
odd time instances, each odd-even BS pair coherently
transmits to their shared cell-edge user group with power
Qe1 and Qeα, respectively, and SPC to the cell-interior user
group with power Qi1 and Qiα, respectively, as shown in
Figure 10; at even time instances, the odd BSs and the even
BSs switch roles. Similar to the baseline scheme, the cell-
breathing technique can also be implemented over carriers
in a multicarrier system to satisfy the instantaneous per-cell
power constraint.

Lemma 8 (cophasing with SPC). The boundary of the
achievable rate region of the cell-breathing with SPC strategy,
RCoPhase-SPC, is characterized as follows. Let (Qe1,Qeα,Qi1,Qiα)
denote the power allocation that satisfiesQe1 +Qeα+Qi1 +Qiα =
2SNR,

(i) if min{β2Qe1/(1+β2Qi1),β2Qeα/(1+β2Qiα)} ≥ (
√
Qe1

+α
√
Qeα)

2
/(1 +Qi1 + α2Qiα), then,

Re = 1
2

log2

⎛
⎜⎝1 +

(√
Qe1 + α

√
Qeα

)2

1 +Qi1 + α2Qiα

⎞
⎟⎠ , (46)

Ri = 1
2

log2

(
1 + β2Qi1

)
+

1
2

log2

(
1 + β2Qiα

)
, (47)
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Cell-edge user
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Qiα
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1

β

Qe1 Qi1

SPC
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α

β

QeαQiα

SPC

Figure 10: CoPhasing with SPC.

(ii) if min{β2Qe1/(1+β2Qi1),β2Qeα/(1+β2Qiα)} < (
√
Qe1

+α
√
Qeα)

2
/(1 +Qi1 + α2Qiα), then,

Re = 1
2

log2

(
1 + min

{
β2Qe1

1 + β2Qi1
,

β2Qeα

1 + β2Qiα

})
, (48)

Ri = 1
2

log2

(
1 + β2Qi1

)
+

1
2

log2

(
1 + β2Qiα

)
. (49)

Proof. The BSs add up the information intended for the
cell-edge users and the cell-interior users and send it out.
The cell-edge users treat the information intended for the
cell-interior users as noise, which achieves the maximal rate
Re of (46). The cell-interior users decode the information
intended for cell-edge users and then decode for their own
information, which achieves the maximal rate Ri of (47).
However, to ensure that the cell-interior users be able to
decode the information intended for the cell-edge users, the
power allocation parameters need to satisfy

min

{
β2Qe1

1 + β2Qi1
,

β2Qeα

1 + β2Qiα

}
≥
(√
Qe1 + α

√
Qeα

)2

1 +Qi1 + α2Qiα
, (50)

which essentially states that the information intended for the
cell-edge users should have better SINR when received by the
cell-interior users as compared to when received by the cell-
edge users. Otherwise, the cell-edge users need to lower their
rate Re to (48).

Remark 13. Adding SPC to each BS regains the full degree
of freedom for cell-interior users. However, the cell-edge

Cell-edge user

Cell-interior user

Base-station

Cell 1
1 β

Qe1 Qi1

SPC

Cell 2

1 α

β Qiβ

Cell 3

QeαQiα

α

β

SPC

Figure 11: Cell-breathing with SPC.

users still suffer from half degree of freedom loss. Moreover,
cophasing to the cell-edge users does require CSIT knowl-
edge.

4.4. Cell-breathing with SPC

The cell-breathing with SPC strategy proceeds by breaking
the network into 3-cell clusters at each instance. We take
Figure 11 as an example to explain this strategy: the center
BS serves its cell-interior group with powerQiβ; the BS in cell
1 serves its cell-edge user group with power Qe1 and SPC to
its cell-interior user group with power Qi1; the BS in cell 3
serves the cell-edge user group of cell 2 with power Qeα and
SPC to its cell-interior user group with power Qiα. Note that
cell-breathing (rotating the 3-cell cluster layout around the
ring) can be implemented over time such that the average
per-cell power constraint 8 is satisfied, or over the carriers
in a multicarrier system such that the instantaneous per-cell
power constraint is satisfied.

Lemma 9 (cell-breathing with SPC). The achievable rate
region of the cell-breathing with SPC strategy, RCB-SPC,has the
following boundary:

Re = 1
3

log2

(
1+

Qe1

1+Qi1 +α2Qiβ

)
+

1
3

log2

(
1+

α2Qeα

1+α2Qiα+Qiβ

)
,

Ri = 1
3

log2

(
1+β2Qi1

)
+

1
3

log2

(
1+β2Qiα

)
+

1
3

log2

(
1+β2Qiβ

)
,

(51)
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Figure 12: Double-class network, α = 1, β = 10, and SNR = 20 dB.

where the power allocation parameters (Qe1,Qeα,Qi1,Qiα,Qiβ)
satisfies Qe1 +Qeα +Qi1 +Qiα +Qiβ = 3SNR.

Proof. The proof is omitted, since it is similar to the proof of
Lemma 8.

Remark 14. The significance of cell-breathing with SPC
strategy is that it improves the cell-edge users to have 2/3
degree of freedom while maintaining full degree of freedom
for the cell-interior users. Moreover, SPC does not require
CSIT and is relatively easy to implement in practice.

4.5. Performance comparison

In double-class networks, we compare the above coopera-
tive transmission strategies (together with the performance
upper bound and the baseline scheme). The comparison is
carried out for α = 1 and β settings. The SNR is set to be
20 dB.

(i) The β = 10 case shown in Figure 12.

(ii) The β = 2 case shown in Figure 13.

Remark 15. With fairness in mind, we are most interested
in the equal rate performance of various cooperative trans-
mission strategies, which corresponds to the Re = Ri line in
Figures 12 and 13. Comparing the above numerical results,
we obtain the following observations.

(i) The β = 10 case is a typical example of networks with
large cell size, where the cell-edge users and cell-interior users
experience significantly disparate signal qualities. The β =
2 case is a typical example of networks with small cell size,
where the cell-edge users and cell-interior users experience
less disparate signal qualities. From Figures 12 and 13, we

0

1

2

3

4

5

6

7

8

9

R
i

(b
ps

/H
z/

ce
ll)

0 1 2 3 4 5 6 7 8

Re (bps/Hz/cell)

Upper bound
CB-SPC
Co-phase-SPC

Baseline
Re = Ri

Figure 13: Double-class network, α = 1, β = 2, and SNR = 20 dB.

observe that the cell-breathing with SPC scheme recovers half
of the gap between the baseline and the upper bound.

(ii) Note that the cell-breathing with SPC and the base-
line cell-breathing scheme do not require CSIT knowledge,
while the cophasing with SPC scheme requires perfect local
CSIT knowledge.

(iii) Compared with the cell-breathing scheme, both
SPC-based schemes, CB-SPC, and cophase-SPC, require
some additional processing complexity at the cell-interior
users.

Therefore, to choose a suitable cooperative transmission
strategy in double-class networks not only depends on many
network parameters (like cell size) but also admits a tradeoff
between the performance improvement and the requirement
for BS cooperation, signal processing complexity and CSIT
knowledge.

5. CONCLUSIONS

In this paper, we investigated the potential benefits of
cooperative downlink transmission in multicell networks.
In single-class networks where the users are clustered at
the cell-edges, we have obtained analytical performance
expressions for DPC, cophasing, ZF, and MMSE precoders.
In large networks and the high-SNR regime, we have
demonstrated the asymptotic performance loss incurred by
the ZF precoder, which indicates a singularity problem with
the symmetric path gain setting. Moreover, by analyzing the
different behaviors of MMSE precoder in different (N , SNR)
regimes, we shown that the MMSE precoder does not solve
the singularity problem. However, by incorporating path
gain fading and multiuser scheduling, we eased the linear
precoders’ singularity problem, which is verified by Monte-
Carlo simulations.

We further extended our network model to include cell-
interior users and characterized the per-cell sum rate region
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for the rate pairs of the cell-edge and cell-interior users
for various cooperative downlink transmission schemes.
Besides an outer bound and the baseline achieved by the
cell-breathing scheme, we have also studied several hybrid
strategies, including cophasing with SPC and cell-breathing
with SPC. The comparison of the achievable rates by
different transmission strategies exhibits a tradeoff between
the performance improvement and the requirement for
BS cooperation, signal processing complexity and CSIT
knowledge.

APPENDICES

A. PROOF OF THEOREM 2

Theorem 2 is proved as follows:

C(N , SNR)

= EH[C(H,N , SNR)]

≤ EH

[
min

Λ≥0,Tr(Λ)≤1/SNR
max

Tr(Pu)≤1

1
N

log2
det(HPuH†+Λ)

det(Λ)

]

(A.1)

≤ EH

[
max

Tr(Pu)≤1

1
N

log2
det(HPuH†+(1/N SNR)I)

det((1/N SNR)I)

]

(A.2)

= EH

[
max

Tr(Qu)≤N SNR

1
N

log2
det

(
HQuH† + I

)

det(I)

]
(A.3)

≤ EH

[
max

Tr(Qu)≤N SNR

1
N

log2

N∏

i=1

(
HQuH† + I

)
ii

]
(A.4)

= max
Tr(Qu)≤N SNR

1
N

log2

N∏

i=1

(
qui + α2qui−1 + 1

)
(A.5)

≤ max
Tr(Qu)≤N SNR

log2
1
N

N∑

i=1

(
qui + α2qui−1 + 1

)

= log2

(
1 +

(
1 + α2)SNR

)

= RUB(SNR).

(A.6)

Step (A.1) follows by applying Theorem 1. Inequality (A.2)
follows by choosing Λ = (1/N SNR)I.

Step (A.3) follows by replacing Pu with Qu = N SNRPu.
Inequality (A.4) follows by applying the Hadamard’s
inequality for the positive semidefinite matrix (HQuH† +
I). Step (A.5) follows from the fact that, in the nonfading
scenario (with random path phases), the diagonal entries of
(HQuH† + I) are independent of the specific channel matrix
H. Inequality (A.6) follows from the known fact that the
arithmetic mean is no less than the geometric mean.

B. PROOF OF THEOREM 3 AND COROLLARY 1

In the (N , 1) single-class network resulted from intra-cell
TDM, the instantaneous per-cell sum rate under the per-cell
power constraint (18) achieved by inter-cell DPC coincides

with the per-cell sum-rate capacity of the (N , 1) single-class
network, which is specified as follows:

RDPC(H,N , SNR)

= 1
N
Csum(H,N , SNR)

= min
Λ≥0,Tr(Λ)≤1/SNR

max
Tr(Pu)≤1

1
N

log2
det

(
HPuH†+Λ

)

det(Λ)
,

(B.1)

where H is specified in (25). Note that the above equation
follows from Theorem 1. We calculate RDPC(H,N , SNR) by
characterizing an upper bound and a lower bound to above
expression and showing that the two bounds coincide.

B.1. Upper bound on RDPC(H,N , SNR)

We obtain an upper bound on RDPC(H,N , SNR) by setting
Λ = (1/N SNR)I,

RDPC(H,N , SNR)≤ max
Tr(Pu)≤1

1
N

log2
det

(
HPuH†+(1/N SNR)I

)

det((1/N SNR)I)

= max
Tr(Pu)≤1

1
N

log2 det
(

H(N SNRPu)H†+I
)

= max
Tr(Qu)≤N SNR

1
N

log2 det
(

HQuH† + I
)
,

(B.2)

where the last step follows by replacing Pu with Qu =
N SNRPu. Our objective is to show that the solution to the
above maximization is Qu = SNR I. Since [23] shows that
log2 det(HQuH† + I) is concave in Qu, we only need to verify
that it is also invariant to the rotation of Qu, which is proved
as follows. Note that HQuH† + I has the following form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A′ αe jφ1qu1 0 · · · αe− jφN quN
αe− jφ1qu1 A′′ αe jφ2qu2 · · · 0

0 αe− jφ2qu2
. . .

. . .
...

...
...

. . . B′ C′

αe jφN quN 0 · · · B′′ C′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.3)

where A′ = 1 + α2quN + qu1 , A′′ = 1 + α2qu1 + qu2 , B′ =
1 + α2quN−2 + quN−1, B′′ = αe− jφN−1quN−1, C′ = αe jφN−1quN−1,
C′′ = 1+α2quN−1 +quN . Moreover, det(HQuH† |φ1,...,φN=0 +I) is
invariant to the rotation of Qu, which can be clearly observed
from (B.3). Let first define a sequence of matrices as follows:

Λ1 = 1 + α2qu1 + qu2 ,

Λ2(φ2) =
[

Λ1 αe jφ2qu2

αe− jφ2qu2 1 + α2qu2 + qu3

]
,

Λn(φ2, . . . ,φn) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Λn−1(φ2, . . . ,φn−1)

0
...
0

αe jφnqun
0 · · · 0 αe− jφnqun 1 + α2qun + qun+1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(B.4)
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Lemma 10 (phase independence). The determinants of
Λ1, . . . ,Λn as defined above are independent of the macro-
phase parameters φ1, . . . ,φn.

Proof. The lemma follows from the following two initial
conditions and one iterative relation:

detΛ1 = 1 + α2qu1 + qu2 ,

detΛ2 =
(
1 + α2qu1 + qu2

)(
1 + α2qu2 + qu3

)− α2(qu2
)2

,

detΛn =
(
1 + α2qun + qun+1

)
detΛn−1

− α2(qun
)2

detΛn−2, n ≥ 3.

(B.5)

By examining (B.3), we have

det
(

HQuH† + I
) = (1 + α2quN + qu1 ) detΛN−1

− α2(qu1 )2 detΛN−2

− α2(quN )2 detΛN−2

+ 2(−1)N+1αNqu1 · · · quNcosΘ,

det
(

HQuH† |φn=0 + I
) = (1 + α2quN + qu1 ) detΛN−1

− α2(qu1 )2 detΛN−2

− α2(quN )2 detΛN−2,
(B.6)

then we have the following expression:

det
(

HQuH† + I
) = det

(
HQuH† |φ1,...,φN=0 + I

)

+ 2(−1)N+1αNqu1 · · · quNcosΘ,
(B.7)

which clearly indicates that det(HQuH† + I) is invariant to
the rotation of Qu. Therefore,

RDPC(H,N , SNR) ≤ max
Tr(Qu)≤N SNR

1
N

log2 det
(

HQuH† + I
)

Qu=SNR I= 1
N

log2 det
(

SNR HH† + I
)
.

(B.8)

B.2. Lower bound on RDPC(H,N , SNR)

We obtain a lower bound on RDPC(H,N , SNR) by setting
Pu = (1/N)I:

RDPC(H,N , SNR) ≥ min
Λ

1
N

log2
det

(
(1/N)HH† +Λ

)

det(Λ)
.

(B.9)

Our objective is to show that the solution to the above
minimization is Λ = (1/N SNR)I. Since [23] shows that
log2(det((1/N)HH† + Λ)/ det(Λ)) is convex in Λ, we only
need to show that it is also invariant to the rotation of Λ.
Note that ((1/N)HH† +Λ) has the following form:

1
N

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D′ αe jφ1 0 · · · αe− jφN

αe− jφ1 D′′ αe jφ2 · · · 0

0 αe− jφ2
. . .

. . .
...

...
...

. . . E′ F′

αe jφN 0 · · · E′′ F′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.10)

where D′ = Nλ1 + α2 + 1, D′′ = Nλ2 + α2 + 1, E′ = NλN−1 +
α2 + 1, E′′ = αe− jφN−1 , F′ = αe jφN−1 , F′′ = NλN + α2 + 1.
Since the above matrix has almost the same layout as the one
in the previous section, we can show that det((1/N)HH† +
Λ) is invariant to the rotation of Λ through similar steps.
Therefore,

RDPC(H,N , SNR)

≥ min
Λ

1
N

log2
det

(
(1/N)HH†+Λ

)

det(Λ)

Λ=(1/N SNR) I= 1
N

log2
det

(
(1/N)HH† + (1/N SNR)I

)

det((1/N SNR)I)

= 1
N

log2 det
(

SNRHH† + I
)
.

(B.11)

Since this lower bound coincides with the upper bound (B.8),
we conclude that

RDPC(H,N , SNR) = 1
N

log2 det
(

SNR HH† + I
)
. (B.12)

B.3. Compute RDPC(H,N , SNR)

The closed form expression of det(SNR HH† + I) can be
obtained as follows. By setting qun = SNR, (B.5), and (B.6)
are simplified to be

detΛ1 = 1 + (1 + α2)SNR, (B.13)

detΛ2 = (1 + (1 + α2)SNR)2 − α2SNR2, (B.14)

detΛn = (1 + (1 + α2)SNR) detΛn−1

− (α2SNR2) detΛn−2,
(B.15)

det(SNR HH† + I) = (1 + (1 + α2)SNR
)

detΛN−1

− α2SNR2 detΛN−2

− α2SNR2 detΛN−2

+ (−1)N+1αNSNRN2cosΘ.

(B.16)

The second-order difference equation (B.15) can be con-
verted to

(
detΛn − γ+ detΛn−1

) = γ−(detΛn−1 − γ+ detΛn−2
)
,

or (detΛn − γ− detΛn−1
) = γ+(detΛn−1 − γ− detΛn−2

)
,

(B.17)

which, combined with (B.13) and (B.14), can be reformu-
lated as a first-order difference equation and solved to the
following solution:

detΛn = SNRn
n∑

k=0

γk+γ
n−k
− , (B.18)

where γ+ and γ− are defined in (28). Therefore,

det
(

SNR HH† + I
) = SNRN

(
γN+ + γN− + 2(−1)N+1αNcosΘ

)
.

(B.19)

The inter-cell DPC performance formula in Theorem 3
follows immediately by averaging of RDPC(H,N , SNR) over
the channel matrix H.
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B.4. Proof of Corollary 1

For a fixed channel matrix H, the asymptotic performance
loss of inter-cell DPC is

lim
N→+∞,SNR→+∞

RUB(SNR)− RDPC(H,N , SNR)

= lim
N→+∞

lim
SNR→+∞

× log2

(
1+(1+α2)SNR

(
2(−1)N+1αNcosΘ+γN+ +γN−

)1/N
SNR

)

= lim
N→+∞

log2

(
1 + α2

(
2(−1)N+1αNcosΘ + 1 + α2N

)1/N

)

= log2(1 + α2),
(B.20)

where the last step follows from the fact that
(2(−1)N+1αNcosΘ + 1 + α2N ) is bounded. Corollary 1
follows immediately by averaging over H on both sides of
the above equation.

C. PROOF OF LEMMAS 3 & 4 AND COROLLARY 2

C.1. Proof of Lemmas 3 & 4

The un-normalized ZF precoder is U = (H†)−1, while the
un-normalized ZF filter is V = (H−1)†. Plugging V into
the uplink channel expression (15), we obtain the following
effective uplink channel:

x̂u = xu + H−1wu, (C.1)

where the noise level of x̂u is ((H†H)
−1

)nn. Since,

H†H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + α2 αe jϕ2 0 · · · αe− jϕ1

αe− jϕ2 1 + α2 αe jϕ3 · · · 0

0 αe− jϕ3
. . .

. . .
...

...
...

. . . 1 + α2 αe jϕN

αe jϕ1 0 · · · αe− jϕN 1 + α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (C.2)

By dividing the cofactor of H†H by the determinant of H†H,
we find that

(
(H†H)

−1)
11 = · · · =

(
(H†H)

−1)
NN

= 1 + α2 + · · ·α2(N−1)

(
1 + α2N

)
+ 2(−1)N+1αNcosΘ

.
(C.3)

The above equal-diagonal-element property of (H†H)
−1

is
significant, since it confirms that the symmetric uplink
power allocation Pu = SNR I achieves the maximal per-cell
sum rate using ZF filter under both the sum power constraint
(17) and the per-cell power constraint (19). The conventional
uplink-downlink duality [17, 18] states that, if the downlink
precoder U is the same as the uplink filter V, the maximal
sum rate is the same in the downlink as in the uplink under
the sum power constraints (16) and (17), respectively.

Plugging U into the downlink channel expression (12),
we obtain the following effective downlink channel:

yd = bd + wd, (C.4)

where the per-cell power constraint (18) reduces to
((

H−1)†PdH−1)
nn ≤ SNR, n = 1, . . . ,N. (C.5)

Since

HH† =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + α2 αe jφ1 0 · · · αe− jφN

αe− jϕ1 1 + α2 αe jφ2 · · · 0

0 αe− jφ2
. . .

. . .
...

...
...

. . . 1 + α2 αe jφN−1

αe jφN 0 · · · αe− jφN−1 1 + α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (C.6)

the diagonal entries of (HH†)
−1

are also identical and the
same as the diagonal entries of (H†H)

−1
:

((
HH†)−1)

11 = · · · =
((

HH†)−1)
NN

= 1 + α2 + · · ·α2(N−1)

(
1 + α2N

)
+ 2(−1)N+1αNcosΘ

.
(C.7)

Therefore, we consider the following symmetric downlink
power allocation:

Pd = SNR((
HH†)−1)

11

I, (C.8)

which satisfies the per-cell power constraint and achieves
the same sum rate as the uplink sum rate achieved by the
symmetric uplink power allocation Pu = SNR I:

RZF(N , SNR) = log2

(
SNR(

(H†H)−1)
11

)

= log2

(
1+

(1+α2N )+2(−1)N+1αNcosΘ
1+α2 +· · ·α2(N−1)

SNR
)
.

(C.9)

Since this is also the maximal achievable downlink per-cell
sum rate using ZF precoder under the sum power constraint,
which should by definition dominate the maximal achiev-
able downlink per-cell sum rate under the per-cell power
constraint. Therefore, we have established Lemmas 3 and 4
simultaneously.

C.2. Proof of Corollary 2

For a fixed channel matrix H, the asymptotic performance
loss of inter-cell ZF is

lim
N→+∞,SNR→+∞

RUB(SNR)− RZF(H,N , SNR)

= lim
N→+∞

lim
SNR→+∞

log2

(
1 + (1 + α2)SNR

1 + A SNR

)

= lim
N→+∞

log2

((
1 + α2

)(
1 + α2 + · · · + α2(N−1)

)
(
1 + α2N

)
+ 2(−1)N+1αNcosΘ

)

= log2
1 + α2

1− α2
,

(C.10)
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where A = ((1 + α2N ) + 2(−1)N+1αNcosΘ)/(1 + α2 + · · · +
α2(N−1)). Corollary 2 follows immediately by averaging over
H on both sides of the above equation.

D. PROOF OF LEMMA 5

The un-normalized uplink MMSE filter and downlink
MMSE precoder are

VMMSE = UMMSE =
(

1
SNR

I + HH†
)−1

H. (D.1)

Plugging them into the uplink channel (15) and the
downlink channel (12), respectively, we obtain the following
effective channel representations:

x̂u=
(

H†
(

1
SNR

I+HH†
)−1

H
)

xu+
(

H†
(

1
SNR

I+HH†
)−1)

wu,

yd =
(

H†
(

1
SNR

I + HH†
)−1

H
)

bd + wd.

(D.2)

The uplink per-cell power constraint is pun ≤ SNR, n =
1, . . . ,N , while the downlink per-cell power constraint
reduces to
(

UMMSEPuU†
MMSE

)
nn =

(
VMMSEPuV†

MMSE

)
nn ≤ SNR. (D.3)

To characterize the lower bound in Lemma 5, we consider the
following uplink and downlink symmetric power allocations:

pu1 = · · · = puN = SNR,

pd1 = · · · = pdN =
SNR

maxi
(

VMMSEV†
MMSE

)
ii

, (D.4)

which satisfy the per-cell power constraints. In order to show
that the above power allocations achieve the same per-cell
sum rate, we can show that the following achieved SINRs are
the same:

SINRu
n =

SNR
∣∣(H†((1/SNR)IN + HH†)−1

H
)
nn

∣∣2

(
V†

MMSEVMMSE
)
nn + SNR

∑
k /=nB

,

SINRd
n =

SNR
∣∣(H†((1/SNR)IN + HH†)−1

H)nn
∣∣2

maxi
(

VMMSEV†
MMSE

)
ii + SNR

∑
k /=nC

,

(D.5)

where B = |(H†((1/SNR)IN + HH†)
−1H)nk|2, C =

|(H†((1/SNR)I + HH†)
−1H)nk|2. Equivalently, we need to

show that

max
i=1,...,N

(
VMMSEV†

MMSE

)
ii =

(
V†

MMSEVMMSE
)
nn, n = 1, . . . ,N.

(D.6)

We achieve this objective by showing that the diagonal entries
of V†

MMSEVMMSE and VMMSEV†
MMSE are all the same. Towards

this objective, we need the following lemmas.

Lemma 11 (channel decomposition). The channel matrix H
in (25) can be expressed as follows:

H = LΣR†, (D.7)

L = diag
(
e− jφN , e− j(φN+φ1), . . . , e− j(φN+φ1+···+φN−2),

e− j(φN+φ1+···+φN−1)),

R = diag
(
e− j(θ11+φN ), e− j(θ22+φN+φ1), . . . ,

e− j(θN−1N−1+φN+φ1+···+φN−2), e− jθNN
)
,

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0 α
α 1 · · · 0 0

0 α
. . .

...
...

...
...

. . . 1 0
0 0 · · · α e jΘ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(D.8)

Lemma 12 (knock-out matrix identity).

B†
(

I + BB†
)−1 = (I + B†B

)−1
B†. (D.9)

Proof. With A, U, C, and V denoting matrices of correct size,
the Woodbury matrix identity is

(A + UCV)−1 = A−1 − (A−1U
)(

C−1 + VA−1U
)−1(

VA−1).
(D.10)

Substituting A and C with the identity matrix I, U with B†

and V with B, the Woodbury matrix identity (D.10) reduces
to

(
I + B†B

)−1 = I− B†
(

I + BB†
)−1

B. (D.11)

By multiplying both sides of the above identity with B†, we
obtain
(

I + B†B
)−1

B† = B† − B†
(

I + BB†
)−1

BB†

= B† − B†
(

I + BB†
)−1(

I + BB† − I
)

= B†
(

I + BB†
)−1

.
(D.12)

Now, we are ready to show the connections between the
diagonal entries of VMMSEV†

MMSE and V†
MMSEVMMSE:

(
VMMSEV†

MMSE

)
ii

=
((

1
SNR

I+HH†
)−1

HH†
(

1
SNR

I+HH†
)−1)

ii

Lemma 11=
(

L
((

1
SNR

I + ΣΣ†
)−1

ΣΣ†

×
(

1
SNR

I + ΣΣ†
)−1)

L†
)

ii

=
((

1
SNR

I + ΣΣ†
)−1

ΣΣ†
(

1
SNR

I + ΣΣ†
)−1)

ii

Lemma 12=
((

1
SNR

I + ΣΣ†
)−1

Σ
(

1
SNR

I + Σ†Σ
)−1

Σ†
)

ii

Lemma 12=
((

1
SNR

I + ΣΣ†
)−1( 1

SNR
I + ΣΣ†

)−1

ΣΣ†
)

ii

=
(

1
SNR

I + ΣΣ†
)−1

ii
− 1

SNR

((
1

SNR
I + ΣΣ†

)2)−1

ii
.

(D.13)
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The diagonal entries of both ((1/SNR)IN + ΣΣ†)
−1

and

(((1/SNR)I + ΣΣ†)
2
)
−1

are identical, which can be veri-
fied in the same way as HH† in Appendix A. Therefore,
VMMSEV†

MMSE also has identical diagonal entries. Similarly,

(
V†

MMSEVMMSE
)
ii =

(
1

SNR
I + Σ†Σ

)−1

ii

− 1
SNR

((
1

SNR
I + Σ†Σ

)2)−1

ii
,

(D.14)

which shows that V†
MMSEVMMSE also has identical diagonal

entries. Moreover, since

Tr
(

VMMSEV†
MMSE

) = Tr
(

V†
MMSEVMMSE

)
, (D.15)

we know that VMMSEV†
MMSE and V†

MMSEVMMSE have the
same diagonal entries as each other. Therefore, the maximal
downlink per-cell sum rate achieved by MMSE precoder is
lower bounded by the uplink per-cell sum rate achieved by
the symmetric uplink power allocation. Now, we explicitly
compute this lower bound. For the ease of computation, we
reformulate the uplink SINR achieved by MMSE filter as in
[24]

SINRn = SNR·h†nΓ−1
n hn, (D.16)

where hn is the nth column of the uplink channel matrix H†,
and Γn is the noise-plus-interference covariance matrix that
user n observes:

Γn = I + SNR
N∑

i=1,i /=n
hih

†
i . (D.17)

Since the users’ SINR are identical, we carry out the SINR
computation for user N only. The noise-plus-interference
covariance matrix of user N is

ΓN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + SNR αSNR e jφ1 0 · · · 0
X ′ X ′′ αSNR e jφ2 · · · 0

0 αSNR e− jφ2
. . .

. . .
...

...
...

. . . Y ′ Z′

0 0 · · · Y ′′ Z′′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(D.18)

where X ′ = αSNR e− jφ1 , X ′′ = 1 + (1 +α2)SNR , Y ′ = 1 + (1 +
α2)SNR, Y ′′ = αSNR e− jφN−1 , Z′ = αSNR e jφN−1 , Z′′ = 1 +
α2SNR. Note that ΓN has an embedded ΛN−2 matrix (defined
in (B.5)) in the center. Based on this observation, we have the
following recursive expression:

detΓN =
(
α2SNR2 + (1 + α2)SNR + 1

)
detΛN−2

− α2SNR2((1 + α2)SNR + 2
)

detΛN−3

+
(
α2SNR2)2

detΛN−4

= detΛN−1,

(D.19)

where, in the last step, we have applied the iterative expre-
ssion of detΛn in Appendix B. Since hN = [αe jθ1N , 0, . . . ,
0, e jθNN ]T ,

SINRN = SNR·h†N
(

I + SNR
N−1∑

i=1

hih
†
i

)−1

hN

= SNR
((
Γ−1
N

)
11α

2 +
(
Γ−1
N

)
NN

+
(
Γ−1
N

)
N1αe

− jφN +
(
Γ−1
N

)
1Nαe

jφN
)

= (γ+ − γ−)
(
γN+ + γN− + 2(−1)1+NαNcosΘ

)

γN+ − γN−
SNR− 1,

(D.20)

where γ+ and γ− are defined in (28). Now, Lemma 5 follows
immediately.

E. PROOF OF THEOREM 4

Note that γ+ and γ− are bounded as follows:

1 +
1√

SNR
≤ γ+ ≤ 1 +

2√
SNR

,

1− 1√
SNR

≤ γ− ≤ 1− 1
2
√

SNR
,

(E.1)

and therefore

lim
SNR→+∞

γ+= 1+, lim
SNR→+∞

γ−= 1−, (E.2)

which will be used in the following proof.
(i) 0 < η < 1/2. For any fixed C,

lim
SNR→+∞

(
1 +

C√
SNR

)N
= lim

SNR→+∞
eC·SNRη−1/2 = 1. (E.3)

With the bounds on γ+ and γ− listed above, we have that

lim
SNR→+∞

γN+ = 1, lim
SNR→+∞

γN− = 1. (E.4)

and therefore

lim
SNR→+∞

γk+ = 1, lim
SNR→+∞

γk− = 1, k = 1, . . . ,N. (E.5)

Therefore, for a fixed channel matrix H,

lim
SNR→+∞

RMMSE(N , SNR, H)− RZF(N , SNR, H)

= lim
SNR→+∞

log2

(
W SNR

1 +
((

2 + 2(−1)1+NcosΘ
)
/N
)

SNR

)

= lim
SNR→+∞

log2

( ((
2 + 2(−1)1+NcosΘ

)
/N
)

SNR

1 +
((

2 + 2(−1)1+NcosΘ
)
/N
)

SNR

)

SNR/N→+∞= 0,
(E.6)

where W = (γN+ + γN− + 2(−1)1+NcosΘ)/(γN−1
+ + · · ·+ γN−1

− ).
The first part of Theorem 4 follows immediately by averaging
both sides of the above equation over H.
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(ii) η > 1/2. Since γ+ > 1 + (1/
√

SNR) and γ− < 1 −
(1/2

√
SNR),

γN+ >
(

1 +
1√

SNR

)N

=
(

1 +
1√

SNR

)√SNR·SNRα−1/2

SNR→+∞−−−−−→ ∞,

γN− <
(

1− 1
2
√

SNR

)N

=
(

1− 1
2
√

SNR

)(−2
√

SNR)(−(1/2)SNRη−1/2)
SNR→+∞−−−−−→ 0.

(E.7)

Therefore, for a fixed channel matrix H,

lim
SNR→∞

RMMSE(N , SNR, H)− RCoPhasing(SNR)

= lim
SNR→+∞

log2

(
(γ+−γ−)

(
γN+ +γN−+2(−1)1+NcosΘ

)

γN+ −γN−

× SNR√
1 + 4SNR

)

= lim
SNR→+∞

log2

((
γN+ + γN− + 2(−1)1+NcosΘ

)

γN+ − γN−

×SNR(γ+ − γ−)√
1 + 4SNR

)

= lim
SNR→+∞

log2

(SNR·2
√

1/SNR + 1/4SNR2

√
1 + 4SNR

)

= 0.
(E.8)

The second part of Theorem 4 follows immediately by
averaging both sides of the above equation over H.

F. PROOF OF LEMMA 6

(i) Let Pe,n denote the power allocated for cell-edge users
in cell n. Assuming that Pe is the average per-cell power of
the cell-edge users, the average per-cell sum rate achievable
for the cell-edge users is upper bounded by the per-cell
sum rate of a single-class network under the sum power
constraint (16) with SNR replaced by Pe. Therefore, given a
fixed channel matrix H, Re is upper bounded as follows:

Re ≤ 1
N
Csum(N ,Pe, H)

= 1
N

max
Tr(Pu)≤NPe

log2 det
(

HPuH† + I
)

≤ 1
N

max
Tr(Pu)≤NPe

log2

N∏

n=1

(
1 + pun + α2pun−1

)

≤ max
Tr(Pu)≤NPe

log2

∑N
n=1

(
1 + pun + α2pun−1

)

N

≤ log2

(
1 + (1 + α2)Pe

)
,

(F.1)

which verifies (41). The first inequality holds since the pres-
ence of cell-interior users cannot increase the performance

of cell-edge users. The second inequality follows from the
Hadamard’s inequality for positive semidefinite matrices.
The third inequality follows from the fact that the arithmetic
average is no less than the geometric average.

(ii) Let Pi,n denote the power allocated for cell-interior
users in cell n. Since Pi is the average per-cell power allocated
for the cell-interior users, Ri is upper bounded as follows:

Ri ≤ 1
N

N∑

n=1

log2

(
1 + β2Pi,n

)

= log2

( N∏

n=1

(
1 + β2Pi,n

))1/N

≤ log2

∑N
n=1

(
1 + β2Pi,n

)

N
= log2

(
1 + β2Pi

)
,

(F.2)

which verifies (42). The first inequality holds since the
presence of cell-edge users cannot increase the performance
of cell-interior users. The second inequality follows from the
fact that the arithmetic average is no less than the geometric
average.

(iii) Let Pe,n and Pi,n denote the power allocated for cell-
edge users and cell-edge users, respectively, in cell n. Note
that the per-cell power constraint requires that Pe,n + Pi,n ≤
SNR. For a given fixed channel matrix H, the per-cell sum
rate Re + Ri is upper bounded as follows:

Re(N , SNR, H) + Ri(N , SNR, H)

Theorem 1= min
Λ≥0,Tr(Λ)≤1/SNR

max
Tr(Pu)≤1

1
N

log2
det

(
HPuH†+Λ

)

det(Λ)

Λ=(1/NSNR) I≤ max
Tr(Pu)≤1

1
N

log2
det

(
HPuH† + (1/NSNR)I

)

det((1/NSNR)I)

Qu=NSNR Pu

= max
Tr(Qu)≤NSNR

1
N

log2 det
(

HQuH† + I
)

Hadamard′s inequality
≤ max

Tr(Qu)≤N SNR

1
N

log2

N∏
n=1

×(que,n + α2que,n−1 + β2qui,n−1 + 1
)

≤ max
Tr(Qu)≤NSNR

log2
1
N

N∑

n=1

(
Pue,n + α2Pue,n−1 + β2Pui,n−1 + 1

)

= log2

(
1 +

(
1 + α2

)
Pe + β2Pi

)
,

(F.3)

which verifies (43) immediately.

NOTATIONS

Lowercase letters, underlined boldface lowercase letters,
boldface uppercase letters, [·]�, [·]T , and [·]† are used for
scalars, vectors and matrices, complex conjugate, transpose
and hermitian transpose, respectively.
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