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Abstract
We introduce a new method for human-machine collaborative
speech transcription that is significantly faster than existing
transcription methods. In this approach, automatic audio pro-
cessing algorithms are used to robustly detect speech in audio
recordings and split speech into short, easy to transcribe seg-
ments. Sequences of speech segments are loaded into a tran-
scription interface that enables a human transcriber to simply
listen and type, obviating the need for manually finding and seg-
menting speech or explicitly controlling audio playback. As a
result, playback stays synchronized to the transcriber’s speed
of transcription. In evaluations using naturalistic audio record-
ings made in everyday home situations, the new method is up to
6 times faster than other popular transcription tools while pre-
serving transcription quality.
Index Terms: speech transcription, speech corpora

1. Introduction
Speech transcription tools have been in use for decades, but
unfortunately their development has not kept pace with the
progress in recording and storage systems. It is easier and
cheaper than ever to collect a massive multimedia corpus, but
as the size of the dataset grows so does the challenge of pro-
ducing high quality, comprehensive annotations. Speech tran-
scripts, among other annotations, are critical for navigating and
searching many multimedia datasets.

1.1. Speech transcription

Our approach to speech transcription is to leverage the com-
plementary capabilities of human and machine, building a
complete system which combines automatic and manual ap-
proaches. We call this system BlitzScribe, since the purpose of
the tool is to enable very rapid orthographic speech transcrip-
tion.

To situate our system relative to other approaches, we con-
sider transcription along several key dimensions. Functionally,
transcription may be automatic or manual. Automatic meth-
ods require little human oversight but may be unreliable, while
manual methods depend on human labor but may be excessively
time consuming or expensive. Another dimension is the granu-
larity of time-alignment between the words and the audio. For
example, a transcript of an hour long interview might be a single
document with no intermediate time stamps, or each word could
be aligned to the corresponding audio. Time-aligned transcripts
require significantly more information, and thus more human
effort if generated manually. A third aspect is whether the tran-
scription must be performed in real time or offline. For example,
courtroom stenographers and closed-captioning (subtitling) of

live broadcasts must be performed in real time. Stenographers
can typically transcribe 200-300 words per minute [1] using a
specialized keyboard interface, but it may take years to develop
this proficiency. Recently, a method of “re-speaking” has grown
in popularity [2]. This method relies on a human to clearly re-
peat the speech of interest to an automatic speech recognizer in
a controlled environment.

While rapid transcription is possible with stenographers or
re-speaking, these methods may not be suitable for “unstruc-
tured” recordings. These are recordings consisting of natural,
spontaneous speech as well as extended periods of non-speech.
BlitzScribe is designed for offline processing of unstructured
audio, producing phrase-level aligned transcripts by combining
both automatic and manual processing. Our interest in such un-
structured recordings is driven by our work studying early lan-
guage acquisition for the Human Speechome Project (HSP) [3].
Language acquisition research has typically relied on manual
transcription approaches, but unfortunately transcription times
of ten to fifty times the actual audio duration are not uncom-
mon [4–6]. This may be acceptable for small corpora, but will
not scale to massive corpora such as the Speechome corpus,
which contains more than 100,000 hours of audio.

1.2. The Human Speechome Project

The goal of HSP is to study early language development
through analysis of audio and video recordings of the first two
to three years of one child’s life. The home of the family of
one of the authors (DR) with a newborn was outfitted with four-
teen microphones and eleven omnidirectional cameras. Ceiling
mounted boundary layer microphones recorded audio at 16 bit
resolution with a sampling rate of 48 KHz. Due to the unique
acoustic properties of boundary layer microphones most speech
throughout the house, including very quiet speech, was captured
with sufficient clarity to enable reliable transcription. Video
was also recorded throughout the home to capture non-linguistic
context. Our current analysis of the Speechome data is on the
child’s 9–24 month age range, with our first results reported
in [7]. However, beyond our analyses of the Speechome corpus,
we hope to contribute new tools and methods for replicating
such efforts in the future. The remainder of this paper describes
BlitzScribe, our system for rapid speech transcription.

2. Semi-automatic Speech Transcription
Functionally, manual speech transcription can be divided into
four basic subtasks:

1. FIND the speech in the audio stream.

2. SEGMENT the speech into short chunks of speech.
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Figure 1: Functional decomposition of manual transcription.
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Figure 2: User interaction model for BlitzScribe, which breaks
the FSLT cycle and introduces an optional CHECK step.

3. LISTEN to the speech segment.

4. TYPE the transcription for the speech segment.

Figure 1 depicts the FSLT sequence, along with the modality
of interaction at each stage. For example, FIND is primarily a
visual input task. Most transcription tools display a waveform
or spectrogram to facilitate finding speech. The user visually
scans the waveform or spectrogram, essentially querying the in-
terface for the next region of speech. In contrast, SEGMENT
requires output from the user, usually via the mouse. The user
then listens to the segment and types a transcript. Often, a seg-
ment must be replayed to find good segment boundaries. This
FSLT sequence is a reasonable sketch of the transcriber’s task
using either CLAN [8] or Transcriber [4], two popular tran-
scription tools. One criticism of this approach is that it relies
on an inefficient user interaction model – the user constantly
switches between physically separated input devices (keyboard
and mouse). It also requires the user engage in rapid context
switching, altering between visual and aural sensory modali-
ties, input and output subtasks, and interaction modes (textual
vs. spatial). The cost of this cycle both in terms of transcription
time and user fatigue is high.

In stenography, the stenographer uses only a keyboard inter-
face and need not browse an audio stream. In other words, dis-
pensing with the FIND and SEGMENT tasks in Figure 1. Fig-
ure 2 illustrates our design goal – a streamlined system which
focuses human effort where it is necessary, and replaces the
identification and segmentation of speech with an automatic
system. This leads to a simple user interface, eliminating the
need for the mouse and the associated costs of physically mov-
ing the hands between devices.

2.1. The BlitzScribe transcription system

There are two main components to the BlitzScribe system: an
automatic speech detector and an annotation tool. These two
components are connected via a central database, which stores
the automatically identified speech segments as well as the tran-
scriptions provided by the human annotator.

The system works as follows: the automatic speech detector
processes unstructured audio and outputs a set of speech seg-
ments. For the Speechome corpus, the audio is multitrack (14
channels) so the speech detector must also select the appropri-
ate channel. Speech segments, which are triples of start time,

Figure 3: The BlitzScribe user interface. Here the transcriber is
listening to segment 289, highlighted in green.

end time and channel, are stored in a relational database. Tran-
scription is performed using the BlitzScribe interface, shown in
Figure 3. Graphically, each speech segment is represented by
a text box where the transcriber enters the transcript, and sev-
eral checkboxes for indicating common error types. By using
the arrow keys, or by typing a transcript and hitting “return,”
the user advances through the list. A segment can be replayed
by hitting “tab.” One common error introduced by the speech
detector is the misidentification of non-speech audio as speech.
These errors are handled in a natural way: with no speech to
transcribe, the transcriber leaves the field blank, presses return
to advance, and BlitzScribe marks the segment as “not-speech.”
Both the transcripts and the not-speech labels are stored in the
database, and this information can be used later to improve the
speech detector performance. The transcriber can also provide
feedback on the segmentation quality by marking the segment
as “too long” if it includes non-speech or “cut off” if starts or
ends in the middle of an utterance.

False positives are quickly identified using the BlitzScribe
interface. However, false negatives, or speech that has been
missed by the automatic speech detector, require a different
approach. To this end, we use TotalRecall [9] to find missed
speech. TotalRecall was developed as a separate tool for data
browsing and annotation. It presents all audio and video chan-
nels in a timeline view, displaying audio using spectrograms.
Detected speech segments are overlaid on top of the spectro-
gram. TotalRecall can be used in a special mode that presents
only the portions of the spectrogram where speech was not de-
tected, since this is the audio that might contain false negatives.
This reduces the amount of audio to consider and helps focus
the user’s attention. In this mode, missed speech can be spotted
and saved to the database for transcription. We call transcription
with this optional CHECK step “safe mode”, and transcription
without this step “fast mode.” Figure 2 shows the relationship
between these modes.

In the BlitzScribe system, the human annotator and the au-
tomatic speech detector are intimately linked. Speech found by
the speech detector is presented to the human annotator for tran-
scription. The process of transcribing provides feedback to the
automatic system; each segment is effectively labeled as speech
(if there is a transcript) or non-speech. This information can
be used to improve the performance of the speech detector, as
described in the next section.



2.2. Automatic speech detection

The automatic speech detector processes audio and outputs
speech segments, which are stored in a central database. The
first stage is to represent the audio as a sequence of feature vec-
tors. Since the audio in the Speechome corpus is multitrack,
the “active” audio channels are identified prior to speech de-
tection. The resulting audio stream is then downsampled to 8
KHz (from 48 KHz in our case) and partitioned into a sequence
of 30 ms frames, with a 15 ms overlap. The feature vector
computed from each frame consists of MFCCs, zero crossings,
power, the entropy of the spectrum and the relative power be-
tween the speech and full frequency bands. To compute the
MFCCs we use the Sphinx 4 [10] libraries. The feature vectors
are then presented to a “frame level” classifier, which classifies
each frame as silence, speech or noise. The frame level classi-
fier is a boosted decision tree, trained with the Weka machine
learning library [11]. The frame level classifier returns a label
and a confidence score for each frame.

To produce segments suitable for transcription, the se-
quence of classified speech frames must be smoothed and
grouped together into segments. Smoothing refers to the pro-
cess of relabeling frames based on neighboring frames, to help
eliminate spurious classifications and produce segments of rea-
sonable length. This is accomplished using a dynamic program-
ming scheme which attempts to find the minimum cost label-
ing subject to two costs: a cost for relabeling a frame and a
cost for adjacent frames having different labels. Varying the
costs changes the degree of smoothing. Segmentation is ac-
complished simply by identifying groups of smoothed speech
frames. However, speech segments which are too long are split
into shorter segments at points of minimum energy, or at “low
confidence” points. Confidence is lower where unsmoothed
frame labels were non-speech, or the original frame classifica-
tion confidence was low.

To train the speech detector, we first fetch human labeled
segments from the database and apply feature extraction. This
yields a training set, which is used to train the boosted deci-
sion tree frame-level classifier. The smoothing parameters (the
opposing costs for state switching and relabeling) can also be
learned, though in practice we have simply selected these val-
ues by hand.

3. Evaluation
In this section, we present an empirical evaluation of the sys-
tem performance, showing BlitzScribe to be between 2.5 and
6 times faster than CLAN and Transcriber, two popular tran-
scription tools. We also consider inter-annotator consistency to
ensure that we are not compromising quality for speed.

3.1. Transcription speed comparison

We first measured transcription times for the HSP data using
CLAN and Transcriber to form a baseline. To make the com-
parison fair, we assumed that the multitrack audio had been pre-
processed into a single audio stream. The experimental proce-
dure was to ask multiple transcribers to separately transcribe
the same blocks of audio using the same tool, and to record the
time it took to complete the task. Six audio clips were exported
from the HSP corpus, five minutes each, from different times of
day in two separate rooms. These blocks contained significant
speech activity. Before beginning with a tool, transcribers had
practiced using the tools on other audio clips.

CLAN was used in “sonic mode,” in which the waveform is
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Figure 4: Transcription time factor comparison

displayed at the bottom of a text editor. The user transcribes by
highlighting and playing a block of audio, typing a transcrip-
tion, and then binding the transcription to the audio segment
using a key combination. In Transcriber, key combinations can
be used to play or pause the audio. A segment break is cre-
ated whenever the user hits return. The segment break ends the
previous segment and begins a new one. Each segment cor-
responds to a line in the transcription window. By typing, a
transcription is entered which is bound to the current segment.
For this evaluation, we sidestepped the issue of speaker annota-
tion. In CLAN, this is part of the process, in Transcriber it adds
significant overhead, and in BlitzScribe speaker identity is an-
notated automatically, but must be checked and corrected using
a separate tool.

To evaluate BlitzScribe, we began by considering fast
mode, and then evaluated the additional time required for the
CHECK step of safe mode. The experimental setup was essen-
tially the same as above, with blocks of HSP data assigned to
the same three transcribers. We recorded their times on audio of
5, 10 and 15 minutes in length. The time to perform CHECK in
TotalRecall was recorded relative to the audio duration and the
“non-speech time,” which is the total audio duration minus the
duration of just the speech. The speech duration is the cumu-
lative duration of the speech segments. The non-speech time is
of interest because it represents the amount of spectrogram the
annotator must inspect.

Figure 4 summarizes the results, showing the average tran-
scription time-factors relative to the audio duration and the
speech duration. We found Transcriber to be somewhat faster
than CLAN, requiring about 6 times actual time, or 13 times
speech time (though performance suffers when speaker identity
is annotated.) CLAN requires about 9-10 times actual time, or
18 times speech time. BlitzScribe in fast mode required about
1.5 times actual audio time, and 3 times speech time. The cost
of the CHECK step was about .71 times the audio duration, and
1.3 times the non-speech time. Adding this step to fast mode
transcription results in a time-factor of about 2.25 for actual au-
dio duration and 4.3 times speech time for safe mode.

These measurements raise an interesting question: how do
the two factors of audio duration and speech duration affect
transcription time? The CLAN and Transcriber user interfaces
entangle these two factors, since the audio duration determines
how much data there is to browse, while the speech time de-
termines the amount of annotation required. We found a very
consistent linear relationship between speech time and tran-
scription time in BlitzScribe. On the other hand, the CHECK
step relationship appeared non-linear, and in [12] we explored a
power-law model to account for browsing and annotation times.



In this work, we also explored the relative cost of identifying
and correcting false negatives (the CHECK step) to the cost in-
curred by false positives. We then used the relative costs to tune
the speech detector to optimize performance and minimize the
overall transcription time. Overall, the transcription speed is
consistent with the range reported in [6].

3.2. Transcription accuracy evaluation

BlitzScribe is designed for fast orthographic speech transcrip-
tion, with phrase-level alignment between the transcripts and
the audio segments. An accurate transcript is one which faith-
fully captures the words uttered in a given speech segment. In
order to obtain accuracy measures in the absence of a ground-
truth reference transcript, we look instead at inter-transcriber
agreement. Our assumption is that when multiple transcribers
agree, they have (likely) converged on the correct transcription.

To evaluate accuracy, we used the NIST “sclite” tool [13],
which takes a set of reference and hypothesis transcripts and
produces an error report. Accuracy between a reference tran-
script R and hypothesis transcript H is simply the fraction of
correct words in H relative to the total number of words in R.
Lacking a reference transcript, we calculated a symmetric ac-
curacy assuming first one transcript and then the other to be the
reference, then averaging. With this framework, we calculated
the symmetric accuracy for seven transcribers using BlitzScribe
on a large number of transcripts for an unfiltered audio set,
and a second calculation over a smaller set of transcripts for
“cleaner” audio. The average number of overlapping words per
transcriber pair was about 3700 words for the larger set, and
1000 words for the smaller, filtered set. We obtained an aver-
age pairwise accuracy of about 88% and 94% for these two sets,
respectively.

It was only after inspecting the transcription errors for the
first set that we realized just how challenging “speech in the
wild” is to transcribe. The Speechome corpus contains natu-
ral speech in a dynamic home environment, with overlapping
speech, background noise and other factors that contribute to
a difficult transcription task. Even after careful listening, the
authors could not always agree on the best transcription. This
point was also noted in [14]. Therefore, our second evaluation
focused on a subset of audio which was mostly adult speech,
such as when an adult was talking with the child at mealtime.
Many of the errors we did observe were for contractions and
short words such as “and,” “is” and so on. This is compara-
ble to the findings in [15]. Perhaps unique to our method, there
were some errors where a word at the end of a segment was tran-
scribed in the subsequent segment. While this was rare and for
our purposes, not an egregious error, it was penalized nonethe-
less. Overall, we find that the transcription accuracy with our
system and the issues we encountered are very similar to those
observed in [14].

4. Conclusion
Automating the FIND and SEGMENT subtasks of traditional
manual speech transcription leads to significant speed gains.
In practice, BlitzScribe is between 2.5 and 6 times faster than
two popular manual transcription tools. This is partly because
finding and segmenting speech is inherently time consuming.
Breaking the FSLT cycle reduces cognitive load, and eliminat-
ing the mouse allows the user to keep their hands in one place
and focus on listening and typing. This is where human exper-
tise is needed, since many interesting transcription tasks contain

challenging speech which is difficult for human transcribers and
impossible for today’s automatic speech recognizers.

We have introduced BlitzScribe as a semi-automatic speech
transcription system, which we have been using to transcribe the
Speechome corpus for the past two years. Our current team of
14 transcribers have average a transcription speed of about 800-
1000 words per hour, with some peaking at about 2500 words
per hour. Collectively, they transcribe about 100,000 words per
week, focusing on the child’s 9-24 month age range. We expect
this subset of the corpus to contain about 10 million words. Us-
ing traditional methods, transcribing a corpus of this size would
be too time consuming and costly to attempt. With BlitzScribe,
we have transcribed close to 30% of this data, which is already
providing new perspectives on early language development.
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