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INV ITED
P A P E R

Cooperative Localization in
Wireless Networks
In harsh environments where geographic positioning fails, communication between

wireless nodes can be used to improve the accuracy of location information.

By Henk Wymeersch, Member IEEE, Jaime Lien, Member IEEE, and Moe Z. Win, Fellow IEEE

ABSTRACT | Location-aware technologies will revolutionize

many aspects of commercial, public service, and military

sectors, and are expected to spawn numerous unforeseen

applications. A new era of highly accurate ubiquitous location-

awareness is on the horizon, enabled by a paradigm of

cooperation between nodes. In this paper, we give an overview

of cooperative localization approaches and apply them to

ultrawide bandwidth (UWB) wireless networks. UWB transmis-

sion technology is particularly attractive for short- to medium-

range localization, especially in GPS-denied environments:

wide transmission bandwidths enable robust communication

in dense multipath scenarios, and the ability to resolve

subnanosecond delays results in centimeter-level distance

resolution. We will describe several cooperative localization

algorithms and quantify their performance, based on realistic

UWB ranging models developed through an extensive mea-

surement campaign using FCC-compliant UWB radios. We will

also present a powerful localization algorithm by mapping a

graphical model for statistical inference onto the network

topology, which results in a net-factor graph, and by develop-

ing a suitable net-message passing schedule. The resulting

algorithm (SPAWN) is fully distributed, can cope with a wide

variety of scenarios, and requires little communication over-

head to achieve accurate and robust localization.

KEYWORDS | Cooperative processing; factor graphs; localization;
sum-product algorithm; ultrawide bandwidth transmission

I . INTRODUCTION

Location awareness is rapidly becoming an essential

feature of many commercial, public service, and military

wireless networks [1], [2]. Information collected or

communicated by a wireless node is often meaningful

only in conjunction with knowledge of the node’s
location. For example, sensor networks used for detect-

ing spatial variations in environmental conditions, such

as temperature or pollution, require knowledge of each

sensor’s location [3]–[5]. Location information also

facilitates a node’s interactions with its surroundings

and neighbors, enabling pervasive computing and social

networking applications [6]. Location-aware technologies

can enable or benefit a vast array of additional
applications, including intruder detection [7], blue force

tracking [8], finding friends or landmarks [9], health-

care monitoring [10], asset tracking [11], and emergency

911 services [12], [13].

Network nodes must have the capability to self-localize

in scenarios where nodes cannot be manually positioned or

located by a central system administrator [14], [15]. The

goal of self-localization is for every node to know its own
state. A state usually includes the two- or three-dimensional

position, and possibly other properties such as the velocity

and the orientation of the node [16]–[18]. The concept of

state depends on the application and may also vary from

node to node. In our exposition, we will use the terms state,

position, and location interchangeably, while in our examples

we will narrow the scope of state to two-dimensional

geographical coordinates. We will distinguish between two
types of nodes: agents, which have a priori unknown states,

and anchors, which have known states at all times. Both

agents and anchors may be mobile.

The localization process typically consists of two phases

[1]. The first phase is the measurement phase, during which
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agents measure internal state information (e.g., using an
inertial measurement unit (IMU)) and estimate signal

metrics1 based on direct communication with neighboring

agents and/or anchors. The second phase is the location-
update phase, during which agents infer their own state

based on the internal state measurements, estimated signal

metrics, and state information of neighboring nodes. For

instance, when an agent obtains distance estimates with

respect to three anchors, the agent can infer its own posi-
tion through trilateration, provided the agent knows the

positions of the anchors.

The measurement phase is affected by uncertainty due to

sources such as noise, multipath, blockages, interference,

clock drifts, and environmental effects [1], [19]–[24]. The

underlying transmission technology is a critical factor in

how these sources affect the measurements [2]. For

instance, the poor signal penetration capabilities of the
widely used Global Positioning System (GPS) prevent

consumer-grade GPS receivers from making reliable

measurements indoors, under forest canopies, and in certain

urban settings, leading to inadequate positional information

[25]. In challenging environments such as these, ultrawide

bandwidth (UWB) transmission technology [26]–[28] is a

promising alternative for localization [29]–[31]. UWB

systems are inherently well suited for localization since
the use of extremely large transmission bandwidths results

in desirable capabilities such as 1) accurate ranging due to

fine delay resolution; 2) simple implementation for

multiple-access communications; and 3) obstacle penetra-

tion capabilities [32]–[38]. For more information on the

fundamentals of UWB, we refer the reader to [26]–[28], and

[39]–[45] and references therein.

Given an underlying transmission technology, locali-
zation performance is also dependent on the specific

algorithm used in the location-update phase. An emerging

paradigm is cooperative localization, in which nodes help

each other to determine their locations [46]. Cooperative

localization has received extensive interest from the

robotics, optimization, and wireless communications

communities (see [14], [21], [30], [31], and [47]–[61]

and references therein). A simple comparison of conven-
tional and cooperative localization is depicted in Fig. 1:

while each agent (mobile unit) cannot independently

determine its own position based on distance estimates

with respect to the anchors (base stations), they can

cooperatively find their positions. In general, cooperative

localization can dramatically increase localization perfor-

mance in terms of both accuracy and coverage.2

In this paper, we provide an overview of cooperative

localization algorithms in wireless networks.

• We consider large-scale dynamic heterogeneous

networks and examine how cooperation can be

used to improve localization accuracy and coverage

with respect to noncooperative techniques.
• We focus on algorithms based on the principles of

estimation theory and statistical inference [62],

[63] and outline a framework for the systematic

design of inference algorithms, using the theory of

factor graphs (FGs) [64]–[66].

• We develop a localization algorithm by mapping a

FG onto the time-varying network topology and by

employing a spatiotemporal message schedule,
resulting in a network FG (Net-FG) and network

message passing (Net-MP). The proposed algo-

rithm, called SPAWN (sum-product algorithm over

a wireless network), is fully distributed and

cooperative. SPAWN also accounts for different

state types among nodes, for node mobility, and for

any uncertainties associated with both the mea-

surement and location-update phases.
• We show how SPAWN generalizes previously

proposed localization algorithms, reverting to

Bayesian filtering in the case of a single agent [18]

and to nonparametric belief propagation localization

[14] in the case of a homogeneous network with

static nodes.

This paper is organized as follows. In Section II, we

provide an overview of methods used for the two phases of
localization. We describe and compare various signal

metrics and localization approaches, emphasizing the

advantages of UWB as an underlying transmission

technology. In Section III, we provide a concise overview

of general purpose estimation techniques and factor

graphs. Section IV deals with non-Bayesian and Bayesian

1Signal metrics include any property of the received signal that
depends on the relative positions of the transmitter and the receiver.
Examples include the time of flight, the angle of arrival, and the received
signal strength.

2Coverage is the fraction of nodes that have an accurate location
estimate.

Fig. 1. The benefit of cooperative localization: using only distance

estimates with respect to the anchors (nodes 1, 2, and 5), agent nodes 2

and 4 are unable to determine their respective positions without

ambiguity. Observe that node 2 cannot communicate with node 5, and

node 4 cannot communicate with node 1. When agent nodes 2 and 4

communicate and range directly (as depicted by the red arrow), they

can cooperate to unambiguously determine their positions.
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cooperative localization strategies. Section V details the
results of an extensive range measurement campaign using

FCC-compliant UWB radios. We then present a case study

for indoor localization in large UWB networks in Section VI

and quantify the performance of different cooperative and

noncooperative localization algorithms in terms of accura-

cy and availability using experimental data. In Section VII,

we draw our conclusions and present avenues for further

research in this area.

Notation: Throughout this paper, we will use the

following notation. The state of node i at time t will be

denoted by x
ðtÞ
i . The state sequence of node i from time t1 to

t2 will be denoted by x
ðt1:t2Þ
i . Random variables will be

capitalized and vectors written in bold unless there is no

ambiguity. Distributions such as pXðxÞ will at times be

abbreviated by pðxÞ.

II . LOCALIZATION APPROACHES FOR
WIRELESS NETWORKS

In this section, we describe different types of signal

metrics and classify different types of localization algo-

rithms. We apply this classification to well-known local-

ization systems, considering both indoor and outdoor
scenarios.

A. Measurement Phase
In the first phase of localization, packets are exchanged

between neighboring nodes in the network (say, nodes A

and B). From the physical waveforms corresponding to

these packets, the receiver (node B) can extract informa-

tion regarding its location relative to the location of the
transmitter (node A) by measuring or estimating one or

more signal metrics. The inherent uncertainty in localiza-

tion arises from these signal metrics, which are subject to

various sources of error. Below, we briefly list several

common measurements and describe their use in locali-

zation and their sources of error.

The distance between nodes can be measured through a

variety of metrics. Received signal strength (RSS) exploits
the relation between power loss and the distance between

sender and receiver [67]. The ability of node B to receive

packets from node A, known as connectivity, can constrain

the distance between node A and node B to the communi-

cation range of node A [68], [69]. Distance measurements of

finer resolution can be obtained by estimating the propaga-

tion time of the wireless signals. This is the basis of time of

arrival (TOA), time difference of arrival (TDOA), and
round-trip time of arrival (RTOA) [23], [47]. RTOA is the

most practical scheme in a decentralized setting, as it does

not require a common time reference between nodes [70].

For example, node B sends a packet to node A at time tB;send

in its own time reference. Node A receives the packet at

time tA according to its own clock and responds with a

packet at tA þ�, where � is a time interval that is either

predetermined or communicated in the response packet.
Node B receives the packet from A at time tB;rec and can then

determine the distance dAB through the relation

ðtB;rec � tB;send ��Þ � v ¼ 2dAB, where v is the signal

propagation speed. Relative orientations can be determined

through angle of arrival (AOA) estimation when a node is

equipped with directional or multiple antennas [47]. For

instance, in a linear array with spatial antenna separation �,

the difference in arrival time between any two successive
antenna elements is given by �t ¼ �=ðv cos�ABÞ, where

�AB is the angle between the impinging signal and the

antenna array [20]. Beyond distance and angle, one can

estimate other properties such as the velocity of a node by

measuring Doppler shifts [71]. Information about the state of

the node can also be measured internally; for example,

distances traveled using an odometer or pedometer,

acceleration using an accelerometer, and orientation using
an IMU. More problem-specific techniques such as visual

odometry [72] may also be considered as signal metrics.

Measurements are subject to estimation errors. For

instance, RSS estimators may exhibit large errors due to

shadowing and multipath. The connectivity metric tends to

produce coarse location information, especially when the

communication range is large or the connectivity of the

network is low. Time delay-based signal metrics (such as
TOA, TDOA, RTOA, and AOA) are susceptible to errors

due to obstructions between the transmitter and the

receiver. These obstructions, leading to so-called non-line-

of-sight (NLOS) conditions, can cause a positive bias in the

distance estimate. Noise, interference, multipath, clock

drifts, and other sources may also introduce errors in

estimating arrival times. Finally, internal measurement

devices such as IMUs and odometers may accumulate
errors over time due to inherent properties of the sensors.

For additional information regarding sources of error, the

reader is referred to [1], [2], [23], [25], [47], [73], and [74].

B. Location-Update Phase
In the second phase, measurements are aggregated and

used as inputs to a localization algorithm. A possible

taxonomy of localization algorithms is the following
(see also [47], [54], and [75] and references therein).

1) Centralized Versus Distributed: In centralized locali-

zation, the positions of all agents are determined by a

central processor. This processor gathers measurements

from anchors as well as agents and computes the positions

of all the agents. Centralized algorithms are usually not

scalable and thus impractical for large networks. In
distributed localization, such as GPS, there is no central

controller and every agent infers its own position based

only on locally collected information. Distributed algo-

rithms are scalable and thus attractive for large networks.3

3Distributed localization is sometimes referred to as self-localization,
while centralized localization is sometimes referred to as remote
localization.
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2) Absolute Versus Relative: Absolute localization refers
to localization in a single predetermined coordinate system

[25]. Relative localization refers to localization in the

context of one’s neighbors or local environment [54], [76];

hence, the coordinate system can vary from node to node.

3) Noncooperative Versus Cooperative: In a noncoopera-

tive approach, there is no communication between agents,

only between agents and anchors. Every agent needs to
communicate with multiple anchors, requiring either a

high density of anchors or long-range anchor transmis-

sions. In cooperative localization, interagent communica-

tion removes the need for all agents to be within

communication range of multiple anchors; thus high

anchor density or long-range anchor transmissions are no

longer required. Since agents can obtain information from

both anchors and other agents within communication
range, cooperative localization can offer increased accu-

racy and coverage. We will quantify these performance

improvements in Section VI.

C. Outdoor and Indoor Localization

1) Outdoor Localization: Examples of outdoor systems

include GPS, LORAN-C, and radio-location in cellular
networks. GPS is a distributed, absolute, and noncooper-

ative localization approach [25], relying on TOA estimates

from at least four anchors (GPS satellites) to solve a four-

dimensional nonlinear problem (three spatial dimensions

and one time dimension, since the agent is not

synchronized to the anchors). Assisted GPS is a central-

ized version of GPS, reducing the computational burden

on the agents [25]. LORAN-C is a terrestrial predecessor
of GPS [77], which offers centralized, absolute, and

noncooperative localization services based on TDOA. Cell

phone radio-location services such as E911 commonly

employ TDOA and are centralized, absolute, and non-

cooperative [78], [79].

2) Indoor Localization: Existing and emerging indoor

localization methods include WiFi, radio-frequency iden-
tification (RFID), and UWB localization [80], [81].

RADAR, based on WiFi fingerprinting at multiple anchors

[82]; PlaceLab, using connectivity from 802.11 access

points; and GSM base stations [83] employ centralized,

absolute, and noncooperative approaches. Passive RFID

tags can be used in conjunction with RFID readers to

provide connectivity-based localization [84] that is

centralized, relative, and noncooperative. Both WiFi and
RFID systems suffer from poor accuracy due to coarse

measurements. On the other hand, UWB signals have a

number of characteristics that make them more attractive

for indoor localization, as well as for indoor communi-

cation in general [85]–[87]. The fine delay resolution of

UWB signals is well suited for estimating propagation

times (e.g., for RTOA or AOA), since the performance of

delay estimation algorithms improves with increasing
transmission bandwidth [23]. Moreover, the wide band-

width allows multipath components to be resolved and

enables superior signal penetration through obstacles

[27], [32]–[38]. Hence, robust communications in dense

multipath environments and ranging in NLOS conditions

can be achieved [32]–[36]. The penetration capabilities of

UWB signals also make them useful for detecting and

potentially compensating for the effects of obstacles and
NLOS conditions [88], [89]. In addition, UWB transmit-

ters are low complexity, low cost devices, practical for

dense and rapid deployment [90]. Since the power is

spread over a large bandwidth, UWB communication

systems are covert and power-efficient, and cause

minimal interference to other systems [26]–[28], [34].

UWB signals have the unique advantage of simultaneously

accomplishing robust communication and precision rang-
ing. Nodes can therefore extract information about their

relative positions from signals already used for commu-

nication without any additional overhead. The recently

completed IEEE 802.15.4a standard [91] will likely spawn

numerous practical systems and applications in this

sphere.

III . BACKGROUND ON INFERENCE

Before presenting cooperative localization algorithms, we

first give a brief overview of important techniques from

estimation theory and statistical inference, which can be
applied to the localization problem. There are a number of

approaches for estimating a parameter x from an

observation z. Apart from ad hoc techniques, we generally

categorize these as Bayesian or non-Bayesian, depending

on whether or not we consider x as a realization of a

random variable [62]. In this section, we describe both

approaches. Within the context of Bayesian techniques, we

then consider approximate inference, factor graphs, and
sequential estimation.

A. Non-Bayesian Estimation
Two common non-Bayesian estimators, which treat x

as an unknown deterministic parameter, are the least

squares (LS) estimator and the maximum likelihood (ML)

estimator.

• The LS estimator assumes that z 2 IRN and
z ¼ fðxÞ þ n, where fð�Þ is a known function

and n is a measurement error. The LS estimate of

x is obtained by solving the following optimization

problem:

x̂LS ¼ arg min
x

z� fðxÞk k2: (1)

The LS estimator does not exploit any knowledge

regarding the statistics of n.
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• The ML estimator accounts for the statistics of
noise sources and maximizes the likelihood

function

x̂ML ¼ arg max
x

pZjXðzjxÞ: (2)

B. Bayesian Estimation
Two common Bayesian estimators, which treat x as a

realization of a random variable X with an a priori
distribution pXðxÞ, are the minimum mean squared error

(MMSE) estimator and the maximum a posteriori (MAP)

estimator.

• The MMSE estimator finds the mean of the

a posteriori distribution

x̂MMSE ¼
Z

xpXjZðxjzÞdx: (3)

• The MAP estimator finds the mode of the

a posteriori distribution

x̂MAP ¼ arg max
x

pXjZðxjzÞ: (4)

If pXjZð�jzÞ is difficult to determine, or if the dimension-

ality of X is high so that the integration in (3) or the

maximization in (4) become intractable, we can resort

to MMSE or MAP estimates of the components of X
rather than the entire vector. For example, when

X ¼ ½X1; . . . ;XN�, then the MMSE (respectively, MAP)

estimate of Xk is given by the mean (respectively, mode) of
the marginal a posteriori distribution pXkjZð�jzÞ of the

variable Xk.

C. Approximate Inference
In many inference problems, the a posteriori distribu-

tion pXjZð�jzÞ is difficult to describe, and obtaining its

mean, mode, or marginals is a very hard problem. In such

situations, one can turn to an alternative distribution, say,
bXð�Þ, belonging to a certain class C. Inferences can then

be drawn based on a particular bXð�Þ that is close to
pXjZð�jzÞ. A common measure of closeness between

distributions is the Kullback–Leibler divergence (KLD)

[92], defined as

DðbXkpXjZÞ ¼
Z

bXðxÞ ln
bXðxÞ

pXjZðxjzÞ
dx: (5)

It is easy to verify that DðbXkpXjZÞ � 0 and that

DðbXkpXjZÞ ¼ 0 if and only if bX ¼ pXjZ. For a given

class C, we try to find the distribution bX that minimizes

the KLD

b�X ¼ arg min
bX2C

DðbXkpXjZÞ: (6)

Often b�X cannot be found in closed form; we can only

determine a description (e.g., a list of necessary conditions

imposed on bX) of the stationary points4 of DðbXkpXjZÞ.
Using this description, one can then develop iterative
algorithms to find those stationary points. Different

classes C lead to different solutions, including mean-field,

expectation-propagation, expectation-maximization, and

the sum-product algorithm (see Fig. 2). For a detailed

exposition, see [93] and [94]. These solutions can be

found through message passing on an FG, as detailed in

the next section.

D. Factor Graphs and the Sum-Product Algorithm
We cover some basic concepts of FGs and the SPA; for

a detailed treatment, the reader is referred to [64]–[66],

and [94].

In many inference problems, the a posteriori distribu-
tion can be factorized, with every factor �kð�Þ depending

only on a small subset of variables xk � x:

pXjZðxjzÞ ¼
1

Q

YM
k¼1

�kðxkÞ (7)

where M is the number of factors and Q is a (possibly

unknown) normalization constant.

1) Factor Graphs: A factor graph5 is a way to graphically

represent a factorization such as (7).

• For every factor, say, �ð�Þ, we create a vertex

(drawn as a circle or square) and label it B�.[

4A stationary point can be a minimum, a maximum, or a saddle-point.
5We focus on Forney-style FGs, also known as normal graphs [95].

Fig. 2. Minimizing the KLD can lead to different Bayesian inference

algorithms, including sum-product algorithm (SPA), MMSE,

mean-field (MF), expectation-propagation (EP),

expectation-maximization (EM), variational EM (VEM), and MAP.
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• For every variable X, we create an edge (drawn as

a line) and label it BX.[ When a variable X
appears in a factor �ð�Þ, we connect the edge X to
the vertex �.

Since edges can be connected to at most two vertices, we

must treat variables that appear in more than two factors as

a special case.

• For a variable X that appears in D > 2 factors, we

create a so-called equality vertex and label it B¼.[
We also create D edges and connect every edge to

the equality vertex and one of the D factors. The
edges are labeled with a dummy name of the

variable (e.g., X0 and X00 for X).

The equality vertex represents a Dirac delta function. For

instance, an equality vertex with edges X, X0, and X00

corresponds to a function �ðx� x0Þ�ðx� x00Þ. For nota-

tional convenience, we often label all the edges connected

to an equality vertex with the same label (X, in this case).

Let us examine a s imple example , where
X ¼ ½X1;X2;X3� has an a posteriori distribution that can

be factorized as

pðx1; x2; x3jzÞ ¼
1

Q
�Aðx1Þ�Bðx1; x2Þ�Cðx1; x2Þ�Dðx2; x3Þ

(8)

where Q is an unknown constant. Factorizations are by no

means unique: by grouping �Bð�Þ and �Cð�Þ into a new

factor, say,  ð�Þ, a different factorization is obtained:

pðx1; x2; x3jzÞ ¼
1

Q
�Aðx1Þ ðx1; x2Þ�Dðx2; x3Þ: (9)

FGs corresponding to (8) and (9) are depicted in Fig. 3.

2) Trees and Cyclic GraphsVPart 1: The factorization (8)

results in a cyclic FG,6 while (9) does not. This is an

important distinction. Only when the FG does not have
cycles, i.e., it is a tree, it can be shown that the a posteriori
distribution can be expressed as [94]

pXjZðxjzÞ ¼
QM

k¼1 pXkjZðxkjzÞQN
l¼1 pXljZðxljzÞ
� �dl�1

(10)

where M is the total number of factors, N is the total

number of variables, and dl is the number of factors in (7)

where the variable xl appears.7 For instance, when using

the factorization (9), we can express pðx1; x2; x3jzÞ as
(with d1 ¼ d3 ¼ 1, d2 ¼ 2)8

pðx1; x2; x3jzÞ ¼
pðx1; x2jzÞpðx2; x3jzÞ

pðx1jzÞ0pðx2jzÞ1pðx3jzÞ0
: (11)

Given a factorization of the form (7), we can introduce

a class CSPA of functions bXð�Þ of the following form:

bXðxÞ ¼
QM

k¼1 bXk
ðxkÞQN

l¼1 bXl
ðxlÞ½ �dl�1

(12)

s u b j e c t t o bXk
ðxkÞ�0, bXl

ðxlÞ�0,
P

xk
bXk
ðxkÞ¼P

xl
bXl
ðxlÞ¼1,

P
xknl bXk

ðxkÞ¼bXl
ðxlÞ, 8k; l : xl2xk. The

description of the stationary points of DðbXkpXjZÞ is

expressed in terms of the functions bXk
ð�Þ and bXl

ð�Þ.
Comparing (10) and (12), we see that when the FG of

the factorization of pXjZð�jzÞ has no cycles, the optimiza-

tion problem (6) with C ¼ CSPA has a unique global
minimizer b�X, with corresponding KLD equal to zero.

Furthermore, the a posteriori distribution pXjZð�jzÞ can be

recovered based solely on b�Xk
ð�Þ and b�Xl

ð�Þ, 8k; l, since the

uniqueness of the solution implies that

b�Xk
ðxkÞ ¼ pXkjZðxkjzÞ; 8k;xk (13)

b�Xl
ðxlÞ ¼ pXljZðxljzÞ; 8l; xl: (14)

3) The Sum-Product Algorithm: The SPA is a message
passing algorithm on a cycle-free FG that efficiently

computes b�Xk
ð�Þ and b�Xl

ð�Þ, 8k; l, when C ¼ CSPA. The SPA

operates by computing messages inside the vertices and

sending those messages over the edges.

Fig. 3. FG of �Aðx1Þ�Bðx1; x2Þ�Cðx1; x2Þ�Dðx2; x3Þ, on the left.

Grouping �Bð�Þ and �Cð�Þ into  ð�Þ yields the FG on the right.

6The FG of (8) has a cycle given by edges X01;X001 ; X2;X002 .

7For mathematical convenience, we need to assume that xk contains
at least two variables. We group variables together where necessary.
See also [94].

8Since �A has only one variable, we have grouped �A and  .
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A message over an edge X is a function of the
corresponding variable and is denoted �X!�ð�Þ or ��!Xð�Þ,
where � is a vertex adjacent to edge X. Given a factor

�ðx1; . . . ; xDÞ and incoming messages �Xk!�ð�Þ8k, the

outgoing message over edge Xi is given by

��!Xi
ðxiÞ /

Z
�ðx1; . . . ; xDÞ

Y
k 6¼i

�Xk!�ðxkÞdx1 . . .

dxi�1dxiþ1 . . . dxD (15)

where the proportionality symbol indicates that the mes-

sage ��!Xi
ð�Þ is normalized, such that

R
��!Xi

ðxiÞdxi ¼ 1.

For example, in Fig. 3, the message from  to X2 is given by

� !X2
ðx2Þ /

Z
 ðx1; x2Þ�X1! ðx1Þdx1: (16)

Messages start with the half-edges (sending a constant
message) and the vertices of degree 1 (sending the corre-

sponding factor). For example, in Fig. 3, �X3!�D
ðx3Þ / 1

and ��A!X1
ðx1Þ ¼ �Aðx1Þ. For equality vertices, it can be

shown that an outgoing message is simply the point-wise

product of the incoming messages. For example, in Fig. 3,

the message from X01 to �B is given by

�X01!�B
x01
� �
/ ��A!X1

x01
� �

��C!X001
x01
� �

: (17)

The marginal of a certain variable is obtained by point-

wise multiplication of the two messages passed over the

corresponding edge. In our example from Fig. 3,

b�X2
ðx2Þ / �X2!�D

ðx2Þ � ��D!X2
ðx2Þ: (18)

The marginal of a cluster of variables xk is obtained by

multiplying the incoming messages with the corresponding

factor. For instance, in the example from Fig. 3,

b�X1;X2
ðx1; x2Þ /  ðx1; x2Þ�X1! ðx1Þ�X2! ðx2Þ: (19)

4) Trees and Cyclic GraphsVPart 2: The SPA provides us

with exact marginals for FGs without cycles (i.e., trees).

For FGs with cycles, we can easily extend the SPA, which

becomes iterative. However, the computed functions
b�Xk
ð�Þ and b�Xl

ð�Þ are no longer exactly equal to the

corresponding marginal a posteriori distributions, and bX is

not necessarily a distribution [96]. Furthermore, in an FG

with cycles, there are many possible orders in which

messages are computed (also known as the message

schedule), and each schedule may lead to different
functions b�Xk

ð�Þ and b�Xl
ð�Þ. The ability to choose schedules

will turn out to be important in deriving a cooperative

localization algorithm.

E. Sequential Estimation
In some scenarios, variables may change over time.

Sequential or online estimation deals with such scenarios

by estimating variables at a certain time, say, variable xðtÞ at
time t, taking into account independent observations taken

up to and including t, say, zð1:tÞ ¼ ½zð1Þ; . . . ; zðtÞ� [17], [97],

[98]. We rely on the following Markovian assumptions:

pðxðtÞjxð0:t�1ÞÞ¼pðxðtÞjxðt�1ÞÞ and pðzðtÞjxð0:tÞÞ¼ pðzðtÞjxðtÞÞ.
It can then easily be shown that

p xðtÞjzð1:tÞ
� �

¼
Z

p xðtÞ; xðt�1Þjzð1:tÞ
� �

dxðt�1Þ (20)

/ p zðtÞjxðtÞ
� �

p xðtÞjzð1:t�1Þ
� �

(21)

where

p xðtÞjzð1:t�1Þ
� �

¼
Z

p xðtÞjxðt�1Þ
� �

p xðt�1Þjzð1:t�1Þ
� �

dxðt�1Þ:

(22)

This implies that, given pðxðt�1Þjzð1:t�1ÞÞ, we can determine

pðxðtÞjzð1:tÞÞ as follows: i) a prediction operation, during

which we determine the distribution pðxðtÞjzð1:t�1ÞÞ, given

all observations before time t, according to the integral in

(22); and ii) a correction operation, in which we account

for the new observation zðtÞ to calculate pðxðtÞjzð1:tÞÞ,
according to (21). Hence, at every time t, we have the
a posteriori distribution pðxðtÞjzð1:tÞÞ of the variable xðtÞ,
given all the observations up to and including time t. We

can determine the mean or the mode of this a posteriori
distribution, giving us the MMSE estimate or MAP

estimate of xðtÞ, respectively. The entire procedure is

initialized by pðxðtÞjzð1:tÞÞjt¼0 ¼ pðxð0ÞÞ.

Sequential Estimation and FGs: Sequential estimation can
be obtained by creating an FG of pðxð0:TÞjzð1:TÞÞ and then

applying the SPA. Using the Markovian assumptions and

the fact that the measurements are independent, we easily

find that

p xð0:TÞjzð1:TÞ
� �

/ p xð0Þ
� �YT

t¼1

p xðtÞjxðt�1Þ
� �

p zðtÞjxðtÞ
� �

(23)
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with a corresponding FG depicted in Fig. 4 for T ¼ 2. The

message schedule is shown with arrows, starting with the

black messages from the leaves of the tree. At time t ¼ 1,

the red message ��ð1Þ!Xð1Þ ð�Þ is given by

��ð1Þ!Xð1Þ xð1Þ
� �

/
Z
�Xð0Þ!�ð1Þ xð0Þ

� �

� �ð1Þ xð1Þ; xð0Þ
� �

dxð0Þ

¼
Z

p xð0Þ
� �

p xð1Þjxð0Þ
� �

dxð0Þ

¼ p xð1Þ
� �

(24)

which corresponds to the prediction operation. Using (17),

the blue message �Xð1Þ!�ð2Þ ð�Þ is given by

�Xð1Þ!�ð2Þ xð1Þ
� �

/� ð1Þ!Xð1Þ xð1Þ
� �

��ð1Þ!Xð1Þ xð1Þ
� �

¼ p zð1Þjxð1Þ
� �

p xð1Þ
� �

(25)

which is exactly the correction operation. At time slot

t ¼ 2, we easily find that ��ð2Þ!Xð2Þ ðxð2ÞÞ /
R
�Xð1Þ!�ð2Þ ðxð1ÞÞ

pðxð2Þjxð1ÞÞdxð1Þ a n d t h a t �Xð2Þ!�ð3Þ ðxð2ÞÞ / pðzð2Þjxð2ÞÞ
��ð2Þ!Xð2Þ ðxð2ÞÞ. The sequence of prediction operation (red

arrows) followed by correction operation (blue arrows)

continues with messages flowing from past to present to

future. In principle, messages can also be computed from

future to present to past, a process known as smoothing.

IV. COOPERATIVE LOCALIZATION

The concept of cooperation in networks is fairly new: it

relies on direct communication between agents rather

than through a fixed infrastructure [99]–[101]. Coopera-

tion has been successfully applied to wireless peer-to-peer

communication, leading to standards such as Bluetooth
[102] and Zigbee [103], and is expected to be applied to

cellular systems over the next few years [104].

In this section, we apply the cooperative paradigm to a
completely different problem: localization. We present

several fundamental cooperative localization algorithms

based on the methodologies from Section III. Both non-

Bayesian and Bayesian approaches will be considered. For

the sake of the exposition, we focus on small-scale

examples. In Section VI, we will present a case study for

a large network with more than 100 nodes.

A. Problem Formulation
We consider a wireless network with N nodes in an

environment E. Time is slotted, and nodes can move

independently from positions at time slot t� 1 to new
positions at time slot t. The state of node i at time t is

written as x
ðtÞ
i . We denote by SðtÞ!i the set of nodes from

which node i may receive signals during time slot t.
Similarly, we denote by SðtÞi! the set of nodes that may

receive a signal from node i during time slot t.
At time slot t, node i may estimate local metrics z

ðtÞ
i;self

based on internal measurements (e.g., using an IMU or an

odometer). Based on the signal received from node
j 2 SðtÞ!i, node i can estimate signal metrics z

ðtÞ
j!i. We

denote the collection of all signal metrics and all internal

measurements collected by all nodes at time t as zðtÞ. Note

that we can break up zðtÞ into z
ðtÞ
self and z

ðtÞ
rel, where z

ðtÞ
self

contains all the internal measurements of all the nodes,

while z
ðtÞ
rel contains all the relative signal metrics from all

the nodes with respect to their neighbors.

The goal of node i is to estimate its own state x
ðtÞ
i at

time t, given only information up to time t. Ideally, the

localization process should require low complexity and

communication overhead per node and incur a low

latency.

B. Assumptions
We make the following assumptions, which are

reasonable in many practical scenarios.

a) The states of the nodes are a priori independent:

pðxð0ÞÞ ¼
QN

i¼1 pðxð0Þi Þ.
b) Nodes move according to a memoryless walk:

p xð0:TÞ
� �

¼ p xð0Þ
� �YT

t¼1

p xðtÞjxðt�1Þ
� �

: (26)

c) Nodes move independently:

p xðtÞjxðt�1Þ
� �

¼
YN

i¼1

p x
ðtÞ
i jx

ðt�1Þ
i

� �
: (27)

d) Relative measurements are independent of the
internal measurements, conditioned on the states

Fig. 4. Sequential estimation: an FG of pðxð0:2Þjzð1:2ÞÞ, where

�ðtÞðxðtÞ; xðt�1ÞÞ is a shorthand for pðxðtÞjxðt�1ÞÞ and  ðtÞðxðtÞÞ
is a shorthand for pðzðtÞjxðtÞÞ.
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of the nodes:

p z
ð1:TÞ
rel jxð0:TÞ; z

ð1:TÞ
self

� �
¼ p z

ð1:TÞ
rel jxð0:TÞ

� �
: (28)

e) Internal measurements are mutually independent

and depend only on the current and previous state:

p z
ð1:TÞ
self jx

ð0:TÞ
� �

¼
YT

t¼1

p z
ðtÞ
self jx

ðt�1Þ;xðtÞ
� �

: (29)

f) Internal measurements at node i depend only on

the state of node i:

p z
ðtÞ
self jx

ðtÞ;xðt�1Þ
� �

¼
YN

i¼1

p z
ðtÞ
i;self jx

ðt�1Þ
i ; x

ðtÞ
i

� �
: (30)

g) Relative measurements are independent from

time slot to time slot, conditioned on the states of
the nodes. Moreover, they depend only on the

current states:

p z
ð1:TÞ
rel jxð0:TÞ

� �
¼
YT

t¼1

p z
ðtÞ
reljxðtÞ

� �
: (31)

h) Relative measurements at any time slot t are

conditionally independent and depend only on

the two nodes involved:

p z
ðtÞ
reljxðtÞ

� �
¼
YN

i¼1

Y
j2SðtÞ!i

p z
ðtÞ
j!ijx

ðtÞ
i ; x

ðtÞ
j

� �
: (32)

We further assume that node i knows the following:

i) the state distribution pðxð0Þi Þ at time t ¼ 0;

ii) its own mobility model pðxðtÞi jx
ðt�1Þ
i Þ at any time t;

iii) the internal measurements z
ðtÞ
i;self and the corre-

sponding likelihood function pðzðtÞi;self jx
ðt�1Þ
i ; x

ðtÞ
i Þ at

any time t;
iv) the signal metrics z

ðtÞ
j!i and the likelihood function

pðzðtÞj!ijx
ðtÞ
i ; x

ðtÞ
j Þ at any time t.

Since this information is available to node i at time t,
we call such information local. For other information to

be obtained by node i, packets must be sent over the
network.

C. Non-Bayesian Cooperative Localization
In non-Bayesian cooperative localization, we treat the

state of node i at time t as a nonrandom but unknown

parameter. For an overview of non-Bayesian localization

techniques, the reader is referred to [75]. We focus on

cooperative ML and LS localization. The cooperative LS

algorithm forms the basis of [30], [47], [48], [50], [53],

[54], [56]–[58], and [61], as well as variations such as

weighted LS, where signal metrics have an associated
weight reflecting the quality of the estimate [105], and

regularized LS, where certain locations are penalized [106].

Based on cooperative LS, a cooperative ML algorithm was

adopted in [51].

The ML and LS estimators minimize a cost function

CðtÞðxÞ with respect to x ¼ ½x1; . . . ; xN� at a particular time

slot t. For the LS estimator, this cost function is given by

CðtÞLSðxÞ ¼
XN

i¼1

X
j2SðtÞ!i

z
ðtÞ
j!i � fðxi; xjÞ

��� ���2

(33)

where fðxi; xjÞ is a suitable function based on the signal

metrics. For instance, when xi and xj are the position

coordinates of nodes i and j, and when z
ðtÞ
j!i is an estimate of

the distance between node i and node j, as estimated by

node i, then fðxi; xjÞ ¼ kxi � xjk. For the ML estimator, the

cost function becomes (see (32))

CðtÞMLðxÞ ¼ �log p z
ðtÞ
reljx

� �
(34)

¼ �
XN

i¼1

X
j2SðtÞ!i

log p z
ðtÞ
j!ijxi; xj

� �
: (35)

In general, for both the ML and LS estimators, the cost

function is of the form CðtÞðxÞ¼
PN

i¼1

P
j2SðtÞ!i

cj!iðzðtÞj!i;

xi; xjÞ. To minimize this cost function, we set the derivative

with respect to xi equal to zero, where

@CðtÞðxÞ
@xi

¼
X

j2SðtÞ!i

@cj!i z
ðtÞ
j!i; xi; xj

� �
@xi

þ
X

k2SðtÞi!

@ci!k z
ðtÞ
i!k; xk; xi

� �
@xi

: (36)

We can now apply gradient descent to iteratively minimize

CðtÞðxÞ, starting from an initial estimate at time slot t, x̂ðt;0Þ.
A distributed, cooperative gradient descent algorithm is

shown in Algorithm 1, where �
ðt;lÞ
i represents a step size that

controls the convergence speed.
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Algorithm 1 Cooperative LS and ML Localization

1: given x̂
ð0Þ
i , 8i

2: for t ¼ 1 to T do {time slot index}

3: set x̂
ðt;0Þ
i ¼ x̂

ðt�1Þ
i

4: for l ¼ 1 to Niter do {iteration index}

5: nodes i ¼ 1 to N in parallel

6: broadcast current location estimate x̂
ðt;l�1Þ
i

7: receive estimate from neighbors

x̂
ðt;l�1Þ
j , j 2 SðtÞ!i

8: update location estimate {only for agents}

x̂
ðt;lÞ
i ¼ x̂

ðt;l�1Þ
i þ �ðt;lÞi

P
j2SðtÞ!i

 
ðt;l�1Þ
j!i

9: end parallel
10: end for

11: set x̂
ðtÞ
i ¼ x̂

ðt;NiterÞ
i

12: end for

For notational convenience we have introduced

 
ðt;l�1Þ
j!i ¼

�
@cj!i z

ðtÞ
j!i; xi; x̂

ðt;l�1Þ
j

� �
@xi

						
xi¼x̂

ðt;l�1Þ
i

: (37)

Here, l is the iteration index and x̂
ðt;lÞ
i is the estimate of the

x
ðtÞ
i at the lth i terat ion. Note that the termP

k2SðtÞi!
ð@ci!kðzðtÞi!k; xk; xiÞ=@xiÞ in (36) is omitted in

Algorithm 1, line 8, since the measurement z
ðtÞ
i!k is not

available at node i. Observe also that Algorithm 1 operates in

two time scales: in the shorter time scale, indexed by l in

line 4, nodes iteratively update their state estimate for

fixed t. The movement of the nodes occurs in the longer time

scale, set by the time slots and indexed by t in line 2. The

global minimum may not be reached through iterative

descent, since the cost function CðtÞðxÞ is usually not convex.

Example: We will now illustrate the behavior of

cooperative LS localization in a plane using the example

in Fig. 1, where z
ðtÞ
j!i ¼ d̂

ðtÞ
j!i is an estimate made by node i

regarding its distance to node j and fðxi; xjÞ ¼ kxi � xjk.
After some straightforward manipulations, line 8 in

Algorithm 1 becomes

x̂
ðt;lÞ
i ¼ x̂

ðt;l�1Þ
i þ �ðt;lÞi

X
j2SðtÞ!i

d̂
ðtÞ
j!i � ~d

ðt;l�1Þ
j!i

� �
e
ðt;l�1Þ
ij (38)

where ~d
ðt;l�1Þ
j!i ¼ kx̂ðt;l�1Þ

i � x̂
ðt;l�1Þ
j k and e

ðt;l�1Þ
ij is a unit-

vector oriented along the line connecting x̂
ðt;l�1Þ
i and x̂

ðt;l�1Þ
j :

e
ðt;l�1Þ
ij ¼

x̂
ðt;l�1Þ
i � x̂

ðt;l�1Þ
j

� �
x̂
ðt;l�1Þ
i � x̂

ðt;l�1Þ
j

��� ��� : (39)

Equation (38) can be interpreted as follows: every term in the

summation is zero when the distance estimate d̂
ðtÞ
j!i matches the

distance between the estimates x̂
ðt;l�1Þ
i and x̂

ðt;l�1Þ
j . When d̂

ðtÞ
j!i is

smaller than the distance kx̂ðt;l�1Þ
i � x̂

ðt;l�1Þ
j k between the two

estimates, the LS algorithm corrects this by moving the

estimated position x̂
ðt;lÞ
i of node i towards x̂

ðt;l�1Þ
j . Conversely,

when d̂
ðtÞ
j!i is larger than kx̂ðt;l�1Þ

i � x̂
ðt;l�1Þ
j k, the LS algorithm

corrects this by moving x̂
ðt;lÞ
i away from x̂

ðt;l�1Þ
j . The movement

can be tuned by the positive scalar step size �
ðt;lÞ
i .

Algorithm 2 SPAWN

1: given pðxð0Þi Þ, 8i
2: for t ¼ 1 to T do {time index}

3: nodes i ¼ 1 to N in parallel

4: prediction operation, according to (15)

�
h
ðt�1Þ
i !X

ðtÞ
i

x
ðtÞ
i

� �

/
Z

p x
ðtÞ
i jx

ðt�1Þ
i

� �
p z

ðtÞ
i;self jx

ðt�1Þ
i ; x

ðtÞ
i

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼h
ðt�1Þ
i x

ðt�1Þ
i ;x

ðtÞ
ið Þ

� �
X
ðt�1Þ
i !h

ðt�1Þ
i

x
ðt�1Þ
i

� �
dx
ðt�1Þ
i

5: end parallel

6: correction operation: see Algorithm 3

7: end for

In Fig. 1, anchor nodes 1, 3, and 5 have perfect location

information, so that x̂
ðt;lÞ
i ¼ x

ðt;lÞ
i , 8l; t, i 2 f1; 3; 5g. We also

know from Fig. 1 that agent node 4 suffers from a position

ambiguity. Specifically, if we place the network topology in

a 50 � 50 m2 map (see Fig. 5), agent node 4 can constrain

its location to either x̂
ðt;lÞ
4 ¼ ½20; 60� (the correct position)

or x̂
ðt;lÞ
4 ¼ ½40; 60� (the incorrect position), under noise-free

distance estimates. If the correct position estimate is

broadcast by agent 4 and received by agent 2 (Fig. 5(a)), the

LS cost function for node 2 has a global minimum at its true
position. Hence, the LS algorithm will move the estimate of

the position of node 2 towards the true position, as the

iterations progress. If the information from agent node 4 is

incorrect (Fig. 5(b)), the LS cost function has a minimum at

a position far away from its true position, and the LS

algorithm will move the estimate of the position of node 2

away from the true position.

D. Bayesian Cooperative Localization
Bayesian approaches to localization have been used in

robotics for the noncooperative mobile single-agent case

[18] and for the cooperative mobile multiagent case [49],
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[60], [107]. Bayesian cooperative localization for net-

works without mobility was investigated in [14], [108],

and [109].
In this section, we develop a general Bayesian

framework for cooperative localization in heterogeneous,
mobile networks. We first create an FG of a factorization of
pðxð0:TÞjzð1:TÞÞ and map this FG onto the time-varying
network topology, resulting in a network FG (Net-FG). This
mapping is one-to-one in the sense that every node in the
network is associated with a unique subgraph of the FG.
We then introduce a message schedule that accounts for
both spatial and temporal constraints of the message flow,
resulting in network message passing (Net-MP). In partic-
ular, we can execute a sum-product algorithm on the
Net-FG, giving rise to the SPA over a wireless network
(SPAWN). Below, we describe the steps in developing the
Net-FG, Net-MP, and, finally, SPAWN.

Step 1VFactorization of pðxð0:TÞjzð1:TÞÞ: We first create
an FG of a factorization of pðxð0:TÞjzð1:TÞÞ. Using our
complete statistical description, we factorize pðxð0:TÞjzð1:TÞÞ
as (see (28))

p xð0:TÞjzð1:TÞ
� �

/ p xð0:TÞ; z
ð1:TÞ
self

� �
p z

ð1:TÞ
rel jxð0:TÞ

� �
: (40)

Substituting (26), (29), and (31) into (40) then leads to

p xð0:TÞjzð1:TÞ
� �

/ p xð0Þ
� �YT

t¼1

p xðtÞjxðt�1Þ
� �n

� p z
ðtÞ
self jx

ðt�1Þ;xðtÞ
� �

p z
ðtÞ
reljxðtÞ

� �o
: (41)

Due to independent movement and independent internal
measurements, both pðxðtÞjxðt�1ÞÞ and pðzðtÞself jxðt�1Þ;xðtÞÞ
can be further factorized according to (27) and (30). The
FG of pðxð0:2Þjzð1:2ÞÞ corresponding to the example
network in Fig. 1 has a structure as shown in Fig. 6. The
vertices in blue correspond to the factors pðzðtÞreljxðtÞÞ, each

Fig. 5. Contour plots of the LS cost function for agent node 2, for two possible position estimates of agent node 4.

The true locations of anchors and agents are depicted by red squares and green circles, respectively. The estimated position of

agent 4 is marked as a cross, with x̂ðt;lÞ4 ¼ ½20;60� in (a) and x̂ðt;lÞ4 ¼ ½40;60� in (b). The minimum of the LS cost function for

agent node 2 is far away from the correct location when agent node 4 broadcasts an incorrect location estimate (in (b)).

Fig. 6. FG of pðXð0:2Þjzð1:2ÞÞ, corresponding to the example network in

Fig. 1. We use the following abbreviations: fiðXð0Þi Þ ¼ pðXð0Þi Þ and

hðt�1Þi ðXðt�1Þi ;XðtÞi Þ ¼ pðXðtÞi jX
ðt�1Þ
i Þ pðzðtÞi;selfjX

ðt�1Þ
i ;XðtÞi Þ. The arrows

represent the temporal flow of the message (from past to present).
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of which can be further factorized9 as in (32) with an FG
shown in Fig. 7.

Step 2VCreating the Net-FG: The Net-FG involves

mapping the FGs from Figs. 6 and 7 onto the
network topology according to the information that is

local to each node. From Fig. 6, we see that the vertices

h
ðt�1Þ
i ðXðt�1Þ

i ;X
ðtÞ
i Þ ¼ pðXðtÞi jX

ðt�1Þ
i Þ pðzðtÞi;self jX

ðt�1Þ
i ;X

ðtÞ
i Þ can

be mapped to node i, as these vertices contain

information local to node i. This is depicted for node
i ¼ 2 in Fig. 6 with a red box. The mapping of the FG in

Fig. 7 onto the network topology is less obvious. We see

from Fig. 7 that for every variable X
ðtÞ
i , there is an equality

vertex as well as a number of vertices labeled �j!i for

j 2 SðtÞ!i. These latter vertices are a function of z
ðtÞ
j!i, local to

node i. A natural mapping would thus be to associate the
equality vertex and the vertices labeled �j!i to node i. This

association is shown in Fig. 8. As an example, the box in red

shows the vertices associated with node 2. Combining all the

vertices mapped to a single node i, we observe that they form

a tree subgraph of the overall FG corresponding to

pðxð0:TÞjzð1:TÞÞ, and that this tree depends only on locally

available measurements z
ðtÞ
j!i for j 2 SðtÞ!i and z

ðtÞ
i;self ,

t¼1; . . . ; T.

Algorithm 3 SPAWNVCorrection Operation

1: nodes i ¼ 1 to N in parallel

2: initialize b
ð0Þ
X
ðtÞ
i

ð�Þ ¼ �
h
ðt�1Þ
i !X

ðtÞ
i
ð�Þ

3: end parallel
4: for l ¼ 1 to Niter do {iteration index}

5: nodes i ¼ 1 to N in parallel

6: broadcast b
ðl�1Þ
X
ðtÞ
i

ð�Þ

7: receive b
ðl�1Þ
X
ðtÞ
j

ð�Þ from neighbors j 2 SðtÞ!i

8: convert b
ðl�1Þ
X
ðtÞ
j

ð�Þ to a distribution over X
ðtÞ
i using (15)

�
ðlÞ
�j!i!X

ðtÞ
i

x
ðtÞ
i

� �
/
Z

p z
ðtÞ
j!ijx

ðtÞ
i ; x

ðtÞ
j

� �
b
ðl�1Þ
X
ðtÞ
j

x
ðtÞ
j

� �
dx
ðtÞ
j

9: compute new message using (15)

b
ðlÞ
X
ðtÞ
i

x
ðtÞ
i

� �
/ �

h
ðt�1Þ
i !X

ðtÞ
i

x
ðtÞ
i

� � Y
j2SðtÞ!i

�
ðlÞ
�j!i!X

ðtÞ
i

x
ðtÞ
i

� �

10: end parallel

11: end for

12: nodes i ¼ 1 to N in parallel

13: determine outgoing message:

�
X
ðtÞ
i !h

ðtÞ
i

ð�Þ ¼ b
ðNiterÞ
X
ðtÞ
i

ð�Þ
14: end parallel

Step 3VCreating the Net-MP and SPAWN: We introduce a

message schedule that accounts for the time-varying

network topology, leading to the Net-MP. Net-MP consists

of two types of messages: messages internal to subgraphs

(intranode messages, corresponding to messages comput-
ed internally by a node in the network) and messages

between subgraphs (internode messages, corresponding to

messages between nodes in the network). The former type

of message involves computation within a node, while the

latter is sent as a packet over the wireless link. We

introduce a message schedule that takes into account the

spatiotemporal constraints of the network:

• To account for temporal constraints, messages flow
only forward in time. This is shown by the arrows
in Fig. 6. Messages from the present to the past are
not computed, as the state information would be
outdated and network connectivity may have9In FG parlance, this is known as opening a vertex [66].

Fig. 7. Correction operation: FG of pðzðtÞreljXðtÞÞ, with incoming messages �
h
ðt�1Þ
i
!X

ðtÞ
i

ð�Þ and outgoing messages �
X
ðtÞ
i
!h

ðtÞ
i

ð�Þ.
The node �j!iðXðtÞi ;XðtÞj Þ ¼ pðzðtÞj!ijX

ðtÞ
i ;XðtÞj Þ. The structure of this FG depends on the network topology at time slot t.
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changed. This leads to the first part of SPAWN, as
described in Algorithm 2. Observe that, similar to
Section III-E, there is a prediction operation,
accounting for local mobility, and a correction
operation, accounting for measurements between
nodes. During the prediction operation, node i
computes the message �

h
ðt�1Þ
i !X

ðtÞ
i

ð�Þ, based on the

message �
X
ðt�1Þ
i !h

ðt�1Þ
i
ð�Þ, on the local mobility

model pðxðtÞi jx
ðt�1Þ
i Þ, and on the local likelihood

function pðzðtÞi;self jx
ðt�1Þ
i ; x

ðtÞ
i Þ. During the correction

operation, node i determines messages �
X
ðtÞ
i !h

ðtÞ
i
ð�Þ,

based on all the metrics z
ðtÞ
rel measured by all the

nodes, as well as on all the messages �
h
ðt�1Þ
k
!X

ðtÞ
k

ð�Þ,
8k. This implies that the correction operation

requires exchange of information between nodes.

In other words, nodes need to cooperate.

• To account for the network topological constraints at
a fixed time t, we choose a message flow shown in
Fig. 8, with the arrows showing the direction of the
messages. The bold red arrows represent internode
messages sent as packets over a wireless link. The
blue arrows represent intranode messages, com-
puted internally within a node. According to this
schedule, messages only flow in one direction over
every edge. This implies that internode messages
do not depend on the recipient node. In other
words, these messages can be broadcast. The re-
sulting SPAWN for the correction operation is
given in Algorithm 3. The internode message

broadcast by node i is denoted by b
ðlÞ
X
ðtÞ
i

ð�Þ, where t

is the time index and l is the iteration index.

The overall SPAWN algorithm thus corresponds to

Algorithm 2, with the correction operation computed ac-

cording to Algorithm 3. We will name the message b
ðlÞ
X
ðtÞ
i

ð�Þ
the belief of node i at iteration l in time slot t. At any time

slot t, every node i can determine the MMSE or MAP

estimate of its own state by taking the mean or the mode of

its local message �
X
ðtÞ
i !h

ðtÞ
i

ð�Þ. Note that the time slots at

different nodes need not be synchronized; the algorithm
can be interpreted as being completely asynchronous.

Example: Let us consider the correction operation for
the example network in Fig. 1, where we perform

localization in a 50 � 50 m2 plane. Assume that the agent

nodes 2 and 4 begin with no information about their

position, so that b
ð0Þ
X
ðtÞ
2

ð�Þ and b
ð0Þ
X
ðtÞ
4

ð�Þ in line 2 of Algorithm 3

are uniform over the entire map. Anchor nodes 1, 3, and 5

have perfect location information, so that b
ð0Þ
X
ðtÞ
1

ð�Þ, b
ð0Þ
X
ðtÞ
3

ð�Þ,
and b

ð0Þ
X
ðtÞ
5

ð�Þ are Dirac delta functions. We focus on two

successive iterations of Algorithm 3 for agent node 2. Due

to symmetry in the network, all the statements below can

be applied to agent node 4, mutatis mutandis.

1) Iteration l ¼ 1. All the nodes broadcast their current
belief. Agents can remain silent during this step,

since their beliefs contain no useful information

about their location at this iteration. Agent node 2

has as neighbors Sð1Þ!2 ¼ f1; 3g and computes the

message �
ð1Þ
�1!2!X

ðtÞ
2

ð�Þ (and �
ð1Þ
�3!2!X

ðtÞ
2

ð�Þ), using

line 8 in Algorithm 3, based on the received belief

b
ð0Þ
X
ðtÞ
1

ð�Þ (and b
ð0Þ
X
ðtÞ
3

ð�Þ), as well as on range estimate

z
ðtÞ
1!2 (and z

ðtÞ
3!2). As expected, the messages

�
ð1Þ
�1!2!X

ðtÞ
2

ð�Þ and �
ð1Þ
�3!2!X

ðtÞ
2

ð�Þ are roughly circular

distributions around the positions of the two

anchors (see Fig. 9(a)). Node 2 now computes its

new belief (line 9 in Algorithm 3) by multiplying

�
ð1Þ
�1!2!X

ðtÞ
2

ð�Þ, �ð1Þ
�3!2!X

ðtÞ
2

ð�Þ, and its own (uniform)

belief b
ð0Þ
X
ðtÞ
2

ð�Þ. The result is depicted in Fig. 9(b),

which shows the contour plot of b
ð1Þ
X
ðtÞ
2

ð�Þ, a bimodal

distribution. Agent node 4 goes through similar

steps and determines its belief b
ð1Þ
X
ðtÞ
4

ð�Þ (which of

course is also a bimodal distribution).

2) Iteration l ¼ 2. Agent nodes 2 and 4 broadcast

their beliefs to their neighbors (line 6). Agent

Fig. 8. Correction operation: mapping of subgraphs to nodes and scheduling of messages leads to a Net-MP.
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node 2 receives beliefs from anchor nodes 1 and 3

and from agent node 4 (line 7). Agent node 2 then

computes messages �
ð2Þ
�1!2!X

ðtÞ
2

ð�Þ, �
ð2Þ
�3!2!X

ðtÞ
2

ð�Þ,
and �

ð2Þ
�4!2!X

ðtÞ
2

ð�Þ (line 8). Contour plots of

these three messages are shown in Fig. 9(c).

Observe that the messages from the anchors

a r e u n c h a n g e d : �
ð2Þ
�1!2!X

ðtÞ
2

ð�Þ¼�ð1Þ
�1!2!X

ðtÞ
2

ð�Þ,
�
ð2Þ
�3!2!X

ðtÞ
2

ð�Þ¼�ð1Þ
�3!2!X

ðtÞ
2

ð�Þ, and that the message

corresponding to agent 4, �
ð2Þ
�4!2
ð�Þ, is much

broader than those corresponding to the anchors,

due to the uncertainty that agent 4 has with

respect to its own position. Node 2 computes its

new belief (line 9) by multiplying �
ð2Þ
�1!2!X

ðtÞ
2

ð�Þ,
�
ð2Þ
�4!2!X

ðtÞ
2

ð�Þ, �ð2Þ
�4!2!X

ðtÞ
2

ð�Þ, and its own (uniform)

belief b
ð0Þ
X
ðtÞ
2

ð�Þ. The result is depicted in Fig. 9(d),

which shows the contour plot of b
ð2Þ
X
ðtÞ
2

ð�Þ having a

unimodal distribution. Thus, agent node 2 can un-

ambiguously estimate its own position by taking the

mean or mode of b
ð2Þ
X
ðtÞ
2

ð�Þ (for MMSE or MAP esti-

mation, respectively). Similarly, agent 4 can now

determine its position without ambiguity. In

conclusion, through cooperation, both agents can

self-localize.

V. TRACTABLE AND REALISTIC UWB
RANGING MODELS

From the previous section, we know that cooperative ML,

MMSE, and MAP localization requires every node i to

Fig. 9. Consider the point of view of agent node 2 for iteration l ¼ 1 (a)-(b) and iteration l ¼ 2 (c)-(d). (a) At l ¼ 1, anchor nodes 1 and 3 broadcast

their beliefs (line 6 of Algorithm 3). Node 2 receives the beliefs and converts them based on range measurements (line 8 of Algorithm 3).

The messages �ð1Þ
�1!2!X

ðtÞ
2

ð�Þ and �ð1Þ
�3!2!X

ðtÞ
2

ð�Þ are shown as contour plots. (b) Agent node 2 updates its belief (line 9 of Algorithm 3).

Observe that the updated belief is bimodal, as indicated in Fig. 1. (c) At iteration l ¼ 2, node 2 receives beliefs from anchor nodes 1 and 3 and

agent 4 (line 7 of Algorithm 3) and converts them (line 8 of Algorithm 3) based on range measurements. The messages �ð2Þ
�1!2!X

ðtÞ
2

ð�Þ, �ð2Þ
�3!2!X

ðtÞ
2

ð�Þ,
and�ð2Þ

�4!2!X
ðtÞ
2

ð�Þare shown as contour plots. Observe that�ð2Þ
�4!2!X

ðtÞ
2

ð�Þ is more spread out than�ð2Þ
�1!2!X

ðtÞ
2

ð�Þ and�ð2Þ
�3!2!X

ðtÞ
2

ð�Þ. This is because information

from anchors only has a single source of uncertainty (the range measurement), while information from agents has two sources of uncertainty

(the range measurement and the uncertain location of the agent node 4). (d) Agent node 2 updates its belief (line 9 of Algorithm 3) through

multiplication of the messages �ð2Þ
�1!2!X

ðtÞ
2

ð�Þ, �ð2Þ
�3!2!X

ðtÞ
2

ð�Þ, and �ð2Þ
�4!2!X

ðtÞ
2

ð�Þ. The updated belief is unimodal so that agent node 2 can now determine its

position without ambiguity.
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know the distribution pðzðtÞj!ijx
ðtÞ
i ; x

ðtÞ
j Þ. Existing ranging

models, derived from experimental campaigns, are based

on highly idealized signals [110], [111] or significant post-

processing [112]. Such simplifications lead to unrealistic or

impractical ranging models. Other UWB measurement

campaigns have been undertaken with the goal of

characterizing channel parameters such as path loss,

fading, and delay spread, independent of the effect of the
measurement device and methods [34], [36], [113].

Ranging models extracted from these channel models

[23], [86] make implicit assumptions that may not hold in

realistic environments, which in turn may lead to

unrealistic predictions of localization performance.

In order to obtain ranging models that closely reflect

practical operating conditions, we have performed an extensive

experimental campaign with commercial UWB radios,
performing RTOA distance estimation. In this section, we

describe the experimental setup, our methodology to extract

ranging models, and the resulting ranging models. At the end of

this section, we show different ways in which cooperative

localization algorithms can cope with NLOS conditions.

A. Experimental Setup
The experiment consisted of commercial FCC-compliant

[114] UWB radios with a bandwidth of approximately 3.

2 GHz centered at 4.7 GHz. Each radio was capable of

transmitting and receiving packets through an omnidirec-

tional antenna. To account for the nature of realistic

localization networks, which may be composed of off-the-
shelf parts, range measurements were collected as is,

without making any modifications to the hardware or

embedded and host software in the UWB radios.

A series of five campaigns was performed in different

indoor environments around the MIT campus: two

campaigns at the Laboratory for Information and Decision

Systems (LIDS), two campaigns at the Computer Science

and Artificial Intelligence Laboratory (CSAIL), and one
campaign in a hangar of the Department of Aeronautics and

Astronautics. Details of the environments are given in

Table 1. Of these campaigns, two were in NLOS conditions

(CSAIL-NLOS and LIDS-NLOS), while the remaining three

were in line-of-sight (LOS) conditions. In each environment,

the nodes were placed 89 cm above the ground (see Fig. 10).

One radio was static, while the other moved in 25 cm

increments towards the static radio. At each separation

distance dsep, 1000 ranging measurements were collected.

We do not perform averaging of measurements, unlike [110]
and [111]. Floor plans10 for the LIDS and CSAIL experimen-

tal campaign are provided in Fig. 11.

B. Ranging Models
We observed that a histogram of the 1000 ranging

measurements collected at any distance dsep typically contains
one large peak near dsep plus a small set of outliers on each

side of the peak (see Fig. 12). The outliers are consistently

located at large distances from the main peak, sometimes

producing negative range measurements. The fact that some

measured ranges are significantly smaller or greater than the

true distance dsep indicates that far-lying outliers are likely

caused by the ranging algorithm (both positively and

negatively biased outliers) and multipath (positive outliers
due to strong reflections) rather than NLOS conditions.

Further examination revealed that the time of flight

estimated11 by the UWB nodes, using an existing proprietary

algorithm, exhibits high variance and possibly large errors.

These findings indicate that the measurement devices and

ranging protocols are important factors to take into consid-

eration when characterizing UWB range measurements.

The operating environment has a significant effect on the
distribution of the measurements. The measurements

collected in the CSAIL hallway (with no clutter) have many

fewer outliers than those collected in the LIDS hallway (with

adjacent concrete pillars and walls) and in the hangar (with

large crates and other objects nearby). Measurements made

in NLOS conditions tend to have more outliers than in LOS

conditions. Additionally, the nature of the blockage affects

the measurements in NLOS conditions. The glass doors in
CSAIL caused many fewer outliers than the concrete wall in

LIDS. These findings corroborate the results in other UWB

measurement campaigns, e.g., [30] and [111].

Based on these histograms, we concluded that a

reasonable underlying distribution for the measurements

collected in a given environment E at distance dsep is a

Table 1 Environments Used for Measurement Campaign

Fig. 10. Experimental setup involving two FCC-compliant UWB radios.

10Detailed floor plans are available at floorplans.mit.edu/pdfs/
32_6.pdf (LIDS) and floorplans.mit.edu/pdfs/32_6.pdf (CSAIL).

11That is, tB;rec � tB;send in the notation from Section II-A.
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Gaussian mixture density with three components, labeled

k ¼ 1; 2; and 3 for the lower outliers, main component, and

upper outliers, respectively. Each component is parame-

terized by a mean �E;kðdsepÞ, a variance �2
E;kðdsepÞ, and a

weight wE;kðdsepÞ. Hence, the distribution of range
measurements collected at distance dsep is given by

pðd̂jdsep; EÞ¼
X3

k¼1

wE;kðdsepÞN d̂ �E;kðdsepÞ; �2
E;kðdsepÞ

� �
(42)

where N xð�; �2Þ denotes the Gaussian distribution with
mean � and variance �2, evaluated in x.

In order to estimate the mean �E;kðdsepÞ, variance

�2
E;kðdsepÞ, and weight wE;kðdsepÞ for each k and E, we applied

the expectation-maximization (EM) algorithm [115], [116]

to the set of 1000 measurements collected at each discrete

distance dsep in environment E. The estimated Gaussian
parameters capture the features of the histograms. The main

component k ¼ 2 typically has a large weight, a small

variance, and a mean with small bias. Measurements made

in NLOS conditions exhibit a larger positive bias than those

in LOS conditions. This agrees with other UWB measure-

ment campaigns and models [30], [117]. The lower and

upper outliers, represented by components k ¼ 1 and k ¼ 3

respectively, are characterized by smaller weights than
k ¼ 2 and larger variances. Unlike [111], we find that the

variance of the measurements does not always increase with

distance. Our results also demonstrate that the effect of the

surrounding environment may outweigh the effect of

distance and LOS/NLOS conditions.

Finally, we model the distribution of the ranging error

for the continuous value of distances d by fitting quadratic

polynomials PE;�;kðdÞ, PE;�2;kðdÞ, and PE;w;kðdÞ to �E;kðdsepÞ,
�2
E;kðdsepÞ, a n d wE;kðdsepÞ, r e s p e c t i v e l y . S i n c e

wE;kðdsepÞ 	 1 for k ¼ 1 and k ¼ 3, the outliers are easy

to identify, and we only report in Table 2 the coefficients

for the resulting polynomials of form �d2 þ �dþ � for the

main mode of the distributions. Our final model of the

UWB ranging measurements d̂ as a function of true distance

d in environment E is a Gaussian density described by

pðd̂jd; EÞ ¼ N d̂ PE;�;2ðdÞ; PE;�2;2ðdÞ
� �

: (43)

With the polynomial coefficients as its only parameters, this

UWB ranging model is tractable and easily implemented in

Fig. 11. Floor plans of (a) LIDS and (b) CSAIL experimental campaigns. The dots represent the initial positions of the UWB radios.

One radio is static (the red dot), while the other radio (the black dot) moves in 25 cm increments towards the static radio.

Fig. 12. Histogram of range measurements, environment LIDS-LOS, at

dsep ¼ 16:25 m. Outliers on either side of the main peak are visible.
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localization systems. Moreover, it accurately describes a

practical ranging device operating in realistic environments.

C. NLOS Conditions
Our measurements indicate that ranging performance

depends on the LOS/NLOS conditions. In a practical

setting, radios may be implemented with the capability for

NLOS detection [88], [89], [118]–[121]. Let us introduce

the signal metrics estimated by node i as z
ðtÞ
j!i ¼ ½d̂

ðtÞ
j!i; �̂

ðtÞ
j!i�,

where d̂
ðtÞ
j!i denotes the estimate of kxðtÞi � x

ðtÞ
j k by node i,

and �̂
ðtÞ
j!i denotes the decision at node i regarding the LOS/

NLOS condition �
ðtÞ
ij 2 fLOS;NLOSg between nodes i and

j at time t. The function pðzðtÞj!ijx
ðtÞ
i ; x

ðtÞ
j Þ then becomes

(omitting the time index t)

pðd̂j!i; �̂j!ijxi; xjÞ ¼
X
�ij

pðd̂j!ijxi; xj; �ijÞ

� pð�̂j!ij�ijÞpð�ijjxi; xjÞ: (44)

Variations of (44) include the following.

1) When LOS/NLOS detection is not performed, and

nodes have no information regarding their environ-

ment, then �̂j!i is not computed, pð�ijjxi; xjÞ¼pð�ijÞ
and pðzj!ijxi; xjÞ reverts to [51], [87]

pðd̂j!ijxi; xjÞ ¼
X
�ij

pðd̂j!ijxi; xj; �ijÞpð�ijÞ: (45)

In this case, pð�ijÞ is assumed to be predetermined

within the radio or simply set to 1/2.

2) When LOS/NLOS detection is not performed, but
nodes have knowledge of the environment E and

the locations of obstructions, then [30], [122]

pðd̂j!ijxi; xjÞ ¼
X
�ij

pðd̂j!ijxi; xj; �ijÞpð�ijjxi; xjÞ (46)

where pð�ijjxi; xjÞ is either zero or one, depending

on whether there is an obstruction between the

positions xi and xj.

3) When LOS/NLOS detection is performed, it can

be based on some underlying statistics 	j!i

extracted from the received signal [89], such as

the mean excess delay. We can replace �̂j!i by
	j!i in (44), in which case nodes require

knowledge of pð	j!ij�ijÞ rather than pð�̂j!ij�ijÞ.

VI. INDOOR LOCALIZATION:
A CASE STUDY

In this section, we combine the algorithms from Section IV

with the ranging models from Section V. We first describe
the performance criterion and simulation setup and then

provide numerical results for both static and dynamic

location-aware networks.

A. Performance Criterion and Simulation Setup
To evaluate localization performance, we employ the

outage probability criterion: for a certain scenario (number

of agents, number of anchors, anchor positions, time

index t, and LOS/NLOS conditions) and a certain allow-

able error eth (say, 2 m), an agent is said to be in outage
when its position error kX � X̂k exceeds eth. The outage

probability is then given by

PoutðethÞ ¼ IE II kX � X̂k > eth

� �� �
(47)

where IIfPg is the indicator function, which is zero when

proposition P is false and one otherwise. The expectation in

(47) is taken with respect to the locations of the agents. The

outage probability is implicitly conditioned on the scenario.

To characterize the outage performance of the

different cooperative localization algorithms developed

in Section IV, we have performed computer simulations
using on the ranging models described in Section V. We

considered localization in a 100 by 100 m2 environment

with 13 anchors and 100 or 50 agents. Anchors are static,

while agents may be mobile. Every node can range with

neighbors within 20 m. Messages are represented by

samples [14], [18], [123]: in our case, 500 samples for

internode messages and 2000 samples for intranode

messages. Note that messages may be represented in

Table 2 Polynomial Coefficients of Ranging Models �d2 þ �dþ �
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other ways, using techniques such as the extended Kalman

filter [124], [125] or Rao–Blackwellization [97], [126].

B. Static Networks
We now illustrate the performance of MMSE localiza-

tion in LOS conditions. Initially, none of the agents has

information about their position, represented by a uniform

a priori distribution. The agents then perform MMSE

localization, the results of which are shown in Fig. 13 for a
particular realization of the network. The lines in Fig. 13

connect the MMSE estimate and the true position of the

agent. It can be seen in Fig. 13(a) that without cooperation,

only a few agents can be localized accurately. By contrast,

Fig. 13(b) shows that with cooperation, all agents but one

are localized with high accuracy after only four iterations.

The single agent that cannot be localized is connected to

only two other nodes (one agent and one anchor), and

therefore unable to determine its position without

ambiguity. A different view is offered in Fig. 14, showing
the evolution of the localization error for 100 agents as a

function of the iteration index.

For a systematic comparison of different localization

algorithms, we have evaluated the outage probability for

noncooperative and cooperative MMSE localization, as

well as cooperative LS localization. The cooperative LS

algorithm uses a fixed step size and is initialized with the

noncooperative MMSE position estimates. As a bench-
mark, we have also included a centralized MMSE

algorithm.12 Fig. 15 shows the outage probability as a

function of allowable error for networks with 100 agents

over an ensemble of 20 random network instantiations.

We observe that noncooperative localization results in

large outage probabilities, greater than 50% for allowable

errors below 5 m. Cooperative LS can reduce the outage

probability to some extent, while cooperative MMSE offers
significant additional performance gains. In fact, the

performance of cooperative MMSE is close to centralized

MMSE. At an allowable error of eth ¼ 1 m, about 90% of

the agents are in outage for noncooperative localization.

The outage probability drops to 40% for cooperative LS,

and is further reduced to less than 1% for cooperative

MMSE. From our simulations, we observe that for this

scenario the cooperative MMSE converges13 in about four
iterations, whereas cooperative LS requires many more

iterations to converge. Thus, while cooperative MMSE

certainly requires more computations per node, it

Fig. 13. The benefit of cooperation. The 13 squares are the anchors, the 100 blue dots are the agents, and the white circles are the

estimated positions of the agents. The lines represent localization errors, connecting the estimated position and the true position of

every agent. (a) shows the performance of MMSE localization without cooperation. (b) shows the performance of the cooperative

MMSE localization algorithm after four iterations.

Fig. 14. A contour plot of the localization error (logarithmic) for

every agent, as a function of the iteration index.

12The centralized algorithm is closely related to [14] and corresponds
to an FG (see Fig. 7) where vertices �j!i and �i!j are merged into a single
vertex.

13By convergence, we mean that the outage curve no longer changes
noticeably for subsequent iterations.
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converges in far fewer iterations. This is a critical point for
network algorithm design, since every iteration requires

packets to be broadcast over the network, increasing

interference and reducing throughput. Moreover, more

iterations corresponds to an increased delay in determin-

ing one’s position. This makes cooperative MMSE

localization more suitable for real-time applications.

Similar results are shown in Fig. 16 for a setting with

50 agents. By comparing Figs. 15 and 16, we observe that

the outage performance for noncooperative localization

attains similar values, irrespective of the number of agents,

while cooperative localization improves as the network
density increases. This was also observed in [127].

C. Dynamic Networks
Let us now consider the case when agents are mobile.

As a worst case scenario, every agent i moves a distance d
ðtÞ
i

in a direction 

ðtÞ
i at every time step t, with 


ðtÞ
i 
 U½0; 2�Þ

and d
ðtÞ
i 
 Nð0; 1Þ.14 Agents move independently with

respect to one another and from time slot to time slot. At
time t ¼ 0, every node is assumed to have perfect

knowledge of its position, so that the a priori distribution

of every agent is a Dirac delta function. Agents do not

know in which direction they move, but they do know the

distance they travel.15 Hence, z
ðtÞ
i;self ¼ d̂

ðtÞ
i ¼ d

ðtÞ
i and

p z
ðtÞ
i;self jx

ðt�1Þ
i ; x

ðtÞ
i

� �
¼ � x

ðtÞ
i � x

ðt�1Þ
i

��� ���� z
ðtÞ
i;self

� �
(48)

so that

p x
ðtÞ
i jx

ðt�1Þ
i

� �
p z

ðtÞ
i;self jx

ðt�1Þ
i ; x

ðtÞ
i

� �

/ � x
ðtÞ
i � x

ðt�1Þ
i

��� ���� z
ðtÞ
i;self

� �
: (49)

For fair comparison between noncooperative and cooper-

ative localization, we reduce the complexity of Algorithm 3Fig. 16. Comparison of different localization algorithms for 13 anchors

and 50 agents. Cooperative LS outperforms noncooperative MMSE

localization. The cooperative MMSE approach offers significant

performance gains and attains an outage performance close to that of

the centralized algorithm.

14Here U½a; bÞ denotes the uniform distribution between a 2 IR and
b 2 IR, a G b.

15Agents could be equipped with a pedometer, for instance.

Fig. 17.Outage probability for 13 static anchors and 100 mobile agents.

The agents move according to a Gaussian random walk. After 20 time

slots, noncooperative MMSE localization results in high outages,

whereas outages remain low for cooperative MMSE localization.

Fig. 15. Comparison of different localization algorithms for 13 anchors

and 100 agents. Cooperative LS outperforms noncooperative MMSE

localization. The cooperative MMSE approach offers significant

performance gains and attains an outage performance close to that of

the centralized algorithm.
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by setting Niter ¼ 1 (see line 4). Fig. 17 shows the outage

probability for time slots t ¼ 1 and t ¼ 20, for both

noncooperative and cooperative MMSE localization. Ob-
serve that after 20 time slots, the noncooperative approach

exhibits significant performance degradation, while coop-

erative localization maintains fairly low outage probabil-

ities. For a more detailed investigation of the behavior over

time, we refer to Fig. 18, which shows the outages as a

function of time. In the noncooperative case, performance

clearly degrades with time. In the cooperative case, the

network quickly achieves a steady-state performance, and
outages remain low.

VII. CONCLUSION

Location-awareness is a key feature of future-generation

wireless networks, enabling a multitude of applications in

the military (e.g., blue force tracking), public (e.g., search-

and-rescue), and commercial (e.g., navigation) sectors.
Cooperation among nodes has the potential to dramatically

improve localization performance. In this paper, we have

given an overview of the main approaches to cooperative

localization from the viewpoint of estimation theory and

factor graphs. We have shown how to create a network FG

by mapping vertices of the FG onto the network topology.

A network message passing algorithm can then be obtained

by appropriate message scheduling, accounting for the
time-varying network topology. The resulting algorithm

(SPAWN) is a distributed, cooperative localization algo-

rithm that outperforms many conventional noncooperative

and cooperative localization techniques. We have per-

formed an extensive UWB measurement campaign to de-

termine tractable yet realistic ranging models. These

models were used to validate SPAWN in a large-scale
network involving 100 agents.

Location-awareness has a great number of associated

research challenges, including efficient, robust, and

accurate ranging algorithms; low-complexity implementa-

tions of algorithms such as SPAWN; integration of

different signal metrics; LOS/NLOS detection; investiga-

tion of interference effects, update rate, and message

representations; and the determination of fundamental
performance bounds. A next phase to the development of

this field involves the interaction of SPAWN with higher

level communication applications, such as location-aware

routing [128], location-aware cryptography [129], location-

aware information delivery [130], and location-aware

computing [131], to name but a few. h
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