
Build-a-Dude
Action Selection Networks for
Computational Autonomous Agents

Submitted to the Media Arts and Sciences Section in the School of Architecture and Planning in partial fulfillment of
the requirements for the degree of Master of Science in Visual Studies at the Massachusetts Institute of Technology,
February 1991.

@Massachusetts Institute of Technology, 1991. All rights reserved.

by Michael Boyle Johnson
Bachelor of Science, Department of Computer Science
University of Illinois at Urbana-Champaign, Illinois, 1988

-- 4 C
Auto
Media Arts and Sciences Section
January 11, 1991

David L. Zeltzer
Associate Professor of Computer Graphics
Thesis Supervisor

/I A

Vv V
Accepted by
Stephen A. Benton
Departmental Committee on Graduate Students

Rottg
MASSACHUSETT-Sl:STI1UTE

OF TECHNO 0Gy

MAR 0 7 1991
LIWARIES

7

Build-a-Dude
Action Selection Networks for
Computational Autonomous Agents
by Michael Boyle Johnson

Submitted to the Media Arts and Sciences Section in the School of
Architecture and Planning for the degree of Master of Science in
Visual Studies on January 11, 1991.

Abstract

I present the ubiquitous problem of selecting the next appropriate action in a
given situation, with an emphasis on its application for a computational au-

tonomous agent in an animation/simulation system. I review the relevant lit-
erature. I describe an algorithm for action selection, derived from one

originally presented by Maes, describe extensions to this algorithm, with an

emphasis on efficient distributed implementations of the algorithm. I present
a parallel distributed implementation which encompasses both the original

algorithm and many of my proposed extensions. I informally verify that the
implementation satisfies the mathematical model, and give several detailed
examples of the implementation in use with an emphasis on showing the ex-
tensions I have made. I discuss some of the limitations of the current theory,
the implementation, and current and future directions of this work toward al-

leviating some of these problems.

Thesis Supervisor: David L. Zeltzer
Title: Associate Professor of Computer Graphics

This work was supported in part by the National Science Foundation (Grant IRI-
8712772), and equipment grants from Stardent Computer, Hewlett-Packard Co., and
Apple Computer, Inc.

Acknowledgements

- To my parents, Genevieve and Robert, and my sisters, Helen, Marirose,
and Jean. Their love and support have gotten me here, and their individ-
ual examples of strength have inspired me.

- To Elizabeth; my friend and my love. For late night pizza, for music
and movies, for desktop-design-on-demand, for understanding, and for
love. Iknow, Iknow, next time I can take as long as I want, as long as I
get the degree in 3 years...

- To my advisor David Zeltzer, who gave me the chance to study and
learn here at the Media Lab and the freedom to pursue this work.

- To Pattie Maes, who has been so generous with her ideas, her time, and
her source code.

- To my fellow late-night Labbers Straz and Bob, for rides and repartee.

e To Nicholas Negroponte, for the gift and challenge of the Media Lab,
and for allowing it to become the wonderfully strange place that it is to-
day.

- To Dave Chen and Steve Pieper, whose implementation of 3d and bolio,

respectively, informed the implementation of the work in this thesis im-

mensely.

- To all the Labbers who have listened to me over the years and taught me
all manner of things: David Atherton (the original GED), Steve Benton,

Brent, Joe Chung, das, Glorianna Davenport, Marc Davis, Didier, djs,
Judith, Steven Drucker, dsmall, dyoung, foof, gmo, Grace, halazar,
Mike Hawley, Irfan, Jan Marie, jh, Kevin, Rap-Master Lasky, Laureen,
Ben Lowengard, Mark Lucente, Elaine McCarthy, Martin, Tod Macho-
ver, michelle, mikey, Margaret Minsky, Marvin Minsky, Muriel, Mary

Ann Norris, Janette Noss, Laura Robin, Sandy, Peter Schr6der, Syl-
vaine, teo, Tinsley, Trevor, Wendy.

- This document was laid out in Aldus Pagemaker 4.0, and the illustra-

tions were done in Aldus Freehand 2.0. Page design and illustrations

were done with the amazing assistance of Elizabeth Glenewinkel.

Contents

ibtruction 6
The Problem of Action Selection

. Map of the Thesis Document 7

2Related Work 10
Computer Graphics, Al, Robotics and Ethology

e Task Level Animation 10

e Computer Graphics 10

e Autonomous Agents from Al, Robotics and 12
Machine Leaming

* Ethologically Based Control Ideas 153An Algorithm for Action Selection 16
" Maes' Mathematical Model 16

e Maes' Algorithm: Pros and Cons 19
e Discussion and Some Proposed Solutions 20

4e Skill Network 254 Overview 25
The Skill Network 25

e Implementation Design Consideration and 25
Motivations

e Agents Communicate via the Registry/Dis- 26
patcher

e Representation of Agents in the Registry/ 26
Dispatcher

e The Registration Process: How an Agent 29
Connects to a Skill Network

e Unregistered Agents 30

* Agents Are Managed by the asna 30

e Activation Flow in the Skill Network 31

e A Virtual Actor's World: Skill Agents, Sensor 32
Agents, and an IGSP

Remus33
A Benchmark and Some Detailed Examples

e Overview 33
e Maes' Robot Sprayer/Sander - a B-a-D 33

Benchmark

e Gallistel's Cat Walk Cycle Fragment 37

* Synopsis: Dude Take 1 50
* A Door Openin', Window Closin' Dude: 60

Dude Take 2

e A Door Openin', Crawlin' Dude: Dude Take 3 66

GMiall Remarks 73
Limitations, Possible Improvements, Conclusion

Improving the Backend 73
e Improving the Frontend 73

e Improving the Inside 74

e Conclusion 77

Sources 79

AppendIces 82
e Appendix A 82
e Appendix B 89

Introduction
The Problem of
Action Selection

if you cannot-in the long run-tell everyone what you have been doing, your
doing has been worthless.
Erwin Scrh6dinger

The question of selecting the next appropriate action to take in a given situa-
tion is a ubiquitous one. In the field of computer graphics, with the advent of
graphical simulation techniques and physically-based modeling systems, the
problem manifests itself as the question of how to intelligently control the
degrees of freedom (DOF) problem such systems present the user. Users,
from animators to video game enthusiasts, are increasingly being given more
degrees of freedom to control, and, in the process, being overwhelmed. If
we as media technologists are to intelligently put the power of today's com-
puting systems into the hands of non-computer graphicists, we need to allow
users to interact with such systems at a much higher level than is currently
possible.

This thesis represents my exploration into this problem from the perspective
of a computational graphicist, interested in the problem of controlling simu-
lations which present the user with a bewildering number of parameters to
manipulate. I am interested in designing and implementing animation and

simulation systems that are inhabited by intelligent, computational autono-
mous agents. Such agents would exist within the context of the animation/
simulation system, and be able to autonomously interact with other simula-
tions in the system, as well as with the users of such systems.

Of equal importance to me is understanding how such systems can be effi-
ciently implemented on current architectures of computing systems, as well
as how to scale such implementations to take advantage of parallel comput-
ing by distributing computation over high speed networks. If we are to build
such systems and test them, this is of vital interest.

The particular domain I have chosen for this work is understanding how to
organize the behavior of a computational autonomous agent. This dovetails
nicely with other work being done here at the MIT Media Lab in the Com-
puter Graphics and Animation Group. It also paves the way for building ge-
neric simulator systems, which have potentially widespread application.

DOF problem

The innumberable ways in
which any action may be
performed. (Turvey 1977)

(Turvey 1977)

Turvey, M.T. Preliminaries to
a Theory of Action With
Reference to Vision, in
Perceiving, Acting, and
Knowing. Lawrence Erlbaum
Associates (1977).

animation == simulation
Many researchers, myself
included, consider animation
as a form of simulation. This
is sometimes referred to as
graphical simulation. see
(Zeltzer 1985)

(Zeltzer 1985)

Zeltzer, D. Towards an
Integrated View of 3-D
Computer Animation. Visual
Computer 1,4 (December
1985).

current CG&A work
Other researchers in CG&A
are building graphical
simulation systems and
physically-based models
which can simulate the motor
skills of a virtual actor; what
is needed is some high level
form of controlling such
systems.

Chapter 1: Introduction 6

I

Such systems could be used to test robots before they were ever physically
built; such systems could become the virtual laboratory of the computational
scientist of the near future. On a potentially widespread level, such simulator
systems could be a platform for new forms of home entertainment. In such
systems, users could construct their own simulacra-virtual actors and ac-
tresses which wandered about the network, interacting with other virtual con-
structions and real users. Conversely, it could be the entrance for humans to
move beyond the physical-to touch something which has never existed
physically, to interact with some visual, aural, or tactile phenomena which
has never existed outside of simulation.

I have built a set of tools for defining and controlling the behavior of a
graphically simulated autonomous agent (a dude), based on a theory present-
ed in this thesis. Rather than focus on the design and implementation of
complicated jointed-figure motions, I have concentrated on the problems of
organizing and coordinating currently implementable motor skills to enable
meaningful goal-driven behaviors.

The theory for organizing motor skills into a behavior repertoire has taken its
inspiration from the work of ethologists and other researchers who study the
behavior of animals; human and otherwise. More pragmatically, the work
done by Pattie Maes, David Zeltzer, and Marvin Minsky has directly influ-
enced the development, details and implementation of this theory.

I believe that this thesis and the resulting set of tools, constitutes a working
platform for learning about paradigms for the representation and control of
the behavior of autonomous, graphically simulated agents, and will provide
the basis for future exploration of these issues by myself and other research-
ers.

Map of the Thesis Document
This chapter is intended to inform the reader of the general scope and intent
of this research and explain a bit about my particular perspective. The next
chapter discusses relevant work done in many different disciplines-from
previous work done by fellow computer graphicists, through research done
by researchers in AI and robotics, to seminal work done by those who study
animal behavior. The area to be covered is vast, and my treatment makes no
attempt at being exhaustive. My intention is to point out some major themes
and show where I have received my guidance and inspiration.

Chapter 3 presents an algorithm for the problem of action selection, embod-
ied as a network of choices. This algorithm borrows liberally from the work
of both David Zeltzer and Pattie Maes. Zeltzer broadly sketched such a sys-

Chapter 1: Introduction 7

dude

The use of the term dude,
seemingly facetious, is
intended to represent the
way I want to see interaction
occur in simulation systems.
In the future, I want to say
"Dude! What happened?"
and have the computational
autonomous agents I'm
dealing with understand what
I mean and do the right
thing.

tern in (Zeltzer 1983) Later, Maes independently elaborated a similar algo-

rithm in (Maes 1989). She also presented a mathematical model of the algo-

rithm, which is reproduced in Chapter 3 of this document I include it as

both an elegant and complete statement of her currently published algorithm,

and because it was the starting point of my implementation. I then present

extensions to this algorithm which (in conjunction with my advisor David

Zeltzer) we have made to increase its usefulness both in general and for my

chosen domain.

Chapter 4 presents my implementation of the algorithm outlined in Chapter

3. 1 describe a skill network, which consists of a set of motor skills corre-

sponding to the simulated skills of a virtual actor. I describe some of the fac-

tors I considered in its design and implementation, and go on to describe in

some detail exactly how the skill network was implemented as a set of dis-

tributed processes running on a network of workstations.

Chapter 5 discusses the current results of using the Build-a-Dude system to

generate behavior. It first discusses a benchmark I used to calibrate one case

with respect to Maes' original implementation. I then go on to discuss two

other examples which have been simulated by the system. The first is a rath-

er simple one, showing how the algorithm can be used to simulate some of

the low-level workings mediating the execution of an animal's reflexes dur-

ing the walk cycle. The second example has three parts, and concems a one-

aimed virtual actor sitting in a chair with a drink in its hand who is then told

to open a door. The first part shows how the algorithm causes the actor to

select a series of actions to call the appropriate routines to get the door

opened. The second part adds the complication of trying to get the dude to

close a window on its way to opening the door. This is intended to show

how the algorithm (and its current implementation) can handle parallel exe-

cution of tasks. Finally, the third example demonstrates how the algorithm

deals with failure and run-time arbitration of new skills. When our virtual

actor suddenly finds itself without the ability to walk, it discovers and uses

its new found ability of crawling across the floor. Each example includes a

synopsis of what happened, gleaned from the log files of the running imple-

mentation, and a discussion of what occurred.

Chapter 6 closes the thesis document proper with a discussion of some of the

limitations of the current algorithm and its implementation. I talk about

some of the work I am doing now, as well as work under consideration, to

extend and improve the Build-a-Dude system. At the end of this chapter, I

wrap up with some conclusions of what I have accomplished to date with

this work.

(Zeltzer 1983)
Zeltzer, D. Knowledge-Based
Animation. Proceedings of
ACM SIGGRAPH/SIGART
Workshop on Motion (April
1983).

(MsM 1989)

Maes, P. How to Do the Right
Thing A.I. Memo 1180.
Massachusetts Institute of
Technology. (December
1989).

Chapter 1: Introduction 8

Finally, there is a list of sources I used and several appendices, containing
information I felt would have interrupted the flow of the thesis document,
but that I wished to have available to the interested reader. The first appen-
dix goes into some detail about the registry/dispatcher's inner loop, a key
part of the implementation. The final appendix discusses a portable, net-
work transparent, message passing library I designed and implemented
which underlies the implementation of the Build-a-Dude system.

Chapter 1: Introduction 9

Related Work
Computer Graphics, Al,
Robotics, and Ethology

If I have seen further it is by standing on the shoulders of giants.
Sir Isaac Newton

Task Level Animation
In (Zeltzer 1985), Zeltzer discusses a three part taxonomy of animation sys-
tems: guiding, animator level, and task level. Guiding includes motion re-

cording, key-frame interpolation, and shape interpolation systems. Animator

level systems allow algorithmic specification of motion. Task level anima-
tion systems must contain knowledge about the objects and environment be-

ing animated; the execution of the motor skills is organized by the animation

system. The work undertaken in this thesis is an example of one component
of a task level animation system.

In a task level animation system, there are several kinds of planning activity

that can go on. In this work, I am concemed with only the lowest level of

planning-what Zeltzer calls motor planning. Motor planning is similar to

the kind of problem solver proposed by Simon & Newell in their GPS;
which Minsky calls a difference engine. 'This reflects current notions of

how animal behavior is structured in what we call an expectation lattice, in

which motor behavior is generated by traversing the hierarchy of skills se-

lected by rules which map the current action and context onto the next de-

sired action." (Zeltzer 1987)

The notion of designing motor skills and doing motor planning for animated
agents, draws from the established fields of mathematics, physics, psycholo-
gy, physiology, ethology, and newer, hybrid fields including kinesiology,
neuroethology, artificial intelligence, robotics, and, of course, computer
graphics. What follows is a brief overview of relevant research done in some

of these areas.

Computer Graphics
Animated creatures that move realistically have long been a dream of com-
puter graphicists. Recently, with the advent ofphysically-based modeling
techniques, animated creatures exhibiting motion akin to the complexity of
real creatures have been demonstrated. Physically-based modeling is a
catch-all phrase used in the computer graphics community to denote the sim-

(Zeitzer 1985)

Zeltzer, D. Towards an
Integrated View of 3-D
Computer Animation. Visual
Computer 1(4) (December
1985).

(Zeitzer 1987)
Zeltzer, D. Motor Problem
Solving for Three Dimen-
sional Computer Animation.
Proceedings of Proc.
L'Imaginaire Numerique (May
14-16 1987).

Chapter 2: Related Work 10

ulation of Newtonian physics to help automate motion. It includes forward
and inverse kinematics, forward and inverse dynamics, constraints, finite ele-
ment, and finite difference techniques.

Using forward kinematic techniques, Zeltzer showed a biped with many de-

grees of freedom that could walk over uneven terrain (Zeltzer 1984). His
system was a step towards an animation system that allowed interaction at
the task level, although the motor skills of the animated figures were limited

to forward locomotion.

Girard's PODA system has creatures that can walk, run, turn, and dance us-
ing kinematics and point dynamics (Girard 1985). Again the emphasis in
this system is on the animation of legged locomotion, and allowing the ani-

mator control over its creation. Autonomy of the animated creatures is not
the goal, rather intelligent and artistic control by the animator is.

Sims designed a system for making creatures that, using inverse kinematics
and simple dynamics, could navigate over uneven terrain (Sims 1987). This

system was notable in that the notion of "walking" was generalized enough
that he could generate many different kinds of creatures that all exhibited dif-
ferent behavior very quickly.

In (Reynolds 1987), Reynolds describes a system based on the actors model
of distributed computation (Agha 1985) for animating the behavior of flocks
and herds. The use of the actor model allows for a great amount of flexibili-
ty, but the communication overhead between actors imposed for their partic-

ular application is non-trivial (O(n2)).

Also of note are Miller's snakes and worms, which use relatively simple no-
tions about the motion of real snakes to generate quite interesting motion.
The locomotion is controlled by a behavior function which allows the snake
to be steered towards a target (Miller 1988).

Badler et al. describes a system in (Badler 1990) for translating NASA task
protocols into animated sequences that portray astronauts performing speci-
fied tasks in a space station work environment. The focus of their research is
concemed more with portraying and evaluating human motor performance
for specified tasks, or for instructing agents in the performance of tasks, rath-
er than the development of architectures for representing and implementing
virtual actors.

One of the most ambitious animated creatures to date is a dynamic hexapod,
being developed here in the Computer Graphics & Animation Group at the

Chapter 2: Related Work 11

(Zeltzer, 1984)

Zeltzer, D. Representation
and Control of Three
Dimensional Computer
Animated Figures. Ph.D.
Thesis. Ohio State University
(August 1984).

(Girard 1985)

Girard, M. and A. A.
Maciejewski. Computational
Modeling for the Computer
Animation of Legged Figures.
Computer Graphics 19,3
(July 1985).

(Sims 1987)

Sims, K. Locomotion of
Jointed Figures over Complex
Terrain, S.M.V.S. Thesis.
Massachusetts Institute of
Technology (June 1987).

(Reynolds 1987)

Reynolds, C. W. Flocks,
Herds and Schools: A
Distributed Behavioral Model.
Computer Graphics 21,4
(July 1987).

(Agha 1985)
Agha, G. Actors: A Model of
Concurrent Computation in
Distributed Systems, MIT
Press (1985).

(Miller 1989)

Miller, G. The Motion
Dynamics of Snakes and
Worms. Computer Graphics
22,4 (August 1988).

(Badler 1990)
Badler, N. 1. and B. L.
Webber. Animation from
Instructions. Making Them
Move: Mechanics, Control
and Animation of Articulated
Figures. Morgan Kaufmann
(1991).

MIT Media Lab by McKenna and Zeltzer (McKenna 1990A). They have
demonstrated an articulated figure with 38 degrees of freedom, that uses the

gait mechanism of a cockroach to drive a forward dynamic simulation of the

creature moving over even and uneven terrain. It is an example of how suc-

cessfully biologically-based control schemes can be adapted for computer
animation. A virtual actor hexapod that uses the same gait controller and ex-

hibits several simple behaviors has been also been demonstrated (McKenna
1990B).

Autonomous Agents from Al, Robotics and Machine Learning

The artificial intelligence community has long been fascinated by the notion

of autonomous agents. Recently, systems containing agents with interesting

behavior have been developed.

Minsky describes a theory in which a mind is composed of a society of inter-
acting parts, each of which, considered by itself, is explicable and mindless,
that he calls the Society ofMind (Minsky 1987). The work done by Travers
for the Vivarium project here at the Media Lab contains good examples of
systems of agents that are autonomous and exhibit interesting behavior
(Travers 1989). His ideas are loosely based on Minsky's Society of Mind

theory and model the behavior of groups of insects using perception sensors

of the environment and agent-based representations of the state of each in-

sect's "mind".

Agre and Chapman have developed a theory of general activity. They argue
that there are two kinds of planning, which can be referred to as capital-P
Planning and small-p planning. They contend that much of AI research is on
Planning, while what people actually do a lot more of is planning. This is
similar to Zeltzer's discussion of motor planning as a subset of more general
problem solving skills. Their work on Pengi (Agre 1987) is quite interesting

because of their assertion that "we believe that combinatorial networks can
form an adequate central system for most activity." It is also interesting be-
cause their chosen domain, the 2D game of Pengo, could be extended to 3D
and implemented in bolio at some point.

Wilson describes the animat problem in (Wilson 1987) which seems to

agree well with the ethological approach Zeltzer has long advocated:

To survive in its environment, an animal must possess associa-

tions between environmental signals and actions that will lead to

satisfaction of its needs. The animal is born with some associa-

tions, but the rest must be learned through experience. A similar

(McKenna 1990A)

McKenna, M. A Dynamic
Model of Locomotion for
Computer Animation, S.M.
Thesis. Massachusetts
Institute of Technology
(January 1990).

(McKenna 1990B)

McKenna, M., S. Pieper and
D. Zeltzer. Control of a Virtual
Actor: The Roach. Proceed-
ings of Proc. 1990 Sympo-
sium on Interactive 3D
Graphics (March 25-28,
1990).

(Minsky 1987)

Minsky, M. The Society of
Mind. Simon and Schuster
(1987).

(Travers 1989)

Travrers, M. D. A Agar: An
Animal Construction Kit, S.M.
Thesis. Massachusetts
Institute of Technology
(February 1989).

(Agre 1987)

Agre, P. and Chapman, D.
Pengi: An Implementation of
a Theory of Situated Action.
Proceedings of AAAI-87
(1987).

(WIlson 1987)
Wilson, S. Classifier Systems
and the Animat Problem,
Machine Leaming, 2(3)
(1987).

Chapter 2: Related Work 12

situation might be said to hold for an autonomous robot (say on

Mars or under the sea). One general way to represent the asso-

ciations is by condition-action rules in which the conditions

match aspects of the animal's environment and internal state and

the actions modify the internal state or execute motor commands.

He describes a system using a classifier system (a variant of the Genetic Al-
gorithm (Goldberg 1989)) to approach the problem of an animat in a 2D en-

vironment.

At Case Westem, msearchers are building a simulated insect, the Periplaneta
Computatrix (Beer 1989). The design of the insect, and the nervous system

that controls it, are inspired by the neuroethological literature on several nat-

ural animals.

In work directed toward constructing autonomous robots (Maes 1989 and

1990A), Maes has described the details of the connections among skills
(competence modules in her terminology) for a "situated" agent. In her ac-

tion selection network, each motor skill has a set of preconditions - the con-
dition list - that must be true in order for the skill to execute. In addition,
there is an add-list of propositions expected to become true once the skill has
executed, and a delete-list of propositions that will no longer be true. Skills

are interconnected through these preconditions, add- and delete-lists in the
following ways: a skill S1, that, when executed, will make true the precondi-

tion for another skill S2 is called a predecessor node, and S1 may receive ac-

tivation energy from S2. A skill S2 that has a precondition that will be made

true by some other skill S1 is a successor of S1 and receives activation ener-

gy from S1. There are also conflicter relationships that correspond to inhibi-
tory connections among nodes.

Importantly, Maes has introduced the notion of spreading activation, which
provides for graded recruitment of motor resources-potentiation is not a bi-
nary switch, but a continuous quantity, so that a skill may be potentiated by
varying amounts. This is also in agreement with the ethological account.
The process of action selection takes into account the global goals of the
agent, as well as the state of the world. Activation is spread to the skills from

the goals and the state, and activation is taken away by the achieved goals
which the system tries to protect. Activation is sent forward along the prede-
cessor links, and backwards along the successor links; activation is decreased
through the conflicter links, and each skill's activation is normalized such

that the total activation energy in the system remains constant. If all the
propositions in the condition list of a skill are satisfied in the current state of

the world, and that skill's activation energy is higher than some global

Chapter 2: Related Work 13

(Goldberg 1989)
Goldberg, D.E. Genetic
Algorithms Addison-Wesley
(1989).

(ew 1989)

Beer, R.D., Sterling, L.S.,
Chiel, H.J. Periplanteta
Computatrix: The Artificial
Insect Project, Tech Report
TR 89-102, Case Western
Reserve University (1989).

(Mas 1989)
Maes, P. How to Do the Right
Thing A.I. Memo 1180.
Massachusetts Institute of
Technology (December
1989).

(Maes 1990A)

Maes, P. Situated Agents
Can Have Goals. Journal of
Robotics and Autonomous
Systems 6,1&2 (1990).

threshold (as well as being higher than all the other modules in the network),

that skill is invoked to perform its assigned action (thereby adding the propo-

sitions in its add list to the state and removing those on its delete list) and re-

turns. If no skill is selected, the global threshold is reduced by some amount.

Either way, the spreading of activation continues, as described above. The

interested reader is referred to Chapter 3 where I present Maes' mathematical

model of the theory and discuss some of my extensions to it.

Rod Brooks has argued that AI should shift to a process-based model of in-

telligent systems, with a decomposition based on "task achieving behaviors"

as the organizational principle (Brooks 1986). He described a subsunption

architecture based on the notion that later, more advanced layers subsumed

earlier layers, in a sense simulating the evolutionary process biological or-

ganisms have undergone. He argues that AI would be better off "building

the whole iguana", i.e. building complete systems, albeit simple ones, rather

than some single portion of a more complex artificial creature (Brooks

1989). To this end, Brooks has spearheaded the construction of several suc-

cessful (to varying degrees) mobile robots.

One example of a mobile robot based on the subsumption architecture was

programmed by Maes to learn how to walk. The algorithm was similar to

the one previously described by Maes (and the one implemented in this the-

sis) with the addition of simple statistically based learning (Maes 1990B). In

the chosen domain (hexapod walking), the algorithm proved appropriate and

accomplished its goal, although it is unclear how well it scales or transfers to

other domains.

On a more practical note, an example of a robotic insect is that of the robot

bee, reported in the German joumal Naturwissenschaften in June 1989. An

interdisciplinary group of researchers led by a bioacoustician and an ento-

mologist, have built and demonstrated a computerized bee that performs bee-

dance steps well enough to convince other hive members to follow its

directions. Researchers have successfully programmed the robot to dance in

such a way as to tell the other bees it had found food 1,000 meters to the

southwest. Upon seeing the robot dance, the other bees flew to that exact lo-

cation. Reprogramming it to tell of food somewhere else causes the bees to

fly to the new location. It is hoped that research in building virtual creatures

and their associated behavior producing skills, will lead to useful robots such

as the bee.

(Brooks 1986)

Brooks, R. A. A Robust
Layered Control System for a
Mobile Robot. IEEE Journal of
Robotics and Automation 2,1
(1986).

(Brooks 1989)
Brooks, R. A. The Whole
Iguana. Robotics Science.
MIT Press (1989).

(Mas 1990B)

Maes, P. and Brooks, R. A.
Learning to Coordinate
Behaviors, Proceedings of
AAAI-90, (1990).

Chapter 2: Related Work 14

EtLUologically-Based Control Ideas
Gallistel argues that action is organized in a hierarchical fashion, and gives

examples drawn from a wide range of biological literature (Gallistel 1980).

Zeltzer argues that a simple but general problem solving capacity, is innate

in the organization of an agent's behavior repertoire when it is coupled with

the appropriate representation of an object's functional and geometric at-

tributes (Zeltzer 1987). Zeltzer and I propose the idea of a skill network

(Zeltzer 1990), that shares many similarities with Brook's ideas of a pro-

cess model of robot behavior, as well as Minsky's difference engine and

parts of his Society of Mind theory. Many of these notions of lattice-like

control of low-level behavior in animals were first proposed by Tinbergen

in his seminal work in ethology (Tinbergen 1951).

Greene puts forth the notion of many "virtual arms" in any one real arm,

i.e., the idea that, depending on the task, we treat our arm as a much simpler

appendage than it is, finding and using recipes to solve the given task

(Greene 1988). He states that additional degrees of freedom help, rather

than hinder, the control process by "providing a variety of recipes to fake

what we want to do" (Greene 1972). He also arguesthat object-oriented

control might be used to model natural motion.

Turvey discusses a theory of the organization of action which draws heavily

on the empirical studies of the Russian mathematician and behavioral biolo-

gist Nicholas Bernstein (Turvey 1977 and Bernstein 1967). The major

themes of Turvey's theory, as outlined in (Gallistel 1980), are as follows:

the degrees of freedom problem, the idea that the DOF problem is solved by

hierarchical command structure, that each level of the hierarchy is relatively

autonomous with respect to other levels, and that higher units exert control

over lower units by the parameters of the units themselves and parameters

of the pathways by which the units interact

(Gallstel 1980)

Gallistel, C. R. The Organiza-
tion of Action: A New
Synthesis. Lawrence Eribaum
Associates (1980).

(Zeitzer 1987)

Zeitzer, D. Motor Problem
Solving for Three Dimen-
sional Computer Animation.
Proceedings of Proc.
L'Imaginaire Numerique (May
14-16 1987).

(Zeftzer 1990)

Zeltzer, D. and Johnson,
M.B. Motor Planning: An
Architecture for Specifying
and Controlling the Behavior
of Virtual Actors. Journal of
Visualization and Computer
Animation, 2(2) (to appear).

(Tlnbergen 1951)

Tinbergen, N. The Study of
instinct. Oxford University
Press (1951).

(Greene 1988)
Greene, Peter H., The
Organization of Natural
Movement, Journal of Motor
Behavior (June 1988).

(Greene 1972)

Greene, Peter H., Problems
of Organization of Motor
Systems, in Progress in
Theoretical Biology (Vol. 2),
Academic Press (1972).

(Bernstein 1967)

Bernstein, N. The Coordina-
tion and Regulation of
Movements. Pergammon
(1967).

(Turvey 1977)

Turvey, M.T. Preliminiaries to
a Theory of Action With
Reference to Vision, in
Perceiving, Acting, and
Knowing. Lawrence Erlbaum
Associates (1977).

Chapter 2: Related Work 15

3An Algorithm forAction Selection

L'embarras des richesses
(the more altematives, the more difficult the choice)
Abbi D'Allainval

The notion of a using a network of interconnected motor skills to control the
behavior of a virtual actor was first described by my advisor David Zeltzer in
(Zeltzer 1983). This was later independently elaborated by Pattie Maes in
(Maes 1989). Her algorithm was used as the starting point for the work
done in this thesis. In addition to implementing her algorithm, I have extend-
ed the original in several ways, with an emphasis on the issues involved in a
robust, parallel, distributed implementation that is not machine specific (i.e.
portable to many different platforms). The implementation itself was quite
challenging and brought to light some interesting issues in MIMD process
synchronization, and will be covered in detail in the next chapter.

This chapter begins with an algorithm for the problem of action selection for
an autonomous agent as presented by Maes in (Maes 1989), and then goes
into some detail about extensions which have been made during the course
of implementing it. The mathematical model presented here differs slightly
from Maes' original in that it corrects one error I found while implementing
it. The particular change is pointed out in a sidenote.

Maes' Mathematical Model

This section of the paper presents a mathematical description of the algo-
rithm so as to make reproduction of the results possible. Given:

* a set of competence modules 1..n

- a set of propositions P

- a function S(t) returning the propositions that are observed to be true at
time t (the state of the environment as perceived by the agent); S being
implemented by an independent process (or the real world)

- a function G(t) retuming the propositions that are a goal of the agent at
time G; G being implemented by an independent process

(Zeftzer 1983)

Zeltzer, D. Knowledge-Based
Animation. Proceedings of
ACM SIGGRAPH/SIGART
Workshop on Motion (April
1983).

(Maes 1989)
Maes, P. How to Do the Right
Thing A.I. Memo 1180.
Massachusetts Institute of
Technology (December
1989).

MIMD

Multiple Instruction, Multiple
Data. Refers to a particular
kind of parallel processing in
which each process acting in
parallel is operating on its
own data in its own way.

Maes' view of agents

An agent is viewed as a
collection of competence
modules. Action selection is
modeled as an emergent
property of an activation/
inhibition dynamics among
these modules. (Maes 1989)

Chapter 3: An Algorithm for Action Selection 16

- a function R(t) returning the propositions that are a goal of the agent that

has already been achieved at time t; R being implemented by an inde-

pendent process (e.g. some internal or external goal creator)

- a function executable(i, t), which returns 1 if competence module i is ex-

ecutable at time t (i.e., if all of the preconditions of competence module i

are members of S(t)), and 0 otherwise

- a function M(j), which returns the set of modules that match proposition

j, i.e., the modules x for which je cx

- a function A(j), which returns the set of modules that achieve proposi-

tionj, i.e., the modules x for which j e ax

- a function U(j), which returns the set of modules that undo proposition j,
i.e., the modules x for which je d

- n, the mean level of activation

- 0, the threshold of activation, where 0 is lowered 10% every time no

module could be selected, and is reset to its initial value whenever a

module becomes active

- $, the amount of activation energy injected by the state per true proposi-
tion

- 'y, the amount of activation energy injected by the goals per goal

- 8, the amount of activation energy taken away by the protected goals per

protected goal

Given competence module x = (c, a,, d, a), the input of activation to

module x from the state at time t is:

inputjfromstate(x, t)= 0 1 1
~ #M(j) #cx

where je S(t) n c and where # stands for the cardinality of a set.

The input of activation to competence module x from the goals at time t is:

input fromgoals(x, t) = X y -1
j #A(j) #ax

Chapter 3: An Algorithm for Action Selection 17

where j e G(t) n) a,.

The removal of activation from competence module x by the goals that are

protected at time t is:

taken awayby_protected goals(x, t) = X 1 -
#U(j)#dx

wherej e R(t) r d,.

The following equation specifies what a competence module

x = (c,, a,, d,, a), spreads backward to a competence module

y = (c,, a,, d,, a,):

Sax (t -1)
spreadsbw(x, y, t) j

1
0

1 1
#A() #ay

where j e S(t) A j E c, n) a,.

The following equation specifies what module x spreads forward to module

Yax(t -1)
spreadsfw(x, y, t)= j

fiv~x0 yt

4- 1
f #M(U) #cy

if executable(x, t) = 1

if executable(x, t) = 0

where j 0 S(t) A j e a r c,.

The following equation specifies what module x takes away from module y:

if (ax(t - 1) < ay(t - 1)) A (3i E S(t) rn cy n dx)

(t-1) 8 , ay(t - 1)) otherwise
7#U(j) #dy

where j e c n d, n S(t).

The activation level of a competence module y at time t is defined as:

ay, 0)= 0

a(y, t)= decay(a'y, t - 1) (1 - active(y, t - 1))

+ inputfromstate(y, t) + inputftomgoals(y, t)

- taken awayby_protected goals(y, t)

+T (spreads_bw(x, y, t)
" + spreadsfiv(x, y, t)

- takes_away(z, y, t)))

Chapter 3: An Algorithm for Action Selection 18

sidenote
The use of the min() function
here (as opposed to the
max) function specified by
Maes in (Maes 1989) is
correct. This was discovered
in the course of implement-
ing this model, and verified
with Maes.

(MMs 1989)

Maes, P. How to Do the Right
Thing A.I. Memo 1180.
Massachusetts Institute of
Technology (December
1989).

if executable(x, t) =0

if executable(x, t) = 1

takes_away(x, y, t) =

0

min ax

where x ranges over the modules of the network, z ranges over the modules
of the network minus the module y, t > 0, and the decay function is such that
the global activation remains constant:

ay~t) =nn
y

The competence module that becomes active at time t is module i such that:

a(i, t) >= 0 (1)
executable(i, t) = 1 (2)

Vj fulfilling(l) A (2): a(i, t) >= a(i, t) (3)

active(t, i) = 0 otherwise

Maes' Algorithm: Pros and Cons
The Good News

Maes' algorithm is notable on several accounts. First of all, without refer-
ence to any ethological theories, she captured many of the important con-
cepts described in the classical studies of animals behavior. Her view of
activation and inhibition, especially as a continuously varying signal, are in
step with both classical and current theories of animal behavior (Sher-
rington 1929 and McFarland 1975). Secondly, the algorithm can lend it-
self to a very efficient implementation, and allows for a tight interaction loop
between the agent and its environment, making it suitable for real robots and
virtual ones that could be interacted with in real time.

Her enumeration of how and in what amount activation flows between mod-
ules is refreshingly precise:

...the internal spreading of activation should have the

same semantics/effects as the input/output by the state and

goals. The ratios of input from the state versus input from

the goals versus output by the protected goals are the

same as the ratios of input from predecessors versus input

from successors versus output by modules with which a

module conflicts. Intuitively, we want to view precondi-

tions that are not yet true as subgoals, effects that are

about to be true as 'predictions', and preconditions that

are true as protected subgoals. (Maes 1989)

This correspondence gives her theory an elegance which stands head and

(Sherington 1906)
Sherrington, C.S. The
Integrative Action of the
Nervous System. Yale
University Press (1906).

(McFalad 1975)

McFarland, D.J., Sibly, R.M.
The Behavioral Final
Common Path. Phil. Trans.
Roy. Soc. London, 270:265-
293 (1975).

(Maes 1989)

Maes, P. How To do the
Right Thing A.I. Memo 1180.
Massachusetts Institute of
Technology (December
1989).

Chapter 3: An Algorithm for Action Selection 19

active(t, i) = 1 if

shoulders above the tradition of hacks, heuristics, and kludges that Al is lit-

tered with.

The Bad News

As with any new and developing theory, Maes' currently suffers from sever-

al drawbacks. I'll first list what I feel to be the problems with the algorithm

as stated above, and then discuss each in turn.

- the lack of variables

- the fact that loops can occur in the action selection process

- the selection of the appropriate global parameters (0, $, y, S) to achieve a

specific task is an open question

- the contradiction that "no 'bureaucratic' competence modules are neces-

sary (i.e. modules whose only competence is determining which other

modules should be activated or inhibited) nor do we need global forms

of control" (Maes 1989) vs. efficiently implementing it as such

- the lack of a method of parallel skill execution

Discussion and Some Proposed Solutions
lack of variables

Maes asserts that many of the advantages of her algorithm would disappear

if variables were introduced. She uses indexical-functional aspects to side-

step this problem, an approach I think is too limiting for anything more than

toy networks built by hand, as any implementor would soon tire themselves

of denoting every item of interest to a virtual actor in this way. Maes argues

that the use of indexical-functional notation makes realistic assumptions

about what a given autonomous agent can sense in its environment. This is

perhaps true in the physical world of real robots, but in the virtual worlds I

am concemed with, this is much less an issue. Either way, the addition of

the option of using variables can only enhance the algorithm, although per-

haps at the cost of some performance.

Variables could be introduced into the algorithm with the addition of a sort

of generic competence module, which I'll call a template agent. These tem-

plate agents would be members of the action selection network similar to

competence modules, except they do not send or receive activation. When a

fully specified proposition is entered in G(t), relating to the template agent, it

would instance itself with all of its slots filled in. For example, a generic

(Man 1989)

Maes, P. How to Do the Right
Thing A.l. Memo 1.180.
Massachusetts Institute of
Technology (December
1989).

Indexicalkfunctional
aspect

This term was introduced to
the Al community by Agre and
Chapman (Agre 1987), and
refers to the idea that an
agent need only refer to
things in relation to itself, as
in "the-chair-near-me" or
"the-cup-l-am-holding'.

(Agre 1987)
Agre, P. and Chapman, D.
Pengi: An Implementation of
a Theory of Situated Action.
Proceedings of AAAI-87
(1987).

Chapter 3: An Algorithm for Action Selection 20

competence module walk-to X might have on its add-list the proposition

actor-at -X, where X was some location to be specified later. If the prop-

osition actor-at-red-chair became a member of G(t), this would

cause the template agent walk-to X to instance itself as a competence

module walk-to-red-chair with, among other things, the proposition

actor-at-red-chair on its add-list. This instanced competence mod-

ule would then participate in the flow of activation just like any other compe-

tence module. When the goal was satisfied, or when it was removed from

G(t), the competence module could be deleted, to be reinvoked by the tem-

plate agent later if needed. If the number of modules in a given network was

not an issue, any instanced modules could stay around even after the proposi-

tion which invoked them disappeared.

Loops

The second major difficulty with the current algorithm is that loops can oc-

cur. From my perspective, this isn't necessarily a bad thing, since this sort of

behavior is well documented in ethology, and could be used to model such

behavior in a simulated animal. From the broader perspective of trying to

formulate general theories of action selection, it remains a problem to be ad-

dressed. Maes suggests a second network, built using the same algorithm,

but composed of modules whose corresponding competence lies in observ-

ing the behavior of a given network and manipulating certain global parame-

ters (0, $, y, 8) to effect change in that network's behavior. This is an idea

much in the spirit of Minsky's B-brains (Minsky 1987), in which he outlines

the notion of a B-brain that watches an A-brain, that, although it doesn't un-

derstand the internal workings of the A-brain, can effect changes to the A-

brain. Minsky points out that this can be carried on indefinitely, with the

addition of a C-brain, a D-brain, etc. Maes is currently investigating this

(Maes 1990C). While this idea is interesting, it does seem to suffer from

the phenomenon sometimes referred to as the homunculus problem, or the

meta-meta problem. The basic idea is that any such system which has some

sort of "watchdog system" constructed in the same fashion as itself, can be

logically extended through infinite recursion ad infinitum. Given this, I think

the use of some other algorithm, most notably a Genetic Algorithm (Gold-

berg 1989), would be more appropriate as the watchdog for a given action

selection network.

How to Select 0, $, y, 8

The selection of the global parameters of the action selection network is an

open issue. To generate a given task achieving behavior, it is not clear how

to select the appropriate parameters. From the perspective of a user wishing

to direct the actions of a virtual actor, this is a grievous flaw which must be

(Minsky 1987)

Minsky, M. The Society of
Mind. Simon and Schuster
(1987).

(Man 1990C)

Maes, M. personal communi-
cation, (1990).

(Godberg 1989)
Goldberg, D.E. Genetic
Algorithms Addison-Wesley
(1989).

Chapter 3: An Algorithm for Action Selection 21

addressed. A similar solution to the one proposed for the loops problem

could be used, namely using another network to select appropriate values.

Unfortunately, this doesn't really address the problem of accomplishing a

specific task. One idea is to use any of several learning methods to allow the

network to decide for itself appropriate parameters. Learning by example

could be used to excellent effect here.

Another interesting notion which is applicable is to allow the network to

have some memory of past situations it has been in before. If we allow it to

somehow recognize a given situation ('Tm going to Aunt Millie's-I've done

this before. Let's see: I get up, close all the windows, lock all the doors, get

in the car, and walk down the street to her house."), we could allow the net-

work to bias its actions towards what worked in that previous situation. If

we allowed additional links between completence modules calledfollower

links, we could activation to be sent between modules which naturally follow

each others' invocation in a given behavioral context. This idea has similari-

ties to Minsky's K-lines (Minsky 1987) and Schanks scripts and plans

(Schank 1977), but is more flexible because it isn't an exact recipe-it's just

one more factor in the network's action selection process. This allows con-

tinuous control over how much credence the network gives the follower

links, in keeping with the continuous quality of the algorithm.

Supposedly No Global Forms of Control

Maes considers her algorithm to describe a continuous system, both parallel

and distributed, with no global forms of control. One of her stated goals in

the development of this algorithm was to explore solutions to the problem of

action selection in which:

no 'bureaucratic' competence modules are necessary (i.e.,

modules whose only competence is determining which
other modules should be activated or inhibited) not do we

need global forms of control. (Maes 1989)

Unfortunately, by the use of coefficients on the activation flow which require

global knowledge (i.e. every term which involves the cardinality of any set

not completely local to a competence module), there is no way her stated

goal can be achieved. Secondly, it seems that any implementation of the al-

gorithm has to impose some form of synchronization of the activation flow

through the network. These two problem are inextricably linked, as I'll dis-

cuss below.

Maes asserts that the algorithm is not as computationally complex as a tradi-

(Minsky 1987)

Minsky, M. The Society of
Mind. Simon and Schuster
(1987).

(Schank 1977)

Schank, R. and Abelson, R.
Scripts, Plans, Goals and
Understanding. Lawrence
Erlbaum Associates (1977).

(Man 1989)
Maes, P. How to Do the Right
Thing A.I. Memo 1180.
Massachusetts Institute of
Technology (December
1989).

Chapter 3: An Algorithm for Action Selection 22

tional AI search, and that it does not suffer from combinatorial explosion
(Maes 1990A). She also asserts that the algorithm is robust and exhibits
graceful degradation of performance when any of its components fail. Un-
fortunately, any implementation which attempts to implement the robustness
implied in the mathematical model begins to exhibit complexity of at least
O(N2), since each module needs to send information to the process supplying
the values for M(j), A(j), and U(j). Also, information concerning the cardi-

nality of c., a., dX, c,, ay, and d, must also be available to calculate the activa-

tion flow. This implies either a global database or shared memory in which

these values are stored, or direct communication among the competence

modules and the processes managing G(t), S(t), and R(t). Either method im-
plies some method of synchronizing the reading and writing of data. Unfor-

tunately, Maes asserts that the process of activation flow is continuous,

which implies that asynchronous behavior of the component modules of the

network is acceptable, which it clearly is not.

If we are to implement this algorithm in a distributed fashion, which is desir-

able to take advantage of the current availability of networked workstations,
we need to choose between a shared database (containing data conceming

the cardinality of M(j), A(j), U(j), c1, ax, dX, cy, ay, and d,) and direct commu-
nication among competence modules. If we are to assume a direct commu-

nication model, a given module would need to maintain a communication
link to each other module that held pertinent information to it (i.e. would be
returned by any of the functions M(j), A(j), U(j) or would be involved in the

calculation of the cardinality of ax, dX, cy, ay, and dr). Additionally, a module

would need some way of being notified when a new module was added to
the network, and have some way of establishing a communication link to that
new module. In the limit, this implies that every module would need to
maintain n-i communication links, where the network was composed of n
modules. Although necessary values to calculate the spreading of activation
could be gotten and cached by each agent, to implement the robustness im-

plied in the mathematical model, we need to recalculate each assertion for
each proposition for each agent every time step. This implies a communica-
tion bottleneck, and semi-formidable synchronization issues.

Alternatively, if it was implemented by a shared database or global memory,

each agent would need only a single connection to the shared database.
Some process external to the agents could mangage the connection of new
agents to the database and removal of agents which become disabled. This

would allow the agents not to have to worry about the integrity of the other

members of the network, and would reduce the complexity of the communi-

cation involved to O(n). Given that the an agent's accesses to the database

are known (i.e. a given agent would need to access the database the same

Chapter 3: An Algorithm for Action Selection 23

(Mas 1990A)
Maes, P. Situated Agents
Can Have Goals. Journal of
Robotics and Autonomous
Systems 6,1&2 (1990).

the Implementation
Informs the theory
Since one of my stated goals
in this thesis work concerns
the efficient implementation
of any action selection
algorithm, I concern myself
more than a theorist might
with implementation issues.

number of times as any other agent in the network), synchronization could be

handled by a simple round-robin scheme, where each agent's request was
handled in turn. When an agent wished to add itself to a given action selec-

tion network, it would need to register itself with the shared database by giv-

ing it information about itself (i.e. the contents of its condition, add, and

delete-list). This would allow the database to answer questions from other

agents about M(j), A(j), U(j) and the cardinality of ax, d, cy, a, and d,. Such

a registry could also have a way of marking agents which didn't respond to

its requests for updated information, and perhaps even have the ability to re-

move agents from the network which didn't respond or whose communica-

tion channels break down.

In either method, there needs to be some agreed upon method of synchroniz-

ing messages so that activation flow proceeds according to the algorithm,
and that only one action is selected at a given time step. If we postulate

some agency which dispatches which action is selected, we fly in the face of

Maes' assertion of no global forms of control. Unfortunately, if we are to

implement the algorithm in the distributed fashion described so far, I don't

see any way around having such a taskfragment dispatcher.

No Parallel Skill Execution

Another problem is the assumption built into the algorithm that no compe-

tence module takes very long to execute. This seems implicit in the fact that

Maes does not seem to consider the lack of a method for having parallel exe-

cuting modules as a problem. For my purposes, this is a serious problem,
since without such a capability, I could never have a virtual actor that could

walk and chew gum at the same time. More specifically, a network contain-

ing a "walk" competence module and a "chew-gum" module could never

have both of them executing in parallel. Maes' view of the granularity of

time in the system is very fine, while my view is that there should be some

parameter which allows control from fine to coarse.

Chapter 3: An Algorithm for Action Selection 24

The Skill NetworkAn Implementation of an
Action Selection Network

This isn't a blue sky outfit, you know. We build things around here.
Andy Uppman

Overview
I have developed a system that implements the algorithm for action selection

networks as discussed in the last chapter, including many of the proposed ex-

tensions. This particular sort of action selection network is what my advisor

David Zeltzer and I call a skill network, since it consists of a set of motor

skills corresponding to the simulated skills of a virtual actor. The implemen-

tation is written in C, and runs on a variety of vendors' UNIX workstations.

The Skill Network
The motor skills of the skill network have been implemented as a distributed

set of UNIX processes, referred to as skill agents. These skill agents are quite

similar to Maes' competence modules. The perceptions of the virtual actor

are handled by another set of UNIX processes, referred to as sensor agents.

The goals of the virtual actor are handled by another set of processes known

as goal agents. The interconnections among all of these agents is handled by

yet another UNIX process called the registry/dispatcher. The registry/dis-

patcher is the nexus of information flow among all the agents composing the

virtual actor's skill network. It acts as both a shared database and a message

router, maintaining information about each agent and directing the flow of ac-

tivation energy among them. Since a given task (i.e., "open-the-door") may

entail the execution of many different motor skills, I view the registry/dis-

patcher as less a task manager than a taskfragment dispatcher, hence the lat-

ter part of its name. The goal, sensor, and skill agents can run on any machine

on a network, and connect to the registry/dispatcher via the action selection

network (asn) daemon, that is a UNIX process that listens for messages at a

known network address, and maintains a connection to the registry/dispatch-

er.

Implementation Design Considerations and Motivations
The implementation of the skill network was designed around several impor-

tant real-world considerations:

- It should be portable to different vendors' workstations.

- Computation should be distributed over a network of workstations in or-

agent vs. dude
The reader will recall that I
use the term agent to refer
to one of the component
processes, and the collective
entity composed of these
agents and their interconnec-
tions is referred to as a dude
or virtual actor.

Chapter 4: The Skill Network 25

der to execute efficiently.

- The skill network must be robust, such that if a skill becomes disabled

during execution, the system should find an efficient workaround, if one

exists, and avoid selecting that skill.

- The skill network should be opportunistic, i.e. if a better skill is added

during execution, the system should allow for that skill to be selected.

- The implementation should allow efficient experimentation with large

systems, easy experimentation with different interconnections among

skills, and efficient experimentation with multiple actors in a shared vir-

tual environment.

Agents Communicate via the Registry/Dispatcher
When distributing the computation involved in the skill network over a net-

work of machines, it becomes important to minimize the communication

among its various parts. I chose not to implement the skill network as a set

of agents with many direct interconnections between them because of the

need for global knowledge (as discussed in Chapter 3), shared among the

agents. Since this would have involved broadcasts among all the agents sev-

eral times a time step, I instead chose to centralize the communication
among the component processes of the skill network (the agents) in one pro-

cess-the registry/dispatcher. The registry/dispatcher maintains a shared da-

tabase among all the agents. While the notion of such a shared database may

seem to present a bottleneck, one finds in practice it is very efficient (also

discussed in Chapter 3). The registry/dispatcher alleviates much of the mes-

sage traffic that would have to occur if it were not present.

When the agents first communicate with the registry/dispatcher, they register

themselves by giving the registry/dispatcher enough information to enable it

to act as a selective message router, spreading activation through a locally

maintained version of the skill network, and only passing messages on to
agents when absolutely necessary. In order to do this effectively, the agents

must supply the registry/dispatcher with enough information to construct a

complete skill network. The following section details the information an

agent must supply to the registry/dispatcher.

Representation of Agents in the Registry/Dispatcher
Sensor Agents
Since the skill network maintains no explicit world model, all of its data

about its relationship to the outside world (albeit a virtual one), comes to the

actor via its sensor agents in the form of signs and signals. Sensor agents

measure signs and signals using what I call proposition-value pairs (pv-pair).

Chapter 4: The Skill Network 26

A pv-pair consists of exactly that: a proposition (i.e., a-door-is-nearby, ambi-
ent-tenperature-is) and a value (i.e. TRUE, 72.0). Pv-pairs, in fact, represent
the signs and signals to which the virtual actor attends. For our purposes,
this is a more useful atomic unit of information than just allowing a proposi-
tion to be either true or false, and allows for continuous quantities (distance,
color, etc.) to be measured in discrete (but greater than binary) units, without
necessitating a separate proposition for each case.

In addition to the pv-pair that the sensor agent measures, the registry/dis-
patcher maintains three lists for each sensor agent. The first list has pointers
to all the skill agents that have on their condition-list (see Skill Agents be-
low) the pv-pair which this sensor agent measures. The second list has
pointers to all the skill agents that have on their add-list the pv-pair which
this sensor agent measures, and the third list has pointers to all the skill
agents with that pv-pair on their delete-list

8igns a signals
Signals represent sensor
data-e.g. heat, pressure,
light-that can be processed
as continuous variables.
Signs are facts and features
of the environment or the
organism. (Rasmussen
1983)

(Rasmussen 1983)
Rasmussen, J. Skills, Rules
and Knowledge; Signals,
Signs and Symbols and other
Distinctions in Human
Performance Models IEEE
Trans. on Systems, Man, and
Cybernetics, vol. SMC-13,
no. 3 (May/June 1983).

SENSOR stucture

Mii.!iiii .
I~iiiiiii iiiiii .ii.

........... INEN ...

OOLEAN

PV_PAIR structure
STRING proposition

STRING value

Each points to a list
of SKILL structures
(see 'Skill Agents' below)

disabled

Finally, the registry/dispatcher maintains a boolean flag as to whether or not
it considers this agent disabled. The registry/dispatcher considers an agent
disabled when the agent has been sent a message and has ignored it Since
this might not be the agent's fault (i.e., the network connection between the
registry/dispatcher and the agent might be temporarily hung, or the agent
might be busy doing something else momentarily), it doesn't make sense for
the registry/dispatcher to sever its connection with the agent (thereby remov-
ing it from the skill network). Using the same reasoning, it doesn't make
sense for the registry/dispatcher to waste resources spreading activation
to/from an agent which is not currently available (see Activation Flow in
the Skill Network below).

Goal Agents
Goal agents are represented in the registry/dispatcher as a desired state, i.e. a
pv-pair that the goal agent desires to be true. For each goal agent, the regis-
try/dispatcher also maintains a pointer to the sensor agent that measures the
pv-pair the goal agent desires satisfied. Note that if the virtual actor has
some goal for which it does not have a corresponding sensor agent (i.e., the
pointer is NULL), it has no way of ever knowing if that goal has been satis-

disabled agents

An agent which has been
disabled for some time and
still does not respond is
removed from the skill
network by the registry/dis-
patcher. This process is said
to amputate the agent from
the network.

Chapter 4: The Skill Network 27

fled. The registry/dispatcher also maintains three lists for each goal agent,
similar to the ones it has for each sensor agent The first list has pointers to
all the skill agents that have on their condition-list the pv-pair that this goal
agent wishes satisfied. The second list has pointers to all the skill agents that
have on their add-list the pv-pair this goal agent wishes satisfied, and the
third list has pointers to all the skill agents with that pv-pair on their delete-
list.

GOAL structure
This points to a SENSOR structure
(see 'Sensor Agents' above)

This points to a PV_PAIR structure
(see 'Sensor Agents' above)

BOOLEAN disabled Each points to a list of SKILL structures
S(see 'Skill Agents' below)

Skill Agents

Skill agents are represented in the registry/dispatcher by their name, a set of
preconditions necessary for the skill to execute, and a set of predictions that
the skill makes about the state of the world when the skill is finished execut-
ing. The preconditions are implemented by a list of structures, called the
condition-list. The predictions are represented as two lists: the add-list,
which is a list of structures containing, among other things, a pointer to a pv-
pair that will be made true, and the delete-list, which is a list of structures
containing, among other things, a pointer to a pv-pair that will be made false.
Note that these two lists are only predictions-if the corresponding sensor
agents measure something differently the next time step, that is what the vir-
tual actor will believe. Each of the aforementioned structures contains three
pointers: a pointer to a pv-pair, a pointer to the skill involved in the relation,
a pointer to the sensor that measures that pv-pair.

Also, the registry/dispatcher maintains four other lists for each skill agent:
successors, predecessors, conflicters,followers. The successors list has
pointers to all the skill agents that have on their condition-list a pv-pair that is
on this skill agent's add-list The predecessors list has pointers to all the skill
agents that have on their add-list a pv-pair that is on this skill agent's condi-
tion-list. The conflicters list has pointers to all the skill agents that have on
their delete-list a pv-pair that is on this skill agent's condition-list. Thefol-
lowers list has pointers to all the skill agents that, in a particular context,
have been known to succeed the invocation of this skill agent.

Chapter 4: The Skill Network 28

SKILL structure
STRING name

... Each points to a list of the This points to a PV_PAIR structurefollowing structure:fo.. owin s(see 'Sensor Agents' above)

y. This points to a SENSOR structure
m a0 M"e 1.'191(see 'Sensor Agents' above)

This points to a SKILL
structure

BOOLEAN executable
BOOLEAN executing
BOOLEAN disabled

For each skill agent, the registry/dispatcher also maintains three boolean
flags. The first corresponds to whether or not the skill agent is considered ex-
ecutable. A skill agent is considered executable if all of the pv-pairs in its
condition-list match the pv-pairs currently measured by the corresponding
sensor agents. The second flag marks whether or not a skill agent is current-
ly executing. The third flag marks whether or not the registry/dispatcher
considers this agent disabled. This is the same as the disabled flag for the
other two types of agents.

The Registration Process:
How an agent connects to a skill network
Agents connect to a registry/dispatcher by sending a message to an asn dae-
mon, a UNIX process that is listening for connections at some known net-
work address. The agent connects to the asn daemon and sends it a message
requesting registration information (what host on the network is the registry/
dispatcher running on, what port should it attempt to connect on) about a par-
ticular registry/dispatcher. The asn daemon, which maintains a list of regis-
try/dispatchers that it has connections with, checks that list for the requested
registry/dispatcher. If the daemon has a valid connection to that registry/dis-
patcher, it sends it a message saying that some agent wishes to register with
it. The registry/dispatcher then sends a message back to the daemon with the
necessary information, which the daemon then sends back to the agent. The
agent then breaks its connection to the daemon and connects to the registry/
dispatcher. If the daemon doesn't know about the requested registry/dis-
patcher, or its connection to that registry/dispatcher is no longer valid (per-
haps the registry/dispatcher process died, or the network connection between
the two machines has gone down), it knows how to start a new one up, either
locally (on the same machine as the daemon) or remotely (on some other
machine on the network). The daemon subsequently starts up a registry/dis-

Chapter 4: The Skill Network 29

patcher with enough information for the registry/dispatcher to call the dae-
mon back once it has started up. At this point, the daemon sends it a mes-

sage telling it about the agent that wishes to register with it, and things

proceed as described above.

Once the agent connects to the registry/dispatcher, it registers itself in the
skill network by sending the registry/dispatcher a message containing all of

the information the registry/dispatcher needs to add this agent to the skill net-

work (see Sensor Agents, Goal Agents, and Skill Agents above). After an
agent has registered, the registry/dispatcher updates its database of connec-
tions between the agents, constructing all of the lists in the agents' structures

to reflect the implicit relationships among all the currently registered agents
connected to this registry/dispatcher. The registry/dispatcher updates the

skill network each time a new agent registers, or a known agent is amputated

from it (see Sensor Agents above).

Unregistered Agents
To the registry/dispatcher, any process which satisfies the following is con-

sidered an agent:

- Sends a "request for registration info" via the asn daemon to the regis-

try/dispatcher,

- subsequently connects to the socket at the port number the registry/dis-

patcher has allocated because of the "request for registration info"

request.

This leads to agents that request registration information, connect to the reg-

istry/dispatcher, and subsequently never register. In practice, this seemingly

anomolous behavior is very useful. Unregistered agents (as such agents are

called) can send messages to the registry dispatcher that are evaluated at a

higher priority than registered agents (See Appendix A for more details).

This allows the user (or other processes) to connect to a given skill network

and send messages to other agents or the registry/dispatcher. More exactly,

this capability is used by the asna (see below) to influence activity in the skill

network. This influence is used when activation flow is calculated and

when the value of global parameters in a given skill network, as well as get-

ting information for the user (or other programs) about a particular agent. In

the examples given in Chapter 5, this is how the flow of activation through

each skill network was controlled.

Agents are Managed by the asna

Agents are managed by a program called the asna (the action selection net-

work agent manager). The asna is a tcl based interpreter that, among other

tel
tcl is the tool command
language, a simple program-
ming language which can be
linked into application
programs. I used it for all
the interpreters in all the
applications in Build-a-Dude.
See (Ousterhout 1990) for
more information.

(Ousterhout 1990)
Ousterhout, J.K. Tcl: an
Embeddable Command
Language, Winter Usenix
Conference Proceedings
(1990).

Chapter 4: The Skill Network 30

things, maintains a list of agent structures. These agents can be allocated and
deallocated dynamically, and each agent can be connected to an arbitrary reg-
istry/dispatcher. Every time step, the asna polls the keyboard for user input,
and checks for new messages for any currently active agents. Each agent
maintains its own augmented tcl interpreter. Any messages received by the
asna for a particular agent are passed onto that agent for execution by its own
interpreter. The user has access to a history mechanism that maintains all
messages received or sent by the asna. Using the readline package from the
Free Software Foundation, the user can call up any previous commands and
edit them, as well as having access to command and file name completion.
The user can also selectively disable any agent so that it ignores messages
from the registry/dispatcher. This is especially useful for constructing sce-
narios to test the robustness of the registry/dispatcher's failure mechanisms.

Activation Flow In the Skill Network
Once an agent has registered with the registry/dispatcher, it participates in the
spread of activation in the skill network. Activation is spread through the
network from seven different sources, all flowing to the individual skill
agents. A sensor agent sends activation to each skill agent that has on its
condition-list the pv-pair that sensor agent measures. A goal agent has a pv-
pair that needs to be satisfied, and it sends activation to each skill that has this
pv-pair on its add-list. Goal agents can also have protected goals which
should remain true once achieved. For each protected goal, the associated
goal agent sends negative activation, or inhibition, to each skill agent that
has that goal on its delete-list.

An executable skill spreads activation forward to each of its successors for
which their shared pv-pair is currently not measured to be true. A non-exe-
cutable skill spreads activation backwards to each of its predecessors for
which their shared pv-pair is currently not measured to be true. Each skill
IM lhibition to each of its conflicters for which the shared pv-pair is

true. Each skill spreads activation forward to each of the members of its fol-

follower skdill agent(s)

prdecessmr skill agent(s) j successor skill agent(s)

gell .at ~-}skill agent X .sensor aent)

c..nitetm.Idu agent(s)pOo~llt#

positive activation flow; excitatory connection
negative activation flow; inhibitory connection

Chapter 4: The Skill Network 31

Note that no activation flows to or from any skill that the registry/dispatcher
has marked as disabled (see Sensor Agents above). The registry/dispatcher
periodically checks disabled agents to see if they have become enabled
again.

A Virtual Actor's World:
Skill Ageits, Sensor Agents, and a IGSP
In addition to maintaining connections to the registry/dispatcher, sensor and
skill agents are also connected to an integrated graphical simulation platform
(IGSP) which acts as the virtual actor's world. The IGSP sends information
to the sensor agents whenever the event that the sensor agent measures
changes value. The skill agents send information to the IGSP whenever they
wish to change the properties (position, angle, orientation, etc.) of the graphi-
cal simulation the skill agent is partially controlling in the IGSP. Another
way to look at it is that each agent has a one-way connection to the IGSP: in-
formation flows to the IGSP from the skills, and from the IGSP to the sen-
sors.

IGSP
An integrated graphical
simulation platform called
bolio is the software testbed
we use here in the Computer
Graphics & Animation Group
for our virtual environment
work. (Zeltzer 1989)

(ZeItzr 1989)
Zeltzer, D., S. Pieper and D.
Sturman. An Integrated
Graphical Simulation
Platform. Proceedings of
Proc. Graphics Interface '89
(June 19-23, 1989).

Chapter 4: The Skill Network

Results
A Benchmark and
Some Detailed Examples

Do I contradict myself? Very well then, I contradict myself,
(I am large, I contain multitudes).
Wait Whitman

Overview
The work performed for this thesis led to the development of a theory of ac-
tion selection as outlined and explained in the previous chapters. Using this
theory, I designed and built a set of software tools, which I refer to inter-
changeably as the ASN apps, the Build-a-Dude system, or simply Build-a-

Dude. This chapter chronicles some of the example scenarios I have
experimented with using these tools. Since Build-a-Dude is an evolving sys-
tem, these results represent a snapshot of the system's capabilities as of De-
cember 1990. Included in each section is a brief discussion of what this
particular example is intended to show, a synopsis of what happened when it
was run through the Build-a-Dude system, and a discussion of those results.

Man' Robot Sprayer/Sander - a B-a-D benchmark
In Maes' paper (Maes 1989) which outlines the action selection algorithm
upon which mine is based, she gives a detailed example using a robotic spray
painter from Chamiak & McDermott's Al book (Charniak 1985) to illus-
trate the algorithm's operation. Since I had access to both Maes' paper and
her code, I chose this example as my benchmark to test that my implementa-
tion was complete. Since I was using Maes' algorithm as my starting point, I
needed to make sure that I had implemented the capability embodied in her
system before I could extend the algorithm in any way. This example
seemed particularly good since it shows off Maes' original algorithm and
provides a reasonably rigorous test case.

Scenario: Robot Sprayer/Sander

In this example, a two-handed robot is faced with the task of spray painting
itself and sanding a board. It needs to be relatively smart about performing
the task. It must either use both hands or a vise that is available to it, and it
also must sand the board first, since spray painting itself would render it in-
operable.

The first problem I faced was how to phrase the problem equivalently in my

(Man. 1989)

Maes, P. How to Do the Right
Thing, A.I. Memo 1180.
Massachusetts Institute of
Technology (December
1989).

(Chamiak 1985)

Chamiak, E. and McDermott,
D. Introduction to Artificial
Intelligence, Addison-Wesley
(1985).

Chapter 5: Results 33

system, since mine was a unique implementation of Maes' algorithm.
Maes's system read a file of LISP code consisting of a list of initial goals, a
set of propositions relating to the initially measured state of the environment,
and a definition of some set of competence modules.

G(O) = - (board-sanded, self-painted)

S(0) = (band-is-eapty, hand-is-epty, sander-samwhere,
board-samwhere)

sprayer-sanewhere,

(defmodule PICK-UP-SPRAYER
:conditian-list ' (sprayer-smwhere hand-is-enpty)

:add-list ' (sprayer-in-hand)
:delete-list ' (sprayer-sanewbere hand-is-enpty))

(defmodule PICK-UP-SANDER
:condition-list ' (sander-saewAere hand-is-urpty)

:add-list ' (sander-in-hand)
:delete-list ' (sander-sanewhere hand-is-empty))

(defmodule PICK-UP-BOARD
:conditian-list ' (board-sanewhere hand-is-urpty)

:add-list ' (board-in-hand)
:delete-list ' (board-sarewhere hand-is-enpty))

(defmodule PUT-DOWN-SPRAYER
:canditica-list ' (sprayer-in-hand)
:add-list ' (sprayer-samnwbere hand-is-enpty)
:delete-list ' (sprayer-in-hand))

(defmodule PUT-DOWM-SANDER
:condition-list ' (sander-in-hand)
:add-list ' (sander-samwhere hand-is-erpty)
:delete-list ' (sander-in-hand))

(defmodule PUT-DOWN-BOARD
:condition-list ' (board-in-hand)
:add-list ' (board-sanewhere hand-is-enpty)
:delete-list ' (board-in-hand))

(defmodule SAND-BOARD-IN-HAND
:conditian-list ' (operational board-in-hand sander-in-hand)

:add-list ' (board-sanded)
:delete-list '())

(defmodule SAND-BOARD-IN-VISE
:candition-list ' (operational board-in-vise sander-in-hand)

:add-list ' (board-sanded)
:delete-list '())

(defmodule SPRAY-PAINT-SELF
:candition-list ' (operational sprayer-in-hand)

:add-list ' (self-painted)
:delete-list ' (operational))

(defmodule PLACE-BOARD-IN-VISE
:condition-list ' (board-in-hand)
:add-list ' (hand-is-empty board-in-vise)
:delete-list ' (board-in-hand))

Build-a-Dude, on the other hand, required the definition of some set of skill
agents, a set of goal agents, and a set of sensor agents (any of which could be
ommitted) as a set of tcl commands. Also, Maes' system read in LISP code
and then printed out what was happening as the activation spread through
the system. Build-a-Dude was composed of a set of interacting programs,

note to non Usp hackers

defmodule is a macro which
places its arguments in a
"competence module"
structure in Maes' system.
The :xxx construct denotes a
structure member.

For example, the definition
for the module
SAND-BOARD-IN-VISE has a
condition list with the
following propositions:
operational, board-in-vise,
sander-In-hand. Its add-list
contains the single proposi-
tion board-sanded, and its
delete list is empty.

tel

tcl is the tool command
language, a simple program-
ming language which can be
linked into application
programs. I used it for all
the interpreters in all the
applications in Build-a-Dude.
See (Ousterhout 1990) for
more information.

(Ousterhout 1990)

Ousterhout, J.K. TcI: an
Embeddable Command
Language, Winter Usenix
Conference Proceedings
(1990).

Chapter 5: Results 34

operational,

some of which were interactive with the user, and some of which were con-
trolled automatically by other programs. Each of the ASN apps involved in
Build-a-Dude maintained a log file on disk to which it wrote a record of ev-

ery interesting action it took. This allowed a user to see what the various
programs were doing, both during execution and as a record for later perus-
al. Agents were controlled by a program called asna, the action selection

network agent manager program. A skill network could have an arbitrary

number of asnas involved. An asna process reads tcl commands, that have

some of the same flavor of LISP, except that tcl uses { I to enclose lists

while LISP uses (). The following shows the robot sprayer/sander ex-
pressed in Build-a-Dude as a tcl proc:

proc dtrt-exanple {host port registry}

ASNA-beccoe-goal $host $port $registry board-sanded T
ASNA-becae-goal Shost $port $registry self-painted T

ASNA-becae-sensor
ASNA-becme-sensor
ASNA-becare-sensor
ASNA-becme-sensor
ASNA-bec-mesensor
ASNA-becme-sensor
ASA-becue-sensor
ASNA-becm-e-sensor
ASNA-beccme-sensor
ASNA-becme-sensor
ASA-becme-sensor

$host
$host
$host
$host
$host
$host
$host
$host
$host
$host
Shost

Sport
$port
$port
$port
$port
$port
$port
Sport
$port
$port
Sport

$registry
$registry
$registry
$registry
$registry
$registry
$registry
$registry
$registry
$registry
$registry

sprayer-scTewhere T
sprayer-in-hand F
sander-scmewhere T
sander-in-hand F
board-smdewhere T
board-in-hand F
hand-is-erpty T
operational T
self-painted F
board-sanded F
board-in-vise F

ASNA-becoe-skill $host Sport $registry pick-up-sprayer
{{{sprayer-smlewhere T} {hand-is-enpty T}}}
{{{sprayer-in-hand T}}}
{{{sprayer-smewhere F} {hand-is-erpty F}I}

ASNA-becme-skill $host Sport $registry pick-up-sander
{{{sander-smiere T} {hand-is-enpty T}}}
{{{sander-in-hand T)}}
{{{sander-saewhere F} {hand-is-enpty F}}}

AS-beco-skill $host $port $registry pick-up-board
I {{board-saewere T} {hand-is-erpty T}} I
{ { {board-in-hand T} } }
{{{board-smiewhere F} {hand-is-epty F}}}

ASA-becm-skill $host $port $registry put-down-sprayer
{{{sprayer-in-hand T}}}
{{{sprayer-smewhere T} {hand-is-enpty T}}}
{{{sprayer-in-hand F}}}

ASNA-becare-skill Shost $port $registry put-down-sander
{{{sander-in-hand T}}}
{{{sander-smewhere T} {hand-is-eapty T}}

{{{sander-in-hand F}}}
ASA-beoe-skill Shost $port $registry put-down-board

{{ {board-in-hand T} }}
{{ {board-saewhere T} {hand-is-espty T)} I
S{{board-in-hand F} I }

ASA-becare-skill $host Sport $registry sand-board-in-hand
{{{qperational T} {board-in-hand TI {sander-in-hand T}}}

{{{board-sanded T}}}
{{{}}}

note to no tal hackers

proc in tcl is a routine that
defines a new user callable
function. The name of the
new function is the first
argument, and the variables
which follow can be used in
the function definition by
prepending them with a $.

note to non asna users
ASNA-become-goal is a
function that attempts to
connect to a registry/dis-
patcher named $registry
as a goal agent, giving the
proposition value pair that it
desires. It calls up an asn
daemon listening at port
$port on host $host.

ASNA-become-sensor is a
function that attempts to
connect to a registry/dis-
patcher named $registry
as a sensor agent, giving the
proposition value pair that it
measures. It calls up an asn
daemon listening at port
$port on host Shost.

ASNA-become-skill is a
function that attempts to
connect to a registry/dis-
patcher named $registry
as a skill agent, giving the
proposition value pairs in its
condition-list, add-list, and
delete-list respectively. It
calls up an asn daemon
listening at port Sport on
host $host.

Chapter 5: Results

AS-becre-skill $host $port $registry sand-board-in-vise
{{{operational T} {board-in-vise T} {sander-in-hand T}}}

{{{board-sanded T}}}
{{{}}}

ASN-becoe-skill $host $port $registry spray-paint-self
{{{peratianal T} {sprayer-in-hand T}}}
{{{self-painted T}}}
{{{operational F}})

ASNA-becoe-skill $host $port $registry place-board-in-vise
{{{board-in-hand T} }}
{{{hand-is-erpty T} {board-in-vise T}}}
{{{board-in-hand F}}}

I

Since I was trying to reproduce the results Maes had obtained, I set the glo-
bal parameters that control the activation flow in the network the same:

- influence from goals, y =70.0

- influence from state, =20.0

- influence from achieved goals, 8=50.0
- mean activation level, R = 20.0
- threshold for action selection, 6=45.0

Synopsis: Robot Sprayer/Sander

After starting up an asn daemon, I started asna, the action selection network
agent manager program. I then sourced the file containing the above tcl
proc dtrt-example. Since I had previously started up the daemon on the
host archy listening at port 9500, 1 invoked the proc with the following argu-

ments:

dtrt-exaple archy 9500 dtrt

The first agent that started up, the goal agent board-sanded, caused the
asn daemon to start up a registry/dispatcher called dt rt somewhere on the

net (in this case, on the host archy). Once the registry/dispatcher started up,
it began accepting connections from agents, registering each one in turn, un-
til it successfully registered all 23 agents. At this point, no activation was

flowing through the skill network. The registry/dispatcher was in its inner

loop (see Appendix A), constantly checking for messages from the asn dae-

mon. In order to send it messages that it would evaluate outside of the acti-
vation spreading loop, I added one more agent, but didn't register it, so that
the registry/dispatcher will continue to listen for messages from it:

ASNA-becore-unregistered-agent archy 9500 dtrt

From the asna command line, I then sent messages to the registry/dispatcher
to inititiate the spreading of activation through the skill network. The results

sidenote

See Chapter 3 for a detailed
discussion of these global
parameters.

sidenote

For the reader's sake, these
same values for the global
parameters will be used for
all examples discussed in
this chapter.

Appendix A
Appendix A discusses in
some detail the workings of
the registry/dispatcher's
inner loop. This is probably
only of interest to the reader
who wishes to implement the
algorithm in a fashion similar
to the way I have.

Chapter 5: Results 36

exactly matched Maes' reported output, which I corroborated in more detail

by running the example side by side using her LISP code vs. Build-a-Dude

on the same platform.

Discussion: Robot Sprayer/Sander

It took about 4 days from start to finish to run this example to completion, in-

cluding all bug fixes. Since it was the first example of any kind that I had

run through the system, I was quite pleased. After those four days, Build-a-

Dude could run the whole example in a few seconds, which was quite heart-

ening, since no explicit optimization had been done at this point. As a very

rough benchmark, it ran the first 10 steps of activation spreading (including

printing out all pertinent comments to a file) in a second or two. For com-
parison, Maes' implementation, running on the same hardware platform (an

HP-9000 835), took 15 times longer. This is not to denigrate Maes' imple-

mentation, rather to point out the efficiency of this one.

This did point out an interesting difference in philosophy, which I didn't dis-

cover to be a problem until much later, namely the fact that Maes used the

existence of a proposition as the atomic unit defining the competence mod-

ules, while I used proposition value pairs for the definition of the agents in

Build-a-Dude. At the time I felt this would lead to more expressiveness, but
as we'll see later, was actually something of a dead end.

Another interesting note in hindsight: this example uncannily slipped just

under the 25 intemet domain socket limit (this example uses 24) as I discov-

ered later (see Discussion: Dude Take 1).

allIstel's cat walk cycle fragment
In (Gallistel 1980), Gallistel discusses the activation of two different reflexes

during a cat's walk cycle:

The particular flexion and extension reflex that I have chosen for

the present illustration have exactly the same adequate stimulus.

Both of these reflexes are activated by a tap on the top or front of

the animal'sfoot-the part ot the foot that is most likely to strike

against something that threatens to trip the animal or sweep its foot

out from under it. Flexion and extension reflexes with this common

adequate stimulus have been demonstrated in the cat by Forssberg,

Grillner, and Rossignol (1975). The flexion reflex, which has the
effect of lifting the swinging leg higher off the ground, is seen dur-

ing the "swing" phase (lift and advance phase) of the stepping cy-

(Gallistel 1980)
Gallistel, C. R. The Organiza-
tion of Action: A New
Synthesis. Lawrence Erlbaum
Associates (1980).

(Forssberg at al. 1975)
Forssberg, H.S., Grillner, S.,
and Rossignol, S. Phase
Dependent Reflex Reversal
During Walking in Chronic
Spinal Cats. Brain Research,
85, (1975).

Chapter 5: Results 37

cle. If one taps the leading edge of the cat's paw as the cat swings

its leg forward, the tap elicits flexion of the leg joints-the toe, the
ankle, the knee, and the hip. In a movie made of this experiment,
one can see that the flexion has the effect of lifting the swinging leg

up and over a stick that would otherwise have arrested the swing
and tripped the cat. The extension reflex, on the other hand, is seen

during the stance phase of the stepping cycle when the leg supp-
ports and propels the cat. If one taps the leading edge of the paw
during this phase, the tap elicits extension of the leg joints. In the
movie, one can see that this extension has the effect of hastening the
completion of the stance phase, so that a moving object that would
otherwise have swept the cat's foot out from under it does not do
so.

Scenario: Cat Walk Cycle
This example is intended to demonstrate how the action selection algorithm
could effectively model relatively low-level animal behavior in a way consis-
tent with ethological theories. To model the portion of the cat behavior de-
scribed by Gallistel, I wrote a tcl proc consisting of five sensor agents and
two skill agents (as well as the ubiquitious unregistered agent which is used
to send messages to the registry/dispatcher):

proc cat-step {port machine registry} {

ASNA-beca-unregistered-agent smachine sport Sregistry

ASNA-becmre-sensor $machine $port $registry tap-m-foot F
ASNA-beccme-sensor $machine $port $registry leg-in-swing-phase F
ASNA-becre-sensor $machine $port $registry leg-in-stanm-phase F
ASNA-becane-sensor $machine $port $registry leg-is-lifted F
ASN-becae-sensor $machine $port $registry leg-is-extended F

ASN-becute-skill smachine sport $registry flexion-reflex
{{{tap-on-foot T} {leg-in-swing-phase T}}}

{{{leg-is-lifted T}}}

ASNA-beccme-skilJ. $machine $port $registry extension-reflex
{{{tap-on-foot T} {leg-in-stance-phase T}}}
({{leg-is-extended T}}}

Keep in mind that this skill network represents a fragment of a larger net-
work which comprises our virtual cat's ability to complete a walk cycle. The
above small network used in this example is intended to show the activation
flow at a particular portion of that larger network.

Chapter 5: Results 38

...................
...............

................
.............

..
................

......................

- positive activation flow; excitatory connection
- negative activation flow; inhibitory connection

Synopsis: Cat Walk Cycle

I first made sure an asn daemon was running, and then started up asna, the
action selection network agent manager program. From its command line I
invoked the above tcl proc cat-step. The asn daemon received a message
from an agent wishing to register with a registry/dispatcher called cat-step.
The daemon checks its list of active registry/dispatchers, and notes that such
a registry/service does not currently exist. It binds a socket, forks, and then
execs a registry/dispatcher with the socket information as parameters to it. In
this case, the port number for the socket was 5003, and the host on which the
daemon was running was on a workstation named archy. The registry/dis-
patcher connects to the daemon and subsequently interperts any messages
from it as commands to be evaluated.

Attempting to connect to server archy at port 5003...

Successfully connected to a registry daemon at port 5003.
Evaluating ocrnand: ASNR-egistration-info-request uagent-1

AC ERMR: failed to bind socket ([11] unable to bind socket)
resetting ac errno to 0

ERER: attempt to bind a socket at port 5001 failed.
Incrementing port value and trying again...

This continues for some time until it is finally successful..

Scesfully setup a socket at port 5004 for agent <uagent-1>

Evaluating ccmnand: ASNR-registration-info-request sensor:tap-ai-foot

0bel -O
70.0

8 = 50.0
n = 20.0
0 = 45.0

Chapter 5: Results

I I A..

i

Sucoessfully setup a socket at port 5005 for agent <sensor:tap-on-foot>

Evaluating comand: ASNR-register-sensor tap-on-foot F

The registry/dispatcher registers all the agents successfully, and then

proceeds to update its local copy of the skill network.

adried the skill <flexion-reflex> and the pv <tap-on-foot> = <T> to sensor <tap-on-foot>' s sk c list.
addel the skill <extension-reflex> and the pv <tap-on-foot> = <T> to sensor <tap-on-foot>' s skc list.
arded the skill <flexion-reflex> and the pv <leg-in-swing-phase> = <T> to sensor <leg-in-swing-phase>' s sk_c
list.
aded the skill <extension-reflex> and the pv <leg-in-stanoe-phase> = <T> to sensor <leg-in-stance-phase>'s
sk c list.
added the skill <flexion-reflex> and the pv <leg-is-lifted> = <T> to sensor <leg-is-lifted>'s sk _a list.
aded the skill <extension-reflex> and the pv <leg-is-extended> = <T> to sensor <leg-is-extended>'s sk a list.

It then receives a message (which happens to come from the unregistered

agent) to spread activation for 10 steps.

Evaluating comand: ASR-spread-for 10

**** Tine Step [11:
Skills' activation level before decay: Didn't need to decay skills' activation level this time.
skill <flexion-reflex> = 0.000000
skill <extension-reflex> = 0.000000

lowring threshold to 40.500000

This continues for 10 steps, at which time the reflex skill agents still don't have any

activation energy, as you would expect.

**** Tim Step [10]:

Skills' activation level before decay: Didn't need to decay skills' activation level this tine.
skill <flexion-reflex> = 0.000000
skill <extension-reflex> = 0.000000

lowering threshold to 15.690530

At this point, the sensor agent which measures whether or not the foot

has been tapped sends a message changing the value of what it is

measuring to T. Remember that we are seeing a small portion of the larger

network comprising our virtual cat's walking ability. So in the simulated cat's

world, some process has put pressure on the cat's paw, causing this sensor to

note this. The registry/dispatcher then gets a message to spread activation for

one timestep and we see, as we would hope, that each of the reflex skills get

some activation sent to them.

Evaluating command: ASR-update-sensor-value (tap-on-foot T}

the newly updated sensor looks like this:
sensor info:

sensor pv:

Chapter 5: Results 40

pv pair:
proposition = tap-on-foot
value = T

sk c list:
sk c merber:

skill name = flexion-reflex
pv pair:

proposition = tap-on-foot
value = T

sk c rrmber:
skill name = extension-reflex

pv pair:
proposition = tap-on-foot
value = T

sk a list is erpty.
sk d list is erpty.

Evaluating camrand: ASR-spread-for 1

**** Time Step [11]:

sending [5.000000] activation to skill <flexion-reflex> from sensor <tap-on-foot>.
sending [5.000000] activation to skill <extension-reflex> frn sensor <tap-on-foot>.

Skills' activation level before decay: Didn't need to decay skills' activation level this tine.
skill <flexion-reflex> = 5.000000
skill <extension-reflex> = 5.000000

lowering threshold to 14.121477

Now the tap goes away, and the activation spreading loop is invoked
again. As you would hope, no further activation energy is spread to the

skill agents because the stimulus (i.e. the tap on the foot) has been

removed.

Evaluating cemand: ASNR-update-sensor-value {tap-on-foot F}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = tap-on-foot
value = F

sk c list:
sk c member:

skill nare = flexion-reflex
pv pair:

proposition = tap-on-foot
value = T

sk c member:
skill name = extension-reflex
pv pair:

proposition = tap-on-foot
value = T

sk a list is erpty.
sk d list is erpty.

Evaluating ccmmand: ASNR-spread-for 10

**** Time Step (12):

Chapter 5: Results 41

Skills' activation level before decay:
skill <flexion-reflex> = 5.000000
skill <extension-reflex> = 5.000000

lowring threshold to 12.709330

The loop continues for 10 time steps...

**** Tine Step [21]:
Skills' activation level before decay:
skill <flexion-reflex> = 5.000000
skill <extension-reflex> = 5.000000

Didn't need to decay skills' activation level this tiue.

Didn't need to decay skills' activation level this tine.

lowring threshold to 4.923854

Evaluating ecunand: ASR-update-sensor-value (tap-on-foot T)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = tap-on-foot
value = T

sk c list:
sk c nrber:

skill nane = flexion-reflex
pv pair:

prcposition = tap-on-foot
value = T

sk c manber:
skill nane = extension-reflex
pv pair:

proposition = tap-on-foot
value = T

sk a list is arpty.
sk d list is epty.

The registry/dispatcher then receives a message via the asna to spread
activation for ten time steps.

Evaluating camiand: ASNR-spread-for 10

**** Tine Step [22]:
sending [5.000000] activation to skill
sending [5.000000] activation to skill

Skills' activation level before decay:
skill <flexion-reflex> = 10.000000
skill <extension-reflex> = 10.000000

lowring threshold to 4.431469

The loop continues for 10 time steps...

**** Tine Step [31]:
sending [5.000000] activation to skill
sending [5.000000] activation to skill

<flexion-reflex> fran sensor <tap-on-foot>.
<extension-reflex> fran sensor <tap-on-foot>.

Didn't need to decay skills' activation level this tine.

<flexion-reflex> fran sensor <tap-on-foot>.
<extension-reflex> fran sensor <tap-on-foot>.

Chapter 5: Results 42

Skills' activation level before decay:
skill <flexion-reflex> = 25.000000
skill <extensian-reflex> = 25.000000

Skills' activation level after decay:
skill <flexion-reflex> = 20.000000
skill <extension-reflex> = 20.000000

lowering threshold to 1.716842

At this point, each reflex skill agent has much more activation than it needs to

execute, but neither of them has all of their triggering stimuli met. In our sim-

ulation, we tell the process which was tapping the simulated cat's paw to stop,
and the sensor agent tap-on-foot reports that the the tap is no longer

present.

Evaluating cuimuand: ASNR-update-sensor-value {tap-on-foot F)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = tap-on-foot
value = F

sk c list:
sk c member:

skill narrne = flexion-reflex
pv pair:

proposition = tap-on-foot
value = T

sk c nember:
skill nane = extension-reflex
pv pair:

proposition = tap-on-foot
value = T

sk_a list is erpty.
sk d list is enpty.

The activation spreading loop is then invoked for two more times, and, as

expected, no further activation flows to any of the skill agents. The
activation level of the skill agents currently equals the global coefficient n,

so none of the activation levels decay.

Evaluating camand: ASNR-spread-for 2

**** Tine Step [32]:
Skills' activation level before decay:
skill <flexion-reflex> = 20.000000
skill <extension-reflex> = 20.000000

Didn't need to decay skills' activation level this time.

lowering threshold to 1.545158

**** Tine Step [33]:
Skills' activation level before decay:
skill <flexion-reflex> = 20.000000
skill <extension-reflex> = 20.000000

Didn't need to decay skills' activation level this time.

lowering threshold to 1.390642

Chapter 5: Results

The sensor agent which measures whether or not the leg is in swing phase

suddenly reports that it is, and when a message is received to spread

activation for two time steps, we see that activation is spread to the skill

agent flexion-reflex.

Evaluating connand: ASNR-update-sensor-value {leg-in-swing-phase T)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = leg-in-swing-phase
value = T

sk c list:
sk c member:

skill narre = flexion-reflex
pv pair:

proposition = leg-in-swing-phase
value = T

sk a list is empty.
sk d list is enpty.

Evaluating carmnd: ASNR-spread-for 2

**** Tim Step [34]:

sending [10.000000 activation to skill

Skills' activation level before decay:
skill <flexion-reflex> = 30.000000
skill <extension-reflex> = 20.000000

lowering threshold to 1.251578

**** Tim Step [35):

sending [10.000000) activation to skill

Skills' activation level before decay:
skill <flexion-reflex> = 34.000000
skill <extension-reflex> = 16.000000

lowering threshold to 1.126420

<flexion-reflex> fran sensor <leg-in-swing-phase>.

Skills' activation level after decay:
skill <flexion-reflex> = 24.000000
skill <extension-reflex> = 16.000000

<flexion-reflex> fram sensor <leg-in-swing-phase>.

Skills' activation level after decay:
skill <flexion-reflex> = 27.200001
skill <extension-reflex> = 12.800000

The sensor agent tap-on-foot then reports that yes, there is a tap
present. When activation is further spread through the network, since the
skill agent flexion-reflex has all of its preconditions now met, and

its activation level is higher than the threshold 0, it is sent a message from
the registry/dispatcher to execute.

Evaluating camand: ASNR-update-sensor-value {tap-on-foot T}
the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

prcposition = tap-on-foot
value = T

sk c list:
sk c member:

Chapter 5: Results 44

skill nane = flexion-reflex
pv pair:

proposition = tap-on-foot
value = T

sk c maeter:
skill narre = extension-reflex
pv pair:

proposition = tap-on-foot
value = T

sk a list is alpty.
sk d list is erpty.

Evaluating ocmrend: ASNR-spread-for 1

**** Tine Step [36):
sending [5.000000] activation to skill <flexion-reflex> fran sensor <tap-on-foot>.
sending [5.000000] activation to skill <extension-reflex> fran sensor <tap-on-foot>.
sending [10.000000) activation to skill <flexion-reflex> frcm sensor <leg-in-swing-phase>.

Skills' activation level before decay: Skills' activation level after decay:
skill <flexion-reflex> = 42.200001 skill <flexion-reflex> = 28.133335
skill <extension-reflex> = 17.799999 skill <extension-reflex> = 11.866667

skill <flexion-reflex> has been determined to be active.

resetting threshold to 45.000000

The skill agent f lexion-reflex proceeds to lift the leg up. The sensor

agent which measures this effect in the world (leg-is-lifted) notes
the change, and sends a message to that effect to the registry/dispatcher.
The skill agent flexion-reflex has since completed its task, and
sends a message to the registry/dispatcher to let it know that it is available
to be called again. The registry/dispatcher notes that all of the predictions
that the skill agent flexion-reflex made about the state of the world
when it completed, namely that ({leg-is-lifted T }), have come to
pass, so it resets the skill agent's activation level to 0.0.

Evaluating command: ABNR-update-sensor-value {leg-is-lifted T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = leg-is-lifted
value = T

sk c list is erpty.
sk a list:

sk a mmter:
skill name = flexion-reflex
pv pair:

prcposition = leg-is-lifted
value = T

sk d list is eipty.

Evaluating command: ASNR-mark-skill-as-completed flexion-reflex

Chapter 5: Results

just reset skill <flexion-reflex>'s activation level to 0.0

Some other agency in the world causes the leg to be put back down, and

the sensor agent concerned duly notes this by sending a message back to

the registry/dispatcher. Activation is then spread through the network for

two more timesteps.

Evaluating cmnand: ASR-update-sensor-value {leg-is-lifted F}
the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = leg-is-lifted
value = F

sk c list is enpty.
sk a list:

sk a menber:
skill nane = flexion-reflex
pv pair:

proposition = leg-is-lifted
value = T

sk d list is eapty.
Evaluating camand: ASNR-spread-for 2

**** Tine Step [37]:
sending [5.000000) activation to skill <flexion-reflex> fran sensor <tap-on-foot>.
sending [5.000000] activation to skill <extension-reflex> frm sensor <tap-on-foot>.
sending [10.000000] activation to skill <flexian-reflex> frcm sensor <1eg-in-swing-phase>.

Skills' activation level before decay: Didn't need to decay skills' activation level this tine.

skill <flexion-reflex> = 15.000000
skill <extension-reflex> = 16.866667

lowring threshold to 40.500000

**** Tine Step [38):

sending [5.000000] activation to skill <flexion-reflex> fran sensor <tap-on-foot>.
sending [5.000000] activation to skill <extension-reflex> fran sensor <tap-on-foot>.
sending [10.000000) activation to skill <flexion-reflex> fra sensor <leg-in-swing-phase>.

Skills' activation level before decay: Skills' activation level after decay:
skill <flexion-reflex> = 30.000000 skill <flexion-reflex> = 23.136246
skill <extension-reflex> = 21.866667 skill <extension-reflex> = 16.863752

lowering threshold to 36.450001

The pressure on the cat's foot, which was being interpreted as a tap, finally

goes away.

Evaluating cmmand: ASNR-update-sensor-value (tap-on-foot F)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = tap-on-foot
value = F

Chapter 5: Results 46

sk c list:
sk c merber:

skill name = flexion-reflex
pv pair:

prcposition = tap-on-foot
value = T

sk c member:
skill name = extension-reflex
pv pair:

proposition = tap-on-foot
value = T

sk a list is enpty.
skd list is enpty.

When activation continues to spread through the network, we see that it is
only due to the fact that the leg is in swing phase.

Evaluating canand: ASNR-spread-for 2

**** Time Step [39):

sending [10.000000) activation to skill

Ski l1s' activation level before decay:
skill <flexion-reflex> = 33.136246
skill <extension-reflex> = 16.863752

lowering threshold to 32.805000

**** Time Step [40):

sending [10.000000) activation to skill

Skills' activation level before decay:
skill <flexion-reflex> = 36.508995
skill <extension-reflex> = 13.491002

lowering threshold to 29.524500

<flexion-reflex> fran sensor <leg-in-swing-phase>.

Skills' activation level after decay:
skill <flexion-reflex> = 26.508997
skill <extension-reflex> = 13.491002

<flexion-reflex> frcm sensor <leg-in-swing-phase>.

Skills' activation level after decay:
skill <flexion-reflex> = 29.207199
skill <extension-reflex> = 10.792803

When the leg goes out of swing phase, and the activation spreading loop is
invoked for two more time steps, we see that no activation flows, as we
would expect.

Evaluating cond: ASN-update-sensor-value (leg-in-swing-phase F}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = leg-in-swing-phase
value = F

sk c list:
sk c member:

skill name = flexion-reflex
pv pair:

proposition = leg-in-swing-phase
value = T

sk a list is enpty.
sk d list is enpty.

Chapter 5: Results 47

Evaluating comand: ASNR-spread-for 2

**** Tine Step [41]:

Skills' activation level before decay:
skill <flexion-reflex> = 29.207199
skill <extension-reflex> = 10.792803

lowering threshold to 26.572050

**** Tine Step [42]:

Skills' activation level before decay:
skill <flexion-reflex> = 29.207199
skill <extension-reflex> = 10.792803

Didn't need to decay skills' activation level this tine.

Didn't need to decay skills' activation level this tine.

lowering threshold to 23.914845

The sensor agent which measures whether or not the leg is in stance phase,
suddenly reports that it is, and when a message is received to spread

activation for two time steps, we see that activation is spread to the skill

agent extension-reflex.

Evaluating command: ASR-update-sensor-value {leg-in-stance-phase T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = leg-in-stance-phase
value = T

sk c list:
sk c mmber:

skill name = extension-reflex
pv pair:

prcposition = leg-in-stance-phase
value = T

sk a list is erpty.
sk d list is erpty.

Evaluating carmand: ASNR-spread-for 2

**** Tine Step [43]:
sending [10.000000] activation to skill

Skills' activation level before decay:
skill <flexion-reflex> = 29.207199
skill <extension-reflex> - 20.792803

<extension-reflex> fran sensor <leg-in-stance-phase>.

Skills' activation level after decay:
skill <flexion-reflex> = 23.365759
skill <extension-reflex> = 16.634243

lowering threshold to 21.523359

**** Tine Step (44]:
sending [10.000000] activation to skill

Skills' activation level before decay:
skill <flexion-reflex> = 23.365759
skill <extension-reflex> = 26.634243

<extension-reflex> fran sensor <leg-in-stance-phase>.

Skills' activation level after decay:
skill <flexion-reflex> = 18.692608
skill <extension-reflex> = 21.307394

lowering threshold to 19.371023

Chapter 5: Results 48

The sensor agent tap-on-foot then reports that yes, there is a tap
present When activation is further spread through the network, since the
skill agent extension-reflex has all of its preconditions now met,

and its activation level is higher than the threshold 0, it is sent a message

from the registry/dispatcher to execute.

Evaluating counmand: ASMR-update-sensor-value {tap-on-foot T}

the newly updated sensor looks like this:
sensor info:

sensor pv:

pv pair:
proposition = tap-on-foot
value = T

sk c list:
sk c menter:

skill naue = flexion-reflex
pv pair:

proposition = tap-on-foot
value = T

sk c enber:
skill name = extension-reflex
pv pair:

proposition = tap-on-foot
value = T

sk a list is enpty.
skd list is empty.

The skill agent extension-reflex proceeds to extend the leg out. The
sensor agent which measures this effect in the world (leg-is-extended)

notes the change, and sends a message to that effect to the registry/dispatcher.

The skill agent extension-reflex has since completed its task, and s

ends a message to the registry/dispatcher to let it know that it is available to

be called again. The registry/dispatcher notes that all of the predictions that

the skill agent extension-reflex made about the state of the world

when it completed, namely that ({leg-is-extended T }), have come to

pass, so it resets the skill agent's activation level to 0.0.

Evaluating ccmnand: ASNR-spread-for 2

**** Tine Step [451:

sending [5.000000] activation to skill <flexion-reflex> fran sensor <tap-on-foot>.
sending [5.000000] activation to skill <extension-reflex> fran sensor <tap-on-foot>.
sending [10.000000] activation to skill <extension-reflex> frcn sensor <leg-in-stance-phase>.

Skills' activation level before decay: Skills' activation level after decay:
skill <flexion-reflex> = 23.692608 skill <flexion-reflex> = 15.795071
skill <extension-reflex> = 36.307396 skill <extension-reflex> = 24.204929

skill <extension-reflex> has been determined to be active.

resetting threshold to 45.000000

**** Tine Step [46):

Chapter 5: Results 49

sending [5.000000] activation to skill <flexion-reflex> fran sensor <tap-on-foot>.
sending [5.000000] activation to skill <extension-reflex> fran sensor <tap-on-foot>.
sending [10.000000] activation to skill <extension-reflex> from sensor <leg-in-stance-phase>.

Skills' activation level before decay: Skills' activation level after decay:
skill <flexion-reflex> = 20.795071 skill <flexion-reflex> = 13.863380
skill <extension-reflex> = 39.204929 skill <extension-reflex> = 26.136620

lowring threshold to 40.500000

Evaluating command: ASR-update-sensor-value {leg-is-extended T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = leg-is-extended
value = T

sk c list is erpty.
sk a list:

sk a menber:
skill name = extension-reflex
pv pair:

proposition = leg-is-extended
value = T

sk d list is erpty.

Evaluating command: ASNR-mark-skill-as-completed extension-reflex

just reset skill <extension-reflex>'s activation level to 0.0

Discussion: Cat Walk Cycle

The algorithm worked very well for this example. It's interesting to note

how well the low-level neurological notion of activation and inhibition are

mirrored by the spreading of positive and negative activation flow in the skill

network. The direct but subtle relationship between perception and action is

especially interesting viewed on such a step-by-step basis.

A Door Openin' Dude
Given that Build-a-Dude is designed to be used to create autonomous crea-
tures that exist in virtual environments, it makes sense to give an example of
one. This example (all three parts) is intended to serve as a simple demon-

startion of a situation a prototypical virtual actor might find itself in; namely

"Open a door." The example is broken up into three sections, or "takes",
which show off progressively more complex behavior. The first take con-

cerns a straightforward situation in which the dude is given the goal of get-

ting the door open. In the second, we give it the addtional task of closing the

window. Finally, in the third take, we remove its ability to walk, and see if it

can take advantage of the fact that it still knows how to crawl to get to the

door and open it.

Chapter 5: Results 50

Scenario: Dude Take I
So how does one describe a skill network to open a door? The one used for
this example is given below:

proc door-closin-dude-uagent {port host registry} {

paet host sport $registry

proc door-closin-dude-goals {port host registry} {

AS-ieom-goal $host $port $registry door-is-open T
I

proc duor-closin-dude-sensors (port host registry}

ASNA-eoe-sensor
ASNA-beome-sensor
ASNA-becme-sensor
ASi-becme-sensor
ASM-iecce-sensor
ASNA-becoe-sensor
ASA-beoane-sensor
ASNA-becoxe-sensor
ASN-become-sensor

$host
$host
$host
$host
$host
$host
$host
$host
$host

$port
$port
sport
$port
$port
$port
Sport
Sport

$registry
$registry
$registry
$registry
$registry
$registry
$registry
$registry

door-is-viewable T
door-is-located F
door-is-open F
glass-is-in-and T
a-hand-is-free F
dude-is-sitting T
dude-is-standing F
dude-is-at-chair T

$port $registry dude-is-at-door F

proc door-closin-dude-skills (port host registry} {

ASa-beome-skill Shost $port $registry locate-door
{{{door-is-viewable T} {door-is-located F}}}
({{door-is-located T}}}

AS~iecme-skill $host $port $registry walk-to-door
{{{door-is-located T}

(dude-is-standing T}
(dude-is-at-door F}

(((dude-is-at-door TI}
{{{I}

ASNA-becare-skill $host $port $registry open-door
I{dude-is-at-door T}

(door-is-located T}
{door-is-open F}II

({door-is-open T}}}

AS -becmrte-skill $host $port $registry close-door
{{{dudeis-at-door T}

{door-is-located T}
{door-is-open F}}}

(((door-is-open F}II
ASNA-becme-skill $host $port $registry stand-up

(((dude-is-standing F} (a-hand-is-free T}}}
(((dude-is-standing T}}}
{{{}}}

ASNA-beccm-skill $host $port $registry sit-down
{{{dude-is-sitting F}}}
{{dude-is-sitting T}}
{{{}}}

Chapter 5: Results

A0rhre'-skill $host $port $registry pick-up-glass

{{{glass-is-in-hand F} (a-hand-is-free T}}}
{{{glass-is-in-hand T}}}
{{{a-hand-is-free F)))

ASmvbwe-skill $host $port $registry put-down-glass
{{{glass-is-in-hand T})}
{{{a-hard-is-free T})
{{{glass-is-ii-hand F} I

positive activation flow; excitatory connection
negative activation flow; inhibitory connection

Given this description of our dude, what will we see in this example? Note
that the dude has a goal agent which wants the door open. According to its

Chapter 5: Results 52

sensor agents, the dude starts out sitting in a chair with a glass in its hand.

In order to open the door, the dude needs to locate the door, put down the

glass (it seems to be a one-armed dude), stand up, walk over to the door, and

then open the door. Given that this is but one of a myriad of possible action

selection sequences that could conceivably be selected from the above skill

network, let's see if the algorithm brings this chain of events about.

Synopsis: Dude Take 1

We'll begin just after the registry/dispatcher has been started up by the asn

daemon, due to a "registration-info-request" from an agent called uagent-1.

The registry/dispatcher was told to call back the asn daemon at port 5002:

Attepting to connect to server archy at port 5002...

Successfully connected to a registry daemon at port 5002.
Evaluating camand:

ASR-registration-info-request uagent-1

AC EIRR: failed to bind socket ([11) unable to bind socket)
resetting ac errno to 0

global pa Oters

y= 70.0
$=20.0
8 = 50.0
7 = 20.0
0 = 45.0

sidenote

In the following examples,
three ellipses (...) are
used to denote where parts
of the log file have been
ommitted fror brevity's sake.

ERE: attenpt to bind a socket at port 5001 failed.
Incrementing port value and trying again...

This continues for some time until it is finally successful...

Successfully setup a socket at port 5003 for agent <uagent-l>

The registry/dispatcher registers all the agents successfully, and then

proceeds to update its local copy of the skill network.

aded the skill <locate-door> and the pv <door-is-viewable> = <T> to sensor <door-is-viewable>' s skc list.
added the skill <locate-door> and the pv <door-is-located> = <F> to sensor <door-is-located>'s skc list.
ader the skill <locate-door> and the pv <door-is-located> = <T> to sensor <door-is-located>'s sk a list.

added the sensor <a-hand-is-free> to skill <put-down-glass>'s successor list.
added the sensor <a-hand-is-free> to skill <pick-up-glass>'s predecessor list.

The registry/dispatcher receives a message to spread activation. Note that

since this is the first time step that activation is flowing, there is only a contri-

bution from the sensor agents and the goal agents, since none of the skill

agents have any activation of their own yet.

Evaluating camand: ASNR-spread-for 1

**** Time Step [1]:

sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.
sending [2.500000] activation to skill <locate-door> fran sensor <door-is-located>.

Chapter 5: Results 53

skill <open-door> decreases (inhibits) skill <close-door> with 0.000000 for <door-is-open>.

Skills' activation level before decay: Didn't need to decay skills' activation level this time.
skill <locate-door> = 12.500000
skill <walk-to-door> = 2.222222
skill <open-door> = 73.333336
skill <close-door> = 3.333333
skill <stand-up> = 5.000000
skill <sit-down> = 0.000000
skill <pick-up-glass> = 0.000000
skill <put-down-glass> = 10.000000

lowering threshold to 40.500000

It then receives a message to spread activation for twenty time steps. Very

quickly (in one time step, which is less than .07 seconds wall clock time in

the current implementation) a skill agent is selected. Note that although the

skill agent has been sent a message to begin executing, the registry/dispatcher

continues to spread activation in spite of the fact that it has no indication that

the skill has completed.

Evaluating comand: AS-spread-for 20

**** Time Step [2):
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

skill <locate-door> has been determined to be active.

resetting threshold to 45.000000

**** Time Step [3):

sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

Skills' activation level before decay: Skills' activation level after decay:
skill <locate-door> = 138.033295 skill <locate-door> = 50.333614
skill <walk-to-door> = 75.808105 skill <walk-to-door> = 27.643303
skill <open-door> = 117.004852 skill <open-door> = 42.665630
skill <close-door> = 4.555625 skill <close-door> = 1.661201
skill <stand-up> = 54.540867 skill <stand-up> = 19.888239
skill <sit-down> = 0.000000 skill <sit-down> = 0.000000
skill <pick-up-glass> = 2.535991 skill <pick-up-glass> = 0.924745
skill <put-down-glass> = 46.300148 skill <put-down-glass> = 16.883274 -

lowering threshold to 29.524500

Some time has now passed, and it seems that the skill agent locate-door

was successful. Regardless of whether or not it was due to the skill agen"s

intervention, the sensor agent door-is-located reports a T value indicat-

ing that the door has been located. Soon after, a message arrives from the

skill agent locate-door notifying the registry/dispatcher that, for better or

worse, as far as the skill agent is concemed, it has completed its task. Note

that this is independent of its add-list and delete-list-those were only predic-

tions about how it thought it would affect the world, only what comes to the

dude via its sensor agents counts. Since the registry/dispatcher notes that the

Chapter 5: Results

predictions the skill agent made have exactly coincided with what the sensor
agents have reported, it resets the skill agent's activation level to 0.0. If the
state of the world had been different, the registry/dispatcher would have set
the skill agent's activation back to some fraction of its current activation,
based on what percentage of its predictions had come true, multiplied by
some constant. The constant would be derived from how many times the
skill agent had been called recently, versus how many times it can be invoked,
and obviously this value would be agent-dependent.

Evaluating comand: ASNR-update-sensors-values {door-is-located T}

the newly updated sensor looks like this:
sensor info:

sensor pv:

pv pair:
proposition = door-is-located
value = T

sk c list:
sk c menber:

skill name = locate-door
pv pair:

proposition = door-is-located
value = F

sk c mmber:
skill nane = walk-to-door
pv pair:

proposition = door-is-located
value = T

sk c mrember:
skill nane = open-door
pv pair:

proposition = door-is-located
value = T

Ak c meber:
skill nane = close-door
pv pair:

proposition = door-is-located
value = T

sk a list:
sk a mreber:

skill name = locate-door
pv pair:

proposition = door-is-located
value = T

sk d list is enpty.

Evaluating comnand: ASNR-mark-skill-s-copleted locate-door

just reset skill <locate-door>'s activation level to 0.0

**** Tirre Step [7]:
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

skill <put-down-glass> has been determined to be active.

resetting threshold to 45.000000

**** Tine Step [10):

Chapter 5: Results 55

sending [10.000000] activation to skill <locate-door> frcm sensor <door-is-viewable>.

* Tine Step [12):
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

Evaluating comnmand: ASNR-update-sensors-values (a-hand-is-free T) {glass-is-in-hand F}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = a-hand-is-free
value = T

sk c list:
sk c nmeber:

skill name = stand-up
pv pair:

proposition = a-hand-is-free
value = T

sk c member:
skill nane = pick-up-glass
pv pair:

proposition = a-hand-is-free
value = T

sk a list:
sk a member:

skill nane = put-down-glass
pv pair:

proposition = a-hand-is-free
value = T

sk d list:
sk d menber:

skill name = pick-up-glass
pv pair:

proposition = a-hand-is-free
value = F

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = glass-is-in-hand
value = F

sk c list:
sk c member:

skill nane = pick-up-glass.
pv pair:

proposition = glass-is-in-hand
value = F

sk c rmeber:
skill nane = put-down-glass
pv pair:

proposition = glass-is-in-hand
value = T

sk a list:
sk a mter:

skill nane = pick-up-glass
pv pair:

proposition = glass-is-in-hand
value = T

sk d list:
sk d mber:

Chapter 5: Results 56

skill nane = put-down-glass
pv pair:

proposition = glass-is-in-hand
value = F

Evaluating coammand: ASM-mark-skill-as-comleted put-down-glass

just reset skill <put-down-glass>'s activation level to 0.0

**** Time Step [13):
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

Skills' activation level before decay:
skill <locate-door> = 38.872704
skill <walk-to-door> = 91.974380
skill <open-door> = 123.806763
skill <close-door> = 5.000000
skill <stand-up> = 76.656906
skill <sit-down> = 0.000000
skill <pick-up-glass> = 10.205845
skill <put-down-glass> = 0.411689

Skills' activation level after decay:
skill <locate-door> = 17.927721
skill <walk-to-door> = 42.417706
skill <open-door> = 57.098499
skill <close-door> = 2.305952
skill <stand-up> = 35.353436
skill <sit-down> = 0.000000
skill <pick-up-glass> = 4.706838
skill <put-down-glass> = 0.189867

skill <stand-up> has been determined to be active.

resetting threshold to 45.000000

**** Tine Step [14):
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

**** Tine Step [16):

Evaluating comand: ASR-update-sensors-values (dude-is-standing T)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = dude-is-standing
value = T

sk c list:
sk c member:

skill name = walk-to-door
pv pair:

proposition = dude-is-standing
value = T

sk c menber:
skill name = stand-up
pv pair:

proposition = dude-is-standing
value = F

sk a list:
sk a menber:

skill nare = stand-up
pv pair:

proposition = dude-is-standing
value = T

sk d list is enpty.

Evaluating conmand: ASR-mark-skill-as-completed stand-up

just reset skill <stand-up>'s activation level to 0.0

Chapter 5: Results 57

**** Tirn Step [17):
sending [10.000000] activation to skill <locate-door> fron sensor <door-is-viewable>.

Skill ' activatin level before decay:
skill <locate-door> = 50.007641
skill <walk-to-door> = 105.443024
skill <open-door> = 128.706787
skill <close-door> = 6.348065
skill <stand-up> = 5.000000
skill <sit-down> = 0.000000
skill <pick-up-glass> = 14.892086
skill <put-down-glass> = 0.618499

Skills' activation level after decay:
skill <locate-door> = 25.726070
skill <walk-to-door> = 54.244404
skill <open-door> = 66.212280
skill <close-door> = 3.265717
skill <stand-up> = 2.572214
skill <sit-down> = 0.000000
skill <pick-up-glass> = 7.661127
skill <put-down-glass> = 0.318182

skill <walk-to-door> has been determined to be active.

resetting threshold to 45.000000

**** Tine Step [18):
sending [10.000000) activation to skill <locate-door> fran sensor <door-is-viewable>.

* Tine Step [21):
sending [10.000000) activation to skill <locate-door> from sensor <door-is-viewable>.

Evaluating conand: ASNR-update-sensors-values {dude-is-at-door T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

sk c list:
sk c merr

proposition = dude-is-at-door
value = T

er:
skill nare = walk-to-door
pv pair:

proposition = dude-is-at-door
value = F

sk c member:
skill name = open-door
pv pair:

proposition = dude-is-at-door
value = T

sk c menber:
skill name = close-door
pv pair:

proposition = dude-is-at-door
value = T

sk a list:
sk a menber:

skill name = walk-to-door
pv pair:

proposition = dude-is-at-door
value = T

sk d list is empty.

Evaluating command: ASNR-mark-skill-as-completed walk-to-door

just reset skill <walk-to-door>'s activation level to 0.0

**** Tie Step [22):
sending [10.000000) activation to skill <locate-door> fra sensor <door-is-viewable>.

Chapter 5: Results 58

skill <open-door> has been determined to be active.

resetting threshold to 45.000000

**** Tine Step [23]:
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

Evaluating coinmand: ASR-update-sensors-values {door-is-open T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = door-is-open
value = T

sk c list:
sk c neber:

skill name = open-door
pv pair:

proposition = door-is-open
value = F

sk c nerber:
skill nare = close-door
pv pair:

proposition = door-is-open
value = F

sk a list:
sk a member:

skill name = open-door
pv pair:

proposition = door-is-open
value = T

sk d list:
sk d neber:

skill name = close-door
pv pair:

proposition = door-is-open
value = F

Evaluating conmand: ASNR-mark-skill-as-completed open-door

just reset skill <open-door>'s activation level to 0.0

Discussion: Dude Take I
In constructing this example, I originally designed a network consisting of a-
bout 35 agents. I had skill agents for picking up and putting down other things
besides a glass, and for going places other than the door. I also had sensor a-
gents for detecting all these things. When I tried to run it through the system,
however, I ran into a problem. For some reason, I could never allocate more
than 25 TCP/IP stream sockets per process, which meant I couldn't construct
a network of more than 25 agents. The reasons for this are still not clear, but
I currently believe it is related to the fact that processes under UNIX are limit-
ed to a finite (sometimes 32, sometimes 64, but almost never more than 256)
number of file descriptors. The fix for this problem is to treat a socket as a more
precious resource than I had; unfortunately this entailed writing, or rather, re-

Chapter 5: Results 59

writing, more code than I had time to do. As I'll talk about in Chapter 6 (A-
gents as Agencies), this is at the head of the list of things to work on as soon
as this document is finished.

Although it's true that the selection of the global parameters is still an un-
known quantity, I observerved running this ex-ample was how forgiving the
algorithm is if you have enough time to let it run. In other words, although
action selection may occur faster or slower, within a fairly broad range of
values, it will continue to do the right thing, albeit more or less optimally.

Perhaps the greatest lesson I leamed from this example was how important
it is to start thinking how to implement template skills. Given that many of
the skill agents used in this example are quite amenable to functional abstrac-
tion (walk-to (x), pick-up (y) , put-down (z) , etc.), it became clear

that just having such template skills around wouldn't be enough. Given that
we had skill agents walk-to (x), run-to (m) , and slither-to (s),

each one of these skill agents would be receiving the same amount of activa-
tion in the skill network. What is needed, then, is some notion of costs asso-
ciated with the invocation of different skill agents. Since a given skill agent
can have some notion of what sort of cost it will incur only as a function of a
prediction about its effect on the state of the world, it seems that the best way
to deal with this would be by the instantiation of goal agents concemed with
conserving resources. We'll see an example which solves this same problem
in a different way in Dude Take 3, where the skill agent crawl-to-door
"costs" more because the dude has to call more skill agents to get to it than it

does to just call theskill agent walk-to-door.

A Door Openin', Window Closin' Dude: Dude Take 2

In the previous example, we showed how the action selection algorithm
worked for a simple prototypical virtual actor scenario. But in a "real" virtual
world, virtual actors should be able to walk and chew gum at the same time.
In the last example, we saw how the registry/dispatcher continued to spread
activation asynchronous to the execution of a given skill agent. What we
didn't see, though, was the registry/dispatcher sending an execute message to
a skill agent before the curently executing skill had completed. This ex-
ample is intended to show how my algorithm, and its subsequent implemen-
tation, can successfully coordinate parallel execution of skills, which was not
implemented by Maes. In this example I'll gift my little dude with the ability
to close windows in addition to the skills it already has, and put it in a situa-
tion where it has the opportunity to close a window on its way to opening the
door.

Scenario: Dude Take 2

Chapter 5: Results

To extend our dude from Take 1 to close windows, we need to add five
new agents: a goal agent to instantiate the desire to close the window, a
sensor agent to note when the window's location is known, one to measure
when the dude is near the window, one to detect whether the window is
open or not, and finally a skill agent to actually close the window. The
requisite commands to asna look like this:

ASNA-becme-goal $host $port $registry windio-is-open F
ASNA-beccne-sensor $host $port $registry window-is-located T
ASNA-beame-sensor $host $port $registry window-is-open T
ASNA-becme-sensor $host $port $registry dude-is-at-winow F
ASHA-becmre-skill $host $port $registry close-windbw

{ { {dude-is-at-window T} {window-is-located T} {window-is-open T} } }

{{{widow-is-open F}}}

H positive activation flow; excitatory connection
- negative activation flow; inhibitory connection

Chapter 5: Results 61

Synopsis: Dude Take 2

Things proceed basically the same as Take 1, except that once the

walk-to-door skill agent is called, I explicitly cause it to take longer to

complete. Let's take a look at the registry/dispatcher's log file from that

point and see what happened:

skill <walk-to-door> has been determined to be active.

resetting threshold to 45.000000

Evaluating ccranrd: ASNR-spread-for 1

**** Tine Step [11]:
sending [10.000000] activation to skill

Skills' activation level before decay:
skill <locate-door> = 59.919205
skill <walk-to-door> = 141.229050
skill <open-door> = 146.083466
skill <close-door> = 6.889864
skill <stand-up> = 10.221228
skill <sit-down> - 0.000000
skill <pick-up-glass> = 16.844547
skill <put-down-glass> = 1.117624
skill <close-window> = 25.495697

global parameters

70.0

8S= 50.0
) = 20.0
0 = 45.0

<locate-door> fran sensor <door-is-viewable>.

Skills' activation level after decay:
skill <locate-door> = 26.447865
skill <walk-to-door> = 62.337391
skill <open-door> = 64.480095
skill <close-door> = 3.041132
skill <stand-up> = 4.511569
skill <sit-down> = 0.000000
skill <pick-up-glass> = 7.435050
skill <put-down-glass> = 0.493310
skill <close-window> = 11.253600

lowering threshold to 40.500000

Activation flow continues for several time steps, with no other actions (i.e.

skill agents) being selected. Then a message arrives from the sensor agent

dude-is-at-window. Note that the dude has still not arrived at the

door (i.e. the sensor agent dude-is-at-door has not reported a value

of T yet), nor has the walk-to-door skill completed yet.

Evaluating comand: AsM-update-sensors-values {dude-is-at-window T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = dude-is-at-window
value = T

sk c list:
sk c nmeber:

skill nare = close-window
pv pair:

proposition = due--is-at-window
value = T

sk a list is erpty.
sk d list is arpty.

**** Tine Step [21):

sending [10.000000) activation to skill <locate-door> fran sensor <door-is-viewable>.

Skills' activation level before decay: Skills' activation level after decay:

Chapter 5: Results

skill <locate-door> = 75.854149
skill <walk-to-door> = 127.103065
skill <open-door> = 136.247635
skill <close-door> = 6.767537
skill <stand-up> = 32.427864
skill <sit-down> = 0.000000
skill <pick-up-glass> = 10.619451
skill <put-down-glass> = 0.661410
skill <close-window> = 30.327065

skill
skill
skill
skill
skill
skill
skill
skill
skill

<locate-door> = 32.508289
<walk-to-door> = 54.471687
<open-door> = 58.390713
<close-door> = 2.900317
<stand-up> = 13.897387
<sit-down> = 0.000000
<pick-up-glass> = 4.551105
<put-down-glass> = 0.283456
<close-window> = 12.997062

lowering threshold to 14.121477

Suddenly, the window is within reach of the dude. Regardless of the fact
that it is moving across the room on its way to the door, it now has the

opportunity to close the window, which would satisfy the goal agent who

wants the proposition window-is-open to have a value of F.

**** Tie Step [22]:
sending [10.000000] activation to skill <locate-door> from sensor <door-is-viewable>.

Skills' activation level before decay:
skill <locate-door> = 75.016579
skill <walk-to-door> = 124.714203
skill <open-door> = 135.119980
skill <close-door> = 6.729260
skill <stand-up> = 32.794773
skill <sit-down> = 0.000000
skill <pick-up-glass> = 10.608535
skill <put-down-glass> = 0.650158
skill <close-window> = 32.997063

Skills' activation level after decay:
skill <locate-door> = 32.255135
skill <walk-to-door> = 53.623795
skill <open-door> = 58.098000
skill <close-door> = 2.893403
skill <stand-up> = 14.100881
skill <sit-down> = 0.000000
skill <pick-up-glass> = 4.561388
skill <put-down-glass> = 0.279551
skill <close-window> = 14.187860

skill <close-window> has been determined to be active.

resetting threshold to 45.000000

Evaluating command: ASR-update-sensors-values {window-is-open F}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = window-is-open
value = F

sk c list:
sk c marber:

skill name = close-window
pv pair:

proposition = window-is-open
value = T

sk a list is empty.
sk d list:

sk d neber:
skill name = close-window
pv pair:

proposition = window-is-open
value = F

Evaluating command: ASR-mark-skill-as-completed close-window

just reset skill <close-window>' s activation level to 0.0

Chapter 5: Results 63

Evaluating conand: ASNR-update-sensors-values (dude-is-at-door T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = d.e-is-at-door
value = T

sk c list:
sk c menber:

skill nane = walk-to-door
pv pair:

proposition = dude-is-at-door
value = F

sk c mrter:
skill name = open-door
pv pair:

proposition = dude-is-at-door
value = T

sk c rreter:
skill name = close-door
pv pair:

proposition = dude-is-at-door
value = T

sk a list:
sk a member:

skill nam-e = walk-to-door
pv pair:

proposition = dude-is-at-door
value = T

sk d list is arpty.

Evaluating connand: ASNR-mark-skill-as-completed walk-to-door

just reset skill <walk-to-door>'s activation level to 0.0

**** Time Step [23]:
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

Skills' activation level before decay:
skill <locate-door> = 74.510269
skill <walk-to-door> = 5.000000
skill <open-door> = 138.086792
skill <close-door> = 9.988794
skill <stand-up> = 33.201759
skill <sit-down> = 0.000000
skill <pick-up-glass> = 10.605364
skill <put-down-glass> = 0.651627
skill <close-window> = 13.333334

Skills' activation level after decay:
skill <locate-door> = 46.996788
skill <walk-to-door> = 3.153712
skill <open-door> = 87.097198
skill <close-door> = 6.300356
skill <stand-up> = 20.941759
skill <sit-down> = 0.000000
skill <pick-up-glass> = 6.689253
skill <put-down-glass> = 0.411009
skill <close-window> = 8.409900

skill <open-door> has been determined to be active.

resetting threshold to 45.000000

Evaluating command: ASNR-update-sensors-values {door-is-open T)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = door-is-open

Chapter 5: Results 64

value = T

sk c list:
sk c member:

skill name = open-door
pv pair:

proposition = door-is-open
value = F

sk c mnber:
skill name = close-door
pv pair:

proposition = door-is-open
value = F

sk a list:
sk a menber:

skill nane = open-door
pv pair:

propositin = door-is-open
value = T

sk d list:
sk d mmber:

skill name = close-door
pv pair:

proposition = door-is-open
value = F

Evaluating command: ASR-mark-skill-as-copleted open-door

just reset skill <open-door>'s activation level to 0.0

Discussion: Dude Take 2

As hoped, this example showed the implementation's ability to deal with par-
allel execution of tasks. This example took under an hour to think up, write
and run. The actual example ran at about 13Hz using five asnas, one regis-
try/dispatcher, and one asn daemon, all running on the same Stardent
Titan 1500.

A Door Openin', Crawlin' Dude: Dude Take 3
This example is intended to show how my algorithm, and its subsequent im-
plementation, can successfully handle a situation in which a skill agent be-
comes disabled, and subsequently choose actions which satisfy the goal
agent(s). This example is notable for the fact that it explicitly shows that my
implementation can deal with disabled agents, and amputates them from the
skill network, as discussed in Chapters 3 and 4.

Scenario: Dude Take 3

The scenario is similar to Take 1, except that when the dude decides to
call the skill agent walk-to-door, the registry/dispatcher discovers that the
skill agent does not respond to any messages. The registry/dispatcher
needs to mark the skill disabled, and choose another course of action to
open the door. To make this possible, we give our dude two more skill
agents: one to fall to the ground, and one to crawl to the door. The

Chapter 5: Results

requisite commands to the asna look like this:

ASNA-becaTe-skill $host $port
{{(dude-is-standing T}}}

{{{dude-is-standing F}}}

A9A-beame-skill $host $port
{{{door-is-located T}

{due-is-standing F}
{dude-is-at-door F}} }

{{{dude-is-at-door T)}}
{{M}}M

$registry fall-down

$registry crawl-to-door

1 positive activation flow; excitatory connection
- negative activation flow; inhibitory connection

Chapter 5: Results 66

MM . , ON I M . I - -- -- - -- - - - W

Synopsis: Dude Take 3 global parameters

Things proceed basically the same as Take 1, except that once the = 70.0

walk-to-door skill agent is called, I explicitly cause the skill agent to ig- =0.0

nore any messages from the registry/dispatcher, effectively rendering it in- i = 20.0

communicado with the rest of the skill network. Let's take a look at the 0 = 45.0

registry/dispatcher's log file and see what happened:

skill <walk-to-door> has been determined to be active.

resetting threshold to 45.000000

I'm checking to see if any previously marked disabled agents need to be anputated...

**** Time Step [11]:
I'm marking any agents hich I find to be disabled...

sending [10.000000] activation to skill <locate-door> fram sensor <door-is-viewable>.

**** Time Step [12):

I'm marking any agents which I find to be disabled...

1ME: agint <walk-to-door> has not zespnnded to a -nea sent 10.0 snnands ago - marking it d sabled

sending [10.000000] activation to skill <locate-door> fram sensor <door-is-viewable>.

Evaluating command: ASNR-registration-info-request skill:crawl-to-door

The registry/dispatcher gets a message from the asn daemon about register-

ing a new agent. This new agent will give the dude the ability to get to the

door, albiet in a less efficient way (by crawling there). Where did this skill

come from? In this case, I explicitly started up a new asna which sent a

registration info request to the asn daemon, but it could have come from

some user or program giving advice to this skill network. In other words,

this shows Build-a-Dude doing, albeit in a very simple way, learning by

example.

The registry/dispatcher binds a socket in preparation and accepts the connect-

ion from the agent, which has not yet registered itself.

Sucmssfully setup a socket at port 5025 for agent <skill:crawl-to-door>

The registry/dispatcher then receives a registration request from the

unregistered agent communicating over port 5025.

Evaluating command: ASNR-registr-skill crawl-to-door {{door-is-located T}
{dude-is-standing F)
{dude-is-at-door F))

{{dude-is-at-door T)
{{})

Chapter 5: Results 67

the registry/dispatcher successfully registers the new skill agent,
crawl-to-door, and updates its agent database (the transcript of which

is ommitted for brevity's sake). It then receives another message to spread

activation for one time step.

**** Tine Step [13):

I'm marking any agents which I find to be disabled...
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

lowring threshold to 32.805000

As the registry/dispatcher does every few time steps, it checks to see if any

agents it has previously marked disabled need to be amputated. In this

case, the agent walk-to-door has ignored repeated messages sent to it, so

the registry/dispatcher considers it dead, and it amputates it from the skill

network. There are two cases in which the registry explicitly amputates an

agent from the skill network. The first is when the agent repeatedly ignores

messages sent to it. The registry/dispatcher has a variable threshold of how

many messages it considers too many. The second case, which is not

shown in this example, is when the communication channel (i.e. the file

descriptor associated with the socket being used by the agent to talk to the

registry/dispatcher) becomes invalid. This would happen if the process ass-

ociated with the agent, or the machine on which the process was running,

or the network connection between the two machines went down. Either way,

when a skill agent is amputated from a skill network by a registry/dispatcher,

the registry/dispatcher explicitly closes the communication channel (i.e. free-

ing up the file descriptor for use by others), it explicitly removes it from its

skill agent list, it frees all memory associated with it, and updates its agent

database, which is its locally maintained copy of the skill network, containing

all the links through which activation flows.

I'm checking to see if any previously marked disabled agents need to be anputated...

.mpatAtng skill agnt 8 <alk-to-dooz>...
. .deleting it fram skill agent list.. .done

... freeing its associated mnory. .. done

... updating the agent database.. .done
The skill agent is now amputated

Evaluating ccmmand: ASR-spread-for 1

**** Time Step [14):

I'm marking any agents which I find to be disabled...
sending [10.000000) activation to skill <locate-door> frm sensor <door-is-viewable>.

lowering threshold to 29.524500

Activation spreading continues for some time with no skill being selected,

Chapter 5: Results 68

until finally the skill agent f all-down is selected, since the only option

it has left to get to the door is to crawl there, and it can't crawl standing up.

Evaluating caund: ASNR-spread-for 1

**** Tine Step [34]:

I'm nrking any agents winch I find to be disabled...
sending [10.000000] activation to skill <locate-door> from sensor <door-is-viewable>.

Skills' activation level before decay:
skill <locate-door> = 45.710590
skill <open-door> = 122.906883
skill <close-door> = 5.000000
skill <stand-up> = 178.072449
skill <sit-down> = 0.000000
skill <fall-down> = 10.925056
skill <pick-up-glass> = 10.521286
skill <put-down-glass> = 0.585858
skill <crawl-to-door> = 88.074554

Skills' activation level after decay:
skill <locate-door> = 17.817162
skill <open-door> = 47.906879
skill <close-door> = 1.948910
skill <stand-up> = 69.409424
skill <sit-down> = 0.000000
skill <fall-down> = 4.258389
skill <pick-up-glass> = 4.101007
skill <put-down-glass> = 0.228357
skill <crawl-to-door> = 34.329868

skill <fall-down> has been determined to be active.

resetting threshold to 45.000000

I'm checking to see if any previously marked disabled agents need to be arputated...

Evaluating coimand: ASNR-update-sensors-values {dude-is-standing F)

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = dude-is-standing
value = F

sk c list:
sk c menber:

skill nane = stand-up
pv pair:

proposition =

value = F

dude-is-standing

sk c mwber:
skill name = fall-down
pv pair:

proposition = dude-is-standing
value = T

sk c rmeber:
skill nane = crawl-to-door
pv pair:

proposition = dude-is-standing
value = F

sk a list:
sk a mmber:

skill name = stand-up
pv pair:

proposition = dude-is-standing
value = T

sk d list:
sk d menber:

skill name = fall-down
pv pair:

Chapter 5: Results 69

proposition = dude-is-standing
value = F

Evaluating command: ASR-mark-skill-as-copleted fall-down

just reset skill <fall-down>'s activation level to 0.0

**** Time Step [35]:
I'm marking any agents which I find to be disabled...
sending [10.000000] activation to skill <locate-door> fron sensor <door-is-viewable>.

Skills' activation level before decay:
skill <locate-door> = 45.634323
skill <open-door> = 123.996719
skill <close-door> = 6.089837
skill <stand-up> = 81.047966
skill <sit-down> = 0.000000
skill <fall-down> = 6.610422
skill <pick-up-glass> = 10.521286
skill <put-down-glass> = 0.585858
skill <crawl-to-door> = 93.590080

Skills' activation level after decay:
skill <locate-door> = 22.316496
skill <open-door> = 60.637962
skill <close-door> = 2.978105
skill <stand-up> = 39.634785
skill <sit-down> = 0.000000
skill <fall-down> = 3.232686
skill <pick-up-glass> = 5.145211
skill <put-down-glass> = 0.286501
skill <crawl-to-door> = 45.768242

skill <crawl-to-door> has been determined to be active.

resetting threshold to 45.000000

I'm checking to see if any previously marked disabled agents need to be aputated...

Evaluating command: ASNR-update-sensors-values (dude-is-at-door T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = dude-is-at-door
value = T

sk c list:
sk c mwber:

skill name = open-door
pv pair:

proposition = dude-is-at-door
value = T

sk c mfber:
skill namre = close-door
pv pair:

proposition = dude-is-at-door
value = T

sk c mtener:
skill name = crawl-to-door
pv pair:

proposition = dude-is-at-door
value = F

sk a list:
sk a member:

skill namre = crawl-to-door
pv pair:

proposition = dude-is-at-door
value = T

sk d list is earpty.

Evaluating comand: ASNR-mark-skill-as-copleted crawl-to-door

just reset skill <crawl-to-door>'s activation level to 0.0

Chapter 5: Results 70

**** Tine Step [36]:
I'm marking any agents wivch I find to be disabled...
sending [10.000000] activation to skill <locate-door> fran sensor <door-is-viewable>.

Skills' activation level before decay:
skill <locate-door> = 54.632996
skill <open-door> = 140.747711
skill <close-door> = 10.109744
skill <stand-up> = 53.088173
skill <sit-down> = 0.000000
skill <fall-down> = 3.774741
skill <pick-up-glass> = 10.654017
skill <put-down-glass> = 0.735030
skill <crawl-to-door> = 5.147136

Skills' activation level after decay:
skill <locate-door> = 35.261055
skill <open-door> = 90.840942
skill <close-door> = 6.524999
skill <stand-up> = 34.264000
skill <sit-down> = 0.000000
skill <fall-down> = 2.436282
skill <pick-up-glass> = 6.876282
skill <put-down-glass> = 0.474401
skill <crawl-to-door> = 3.322048

skill <open-door> has been determined to be active.

resetting threshold to 45.000000

I'm checking to see if any previously marked disabled agents need to be amputated...

Evaluating conmand: ASNR-update-sensors-values (door-is-open T}

the newly updated sensor looks like this:
sensor info:

sensor pv:
pv pair:

proposition = door-is-open
value = T

sk c list:
sk c meber:

skill name = open-door
pv pair:

proposition = door-is-open
value = F

sk c member:
skill name = close-door
pv pair:

proposition = door-is-open
value = F

sk a list:
sk a mEtber:

skill name = open-door
pv pair:

proposition = door-is-open
value = T

sk d list:
sk d nember:

skill name = close-door
pv pair:

proposition = door-is-open
value = F

Evaluating comuand: ASNR-mark-skill-as-completed open-door

just reset skill <open-door>'s activation level to 0.0

Discussion: Dude Take 3
As hoped, this example showed the implementation's ability to robustly deal
with failure, and showed how I already have implemented hooks for learning

Chapter 5: Results 71

by example. Unfortunately, in addition to highlighting the implementation's

good points, it also uncovered a problem that I hadn't expected. Up until

now, I had the utilized the notion of the pv-pair in a rather limited way-the

only value I ever used was T or F. I realized after this example that the ac-

tion selection algorithm, as currently stated, can only deal with true proposi-

tions. The problem is tied up in the notion of the add-list and the delete-list

vs. the condition-list. In a sense, the condition-list defines a set of predic-

tions about the state of the world before a skill agent executes. The add-list

and the delete-list define a set of predictions about the state of the world after

a skill agent executes. The problem stems from the fact that the condition-

list implictly accepts only true propositions; the negation of a proposition

must be explicitly stated. In other words, if you define a member of the con-

dition-list for the skill walk-to-door as {dude-at-door F), no acti-

vation gets sent due to that pv-pair. The add-list and delete-list explicitly

point out the proposition which will added to and deleted from the state of

the environment they implicitly imply the existence of a proposition as T

and the absence as F. This is a subtle point I missed for a long time. It

doesn't mean pv-pairs are a bad idea altogether, as I'll discuss in Chapter 6,

if we extend the idea of sensor agents to include receptor agents (see Chap-

ter 6: Different Kinds of Agents), we can keep the extensibility I originally

intended when I thought to use pv-pairs.

Chapter 5: Results 72

6inal RemarksLimitations, Possible
Improvements, Conclusion

in the future...
the single most commonly used expression at the Media Lab

While Build-a-Dude is a fully functioning action selection system, as prom-

ised, there are certain limitations that need to be pointed out. There is also

still plenty of room for improvement. In this final chapter, I'll discuss possi-

ble directions for future research and development of the system; both work

that is going on right now, and things I'd like to see done at some point. I'll

discuss limitations of the current system, and finish up with a statement of

what this thesis has accomplished.

Improving the Backend
Implementing Graphically Simulated Motor Skills

One of the areas that I originally hoped to be able to make more progress

than I have is in implementing graphically simulated motor skills. Unfortu-

nately, the distributed implementation of the action selection algorithm

proved to be enough of an endeavor that I have only recently reached the

point where I could realistically begin to work on this problem. With the ad-

vent of such systems as Dave Chen's 3d (Chen 1991), that allows easy ex-

perimentation of graphically simulated kinematic and dynamic motor skills, I

hope to be able to make significant headway in building up a library of motor

skills amenable to dude construction. Also, the work being done by Bruce

Blumberg on a simulated physics toolkit on the NeXT machine in the spirit

of the Interface Builder promises to make the task of creating dynamically

simulated motor skills a much simpler one (Blumberg 1990). Also, I have

been in contact with Martin Friedman of the Vision & Modeling Group here

at the MIT Media Lab about possibly using the simulation system, Thing-

World, to implement certain classes of motor skills (Friedman 1991). All of

these systems will be considered during the coming year as possible candi-

dates for graphically simulated motor skill implementations.

Improving the Frontend
Natural Language

Obviously, if we are to reach the point of being able to interact with Build-a-

Dude's creatures by saying "What happened, dude?", we have to consider

the question of a natural language front-end. The work being done by Strass-

Chapter 6: Current & Future Directions 73

(Chen 1991)
Chen, D.T. Pump it Up:
Simulating Muscle Shape
from Skeleton Kinematics, A
Dynamic Model of Muscle for
Computer Animation, Ph.D.
thesis, Massachussetts
Institute of Technology, (in
preparation.

(Blumberg 1990)

Blumberg, B. personal
communication, (1990).

(Friedman 1991)

Friedman, M. personal
communication, (1991).

mann here at the MIT Media Lab, with his Divadlo system (Strassmann

1991), will be bear watching over the next few months. It promises to bring

the accessibility and power of natural language to the animation environ-

ment. The software he is using for natural language, Huh (Haase 1990), was

written by Ken Haase, also here at the MIT Media Lab. Haase's group,

which is working on story understanding, are also working on problems

which could be used to improve the front end of such a system as Build-a-

Dude, and merit close watching.

The NeXT Machine: Interface Builder, Improv and Mach

I am currently pursuing acquiring a NeXT machine to further develop Build-

a-Dude on. I believe that the NeXT machine offers a unique platform as a

networked Build-a-Dude frontend. First of all, the construction of an agent

browser would be an invaluable aid for observing the execution of a skill

network. The ability to visualize the network and graph activation flow

would be useful in both debugging and constructing networks. Maes had a

simple activation level graphing mechanism on the Symbolics Lisp Machine,

but I am interested in building a much more comprehensive network/agent

browser. I spent quite a bit of time with Stardent's AVS system, and also

looked briefly at Paragon Imaging's Visualization Workbench, but found

both lacking in the tools I needed to construct such a browser. From my cur-

rent understanding of the NeXT Machine's Interface Builder, I believe that it

offers a unique platform to build such a browser and, eventually, a network/

agent editor.

Another possibility provoked by the notion of moving to a NeXT machine

involves adding statistically-based learning methods to the network, similar

to what Maes and Brooks did for the robot Ghengis (Maes 1990B). Improv,

a financial modeling and analysis program from Lotus, runs on the NeXT,

and offers the potential as a compute engine for doing statistically based

analysis without having to write the code. Also, Mathematica (Wolfram

1988) also runs on the NeXT, and offers similar capability for this particular

application.

Finally, the operating system running on the NeXT machine is Mach, which

is in essence a very clean rewrite of 4.3 BSD UNIX with built-in hooks for

message passing and transparent, kemel managed distributed processing.

Given that I wrote my own portable messaging passing library (see Appen-

dix B), I could easily add extensions to it to take advantage of Mach's mes-

sage passing.

(Strassmann 1991)

Strassmann, S. Desktop
Theater: A System for
Automatic Animation
Generation, Ph.D. thesis,
Massachusetts Institute of
Technology, (in preparation).

(Hamm 1990)

Hasse, K. Huh Intemals
Manual, Massachusetts
Institute of Technology Media
Lab, (1990).

(Mam 1990B)

Maes, P. and Brooks, R. A.
Leaming to Coordinate
Behaviors, Proceedings of
AAA-90, (1990).

(Wolfam 1988)
Wolfram, S. Mathematica: A
System for Doing Mathemat-
ics by Computer, Addison-
Wesley, (1988).

Chapter 6: Current & Future Directions 74

Improving the Inside
Increasing Parallelism

I am currently experimenting with multi-threaded processes, where each

thread is an independently executing agent managed by the asna. This is to

take advantage of local parallelism available on multi-processor worksta-

tions, in addition to the network level parallelism I have already implement-

ed using multiple workstations.

Another area I am looking into is implementing the "registry" part of the reg-

istry/dispatcher as a form of networked shared memory. Such commercially

available distrbuted computing paradigms as Linda might be appropriate to

further hide the distributed nature of the implementation from future users.

Implement Template Skills

The current implementation does not support parameterized motor skills, or

what I referred to as template skills in Chapter 3. This is a serious drawback,

since it requires each skill to be bound to the execution details at definition

time. For example, I must define a skill pickup-the-paint-sprayer

rather than a more general skill pickup-object-X where the name and

location of ob ject-X are filled in at runtime. Motor units in general are

shared, which means they must be parameterized somehow so that I can in-

voke the same motor units for different purposes. This is a central notion in

ongoing research in movement physiology and psychology on generalized

motor programs. Additionally, any future implementation that uses graphi-

cal simulation systems to control to simulated geometry of a dude would be

useful for a large set of motor skills. Dave Chen's 3d system, for example,

could be used for a large class of inverse kinematic and forward dynamic

skills such as reaching and grasping, and there is no reason why a large set of

motor skills could not communicate to a single invocation of 3d, rather than

each managing its own.

More interesting and relevant behavior could be generated by the addition of

coefficients on the flow of activation from each agent This would allow, for

example, one goal agent to make itself more important to the overall decision

making process than another goal agent. This would also allow the various

relationships among skill agents (sucessor, predecessor, conflicter, follower)

to vary in importance to each other, and allow skill agents to vary in impor-

tance to each other. Such periodic control strategies as circadian rhythms

could be introduced into the behavior of dudes in a straightforward manner.

Finally, it would allow for experiments with faulty or noisy sensor data, by

allowing the virtual actor to weight how useful it thought a particular sensor

was, by adjusting the coefficient of activation flow from it.

threads

Threads are lightweight UNIX
processes, each of which
can potentially run on its own
physical processor. Currently
available machines from
Stardent, SGI and NeXT
support threads.

Unda

Linda supports the notion of
a networked shared memory,
called tuple space, where
processes can put things
into, take things out of, read
from, and write to tuple
space. Linda is commercially
available for several
platforms. See (Gelemter
1988) or (Carriero 1990) for
more details.

(Gelertner 1988)

Gelertner, D. Getting the Job
Done Byte, (November,
1988).

(CMarO 1990)

Carriero, N., and Gelertner,
D. How to Write Parallel
Programs MIT Press, (1990).

Chapter 6: Current & Future Directions 75

A similar extension I have planned is to allow each skill agent to maintain its

own activation decay function. This would allow skill agents to have activa-

tion levels which would decay differently. Classic displacement behavior

could perhaps be simulated using skill agents whose activation decayed very

slowly. Note that most of the aforementioned capabilites already exist in the

current implementation of Build-a-Dude; there just hasn't been enough time

to conduct the myriad of experiments possible with the current toolkit.

Different Kinds of Agents

The addition of agents other than goal, sensor, and skill agents is an interest-

ing possibility. Maes' has suggested the notion of perception agents, which

would combine most of the features of my goal and sensor agents (Maes

1990C). Agents which manipulated the flow of activation between agents is

also a possibility. Finally, agents that acted as critics, that gave advice to

skill agents on their condition, add, and delete lists, as well as more forceful

agents, that could actually go in and change an agent are also under consider-

ation.

Finally, one idea that I will implement very soon is the notion of a receptor

agent. Although the original design (and the current implementation) allow

sensor agents to measure the state of the world as pv-pairs, this proved too

much flexibility. The reason has to do with the way the current algorithm

deals with condition, add, and delete-lists. As discussed in Chapter 5 (Dis-

cussion: Dude Take 3), the way the skill network is constructed makes as-

sumptions about the existence of a proposition as reason enough to construct

certain links, and it makes no sense for the sensor agents to do more than re-

port on the existence or not of a given proposition. This leads to the notion

of a receptor agent. A receptor agent would be an agent that measures some

set of continuous quantities in the world; what I referred to as signals in

Chapter 4. No processing is done by a receptor agent; it merely reports sig-

nal strength every timestep. Sensor agents would have connections to an ar-

bitrary number of receptor agents, and could do an aribrtrary amount of
processing on the signals they received. The difference would be that the

sensor agent would present only a true or false proposition to the network,

and goal agents and skill agents would subsequently only use these proposi-

tions. Sensor agents would deliver signs to the registry/dispatcher that it

would then use to construct the skill network.

Agents as Agencies

In the current implementation, every agent (goal, sensor, skill) has a unique

two-way communication connection link to the regsitry/dispatcher. This has

(Mass 1990C)

Maes, M. personal communi-
cation, 1990.

signs & signals

Signals represent sensor
data-e.g. heat, pressure,
light-that can be processed
as continuous variables.
Signs are facts and features
of the environment or the
organism. (Rasmussen
1983)

(Rasmussen 1983)
Rasmussen, J. Skills, Rules
and Knowledge; SIgnals,
Signs and Symbols and other
Distinctions in Human
Performance Models IEEE
Trans. on Systems, Man, and
Cybernetics, vol. SMC-13,
no. 3 (May/June 1983).

Chapter 6: Current & Future Directions 76

simplified the implementation, since there is no question of who a message is
from on a given communication path. Unfortunately, I have run into some
hard limits in UNIX networking software that have caused me to rethink this
philosophy. In a desire to build a more robust, portable system, I have decid-

ed to allocate a communication link per agency, instead of agent, where

agency is defined as per Minsky (Minsky 1987). This will have several ad-
vantages. The first, and most obvious to the current users of the system, will
be the freedom to construct networks of much larger size (i.e. many more
agents). Currently, I am limited to less than 25 agents on the machine that I
ususally run on, a Stardent Titan 1500. This also promises to increase per-

formance slightly due to certain low-level implementation issues. The cost
of this added functionality and performance comes at a relatively inexpen-
sive addition to the message passing protocol, that now will need to include a
source and destination tag so that it's obvious which agent sent a message
and which agent a message was intended for. This also might be alleviated

by moving to a NeXT machine, or other Mach based system, at the cost of

portability. Either way, it will pave the way for a much more powerful and
extensible system.

Learning
Learning could be introduced by allowing the virtual actor to change the
composition of its skill network. I plan to do this with the addition of new
types of agents which observe the flow of activation in the skill network and

edit links between agents. I'm also very excited by the positive results Maes
and Brooks have obtained using statistical methods for learning in action se-

lection networks. As discussed above, a move to a platform such as NeXT
with accessibl, robust, statistical analysis software makes the prospect not

only possible but perhaps pleasant. Learning by example is yet another
learning method that is interesting, especially in the context of dudes in virtu-

al environments interacting with human users.

Conclusion
I have presented the ubiquitous problem of selecting the next appropriate ac-

tion in a given situation, with an emphasis on its application for a computa-
tional autonomous agent in an animation/simulation system. I reviewed the
relevant literature. I described an algorithm for action selection, derived
from one originally presented by Maes and Zeltzer. I described extensions to
this algorithm, with an emphasis on efficient distributed implementations of

the algorithm. I presented a parallel distributed implementation which en-

compasses both the original algorithm and many of my proposed extensions.

I informally verified that the implementation satisfied the mathematical mod-

el, and gave several detailed examples of the implementation in use with an

agency
An assembly of parts
considered in terms of what
it can accomplish as a unit,
wothout regard to what each
of its parts does by itself.
(Minsky 1987)

(Minsky 1987)

Minsky, M. Society of Mind,
Simon Schuster, 1987.

some thoughts on leaming

Without leaming, life is but
an image of death.
Cato

Leaming without thought is
useless; thought without
leaming is dangerous.
Confucius

Chapter 6: Current & Future Directions 77

emphasis on showing the extensions I have made. I discussed some of the

limitations of the current theory, the implementation, and current and future

directions of this work toward alleviating some of these problems.

Tinsley Galyean, a fellow graduate student here in the Computer Graphics &
Animation said it best: "You know, we must really love graphics, since we

get to spend so little time doing it." The work in this thesis has run the gamut

from animal behavior research to researching TCP/IP sockets, from language

design, to looking into the state-of-the art in parallel distributed processing. I

came to this thesis as a computational graphicist with an AI background; I

leave it a sadder and wiser UNIX systems hacker. I now know a reasonable

amount about animal behavior as reported in the literature. I've gained a lot

of practical knowledge about distributing computation over UNIX networks.

I learned little new about graphics compared to what I learned about building
software systems. Don't get me wrong-I consider that a good thing. Pretty

pictures that matter are always the result of an amazing amount of behind-

the-scenes, successful systems design.

Build-a-Dude is a large system, and will continue to grow as I continue my

research towards a Ph.D. This thesis document represents a snapshot of the

system and some of the ideas I've come up with as of January 1991. What

I've accomplished is significant, if only because it represents a real step to-

wards implementing a system which considers all of the factors in trying to

build the mind of a virtual actor. One of the key aspects of future virtual en-

vironment systems will be in their distributed nature. Build-a-Dude was de-

signed with distributed processing at the ground floor, and is efficiently
implemented on current workstations. Its robust nature is a sign of systems to

come. In the future, all systems which control autonomous agents or mediate

the components of simulation systems will be running on large numbers of

machines at once, and some sort of fault tolerance like Build-a-Dude has will

be standard issue on all such systems. You can bet on it.

Chapter 6: Current & Future Directions

Sources

Agha, G. (1985). Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, MA.

Agre, P. and Chapman, D. (1987). Pengi: An Implementation of a Theory of Situated Action. Proceedings
of AAAI-87.

Badler, N.I. and B.L. Webber. (1991). Animationfrom Instructions. in Making Them Move: Mechanics,
Control and Animation of Articulated Figures. Morgan Kaufmann.

Beer, R.D., L.S. Sterling and H.J. Chiel. (January 1989). Periplaneta Computatrix: The Artificial Insect
Project Tech. Report TR 89-102. Case Western Reserve University.

Bernstein, N. (1967). The Coordination and Regulation of Movements. Pergamon Press, Oxford.

Blumberg, B. (1990). personal communication.

Brooks, R.A. (1986). A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and
Automation 2:1, 14-23.

Brooks, R.A. (1989). The Whole Iguana. in Robotics Science. MIT Press, Cambridge, MA.

Carrero, N. and D. Gelertner (1990). How to Write Parallel Programs. MIT Press, Cambridge, MA.

Charniak, E. and McDermott, D. (1985). Introduction to Artificial Intelligence. Addison-Wesley.

Chen, D. (1991, in preparation). Pump it Up: Simulating Muscle Shape from Skeleton Dynamics, A
Dynamic Model of Muscle for Computer Animation. Ph.D thesis, Massachusetts Institute of Technology,
Cambridge, MA.

Friedman, M. (1991). personal communication.

Forssberg, H.S., Grillner, S., and Rossignol, S. (1975). Phase Dependent Reflex Reversal During Walking
in Chronic Spinal Cats. Brain Research, 85, 103-107.

Gallistel, C.R. (1980). The Organization ofAction: A New Synthesis. Lawrence Erlbaum Associates,
Hillsdale, New Jersey.

Sources 79

Gelertner, D. (1988). Getting the Job Done. Byte, November.

Girard, M. and A.A. Maciejewski. (July 1985). Computational Modeling for the Computer Animation of
Legged Figures. Computer Graphics 19: 3, 263-270.

Goldberg, D.E. (1989). Genetic Algorithms, Addison-Wesley.

Greene, P.H. (1972). Problems of Organization of Motor Systems. in Progress in Theoretical Biology 2:
303-338.

Greene, P.H. (June 1982). The Organization ofNatural Movement, Journal of Motor Behavior.

Haase, K. (1990). Huh Internals Manual. Massachusetts Institute of Technology, Cambridge, MA.

Maes, P. (December 1989). How to Do the Right Thing. A.I. Memo 1180. Massachusetts Institute of
Technology, Cambridge, MA.

Maes, P. and Brooks, R.A. (1990). A Learning to Coordinate Behaviors. Proceedings of AAAI-90.

Maes, P. (1990). Situated Agents Can Have Goals. Journal of Robotics and Autonomous Systems 6: 1&2.

Maes, P. (1990). personal communication.

McFarland, D.J., and R.M. Sibly (1975). The Behavioral Common Path. Phil. Trans. Roy. Soc. London.

McKenna, M., S. Pieper and D. Zeltzer. (March 25-28, 1990). Control of a Virtual Actor: The Roach. Proc.

1990 Symposium on Interactive 3D Graphics. 165-174. Snowbird, UT.

McKenna, M. (January 1990). A Dynamic Model of Locomotion for Computer Animation. S.M. Thesis.
Massachusetts Institute of Technology. Cambridge, MA.

Miller, G. (August 1988). The Motion Dynamics of Snakes and Worms. Computer Graphics 22: 4, 169-178.

Minsky, M. (1987). The Society of Mind. Simon and Schuster, New York.

Reynolds, C.W. (July 1987). Flocks, Herds and Schools: A Distributed Behavioral Model. Computer
Graphics 21: 4, 25-34.

Schank, R. and R. Abelson (1977). Scripts, Plans, Goals and Understanding. Lawrence Erlbaum

Associates.

Sources 80

Sherington, C.S. (1906). The Integrative Action of the Nervous System. Yale University Press.

Sims, K. (June 1987). Locomotion of Jointed Figures Over Complex Terrain. S.M.V.S Thesis.
Massachusetts Institute of Technology. Cambridge, MA.

Strassmann, S. (1991, in preparation). Desktop Theater: A System for Automatic Animation Generation.
Ph.D Thesis. Massachusetts Institute of Technology. Cambridge, MA.

Tinbergen, N. (1951). The Study ofInstinct. Oxford University Press, London.

Travers, M. (1989). Agar: an Animal Construction Kit. S.M. Thesis. Massachusetts Institute of
Technology. Cambridge, MA.

Turvey, M.T. (1977). Preliminiaries to a Theory of Action with Reference to Vision, in Perceiving, Acting
and Knowing. Lawrence Erlbaum Associates.

Wilson, S. (1987). Classifier Systems and the Animat Problem. Machine Learning. 2(3).

Wolfram, S. (1988). Mathematica: A System for Doing Mathematics on Computer, Addison-Wesley.

Zeltzer, D. and Johnson, M.B. (to appear). Motor Planning: An Architecture for Specifyingand Controlling
the Behavior of Virtual Actors. Journal of Visualization and Computer Animation, 2(2).

Zeltzer, D., S. Pieper and D. Sturman. (June 19-23, 1989). An Integrated Graphical Simulation Platform.
Proc. Graphics Interface '89 266-274. London, Ontario.

Zeltzer, D. (April 1983). Knowledge-Based Animation, Proc. ACM SIGGRAPH/SIGART Workshop on
Motion.

Zeltzer, D. (May 14-16 1987). Motor Problem Solving for Three Dimensional Computer Animation. Proc.
L'Imaginaire Numerique Saint-Etienne, France.

Zeltzer, D. (August 1984). Representation and Control of Three Dimensional Computer Animated Figures.
Ph.D. Thesis. The Ohio State University. Columbus, OH.

Zeltzer, D. (December 1985). Towards an Integrated View of 3-D Computer Animation. Visual Computer
1:4.

Sources 81

Appendix A
the registry/dispatcher's inner loop

Once the registry/dispatcher is started up, it goes into an endless loop. When

first invoked, the registry/dispatcher has a single connection to the outside

world-the asn daemon. As agents contact the daemon and then connect to

the registry/dispatcher, the list of connections grows. This section examines,

in some detail, what happens in this loop. Here is the C code which makes up

the inner loop:

for(;;)

{ while (check_fordaemon-message(&myself))
{ service_daemon_message(&myself);
}
while (checkfor_unregistered agentsmessages(&myself, &retfdset))
{ serviceunregistered agents messages(&myself, &retfdset);

while (check for executing skills messages(&myself, &retfdset))
service-executing_skillsmessages(&myself, &ret_fd_set);

if ((myself.spread activation) ii (myself.spread-for-n steps))
{ if (myself.spread_for_n_steps)

{ myself.spread for-n-steps-;
}
if (appropriate timetomarkdisabledagents(&myself))
{ markdisabled-agents (&mysel f);
}

zero out intermediate activation levels(&myself);

updategoals list(&myself);
updatesensorlist(&myself);

spread activation from sensors(&myself);
spread activation from goals (&myself);
spread inhibitionfromprotectedgoals (&myself);

mark executable skills(&myself);

spread activation backwardstopredecessors (&myself);
spread activation forwards-to successors(&myself);
spread activation forwards to followers (&myself);
spread~inhibition-toconflicters (&myself);

sum activation(&myself);

decayactivation (&myself);

active skill = determineactiveskill (&myself);
if (active skill != NULL)
{ notify_ activeskill(&myself, activeskill);
resetthreshold(&myself);

else
{ lowerthreshold by_some_amount(&myself);
}
if (appropriate timetocheck disabled-agents (&myself))

checkdisabled_agents (&myself);

myself. current time++;

}

Appendix A: the registry/dispatcher's inner loop 82

Well, that's a bit overwhelming, but I'll go through it line by line, and try to

explain it. I must warn you, though, the following discussion assumes a ru-

dimentary grasp of the C programming language.

First off, there is a a structure which contains all the state information for the

registry/dispatcher. This is the structure myself, which is of the following

type:

typedef struct {
char *name;

char *my-hostname;

char *daemon hostname;

int port;
int fd;
struct sockaddrin registryserver info;

unsigned long currenttime;

int spread-activation;

int spread for_n_steps;

int mark every_n_steps;

int checkeverynsteps;

struct timeval disabled timeout;

struct timeval amputatedtimeout;

int timesteps toamputation;

int nextport to try;

TclInterp *daemoninterp;

int current_unregisteredagent index;

TclInterp *unregisteredagent interp;

TclInterp *goal-interp

TclInterp *sensorinterp;

TclInterp *skillinterp;

FILE *log-fp;

LIST *unregistered agent list;

LIST *goal-list;

LIST *sensor-list;

ASNRskillinfot *tmp skill;

ASNRproposition valuet *tmp-pv;

LIST *skill-list;

float pi;

float initial-theta;

float theta;

float phi;

float gamma;

float delta;

I ASNR state t;

The general notion is that we can think of this state structure as the registry/

dispatcher, since it contains all the information composing the registry/dis-

Appendix A: the registry/dispatcher's inner loop 83

patcher. That's why the instantiation of this structure in the main program is

called myself. Most of the routines called in the inner loop get handed a

pointer to this state structure, so it's important that you have some notion of

what it contains. Several of the types of variables defined in the state struc-

ture are probably unfamiliar to the average reader, and merit further explana-

tion. Keep in mind that this is not intended to be an exhaustive treatment of

the implementation, just an explanation of the registry/dispatcher's inner

loop, so I'll confine myself to details pertinent to that.

while (checkfordaemonmessage (&myself))

servicedaemonmessage(&myself);

}

while (check for unregistered agentsmessages(&myself, &retfdset))

service_unregistered-agents-messages(&myself, &ret_fd_set);

while (checkforexecutingskills-messages(&myself, &retfdset))

serviceexecuting skillsmessages(&myself, &retfdset);

}

if ((myself.spread activation) |1 (myself.spreadfor_n_steps))

By default, the registry/dispatcher just services messages from its network

connections to the asn daemon and the agents, rebuilding its internal net-

work of connections between the agents each time a new agent registers with

it. Initially, it doesn't spread activation between the nodes. Once the regis-

try/dispatcher receives a "start-spreading-activation" message or "spread-ac-

tivation-for-n-steps" from one of the agents or the daemon, it takes the

appropriate action and begins spreading activation, either continuing until it

gets a "stop-spreading-activation" message or it has spread for n steps.

if (myself.spreadfor_n-steps)

{ myself.spreadfor_n_steps-;

If the registry/dispatcher has received a message to spread activation for

some n time steps, it decrements its counter of how many steps left appropri-

ately.

if (appropriate time to mark disabled agents(&myself))

markdisabled agents(&myself);

A very real consideration in this implementation is that of robustness and

graceful degradation when parts of the skill network fail. For this reason, the

Appendix A: the registry/dispatcher's inner loop 84

registry/dispatcher maintains a notion of the reliability of the network con-

nections it has to all the agents. When spreading activation through the skill

network, the registry/dispatcher needs to take care that it doesn't waste its

time spreading activation to a skill agent that, once it's called, has actually

been disabled or dead for some time. The intuitive idea is that we don't wish

to "waste our time" sending activation energy to eventually activate some

skill, which, when the registry/dispatcher sends it a message to execute it, it

isn't able to receive the message (the network or the machine is down), or it

isn't able to execute the message (the process has died or is busy doing

something else). The analog situation on a real robot is that the planner

doesn't want to try to utilize some manipulator which is broken, or tempo-

rarily disconnected (perhaps being repaired). An agent is considered dis-

abled if it doesn't acknowledge receipt of a message from the registry/

dispatcher in some reasonable amount of time (where "reasonable" is obvi-

ously network and context dependent). An agent is considered dead if the

registry/dispatcher gets an error sending a message to that agent. Therefore,

at an "appropriate time", the registry/dispatcher sends a message to each

agent, and marks it disabled if it doesn't respond as described above or am-

putates it if the registry/dispatcher gets an error sending or receiving a mes-

sage from that agent. "Appropriate time" is a value which the registry/

dispatcher determines based on how many agents have become disabled or

dead over time.

The registry/dispatcher starts off with some default notion of the reliability of

the network connection between the agents and itself. Over time, the regis-

try/dispatcher can change its assessment of this situation by noticing that ei-

ther (1) the network is very reliable because it has not lost any connections to

any agents, or (2) the network connection is rather unreliable because it has

lost connections to some agents. If (1), the registry/dispatcher can decrease

the frequency with which it marks the disabled agents. If (2), the registry/

dispatcher can increase the frequency. As time goes on, the registry/dis-

patcher is free to revise this opinion, either up or down, depending on if any

agents become disabled or die. Note that a disabled agent will not participate

in the spreading or receiving of activation, although its existence will still af-

fect the flow of activation, since it will still be a member of all the lists in the

database.

zerooutintermediateactivationlevels (&myself);

Next the intermediate activation accumulators are cleared. These are vari-

ables that each skill maintains that correspond to the activation received from

the various links in the action selection network. They exist for the future

ability to keep statistics on how much activation was received from the vari-

Appendix A: the registry/dispatcher's inner loop 85

ous links. These statistics could be used by the skill agents to modify their

pre- and post-conditions, thereby enabling a virtual actor to learn.

updategoalslist (&myself);

The goal agents are checked for any messages updating their state. The intui-

tive idea is that a goal agent represents more than just its desired proposition-

value pair, i.e. that it can change its mind. If the goal agent is masking a

user, she might change her mind given the current state of what the virtual

actor is doing, and change her goals via the goal agent. If a goal agent is

masking a skill from another network, it might no longer be active, and so

the goal is withdrawn. Goals could also mask higher level skills, for exam-

ple, a path planning skill which is in some other skill network. The path

planner plans a path and knows what steps to take to navigate a collision free

path in space. It in turn passes these directions as goals over time to another

network composed of lower level motor skills of the dude (turn left... go

straight, ..., go left)

update_sensor_list(&myself);

The sensor agents are checked for any messages updating their state. The in-

tuitive idea is that the sensor agents deliver a new value to the registry/dis-

patcher everytime the proposition they measure changes. The registry/

dispatcher can accept one message per time step from each sensor agent.

while (checkforexecutingskillsmessages(&myself, &retfdset))

serviceexecutingskillsmessages(&myself, &ret_fd_set);

Any currently executing skill can send a message to the registry/dispatcher

and expect it to get serviced at a relatively high priority. The registry/dis-

patcher loops over its list of currently executing skills, servicing their mes-

sages until their are no more outstanding. The intuitive idea is that the

currently executing skill(s) have priority over the selection of new actions to

take, so therefore they can monopolize the resources of the registry/dispatch-

er if they desire. The most common message to be received from an execut-

ing skill is one to the effect that the skill has completed. Once a skill

completes, the registry/dispatcher does an analysis of the state of the world

as predicted by that skill's add and delete-list and the state of the world as

currently measured by the sensors. The registry/dispatcher then resets the

skill's current activation based on the delta between those two. The intuitive

idea is that if the skill was completely successful (i.e. its add and delete-list

were a correct prediction of what the world would be when it finished), the

skill's current activation would be reset to zero since it had accomplished ex-

actly what it set out to do. If, however, the skill had completely failed (i.e.

Appendix A: the registry/dispatcher's inner loop 86

none of the proposition value pairs predicted by the skill's add and delete list

exist in the world as measured by the sensors), the skill's current activation

should be very close to its current value. The reason for this is that the next

skill the registry/dispatcher is likely to choose to execute would be this one.

Given that a skill supplies a maximum-number-of-invocations value for itself

to the registry/dispatcher, and that the registry/dispatcher maintains informa-

tion about how many times a skill has been called in succession, the weight-

ing looks something like this:

a = this skill's current activation;
max = maximum number of consecutive invocations of this skill;

think of this as the hysterisis associated with the skill.
Unfortunately, this is not only skill dependent, it is also domain dependent.

*/
cur = current number of consecutive invocations of this skill;

true = how many predictions made which are currently measured true;

made = how many total predictions made by this skill;

/* the sum of the lengths of the add list and the delete list */
if (cur < max)
{ a *= (1.0 - ((max/(max - cur)) * (true/made)));

else
a =0.0;

A possible extension to this would be to allow differing coefficients on each

member of the add list and the delete list. This would allow for situations

where one or more of the predictions was very important, while others would

be less so.

spread activationfromsensors (&myself);

spread activationfrom_goals (&myself);

spread-inhibition_fromprotectedgoals (&myself);

Activation, both positive and negative, is calculated from the sensors, and the

goals, the protected goals, and put into the intermediate accumulators for

each skill agent.

mark executable skills(&myself);

Any skill which has all have the proposition-value pairs in its condition list

matching the currently measured values by the corresponding sensor agents

is marked "executable". This will affect which skills spread activation for-

ward and backward.

spreadactivationbackwardsto_predecessors (&myself);

spreadactivationforwardstosuccessors(&myself);

spread activation forwardsto_followers(&myself);

Appendix A: the registry/dispatcher's inner loop 87

spreadinhibitiontoconflicters(&myself);

Activation, both positive and negative, is now spread from each skill agent

to each of the members of its predecssors, successors, followers, and con-

flicters.

sum activation (&myself); decayactivation (&myself);

All the intermediate activation accumulation values are summed, and de-

cayed by some amount. Currrently, the registry/dispatcher conserves the

sum of activation energy in the system.

active skill = determine active skill(&myself);
if (active skill != NULL)
{ notifyactiveskill(&myself, activeskill);

reset threshold(&myself);

else

{ lowerthresholdbysomeamount(&myself);

The active skill is selected. If a skill is selected (all its preconditions are

met, its activation is higher than all other skills, it is exectuable, it is not dis-

abled, it is not executing, and its activation level is higher than the thresh-

old), it is sent a message to start executing, and the threshold value is reset.

If no skill was selected, the threshold is lowered by some amount (user setta-

ble).

if (appropriate timetocheckdisabled agents (&myself))

{ checkdisabled agents(&myself);

}

If the time is appropriate, the registry/dispatcher sends a message to each of

the agents it has marked as disabled. If the disabled agent still doesn't re-

spond, or the communication channel is corrupted, the agent is amputated.

The "appropriate time" is context dependent, and could range from every

time step to never.

myself. currenttime++;

The current time counter is incremented, and the loop continues.

Appendix A: the registry/dispatcher's inner loop 88

Appendix B
appcom: an application
communication library

In order to implement the algorithm described in this thesis, I found it neces-

sary to design and implement some sort of message passing library. I strong-

ly would have preferred to use an existing package, but unfortunately could

find none which satisfied my criteria:

- It should be portable to different vendors' workstations.

- Source code must be freely available.

- All functionality should be acessible from the C language.

- It should allow for message passing over a network (i.e. from one work-

station to another) transparently.
- It should impose a minimum of performance overhead on the calling ap-

plication.

The obvious choice was Berkely sockets, since they are supported on all ma-

chines running BSD derived implementations of UNIX, and are supported as

"Berkeley extensions" on most System V machines. Another advantage of

using sockets was the fact that synchronous (i.e. blocking) and asynchronous

(i.e. nonblocking) communication was built-in since sockets were uniquely

identified with real UNIX file descriptors, so calls to fcntlO could be used to

make them non-blocking or blocking at will, just like any other UNIX file.

Unfortunately, using sockets effectively is somewhat daunting for many

UNIX programmers, and their use tends to be a nontrivial addition to any ap-

plication. The other problem with sockets is that they are always (to my

knowledge) implemented as kemel extensions, and a reado or write() to a

socket involves a call to the kemel (i.e. a significant performance cost). If

one was to use them, and use them with abandon, some sort of buffering

would need to be done to ensure that low level reads and writes were done

only when necessary.

Well, given that sockets could serve as the transport layer, there was still the

question of what format the message should take. UNIX provides message

passing, but it is very limited, both in number of messages allowed and length

of messages. Also, there is no standard message passing available in UNIX

that is network transparent Mach, the operating system with a UNIX com-

fcntl()

a standard low-level UNIX
routine for manipulating the
attributes of a file. It is
useful in this context since
you can use it to change the
manner in which the read() or
write() routine deal with a
socket. If the socket's
attributes are set to non-
blocking, each routine will
return immediately if there is
no data available. If the
socket is set to blocking (the
default), the routine will wait
until the requested data is
available.

Appendix B: appcom: an application communication library 89
8 9Appendix B3: appcom: an application communication library

patible kernel used on the NeXT machine, does provide such a facility, but

remember, I wanted this package to be portable to many machines.

Since such a complete package which met my requirements was not avail-

able, I designed and implemented my own. As one would imagine, I based

my message structures on UNIX's built-in ones, but made it more extensible
and cleaner. For my transport layer, I chose sockets running over TCP/IP,
since this allowed me to communicate locally or over the net with the same
calls, giving me network transparency. The library evolved from my partic-
ular needs, and is not really comprehensive. Having said that, I wrote this li-

braxy five months ago, and have only added a few routines two months ago,
and haven't needed to add or change any software since. In addition to the
software written for this thesis, this library has been used for several distrib-
uted visualization applications written for the Connection Machine 2 Sys-
tem. This library has been compiled and used on the following UNIX
workstations: HP 9000-835, HP 9000-350, SGI 24OGTX, Stardent Titan
1500, SUN 4/370, VAX 6700.

The library is neither elegant or complete; but it is portable, functional, effi-

cient, and has served the needs of its users (there are a few other people that

use this library; the list is actually growing). There are basically three sets of
public functions; those dealing with the setting up of a connection between a

message passer/receiver and its companion message receiver/passer, and
those dealing with the sending and receiving of messages, an error handling/

reporting facility. Since the communication model is based on Berkeley

sockets, it imposes the same sort of client/server model that sockets have.

the public defines are defined are listed below:

#define MAX ACMSGDATALENGTH (4096
#define AC MSG HEADER SIZE \

(sizeof(AC msg~t) - MAX_
#define ACMSGTYPEBLOCKING
#define AC MSGTYPENONBLOCKING
#define AC MSGTYPESTRING
#define AC MSGTYPEREPLYEXPECTED
#define ACERRNO NOTSET
#define AC ERRNO WRITE FAILED
#define ACERRNO READ FAILED
#define ACERRNO READHEADER TOOSMALL
#define ACERRNO WROTEHEADER TOOSMALL
#define ACERRNO READDATA TOOSMALL
#define ACERRNO WROTEDATATOOSMALL
#define ACERRNO DATA TOOLARGE
#define ACERRNO DATA TYPEMISMATCH
#define AC ERRNO UNKNOWN HOST
#define ACERRNO NOSTREAM SOCK
#define AC ERRNO BIND FAILED

- 16)

personal C style note

for all libraries I write, I
choose some short set of
letters which are then
capitalized and used for all
typedef's, public defines,
and public routine names.
Intemal routines are usually
prefaced with xxxi , where
xxx is the chosen identifier
for public routines. The
appcom library uses Ac_ for
its preface.

iC MSGDATALENGTH)
1
2
4
8
0
1
2
3
4
5
6
7
8
9
10
11

Appendix B: appcom: an application communication library

#define ACERRNO LISTEN FAILED 12 peronal C style note
#define ACERRNOACCEPTFAILED 13
#define ACERRNOCONNECTFAILED 14 All typedef's end with _t, to

emphasize the fact that they
are indeed typedefs.

the public data structures which are defined are listed below:

typedef struct
{ unsigned int length;

unsigned int type;
char data[MAX ACMSGDATALENGTH);

} AC msgt;

typedef struct
{ int fd;

int needtoswap;
} ACobjectt;

Communication initialization:
int
AC tcp socket server setup and connect (port);
int port;

int
ACdetailedtcpsocketserver_setup and connect (port,

server info,
client info,
sockfd)

int port;
struct sockaddr in *server info,

*client info;
int *sockfd;

int
ACdetailed_tcp socket server_setupand bind(port,

server info,
sockfd)

int port;
struct sockaddr in *server-info;
int *sockfd;

int
AC detailed tcp socket server bind (port,

server-info,
sockfd)

int port;
struct sockaddr in *server info;
int *sockfd;

int
ACdetailed_tcp socket server_setup2 (serverinfo)
struct sockaddr in *server-info;

int
ACdetailedtcpsocketserverconnect (clientinfo,

sockfd)
struct sockaddr in *client info;
int sockfd;

Appendix B: appcom: an application communication library 9 1

int
ACtcpsocketclientsetupand connect (hostname, port)
char *hostname;
int port;

Message passing/receiving routines:

int
ACwrite_msg_to fd (msgptr, fd)
ACmsgt *msgyptr;
int fd;

int
AC readmsg_from fd (nsgptr, fd)
AC_msg t *sgptr;
int fd;

int
ACwritestras msg to fd (strjtr, fd)
char *strptr;
int fd;
char
*ACwritestras msg to fd with reply_p (str_ptr, fd, replyp)
char *str_ptr;
int fd;
int replyp;

char
*ACreadstras_msg_from fd (fd)
int fd;

char
*ACreadstrand replyp asmsg_fromfd (fd, replyp)
int fd;
int *reply p;

error handling/reporting:
int
ACperror (str)
char *str;

int
AC fperror (fp, str)
FILE *fp;
char *str;

Appendix B: appcom: an application communication library 9 2

