
MIT Open Access Articles

The Role of Design Complexity in Technology Improvement

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: McNerney, J. et al. “Role of design complexity in technology improvement.” 
Proceedings of the National Academy of Sciences 108.22 (2011): 9008-9013.

As Published: http://dx.doi.org/10.1073/pnas.1017298108

Publisher: National Academy of Sciences (U.S.)

Persistent URL: http://hdl.handle.net/1721.1/67448

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/67448


Role of design complexity in technology improvement
James McNerneya,b, J. Doyne Farmera,c, Sidney Rednera,b,d, and Jessika E. Trancika,e,1

aSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501; bDepartment of Physics, Boston University, Boston, MA 02215; cLibera Universitá
Internazionale degli Studi Sociali, Guido Carli, Viale Pola 12, 00198 Rome, Italy; dCenter for Polymer Studies, Boston University, Boston, MA 02215; and
eEngineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA 02139

Edited by Hans-Joachim Schellnhuber, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany, and approved March 8, 2011 (received for
review November 22, 2010)

We study a simple model for the evolution of the cost (or more
generally the performance) of a technology or production process.
The technology can be decomposed into n components, each of
which interacts with a cluster of d − 1 other components. Innova-
tion occurs through a series of trial-and-error events, each of which
consists of randomly changing the cost of each component in a
cluster, and accepting the changes only if the total cost of the clus-
ter is lowered. We show that the relationship between the cost of
the whole technology and the number of innovation attempts is
asymptotically a power law, matching the functional form often
observed for empirical data. The exponent α of the power law
depends on the intrinsic difficulty of finding better components,
and on what we term the design complexity: the more complex
the design, the slower the rate of improvement. Letting d as
defined above be the connectivity, in the special case in which the
connectivity is constant, the design complexity is simply the con-
nectivity. When the connectivity varies, bottlenecks can arise in
which a few components limit progress. In this case the design
complexity depends on the details of the design. The number of
bottlenecks also determines whether progress is steady, or
whether there are periods of stasis punctuated by occasional large
changes. Our model connects the engineering properties of a
design to historical studies of technology improvement.

design structure matrix ∣ experience curve ∣ learning curve ∣
performance curve

The relation between a technology’s cost c and the cumulative
amount produced y is often empirically observed to be a

power law of the form

cðyÞ∝ y−α; [1]

where the exponent α characterizes the rate of improvement.
This rate is commonly termed the progress ratio 2−α, which is
the factor by which costs decrease with each doubling of cumu-
lative production. A typical reported value (1) is 0.8 (correspond-
ing to α ≈ :32), which implies that the cost of the 200th item is
80% that of the 100th item. Power laws have been observed
(or at least assumed to hold), for a wide variety of technologies
(1–3), although other functional forms have also been suggested
and in some cases provide plausible fits to the data*. We
give examples of historical performance curves for several differ-
ent technologies in Fig. 1.

The relationship between cost and cumulative production goes
under several different names, including the “experience curve,”
the “learning curve,” or the “progress function.” The terms are
used interchangeably by some, whereas others assign distinct
meanings (1, 4). We use the general term performance curve to
denote a plot of any performance measure (such as cost) against
any experience measure (such as cumulative production), regard-
less of the context. Performance curve studies first appeared in
the 19th century (5, 6), but their application to manufacturing
and technology originates from the 1936 study by Wright on
aircraft production costs (7). The large literature on this subject
spans engineering (8), economics (4, 9), management science (1),
organizational learning (16), and public policy (17). Performance

curves have been constructed for individuals, production pro-
cesses, firms, and industries (1).

The power law assumption has been used by firm managers
(18) and government policy makers (17) to forecast how costs
will drop with cumulative production. However, the potential for
exploiting performance curves has so far not been fully realized,
in part because there is no good theory explaining the observed
empirical relationships. Why do performance curves tend to look
like power laws, as opposed to some other functional form?What
factors determine the exponent α, which governs the long-term
rate of improvement? Why are some performance curves steady
and others erratic? By suggesting answers to these questions, the
theory we develop here can potentially be used to guide invest-
ment policy for technological change.

Fig. 1. Four empirical performance curves. Each curve was rescaled and
shifted to aid comparison with a power law. The x- and y- coordinates of each
series i were transformed via log x → ai þ bi log x, log y → ci þ di log y. The
constants ai , bi , ci , and di were chosen to yield series with approximately
the same slope and range, and are given in SI Text. Tick marks and labels
on the left vertical axis show the first price (in real 2000 dollars) of the cor-
responding time series, and those of the right vertical axis show the last price.
Lines are least-squares fits to a power law. Percentages are the progress ratios
of the fitted power laws. Source: coal plants (10), ethanol (11), photovoltaic
cells (12, 13, 14), transistors (15).
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An example of the possible usefulness of such a theory is
climate change mitigation. Good forecasts of future costs of low-
carbon energy technologies could help guide research and devel-
opment funding and climate policy. Our theory suggests that
based on the design of a technology we might be able to better
forecast its rate of improvement, and therefore make better in-
vestments and better estimates of the cost of achieving low-
carbon energy conversion.

There have been several previous attempts to construct
theories to explain the functional form of performance curves
(19–21). Muth constructed a model of a single-component tech-
nology in which innovation happens by proposing new designs at
random (21). Using extreme value theory he derived conditions
under which the rate of improvement is a power law. An exten-
sion to multiple components, called the production recipe model,
was proposed by Auerswald et al. (19). In their model each
component interacts with other components, and if a given com-
ponent is replaced, it affects the cost of the components with
which it interacts. They simulated their model and found that
under some circumstances the performance curves appeared to
be power laws. Other models include Bendler and Schlesinger,
who derive a power law based on the assumption that barriers to
improvement are distributed fractally (22), and Huberman, who
represents the design process as a random evolving graph (20).
More recently Frenken has used the Auerswald model to inter-
pret and address questions such as the efficacy of outsourcing
(23, 24). Other related models that use random search to model
technological progress (but which do not directly address perfor-
mance curves) are those of Silverberg and Verspagen (25, 26) and
Thurner et al. (27).

In this paper we both simplify and extend the production
recipe model of Auerswald et al. (19). The simplifications allow
us to derive the emergence of a power law, and most importantly,
to derive its exponent α. We find that α ¼ 1∕ðγd�Þ, where γ mea-
sures the intrinsic difficulty of finding better components and d�
is what we call the design complexity. When the connectivity of
the components is constant the design complexity d� is equal to
the connectivity. When connectivity is variable, the complexity
can also depend on the detailed properties of the design, in ways
that we make clear. We also show that when costs are spread uni-
formly across a large number of components, the whole technol-
ogy undergoes steady improvement. In contrast, when costs are
dominated by a few components, the total cost undergoes erratic
improvement. Our theory thus potentially gives insight into how
to design a technology so that it will improve more rapidly and
more steadily.

We should emphasize that many factors besides design can
affect costs—for example, the cost of input materials or fuels may
change due to market dynamics rather than technology design
(10). Furthermore, design is generally focused not just on redu-
cing costs, but also on improving other properties such as envir-
onmental performance or reliability. The variable “cost” in the
theory here can be interpreted as any property that depends
on technology design.

The Model
The production design consists of n components, which can be
thought of as the parts of a technology or the steps in an industrial
process†. Each component i has a cost ci. The total cost κ of the
design is the sum of the component costs: κ ¼ c1 þ c2 þ⋯þ cn.
A component’s cost changes as new implementations for the
component are found. For example, a component representing
the step “move a box across a room”may initially be implemented
by a forklift, which could later be replaced by a conveyor belt.

Cost reductions occur through repeated changes to one or more
components.

Components are not isolated from one another, but rather in-
teract as parts of the overall design. Thus changing one compo-
nent not only affects its cost, but also the costs of other dependent
components. Components may be viewed as nodes in a directed
network, with links from each component to those that depend on
it. The relationship between the nodes and links can alternatively
be characterized by an adjacency matrix. In systems engineering
and management science this matrix is known as the design struc-
ture matrix (DSM) (28–30). A DSM is an n × n matrix with an
entry in row i and column j if a change in component j affects
component i (Fig. 2). The matrix is usually binary (31, 32); how-
ever, weighted interactions have also been considered (33).
DSMs have been found to be useful in understanding and improv-
ing complex manufacturing and technology development pro-
cesses.

The model is simulated as follows:

1. Pick a random component i.
2. Use the DSM to identify the set of components Ai ¼ fjg

whose costs depend on i (the outset of i).
3. Determine a new cost c0j for each component j ∈ Ai from a

fixed probability distribution f .
4. If the sum of the new costs, a0i ¼ ∑j∈Ai

c0j, is less than the cur-
rent sum, ai, then each cj is changed to c0j. Otherwise, the new
cost set is rejected.

This process is repeated for t steps. The costs are defined on
[0,1]. We assume a probability density function that for small
values of ci has the form f ðciÞ ∝ cγ−1i ; i.e., the cumulative distribu-
tion FðciÞ ¼ ∫ ci

0 f ðcÞdc ∝ cγi . The exponent γ specifies the difficulty
of reducing costs of individual components, with higher γ corre-
sponding to higher difficulty. This functional form is fairly general
in that it covers any distribution with a power-series expansion
at c ¼ 0.

Independent Components
We first consider the simple but unrealistic case of a technology
with n independent components. This generalizes the one com-
ponent case originally studied by Muth (21). The cost of a given
component at time t is equivalent to the minimum of t indepen-
dent, identically distributed random variables. In SI Text, we use
extreme value theory to show that to first order in n∕t the
expected cost E½κðtÞ� is

E½κðtÞ� ¼Γ
�
1þ1

γ

��
t
n

�
−1∕γ

; [2]

where ΓðaÞ is Euler’s gamma function.

Fig. 2. Example design structure matrices (DSMs) with n ¼ 13 components.
Black squares represent links. The DSM on the left was randomly generated
to have fixed out-degree for each component. The DSM on the right
represents the design of an automobile brake system (31). All diagonal ele-
ments are present because a component always affects its own cost.

†The original production recipe model (19) contained 6 parameters. We eliminated four of
them as follows: length of production run T → ∞; output-per-attempted-recipe-change
B̂ → 1; available implementations per component s → ∞; search distance δ → 1.
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To understand intuitively why the expected cost decreases as a
power law in time, consider the simple example where γ ¼ 1. In
this case at each innovation attempt a new cost κ0 is drawn
uniformly from [0,1], and a successful reduction occurs if κ0 is
less than the current cost κ. Because the distribution of new costs
is uniform on [0,1] the probability Probðκ0 < κÞ that κ0 represents
a reduction simply equals κ. When a reduction does occur, the
average value of κ0 is κ∕2. Making the approximation that
E½κ2� ¼ E½κ�2, in continuous time the rate of change of the aver-
age component cost is

dE½κ�
dt

∼−
�
E½κ�
2

�
×Probðκ0 < κÞ¼−

1

2
E½κ�2: [3]

The solution to Eq. 3 gives the correct scaling κðtÞ ∼ 1∕t as t → ∞.
The cost reductions are proportional to the cost itself, leading to
an exponential decrease in cost with each reduction; however,
each reduction takes exponentially longer to achieve as the cost
decreases. The competition between these two exponentials
yields a power law.

Interacting Components, Fixed Out-Degree
Now consider an n-component process with fixed out-degree,
where each component affects exactly d − 1 other components,
in addition to affecting itself. Whether or not a given component
will improve in a given trial strongly depends on the other com-
ponents in its cluster. Consequently, the costs are no longer in-
dependent. If the design structure matrix Dij is invertible the total
cost κ can be decomposed as

κ¼∑
n

j¼1

cj ¼∑
i;j

D−1
ij ai ¼∑

n

i

kiai; [4]

where ai ¼ ∑j∈Ai
cj is the cost of cluster i and ki ≡∑jD

−1
ij . Be-

cause the interaction of components inside the same cluster is
much stronger than that of components in different clusters, we
can make the approximation that clusters evolve independently.
In SI Text, we derive the approximate behavior using two different
methods, one based on extreme value theory and the other based
on a differential equation for E½κ�. In the latter case we find

E½κðtÞ� ¼
��

d
n

�
γdþ1 γd

1þ γd
Hðn;d;γÞtþ1

�
−1∕ðγdÞ

; [5]

where

Hðn;d;γÞ≡ ðγnγÞd
γd

ΓðγÞd
ΓðγdÞ : [6]

We compare our prediction in Eq. 5 to simulations in Fig. 3. In-
itially each component cost ci is set to 1∕n, so that the total initial
cost cð0Þ ¼ 1, and we choose γ ¼ 1 for simplicity. Eq. 5 correctly
predicts the asymptotic power law scaling of the simulated per-
formance curves, as well as the deviation from power law beha-
vior for short times. (As shown in SI Text, the extreme value
method also predicts the correct asymptotic scaling.)

The salient result is that the exponent α ¼ 1∕ðγdÞ of the per-
formance curve is directly and simply related to the out-degree d,
which can be viewed as a measure of the complexity of the design,
and γ, which characterizes the difficulty of improving individual
components in the limit as the cost goes to zero. If γd ¼ 1 then
α ¼ 1 and the progress ratio 2−1∕ðγdÞ is 50%. If γd ¼ 3 then α ¼
1∕3 and the progress ratio is approximately 80%, a common value
observed in empirical performance curves.

This d dependence has a simple geometric explanation. Con-
sider the case where γ ¼ 1. Drawing d new costs independently
is equivalent to picking a point with uniform probability in a

d-dimensional hypercube. The combinations of component costs
that reduce the total cost lie within the simplex defined by
∑k∈Ai

c0k < ai, where c0k are the new costs. The probability of
reducing the cost is therefore the ratio of the simplex volume
to the hypercube volume,

p¼ðadi ∕d!Þ
ð1∕nÞd ¼ðnaiÞd

d!
; [7]

which is a decreasing function of d. Thus a component with higher
out-degree (greater connectivity) is less likely to be improved
when chosen.

Interacting Components, Variable Out-Degree
When the out-degree of each component is variable the situation
is more interesting and more realistic because components may
differ in their rate of improvement (31). Slowly improving
components can create bottlenecks that hinder the overall rate
of improvement. In this case it is no longer a good approximation
to treat clusters as evolving independently.

As illustrated in Fig. 4, there are two ways to reduce the cost of
a given component i:

Fig. 3. Comparison of the cost for a simulation of a single realization of the
production recipe model (circles) to the predicted expected cost E½κðtÞ� from
Eq. 5 (solid curve), for the case of constant out-degree. n is the number of
components and d is the connectivity.

j

i

Fig. 4. A component i (shaded circle), together with the componentsAi that
are affected by i (dotted ellipse) and the components that affect i (dashed
ellipse). The arrow from j to i indicates that a change in cost of component j
affects the cost of i.
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1. Pick i and improve cluster Ai.
2. Pick component j in the inset of i and improve cluster Aj.

From Eq. 7, if component i has a large out-degree di, it is
relatively unlikely to be improved by process 1. Nonetheless, if
j has low out-degree, then i will improve more rapidly via process
2. Let dij be the out-degree of component j, which is in the inset of
i. Then the overall improvement rate of component i is deter-
mined by dmin

i ¼ minjfdijg; i.e., it is driven by the out-degree of
the component j in its inset whose associated cluster Aj is most
likely to improve. In SI Text, we demonstrate numerically that
asymptotically E½ci� ∼ t−1∕d

min
i . As t becomes large, the difference

in component costs can become quite dramatic, with the compo-
nents with the largest values of dmin

i dominating. The overall
improvement rate for the whole technology is then determined
by the slowest-improving components, governed by the design
complexity

d� ¼max
i
fdmin

i g: [8]

We call any component with dmin
i ¼ d� a bottleneck. When t is

large one can neglect all but the bottleneck components, and as
we show in SI Text, the average total cost scales as E½κ� ∼ t−1∕d

� .
Note that in the case of constant out-degree d Eq. 8 reduces
to d� ¼ d.

To test this hypothesis we randomly generated 90 different
DSMs with values of d� ranging from 1 to 9 and γ ¼ 1, simulated
the model 300 times for each DSM, measured the corresponding
average rate of improvement, and compared with that predicted
from the theory. We find good agreement in every case, as
demonstrated in SI Text.

Fluctuations
The analysis we have given provides insight not only about the
mean behavior, but also about fluctuations about the mean.
These can be substantial, and depend on the properties of the
DSM. In Fig. 5 we plot two individual trajectories of cost vs. time
for each of three different DSMs. The trajectories fluctuate in
every case, but the amplitude of fluctuations is highly variable.
In Fig. 5 Left the amplitude of the fluctuations remains relatively
small and is roughly constant in time when plotted on double
logarithmic scale (indicating that the amplitude of the fluctua-
tions is always proportional to the mean). For Fig. 5 Center
and Right, in contrast, the individual trajectories show a ran-
dom staircase behavior, and the amplitude of the fluctuations
continues to grow for a longer time.

This behavior can be explained in terms of the improvement
rates dmin

i for each component. The maximum value of dmin
i de-

termines the slowest-improving components. In Fig. 5 Left the
maximum value of dmin

i ¼ 2. This value occurs for four compo-
nents. After a long time these four components dominate the
overall cost. However, because they have the same values of
dmin
i their contributions remain comparable, and the total cost

is averaged over all four of them, keeping the fluctuations rela-
tively small. (See Fig. 5 Lower.)

In contrast, in Fig. 5 Center we illustrate a DSM where the
slowest-improving component (number 7) has dmin

i ¼ 4 and the
next slowest-improving component (number 6) has dmin

i ¼ 2.
With the passage of time component 7 comes to dominate the
cost. This component is slow to improve because it is rarely cho-
sen for improvement. But in the rare cases that component 7 is
chosen the improvements can be dramatic, generating large
downward steps in its trajectory. The right case illustrates an in-
termediate situation where two components are dominant.

Another striking feature of the distribution of trajectories is
the difference between the top and bottom envelopes of the plot

A B C

Fig. 5. Evolution of the distribution of costs. Each figure in the top row shows a simulated distribution of costs as a function of time using the DSM in the lower
left corner of each plot. The upper dash-dot lines provides a reference with the predicted slope α ¼ 1∕ðγd�Þ, with γ ¼ 1; from left to right the slopes are −1∕2,
−1∕4, and −1∕4. The data for each DSM are the result of 50,000 realizations, corresponding to different random number seeds. The distributions are color
coded to correspond to constant quantiles; i.e., the fraction of costs less than a given value at a given time. The solid and dashed black curves inside the colored
regions represent two sample trajectories of the total cost as a function of time. The DSMs are constructed so that in each case component 1 has the lowest out-
degree and component 7 has the highest out-degree. Below each distribution we plot the fraction of the total cost contributed by each of the 7 components
at any given time (corresponding to the first simulation run). The components in B and C with the biggest contribution to the cost in the limit t → ∞ are
highlighted. The box at the bottom gives the value of dmin

i for each component of the design.
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of the distribution vs. time. In every case the top envelope follows
a straight line throughout most of the time range. The behavior of
the bottom envelope is more complicated; in many cases, such as
Fig. 5 Left, this bottom envelope also follows a straight line, but in
others (for example, Fig. 5 Center) the bottom envelope changes
slope over a large time range. A more precise statement can be
made by following the contour corresponding to a given quantile
through time. All quantiles eventually approach a line with slope
1∕d�. However, the upper quantiles converge to this line quickly,
whereas in some cases the lower quantiles do so much later. This
slower convergence stems from the difference in improvement
rates of different components. Whenever there is a dramatic
improvement in the slowest-improving component (or compo-
nents), there is a period where the next slowest-improving com-
ponent (or components) becomes important. During this time the
lower dmin

i value of the second component temporarily influences
the rate of improvement. After a long time the slowest-improving
component becomes more and more dominant, large updates be-
come progressively more rare, and the slope becomes constant.

The model therefore suggests that properties of the design de-
termine whether a technology’s improvement will be steady or
erratic. Homogeneous designs (with constant out-degree) are
more likely to show an inexorable trend of steady improvement.
Heterogeneous designs (with larger variability in out-degree) are
more likely to improve in fits and starts. High variability among
individual trajectories can be interpreted as indicating that histor-
ical contingency plays an important role. By this we mean that the
particular choice of random numbers, rather than the overall
trend, dominates the behavior. In this case progress appears to
come about through a series of punctuated equilibria.

To summarize, in this section we have shown that the asymp-
totic magnitude of the fluctuations is determined by the number
of bottlenecks; i.e., the number with dmin

i ¼ d�. The fluctuations
decrease as the number of bottlenecks increases. In the constant
out-degree case all of the components are equivalent, and this
number is just n. In the variable out-degree case, however, this
number depends on the details of the DSM, which influence dmin

i .

Testing the Model Predictions
Our model makes the testable prediction that the rate of im-
provement of a technology depends on the design complexity,
which can be determined from a design structure matrix. The use
of DSMs to analyze designs is widespread in the systems engi-
neering and management science literature. Thus, one could
potentially examine the DSMs of different technologies, compute
their corresponding design complexities, and compare to the
value of α based on the technology’s history‡. Thus we are able
to make a quantitative prediction about learning curves. This is in
contrast to previous work, which did not make testable predic-
tions about α§. This test is complicated by the fact that α also de-
pends on γ, which describes the inherent difficulty of improving
individual components, which in turn depends on the inherent
difficulty of the innovation problem as well as the collective
effectiveness of inventors in generating improvements. The expo-
nent γ is problematic to measure independently. Nonetheless,
one could examine a collection of different technologies and
either assume that γ is constant or that the variations in γ average
out. Subject to these caveats, the model then predicts that the
design complexity of the DSM should be inversely proportional
to the estimated α of the historical trajectory. A byproduct of

such a study is that it would yield an estimate of γ in different
technologies.

To compare the model predictions to real data one must relate
the number of attempted improvements to something measur-
able. It is not straightforward to measure the effort that has gone
into improving a technology, and to compare to real data one
must use proxies. The most commonly used proxy is cumulative
production, but other possibilities include cumulative investment,
installed capacity, research and development expenditure, or
even time. The best proxy for innovation effort is a subject of
serious debate in the literature (34–38).

Possible Extensions to the Model
There are a variety of possible ways to extend the model to make
it more realistic. For example, the model currently assumes that
the design network described by the DSM is constant through
time, but often improvements to a technology come about by
modifying the design network. One can potentially extend the
model by adding an evolutionary model for the generation of
new DSMs.

The possibility that the design complexity d� changes through
time suggests another empirical prediction. According to our the-
ory, when d� changes, α changes as well. One can conceivably
examine an historical sequence of design matrices, compute their
values of d�, and compare the predicted α ∼ 1∕d� to the corre-
sponding observed values of α in the corresponding periods in
time. Our theory predicts that these should be positively cor-
related.

We have assumed a particular model of learning in which im-
provement attempts are made at random, with no regard to the
history of previous improvements or knowledge of the technol-
ogy. An intelligent designer should be able to do (as well or)
better, drawing on his or her knowledge of science, engineering,
and present and past designs. (We note that for particularly com-
plex design problems, random search may be computationally the
most efficient option.) The model we study here can be viewed as
a worst case, which should be an indicator of the difficulty of
design under any approach: A problem that is harder for a de-
signer to solve under random search is also likely to be more
difficult to solve with a more directed search.

Discussion
We have developed a model that both simplifies and generalizes
the original model of Auerswald et al. (19), which predicts the
improvement of cost as a function of the number of innovation
attempts. Whereas we have formulated the model in terms of
cost, one could equally well have used any performance measure
of the technology that has the property of being additive across
the components. Our analysis makes clear predictions about
the trajectories of technology improvement. The mean behavior
of the cost is described by a power law with exponent
α ¼ 1∕ðγd�Þ, where d� is the design complexity and γ describes
the intrinsic difficulty of improving individual components. In
the case of constant connectivity (out-degree) the design com-
plexity is just the connectivity, but in general the complexity
can depend on details of the design matrix, as spelled out in
Eq. 8. In addition, the range of variation in technological im-
provement trajectories depends on the number of bottlenecks.
This number coincides with the total number of components n
in the case of constant connectivity, but in general the number
of bottlenecks is smaller, and depends on the detailed arrange-
ment of the interactions in the design.

Many studies in the past have discussed effects that contribute
to technological improvement, such as learning-by-doing, re-
search and development, or capital investment. Our approach
here is generic in the sense that it could apply to any of these
mechanisms. As long as these mechanisms cause innovation
attempts that can be modeled as a process of trial and error,

‡One problem that must be considered is that of resolution. As an approximation, a DSM
can be constructed at the coarse level of entire systems (e.g., “electrical system,” “fuel
system”) or it can be constructed more accurately at the microscopic level in terms of
individual parts. In general these will give different design complexities.

§A possible exception is Huberman (20), who presents a theory in terms of an evolving
graph, and gives a formula that predicts power law scaling as a function of “the number
of new shortcuts.” It is not clear, however, whether this could ever be measured.
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any of them can potentially be described by the model we have
developed.

Our analysis makes a unique contribution by connecting the
literature on the historical analysis of performance curves to that
on the engineering design properties of a technology. We make a
prediction about how the features of a design influence its rate of
improvement, focusing attention on the interactions of compo-
nents as codified in the design structure matrix. Perhaps most im-
portantly, we pose several falsifiable propositions. Our analysis
illustrates how the same evolutionary process can display either
historical contingency or steady change, depending on the design.

Our theory suggests that it may be possible to influence the long-
term rate of improvement of a technology by reducing the con-
nectivity between the components. Such an understanding of how
the design features of a technology affect its evolution could aid
engineering design, as well as science and technology policy.
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