

Massachusetts Institute of Technology Harvard Medical School Brigham and Women's Hospital VA Boston Healthcare System

2.79J/3.96J/BE.441/HST522J

BIOMATERIALS-TISSUE INTERACTIONS:

"Tools" for Understanding the Molecular, Cellular, and Physiological, Bases of the Tissue Response to Implants

M. Spector, Ph.D. and I.V. Yannas, Ph.D.

CELL-MATRIX INTERACTIONS

In Tissue Cell + Extracellular Matrix

In Tissue Engineering Scaffolds Cell + Biomaterial Scaffold

CONCEPTS FOR UNDERSTANDING BIOMATERIALS-TISSUE INTERACTIONS

- Control Volume
- Unit Cell Processes
- Types of Tissues
- Tissue Formation and Remodeling In Vitro
- Wound Healing In Vivo

		Chondrocytes (P2 Canir Type I Collagen-GAGS	ne) in a caffold
	Image remove	ed due to copyright considerations.	
			"Control Volume"
Source: B. Kin	ner		

CONCEPTS FOR UNDERSTANDING BIOMATERIALS-TISSUE INTERACTIONS

- Control Volume
- Unit Cell Processes
- Types of Tissues
- Tissue Formation and Remodeling In Vitro
- Wound Healing In Vivo

UNIT CELL PROCESSES

- Mitosis
- Migration
- Synthesis
- Contraction
- Endocytosis
- Exocytosis

CELL – MATRIX INTERACTIONS

- Migration
- Synthesis
- Contraction

40min	Chondrocytes (P2 Canine) in a Type I Collagen- GAG Matrix: Migration and Contraction		

CELL – MATRIX INTERACTIONS

- Mitosis
- Migration
- Synthesis
- Contraction

CELL – MATRIX INTERACTIONS

- Mitosis
- Migration
- Synthesis
- Contraction

Chondrocytes (P2 Canine) in a Type I Collagen-GAG Matrix: Contraction

Image removed due to copyright considerations.

40 min

B Kinner

Human Articular Chondrocytes in Monolayer Culture IH - Green: a -smooth muscle actin; Orange: type II collagen				
	Image removed due to copyright consideration	S.		
Chondrocytes express the gene for a -smooth muscle actin and this enables them to contract		P. Vinnen et al. IOD 2001-10-222		

a -Smooth Muscle Actin Imm	unohistochemistry
of Human Articular	Cartilage
Image removed due	to
copyright considerat	ions.
	Kim and Spector, JOR 2000;18:749

MUSCULOSKELETAL CELLS THAT CAN EXPRESS a-SMOOTH MUSCLE ACTIN AND CAN CONTRACT

- Articular chondrocyte
- Osteoblast
- Meniscus fibroblast and fibrochondrocyte
- Intervertebral disc fibroblast and fibrochondrocyte
- Ligament fibroblast
- Tendon fibroblast
- Synovial cell
- Mesenchymal stem cell

M. Spector, Wound Repair Regen. 9:11-18 (2001)

POSSIBLE ROLES FOR a-SMOOTH MUSCLE ACTIN-ENABLED CONTRACTION

Musculoskeletal Connective Tissue Cells

- Tissue engineering Contracture of scaffolds
- Healing **Closure of wounds** (skin wounds and bone fractures) Disease processes **Contracture (Dupuytren's)**
- Tissue formation **Modeling of ECM architecture** (*e.g.*, crimp in ligament/tendon?) and remodeling

CONCEPTS FOR UNDERSTANDING BIOMATERIALS-TISSUE INTERACTIONS

- Control Volume
- Unit Cell Processes
- Types of Tissues
- Tissue Formation and Remodeling In Vitro
- Wound Healing In Vivo

TYPES OF TISSUES

Which Tissues Can Regenerate Spontaneously?

	Yes	No
Connective Tissues		
• Bone	V	
• Articular Cartilage, Ligament, Intervertebral Disc, Others		V
Epithelia (e.g., epidermis)	V	
Muscle		
Cardiac, Skeletal		V
• Smooth	V	
Nerve		V

BIOMATERIALS-TISSUE INTERACTIONS

Cell + Matrix

Connective Tissue Epithelia Muscle Nerve

BIOMATERIALS-TISSUE INTERACTIONS

Cell + Matrix

Connective Tissue Epithelia Muscle Nerve

Adhesion Protein Collagen Biomaterial

BIOMATERIALS-TISSUE INTERACTIONS

Cell + Matrix

Connective Tissue Epithelia Muscle Nerve Adhesion Protein Collagen Biomaterial

Integrin

1

"UNIT CELL PROCESSES"

Connective Tissue **Epithelia** Muscle Nerve

Mitosis Synthesis Migration Contraction **Endocytosis Exocytosis**

"UNIT CELL PROCESSES"

UCP Cell + Matrix ----> Product

Connective Tissue **Epithelia Muscle** Nerve

Mitosis **Synthesis**

Migration Contraction Strain Exocytosis

Cell proliferation Matrix molecules, enzymes, cytokines **Translocation Endocytosis Solubilized** fragments **Regulators**

-FGF-2

Image removed due to copyright considerations.

TISSUE FORMATION AND REMODELING IN VITRO

Canine chondrocytes grown in a type II collagen-GAG scaffold for 2 weeks. (Safranin O stain for GAGs) +FGF-2

Image removed due to copyright considerations.

N. Veilleux

CONCEPTS FOR UNDERSTANDING BIOMATERIALS-TISSUE INTERACTIONS

- Control Volume
- Unit Cell Processes
- Types of Tissues
- Tissue Formation and Remodeling In Vitro
- Wound Healing In Vivo

