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ORION 2.0: A Power-Area Simulator for Interconnection Networks
Andrew B. Kahng, Fellow, IEEE, Bin Li, Member, IEEE, Li-Shiuan Peh, Member, IEEE,

and Kambiz Samadi, Student Member, IEEE,

Abstract— As industry moves towards multi-core chips,
networks-on-chip (NoCs) are emerging as the scalable fabric for
interconnecting the cores. With power now the first-order design
constraint, early-stage estimation of NoC power has become
crucially important. In this work, we present ORION 2.0, an
enhanced NoC power and area simulator, which offers significant
accuracy improvement relative to its predecessor, ORION 1.0
[18].

Index Terms— Network-on-chip, architectural-level modeling,
design space exploration.

I. INTRODUCTION
Network power has become increasingly substantial in

multi-core designs, with the increasing demand for network
bandwidth. This requires designers to accurately estimate on-
chip network power consumption. Power estimation can be
carried out at different levels of abstraction that trade off
estimation time versus accuracy, ranging from real-chip power
measurements [5], to pre- and post-layout transistor-level
simulations [23], to RTL power estimation tools [25] to early-
stage architectural power models [4], [19], [18], [9]. Low-level
power estimation tools, even RTL power estimation, require
complete RTL code to be available, and simulate slowly, on
the order of hours, while evaluation of an architectural power
model takes on the order of seconds.

Architectural power estimation is important to (1) verify
that power budgets are approximately met by the different
parts of the design and the entire design, and (2) evaluate the
effect of high-level optimizations, which have more significant
impact on power than low-level optimizations [9]. Patel et al.
[16] proposed a power model for interconnection networks
based on transistor count. As the model is not instantiated with
architectural parameters, it cannot be used to explore tradeoffs
in router microarchitecture design. Bona et al. [3] gave a
methodology for automatically generating the energy models
for on-chip communication infrastructure at system level;
however, the focus is on bus-based and crossbar-based com-
munication for SoC. Bhat et al. [2] proposed an architecture-
level regression analysis model for different router components
based on energy numbers obtained from simulations using
Magma [25] tools.

ORION 1.0, a set of architectural power models for on-
chip interconnection routers, was proposed in [18] and has
been widely used for early-stage NoC power estimation in
literature and industry. However, for the Intel 80-core Teraflops
chip [10] there is up to 8X difference between ORION 1.0
estimations (per component) and silicon measurements. Also,
the estimated total power is about 10X less than actual. Indeed,
ORION 1.0 does not include clock and link power models,
which are major components of NoC power.

In addition, since architectural design space exploration is
typically done for current and future technologies, models
must be derivable from standard technology files (e.g., Lib-
erty [23], LEF [22]), as well as extrapolatable process models
such as PTM [24] or ITRS [21], whereas ORION 1.0 collects
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inputs from ad hoc sources to derive its internal power models.
Therefore, we have developed ORION 2.0 with two key goals:
(1) to update and enhance ORION’s power and area estimation
accuracy; and (2) to encompass ORION 2.0 within a semi-
automated flow (i.e., using shell scripting) so that ORION
can be continuously maintained and updated using standard
technology files and/or extrapolatable process models.

This paper draws on a preliminary account published at
DATE-09 [11]. Here, we add the following contributions: (1)
discussion of supported router architectures, (2) evaluation
of the proposed models against different microarchitectural
parameters, and against synthesized router results, (3) revised
clock power model, and (4) highlights of potential short-
comings of the proposed models. Figure 1 shows the usage
model and modeling flow of ORION 2.0 with its main inputs
and outputs. Contributions of ORION 2.0 beyond the original
ORION 1.0 include:
• New: (1) We add flip-flop and clock dynamic and leakage

power models. (2) We add link power models, leveraging
accurate models recently developed in [6]. (3) We modify
the virtual-channel (VC) allocator microarchitecture in
ORION 1.0 to optimize its power consumption. Also, a
new VC allocation model, based on the microarchitec-
ture and pipeline proposed in [13], is added in ORION
2.0. (4) We add arbiter leakage power model using the
methodology proposed in [7]. (5) We add accurate area
models for all the router building blocks. (6) We provide a
semi-automatic flow for extracting technology parameters
from standard technology files, as well as extrapolatable
models of process to allow ORION 2.0 to be easily and
continuously updated in the future.

• Improved: Application-specific technology-level adjust-
ments (use of different Vth flavors and transistor widths)
are used in ORION 2.0 to improve power estimation
for SoC and high-performance applications. ORION 1.0
used a single set of parameters for all designs at a given
technology node.

• Updated: Transistor sizes and capacitance values are
updated in ORION 2.0 with new process technology files.

Most of today’s chip prototypes, as well as virtual channel
routers, are covered by ORION 2.0 models. In addition, dif-
ferent topologies, e.g., flattened butterfly [12], express virtual
channel [15], etc. can be easily explored using ORION 2.0
models. In general, any topology that uses wormhole routers
is supported by ORION 2.0 models; more significantly several
router microarchitectures such as token flow control router
[14] have been modeled using different subcomponents of
ORION 2.0 models. In addition, ORION 2.0 models have
been incorporated to network simulators for efficient system-
level design space exploration. For example, GARNET [1]
incorporates ORION 2.0 power models. Various performance
counters keep track of the amount of switching at various
components of the network (i.e., for a given application)
during simulation, and pass the activity factors to ORION
models for power estimation.

The remainder of this paper is organized as follows. Section
II describes ORION 2.0 dynamic and leakage power models,
while Section III describes our proposed area model. In
Section IV we validate our models, and develop closed-form
power and area equations using nonlinear regression. Finally,
Section V concludes the paper.

II. POWER MODELING

In ORION 2.0 we add (1) clocking and link power models,
(2) flip-flop-based FIFO power models, and (3) arbiter leakage
power model to ORION 1.0. For the remaining components
we enhance or update existing ORION 1.0 models.
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A. Dynamic Power Modeling
We derive detailed parameterized equations for estimating

switching capacitance of (1) clocking due to routers, (2) flip-
flop-based FIFO buffers, (3) allocators and arbiters, and (4)
physical links.

1) Clock: Clock distribution and generation comprise a
major portion of power consumption in synchronous designs
[8], representing up to 33% of power consumption in a
high-performance router [10]. We estimate the term Cclk =
Csram−fifo+Cflip−flop−fifo+Cpipeline−registers+Cwiring,
where Csram−fifo, Cflip−flop−fifo, Cpipeline−registers, and
Cwiring are capacitive loads due to SRAM-based FIFO
buffers, flip-flop-based FIFO buffers, pipeline registers, and
clock distribution wiring, respectively. Given that the load of
the clock distribution network heavily depends on its topology,
we assume an H-tree distribution style.

SRAM-based FIFO Buffers. We adapt the original ORION
1.0 model for SRAM buffers for determining the precharge
circuitry capacitive load on the clock network. In an SRAM
FIFO with flit width fw, the total capacitance due to pre-
charging circuitry, with Pr and Pw being the number of read
and write ports, can be estimated as Csram−fifo = (Pr+Pw)·
fw · Cchg , where Cchg is precharging capacitance.

Flip-flop-Based FIFOs. We assume simple D-flip-flop
(DFF) as the building block to construct the flip-flop-based
FIFOs. In a B-entry flip-flop-based FIFO with flit width of
fw bits, the capacitive load on the clock can be estimated as
Cflip−flop−fifo = fw ×B × Cff .

Pipeline Registers. We assume DFF as the building block
of the pipeline registers. In a router with flit width of fw
bits and Npipeline pipeline registers, the capacitive load on
the clock due to pipeline registers is Cpipeline−registers =
Npipeline × Cff , where Npipeline = nport × fw for buffers
(i.e., input and output) and crossbar components, Npipeline =
2× (nport × nvc)

2 for VC allocator, and Npipeline = nport ×
nvc+n

2
port for switch allocator. Cff is the flip-flop capacitance

and is extracted from 65nm HP (high-performance) and LP
(low-power) libraries. nport and nvc are number of ports and
number of virtual channels, respectively.

Wire Load. We assume a buffered H-tree clock distribution
within each individual router block. If the router block dimen-
sion is D (typically, tens of microns e.g., D = 25µm in the
router block of each tile in the Intel 80-core chip), the total
wire capacitance of an L-level H-tree is

∑L−1
i=0

2i×D
2b

i
2
c+1

×Cint

where each term is (number of segments per level) × (fraction
of D per segment at that level) × (router dimension D) ×
(per unit length wire capacitance Cint). E.g., for a 5-level
H-tree, the total wire capacitance is ( 1×D2 + 2×D

2 + 4×D
4 +

8×D
4 + 16×D

8 )× Cint. In our studies, we use a fixed number
of levels (equal to 5) in the H-tree; this both overestimates
clock tree wiring cost (since an H-tree is more expensive
than skew-bounded Steiner constructions) and underestimates
(since some router configurations have significantly more than
32 leaves (sinks)). However, since the flip-flops in a router
have strong spatial clustering (e.g., in FIFOs), we have opted
to use the fixed number of levels. The small value of D lessens
the impact of this modeling error.

2) Flip-flop-Based FIFO Buffers: FIFO buffers can be
implemented as either SRAM or registers. The ORION 1.0
model supports only the use of SRAM-based FIFOs. We use
flip-flops as the building block of the registers. Register-based
FIFOs can be implemented as shift-registers or as matrix of
flip-flops (FFs).

2.1 Shift-register based FIFOs. For a B-entry FIFO buffer,
the shift-register based FIFO can be implemented as a
series of B flip-flops (FF). We consider both read and
write operations. The write operation occurs at the tail
of the shift register. Assuming the new flit is fn and the
old flit is fo, the number of switched flip-flops is the
Hamming distance between them. Therefore, the write
energy is Ewrite = H(fn, fo)×Eff

switch, where Eff
switch
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Fig. 1: ORION 2.0 modeling methodology.

is the energy to switch one bit. We simply estimate
the average switching activity as H = fw

2 ; then, the
average write energy is Ewrite = H × Eff

switch. The
read operation has two steps: (1) reading the head flit
into the crossbar which does not consume any energy
in the buffer, and (2) shifting all the subsequent flits
one position toward the header. Hence, the average read
energy is Eread = (fw − 1)× Ewrite.

2.2 Matrix of FFs FIFOs. A better approach to implement
flip-flop-based FIFOs may be to use a matrix of flip-flops
with write and read pointers as is done in SRAM-based
FIFOs to avoid read and write energy consumption at
every cycle due to shifts. To implement this, we add
a control circuitry to an existing matrix of flip-flops to
handle the operation of write/read pointers. The write
pointer points to the head of the queue, and the read
pointer points to the tail of the queue. The pointer
advances one position for each write or read operation.
To model power, we can synthesize the RTL of the
above implementation and obtain corresponding power
numbers with respect to different buffer size and flit
width values.1 To develop a closed-form power model,
linear regression can be used to derive the power of
the control unit as a function of buffer size and flit
width. In this implementation, read energy is only due to
pointer shifts, Eread = Epointer, whereas write energy
is due to pointer shifts and bit switches, Ewrite =

H ×E
ff

switch +Epointer, where Epointer is the average
energy to advance one position for read or write pointers.

3) Allocators and Arbiters: We modified the separable
VC allocator microarchitecture in ORION 1.0 to optimize
its power consumption. Instead of two stages of arbiters, we
have a single stage of nport × nvc arbiters, each governing
one specific output VC, where nport and nvc are the number
of router ports and virtual channels, respectively. Instead of
sending requests to all output VCs of the desired output port,
an input VC first checks the availability of output VCs, then
sends a request for any one available output VC. The arbiters
will resolve conflicts where multiple input VCs request the
same output VC. This design has lower matching probability
but does away with an entire stage of arbiters, significantly
saving power. We also added a new VC allocator model in
ORION 2.0 which models VC allocation as VC “selection”
instead, as was first proposed in [13]. Here, a VC is selected
from a queue of free VCs, after switch allocation. Thus, the
complexity (delay, area and power) of VC allocation no longer
scales horribly with large numbers of VCs.

4) Physical Links: The dynamic power of links is primarily
due to charging and discharging of capacitive loads (wire and

1We have developed a simple RTL code of a flip-flop-based FIFO imple-
mentation, and have added it to the latest release of ORION 2.0 [27].
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input capacitance of next-stage repeater). In this work, we use
a hybrid buffering solution that minimizes a linear combination
of delay and power. We exhaustively evaluate a given objective
function for a given number and size of repeaters, while
searching for the optimal (number, size) values. Dynamic
power is given by Plink = α · Cl · V 2

dd · fclk, and Cl =
Cin+Cgnd+Ccc, where Plink, α, Cl, Vdd and fclk denote the
link dynamic power, activity factor, load capacitance, supply
voltage, and frequency, respectively. The load capacitance is
the sum of the input capacitance of the next repeater (Cin),
and the ground (Cgnd) and coupling (Ccc) capacitances of the
wire driven. Here, link power refers to links incident to the
router (i.e., connecting ports of the given router to ports of
adjacent routers). We count only the input link power, so that
when composing router power models for an entire NoC, there
is no double-counting.
B. Leakage Power Modeling

As technology scales to deep sub-micron processes, leakage
power becomes increasingly important as compared to dy-
namic power. There is thus a growing need to characterize
and optimize network leakage power as well. Chen et al. [7]
proposed an architectural methodology for estimating leakage
power. However, [7] only considered subthreshold leakage
whereas from 65nm and beyond gate leakage gains importance
and becomes a significant portion of the leakage power. We
follow the same methodology proposed in [7] with addition
of gate leakage in our leakage analysis.

To derive an architectural leakage model, we can separate
the technology-independent variables such as transistor width
from those that depend on the specific process technology,
Ileak(i, s) =W (i, s) · (I ′sub(i, s) + I ′gate(i, s)), where Ileak is
total leakage current. I ′sub and I ′gate are subthreshold and gate
leakage currents per unit transistor width for a specific tech-
nology, respectively. W (i, s) refers to the effective transistor
width of component i at state s. We measure I ′sub and I ′gate
for a variety of circuit components, input states, operating
conditions (i.e., voltage and temperature), and different Vth
flavors (i.e., HVT (High Vth), NVT (Normal Vth), and LVT
(Low Vth)). We compose the architectural leakage power
model in a bottom-up fashion for each building block [7].

1) Arbiter Leakage Power: In ORION 2.0, we add arbiter
leakage power and support matrix, and round robin arbiters.
Given a matrix arbiter with R requesters, its priorities may be
represented by an R×R matrix, with a 1 in row i and column
j if requester i has higher priority than requester j, and 0 if
otherwise. Let reqi be the ith request, gntn the nth grant, and
mij the element in theith row and jth column in the matrix.
Hence, the grant logic can be denoted as gntn = reqn ×∏

i<n(reqi+min)×
∏

i>n(reqi+mni). Then, we decompose
the grant logic into elementary building blocks including NOR,
INV, and D-flip-flops, and compute the leakage current for
the entire arbiter as Ileak(arbiter) = Ileak(NOR2) · ((2R −
1)R)+Ileak(INV ) ·R+Ileak(DFF ) · R(R−1)

2 .2 The previous
equation can readily be obtained from the gate-level netlist
of a given arbiter, if available. Hence, arbiter power can be
computed as Pleak(arbiter) = Ileak(arbiter)·Vdd, where Vdd
is the supply voltage. Similarly, for a round robin arbiter we
break its corresponding grant logic into elementary building
blocks (i.e., NOR and INV), and use D-flip-flops to store the
priority bits.

2) Physical Link Leakage Modeling: The leakage power of
links is due to repeaters inserted in them. In repeaters, leakage
occurs in both output states. NMOS devices leak when the
output is high, while PMOS devices leak when the output is
low. This is applicable for buffers also because the second
stage devices are the primary contributors due to their large
sizes. Leakage power has two main components: (1) subthresh-
old leakage, and (2) gate-tunneling current. Both components
depend linearly on device size and are modeled using linear
regression with the values from SPICE simulations.

2For a given elementary building block, X , Ileak(X) is calculated using
the W (X), I′sub(X), and I′gate(X).

III. AREA MODELINGAs area is an important economic concern in IC (integrated
circuit) design, it needs to be estimated early in the design
flow to enable design space exploration. We use a recent model
proposed by [20] and the analysis in [17] to estimate the areas
of transistors and gates such as inverters, NAND, and NOR
gates.
A. Router Area

To estimate the router area we basically compute the area of
each of the building blocks and sum them up with an addition
of 10% (rule of thumb) to account for global whitespace.
For each building block we first identify the implementation
style of the block and then decompose the block into its
basic logical elements (i.e., gate-level netlist). For example,
for SRAM-based FIFOs we can compute word line length
using Lword−line = fw · (wcell + 2(Pr + Pw)dw), and bit
line length using Lbit−line = B · (hcell + (Pr + Pw)dw),
where fw, B, wcell, hcell, dw, Pr, and Pw are flit width
in bits, buffer size in flits, memory cell width, memory cell
height, wire spacing, number of read ports and number of write
ports, respectively. Hence, the total area for a B-entry buffer
is calculated as Areafifo = Lword−line · Lbit−line. For other
router components, namely, crossbar and arbiter, we similarly
decompose them into their circuit building blocks (i.e., gate-
level netlist). Then, using the gate area model we estimate the
area of individual circuit component and compute the area of
the entire block.
B. Link Area

The area occupied by links is due to wires and repeaters. We
use the above-described gate area model to estimate the area
of repeaters. The area of global wiring can be calculated as
Arealink = fw × (ww + sw) + sw, where Arealink denotes
the wire area, fw is the flit width in bits, and ww and sw
are the wire width and spacing computed from the width and
spacing of the layer (global or intermediate) on which the wire
is routed, and from the design style.

IV. MODEL EVALUATION
In this section, we provide further insight into our models

with respect to (1) different microarchitectural parameters, (2)
different technology nodes and transistor types, (3) synthesis
of router RTLs, and (4) two recent NoC prototypes. ORION
2.0 models can be broadly classified as template-based, that
is, derived from a mix of circuit templates, e.g., matrix
crossbar, SRAM-based FIFO, etc. The following subsections
give several ‘sanity’ checks for these models.
A. Microarchitectural Parameters

In this subsection, we investigate the impact of different
microarchitectural parameters on router power and area. We
demonstrate that our models behave as expected with respect
to each parameter. Router microarchitectural components in-
clude (1) buffers, (2) crossbar, (3) virtual channel allocator, (4)
switch allocator, (5) clock, and (6) link. The microarchitectural
parameters for each router are: (1) buffer size per VC per port,
(2) flit width, (3) number of virtual channels, and (4) number
of ports.3 For all the experiments, we use a supply voltage of
1.1V, switching activity of 0.3, and a clock frequency of 3GHz
in 65nm technology. In each experiment, we only vary one
microarchitectural parameter of interest and keep the others
fixed. Nominal values for buffer size, flit width, number of
virtual channels, and number of ports are 4 flits, 32 bits, 1
(i.e., wormhole configuration), and 5, respectively.

1) Buffer: Buffer power and area are affected by buffer
size, flit width, number of VCs, and number of ports. When
we vary buffer size, we expect buffer dynamic and leakage
power to increase linearly, respectively. This is because buffer
size linearly increases precharge capacitance load and the
number of bitcell transistors. When we vary flit width, we
expect buffer dynamic and leakage power to increase linearly.
This is because flit width linearly increases the precharge and
bitline capacitances as well as the number of bitcell transistors,
respectively.

3We assume the crossbar has the same number of ports as the router, so
the number of router ports equals the number of crossbar ports.
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On the other hand, as we increase the number of virtual
channels, buffer dynamic power will not change since the
number of flits arriving at each input port is the same.
However, we expect buffer leakage power to increase linearly.
This is because in VC routers there are nvc queues in each
input port, where nvc is the number of virtual channels. If
we increase number of ports, we expect buffer dynamic and
leakage power to increase linearly. This is because addition of
a new port will add a new buffer set, i.e., with the same buffer
size and flit width.

Buffer area also follows power trends as expected. As buffer
size increases, we expect buffer area to increase linearly. This
is because as buffer size increases by one unit, the number of
flits per buffer also increases by one unit. In addition, buffer
area changes linearly with flit width because flit width linearly
increases the number of bitcells in each FIFO entry.

2) Crossbar: Crossbar power and area are affected by the
number of router ports. If we increase number of ports, we
expect dynamic and leakage power to increase quadratically.
This is because a N × N crossbar allows arbitrary one-to-
one connections between N input ports and N output port.
Similarly for area, if we increase number of ports, we expect
crossbar area to increase quadratically.

3) VC and Switch Allocator: If we increase the number
of virtual channels, dynamic and leakage power are expected
to increase linearly and quadratically, respectively. This is
because the number of arbiters increases linearly with number
of virtual channels. In addition, for each arbiter the request
width increases linearly with number of virtual channels.
Hence, leakage power increases quadratically with the number
of virtual channels. Since the utilization rate of each arbiter is
assumed to be inversely proportional to the number of virtual
channels, dynamic power is expected to change linearly with
the number of virtual channels.4 In our experiments, we have
assumed a two-stage separable VC allocator. For switch (SW)
allocator, if we increase number of virtual channels, dynamic
power and leakage power are expected to increase linearly
because in SW allocator the request width of each arbiter
increases linearly with respect to number of virtual channels.

Also, if we increase number of ports, we expect VC
allocator dynamic and leakage power to increase quadratically.
This is because the request width for each arbiter in the second
stage of arbitration increases linearly with respect to number
of ports, and also the number of such arbiters is proportional to
the number of ports. Hence, VC allocator power consumption
is quadratically dependent on the number of ports. Similarly,
VC allocator area is expected to increase quadratically with
number of virtual channels and number of ports. On the other
hand, if we increase number of ports, we expect dynamic
and leakage power to increase quadratically. This is because
the request width for each arbiter in the second stage of
arbitration increases linearly with respect to number of ports,
and in addition the total number of arbiters is proportional
to the number of ports. Similarly, SW allocator area changes
linearly and quadratically, respectively, with number of virtual
channels and number of ports.5

In addition to the above ‘sanity’ checks, we evaluate our
leakage power model by verifying that the leakage power
density (defined as total leakage power / total gate-width)
remains the same as we change any of the microarchitectural
parameters for different components. We observe that leakage
power density for buffer, crossbar, and arbiter is 0.0003
mW/µm.

B. Technology Parameters
In ORION 2.0 we include transistor sizes and capacitance

values for three combinations of Vth and transistor width: (1)
large transistor size with low Vth (LVT) for high-performance,
(2) nominal transistor size with nominal Vth (NVT) for

4Note that VC allocator dynamic power is equal to arbiter utilization rate
multiplied by the product of per-arbiter dynamic power and the total number of
arbiters. Hence, VC allocator dynamic power is linearly dependent on number
of virtual channels (i.e., 1

nvc
× nvc × nvc = nvc).

5In addition, we observe that the clock and link power and area models
follow the expected trends.

general-purpose, and (3) small transistor size with high Vth
(HVT) for low-power designs. When transistor type changes
from HVT to NVT to LVT, dynamic power is expected to
increase due to the increase in transistor width (i.e., assuming
a fixed technology), and leakage power is expected to increase
due to increase in transistor width, and decrease of threshold
voltage, as confirmed in Figure 2. For the experiment in Figure
2, we use a router with 5 ports, 2 virtual channels, buffer size
of 4, and 32-bit flit width; for HVT, NVT, and LVT we use
(0.8V,0.2GHz), (1.0V,1GHz), and (1.1V,3GHz), respectively.

Also, for a given transistor type, dynamic power is expected
to reduce as technology advances due to smaller area and
leakage power is expected to increase due to leakier devices as
confirmed in Figures 3, 4 and 5.6 We use similar microarchi-
tectural and transistor type values, but vary technology node
from 90nm down to 32nm.
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C. Router RTL Synthesis
In this subsection we further validate the trend of our models

by comparing them against those of router RTL synthesis.
We use Netmaker which is a library of fully-synthesizable
parameterized network-on-chip (NoC) implementations [26].
We pick a baseline virtual channel (VC) router in which VC
allocation and switch allocation are performed sequentially in
one clock cycle.

Using automation scripts we vary the above parameters and
generate corresponding RTL for each combination of param-
eters. We then synthesize the RTL codes using TSMC 65nm
GP library. The difference between ORION 2.0 and the syn-
thesized router results are due to the fact that ORION 2.0 does
not capture the effects of the implementation flows. Modern IC
implementation flows incorporate powerful logic synthesis and
physical synthesis transformation (i.e., logic restructuring, gate
sizing, etc.) to satisfy the power, performance constraints. The
detailed impacts of such transformations are difficult to capture
at early stages of the design where not all the implementation
information is available. However, Figures 6-13 show that
ORION 2.0 models’ trends (cf. previous subsections) match
those of synthesized routers. In our comparisons, we use a
supply voltage of 0.9V.
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6Our estimations for 45nm and 32nm technologies are derived using scaling
factors from ITRS [21]; hence, they may not accurately represent production
processes.
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number of router ports.
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size.
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Fig. 11: Router area vs. flit width.

0

20000

40000

60000

80000

100000

120000

0 1 2 3 4 5 6

R
ou

te
r a

re
a 

(u
m

2 )

Number of virtual channels (nvc)

Netmaker

ORION2.0
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of virtual channels.
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D. Real Router Designs
Finally, we also validate our models by comparing them

to post-layout and pre-layout simulations of recent NoC pro-
totypes: (1) Intel 80-core Teraflops chip, targeted for high
performance chip multiprocessors (CMPs), and (2) Intel Scal-
able Communications Core (SCC) chip, targeted for ultra-low
power multiprocessor systems-on-chip (MPSoCs). As noted in
the introduction, there is up to 8X difference between ORION
1.0 estimations (per component) and Intel 80-core chip silicon
measurements. Also, the estimated total power is about 10X
less than actual. Again, ORION 1.0 does not include clock
and link power models. Figure 14 shows the percentage of
each of power component in Intel 80-core chip and the same
statistic from ORION 1.0 and ORION 2.0 models. We observe
that ORION 2.0 more accurately represents the impact of each
individual component.7

The router configurations for Intel 80-core and Intel SCC
chips are shown in Tables I and II, respectively. We use
switching activity of 0.15 for both testcases. The estimated
total power consumption, using ORION 2.0 models, is within
−7% and 11% of the Intel 80-core post-layout, and Intel
SCC pre-layout power estimations, respectively. In addition,
the estimated total area, using ORION 2.0 models, is within
−23.5% and 25.3% of the Intel 80-core, and Intel SCC,
respectively.
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Fig. 14: Power breakdown of the Intel 80-core chip vs. estimations
from ORION 1.0 and ORION 2.0 models.

TABLE I: Intel 80-core router configuration.

Voltage Frequency Transistor type number of ports
1.2V 5.1e9 LVT 5

number of VC input buffer output buffer flit width
2 16 0 39

7We do not have access to the power breakdown for the Intel SCC design.

TABLE II: Intel SCC router configuration.

Voltage Frequency Transistor type number of ports
1.08V 2.5e8 HVT 5

number of VC input buffer output buffer flit width
1 2 1 32

V. CONCLUSIONS
Accurate estimation of power and area of interconnection

network routers in early phases of the design process can
drive effective NoC design space exploration. ORION 1.0,
an existing power model for NoC routers developed back in
2002 is inaccurate for current and future technologies and
can lead, to misleading design targets. In ORION 2.0, we
have proposed more accurate power and area models for NoC
routers that are easily usable by system-level designers. We
have also developed a reproducible methodology for extracting
the inputs to our models from different reliable sources. In
addition, we have validated our new models with respect to dif-
ferent microarchitectural and technology parameters, synthesis
of router RTLs, and two recent Intel chips. By maintaining the
user interfaces of the original ORION 1.0 while substantially
improving accuracy and fidelity, we see ORION 2.0 making
a significant impact on future NoC research and design.
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