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Abstract

There is a natural norm associated with a starting point of the homogeneous
self-dual (HSD) embedding model for conic convex optimization. In this norm
two measures of the HSD model’s behavior are precisely controlled indepen-
dent of the problem instance: (i) the sizes of ε-optimal solutions, and (ii) the
maximum distance of ε-optimal solutions to the boundary of the cone of the
HSD variables. This norm is also useful in developing a stopping-rule theory for
HSD-based interior-point methods such as SeDuMi. Under mild assumptions,
we show that a standard stopping rule implicitly involves the sum of the sizes
of the ε-optimal primal and dual solutions, as well as the size of the initial
primal and dual infeasibility residuals. This theory suggests possible criteria
for developing starting points for the homogeneous self-dual model that might
improve the resulting solution time in practice.

AMS Subject Classification: 90C05, 90C22, 90C25, 90C31, 90C46, 90C51
Keywords: Convex Optimization, Convex Cone, Conic Optimization, Duality,
Level Sets, Self-Dual Embedding, Self-scaled Cone

1This research has been partially supported through the MIT-Singapore Alliance.
2MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142-1347, USA.

email: rfreund@mit.edu



BEHAVIOR OF HOMOGENEOUS SELF-DUAL MODEL 1

1 Preliminaries

We consider convex optimization in conic linear form:

P : VAL∗ := minx cT x
s.t. Ax = b

x ∈ C
(1)

and its dual:
D : VAL∗ := maxy,z bT y

s.t. AT y + z = c
z ∈ C∗ ,

(2)

where C ⊂ X is assumed to be a closed convex cone in the (finite) n-dimensional
linear vector space X, and b lies in the (finite) m-dimensional vector space Y . Here
C∗ is the dual cone:

C∗ := {z ∈ X∗ | zT x ≥ 0 for any x ∈ C} ,

where X∗ is the dual space of X (the space of linear functionals on X).

We make the following assumption:

Assumption A: C is a regular cone (C is closed, convex, pointed, and has nonempty
interior), whereby C∗ is also a regular cone.

We say that P (D) is strictly feasible if there exists x̄ ∈ intC (ȳ and z̄ ∈ intC∗) that
is feasible for P (D).

Following [11] (also see [10]) we consider the following homogeneous self-
dual (HSD) embedding of P and D. Given initial values (x0, y0, z0) satisfying x0 ∈
intC, z0 ∈ intC∗, as well as initial constants τ0 > 0, κ0 > 0, θ0 > 0, define the
problem H:

H : VALH := minx,y,z,τ,κ,θ ᾱθ

s.t. Ax −bτ +b̄θ = 0
−AT y +cτ +c̄θ −z = 0

bT y −cT x +ḡθ −κ = 0
−b̄T y −c̄T x −ḡτ = −ᾱ

x ∈ C τ ≥ 0 z ∈ C∗ κ ≥ 0,

where the constants b̄, c̄, ḡ, and ᾱ are defined as follows:

b̄ = bτ0−Ax0

θ0

c̄ = AT y0+z0−cτ0

θ0

ḡ = cT x0−bT y0+κ0

θ0

ᾱ = (z0)T x0+τ0κ0

θ0 .

(3)
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Note that the regular cone associated with H is:

KH := C × C∗ × IR+ × IR∗
+ , (4)

where we distinguish between IR+ and IR∗
+ only for notational consistency. Because

P (D) can be recast equivalently as the problem of minimizing a linear function of
a (regular) cone variable over the intersection of the regular cone and an affine set
(see [9], [5]), we will focus on the behavior of the regular cone variables x and z and
will effectively ignore the unrestricted variables y.

One natural measure of of the behavior of P/D is the size of the largest
ε-optimal solution. Define for ε > 0:

RP
ε := maxx ‖x‖ RD

ε := maxz ‖z‖∗
s.t. x is feasible for P s.t. (y, z) is feasible for D

cT x ≤ V AL∗ + ε bT y ≥ V AL∗ − ε ,
(5)

where ‖ · ‖ is any given norm, and the dual norm ‖ · ‖∗ of ‖ · ‖ is:

‖w‖∗ := max
v

{wT v : ‖v‖ ≤ 1} .

Then RP
ε is a measure of the behavior of P/D: RP

ε is large to the extent that P is
nearly unbounded in objective value (and to the extent that D is nearly infeasible),
with similar remarks about RD

ε . Indeed, Renegar’s data-perturbation condition
measure C(d) must satisfy

C2(d) + C(d)
ε

‖c‖∗ ≥ RP
ε

for ε ≤ ‖c‖∗; this follows directly from Theorem 1.1 and Lemma 3.2 of [7].

A closely related measure of the behavior of P/D is the maximum distance
of ε-optimal solutions from the boundary of the cone variables:

rP
ε := maxx dist(x, ∂C) rD

ε := maxz dist∗(z, ∂C∗)
s.t. x is feasible for P s.t. (y, z) is feasible for D

cT x ≤ V AL∗ + ε bT y ≥ V AL∗ − ε ,
(6)

where dist(x, ∂C) denotes the minimal distance from x to ∂C in the norm ‖ · ‖ and
dist∗(z, ∂C∗) denotes the minimal distance from x to ∂C∗ in the dual norm ‖ · ‖∗.
Note that rP

ε measures the largest distance to the boundary of C among all ε-optimal
solutions x of P . In the context of interior-point methods, rP

ε measures the extent
to which near optimal-solutions are nicely bounded away from ∂C. Here Renegar’s
condition measure C(d) must satisfy

ετC

3‖c‖∗(C2(d) + C(d))
≤ rP

ε

for ε ≤ ‖c‖∗, where τC denotes the “min-width” constant of C:

τC := max
x

{dist(x, ∂C) : x ∈ C, ‖x‖ ≤ 1} ;
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this follows directly from Theorem 1.1 of [7] and Theorem 17 of [4]. It is shown
in [3] that rP

ε and RD
ε obey the following inequalities and so are nearly inversely

proportional for fixed ε > 0:

τC · ε ≤ rP
ε · RD

ε ≤ 2 · ε ,

provided that rP
ε and RD

ε are both finite and positive, see Theorem 3.2 of [3].
Thus for a given ε > 0, it follows that rP

ε will be small if and only if RD
ε is large.

These results can also be stated in dual forms, exchange the roles of the primal and
dual problems and using the appropriate norms for the appropriate (regular) cone
variables/spaces.

Herein we study the size of the largest ε-optimal solution R
(·)
ε and the max-

imum distance of ε-optimal solutions from the boundary of the cone r
(·)
ε , as applied

to the HSD model H (which is also a conic optimization problem of similar conic
format as P and/or D, but with other very special structure). We denote these
measures for H by RH

ε and rH
ε , respectively. Let w0 := (x0, z0, τ0, κ0) denote the

starting values of the (regular) cone variables of H. Our main behavioral result is
that there is a natural norm ‖ · ‖w0

defined by w0 and its regular cone KH (4), and
in this norm the measures RH

ε and rH
ε are precisely controlled independent of any

particular characteristics of the problem instance, as follows:

RH
ε = (x0)T z0 + κ0τ0 + ε

for all ε > 0, and
rH
ε =

ε

(x0)T z0 + κ0τ0
,

see Theorem 3.1. Notice that RH
ε and rH

ε do not depend on the behavior of P , the
data for P , the null space of A, etc., and only depend on the chosen starting values
x0, z0, τ0, κ0. Therefore to the extent that R

(·)
ε , r

(·)
ε are relevant behavioral measures

of a conic optimization problem, this indicates that H is inherently well-behaved in
these measures in this norm. Note also that RH

ε and rH
ε are linear in ε.

We also develop a stopping-rule theory for HSD-based interior-point methods
such as SeDuMi [8]. Under mild assumptions, we show that a standard stopping rule
implicitly involves the sum of the norms of the ε-optimal primal and dual solutions
(where these norms are also defined by the starting points x0 and z0), as well as
the size of the initial primal and dual infeasibility residuals. This theory suggests
possible criteria for developing starting points for the homogeneous self-dual model
that might improve the resulting solution time in practice.

The paper is organized as follows. In Section 2 we review the construction of
a family of norms that are linear on a given regular cone. This construction is then
applied in Section 3 where we present and prove the main behavioral result about
RH

ε and rH
ε discussed above. Section 4 contains the analysis of a standard stopping

rule for an HSD interior-point method and its connection to RP
ε and RD

ε . Section 5
contains remarks and open questions.
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2 A Family of Norms that are Linear on K

The norm construction presented herein is implicitly used in many results involving
conic optimization and interior-point methods; we present it from first principles
here for completeness. By way of motivation, consider the simple problem of com-
puting v ∈ IRn that satisfies:

Mv = 0
v ∈ IRn

+

‖v‖ = 1

for some norm ‖ · ‖. The feasible region of this problem will generally be non-
convex unless ‖ · ‖ happens to be linear on IRn

+, as it is in the special case when
‖v‖ = ‖(W 0)v‖1 for some w0 > 0 (here W 0 is the diagonal matrix whose diagonal
components are the corresponding components of w0), in which case ‖v‖ = (w0)T v
for v ∈ IRn

+. Conversely, suppose we have a linear function f(v) = (w0)T v that
satisfies (w0)T v > 0 for v ∈ IRn

+ \ {0}. Then w0 ∈ IRn
++ in particular, and the

following norm agrees with the linear function f(v) for all v ∈ IRn
+:

‖v‖ := ‖v‖w0
:= minv1,v2 (w0)T (v1 + v2)

s.t. v1 − v2 = v
v1 ∈ IRn

+

v2 ∈ IRn
+ .

This norm is a linear function on IRn
+, and in fact is the norm with the smallest

unit ball that satisfies ‖v‖ = (w0)T v for v ∈ IRn
+. One can easily verify that ‖v‖w0

corresponds to ‖(W 0)v‖1.

The above construction easily generalizes to an arbitrary regular cone K.
For a regular cone K in the finite-dimensional linear space V , let w0 ∈ intK∗ be
given, and define the following norm on V :

‖v‖ := ‖v‖w0
:= minv1,v2 (w0)T (v1 + v2)

s.t. v1 − v2 = v
v1 ∈ K
v2 ∈ K .

(7)

It is straightforward to verify that ‖ · ‖ is indeed a norm. The following result states
that the restriction of ‖ · ‖ to K is a linear function.

Proposition 2.1 If v ∈ K, then ‖v‖w0
= (w0)T v.

Proof: For v ∈ K, the assignment (v1, v2) ← (v, 0) is feasible for (7) and so
‖v‖w0 ≤ (w0)T v. However, notice that for any (v1, v2) feasible for (7) we have
(w0)T (v1 + v2) = (w0)T (v + 2v2) ≥ (w0)T v, showing that ‖v‖w0 ≥ (w0)T v, and
hence ‖v‖w0

= (w0)T v.

The dual norm of ‖ · ‖ is readily derived as:

‖w‖∗ := ‖w‖w0

∗ := minα α
s.t. w + αw0 ∈ K∗

−w + αw0 ∈ K∗ .

(8)
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We now show that the norms (7) and (8) specify to well-known norms in the
case of the three standard self-scaled cones IRn

+, Sn
+, and Qn.

Nonnegative Orthant IRn
+. Let K = K∗ = IRn

+, and let w0 ∈ intK∗(= IRn
++) be

given. We have already seen that ‖v‖w0
works out to be ‖v‖w0

= ‖W 0v‖1, and the
dual norm works out to be:

‖w‖w0

∗ = ‖
(
W 0

)−1
w‖∞ .

Semi-Definite Cone Sn
+. Let K = K∗ = Sn

+ := {v ∈ Sn : v � 0} where Sn is the
space of real symmetric n×n matrices and “�” denotes the Löwner partial ordering,
namely v � u if and only if v − u is positive semidefinite. Let w0 ∈ intK∗(= Sn

++)
be given. Then ‖v‖w0

and ‖w‖w0

∗ work out to be

‖v‖w0
=

∥∥∥λ
(
(w0)

1
2 v(w0)

1
2

)∥∥∥
1

and ‖w‖w0

∗ =
∥∥∥λ

(
(w0)−

1
2 w(w0)−

1
2

)∥∥∥∞ ,

where λ(x) is the vector of eigenvalues of the matrix x. A proof of this is shown in
detail in Appendix B. Note that ‖v‖w0

= trace(w0v) for v ∈ Sn
+.

Second-Order Cone Qn. Let K = K∗ = Qn := {v ∈ IRn : ‖(v2, . . . , vn)‖2 ≤ v1}.
Let w0 = e1 := (1, 0, . . . , 0), and note that w0 ∈ intQn. Then ‖v‖w0

and ‖w‖w0

∗
work out to be

‖v‖w0
= max{|v1|, ‖(v2, . . . , vn)‖2} and ‖w‖w0

∗ = |w1| + ‖(w2, . . . , wn)‖2 .

Note that ‖v‖w0
= (e1)T v for v ∈ Qn. For general w0 ∈ intQn, we present the

following closed form expression for ‖v‖w0
and ‖w‖w0

∗ whose proof is rather laborious,
see Appendix B for details: rewrite w0 = (w0

1, w̄) where w̄ = (w0
2, . . . , w

0
n) and form

the matrix M :

M =

⎛
⎝ w0

1 (w̄)T

w̄

(√
(w0

1)2 − w̄T w̄

)
I + w̄w̄T

w0
1+

√
(w0

1)2−w̄T w̄

⎞
⎠ . (9)

Then it is shown in the Appendix that

‖v‖w0
= max{|(Mv)1|, ‖((Mv)2, . . . , (Mv)n)‖2} .

It follows directly from norm duality that

‖w‖w0

∗ = |(M−1w)1| + ‖((M−1w)2, . . . , (M−1w)n)‖2} ,

where M−1 has the following direct formula:

M−1 = ((w0
1)

2 − w̄T w̄)−1

⎛
⎝ w0

1 −(w̄)T

−w̄

(√
(w0

1)2 − w̄T w̄

)
I + w̄w̄T

w0
1+

√
(w0

1)2−w̄T w̄

⎞
⎠ .

Returning to the case of a general regular cone K, we close this section with
the following result which will be useful in our analysis:
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Proposition 2.2 Suppose that K is a regular cone, w0 ∈ intK∗ is given, and ‖ · ‖
and ‖ · ‖∗ are given by (7) and (8), respectively. If w ∈ K∗, then

dist∗(w, ∂K∗) ≥ r ⇔ w − rw0 ∈ K∗ .

Proof: Suppose first that w − rw0 ∈ K∗, and let y ∈ ∂K∗ be given. Then there
exists x ∈ K \{0} satisfying yT x ≤ 0. Computing ‖w−y‖∗ via (8) we see that any α
that is feasible for (8) must satisfy y−w +αw0 ∈ K∗, and taking the inner product
with x yields xT (y − w + αw0) ≥ 0. Notice that xT (w − rw0) ≥ 0 and recalling
that yT x ≤ 0 yields (α− r)(w0)T x ≥ 0, which implies that α ≥ r since (w0)T x > 0.
Therefore ‖w − y‖∗ ≥ r, and so dist∗(w, ∂K∗) ≥ r.

Conversely, suppose that dist∗(w, ∂K∗) ≥ r, but assume that w−rw0 /∈ K∗.
Because w ∈ K∗ there exists α ∈ [0, r) for which w̄ := w − αw0 ∈ ∂K∗. Now
notice that w − w̄ + αw0 = 2αw0 ∈ K∗ and w̄ − w + αw0 = 0 ∈ K∗, whereby
from (8) it follows that ‖w̄ − w‖∗ ≤ α < r. And since w̄ ∈ ∂K∗ it follows that
dist∗(w, ∂K∗) < r, which is contradiction. Therefore w− rw0 ∈ K∗, completing the
proof.

3 Behavior of the HSD Model

Recall the following properties of H:

Lemma 3.1 [11], [10]

• H is self-dual.

• (x, y, z, τ, κ, θ) = (x0, y0, z0, τ0, κ0, θ0) is a strictly feasible primal (and hence
dual) solution of H.

• VALH = 0 and H attains its optimum.

• Let (x∗, y∗, z∗, τ∗, κ∗, θ∗) be any optimal solution of H. Then (x∗)T z∗ = 0 and
τ∗·κ∗ = 0. If τ∗ > 0, then x∗/τ∗ is an optimal solution of P and (y∗/τ∗, z∗/τ∗)
is an optimal solution of D. If κ∗ > 0, then either cT x∗ < 0 or −bT y∗ < 0 or
both. The former case implies that P is infeasible, and the latter case implies
that D is infeasible.

Pre-multiplying the four equation systems of H by yT , xT , τ , and θ, respectively,
and summing yields:

xT z + τκ = ᾱθ (10)

for any feasible solution (x, y, z, τ, κ, θ) of H, see [11]. Pre-multiplying the four
equation systems of H by (y0)T , (x0)T , τ0, and θ0, respectively, summing, and using
(3) yields:

(z0)T x + (x0)T z + κ0τ + τ0κ = ᾱθ0 + ᾱθ (11)

for any feasible solution (x, y, z, τ, κ, θ) of H, also see [11]. We also have the following
property of H whose proof is deferred to the end of this section:
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Proposition 3.1 For any ε ≥ 0, there exists a feasible solution of H with objective
value (and hence optimality gap) equal to ε.

Let v := (x, z, τ, κ) ∈ KH be the variables of H corresponding to the cone
KH (4). The dual cone of KH is:

K∗
H := C∗ × C × IR∗

+ × IR+ ,

and we write w := (z, x, κ, τ) ∈ K∗
H , where the order of the variables has been

amended so that variables that are dual to each other in the dual formulation of H
are aligned with their associated primal variables:

Primal variables : v = ( x , z , τ , κ )

 
 
 


Dual variables : w = ( z , x , κ , τ )

Given the initial values (x0, y0, z0, τ0, κ0, θ0) satisfying x0 ∈ intC, z0 ∈ intC∗, τ0 >
0, κ0 > 0, θ0 > 0 that are used to define H, notice that w0 := (z0, x0, κ0, τ0) ∈ K∗

H ,
hence w0 can be used to define the norms ‖·‖w0

and ‖·‖w0

∗ on the spaces of variables
v and w using (7) and (8), respectively:

‖v‖w0
:= minv1,v2 (w0)T (v1 + v2) ‖w‖w0

∗ := minα α
s.t. v1 − v2 = v s.t. w + αw0 ∈ K∗

H

v1 ∈ KH −w + αw0 ∈ K∗
H

v2 ∈ KH .
(12)

Let us fix these norms on the spaces of variables v = (x, z, τ, κ) and w = (z, x, κ, τ),
respectively.

Remark 3.1 Under the norms (12), suppose that (x, y, z, τ, κ, θ) is a feasible solu-
tion of H. Then from Propositions 2.1 and 2.2 we obtain:

‖(x, z, τ, κ)‖w0
= (z0)T x + (x0)T z + κ0τ + τ0κ

and

dist∗((z, x, κ, τ), ∂K∗
H) ≥ r if and only if (z, x, κ, τ) − r(z0, x0, κ0, τ0) ∈ K∗

H .

For ε > 0 let RH
ε denote the size of the largest ε-optimal solution of H:

RH
ε := maxx,y,z,τ,κ,θ ‖(x, z, τ, κ)‖w0

s.t. (x, y, z, τ, κ, θ) is feasible for H
ᾱθ ≤ ε ,

(13)

and let rH
ε denote the maximal distance to ∂K∗

H over all ε-optimal solution of H:
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rH
ε := maxx,y,z,τ,κ,θ dist∗((z, x, κ, τ), ∂K∗

H)

s.t. (x, y, z, τ, κ, θ) is feasible for H
ᾱθ ≤ ε .

(14)

Our main behavioral result is:

Theorem 3.1 Under the norms (12),

RH
ε = (x0)T z0 + κ0τ0 + ε

for all ε ≥ 0, and
rH
ε =

ε

(x0)T z0 + κ0τ0

for all ε satisfying 0 ≤ ε ≤ (x0)T z0 + κ0τ0.

Proof: To prove the first assertion, let ε ≥ 0 be given, let ε̃ ∈ [0, ε], and let
(x, y, z, τ, κ, θ) be a feasible solution of H satisfying ᾱθ = ε̃ (which is guaranteed to
exist by Proposition 3.1). Then (x, z, τ, κ) ∈ KH , whereby

‖(x, z, τ, κ)‖w0
= (z0)T x + (x0)T z + κ0τ + τ0κ (from Remark 3.1)

= ᾱθ0 + ᾱθ (from (11))

= (x0)T z0 + κ0τ0 + ε̃ (from (3))

≤ (x0)T z0 + κ0τ0 + ε ,

(15)

whereby it follows that RH
ε ≤ (x0)T z0 + κ0τ0 + ε. However, simply setting ε̃ = ε

shows via (15) that RH
ε ≥ (x0)T z0 + κ0τ0 + ε, which then proves the equality of the

first assertion.

To prove the second assertion, let (x∗, y∗, z∗, τ∗, κ∗, θ∗) be an optimal solution
of H and recall from Lemma 3.1 that (x0, y0, z0, τ0, κ0, θ0) is feasible for H. Let
λ = ε/ᾱθ0, and notice that λ ∈ [0, 1] for 0 ≤ ε ≤ (x0)T z0 + κ0τ0 = ᾱθ0, whereby

(x, y, z, τ, κ, θ) := (1 − λ)(x∗, y∗, z∗, τ∗, κ∗, θ∗) + λ(x0, y0, z0, τ0, κ0, θ0)

is a feasible solution of H with objective value ᾱθ = ε. Then (z, x, κ, τ)−λ(z0, x0, κ0, τ0) =
(1 − λ)(z∗, x∗, κ∗, τ∗) ∈ K∗

H , whereby from Remark 3.1 it follows that

dist∗((z, x, κ, τ), ∂K∗
H) ≥ λ =

ε

ᾱθ0
=

ε

(x0)T z0 + κ0τ0
,

and so rH
ε ≥ ε

(x0)T z0+κ0τ0 . On the other hand, let (x, y, z, τ, κ, θ) be any feasible solu-
tion of H with objective value ᾱθ ≤ ε, and suppose that dist∗((z, x, κ, τ), ∂K∗

H) = r.
It then follows from Remark 3.1 that

(z, x, κ, τ) − r(z0, x0, κ0, τ0) ∈ K∗
H .
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Therefore
ε ≥ ᾱθ = ᾱθ − VALH

= (x∗, z∗, τ∗, κ∗)T (z, x, κ, τ)

≥ (x∗, z∗, τ∗, κ∗)T (r(z0, x0, κ0, τ0))

= rᾱθ0 = r((x0)T z0 + κ0τ0) ,

which implies that dist∗((z, x, κ, τ), ∂K∗
H) ≤ ε

(x0)T z0+κ0τ0 and hence the reverse in-
equality rH

ε ≤ ε
(x0)T z0+κ0τ0 , completing the proof.

To the extent that R
(·)
ε , r

(·)
ε are relevant behavioral measures of a conic

optimization problem, then Theorem 3.1 indicates that H is inherently well-behaved
in the norms (12). Indeed, RH

ε and rH
ε do not depend on the problem instance itself,

but only on the chosen starting values x0, z0, τ0, κ0. Note that RH
ε and rH

ε are linear
in ε.

We close this section with the proof of Proposition 3.1, which follows as a
special case of the following more general proposition.

Proposition 3.2 Suppose that there exist strictly feasible solutions of the given
primal and dual conic optimization problems P and D. Then for any ε ≥ 0, there
exists a feasible solution x of P and (y, z) of D with objective value gap cT x−bT y = ε.

Proof: It is well-known that the supposition of strictly feasible primal and dual
solutions guarantee that both P and D attain their optimal values with no duality
gap. It therefore remains to show that there exist feasible solutions to the primal-
dual pair with arbitrarily large objective value gap. By supposition, there exists
x̄ ∈ intC satisfying Ax̄ = b and there exists ȳ and z̄ ∈ intC∗ satisfying AT ȳ + z̄ = c.
Let us first suppose that P has an unbounded feasible region. Then there exists
d ∈ C satisfying d �= 0 and Ad = 0, and it follows that cT d = ȳT Ad+z̄T d = z̄T d > 0.
Therefore x̄+θd is feasible for arbitrarily large θ ≥ 0 with arbitrarily large objective
function value, proving the result in this case. If the feasible region of P is bounded,
it is straightforward to show that D has an unbounded feasible region, and similar
arguments apply.

Proof of Proposition 3.1: Consider H as a conic convex optimization problem
of the form P . From Lemma 3.1 it follows that H and its dual have strictly feasible
solutions, so from Proposition 3.2 it follows that H and its dual (also H) have
feasible solutions whose objective function gap is 2ε. But since H is self-dual and
VALH = 0, this means that H has a feasible solution with objective function value
ε.



BEHAVIOR OF HOMOGENEOUS SELF-DUAL MODEL 10

4 Stopping-Rule Theory for Interior-Point Methods such
as SeDuMi

In this section we develop results related to a standard stopping rule used by an
interior-point method for solving P and D via the homogeneous self-dual embedding
model H (such as SeDuMi developed by Jos Sturm [8]). Here the cone C is the
Cartesian product of self-scaled cones:

C = Ss1
+ × . . . × S

sns
+ × Qq1 × . . . × Qqnq ×�nl

+ .

(This cone notation was presented in Section 2.) We focus on norms induced by the
starting points and their connection to the algorithm’s stopping rule.

Consider the problems P and D. We presume that P and D are both
feasible and have a common optimal objective function value OPTVAL. In order
to be consistent with the norm ‖v‖w0

:= ‖(x, z, τ, κ)‖w0
on the cone variables of H

defined in (12), whose restriction to the cone KH takes the convenient functional
form

‖(x, z, τ, κ)‖w0
= (z0)T x + (x0)T z + κ0τ + τ0κ for (x, z, τ, κ) ∈ KH , (16)

we define the norms on x and z as follows:

‖x‖ := ‖x‖z0
(= (z0)T x for x ∈ C) and ‖z‖ := ‖z‖x0

(= (x0)T z for z ∈ C∗) (17)

for the variables x and z in P and D, respectively. (Note that these norms are not
dual to one another. We have defined the norms so that they will be consistent with
(16) and in so doing we treat P and D and their cone variables x and z somewhat
independently.) Using these norms and their specification (17) on the cones C, C∗,
the sizes of the largest ε-optimal solutions for P and D are:

RP
ε := maxx (z0)T x RD

ε := maxy,z (x0)T z
s.t. Ax = b s.t. AT y + z = c

cT x ≤ OPTVAL + ε bT y ≥ OPTVAL − ε
x ∈ C z ∈ C∗ .

(18)
Let (x, y, z, τ, κ, θ) be an iterate generated by SeDuMi, hence (x, y, z, τ, κ, θ) is feasi-
ble for H. In order to check whether to stop at this iterate, SeDuMi computes trial
primal and dual values (x̄, ȳ, z̄) := (x/τ, y/τ, z/τ), and their residuals:

rp := b − Ax̄
rd := AT ȳ + z̄ − c
rg := cT x̄ − bT ȳ .

(19)

According to SeDuMi’s code, the algorithm will stop at the current iterate if the
following inequality is satisfied:

2
‖rp‖∞

1 + ‖b‖∞ + 2
‖rd‖∞

1 + ‖c‖∞ +
(rg)+

max{|cT x̄|, |bT ȳ|, 0.001 × τ} ≤ rmax , (20)



BEHAVIOR OF HOMOGENEOUS SELF-DUAL MODEL 11

where the default is rmax = 10−9. We will analyze the slightly modified and more
convenient (and perhaps more intuitive) stopping rule inequality instead:

2
‖rp‖∞

1 + ‖b‖∞ + 2
‖rd‖∞

1 + ‖c‖∞ +
(rg)+

max{|cT x̄|, |bT ȳ|, 1} ≤ rmax . (21)

Define INITRESID (“initial residual”) to be the following combined primal, dual,
and gap residual of the starting point (x0, y0, z0, τ0, κ0, θ0):

INITRESID :=

(
2
‖b − Ax0/τ0‖∞

1 + ‖b‖∞ + 2
‖AT y0/τ0 + z0/τ0 − c‖∞

1 + ‖c‖∞ +
(cT x0/τ0 − bT y0/τ0)+

max{|OPTVAL|, 1}

)
,

(22)
and define the presumably similar quantity:

QUANT :=

⎛
⎜⎜⎜⎜⎝

2‖b−Ax0/τ0‖∞
1+‖b‖∞ + 2‖AT y0/τ0+z0/τ0−c‖∞

1+‖c‖∞

+

(
cT x0/τ0−bT y0/τ0+κ0/τ0− θ0

τ0 (κ
θ
)

)+

max{|cT x̄|,|bT ȳ|,1}

⎞
⎟⎟⎟⎟⎠ . (23)

Lemma 4.1 Assume that P and D are both feasible, (x0, y0, z0, τ0, κ0, θ0) is the
starting point, and (x, y, z, τ, κ, θ) is a feasible iterate of an interior-point method
for solving H. Let (x̄, ȳ, z̄) := (x/τ, y/τ, z/τ) be the trial solution of P and D. Then
the stopping rule inequality (21) is equivalent to:

θ

θ0
≤ rmax

(
θ0 + θ

θ0

) (
(x0)T z0 + τ0κ0

τ0

) (
‖x̄‖z0

+ ‖z̄‖x0
+ κ0 +

τ0κ

τ

)−1

(QUANT)−1 .

(24)

Proof: The equations of H together with (3) yield:

rp = b − Ax̄ = b̄(θ/τ) =
(
b − Ax0/τ0

) (
θτ0

τθ0

)
rd = AT ȳ + z̄ − c = c̄(θ/τ) =

(
AT y0/τ0 + z0/τ0 − c

) (
θτ0

τθ0

)
rg = cT x̄ − bT ȳ = (ḡ − κ/θ)(θ/τ) =

(
cT x0/τ0 − bT y0/τ0 + κ0

τ0 − κθ0

θτ0

) (
θτ0

τθ0

)
,

whereby (21) becomes: (
θτ0

τθ0

)
QUANT ≤ rmax . (25)

Next observe that

(z0)T x̄ + (x0)T z̄ + κ0 + τ0κ
τ = (z0)T x+(x0)T z+κ0τ+τ0κ

τ

= ᾱθ0+ᾱθ
τ , (from (11))

which yields

1
τ

=
(z0)T x̄ + (x0)T z̄ + κ0 + τ0κ

τ

ᾱ(θ0 + θ)
=

θ0
(
‖x̄‖z0

+ ‖z̄‖x0
+ κ0 + τ0κ

τ

)
((z0)T x0 + τ0κ0)(θ0 + θ)

,
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using (17) and the definition of ᾱ in (3). Substituting the above in (25) and rear-
ranging terms yields the result.

Let T denote the total number of iterations performed by an interior-point
method for solving H, and let β denote the (geometric) average decrease in the
duality gap of H over all iterations:

β := T

√
2ᾱθ

2ᾱθ0
= T

√
θ

θ0
. (26)

The following corollary follows by taking the logarithm of both sides of (24) and
using (26).

Corollary 4.1

T =

⎡
⎢⎢⎢

ln
(

θ0

θ0+θ

)
+ ln

(
‖x̄‖z0

+ ‖z̄‖x0
+ κ0 + τ0κ

τ

)
+ ln (QUANT) + ln

(
τ0

(x0)T z0+τ0κ0

)
+ | ln(rmax)|

| ln(β)|

⎤
⎥⎥⎥

(27)

We now try to simplify this expression by making a few reasonable pre-
sumptions. As the algorithm gets closer to stopping we have θ → 0 and κ → 0.
Furthermore, so long as P and D are not nearly-infeasible, τ will stay bounded
away from 0, i.e., there exists τ̃ > 0 such that τ ≥ τ̃ for all late iterates. Let us also
presume that as the algorithm gets closer to stopping that x̄ = (x/τ) is sufficiently
close to the set of primal ε-optimal solutions and (ȳ, z̄) = (y/τ, z/τ) is sufficiently
close to the set of dual ε-optimal solutions, and that these level sets are not large
(which will be the case if the primal and dual optima are unique or are nearly so),
whereby

‖x̄‖z0 ≈ RP
ε and ‖z̄‖x0 ≈ RD

ε . (28)

These presumptions allow us to simplify (27) to:

T ≈
ln

(
RP

ε + RD
ε + κ0

)
+ ln (QUANT) + ln

(
τ0

(x0)T z0+τ0κ0

)
+ | ln(rmax)|

| ln(β)| . (29)

Finally, let us presume that INITRESID ≈ QUANT. Notice from (22) and
(23) that these two quantities differ only in their third term, and that the denomina-
tors of the third terms of each are nearly identical so long as cT x̄ ≈ bT ȳ ≈ OPTVAL.
Therefore INITRESID ≈ QUANT is valid to the extent that the difference between
the numerators of the third terms of INITRESID and QUANT is dominated by
the other numbers in their expressions. Notice that although the numerator of the
third term of QUANT contains the fraction −κ/θ and both κ and θ are typically
close to zero for near-optimal solutions of H, the effect on the overall expression is
muted somewhat since the numerator of the third term uses only the positive part of
expression therein. In the Appendix we present some computational evidence that
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indicates that the presumption that INITRESID ≈ QUANT is probably reasonable.
This final presumption allows (29) to be rewritten as:

T ≈
ln

(
RP

ε + RD
ε + κ0

)
+ ln (INITRESID) + ln

(
τ0

(x0)T z0+τ0κ0

)
+ | ln(rmax)|

| ln(β)| . (30)

Remark 4.1 Theoretical Algorithm with Constant Rate of Convergence.
If the interior-point method for solving H is implemented with a constant rate of
convergence as would be the case for a theoretical polynomial-time algorithm, then
β is pre-specified independent of the problem instance; for example one can use
β = 1 − 1

8
√

ϑ
where ϑ is the complexity parameter of the self-concordant barrier of

the cone KH , see [5]. In this case (30) simplifies to

T ≈ 8
√

ϑ

(
ln

(
RP

ε + RD
ε + κ0

)
+ ln (INITRESID) + ln

(
τ0

(x0)T z0 + τ0κ0

)
+ | ln(rmax)|

)
.

(31)
Notice that the number of iterations is fairly precisely predicted by five quantities: (i)
the complexity value ϑ of the self-concordant barrier for the cone KH , (ii) the initial
feasibility and optimality gap measure INITRESID, (iii) the size of the largest solu-
tions measured in the norms induced by the starting point, (iv) the initial optimality
gap measure of H scaled by τ0, and (v) the pre-specified tolerance rmax.

Remark 4.2 Factors Affecting the Average Convergence Rate. Not much is
known or understood about the actual factors that influence the average convergence
rate β. We computed β for 77 problem instances in the SDPLIB suite solved via
SeDuMi using the stopping rule inequality (21). We observed β in the range 0.12-
0.66, see Table 1. We also computed β for a set of 144 second-order cone problem
instances that were generated specifically to have have a wide range of condition
measure values C(d), in the range 102-109, see [2] for details how these problems
were generated. Here we observed β in the range 0.06-0.55, see Table 2, with larger
values roughly corresponding to problems with larger values of RP

ε + RD
ε and with

larger condition measure C(d) (see [2] for details). This indicates that the average
convergence rate may itself be partially influenced by at least one other quantity in
(30).

Remark 4.3 Scale-Invariance. Note that the numerator of (30) is invariant un-
der positive scaling of the starting values (x0, y0, z0, τ0, κ0). To see this, suppose
that these values are rescaled by some scalar α > 0. Then (RP

ε + RD
ε + κ0) ←

α
(
RP

ε + RD
ε + κ0

)
and τ0

(x0)T z0+τ0κ0 ← α−1 τ0

(x0)T z0+τ0κ0 , and the other quantities in
the numerator of (30) are unchanged.

Remark 4.4 Strategies for Reducing IPM Iterations. While the numer-
ator of (30) is invariant under positive scalings, in general different choices of
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(x0, y0, z0, τ0, κ0) can lead to different values of
(
RP

ε + RD
ε + κ0

)
, INITRESID, and

β, suggesting the possibility of developing heuristics to choose (x0, y0, z0, τ0, κ0)
based, perhaps, on solutions to related versions of the problem that might yield
smaller values of some these quantities. One can easily compute INITRESID and
hence try to heuristically reduce its value. However, RP

ε , RD
ε and β are in general

not known a priori, so it is not such a simple matter to develop heuristics to re-
duce their values. It is nevertheless an interesting line of research inquiry to try to
develop ways to reduce these values either in theory or in practice.

5 Conclusions and Open Questions

Theorem 3.1 shows that if one measures distance using using the primal/dual norms
(12) induced by the starting point of the HSD embedding, then the behavioral mea-
sures RH

ε and rH
ε are precisely controlled independent of any particular character-

istics of the problem instance P/D, indicating that H is inherently well-behaved in
these measures in this norm.

Furthermore, the primal norm of (12) is implicitly involved in the standard
stopping criterion for an IPM for solving P/D via the HSD embedding model:
under mild assumptions, the stopping rule implicitly involves the sum of the norms
of the ε-optimal primal and dual solutions (where these norms are also defined by
the starting points x0 and z0), as well as the size of the initial primal and dual
infeasibility residuals. This theory suggests possible criteria for developing starting
points for the homogeneous self-dual model that might improve the resulting solution
time in practice.

The analysis of the stopping criterion herein is valid for the case when P
and D both have solutions. It would be interesting to extend this line of analysis to
the case where P and/or D are infeasible, to answer the question: what are the rel-
evant behavioral measures and possibly associated norms that capture the stopping
criterion for an instance of P/D in which one or both problems are infeasible?

Acknowledgement. I am grateful to Kim Chuan Toh and Cai Zhi for stimulating
discussions and computational testing of the homogeneous self-dual model, and to
Kim Chuan Toh for reading an early draft of this paper.

Appendix A: On the Presumption that INITRESID ≈
QUANT

We tested the presumption that INITRESID ≈ QUANT on two data sets of conic
problems: (i) the SDPLIB test set of semidefinite programming problems archived
at http://www.nmt.edu/∼sdplib/, and (ii) a set of 144 second-order-cone prob-
lems generated to have a wide range of condition measures C(d), see [2]. We used
SeDuMi to solve these problems, modified to use the amended stopping rule (21).
Table 1 shows the values of the ratio INITRESID/QUANT as well as the average
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decrease in the duality gap β (26) for 77 problems in the SDPLIB test set (we did
not compute these values for the following 15 problems due to their size and/or
infeasibility: equalG51, infd1 (dual infeasible), infd2 (dual infeasible), infp1 (primal
infeasible), infp2, (primal infeasible) maxG32, maxG51, maxG55, maxG60, qpG11,
qpG51, theta5, theta6, thetaG11, thetaG51). The computational results show that
INITRESID/QUANT is consistently close to 1.0 (to one decimal place) for these
problems, except for the problem qap5, for which the ratio is 0.9. We also solved a
set of 144 second-order cone problems that were generated specifically to have have
a wide range of condition measure values C(d), in the range 102 − 109, see [2] for
details how these problems were generated. Table 2 shows the values of the ratio
INITRESID/QUANT as well as the average decrease in the duality gap β (26) for
these 144 second-order cone problems. Here we observed INITRESID/QUANT in
the range 0.9 − 3.9. These results indicate that the presumption that INITRESID
≈ QUANT is quite reasonable.

Table 1: The ratio INITRESID/QUANT and β for 77 Problems in
the SDPLIB Test Set.

Problem INITRESID/QUANT β Problem INITRESID/QUANT β

arch0 1.0 0.30 hinf11 1.0 0.35
arch2 1.0 0.28 hinf12 1.0 0.29
arch4 1.0 0.30 hinf13 1.0 0.29
arch8 1.0 0.28 hinf14 1.0 0.39
control1 1.0 0.21 hinf15 1.0 0.33
control2 1.0 0.25 maxG11 1.0 0.22
control3 1.0 0.28 mcp100 1.0 0.20
control4 1.0 0.30 mcp124-1 1.0 0.22
control5 1.0 0.31 mcp124-2 1.0 0.20
control6 1.0 0.34 mcp124-3 1.0 0.23
control7 1.0 0.34 mcp124-4 1.0 0.23
control8 1.0 0.33 mcp250-1 1.0 0.25
control9 1.0 0.31 mcp250-2 1.0 0.24
control10 1.0 0.36 mcp250-3 1.0 0.24
control11 1.0 0.39 mcp250-4 1.0 0.22
equalG11 1.0 0.25 mcp500-1 1.0 0.27
gpp100 1.0 0.66 mcp500-2 1.0 0.25
gpp124-1 1.0 0.63 mcp500-3 1.0 0.25
gpp124-2 1.0 0.64 mcp500-4 1.0 0.23
gpp124-3 1.0 0.64 qap5 0.9 0.12
gpp124-4 1.0 0.65 qap6 1.0 0.33
gpp250-1 1.0 0.66 qap7 1.0 0.34
gpp250-2 1.0 0.56 qap8 1.0 0.36
gpp250-3 1.0 0.57 qap9 1.0 0.35
gpp250-4 1.0 0.56 qap10 1.0 0.34
gpp500-1 1.0 0.60 ss30 1.0 0.35
gpp500-2 1.0 0.57 theta1 1.0 0.15
gpp500-3 1.0 0.59 theta2 1.0 0.15
gpp500-4 1.0 0.54 theta3 1.0 0.16
hinf1 1.0 0.30 theta4 1.0 0.17
hinf2 1.0 0.35 truss1 1.0 0.14
hinf3 1.0 0.38 truss2 1.0 0.23
hinf4 1.0 0.35 truss3 1.0 0.21
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Problem INITRESID/QUANT β Problem INITRESID/QUANT β

hinf5 1.0 0.35 truss4 1.0 0.17
hinf6 1.0 0.33 truss5 1.0 0.27
hinf7 1.0 0.25 truss6 1.0 0.35
hinf8 1.0 0.32 truss7 1.0 0.31
hinf9 1.0 0.23 truss8 1.0 0.32
hinf10 1.0 0.33

Table 2: The ratio INITRESID/QUANT and β for 144 Second-
Order Cone Problems.

Problem INITRESID/QUANT β Problem INITRESID/QUANT β

sm 18 1.0 0.22 md 2 1.0 0.23
sm 18 1 1.0 0.21 md 2 1 1.0 0.22
sm 18 5 1.0 0.22 md 2 5 1.0 0.23
sm 18 75 1.0 0.23 md 2 75 1.0 0.27
sm 18 9 1.0 0.24 md 2 9 1.0 0.28
sm 18 95 1.0 0.27 md 2 95 1.0 0.26
sm 18 97 1.0 0.28 md 2 97 1.0 0.26
sm 18 99 1.0 0.29 md 2 99 1.0 0.28
sm 18 995 1.0 0.34 md 2 995 1.0 0.30
sm 18 999 1.0 0.37 md 2 999 1.0 0.39
sm 18 9995 1.0 0.37 md 2 9995 1.0 0.41
sm 18 9999 1.0 0.39 md 2 9999 1.0 0.55
sm 19 1.0 0.18 sm2 1 1.0 0.28
sm 19 1 1.0 0.18 sm2 1 1 1.0 0.25
sm 19 5 1.0 0.21 sm2 1 5 1.0 0.36
sm 19 75 1.0 0.21 sm2 1 75 1.0 0.27
sm 19 9 1.0 0.25 sm2 1 9 1.0 0.43
sm 19 95 1.0 0.24 sm2 1 95 1.0 0.44
sm 19 97 1.0 0.27 sm2 1 97 1.0 0.43
sm 19 99 1.0 0.27 sm2 1 99 1.0 0.45
sm 19 995 1.0 0.28 sm2 1 995 1.0 0.46
sm 19 999 1.0 0.29 sm2 1 999 1.0 0.49
sm 19 9995 1.0 0.30 sm2 1 9995 1.0 0.50
sm 19 9999 1.0 0.31 sm2 1 9999 1.0 0.49
sm2 3 0.9 0.06 md 3 0.9 0.23
sm2 3 1 0.9 0.06 md 3 1 0.9 0.22
sm2 3 5 0.9 0.10 md 3 5 0.9 0.22
sm2 3 75 0.9 0.14 md 3 75 0.9 0.24
sm2 3 9 0.9 0.19 md 3 9 0.9 0.25
sm2 3 95 0.9 0.19 md 3 95 0.9 0.25
sm2 3 97 0.9 0.24 md 3 97 0.9 0.24
sm2 3 99 1.0 0.22 md 3 99 0.9 0.27
sm2 3 995 1.0 0.21 md 3 995 0.9 0.28
sm2 3 999 1.3 0.26 md 3 999 1.0 0.31
sm2 3 9995 1.5 0.31 md 3 9995 1.0 0.34
sm2 3 9999 3.9 0.35 md 3 9999 1.0 0.36
sm 5 1.0 0.22 md 5 0.9 0.23
sm 5 1 1.0 0.21 md 5 1 0.9 0.22
sm 5 5 1.0 0.19 md 5 5 0.9 0.22
sm 5 75 1.0 0.23 md 5 75 0.9 0.24
sm 5 9 1.0 0.26 md 5 9 0.9 0.25
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Problem INITRESID/QUANT β Problem INITRESID/QUANT β

sm 5 95 1.0 0.26 md 5 95 0.9 0.25
sm 5 97 1.0 0.27 md 5 97 0.9 0.25
sm 5 99 1.0 0.29 md 5 99 0.9 0.28
sm 5 995 1.0 0.30 md 5 995 0.9 0.28
sm 5 999 1.0 0.34 md 5 999 0.9 0.31
sm 5 9995 1.0 0.35 md 5 9995 0.9 0.33
sm 5 9999 1.0 0.38 md 5 9999 1.0 0.37
md 1 1.0 0.22 md 4 1.0 0.27
md 1 1 1.0 0.24 md 4 1 1.0 0.26
md 1 5 1.0 0.26 md 4 5 1.0 0.27
md 1 75 1.0 0.24 md 4 75 1.0 0.28
md 1 9 1.0 0.29 md 4 9 1.0 0.25
md 1 95 1.0 0.28 md 4 95 1.0 0.29
md 1 97 1.0 0.33 md 4 97 1.0 0.30
md 1 99 1.0 0.32 md 4 99 1.0 0.35
md 1 995 1.0 0.32 md 4 995 1.0 0.37
md 1 999 1.0 0.35 md 4 999 1.0 0.42
md 1 9995 1.0 0.36 md 4 9995 1.0 0.46
md 1 9999 1.0 0.40 md 4 9999 1.0 0.46
lg 1 0.9 0.14 md 6 0.9 0.20
lg 1 1 0.9 0.14 md 6 1 0.9 0.20
lg 1 5 0.9 0.16 md 6 5 0.9 0.19
lg 1 75 0.9 0.16 md 6 75 0.9 0.19
lg 1 9 1.0 0.17 md 6 9 0.9 0.21
lg 1 95 1.0 0.17 md 6 95 0.9 0.21
lg 1 97 0.9 0.19 md 6 97 0.9 0.22
lg 1 99 1.0 0.17 md 6 99 0.9 0.24
lg 1 995 1.0 0.19 md 6 995 0.9 0.24
lg 1 999 1.5 0.23 md 6 999 0.9 0.29
lg 1 9995 1.6 0.25 md 6 9995 0.9 0.29
lg 1 9999 1.7 0.26 md 6 9999 0.9 0.32

Appendix B: On Norms that are Linear on Sn
+ and Qn

The Positive Semi-definite Cone. We first prove that for w0 ∈ intSn
+ the norm

(7) has the form ‖v‖w0
=

∥∥∥λ
(
(w0)

1
2 v(w0)

1
2

)∥∥∥
1
. To show this, we convert to the

more standard matrix and trace notation used for semidefinite optimization, see [1]
for example. To avoid confusion with roots of semidefinite matrices, let us instead
use W̄ for the given positive definite matrix in intSn

+ and write (7) and its conic
dual as:

‖V ‖W̄ = minV 1,V 2 W̄ • (V 1 + V 2) (Dual) : maxX V • X
s.t. V 1 − V 2 = V s.t. W̄ + X ∈ Sn

+

V 1, V 2 ∈ Sn
+ W̄ − X ∈ Sn

+ .

For V ∈ Sn, consider the eigendecomposition of W̄
1
2 V W̄

1
2 = P (D −E)P T where P

is orthonormal, and D, E are nonnegative diagonal matrices corresponding to the
nonnegative and nonpositive eigenvalues of W̄

1
2 V W̄

1
2 , respectively. Let S denote the

diagonal matrix whose diagonal is composed of the sign of the diagonal of D − E,
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and let V 1 = W̄− 1
2 PDP T W̄− 1

2 , V 2 = W̄− 1
2 PEP T W̄− 1

2 , and X = W̄
1
2 PSP T W̄

1
2 .

Then it is relatively easy to check that V 1, V 2, X are primal and dual feasible in
the above conic programs with common objective function value I • (D + E) =∥∥∥λ

(
W̄ )

1
2 V W̄

1
2

)∥∥∥
1
, proving the result.

The Second-Order Cone. We now prove that for w0 ∈ intQn the norm (7) has
the closed-form ‖v‖w0

= max{|(Mv)1|, ‖(Mv)2, . . . , (Mv)n‖} where v = (v1, v̄) and
M is given by (9). Suppose first that w0 = e1 := (1, 0, . . . , 0); in this case M = I
and we need to show that ‖v‖e1

= max{|v1|, ‖v̄‖}. To show this, write (7) and its
conic dual as:

‖v‖w0
= minv1,v2 (e1)T (v1 + v2) (Dual) : maxx vT x

s.t. v1 − v2 = v s.t. e1 + x ∈ Qn

v1, v2 ∈ Qn e1 − x ∈ Qn ,

and consider three cases:

Case 1: v1 ≥ ‖v̄‖. Here v1 = v, v2 = 0, x = e1 are primal and dual feasible in the
above conic programs with common objective value v1

1 = max{|v1|, ‖v̄‖}, proving
the result in this case.

Case 2: −v1 ≥ ‖v̄‖. Here v1 = 0, v2 = −v, x = −e1 are primal and dual feasible
in the above conic programs with common objective value −v1

1 = max{|v1|, ‖v̄‖},
proving the result in this case.

Case 3: −‖v̄‖ < v1 < ‖v̄‖. Let β := (v1 + ‖v̄‖)/(2‖v̄‖). Then β ∈ (0, 1) and
define v1 = (β‖v̄‖, βv̄), v2 = ((1 − β)‖v̄‖, (β − 1)v̄, ), x = (0, v̄/‖v̄‖). Then v1, v2, x
are primal and dual feasible in the above conic programs with common objective
function value ‖v̄‖ = max{|v1|, ‖v̄‖}, proving the result in this case.

Now consider an arbitrary given w0 ∈ intQn. Let v = (v1, v̄) ∈ Qn, and
consider the self-scaled (see [6]) barrier function

f(v) := − ln(v2
1 − v̄T v̄)

for v ∈ intQn. The Hessian of f(·) is given by:

H(v) =
1

(v2
1 − v̄T v̄)2

(
2v2

1 + 2v̄T v̄ −4v1v̄
T

−4v1v̄ 2(v2
1 − v̄T v̄)I + 4v̄v̄T

)
,

and it follows from the definition of a self-scaled barrier [6] that H(v) maps Qn onto
Qn for v ∈ intQn.

Now let w0 = (w0
1, w̄) ∈ intQn be given, and define M as in (9). Then it is

laborious but straightforward to check that M = H(ṽ) for

ṽ =

⎛
⎝

√
w0

1 + γ̃

γ̃
,

−w̄

γ̃
√

w0
1 + γ̃

⎞
⎠ ,

where γ̃ =
√

(w0
1)2 − w̄T w̄, and so M maps Qn onto Qn, i.e., Mv ∈ Qn if and only
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if v ∈ Qn. Then notice that:

‖v‖w0
= minv1,v2 (w0)T (v1 + v2) = minv1,v2 (e1)T M(v1 + v2)

s.t. v1 − v2 = v s.t. Mv1 − Mv2 = Mv
v1, v2 ∈ Qn Mv1, Mv2 ∈ Qn ,

since Me1 = w0, M is invertible, and Mv ∈ Qn if and only if v ∈ Qn. But
substituting y1 = Mv1, y2 = Mv2 the rightmost program above can be rewritten
as:

‖v‖w0
= miny1,y2 (e1)T (y1 + y2)

s.t. y1 − y2 = Mv
y1, y2 ∈ Qn ,

which we have already seen is just max{|(Mv)1|, ‖(Mv)2, . . . , (Mv)n‖}.
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