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ABSTRACT

What activities are located where and why? This is a fundamental question in
urban studies, which should be answered before planning. In urban economics,
fine mathematical models have been developed and have provided an internally
consistent economic framework for answering these questions. However, as
cities grow and get larger, the spatial structure of cities has changed and become
increasingly complicated. The emergence of sub-centers and socioeconomically
distinct clusters within the metropolitan areas weaken the assumptions on which
the urban economic models are based. Also, there are increasing needs of the
people and space interaction models at the micro level, or neighborhood level.
This thesis revisits this fundamental issue in a different way. In particular, it
investigates the spatial patterns of residents within the metropolitan areas at the
census blockgroup level, using Database Management Systems (DBMS) with
Structured Query Language (SQL), Geographic Information Systems (GIS), and
statistical methods including factor analysis and cluster analysis.

What socioeconomic factors make one type of neighborhood different from
another within the metropolitan areas? This thesis finds four common
socioeconomic factors; baseline factor, children factor, income factor, and age
factor. Baseline factor shows that the major generic whites are, roughly speaking,
more likely to be citizens, to speak only English at home, to drive to work, not to
be poor, to own homes, and to live in the lower population density areas. These
above variables move synchronously, so we can reduce them into one factor
which we have abbreviated as the 'baseline factor'. Using the same factor
analysis, we developed the four such socioeconomic factors above.



Then, I investigate where they are located? In all four metropolitan areas there
are wedges of clustered neighborhoods with similar socioeconomic
characteristics around the urban center. Each section contrasts with each other,
for example, rich versus poor, or white versus non-white. Younger people formed
their own wedges, too. Second, the downtown and subcenters, where the jobs
are located, are more likely occupied by non-whites or low income individuals.
So, they also appear along the circumferential highway corridor where the
subcenters are located.

In addition to the common pattern over all metropolitan areas, each metropolitan
area also has its own peculiar characteristics. In the Boston Metropolitan Area,
the delineation of socioeconomically different neighborhoods coincides with town
boundaries. That is, the characteristics of neighborhoods are discrete rather than
continuous over the space. In the Chicago Metropolitan Area, the percentage of
citizens is another key factor differentiating neighborhoods, and, hence, non-
citizens occupy a separate cluster. The unique geography of the San Francisco
Metropolitan Area creates two stark types of neighborhoods; affluent
neighborhoods at the west of the bay along the ocean, and poor neighborhoods
at the east of the bay, especially at the entering points of the bridges to the
downtown. In Dallas Metropolitan Areas, the geographic contrast between rich
and poor neighborhoods are clearer, i.e., the northern area is wealthier while the
southern area is poorer.

In this thesis, I find the key socioeconomic factors characterizing the
neighborhoods and the spatial pattern of residents. Also, I developed a different
methodology to look at this issue. This study gives us a foundation for micro level
urban simulation modeling by providing a systematic method of quantifying
neighborhood characteristics in ways that can be incorporated into economic
models. Furthermore, we can analyze the urban structure of diverse land uses
over space and time simultaneously. This can make participatory planning far
easier by supplying a clear picture of a city's profile, stimulating communications,
and facilitating understanding among residents.

Thesis Supervisor: Joseph Ferreira, Jr.

Title: Professor of Urban Planning and Operations Research
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INTRODUCTION

We must understand cities as much as possible before planning. Urban

economics sheds light on the urban spatial structure and gives us a better

understanding about how cities work. Now, thanks to today's high technology

and computation capacity - including Geographic Information Systems (GIS),

Statistics, and Database Management Systems (DBMS) - and rich datasets like

the U.S. Census, we can approach our cities with attention to spatial detail

beyond that of traditional abstract and spatially aggregated urban economic

models. This bottom-up way of research is essential to develop a micro level

urban simulation model for participatory planning. It will help practitioners and

residents understand their cities and planning, and hence will enrich the

communication between them.

I hypothesize that there are socioeconomically distinct neighborhoods within

metropolitan areas: similar neighborhoods generally tend to agglomerate

geographically with locational preferences, and unlike the traditional urban

economic models suggest, they are less likely to be located in circumferencial
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distribution.

As cities have grown, urban economists have developed theories to understand

the internal structure of cities. With the urban economic models, we learn about

where people live, where firms and retail stores are located, how housing and

real estate markets work, how we can improve our cities, etc. The theories have

given us a concise and clear picture of the internal structure of cities. The simple

and powerful models successfully simplify the entangled interactions between

people, and between people and spaces. However, most urban economic

models are built based on three critical assumptions: one dimensional space,

smooth transition over distance, and a predefined city center point.

1.1 Three Issues in Urban Economics with Space

Urban economic models generally, Implicitly or explicitly, assume that space is a

"line" and hence, interpret a "circular" city on two dimensional space. That is, the

models only allow circular distribution, like a circle or donut, but don't allow

"holes" or "wedges". However, we can easily find the "holes" and "wedges" in

metropolitan areas. It is hard to explain the non-circular patterns with the

traditional linear city models even though the models illustrate the overall

structure of cities well with density and land value declining with destance from

-9-



the 'center.' (Figure 1.1)

Figure 1.1 Linear city and two dimensional space

A B C D A' B' C' D'

Furthermore, subcenters within metropolitan areas stand out these days, so

understanding the role of the subcenters is becoming important for planning and

transportation. Controlling these subcenters relates to whether urban growth is

sprawl or sound development. We observed the fact that the sizes of cities have

grown bigger and more people and industries tend to live away from the

traditional city center. In many cases, however, the urban fringes have

developed independently. Therefore, new developments are not consistent with

other land usages, either new or old. Urban economists take the traditional view

-10-



and try to explain it with linear city models. The two dimensional distance issues

arise here again. In Figure 1.2, point D on the linear city cannot easily be

intepreted as point G or even H or J. If we have more subcenters, like today's

metropolitan areas, these issues become complicated.

Figure 1.2 Distance issue of linear city with a subcenter

A B C DE F

Secondly, we assume that the transition over distance is smooth. For example,

as the distance increases, rent goes down smoothly, population density goes

down smoothly, and so on. In Figure 1.3, we can see the overall trend of the

smoothly decreasing population density away from CBD. However, the flattening

slope and the emergence of subcenters requires a different approach beyond
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traditional urban economics. Again, the subcenters become more important to

explain the internal structure of cities.

Population Density by Blockgroup (Censusl990)

140,000

120,000

100,000

80,000

0

60,000

40,000

20,000

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Distance from CBD (mile)

Figure 1.3 Population Density by Blockgroup in Boston Metropolitan Area

Source: U.S. Bureau of the Census, 1990 Census of Population and Housing, Summary Tape

File 3

Thirdly, we have traditionally treated the center of a city as a fixed point. The

assumption is closely related to the level of geographic aggregation. Considering

the city of Boston merely as a point would definitely be a reasonable proxy when
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we do a national level of study, or beyond. However, for example, when we do

research on the residential distribution within the Boston metropolitan area, the

city of Boson is too big to be a point, or even an entity. Maps in the following

chapters illustrate this point.

Urban economics has done an effective job in shedding light on the internal

urban sturucture. Today's high technology and computation capacity - GIS,

Statistics, and DBMS - and rich dataset like the U.S. Census, allow us to go

further, beyond the current limit of urban economics. Therefore, I take a bottom-

up approach to examine the spatial patterns of residential clusters utilizing

modern technology.

1.2 Methodology

In this thesis, I am trying to measure the residential pattern of cities as it is on two

dimensional space. First of all, I will classify the neighborhoods' by their

1 In this thesis, I will use Census blockgroup as a unit of analysis, and call it

neighborhood. Census blockgroup has quite good characteristics to be a

homogeneous community and is the most detailed and richest data set I can use.

(See Appendix for more detail information about Census Blockgroup)
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socioeconomic characteristics. What are the effective factors which make them

different from each other? How many different clusters do the metropolitan areas

have? The combination of factor analysis and cluster analysis is a good tool to

answer these questions. Secondly, I pose the following questions: Where are

they located? Are similar neighborhoods located closely to each other? I will use

GIS and draw maps of the residential distribution patterns for each metropolitan

areas. All of the above procedures require intensive use of DBMS.

Conventionally, multiple linear regression analysis is used most frequently in

quantitative modeling. However, the attendant problems of nonlinearities and

interactions, multicollinearity, functional heterogeneity, and heteroscedasticity

can severely degrade the accuracy of the estimates.

Some of these problems can be reduced by stratifying or clustering the data into

more homogeneous subgoups, each of which is treated as separate independent

data base for the purpose of regression modeling. The cluster analysis can be

modified to accomplish such data base segmentations.

We can use factor analysis to adjust the variable interactions. The basic idea of

factor analysis is finding few principal latent factors to explain complicated

phenomena. This statistical method has been widely used in fields where factors

cannot be manipulated, such as psychology.

- 14 -



In this research, I first do the factor analysis to extract the few principal latent

factors out of the eighteen socioeconomic characteristics of residents, which

differentiate the neighborhoods within metropolitan areas. I next perform a

cluster analysis to stratify the neighborhoods into fewer groups of the

socioeconomically similar neighborhoods with the factors extracted from factor

analysis. Third, I input the result of statistical analysis into GIS, and draw a map

of spatial patterns of residential clusters in order to answer whether or not similar

neighborhoods are located near one another.

1.3 Study Areas and Data

In this cross-sectional analysis, I look into four metropolitan areas and compare

their characteristics: Boston, Chicago, San Francisco, and Dallas. Each of these

areas are selected to represent the four subregions of the Unites States:

Northeast, Midwest, West, and South. I use 1990 Census STF 3A by the U.S.

Census Bureau, Census Transportation Planning Package (CTPP) by Bureau of

Transportation Statistics, and digital maps by Environmental Systems Research

Institute, Inc. (ESRI).

I select eighteen socioeconomic variables from the Census to identify the

characteristics of each neighborhood, including population density, racial
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composition (percent white), percent of children, percent of old, percent of

students in secondary school or under, percent of citizenship, household size,

language used at home, percent of bachelor's degree or higher, primary

transportation mode to work, travel time to work, unemployment rate, labor force

participation rate, household income, income per capita, source of income

(percent of workers receiving wage and salary), percent of residents under the

absolute poverty level, and home ownership rate.

Table 1.1 Brief Summary of the Four Metropolitan Areas

Number of Area of Total Income per

Blockgoups Land (Km2) Population Capita

Boston, MA* 3,419 6,564.9 3,867,738 18,690

Chicago, IL 6,222 11,363.4 7,326,291 16,736

San Francisco, CA 4,679 18,749.3 6,230,376 19,664

Dallas, TX 3,510 17,968.1 3,884,004 15,904

t The Census blockgroups having no population, no household, and no workers

have been excluded. (See Appendix for more detail information.)

* The error of 1990 Census STF3A of Boston has been fixed.
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Table 1.2 Variables of Socioeconomic Characteristics of Residents

No Variable Name Variable Definition Related Census Related
Table Census File

1 POPDEN population density P1 STF301

2 WHPCT percent white P8 STF301

3 KIDPCT percent of kids younger than 18 P13 STF301

4 OLDPCT percent of seniors older than 64 P13 STF301

5 CITPCT percent citizen P37 STF309

6 HHSPCT percent of households having less than three members P16 STF305

7 ENGPCT percent of people who speak English at home P31 STF307

8 STUPCT percent of the elementary and secondary students P54 STF310

9 CARPCT percent of workers commuting by drive-alone or car pool P49 STF309

10 TIMEAVG average travel time to work in minutes for whose workers who do not work at P51 STF309home

11 HIEDPCT percent of adults (25 years and over) with college or higher degree P57 STF31 0

12 LABPCT percent of labor force P70 STF301

13 UEMPPCT percent of unemployed workers P70 STF312

14 HHIMED median household income P80A STF314

15 WAGEPCI percent of people with wage or salary income P90 STF321

16 INCPC income per capita P114A STF322

17 POV_PCT percent of people below poverty level P121 STF323

18 OWN PCT percent of home ownership H19 STF328
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Percent of Whites
in Four Metropolitan Areas
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Percent of Children
in Four Metropolitan Areas
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Income per Capita
in Four Metropolitan Areas
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2

QUANTIFYING and STRATIFYING

RESIDENTIAL CLUSTERS in BOSTON

METROPOLITAN AREA

There are 3.9 million people in the Boston Metropolitan Area as of 19901. The

average population density is 589 persons per square kilometer (1,525 persons

per square mile). The white population is 3.4 million, which is 88 percent of total

population. That is, roughly speaking, nine out of ten people in the Boston

Metropolitan Area are white. This is higher than the United States average of 80

percent. 22 percent of the population is under 18 years old, which is less than

the United States average of 26 percent. 13 percent of the population is 65 years

and over. The adults having bachelor's degree or higher degree out of people

aged 25 years and over is 31 percent, which is far greater than the U.S. average

of 20 percent.

Throughout this thesis, all the numbers are as of 1990 according to the 1990 Census Summary

Tape File 3A if there is no other remark.
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Table 2.1 Comparison of U.S. and the Four Metropolitan Areas

Population

Land Area

Pop. Den.

Pct. White

Pct. Kids

Pct. Old

Pct. LF.

Pct. Unemp.

Pct. Car

Pct. Hi. Ed.

Med. HH Inc.

Inc. per Cap.

Pct. Pov.

Pct. Own.

CPI **

Adj. HH Inc.

Adj. Inc pc

V ***

Radius (km)

Radius (mi)

U.S. *

248,709,873

80.3

25.6

12.6

65.3

6.2

86.5

20.3

30,056.0

14,420.0

13.1

64.2

134.6

t (1) Population Density, (2) Percent of White, (3) Percent of Kids, (4) Percent of Old, (5) Percent

of Labor Force, (6) Unemployment Rate, (7) Percent of Drive Alone or Carpool, (8) Percent of

Bachelor's degree or Higher, (9) Median Household Income, (10) Income per capita, (11) Percent

of People Under Absolute Poverty Level, and (12) Percent of Home Ownership.

* Source: U.S. Bureau of the Census, 1990 Census of Population and Housing, Summary Tape

File 1. The study areas are based on the selected blockgroups which come from U.S. Bureau of

the Census, 1990 Census of Population and Housing, Summary Tape File 3

** January 1991 CPI; North Eastern Urban, Chicago CMSA Urban, San Francisco CMSA Urban,
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Boston

3,867,738

6,564.9

589.2

88.4

21.8

12.7

69.3

6.4

81.3

30.9

42,167.4

18,690.8

8.4

65.2

140.9

40,282.0

17,855.1

270.0

52.8

32.8

Chicago

7,326,297

11,363.4

644.7

70.9

26.0

11.3

68.5

6.7

80.0

24.5

38,500.7

16,736.0

11.3

67.4

135.1

38,358.2

16,674.1

180.0

85.1

73.1

San Francisco

6,230,376

18,749.3

332.3

69.5

23.1

11.1

69.6

5.1

84.2

30.9

44,119.5

19,663.6

8.6

60.8

136.7

43,441.7

19,361.5

165.0

114.1

70.9

Dallas

3,884,004

17,968.1

216.2

75.3

27.2

8.0

73.0

5.7

94.7

25.9

35,925.5

15,903.5

11.7

61.9

131.4

36,800.4

16,290.8

360.0

75.6

47.0



and South Urban for all Items. Base period 1982-84 = 100

Here, I calculate a radius as a simple measure of geographic size. V is the angle of available

wedge, i.e., Area (V / 360) * p * R 2 ]. So, R = (360 / V) * (Area / p) ] .

The median household income of the Boston Metropolitan Area was much

higher than the U.S. average. The nominal median household income of Boston

is 42,000 dollars, which is 40 percent higher than that of U.S. Even though I

adjust the nominal income with the Consumer Price Index (CPI), Boston

households earn 34 percent more than the U.S. average. The percent of people

who are under absolute poverty threshold was 8.4 percent, which is also far less

than the United States average of 13.1 percent. The percent of people having

bachelor's degree or a higher degree is much higher than the U.S average, and

about one out of three adults 25 years or older living in the Boston Metropolitan

Area, had college or higher level of education.
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2.1 What Latent Factors Differentiate

Neighborhoods?

Factor analysis is a statistical approach that can be used to analyze

interrelationships among a large number of variables and to explain these

variables in terms of their common underlying dimensions (factors). Factor

analysis is a way of condensing the information contained in a number of original

variables into a smaller set of dimensions (factors) with a minimum loss of

information.

Factor analysis is especially useful in social science, where there are no obvious

fundamental variables as in physical science, and also no way of performing

laboratory experiments to keep selected variables constant. Thus, we can start

with what may be a rather arbitrary selection of characteristics and reduce them

to a formally fundamental set of factors. This concept is based on the principles

of parsimony. Or, in many cases, we interprete the newly sorted variables as a

fundamental underlying, or latent, forces dictating the observable social

phenomena.

For example, one can summarize the correlation between two variables in a

scatterplot. A regression line can then be fitted that represents the "best"

summary of the linear relationship between the variables. If we could define a
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variable that would approximate the regression line in such a plot, then that

variable would capture most of the "essence" of the two items. Subjects' single

scores on that new factor, represented by the regression line, could then be used

in future data analyses to represent that essence of the two items. In a sense we

have reduced the two variables to one factor. Note that the new factor is actually

a linear combination of the two variables.

The example described above, combining two correlated variables into one

factor, illustrates the basic idea of factor analysis, or of principal components

analysis. If we extend the two-variable example to multiple variables, then the

computations become more involved, but the basic principle of expressing two or

more variables by a single factor remains the same.

After we have found the line on which the variance is maximal, there remains

some variability around this line. In principal components analysis, after the first

factor has been extracted, that is, after the first line has been drawn through the

data, we continue and define another line that maximizes the remaining

variability, and so on. In this manner, consecutive factors are extracted. Because

each consecutive factor is defined to maximize the variability that is not captured

by the preceding factor, consecutive factors are independent of each other. Put

another way, consecutive factors are uncorrelated or orthogonal to each other.

Note that as we extract consecutive factors, they account for less and less
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variability. The decision of when to stop extracting factors basically depends on

when there is only very little "random" variability left. The nature of this decision

is arbitrary; however, various guidelines have been developed. First, we can

retain only factors with eigenvalues greater than 1. In essence this is like saying

that, unless a factor extracts at least as much as the equivalent of one original

variable, we drop it. This criterion was proposed by Kaiser (1960), and is

probably the one most widely used. Second, A graphical method is the scree test

first proposed by Cattell (1966). We can plot the eigenvalues in ascending order

in a simple line plot. Cattell suggests to find the place where the smooth

decrease of eigenvalues appears to level off to the right of the plot. To the right

of this point, presumably, one finds only "factorial scree" -- "scree" is the

geological term referring to the debris which collects on the lower part of a rocky

slope. Both criteria have been studied in detail (Browne, 1968; Cattell & Jaspers,

1967; Hakstian, Rogers, & Cattell, 1982; Linn, 1968; Tucker, Koopman & Linn,

1969). Using this general technique, the first method (Kaiser criterion)

sometimes retains too many factors, while the second technique (scree test)

sometimes retains too few; however, both do quite well under normal conditions,

that is, when there are relatively few factors and many cases. In practice, an

additional important aspect is the extent to which a solution is interpretable.

The extraction of principal components amounts to a variance maximizing

(varimax) rotation of the original variable space. We could rotate the axes in any
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direction without changing the relative locations of the points to each other;

however, the actual coordinates of the points, that is, the factor loadings would of

course change. For example, in a scatterplot we can think of the regression line

as the original X axis, rotated so that it approximates the regression line. This

type of rotation is called variance maximizing because the criterion for (goal of)

the rotation is to maximize the variance (variability) of the "new" variable (factor),

while minimizing the variance around the new variable

Using the above set of factor analysis, I standardize the description of

neighborhoods, which in turn should allow for comparisons between different

neighborhoods on a common basis. We can see if the fundamental factors are

the same for each neighborhood. In addition, we can calculate factors which are

independent, and can be used as basic variables for another model, such as

cluster analysis and multiple regression analysis.

In the Boston Metropolitan Area, four principal components of the 18 variables

explain 71.4 percent of total variation. In other words, we reduced the variables

by 22.2 percent (18 to 4), but they can still explain 71.4 percent of variations

across all blockgroups. As we shall see, examination of the four principal

components suggests that they focus on baseline, children, income, and age in

order of importance.
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Figure 2.1 Scree Plot (Boston)

Scree Plot

Component Number

Table 2.2 Percent of variance explained by factors (Boston)

Total

5.871

3.486

2.203

1.293

Initial Eigenvalues

% of Var.

32.618

19.364

12.241

7.184

Cumul. %

32.618

51.982

64.224

71.408

Rotation

Total

4.681

3.216

2.642

2.314

Sums of Squared Loadings

% of Var. Cumul. %

26.006 26.006

17.868 43.874

14.678 58.552

12.855 71.408

* Extraction Method: Principal Component Analysis.
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If all the original variables were perfectly independent ideally, the eigen values of

each variables would be one and each variable would explain 5.5 percent of the

total variation. We would then need all of the variables to explain the differences

among neighborhoods. In actuality, however, many observable characteristics

are correlated with each other. A single cause can make them move

synchronously, or they move to the same direction by chance. Because they vary

simultaneously, we can reduce the number of variables according to principles of

parsimony.

In Table 2.3, each coefficient in each cell in the component matrix represent the

load, in both magnitude and direction. The square of each coefficient shows the

percent of loading of each variables on the extracted principal components, i.e., -

0.731 means Component 1 is loaded by 53.4 percent of the variation of the

population density (POPDEN). The negative sign indicates a negative

relationship between the original variables and the component. That is,

neighborhoods having higher scores of Component 1 are less dense areas.

In addition, the composition of components shows the relationship among

original variables. For example, we can say that white people tend to live in lower

density neighborhoods because a higher score of Component 1 arise in

blockgroups with lower density (POPDEN -0.731) and higher percentage of

white people (WHPCT 0.779) at the same time.
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Table 2.3 Rotated Component Matrix (Boston)

Component 1

Baseline Factor

Component 2

Children Factor

Component 3

Income Factor

Component 4

Age Factor

POPDEN

WHPCT

KIDPCT

OLDPCT

CITPCT

HHSPCT

ENGPCT

STUPCT

CARPCT

HIEDPCT

LABPCT

-.315

-.309

-.060

.218

.786
-.171

.768

-.052

.753

-.044

.027

.199

-.406

-.355

-.058

-.813

-.191

.419

.282

-.259

-.013

.245

HHIMED .454 .211

WAGEPCT .238 .112

INCPC .269 -.161

POVPCT -.743 .140

OWNPCT .767 .307

* Extraction Method: Principal Component Analysis.

Normalization. Rotation converged in 6 iterations.

-.082

.110

-.173

-.067

.008

-.002

.203

-.060

-.070

.326

.839

.102

-.396

.754

.251

.846

-.319

.343

.106

.066

.095

-.788

.075

-.269

.091

.057

-.000

-.015

.184

.856

-.169

.213

.818

.033

-.242

.095

Rotation Method: Varimax with Kaiser

** The shaded cells represent main loads to each component. They are the largest load out of

each row and not less than 0.6, i.e. at least 36 percent of the variation of each variable (0.6 2
0.36).

**** The shaded variables (leftmost column) tend to evenly spread across the components instead

of focusing on a specific component.
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The most important factor of the Boston Metropolitan Area is Component 1,

called 'Baseline Factor'. In Boston, this Baseline Factor consists of the seven

2variables out of eighteen variables. The variables move at the same time, i.e.,

higher score of Baseline Factor means; higher percent of white, lower

population density, higher percent of citizenship, higher percent of english

speaking households at home, higher percent of driving to work, lower percent of

the absolutely poor population, and higher percent of home ownership in the

neighborhood. The compositions of principal components are a little different

from each Metropolitan Areas, as you will see in the following chaper.

By itself, this factor explains 26 percent of the total variation among

neighborhoods across all 18 variables. High value of this factor apply to

neighborhoods of not poor white citizens speaking only English at home, owning

a home, living in low density area, and driving to work. Low values arise in

neighborhoods of poor non-white foreigners speaking a language other than

English at home, not owning a home, living in high density area, and not driving

to work.

2 The composition of each factor may subtly vary across metropolitan areas, but I use the same

name for similar factor.
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The Children Factor is the second most important factor in the Boston

Metropolitan Area. Component 2 shows a similar patterns of variation in the

percent of children, the percent of students attending secondary school or below,

and the percent of households having three and more members. So, Component

2 represents children and family characteristics which are independent from

other factors (geometrically perpendicular). It explains 18 percent of overall

variation. For example, if a neighborhood has a higher children factor, it tends to

have more kids, more students, and more household members.

Third, education and income vary among neighborhoods independently from

other socioeconomic variables. The coefficients suggests, if more people have

bachelor's or higher degree, the people in the neighborhood tend to have higher

household income and personal income per capita. As you notice, both higher

education and income go in same direction, i.e., higher educated people have

higher income. It explains 15 percent of the total variations.

The last important delineating factor of the Boston Metropolitan Area is what we

call 'age' consisting of percentage of old population and percentage of labor

force participation. The Component 4 is bigger if a neighborhood has less old

population, more workers, and more people whose income source is wage or

salary. It explains 13 percent.

In total, all the above four principal factors explain 71.6 percent of variations
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among neighborhood characteristics in the Boston Metropolitan Area in 1990.

Interestingly, the average travel time to work and unemployment rate are not

important component of our socioeconomic factors. Both of them are dispersed

in many components, so they don't form independent components. This means

that the variation of both of them among neighborhoods are not significantly

different compared to other socioeconomic variables. The correlation coefficients

between average travel time to work (or unemployment rate) and other variables

are also smaller that other coefficients. In other words, the covariance between

average travel time and percentage of people driving to work, for example, is

weaker than the covariance between percentage of whites and percentage of

people driving to work.
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2.3 Stratification of Neighborhoods

In order to classify the neighborhoods, I use cluster analysis based on the four

independent factors extracted by the factor analysis in the previous section.

Cluster analysis is a multivariate analysis technique that seeks to organize

information about cases or variables so that relatively homogeneous groups, or

"clusters," can be formed. The clusters should be internally homogenous and

externally heterogeneous. In other words, members in a cluster are similar to

one another in the same group, and members are not like members of other

groups.

The joining or tree clustering method uses the dissimilarities or distances

between objects when forming the clusters. These distances can be based on a

single dimension or multiple dimensions. For example, if we were to cluster fast

foods, we could take into account the number of calories they contain, their

price, subjective ratings of taste, etc. The most straightforward way of computing

distances between objects in a multi-dimensional space is to compute Euclidean

distances. If we had a two- or three-dimensional space this measure is the actual

geometric distance between objects in the space (i.e., as if measured with a

ruler). We can use actual real distances, or some other derived measure of

distance that is more meaningful to the researcher.

In this thesis I use Ward's method. This method uses an analysis of variance
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approach to evaluate the distances between clusters. In short, this method

attempts to minimize the Sum of Squares (SS) of any two (hypothetical) clusters

that can be formed at each step. (Ward, 1963). In general, this method is

regarded as very efficient.

Cluster analysis presents the problem of how many clusters to keep. Yet, no

widely accepted statistical method to determine the number of clusters has

developed. However, we can use R2 to decide a reasonal number of groups. For

example, we can classify all neighborhoods into two groups, then we can

measure R2 taking the variance between the groups (explaned portion by the

clustering) divided by the total variance among all neighborhoods. We can again

calculate R2 with three groups, and so on. R2 would be 0 (zero) with no

classification because there is no explanation. If we use the same number of

groups as many as the number of neighborhoods, R2 .would eventually be one

because we treat each blockgroup as each particular group.

2 2

As we use more number of groups, R increases, but the increment of R2

generally speaking, decreases. So, there is a trade-off: number of groups vs.

explanation power. In other words, we need to decide the smaller number of

groups with a minimum loss of explanation power. In this thesis, I decided

number of clusters when R2 is between 0.7 and 0.8, which means the

classification explain 70 or 80 percent of the total variation.
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Table 2.4 Types of Neighborhoods (Boston)

Type Factor Minimum Maximum

A Baseline Factor -1.65725 1.77389

N=1,881 Children Factor -3.24035 2.78211

(55 %) Income Factor -3.36684 1.35712

Generic White Age Factor -5.28612 2.86687

B Baseline Factor -4.23790 0.82914

N=527 Children Factor -3.73016 1.27724

(15.4 %) Income Factor -1.21592 3.56374

Young Labor IAge Factor -1.31324 3.19455

C

N=454

(13.3%)

Non-white
Low Income

Baseline Factor

Children Factor

Income Factor

Age Factor

-5.23018

-0.69366

-2.15750

-3.62040

0.76252

3.84356

2.38877

2.44578

Mean Std. Deviation

.5391403 0.4317911

-0.039556 0.7371879

-0.4846772 0.5036457

0.0510127 0.8919396

-.9561663 0.8502623

-.9994230 0.9772320

0.4200407 0.7253910

0.8050371 0.6173182

-1.3,982398 1.1513438

1.2546407 0.7641717

-0.2111196 0.8621008

-0.2428194 0.9576004

D Baseline Factor -2.41803 1.11860 0.2240604 0.5051806

N=556 Children Factor -2.85245 2.28831 0.0566430 0.8303874

(16.3 %) Income Factor -1.06391 5.95639 1.4139652 1.0904758

High Income jAge Factor -6.57086 1.09179 -0.7373552 1.0654339

* The shaded cells are selected by author to highlight the characteristics of each cluster.

In the Boston Metropolitan Area, I find there are four distinct types of

neighborhoods. Type A is a typical white neighborhood having a slightly higher

score of the Baseline factor. That is, major whites in Boston are generally

citizens living in lower density neighborhoods and driving to their workplaces.

This type of neighborhoods look like the typical suburban neighborhoods of the

Boston Metropolitan Area. 55 percent of the neighborhoods are in this category.
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Another group of neighborhoods (Type B) has a non-white younger labor force

whose family size is small. 15.4 percent of neighborhoods are in this category.

The third type of residents are non-white with many children (13.3 percent). The

last unique type of neighborhoods are highly educated people whose income is

high.

2.4 Where are the Clusters?

The socioeconomic clustering reveals the locational preferences of residents on

the map. First of all, as indicated, socioeconomically similar neighborhoods are

geographically close to each other. (Figure 2.2) That is, they tend to

agglomerate.

Typical white citizens (type A) live in surburban area of the Boston Metropolitan

Area. This type of neighborhood comes the majority of the Boston Metropolitan

Area; 55 percent of neighborhoods. These are the generic neighborhoods in

Boston. Generally, young workers tend to have less children and live near the

city, including nothern Boston, Cambridge, Somerville, and the western area

along the Interstate Highway 90 which has many jobs. Non-whites with many

children live in downtown Boston, Lowell, Lawrence, or subcenters around

Interstate Highway 495. Highly educated people earning higher income mainly
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live in the western suburban area of Boston.

Interestingly, the edges of the neighborhood agglomeration match the town

boundaries. Considering the fact that the city/town governments have the

authority to decide the school quality, property tax rate, zoning, etc., the

relationship between neighborhood characteristics and municipal government

would be another topic for further research.

Non-whites with many children live in the downtowns of cities, but their average

time to work is not less than that of other areas. In a simple monocentric city

model of urban economics, downtown residents should have more benefit of

transportation than suburban residents. It is another possible topic that should be

examined in terms of location choice in the future.3

3 Note that the geographic unit of this analysis is a Census blockgroup, especially when you see

maps in this paper. Each blockgroup can be assumed equivalent for the purpose of this thesis in

terms of population or socioeconomic characteristics. However, the bigger shading on the map

may not represent more people or more importance because the physical sizes of blockgroups

vary. The blockgroups in the suburban area are generally larger.
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Residential Clusters of
Boston Metropolitan Area

Major Roads
Interstate Highway
Town Boundary

Types of Residents
Type A - Background
Type B - Yuppies
Type C - Non-white Poor
Type D - High Inc. & Ed.Myoung-Gu Kang

Aprcl 24,2001
Source: Census, MassGIS, & ESRI
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Employment Density
in Boston Metropolitan Area

A
0 5 10 15 Miles

Major Roads
\/ Interstate Highway

Town Boundary
Employment Density (persons per sqkm)

50 or Less- 50 - 100
100 - 200
200 or More

Myoung-Gu Kang
April 24, 2001
Source: Census, BTS, MassGiS, &ESRI
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Employment to Workers Ratio
in Boston Metropolitan Area

VA

A
0 5 10 15 Miles

Major Roads
/V interstate Highway

Town Boundary
Employment to Workers Ratio

1 or Less
1 -5
5-10
10 or over

Myoung-Gu Kang
Apr 24, 2001

as Source: Census, BTS, MassGIS, & ESRI
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3

CHICAGO, SAN FRANCISCO and

DALLAS'

In this chapter, three more metropolitan areas are examined; Chicago (IL

CMSA), San Francisco - Oakland - San Jose (CA CMSA), and Dallas - Fort

Worth (TX CMSA). What are the factors which delineate the neighborhoods in

each metropolitan areas? Are the factors similar across the metropolitan areas?

What are the common factors? How about the geographical distribution of each

metropolitan area? Do they show identical preferences or different preferences

across the metropolitan areas? I use the same methodology and basic criteria to

look at these metropolitan areas as applied in the Boston Metropolitan Area.

1 Refer to Appendix for all the detailed statistics.
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3.1 Chicago Metropolitan Area

Chicago has about twice bigger land and population (11,363 km2 and 7.3 million

population) than Boston has (6,565 km2 and 3.9 million population). The average

population density is 644.7 persons per square kilometer, quite similar population

density to that of Boston Metropolitan Area (589 persons per square kilometer).

The percent of whites is 70.9 percent, which is less than the U.S. average (80.3

percent). The household income (38,501 dollars) and income per capita (16,736

dollars) are greater than those of the the United States average (30,056 dollars

and 14,420 dollars, respectively).

Using the same methodology as I did on the Boston Metropolitan Area, I

identified five key factors in Chicago Metropolitan Area: Baseline factor, children

factor, income factor, age factor, and citizenship. Roughly speaking, we have a

similar set of underlying factors in the Chicago Metropolitan Area as in the

Boston Metropolitan Area, except the percent of the English speaking citizens.

Like the Boston Metropolitan Area, baseline factor is the most important factor of

the Chicago Metropolitan Area. This component consists of; population density (-

), percent of white (+), driving to work (+), unemployment rate (-), percent of
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absolutely poor people (-), and home ownership (+). That is, a higher score of

this factor means; lower population density, higher percent of white, more driving

to work, lower unemployment rate, lower percent of absolutely poor residents,

and more home owners.

Second, children and household size relates to the location of residents in

Chicago Metropolitan Area even though simple correlation coefficients show that

the correlations between the percent of children and the other variables are not

large.

The third important factor is education and income. These two variables move

the same way, i.e., highly educated people generally get higher income. The

fourth factor is the percent of younger labor force.

The fifth factor is percentage of non-citizen population. It is unique in the Chicago

Metropolitan Area. As you will see, Dallas has the same non-citizen factor.
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Table 3.1 Rotated Component Matrix (Chicago)

Component 1 Component 2

Baseline Factor Children Factor

(22.3 %)**

POPDEN

WHPCT

KIDPCT

OLDPCT

CITPCT

HHSPCT

ENGPCT

STUPCT

CARPCT

HIEDPCT

LABPCT

UEMPPCT

HHIMED

WAGEPCT

INCPC

POVPCT

OWN-PCT

-0.129

0.195

0.017

-0.085

0.076

-0.128

-0.517

0.024

0.265

-0.655

0.418

0.335

0.190

(17.6%)

-0.072

-0.296

0.892

-0.506

-0.004

-0.097

0.113

0.294

-0.210

-0.056

0.299

0.140

0.135

-0.206

0.247

0.204

Component 3

Income Factor

(16.0%)

-0.090

0.329

-0.187

0.002

0.025

0.034

0.139

-0.100

-0.014

0.105

0.847

0.169

-0.369

0.835

0.263

0.882

-0.364

0.366

Component 4

Age Factor

(12.5 %)

0.011

0.092

0.091

-0.749

-0.030

-0.140

-0.012

0.028

0.122

-0.140

0.225

-0.232

0.143

0.799
0.052

-0.272

-0.053

Component 5

Citizen Factor

(12.0 %)

-0.434

-0.094

-0.044

0.000

0.962

0.051

-0.005

0.092

0.162

0.061

-0.035

0.131

0.113

-0.024

0.088

-0.013

0.226

* Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser
Normalization. Rotation converged in 8 iterations.

** Variance Explained by the component.

*** The shaded cells represent main loads to each component. They are the largest load out of
each row and not less than 0.6, i.e. at least 36 percent of the variation of each variable (0.62

0.36).

**** The shaded variable (leftmost column) tends to evenly spread across the components

instead of focusing on a specific component.
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With these five factors, I do cluster analysis on Chicago Metropolitan Area. I find

that threre are five clusters in Chicago Metropolitan Area: generic white

neighborhoods as background (Type A), the young high-income neighborhoods

with less children (Type B), non-white poor citizens' neighborhood (Type C),

highly educated high-income neighborhoods (Type D), and non-citizen

neighborhoods with many children (Type E).

In the Chicago Metropolitan Area, highly educated high income people formed

their neighborhoods and are located at the northern part and around the West

near the intersections of major highways.

Young labors with less children tend to agglomerate at the Nothern part along the

lake side or at the suburban area.

Even though the land is physically much flatter than Boston Metropolitan Area,

we see clear "wedges" at least in the inside of the inner interstate highway.

Beyond the inner interstate highway, we see some mixture pattern of

neighborhoods instead of continuous and homogeneous circumferential pattern -

which is almost always assumed in the traditional urban economic model.

Therefore, social factors affect people's choice of residential location at least as

much as economic factors do. Furthermore, the combined effects - not a single

effect - are necessary for us to understand the land use correctly, which is not

easily captured in the multivariate regression analysis.
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As you will see again, the socioeconomically similar neighborhoods generally

tend to be located close to similar neighborhoods in the Chicago Metropolitan

Area.

Notice that each factor alone is not enough to tell the characteristics of the types

of neighborhoods. As you see in the cluster anlaysis, for example, a

'combination' of the percent of children and other variables define a

neighborhood's characteristics.There are a group of neighborhoods in which non-

citizens speaking a language other than English at home with more children live.

These type of neighborhoods appear at the Northwest and Southwest wedges

from downtown Chicago. They also appear along the circumferential highway

corridor.
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Table 3.2 Types of Neighborhoods (Chicago)

Type Factor Minimum Maximum Mean Std. Deviation

A Baseline Factor -1.572 2.378 0.732 0.351

N = 2,479 Children Factor -4.840 2.982 -0.198 0.748

(39.8 %) Income Factor -2.269 1.654 -0.391 0.464

Background Age Factor -7.226 3.047 -0.070 1.009

Citizen Factor -1.981 1.512 0.204 0.517

B Baseline Factor -3.740 0.647 -0.801 0.959

N = 530 Children Factor -3.974 0.634 -1.356 0.942

(8.5%) Income Factor -1.365 3.018 0.399 0.755

Young Labor Age Factor -0.382 3.531 1.313 0.652

Citizen Factor -2.442 1.609 0.087 0.649

C Baseline Factor -4.822 1.589 -1.189 0.976

N = 1,177 Children Factor -2.889 3.488 0.610 0.878

(18.9 %) Income Factor -1.954 1.313 -0.526 0.480

Non-white Age Factor -6.310 2.088 -0.350 1.008

Low Income Citizen Factor -1.628 2.286 0.885 0.391

D Baseline Factor -3.412 1.066 0.096 0.583

N = 810 Children Factor -3.361 3.367 -0.057 1.039

(13.0%) Income Factor -0.545 7.760 1.739 1.304

High Incomers Age Factor -4.055 1.924 -0.320 0.765

Citizen Factor -3.006 1.921 0.129 0.494

E Baseline Factor -3.959 1.470 -0.055 0.752

N = 1,226 Children Factor -1.970 4.374 0.439 0.825

(19.7%) Income Factor -1.623 3.980 -0.027 0.640

Non-citizens Age Factor -2.586 2.850 0.120 0.721
Citizen Factor -4.637 0.810 -1.386 1.129

* The shaded cells are selected by author to highlight the characteristics of each cluster.
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Residential Clusters of
Chicago Metropolitan Area

30 40 50 Miles
Myoung-Gu Kang
April 24, 2001
Source: Census & ESRI

llrds.shp
/N Primary road with limited access
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Type A - Background
Type B - Yuppies
Type C - Non-white Poor
TypeD- High nc. &Ed.
Type E - Non-citizens
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3.2 San Francisco Metropolitan Area

San Francisco has a land area three times larger (18,749 km2) than Boston

(6,565 km2), but about one and a half times more population (6.2 millions) than

Boston (3.9 millions). The average population density, therefore, is 332 persons

per square kilometer, i.e., about a half of Boston Metropolitan Area (589 persons

per square kilometer). The average percent of white people is 69.5 percent,

which is less than the U.S. average, 80.3 percent. The household income

(44,119 dollars) and income per capita (19,663 dollars) are greater than those of

the the United States average (30,056 dollars and 14,420 dollars, respectively).

Using the same factor analysis approach as for Boston and Chicago, I identify

five key factors in the San Francisco metropolitan area which can be interpreted,

in order of importance, as primarily related to income, children, baseline, age,

and the average travel time to work. Four of these are the same factors as the

above metropolitan areas, and one factor is new which is average travel time to

work.
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Table 3.3 Rotated Component Matrix (San Francisco)

Component 1 Component 2

Baseline Factor Children Factor

(16.2 %)** (18.9 %)

Component 3

Income Factor

(21.4%)

Component 4

Age Factor

(13.7 %)

Component 5

Time Factor

(6.5 %)

POP, DEN

WHPCT

KIDPCT

OLDPCT

CITPCT

HHSPCT

ENGPCT

STUPCT

TIMEAVG

HIEDPCT

LABPCT

UEMPPCT

HHIMED

WAGEPCT

INCPC

POVPCT

OWNPCT

* Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser

Normalization. Rotation converged in 8 iterations.

** Variance Explained by the component.

The shaded cells represent main loads to each component. They are the largest load out of

each row and not less than 0.6, i.e. at least 36 percent of the variation of each variable (0.62
0.36).

**** The shaded variable (leftmost column) tends to evenly spread across the components

instead of focusing on a specific component.
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-0.229

0.470

-0.224

0.128

0.086

-0.051

0.208

-0.133

0.281

0.055

0.711

0.176

-0.378

-0.197

0.866
-0.314

-0.133

-0.224

0:843

0.557

0.186

-0.397

-0.011

0.148

0.189

0.215

-0.263

-0.042

0.453

-0.048

0.060

0,2
0.235

-0.071

0.488

0.025

0.090

0.053

-0.129

0.095

-0.054

0.179

-0.232

0.277

0.227

0.061

0.086

0.194

-0.852

-0.022

-0.240

-0.041

0.145

0.049

-0.004

0.156

0.890

-0.130

0.137

0.849

-0.007

-0.117

-0.176

0.221

-0.260

0.150

-0.162

0.103

-0.040

0.113

0.201

-0.375

0.724

0.227

-0.068

0.298

0.108

-0.099

0.154

0.302

0.045



The most important factor of the San Francisco Metropolitan Area is the income

component. This component consists of; percent of highly educated people (+),

median household income (+), income per capita (+), and percent of absolutely

poor people (-). Higher score of this factor means; higher percent of highly

educated people, higher median household income, higher income per capita,

and lower percent of absolutely poor people. This component alone explain the

21 percent of total variations among neighborhoods in San Fracisco

Metropolitan Area.

Second, children and household size is another distinct factor amongh

neighborhoods in San Francisco Metropolitan Area. Simple correlation

coefficients show very little correlation between the percent of children and the

other variables. However, this factor alone explains 19 percent of the total.

The third important factor is baseline. The fourth factor is the percentage of

younger labor force. Finally, the average travel time to work is a unique factor in

the San Francisco.

Cluster analysis shows that there are five clusters in San Francisco Metropolitan

Area: High income neighborhood, young labor force with no children, low income

people spending more time to get to work, white citizens, and non-white people.

As you see on the map, the neighborhoods in a same group generally tend to
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agglomerate. The high income residents or young workers live at the left side of

the bay along the ocean. Non-white people or poor residents live at the right side

of the bay along the water. Beyond them, we can find wealthy neighborhood

again, then relatively low income people appear next.

In the San Francisco Metropolitan Area, generic white neighborhoods (Type A)

tend to be located in low density suburban area. Yuppies (Type B), who are

young labor force with no children, appear at the Northwestern and Southwestern

of downtown and left bottom side of inner bay.

Interestingly, the entering points at the East side of the bay, of the bridges to

downtown, are occupied by low income neighborhoods. This could be examined

in a later study. It could have been a very far fringe of the San Francisco

Metropolitan Area created by the geography, "water body". The affluent residents

expanded outward along the ocean side. The bridge suddenly created a new

land near downtown, then low income people went there because of the access.

The rich people can go a liitle further than them, then reside at the East of the

bay.

We can observe the long commuting low income neighborhood clusters (Type E)

at the right side of the bay in San Fracisco Metropolitan Area. These group of

neighborhoods are low income people, however, spend more time to get to

workplace than other groups. They tend to be located either on the outskirt of the
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metropolitan area or on the right side of the bay along the interstate highway

corridors.

Table 3.4 Types of Neighborhoods (San Francisco)

Type Factor Minimum Maximum Mean Std. Deviation

A Baseline Factor -1.043 1.905 0.752 0.403

N = 916 Children Factor -2.080 3.323 0.232 0.585
(19.6 %) Income Factor -2.537 0.888 -0.462 0.526

Background Age Factor -2.855 2.538 0.156 0.692

Time Factor -4.292 1.211 -0.505 0.624

B Baseline Factor -3.771 1.955 -0.157 0.910
N = 1,000 Children Factor -3.962 1.720 -1.053 0.998
(21.4 %) Income Factor -2.338 2.667 -0.094 0.688

Yuppies Age Factor -2.622 2.818 0.792 0.609

Time Factor -2.805 3.499 0.074 0.954

C Baseline Factor -3.137 2.437 0.026 0.971

N = 695 Children Factor -3.606 2.997 0.560 0.842

(14.9 %) Income Factor -4.170 1.071 -1.087 0.930
Long Commut Age Factor -6.507 2.873 -0.347 0.904

Poor Time Factor -0.934 5.263 1.063 0.915

D Baseline Factor -3.840 1.669 0.316 0.592
N = 1,199 Children Factor -3.086 1.612 -0.149 0.633
(25.6%) Income Factor -1.166 4.525 0.929 0.853

High Incomers Age Factor -6.957 1.731 -0.678 1.125

Time Factor -4.017 3.348 -0.126 0.945

E Baseline Factor -5.654 0.823 -1.072 1.058

N = 866 Children Factor -2.285 3.429 0.728 0.786
(18.5 %) Income Factor -2.052 3.622 0.183 0.670

Non-whites Age Factor -6.314 2.007 0.137 0.747

Time Factor -4.328 4.166 -0.230 0.878

* The shaded cells are selected by author to highlight the characteristics of each cluster.
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Generally speaking, the young workers and low income people tend to live closer

to the highway corridor than other residents do. The residential location of San

Francisco Metropolitan Area seems more likey a mixture of the parrallel

development by the sea and the circumferencial development from the downtown

thanks to the bridges.
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Residential Clusters of
San Francisco Metropolitan Area

Primary Roads
//A/ Primary road with limited access
Types of Residents

Type A - Background
Type B - Yuppies
Type C - Long Commuting Poor
Type D - High Inc. & Ed.
Type E - Non-citizens

Myoung-Gu Kang
April 24, 2001
Source: Census & ESRI
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3.3 Dallas Metropolitan Area

Dallas has about three times larger land area (17,968 km2) than Boston (6,565

km2), but the same number of population (3.9 million) as Boston (3.9 million). The

average population density, hence, is 216 persons per square kilometers, i.e.,

approximately one third of Boston Metropolitan Area (589 persons per square

kilometer). The average percent of whites is 75.3 percent, which is a little bit less

than the U.S. average, 80.3 percent. The percent of eldery people (65 years and

over) was 8 percent, far less than U.S. average, (12.6 percent). The percent of

labor force was 73 percent higher than the U.S. average (65.3 percent). The

median household income (35,926 dollars) and income per capita (15,904

dollars) are greater than those of the the United States average (30,056 dollars

and 14,420 dollars, respectively).

As shown in Table 3.5, I find five key factors in Dallas metropolitan area:

Children, baseline, income, age, and citizenship in order of importance. These

variables are consistent with other metropolitan areas.
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Table 3.5 Rotated Component Matrix (Dallas)

Component 1 Component 2 Component 3 Component 4 Component 5

Baseline Factor Children Factor Income Factor Age Factor Citizen Factor

(16.1 %)** (18.5 %) (16.0 %) (14.3 %) (13.2 %)

WHPCT

KIDPCT

OLDPCT

CITPCT

HHSPCT

ENGPCT

STUPCT

CARPCT

HIED_PCT

LABPCT

UEMPPCT

HHIMED

WAGEPCT

INCPC

-0.276

o066
-0.095

0.067

0.153

-0.021

0.139

-0.086

-0.108

0.172

0.248

-0.721
0.336

0.302

0.188

POVPCT -0.35

0.461

-0.238

-0.184

0. 890

-0.309

-0.112

-0.919
-0.221

0.898
0.085

0.432

-0.287

-0.100

0.139

0.185

0.110

-0.203

0.093

0.494

-0.026

0.334

-0.197

0.000

0.120

0.037

0.250

-0.068

-0.021

-0.192

0.822
0.078

-0.313

0.872

0.139

0.884

-0.387

0.347

0.276

0.050

0.098

-0.863
-0.074

-0.109

-0.017

0.026

0.138

0.191

0.180

0.883
-0.182

0.087

0.848

-0.031

-0.194

-0.243

-0.535

0.209

-0.116

0.099

0.904
0.060

0.866
-0.003

0.116

0.429

0.070

-0.037

0.015

0.153

-0.051

0.101

-0.237

0.388

* Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser

Normalization. Rotation converged in 6 iterations.

** Variance Explained by the component.

*** The shaded cells represent main loads to each component. They are the largest load out of

each row and not less than 0.6, i.e. at least 36 percent of the variation of each variable (0.62
0.36).

**** The shaded variables (leftmost column) tend to evenly spread across the components

instead of focusing on a specific component.
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The most important factor of the Dallias Metropolitan Area is the children and

household size component. Again, simple correlation coefficients show there is

no correlation between the percent of children and the other variables.

Nevertheless, this component alone explain the 19 percent of total variation.

The second is the baseline factor. This component consists of; percent driving to

work (+), unemployment rate (-), and percent absolutely poor people (-).This

component alone explain the 16 percent of total variation among neighborhoods

in the Dallas Metropolitan Area.

The third important factor is education and income. In the Dallas Metropolitan

Area, there is a group of white citizen neighborhoods which are located in low

density suburban area. The fourth factor is the percent of younger labor force.

Finally, the percent citizens explains 13 percent of the variation in Dallas

Metropolitan Area.

Through Cluster analysis, we can find five clusters in Dallas Metropolitan Area:

general whites, non-citizens with children, young labor force with no children,

high income residents, non-white citizens. As you see on the map,

neighborhoods in the same group generally tend to agglomerate. The high

income residents are found at the northern part of Dallas and non-white citizens

live in the southern part of Dalls. The non-citizens seems to be filling the gap
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between them. Young workers without children tend to appreciate the access to

the major transportation network; they live closer to major roads.

Table 3.6 Types of Neighborhoods (Dallas)

Type Factor Minimum Maximum Mean Std. Deviation

A Baseline Factor -1.29033 1.87634 0.50753 0.425965
N = 1,126 Children Factor -2.37854 2.25021 0.093043 0.625815
(32.1 %) Income Factor -2.26905 0.83423 -0.57341 0.395671

Background Age Factor -4.33009 2.16332 -0.33653 0.791451
Citizen Factor -1.71424 2.30495 0.420364 0.558369

B Baseline Factor -3.2353 1.33865 -0.19286 0.677868
N = 554 Children Factor -3.22573 0.92134 -1.26434 0.96947
(15.8 %) Income Factor -2.05349 4.03954 0.043008 0.698138
Yuppies Age Factor -1.02361 2.86054 1.133238 0.592858

Citizen Factor -4.08883 1.41161 -0.14257 0.745804

C Baseline Factor -8.47196 0.52401 -1.87515 1.60156
N = 344 Children Factor -2.53048 2.72893 0.379408 0.712503
(9.8 %) Income Factor -1.34349 1.24279 -0.33829 0.530167

Non-whites Age Factor -5.9533 1.7 -0.37062 0.951067
Poor Citizen Factor -0.63803 3.48027 0.904604 0.537501

D Baseline Factor -4.70221 1.46284 0.138577 0.610764
N = 652 Children Factor -3.1742 2.1427 -0.22636 1.009677
(18.6%) Income Factor -1.08903 7.92172 1.338267 1.261527

High Incomers Age Factor -7.18732 1.61761 -0.57155 1.05793
Citizen Factor -2.985 1.84889 0.11706 0.482845

E Baseline Factor -2.89482 1.27751 0.107992 0.680426
N = 834 Children Factor -1.59022 2.7427 0.73471 0.582249

(23.8%) Income Factor -1.41121 2.22043 -0.16109 0.630304

Non-citizens Age Factor -2.45766 2.47741 0.301272 0.68962
Citizen Factor -5.5286 1.59971 -0.93747 1.280647

* The shaded cells are selected byauthor to highlight the characteristics of each cluster.
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Residential Clusters of
Dallas Metropolitan Area

0 10 20 30 Miles

Major Roads
/\/ Primary road with limited access
Types of Residents

Type A - Background
Type B - Yuppies
Type C - Non-white Poor
Type D - High Inc. & Ed.
Type E - Non-Citizens

AMyoung-Gu Kang
Soc: ApCi e 24, 2001
Source: Census & ESRI
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Conclusion

In this thesis, I try to capture the socioeconomic topography of residents in

metropolitan areas. As cities are evolving, the inner structures of metropolitan

area are becoming more complex, different from the past, and creating new

urban life. The booming emergence of subcenters, for example, changes

people's lifestyle and also changes the people's location choice. Now, therefore,

we need to look at the spatial structure of cities in more detailed, and review the

theoretical models in order to capture the changing real world more correctly.

In addition, the dramatically increasing computation capacity - including GIS,

Statistics, and Database Management Systems (DMBS) - and the available

ample data set - including the U.S. Census information - make a more detailed

examination of spatial pattern. Therefore, we can take a step forward beyond the

existing urban models.

I adopt the factor analysis and the cluster analysis with four metropolitan areas

including Boston, MA (Northeast), Chicago, IL (Midwest), San Francisco, CA

(West), and Dallas, TX (South) out of each region. The factor analysis and the
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cluster analysis are sensitive to the initial data set. I use the 1990 Census

blockgroup as a basic unit of my analysis because it is the finest exhaustive data

set I have access to.

4.1 Summary of the Four Metropolitan Areas

This research finds four common factors that account for above 70 percent of the

variation in socioeconomic characteristics of local neighborhoods and that

generate a spatial pattern with significant clustering: Baseline factor, children

factor, income factor, and age factor. Average whites of the metropolitan areas

live virtually any place which is not specialized yet by a certain type of residents.

Non-whites, however, show the tendency of agglomeration. Number of children

and large household size vary among neighborhoods and are generally not

correlated with other variables. They are, however, related to location. The

peculiar factor of San Francisco metropolitan area is the average travel time to

work. In Chicago and Dallas, citizenship is an additional factor.

The variation of neighborhoods by income group clearly emerge. Generally, there

are high-income neighborhoods in each metropolitan areas, which agglomerate

at a preferable geographic location, not in downtown. Low income neighborhoods

generally are near to downtown or job locations with high density. Incidentally,
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neighborhoods with larger number of low income households tend to have

relatively more children than other neighborhoods.

Young workers, especially those with no children, tend to live basically near to

their jobs in two ways. They tend to live physically near the employment and to

the places where they can easily access transportation corridors. So, they are

found near downtown or along the highways.

In addition, all the locational patterns do not follow the circumferential pattern in

these four metropolitan areas. Near the downtown areas, up to about 15 miles

away from center, we see vivid wedges of socio-economically different

neighborhood clusters.

Travel time to work is not a factor differentiating residential clusters, except San

Francisco. Interestingly, the downtown residents' travel time is not shorter than

surburban residents' travel time. We might guess that walking to job or using

public transportation to job may takes longer than driving in terms of time. In

other words, poor people generally spend more time to commute even though

they live in downtown.
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By examining the geographical locations of the neighborhoods using GIS, we can

see the same neighborhoods tend to be located together geographically as of

1990. Whether people choose their place close to the socioeconomically same

group could be another longitudinal research topic. If it proves true, we can

predict people's residential choice based on the existing residential neighborhood

characteristics.

This alternative methodology is good for at least explanatory research for finding

the key latent factors delineating neighborhoods in terms of socioeconomic

characteristics. Then, we can stratify the neighborhoods based on the factors

using cluster analysis. This methodology reduces the risk of the assumptions of

the conventional regression analysis. We can also use the result of this analysis

as an input to a further research including, for example, multivariate regression

analysis.

4.2 Future Study

This kind of detailed research is critical for participatory planning as a consensus

building process. Residents who are willing to participate in the planning need to

know what the plans are, what the effect of the plans are, and so forth. The
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existing urban models are terse but too complicated and generalized for common

residents to understand their community and plan. Furthermore, it is hard to

answer the neighborhood level question.

For example, different neighborhoods requre different planning policy. A lot of

non-white people live in the sothern part of the city of Chicago, and they spend

more time to get their jobs than the rest metropolitan area, even though they live

close to the Central Business District (CBD). Enhancing the inner-city

transportation system could be more relevant in this area.

With panel data - time series as well as cross-sectional data - we can develop

urban space-time simulation model for forecasting the future of the city:

demographic pattern, land use, and so forth. The model also increases our

capability of planning by exploring spatial patterns and correlationed factors that

may suggest useful spatial dimension to begin modeling in theoretical models of

urban spatial structure.

This model can be integrated with the Build-out scenarios and/or with the

conventional economic models. We can then forecast the city through the time

line, for one year, 3-5 years, and the full (eternal) equilibrium. Then, we can see

the longitudinal pattern as well as cross sectional pattern at the same time.
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Figure 4.2 Examples of people and land use change

(3)

(1) One type of residency (or land use) expands to outward (A -> B -> C).

(2) One type of residency (or land use) expands to outward and moves to West (A -> B -> C).

(3) One type of residency (or land use) moves to East keeping similar size (A -> B -> C).

Then, we can develop a space-time simulation model for planning; being able to

work with the established economic models and helping people participate in the

planning. New technology, in turn, make such simulation model possible.
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APPENDIX A. GEOGRAPHIC AREAS REFERENCE'

Block Group (BG)

U.S. Census Bureau guidelines specify an ideal size for a BG of 400 housing

units, with a minimum of 250, and a maximum of 550 housing units. The

guidelines further required that BG boundaries follow clearly visible features,

such as roads, rivers, and railroads.

A BG is a combination of census blocks2 that is the finest grained subdivision of

a census tract or block numbering area (BNA). (A county or its statistically

equivalent entity contains either census tracts or BNAs; it can not contain both.)

Source: U.S. Department of Commerce. 1994. Geographic Areas Reference Manual.

http://www.census.gov/geo/www/garm.html

2 Census blocks, the smallest geographic area for which the Bureau of the Census collects and

tabulates decennial census data, are formed by streets, roads, railroads, streams and other

bodies of water, other visible physical and cultural features, and the legal boundaries shown on

Census Bureau maps.

Although most people intuitively think of census blocks as being rectangular or square, of about

the same size, and occurring at regular intervals, as in many cities of the United States, census

block configurations actually are quite different. Patterns, sizes, and shapes of census blocks

vary within and between areas. Factors that influence the overall configuration of census blocks

include topography, the size and spacing of water features, the land survey system, and the
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A BG consists of all census blocks whose numbers begin with the same digit in a

given census tract or BNA; for example, BG 3 includes all census blocks

numbered in the 300s. The BG is the smallest geographic entity for which the

decennial census tabulates and publishes sample data. It has now largely

replaced the earlier enumeration district (ED) as a small-area geographic unit for

purposes of data presentation.

Metropolitan Area (MA)3

The MA standards specify the step-by-step definition process by which the

concept of a densely settled core area plus its suburbs becomes realized as

individual MSAs, CMSAs, PMSAs, and NECMAs. Qualification of an MSA

requires the presence of a city of 50,000 or more inhabitants, or a Census

Bureau-defined UA (of at least 50,000 inhabitants) and a total population of at

least 100,000 (75,000 in New England). The county or counties including the

largest city in the core area of population become central counties of the MSA; so

extent, age, type, and density of urban and rural development.

3 The collective term used for Federal metropolitan areas has varied over time, beginning with

standard metropolitan area (SMA) in 1950, changing to standard metropolitan statistical area

(SMSA) in 1959, to metropolitan statistical area (MSA) in 1983, and to metropolitan area (MA) in

1990.
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does any adjacent county that has at least 50 percent of its population in the UA4

surrounding the largest city. (In New England where all land is allocated to be in

one or another town, the basic geographic unit for defining MSAs is the city or

town rather than the county.)

Additional outlying counties are included in the MSA if they meet specified

requirements of commuting to the central counties as well as other requirements

of metropolitan character. The minimum level of commuting to central counties

required to make a county eligible for consideration as an outlying county is 15

percent. In general, the lower the percentage of a county's resident workers

commuting to the central counties, the more demanding the other requirements

of metropolitan character the county must meet in order to qualify for inclusion.

The measures of metropolitan character specified in the standards include

required levels for the county's (1) population density; (2) percentage of

population that is classified as urban; (3) percentage growth in population

between the previous two decennial censuses; and (4) percentage of, or

absolute number of, inhabitants within the UA that qualifies the MSA.

Qualification of outlying cities and towns in New England is based on commuting

and population density.

4 Urbanized Areas (UAs): A UA is a continuously built-up area with a population of 50,000 or

more. It comprises one or more places-central place(s)-and the adjacent densely settled

surrounding area-urban fringe-consisting of other places and nonplace territory.
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An area that meets the requirements for recognition as an MSA and also has a

population of one million or more may be recognized as a CMSA if (1) separate

component areas can be identified within the entire area by their meeting

population and commuting criteria specified in the standards, and (2) local

opinion indicates there is support for the component areas. If recognized, the

component areas are designated PMSAs (and the entire area becomes a

CMSA). If no PMSAs are recognized, the entire area is designated an MSA.

(PMSAs, like the CMSAs that contain them, are composed of counties outside

New England and cities and towns within New England.)

The collective term used for Federal metropolitan areas has varied over time,

beginning with standard metropolitan area (SMA) in 1950, changing to standard

metropolitan statistical area (SMSA) in 1959, to metropolitan statistical area

(MSA) in 1983, and to metropolitan area (MA) in 1990.
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Appendix B. A sample SPSS script for Boston

SET MXMEMORY 64000
/MXCELLS 12000000
/LENGTH 999999
/WIDTH 132.

GET TRANSLATE FILE = bos sas.DBF
/TYPE = DBF.

DESCRIPTIVES VARIABLES = pop-den, hh-den, wh-pct, kid_pct, old_pct, cit-pct, hhs_pct,
eng-pct, stu-pct, car pct, time-avg, hied-pct, lab-pct, uemp-pct, hhi-med, wage-pct, incpc,
pov pct, own-pct

/STATISTICS = DEFAULT SKEWNESS.

CORRELATIONS VARIABLES = pop-den, hh-den, wh_pct, kid_pct, old_pct, cit-pct, hhspct,
eng-pct, stu-pct, car-pct, time-avg, hied-pct, lab-pct, uemp-pct, hhi-med, wage-pct, incpc,
povpct, own-pct.

FACTOR VARIABLES = pop-den, wh-pct, kid_pct, old_pct, cit-pct, hhs_pct, eng-pct, stu-pct,
car-pct, time-avg, hied-pct, lab-pct, uemp-pct, hhimed, wage-pct, incpc, pov-pct, own-pct

/METHOD = CORRELATION
/PLOT = EIGEN ROTATION
/CRITERIA = MINEIGEN(1.0) ITERATE(1 00)
/EXTRACTION = PC
/ROTATION = VARIMAX
/SAVE = REG(ALL).

CLUSTER fac1_1, fac2_1, fac3_1, fac4_1
/MEASURE = CORRELATION
/METHOD = BAVERAGE
/SAVE = CLUSTER(3, 6)
/ID = bkg-key
/PRINT = NONE
/PLOT = NONE.

* ******** **************** ***** *** *** *

FREQUENCIES VARIABLES = clu4_1
/PIECHART = PERCENT.

TEMPORARY.
SELECT IF (clu4_1 = 1).
DESCRIPTIVES VARIABLES = fac1_1, fac2_1, fac3_1, fac4_1.

TEMPORARY.
SELECT IF (clu4_1 = 2).
DESCRIPTIVES VARIABLES = fac1_1, fac2_1, fac3_1, fac4_1.
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TEMPORARY.
SELECT IF (clu4_1 = 3).
DESCRIPTIVES VARIABLES = fac1_1, fac2_1, fac3_1, fac4_1.

TEMPORARY.
SELECT IF (clu4_1 = 4).
DESCRIPTIVES VARIABLES = fac1_1, fac2_1, fac3_1, fac4_1.

SAVE OUTFILE = bos_1a.sav.

SAVE TRANSLATE
/OUTFILE = bos la.dbf
/TYPE = DB4
/KEEP = ALL
/REPLACE.

- 75 -



Appendix C. Statistical output for Boston

Descriptives
Descriptive Statistics

N Minimum Maximum Mean Std. Skewness

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error

POPDEN 3418 1.93424 50791.67 3679.884 4528.147 2.786 .042

HHDEN 3418 .70335 28750.00 1474.740 2093.124 4.094 .042

WHPCT 3418 .00000 100.00000 87.79765 21.16589 -2.716 .042

KIDPCT 3418 .00000 53.84615 21.45650 8.4642922 .041 .042

OLDPCT 3418 .00000 74.27136 13.21695 8.1253392 1.728 .042

CITPCT 3418 .00000 100.00000 86.92303 11.73535 -2.003 .042

HHSPCT 3418 .00000 100.00000 54.47186 15.71235 .168 .042

ENGPCT 3418 .00000 100.00000 78.78759 14.19574 -2.030 .042

STUPCT 3418 .00000 50.64935 15.74154 6.9567185 .189 .042

CAR PCT 3418 .00000 100.00000 80.20602 19.31394 -1.486 .042

TIMEAVG 3418 1.00000 52.35294 24.07818 4.5301975 .437 .042

HIEDPCT 3418 .00000 100.00000 30.00180 19.35380 .850 .042

LABPCT 3418 3.44828 100.00000 69.14437 10.37315 -1.213 .042

UEMPPCT 3418 .00000 86.04651 6.8782711 5.7527752 2.874 .042

HHIMED 3418 4999.000 150001.0 42625.04 18024.40 1.252 .042

WAGEPCT 3418 6.74157 100.00000 80.00046 11.46873 -1.343 .042

INC-PC 3418 2127.000 96975.00 18634.58 8349.946 2.334 .042

POV PCT 3418 .00000 85.71429 8.6701534 10.53239 2.332 .042

OWN_PCT 3418 .00000 100.00000 63.96428 27.40745 -.516 .042

Valid N (istwise) 3418 1 1 1 _ 1 1 _ 1
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Correlations
Correlations

POP DEN HH DEN WH PCT KID PCT |OLDPCT CITPCT HHSPCT ENGPCT STU PCT CARPCT TIMEAVG HIED_PCT LAB PCT UEMPPCT HHIMED WAGE.PCT INCPC POVPCT OWNPCT

POP-DEN Pearson Correlation 1.000 .942 -.408 -.172 -.092 -.460 .291 -.433 -.166 -.680 -.084 -.011 -.107 .212 -.423 -.171 -.214 .465 -.619

Sig. (2-talled) . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .530 .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

HH DEN Pearson Correlation .942 1.000 -.287 -.271 -.026 -.370 .395 -.320 -.255 -.650 -.075 .066 -.060 .131 -.379 -. 165 -. 100 .394 -.569

Sig. (2-tailed) .000 . .000 .000 .133 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

WH-PCT Pearson Correlation -.408 -.287 1.000 -.285 .209 .593 .090 .593 -.267 .450 -.124 .248 .221 -.422 .399 .197 .372 -.632 .515

Sig. (2-tailed) .000 .000 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

KID PCT Pearson Correlation -.172 -.271 -.285 1.000 -.407 -.025 -.678 -.224 .893 .325 .134 -.309 .066 .244 .022 .071 -.268 .219 .124

Sig. (2-tailed) .000 .000 .000 . .000 .139 .000 .000 .000 .000 .000 .000 .000 .000 .198 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

OLD PCT Pearson Correlation -.092 -.026 .209 -.407 1.000 .025 .415 .095 -.368 .023 -.082 -.098 -.546 -.082 -. 148 -.544 .067 -. 108 -.001

Sig. (2-tailed) .000 .133 .000 .000 . .152 .000 .000 .000 .180 .000 .000 .000 .000 .000 .000 .000 .000 .959

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

CIT_PCT Pearson Correlation -.460 -.370 .593 -.025 .025 1.000 -.057 .824 -.025 .442 .020 .129 .176 -.253 .353 .184 .263 -.472 .530

Sig. (2-talled) .000 .000 .000 .139 .152 . .001 .000 .151 .000 .242 .000 .000 .000 .000 000 .000 .000 000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

HHS PCT Pearson Correlation .291 .395 .090 -.678 .415 -.057 1.000 .032 -.645 -.415 -.130 .183 -.176 -.041 -.359 -.385 .121 .115 -.447

Sig. (2-tailed) .000 .000 .000 .000 .000 .001 . .062 .000 .000 .000 .000 .000 .018 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

ENG PCT Pearson Correlation -.433 -.320 .593 -.224 .095 .824 .032 1.000 -.144 .357 .103 .285 .224 -.378 .446 .250 .402 -.601 .573

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .062 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

STU PCT Pearson Correlation -. 166 -.255 -.267 .893 -.368 -.025 -.645 -.144 1.000 .286 .148 -.221 .037 .202 .095 .079 -. 181 .178 .174

Sig. (2-tailed) .000 .000 .000 .000 .000 .151 .000 .000 . .000 .000 .000 .029 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

CARPCT Pearson Correlation -.680 -.650 .450 .325 .023 .442 -.415 .357 .286 1.000 .029 -. 133 .182 -. 178 .380 .215 .119 -.475 .658

Sig. (2-tailed) .000 .000 .000 .000 .180 .000 .000 .000 .000 . .091 .000 .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

TIME AVG Pearson Correlation -.084 -.075 -.124 .134 -.082 .020 -.130 .103 .148 .029 1.000 .070 .084 -.053 .134 .126 .078 -.068 .153

Sig. (2-tailed) .000 .000 .000 .000 .000 .242 .000 .000 .000 .091 . .000 .000 .002 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

HIED PCT Pearson Correlation -.011 .066 .248 -.309 -.098 .129 .183 .285 -.221 -.133 .070 1.000 .232 -.388 .599 .293 .723 -.316 .209

Sig. (2-tailed) .530 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

LAB PCT Pearson Correlation -.107 -.060 .221 .066 -.546 .176 -.176 .224 .037 .182 .084 .232 1.000 -.231 .320 .678 .224 -. 383 .259

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .029 .000 .000 .000 . .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

UEMP PCT Pearson Correlation .212 .131 -.422 .244 -.082 -.253 -.041 -.378 .202 -.178 -.053 -.388 -.231 1.000 -. 381 -.293 -.383 .519 -.373

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .018 .000 .000 .000 .002 .000 .000 . .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

HHIMED Pearson Correlation -.423 -.379 .399 .022 -.148 .353 -.359 .446 .095 .380 .134 .599 .320 -.381 1.000 .503 .746 -.585 .695

Sig. (2-tailed) .000 .000 .000 .198 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

WAGEPCT Pearson Correlation -. 171 -.165 .197 .071 -.544 .184 -.385 .250 .079 .215 .126 .293 .678 -.293 .503 1.000 .251 -.476 .387

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

INC PC Pearson Correlation -.214 -.100 .372 -.268 .067 .263 .121 .402 -.181 .119 .078 .723 .224 -.383 .746 .251 1.000 -.448 .410

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

POV PCT Pearson Correlation .465 .394 -.632 .219 -.108 -.472 .115 -.601 .178 -.475 -.068 -.316 -.383 .519 -.585 -.476 -.448 1.000 -.683

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418

OWN PCT Pearson Correlation -.619 -.569 .515 .124 -.001 .530 -.447 .573 .174 .658 .153 .209 .259 -.373 .695 .387 .410 -.683 1.000

Sig. (2-tailed) .000 .000 .000 .000 .959 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418 3418
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Factor Analysis

Communalities

Initial Extraction

POPDEN 1.000 .652
WH_PCT 1.000 .718
KID_PCT 1.000 .860
OLD_PCT 1.000 .794
CIT_PCT 1.000 .627
HHS_PCT 1.000 .762
ENG_PCT 1.000 .676
STU_PCT 1.000 .809
CAR_PCT 1.000 .747
TIMEAVG 1.000 .188
HIED_PCT 1.000 .806
LAB_PCT 1.000 .782
UEMP_PCT 1.000 .410
HHIMED 1.000 .865
WAGE_PCT 1.000 .802
INC_PC 1.000 .815
POV_PCT 1.000 .732
OWN PCT 1.000 .810

Extraction Method: Principal Component Analysis.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squar d Loadings
Component Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
1 5.871 32.618 32.618 5.871 32.618 32.618 4.681 26.006 26.006
2 3.486 19.364 51.982 3.486 19.364 51.982 3.216 17.868 43.874
3 2.203 12.241 64.224 2.203 12.241 64.224 2.642 14.678 58.552
4 1.293 7.184 71.408 1.293 7.184 71.408 2.314 12.855 71.408
5 .975 5.416 76.824
6 .875 4.860 81.684
7 .636 3.531 85.215
8 .518 2.878 88.093
9 .418 2.322 90.415
10 .328 1.823 92.238
11 .274 1.524 93.762
12 .237 1.317 95.079
13 .225 1.250 96.329
14 .179 .996 97.324
15 .168 .934 98.258
16 .139 .773 99.031
17 9.917E-02 .551 99.582
18 7.524E-02 .418 100.000 1 1

Extraction Method: Principal Component Analysis.
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Scree Plot
7-

6

5.

4-

3-

2-

>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 11

Component Number

Component Matrix

Component
1 2 3 4

POPDEN -.627 -.222 .451 -7.27E-02
WHPCT .703 -.316 -.265 -.232
KID_PCT -6.45E-02 .908 -9.98E-02 .143
OLD_PCT -6.67E-02 -.569 -.615 .297
CIT_PCT .674 -5.77E-02 -.344 -.225
HHSPCT -.257 -.830 1.293E-03 -8.33E-02
ENG_PCT .751 -.218 -.212 -.139
STU_PCT -1.56E-02 .863 -7.39E-02 .240
CARPCT .609 .382 -.476 -6.63E-02
TIMEAVG .126 .190 .136 .343
HIED_PCT .464 -.368 .553 .386
LABPCT .464 .211 .541 -.479
UEMP_PCT -.564 .275 -.130 -8.33E-03
HHIMED .806 8.359E-02 .253 .379
WAGE_PCT .561 .284 .552 -.318
INCPC .627 -.330 .314 .462
POV_PCT -.832 .150 4.399E-02 .124
OWNPCT .840 .217 -.203 .127

Extraction Method: Principal Component Analysis.
a. 4 components extracted.
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POPDEN
WHPCT
KID_PCT
OLDPCT
CITPCT
HHSPCT
ENGPCT
STU_PCT
CAR_PCT
TIMEAVG
HIED_PCT
LABPCT
UEMPPCT
HHIMED
WAGEPCT
INCPC
POVPCT
OWN PCT

Rotated Component Matrif

Component

1 2 1 3 4
-.731
.779

-5.98E-02
.218
.786

-.171
.768

-5.20E-02
.753

-4.42E-02
2.698E-02

.199
-.406
.454
.238
.269

-.743
.767

-.315
-.309
.904

-.355
-5.79E-02

-.813
-.191
.894
.419
.282

-.259
-1.35E-02

.245

.211

.112
-.161
.140
.307

-8.22E-02
.110

-.173
-6.69E-04
7.917E-03
-2.25E-03

.203
-5.96E-02
-7.02E-02

.326

.839

.102
-.396
.754
.251
.846

-.319
.343

.106
6.615E-02
9.479E-02

-.788
7.452E-02

-.269
9.114E-02
5.655E-02
-1.69E-04
-1.47E-02

.184

.856
-.169
.213
.818

3.257E-02
-.242

9.465E-02

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Component Transformation Matrix

Component 1 2 3 4
1 .828 .044 .475 .293
2 -.031 .931 -.214 .294
3 -.517 -.124 .486 .693
4 -.212 .340 .702 -.589

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
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Component Plot in Rotated Space
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Cluster

Case Processing Summarf,b

Cases
Valid Missinq Total

N Percent N Percent N Percent
3418 100.0 0 .0 3418 100.0

a. Correlation between Vectors of Values used
b. Average Linkage (Between Groups)

Frequencies

Statistics

Average Linkage (Between Groups)
N Valid 3418

Missing 1 01

Average Linkage (Between Groups)

Cumulative
________Frequency Percent Valid Percent Percent

Valid 1 1881 55.0 55.0 55.0
2 527 15.4 15.4 70.5
3 454 13.3 13.3 83.7
4 556 16.3 16.3 100.0
Total 3418 100.0 100.0

Average Linkage (Between Groups)

3A

2
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Type A
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
REGR factor score 1881 -1.65725 1.77389 .5391403 .4317911
1 for analysis 1
REGR factor score 1881 -3.24035 2.78211 -4.OE-02 .7371879
2 for analysis 1
REGR factor score 1881 -3.36684 1.35712 -.4846772 .5036457
3 for analysis 1
REGR factor score 1881 -5.28612 2.86687 5.10E-02 .8919396
4 for analysis 1
Valid N (listwise) 1881

Type B
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 527 -4.23790 .82914 -.9561663 .8502623
1 for analysis 1
REGR factor score 527 -3.73016 1.27724 -.9994230 .9772320
2 for analysis 1
REGR factor score 527 -1.21592 3.56374 .4200407 .7253910
3 for analysis 1
REGR factor score 527 -1.31324 3.19455 .8050371 .6173182
4 for analysis 1
Valid N (listwise) 527

Type C
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 454 -5.23018 .76252 -1.39824 1.1513438
1 for analysis 1
REGR factor score 454 -.69366 3.84356 1.2546407 .7641717
2 for analysis 1
REGR factor score 454 -2.15750 2.38877 -.2111196 .8621008
3 for analysis 1
REGR factor score 454 -3.62040 2.44578 -.2428194 .9576004
4 for analysis 1
Valid N (listwise) 454
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Type D
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
REGR factor score 556 -2.41803 1.11860 .2240604 .5051806
1 for analysis 1
REGR factor score 556 -2.85245 2.28831 5.66E-02 .8303874
2 for analysis 1
REGR factor score 556 -1.06391 5.95639 1.4139652 1.0904758
3 for analysis 1
REGR factor score 556 -6.57086 1.09179 -.7373552 1.0654339
4 for analysis 1
Valid N (listwise) 556
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Appendix D. Statistical output for Chicago

Descriptives
Descriptive Statistics

N Minimum Maximum Mean Std. Skewness

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
POPDEN 6222 1.09250 44354.43 3923.842 3937.554 2.339 .031

HHDEN 6222 .36416 29566.67 1437.002 1725.393 4.864 .031
WHPCT 6222 .00000 100.00000 70.69488 35.59442 -1.093 .031

KIDPCT 6222 .00000 74.80916 25.58772 9.0230011 .045 .031
OLDPCT 6222 .00000 100.00000 12.22726 8.8266194 2.008 .031
CITPCT 6222 .00000 100.00000 86.34224 14.88683 -1.798 .031
HHSPCT 6222 .00000 100.00000 50.64885 16.80597 .197 .031
ENGPCT 6222 .00000 100.00000 75.12777 18.49222 -1.641 .031
STU_PCT 6222 .00000 65.21739 18.96485 7.5222487 .299 .031

CARPCT 6222 .00000 100.00000 79.05242 17.99943 -1.324 .031
TIMEAVG 6222 1.00000 99.00000 28.75844 6.3645652 1.094 .031

HIEDPCT 6222 .00000 100.00000 22.30431 18.71267 1.167 .031
LABPCT 6222 1.97260 100.00000 67.48865 11.77196 -.847 .031

UEMP_PCT 6222 .00000 83.55263 7.8223303 9.0686227 2.564 .031

HHIMED 6222 4999.000 150001.0 38900.75 19242.94 1.671 .031
WAGEPCT 6222 7.29927 100.00000 80.22729 12.91634 -1.311 .031
INCPC 6222 491.00000 127543.0 16608.44 10042.37 3.108 .031

POV_PCT 6222 .00000 100.00000 11.15343 15.12049 2.258 .031

OWNPCT 6222 .00000 100.00000 69.20114 27.50460 -.791 .031
Valid N (istwise) 6222 1 1 1 1 1_1_____I
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Correlations
Correlations

POP DEN HH DEN WH PCT KID PCT OLDPCT CIT PCT HHSPCT ENGPCT STU PCT CAR PCT TIME AVG HIEDPCT LABPCT UEMP PCT HHIMED WAGEPCT INCPC POV PCT OWN_PCT

POPDEN Pearson Correlation 1.000 .907 -.420 .097 -.070 -.357 .062 -.399 .050 -.576 .246 -.148 -.173 .353 -.426 -.236 -.250 .444 -.547

Sig. (2-tailed) . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

HHDEN Pearson Correlation .907 1.000 -.258 -.149 .038 .255 .287 -.256 -.147 -.534 .152 .007 -094 .198 -.339 -.212 -. 072 .296 -.499

Sig. (2-tailed) .000 . .000 .000 .003 .000 .000 .000 .000 .000 .000 .570 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 66222 6222 222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

WHPCT Pearson Correlation -.420 -.258 1.000 -.341 .183 -.029 .224 .057 -.346 .565 -.466 .394 .352 -.702 .518 .312 .476 -.702 .517

Sig. (2-tailed) .000 .000 . .000 .000 .020 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

KID PCT Pearson Correlation .067 -.149 -.341 1.000 -.543 -.019 -.717 -.156 .888 .006 .199 -.267 -.026 .354 -.102 .044 -.354 .379 -.069

Sig. (2-tailed) .000 .000 .000 .000 .139 .000 .000 .000 .651 .000 .000 .044 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

OLDPCT Pearson Correlation -.070 .038 .183 -.543 1.000 .028 .508 .084 -.472 -.003 -.088 -.062 -.519 -.110 -.105 -.531 .075 -. 118 .085

Sig. (2-talled) .000 .003 .000 .000 . .026 .000 .000 .000 .839 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

CITPCT Pearson Correlation -.357 -. 255 -.029 -.019 .028 1.000 .049 .901 -.002 .092 .097 .081 -.064 .083 .129 -.047 .114 -.027 .228

Sig. (2-talled) .000 .000 .020 .139 .026 . .000 .000 .888 .000 .000 .000 .000 .000 .000 .000 .000 .034 000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

HHS PCT Pearson Correlation .062 .287 .224 -.717 .508 .049 1.000 .127 -.688 -.136 -.188 .213 -.072 -.200 -.164 -. 302 .224 -.112 -.244

Sig. (2-talled) .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

ENG PCT Pearson Correlation -.399 -.256 .057 -.156 .084 .901 .127 1.000 -.080 .138 .058 .200 -.003 -.032 .236 .012 .233 -.141 .294

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .790 .012 .000 .337 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

STU iPT Pearson Correlation .050 -.147 -.346 .888 -.472 -.002 -.688 -.080 1.000 -.015 .216 -.226 -.052 .334 -.035 .034 -.278 .349 -.015

Sig. (2-tailed) .000 .000 .000 .000 .000 .888 .000 .000 . .233 .000 .000 .000 .000 .006 .008 .000 .000 .228

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

CAR PCT Pearson Correlation -.576 -.534 .565 .006 -.003 .092 -.136 .138 -.015 1.000 -.382 .039 .328 -.509 .404 .371 .195 -.603 .622

Sig. (2-tailed) .000 .000 .000 .651 .839 .000 .000 .000 .233 . .000 .002 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

TIMElAVG Pearson Correlation .246 .152 -.466 .199 -.088 .097 -.188 .058 .216 -.382 1.000 -.135 -. 196 .359 -.136 -.147 -.156 .309 -.122

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

HIEDPCT Pearson Correlation -.148 .007 .394 -. 267 -.062 .081 .213 .200 -.226 .039 -.135 1.000 .339 -.432 .682 .338 .753 -.395 .242

Sig. (2-tailed) .000 .570 .000 .000 .000 .000 .000 .000 .000 .002 .000 . .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

LAB PCT Pearson Correlation -.173 -.094 .352 -.026 -.519 -.064 -.072 -.003 -.052 .328 -.196 .339 1.000 -.427 .360 .767 .262 -.523 .218

Sig. (2-tailed) .000 .000 .000 .044 .000 .000 .000 .790 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

UEMPPCT Pearson Correlation .353 .198 -.702 .354 -.110 .083 -.200 -.032 .334 -.509 .359 -.432 -.427 1.000 -.518 -.455 -.465 .754 -.495

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .012 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

HHI MED Pearson Correlation -.426 -.339 .518 -.102 -.105 .129 -. 164 .236 -.035 .404 -.136 .682 .360 -.518 1.000 .496 .820 -.598 .633

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .006 .000 .000 .000 .000 .000 . .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

WAGE~POT Pearson Correlation -.236 -.212 .312 .044 -.531 -.047 -.302 .012 .034 .371 -.147 .338 .767 -.455 .496 1.000 .281 -.553 .359

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .337 .008 .000 .000 .000 .000 .000 .000 . .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

INC PC Pearson Correlation -.250 -.072 .476 -.354 .075 .114 .224 .233 -.278 .195 -.156 .753 .262 -.465 .820 .281 1.000 -.480 .379

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

POV PCT Pearson Correlation .444 .296 -.702 .379 -.118 -.027 -.112 -.141 .349 -.603 .309 -.395 -.523 .754 -.598 -.553 -.480 1.000 -.675

Sig. (2-tailed) .000 .000 .000 .000 .000 .034 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222

OWN PCT Pearson Correlation -.547 -.499 .517 -.069 .085 .228 -.244 .294 -.015 .622 -.122 .242 .218 -.495 .633 .359 .379 -.675 1.000

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .228 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222 6222
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Factor Analysis

Communalities

Initial Extraction

POPDEN 1.000 .657
WHPCT 1.000 .742
KIDPCT 1.000 .857
OLDPCT 1.000 .855
CIT_PCT 1.000 .928
HHS_PCT 1.000 .823
ENG_PCT 1.000 .934
STUPCT 1.000 .826
CARPCT 1.000 .794
TIMEAVG 1.000 .411
HIED_PCT 1.000 .816
LABPCT 1.000 .873
UEMPPCT 1.000 .726
HHIMED 1.000 .925
WAGEPCT 1.000 .838
INC PC 1.000 .868
POVPCT 1.000 .811
OWN PCT 1.000 .775

Extraction Method: Principal Component Analysis.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Component Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
1 6.028 33.490 33.490 6.028 33.490 33.490 4.005 22.251 22.251

2 3.296 18.313 51.804 3.296 18.313 51.804 3.163 17.573 39.824

3 2.229 12.381 64.185 2.229 12.381 64.185 2.888 16.042 55.866

4 1.710 9.499 73.684 1.710 9.499 73.684 2.246 12.477 68.343

5 1.195 6.639 80.323 1.195 6.639 80.323 2.156 11.980 80.323

6 .852 4.732 85.055
7 .461 2.560 87.615
8 .433 2.405 90.020
9 .330 1.831 91.851
10 .278 1.547 93.397
11 .255 1.417 94.814

12 .217 1.205 96.020
13 .197 1.093 97.112
14 .148 .819 97.932
15 .131 .728 98.660
16 .108 .603 99.262
17 6.761E-02 .376 99.638
18 6.517E-02 .362 100.000

Extraction Method: Principal Component Analysis.

- 87 -



Scree Plot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Component Number

Component Matrix

Component

1 2 3 4 5

POPDEN -.578 -.138 -.429 .344 4.637E-02
WH PCT .801 -.122 -.155 -.238 7.501E-02
KIDPCT -.412 .801 9.750E-02 -9.73E-02 .164

OLD_PCT 6.587E-02 -.775 .174 -.329 .333
CITPCT .152 -1.76E-02 .887 .143 -.311
HHSPCT .159 -.851 -8.08E-02 .131 -.224

ENGPCT .285 -8.18E-02 .853 .189 -.287
STU_PCT -.376 .774 .158 -5.85E-02 .240
CARPCT .641 .260 7.940E-02 -.554 -4.79E-02
TIMEAVG -.411 .128 .248 .365 .176
HIEDPCT .613 -5.84E-02 -4.80E-02 .624 .213
LABPCT .541 .406 -.350 .220 -.495

UEMPPCT -.805 6.494E-02 .241 .123 -1.17E-02
HHIMED .785 .252 .106 .295 .383

WAGEPCT .573 .544 -.271 .188 -.324

INCPC .708 -.118 4.358E-02 .479 .347

POVPCT -.879 -9.22E-03 .112 .151 4.744E-02

OWN PCT .701 .245 .289 -.272 .255

Extraction Method: Principal Component Analysis.
a. 5 components extracted.
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Rotated Component Matrif

Component
1 2 3 4 5

POPDEN -.675 -7.22E-02 -9.03E-02 1.092E-02 -.434

WHPCT .727 -.296 .329 9.151E-02 -9.42E-02
KID_PCT -.129 .892 -.187 9.127E-02 -4.38E-02
OLDPCT .195 -.506 1.535E-03 -.749 -2.87E-04
CITPCT 1.703E-02 -3.60E-03 2.528E-02 -2.96E-02 .962
HHS_PCT -8.45E-02 -.890 3.404E-02 -.140 5.112E-02
ENG_PCT 7.556E-02 -9.71E-02 .139 -1.22E-02 .948
STUPCT -.128 .894 -9.99E-02 2.827E-02 -5.07E-03
CARPCT .870 .113 -1.40E-02 .122 9.170E-02
TIMEAVG -.517 .294 .105 -.140 .162
HIED_PCT 2.396E-02 -.210 .847 .225 6.121E-02
LAB_PCT .265 -5.59E-02 .169 .877 -3.48E-02
UEMPPCT -.655 .299 -.369 -.232 .131
HHIMED .418 .140 .835 .143 .113
WAGE_PCT .335 .135 .263 .799 -2.39E-02
INCPC .190 -.206 .882 5.191E-02 8.756E-02
POVPCT -.737 .247 -.364 -.272 -1.30E-02
OWN PCT .738 .204 .366 -5.31 E-02 .226

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a- Rotation converged in 8 iterations.

Component Transformation Matrix

Component 1 2 3 4 5
1 .726 -.263 .555 .279 .138
2 .119 .869 .016 .479 -.003
3 .021 .199 .022 -.361 .911
4 -.676 -.102 .631 .333 .154
5 .040 .354 .542 -.672 -.358

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
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Component Plot in Rotated Space
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Component 1
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Cluster

Case Processing Summarf,b

Cases
Valid Missing Total

N Percent N Percent N Percent
6222 100.0 0 .0 6222 100.0

a. Correlation between Vectors of Values used
b. Average Linkage (Between Groups)

Frequencies

Statistics

Average Linkage (Between Groups)
N Valid 6222

Missing 0

Average Linkage (Between Groups)

Cumulative
________Frequency Percent Valid Percent Percent

Valid 1 1226 19.7 19.7 19.7
2 810 13.0 13.0 32.7
3 530 8.5 8.5 41.2
4 2479 39.8 39.8 81.1
5 1177 18.9 18.9 100.0
Total 6222 100.0 100.0

Average Linkage (Between Groups)

4

2

3
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Type A
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 1226 -3.95917 1.46963 -5.5E-02 .7518217
1 for analysis 1
REGR factor score 1226 -1.96958 4.37420 .4391363 .8253933
2 for analysis 1
REGR factor score 1226 -1.62255 3.97953 -2.7E-02 .6400483
3 for analysis 1
REGR factor score 1226 -2.58550 2.84962 .1200633 .7212294
4 for analysis 1
REGR factor score 1226 -4.63651 .81020 -1.38563 1.1293631
5 for analysis 1
Valid N (listwise) 1226

ype B
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
REGR factor score 810 -3.41195 1.06636 9.56E-02 .5831813
1 for analysis 1
REGR factor score 810 -3.36093 3.36707 -5.7E-02 1.0388082
2 for analysis 1
REGR factor score 810 -.54496 7.76026 1.7391680 1.3038230
3 for analysis 1
REGR factor score 810 -4.05503 1.92422 -.3197088 .7645532
4 for analysis 1
REGR factor score 810 -3.00565 1.92113 .1287498 .4942217
5 for analysis 1
Valid N (listwise) 810

ype C
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 530 -3.73974 .64733 -.8005700 .9591462
1 for analysis 1
REGR factor score 530 -3.97427 .63449 -1.35638 .9420235
2 for analysis 1
REGR factor score 530 -1.36519 3.01809 .3992916 .7546656
3 for analysis 1
REGR factor score 530 -.38217 3.53079 1.3131145 .6523073
4 for analysis 1
REGR factor score 530 -2.44180 1.60906 8.70E-02 .6488248
5 for analysis 1
Valid N (listwise) 530
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Type D
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 2479 -1.57188 2.37776 .7316201 .3508417
1 for analysis 1
REGR factor score 2479 -4.84021 2.98234 -.1983755 .7480756
2 for analysis 1
REGR factor score 2479 -2.26917 1.65396 -.3906577 .4636720
3 for analysis 1
REGR factor score 2479 -7.22555 3.04682 -7.OE-02 1.0085121
4 for analysis 1
REGR factor score 2479 -1.98102 1.51219 .2043230 .5166674
5 for analysis 1
Valid N (listwise) 2479

ype E
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 1177 -4.82193 1.58859 -1.18914 .9757784
1 for analysis 1
REGR factor score 1177 -2.88899 3.48838 .6103573 .8782626
2 for analysis 1
REGR factor score 1177 -1.95375 1.31278 -.5259156 .4796976
3 for analysis 1
REGR factor score 1177 -6.31010 2.08788 -.3495920 1.0081423
4 for analysis 1
REGR factor score 1177 -1.62786 2.28556 .8851822 .3909326
5 for analysis 1
Valid N (listwise) 1177
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Appendix E. Statistical output for San Francisco

Descriptives
Descriptive Statistics

N Minimum Maximum Mean Std. Skewness

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error
POPDEN 4676 .02037 5677.358 364.0362 402.8071 3.773 .036
HHDEN 4676 .00692 2850.685 145.2065 186.5122 4.662 .036
WHPCT 4676 .00000 100.00000 70.99109 25.08235 -1.081 .036

KIDPCT 4676 .00000 63.63636 21.85520 8.7293722 -.143 .036

OLDPCT 4676 .00000 100.00000 12.53599 9.8054592 2.922 .036

CITPCT 4676 .00000 100.00000 78.31525 16.14834 -1.341 .036
HHSPCT 4676 .00000 100.00000 56.75344 17.86749 -.041 .036

ENGPCT 4676 .00000 100.00000 69.97415 17.65834 -1.100 .036

STUPCT 4676 .00000 63.63636 16.25425 7.0456285 .061 .036

CARPCT 4676 .00000 100.00000 83.09352 17.18913 -1.838 .036

TIMEAVG 4676 1.00000 64.14706 25.28134 5.2767400 .463 .036

HIEDPCT 4676 .00000 100.00000 30.52564 18.90769 .630 .036

LABPCT 4676 .13404 100.00000 68.57957 11.66726 -1.338 .036

UEMP_PCT 4676 .00000 59.28144 5.4979584 5.3752391 2.574 .036
HHIMED 4676 4999.000 150001.0 44776.92 20417.29 1.437 .036

WAGEPCT 4676 6.10583 100.00000 79.59059 12.35386 -1.252 .036

INCPC 4676 2609.000 138397.0 20439.89 11022.80 2.528 .036

POVPCT 4676 .00000 100.00000 8.6929346 9.2732848 2.268 .036

OWNPCT 4676 .00000 100.00000 60.78269 26.96330 -.548 .036

Valid N (istwise) 4676 1 1 1 1 1 1 _ 1
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Correlations
Correlations

POPDEN HH DEN WH-PCT KIDPCT OLD PCT CIT PCT HHS.PCT ENGPCT STUPCT CARPCT TIME AVG HIED PCT LABPCT UEMP PCT HHIMED WAGEPCT INCPC POV PCT OWN PCT

POP DEN Pearson Correlaon n 1.000 .915 -.407 -.145 -.011 -.423 .130 -.408 -.122 -.630 .008 -.069 -.053 .171 -.311 -.078 -.197 .292 -.445

Sig. (2-tailed) . .000 .000 .000 .444 .000 .000 .000 .000 .000 .582 .000 .000 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

HHDEN Pearson Correlation .915 1.000 -.274 -.284 .073 -.285 .307 -.255 -.256 -.637 -.010 .039 -.016 .101 -.295 -. 134 -.082 .232 -.460

Sig. (2-tailed) .000 . .000 .000 .000 .000 .000 .000 .000 .000 .490 .008 .271 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

WH- PCT Pearson Correlation -.407 -.274 1.000 -.288 .142 .545 .259 .589 -.270 .384 -.107 .399 .204 -.493 .398 .099 .476 -.532 .336

Sig. (2-tailed) .000 .000 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

KID PCT Pearson Correlation -.145 -.284 -.288 1.000 -.484 -. 145 -.754 -.265 .897 .322 .172 -.379 .107 .243 .002 .230 -.350 .164 .133

Sig. (2-tailed) .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .897 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

OLDPCT Pearson Correlation -.011 .073 .142 -.484 1.000 .110 .478 .173 -.424 -.097 -.096 .032 -.654 -. 077 -. 105 -.698 .143 -.087 .092

Sig. (2-tailed) .444 .000 .000 .000 . .000 .000 .000 .000 .000 .000 .029 .000 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

CITPCT Pearson Correlation -.423 -.285 .545 -.145 .110 1.000 .275 .918 -.154 .318 -.020 .216 .000 -.174 .177 -.072 .289 -.257 .274

Sig. (2-tailed) .000 .000 .000 .000 .000 . .000 .000 .000 .000 .171 .000 .973 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

HHSOPCT Pearson Correlation .130 .307 .259 -.754 .478 .275 1.000 .348 -.723 -.303 -.129 .267 -.160 -.110 -.244 -.421 .239 .015 -.306

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 - .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .313 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

ENG-PCT Pearson Correlation -.408 -.255 .589 -.265 .173 .918 .348 1.000 -.218 .281 -.019 .344 .015 -.270 .254 -.085 .393 -.316 .307

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 . .000 .000 .203 .000 .302 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4876 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

STUPCT Pearson Correlation -.122 -.256 -.270 .897 -.424 -.154 -.723 -.218 1.000 .263 .159 -.296 .072 .198 .079 .208 -.269 .137 .193

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 - .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

CAR PCT Pearson Correlation -.630 -.637 .384 .322 -.097 .318 -.303 .281 .263 1.000 -.046 -.046 .162 -.228 .362 .229 .148 -.415 .516

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 . .002 .002 .000 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

TIME AVG Pearson Correlation .008 -.010 -.107 .172 -.096 -.020 -.129 -.019 .159 -.046 1.000 -.035 .021 .050 .035 .028 -. 035 .012 .174

Sig. (2-tailed) .582 .490 .000 .000 .000 .171 .000 .203 .000 .002 . .016 .155 .001 .016 .058 .015 .417 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

EIEDPCT Pearson Correlation -.069 .039 .399 -.379 .032 .216 .267 .344 -.296 -.046 -.035 1.000 .226 -.414 .607 .136 .718 -.362 .259

Sig. (2-tailed) .000 .008 .000 .000 .029 .000 .000 .000 .000 .002 .016 . .000 .000 .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

LABPCT Pearson Correlation -.053 -.016 .204 .107 -.654 .000 -.160 .015 .072 .162 .021 .226 1.000 -.227 .228 .720 .139 -.283 .024

Sig. (2-tailed) .000 .271 .000 .000 .000 .973 .000 .302 .000 .000 .155 .000 . .000 .000 .000 .000 .000 .106

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

UEMP PCT Pearson Correlation .171 .101 -.493 .243 -.077 -.174 -.110 -.270 .198 -.228 .050 -.414 -.227 1.000 -.429 -.204 -.402 .533 -.318

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .001 .000 .000 . .000 .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

HHI MED Pearson Correlation -.311 -.295 .398 .002 -.105 .177 -.244 .254 .079 .362 .035 .607 .228 -.429 1.000 .349 .757 -.556 .634

Sig. (2-tailed) .000 .000 .000 .897 .000 .000 .000 .000 .000 .000 .016 .000 .000 .000 . .000 .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

WAGEPCT Pearson Correlation -.078 -.134 .099 .230 -.698 -.072 -.421 -.085 .208 .229 .028 .136 .720 -.204 .349 1.000 .055 -.310 .110

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .058 .000 .000 .000 .000 . .000 .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

INCPC Pearson Correlation -.197 -.082 .476 -.350 .143 .289 .239 .393 -.269 .148 -.035 .718 .139 -.402 .757 .055 1.000 -.450 .390

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .015 .000 .000 .000 .000 .000 . .000 .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

POV PCT Pearson Correlation .292 .232 -.532 .164 -.087 -.257 .015 -.316 .137 -.415 .012 -.362 -.283 .533 -.556 -.310 -.450 1.000 -.542

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .313 .000 .000 .000 .417 .000 .000 .000 .000 .000 .000 . .000

N 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676

OWN_.PCT Pearson Correlation -.445 -.460 .336 .133 .092 .274 -.306 .307 .193 .516 .174 .259 .024 -.318 .634 .110 .390 -. 542 1.000

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .106 .000 .000 .000 .000 .000

N 4676 4676 4676 , 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676 4676
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Factor Analysis

Communalities

Initial Extraction

POPDEN 1.000 .633
WH_PCT 1.000 .702
KID_PCT 1.000 .863
OLD_PCT 1.000 .871
CIT_PCT 1.000 .897
HHS_PCT 1.000 .836
ENG_PCT 1.000 .900
STU_PCT 1.000 .794
CAR_PCT 1.000 .770
TIMEAVG 1.000 .562
HIED_PCT 1.000 .746
LAB_PCT 1.000 .830
UEMP-PCT 1.000 .531
HHIMED 1.000 .860
WAGE_PCT 1.000 .830
INC_PC 1.000 .771
POV_PCT 1.000 .659
OWNPCT 1.000 .767

Extraction Method: Principal Component Analysis.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Component Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
1 5.142 28.566 28.566 5.142 28.566 28.566 3.848 21.380 21.380
2 3.890 21.609 50.175 3.890 21.609 50.175 3.409 18.937 40.317
3 2.175 12.082 62.257 2.175 12.082 62.257 2.913 16.182 56.499
4 1.514 8.411 70.669 1.514 8.411 70.669 2.475 13.747 70.247
5 1.103 6.127 76.796 1.103 6.127 76.796 1.179 6.549 76.796
6 .908 5.042 81.838
7 .619 3.440 85.279
8 .520 2.890 88.169
9 .396 2.202 90.371
10 .320 1.780 92.151
11 .314 1.744 93.895
12 .284 1.577 95.472
13 .238 1.323 96.796
14 .173 .963 97.758
15 .165 .916 98.675
16 9.819E-02 .545 99.220
17 8.574E-02 .476 99.697
18 5.459E-02 .303 100.000 1

Extraction Method: Principal Component Analysis.
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Scree Plot

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Component Number

Component Matrbx

Component

1 2 3 4 5

POPDEN -.503 -.291 -.500 -.166 .130
WH_PCT .789 -7.74E-02 6.519E-02 .233 -.120

KIDPCT -.343 .801 .310 -1.59E-02 8.885E-02
OLD_PCT .143 -.701 .414 -.388 -.193
CITPCT .614 -.133 .422 .486 .296
HHS_PCT .216 -.851 -.107 .224 5.920E-02
ENGPCT .700 -.200 .342 .404 .300
STU_PCT -.291 .771 .294 -.110 .129
CAR_PCT .465 .505 .434 .112 -.314
TIMEAVG -5.62E-02 .186 7.237E-02 -.202 .691
HIED_PCT .658 -.141 -.422 -.215 .263
LABPCT .242 .482 -.601 .422 1.345E-02

UEMPPCT -.631 -2.04E-02 .231 .106 .259
HHIMED .720 .360 -.168 -.418 9.436E-02
WAGE_PCT .185 .659 -.536 .268 -6.20E-02
INCPC .759 -.107 -.225 -.315 .183
POVPCT -.727 -.181 9.810E-02 .139 .261

OWN PCT .602 .377 .312 -.406 3.040E-02

Extraction Method: Principal Component Analysis.
a. 5 components extracted.
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Rotated Component MatriR

Component

1 2 3 4 5

POPDEN -.229 -.378 -.620 6.136E-02 .221
WHPCT .470 -.197 .606 8.612E-02 -.260
KIDPCT -.224 .866 -4.80E-02 .194 .150
OLDPCT .128 -.314 5.991E-02 -.852 -.162
CITPCT 8.573E-02 -.133 .928 -2.19E-02 .103
HHS_PCT -5.11E-02 -.848 .235 -.240 -3.96E-02
ENGPCT .208 -.224 .890 -4.12E-02 .113
STU_PCT -.133 .843 -7.15E-02 .145 .201
CAR_PCT .281 .557 .488 4.865E-02 -.375
TIMEAVG 5.547E-02 .186 2.468E-02 -3.73E-03 .724

HIEDPCT .711 -.397 9.016E-02 .156 .227
LABPCT .176 -1.10E-02 5.315E-02 .890 -6.76E-02
UEMP_PCT -.622 .148 -.129 -.130 .298
HHIMED .886 .189 9.545E-02 .137 .108
WAGE_PCT .227 .215 -5.43E-02 .849 -9.90E-02
INC_PC .804 -.263 .179 -6.83E-03 .154
POVPCT -.706 -4.18E-02 -.232 -.117 .302
OWN PCT .673 .453 .277 -.176 4.539E-02

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 8 iterations.

Component Transformation Matrix

Component 1 2 3 4 5
1 .787 -.156 .581 .071 -.117
2 .145 .836 -.028 .528 .035
3 -.245 .475 .533 -.655 -.025
4 -.547 -.212 .579 .530 -.200

5 -.029 -.080 .204 .082 .972

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
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Component Plot in Rotated Space
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Cluster

Case Processing Summarf,b

Cases
Valid Missing Total

N Percent N Percent N Percent
4676 100.0 0 .0 4676 100.0

a. Correlation between Vectors of Values used
b. Average Linkage (Between Groups)

Frequencies

Statistics

Average Linkage (Between Groups)
N Valid

Missing 0

Average Linkage (Between Groups)

Cumulative
Frequency Percent Valid Percent Percent

Valid 1 1199 25.6 25.6 25.6
2 1000 21.4 21.4 47.0
3 695 14.9 14.9 61.9
4 916 19.6 19.6 81.5
5 866 18.5 18.5 100.0
Total 4676 100.0 100.0

Average Linkage (Between Groups)

5

4

2

3
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Type A
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 1199 -1.16570 4.52542 .9289882 .8531361
1 for analysis 1
REGR factor score 1199 -3.08633 1.61207 -.1488193 .6326573
2 for analysis 1
REGR factor score 1199 -3.83995 1.66917 .3155026 .5919530
3 for analysis 1
REGR factor score 1199 -6.95655 1.73074 -.6775470 1.1250063
4 for analysis 1
REGR factor score 1199 -4.01675 3.34837 -.1259848 .9454148
5 for analysis 1
Valid N (listwise) 1199 ............

Type B
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 1000 -2.33795 2.66733 -9.4E-02 .6882499
1 for analysis 1
REGR factor score 1000 -3.96247 1.72025 -1.05335 .9976501
2 for analysis 1
REGR factor score 1000 -3.77106 1.95506 -.1565612 .9102089
3 for analysis 1
REGR factor score 1000 -2.62231 2.81793 .7919178 .6087151
4 for analysis 1
REGR factor score 1000 -2.80466 3.49901 7.45E-02 .9543178
5 for analysis 1
Valid N (listwise) 1000

Type C
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 695 -4.17045 1.07134 -1.08674 .9300875
1 for analysis 1
REGR factor score 695 -3.60562 2.99693 .5598772 .8416974
2 for analysis 1
REGR factor score 695 -3.13676 2.43653 2.56E-02 .9713146
3 for analysis 1
REGR factor score 695 -6.50683 2.87295 -.3474912 .9041011
4 for analysis 1
REGR factor score 695 -.93387 5.26320 1.0629225 .9149524
5 for analysis 1
Valid N (listwise) 695
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Type D
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 916 -2.53737 .88827 -.4618086 .5257395
1 for analysis 1
REGR factor score 916 -2.08025 3.32332 .2316039 .5849095
2 for analysis 1
REGR factor score 916 -1.04338 1.90520 .7516149 .4030587
3 for analysis 1
REGR factor score 916 -2.85535 2.53790 .1563124 .6924672
4 for analysis 1
REGR factor score 916 -4.29223 1.21117 -.5054478 .6243335
5 for analysis 1
Valid N (listwise) 916

Type E
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 866 -2.05195 3.62227 .1828378 .6696544
1 for analysis 1
REGR factor score 866 -2.28454 3.42867 .7280793 .7859515
2 for analysis 1
REGR factor score 866 -5.65404 .82346 -1.07163 1.0577913
3 for analysis 1
REGR factor score 866 -6.31375 2.00678 .1371655 .7467999
4 for analysis 1
REGR factor score 866 -4.32778 4.16607 -.2299761 .8782280
5 for analysis 1
Valid N (listwise) 866 ............
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Appendix F. Statistical output for Dallas

Descriptives
Descriptive Statistics

N Minimum Maximum Mean Std. Skewness

Statistic Statistic Statistic Statistic Statistic Statistic Std. Error

POPDEN 3510 .21340 1590.323 168.4519 152.9531 2.392 .041

HHDEN 3510 .06628 917.74194 66.88581 75.01253 3.833 .041

WHPCT 3510 .00000 100.00000 74.50468 28.19257 -1.397 .041

KIDPCT 3510 .00000 62.89105 26.34913 9.2585280 -.422 .041

OLDPCT 3510 .00000 92.30769 9.3919848 8.5127116 1.936 .041

CITPCT 3510 12.04128 100.00000 90.20157 12.03110 -2.398 .041

HHSPCT 3510 .00000 100.00000 53.18149 17.68373 .386 .041

ENGPCT 3510 4.36123 100.00000 77.91797 16.14433 -1.886 .041

STUPCT 3510 .00000 57.50000 18.91544 7.6530692 -.215 .041

CARPCT 3510 .00000 100.00000 91.25161 9.3939260 -3.371 .041

TIMEAVG 3510 7.75000 53.19643 23.70467 4.7493268 .618 .041

HIEDPCT 3510 .00000 88.98810 24.28996 19.39297 .711 .041

LABPCT 3510 2.28690 100.00000 71.47353 12.51054 -.759 .041

UEMP_PCT 3510 .00000 59.25926 6.5165835 6.1106421 2.458 .041

HHIMED 3510 4999.000 150001.0 35664.93 19299.97 1.751 .041

WAGEPCT 3510 8.12183 100.00000 83.67042 11.91183 -1.203 .041

INCPC 3510 944.00000 158592.0 16125.99 10867.33 3.445 .041

POVPCT 3510 .00000 100.00000 12.59284 14.34606 1.921 .041

OWNPCT 3510 .00000 100.00000 61.12050 29.65965 -.732 .041

Valid N (istwise) 3510 1 1 1 1 1 1 _ 1
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Correlations
Correlations

POP DEN HH.DEN WH_PCT KID PCT OLDPCT CIT PCT HHSPCT ENGPCT STU.PCT CARPOT TIMEAVG HIEDPCT LABPCT UEMPPCT HHIMED WAGEPCT INCPC POVPCT OWNPCT

POP DEN Pearson Correlation 1.000 .914 -.247 -.054 -.151 -.424 .138 -.354 -.120 -.203 -.165 -.009 .164 .093 -. 218 .098 -.121 .189 -.466

Sig. (2-talled) .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .586 .000 .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

HH-DEN Pearson Correlation .914 1.000 -.124 -.273 -.092 -.262 .369 -. 181 -.318 -.142 -. 199 .115 .226 .008 -.191 .087 -.005 .098 -.499

Sig. (2-tailed) .000 . .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .623 .000 .000 .769 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

WHPCT Pearson Correlation -.247 -.124 1.000 -.264 .048 .340 .179 .389 -.220 .466 -.082 .470 .245 -.592 .516 .226 .464 -.674 .350

Sig. (2-taIled) .000 .000 . .000 .004 .000 .000 .000 .000 .000 .005 .00 .005 .550 .000 .055 .500 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

KIDPCT Pearson Correlation -.054 -.273 -.264 1.000 -.372 -.182 -.797 -.329 .876 .018 .326 -.387 -.025 .206 -.070 .089 -.382 .258 .179

Sig. (2-tailed) .001 .000 .000 . .00 .500 .550 .000 .000 .286 .000 .000 .134 .000 .000 .055 .500 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

OLD PCT Pearson Correlation -. 151 -.092 .048 -.372 1.000 .188 .372 .189 -.291 -.101 -.182 -.042 -.674 .058 -.091 -.704 .102 .025 .130

Sig. (2-tailed) .000 .000 .004 .050 . .000 .000 .000 .000 .000 .000 .013 .000 .001 .000 .000 .000 .140 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

CITPCT Pearson Correlation -.424 -.262 .340 -. 182 .188 1.00 .145 .893 -.082 .238 .135 .202 -.054 -.155 .259 -.066 .246 -.359 .394

Sig. (2-tailed) .000 .000 .005 .000 .000 . .000 .000 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

HHS PCT Pearson Correlation .138 .369 .179 -.797 .372 .145 1.000 .234 -.760 -.079 -.339 .300 .008 -.117 -.155 -.231 .247 -.061 -.401

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .655 .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

ENGPCT Pearson Correlation -.354 -.181 .389 -.329 .189 .893 .234 1.000 -.158 .218 .082 .344 .014 -.213 .348 -.004 .357 -.415 .353

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .418 .000 .000 .812 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

STU PCT Pearson Correlation -.120 -.318 -.220 .876 -.291 -.082 -.760 -.158 1.000 .024 .312 -.295 -.080 .169 .049 .057 -.269 .167 .300

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 . .147 .000 .000 .000 .000 .004 .001 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

CARPCT Pearson Correlation -.203 -.142 .466 .018 -.101 .238 -.079 .218 .024 1.000 -.004 .175 .289 -.459 .320 .340 .200 -.553 .386

Sig. (2-tailed) .000 .000 .000 .286 .000 .000 .000 .000 .147 . .814 .000 .000 .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

TIME AVG Pearson Correlation -.165 -.199 -.082 .326 -.182 .135 -.339 .082 .312 -.004 1.000 -.212 .038 .079 -.023 .078 -. 195 .023 .255

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .814 . .000 .025 .000 .174 .000 .000 .167 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

HIED PCT Pearson Correlation -.009 .115 .470 -.387 -.042 .202 .300 .344 -.295 .175 -.212 1.000 .282 -.464 .696 .257 .744 -.495 .190

Sig. (2-tailed) .586 .000 .000 .000 .013 .000 .000 .000 .000 .000 .000 . .000 .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

LABPCT Pearson Correlation .164 .226 .245 -.025 -.674 -.054 .008 .014 -.080 .289 .038 .282 1.000 -.349 .203 .770 .114 -.379 -.103

Sig. (2-tailed) .000 .000 .000 .134 .000 .001 .655 .418 .000 .000 .025 .000 . .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

UEMPPCT Pearson Correlation .093 .008 -.592 .206 .058 -.155 -.117 -.213 .169 -.459 .079 -.464 -. 349 1.000 -.476 -.365 -.411 .649 -.281

Sig. (2-tailed) .000 .623 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

HHLMED Pearson Correlation -.218 -.191 .516 -.070 -.091 .259 -. 155 .348 .049 .320 -.023 .696 .203 -.476 1.000 .318 .813 -.616 .581

Sig. (2-tailed) .000 .000 .050 .000 .000 .500 .055 .005 .04 .000 .174 .000 .000 .000 . .000 .000 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

WAGE-PCT Pearson Correlation .098 .087 .226 .089 -.704 -.066 -.231 -.004 .057 .340 .078 .257 .770 -.365 .318 1.000 .117 -.424 .039

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .812 .001 .000 .000 .000 .000 .000 .000 . .000 .000 .021

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

INCPC Pearson Correlation -.121 -.005 .464 -.382 .102 .246 .247 .357 -.269 .200 -.195 .744 .114 -.411 .813 .117 1.000 -.484 .299

Sig. (2-taIled) .000 .769 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 . .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

POV PCT Pearson Correlation .189 .098 -.674 .258 .025 -.359 -.061 -.415 .167 -.553 .023 -.495 -.379 .649 -.616 -.424 -.484 1.000 -.498

Sig. (2-tailed) .000 .000 .000 .000 .140 .000 .000 .000 .000 .000 .167 .000 .000 .000 .000 .000 .000 . .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510

OWN PCT Pearson Correlation -.466 -.499 .350 .179 .130 .394 -.401 .353 .300 .386 .255 .190 -.103 -.281 .581 .039 .299 -.498 1.000

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .021 .000 .000

N 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510 3510
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Factor Analysis

Communalities

Initial Extraction

POPDEN 1.000 .496
WHPCT 1.000 .676
KID_PCT 1.000 .863
OLD_PCT 1.000 .854
CIT_PCT 1.000 .873
HHS_PCT 1.000 .862
ENG_PCT 1.000 .881
STU_PCT 1.000 .819
CAR_PCT 1.000 .702
TIMEAVG 1.000 .456
HIED_PCT 1.000 .825
LAB_PCT 1.000 .859
UEMP_PCT 1.000 .670
HHIMED 1.000 .938
WAGE_PCT 1.000 .844
INC_PC 1.000 .870
POV_PCT 1.000 .793
OWN_PCT 1.000 .788

Extraction Method: Principal Component Analysis.

Total Variance Explained

Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Component Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Variance Cumulative %
1 5.385 29.915 29.915 5.385 29.915 29.915 3.337 18.541 18.541
2 3.465 19.247 49.162 3.465 19.247 49.162 2.902 16.122 34.663
3 2.700 14.999 64.161 2.700 14.999 64.161 2.883 16.017 50.680
4 1.412 7.843 72.004 1.412 7.843 72.004 2.576 14.313 64.993
5 1.109 6.161 78.165 1.109 6.161 78.165 2.371 13.172 78.165
6 .735 4.082 82.248
7 .635 3.530 85.778
8 .498 2.767 88.545
9 .428 2.376 90.921
10 .376 2.087 93.008
11 .259 1.437 94.445
12 .230 1.279 95.724
13 .213 1.181 96.905
14 .165 .914 97.819
15 .148 .821 98.641
16 .118 .655 99.295
17 6.832E-02 .380 99.675
18 5.852E-02 .325 100.000

Extraction Method: Principal Component Analysis.

- 105-



Scree Plot

Component Number

Component Matrix

Component

1 2 3 4 5
POPDEN -.288 -.148 -.601 -.156 7.362E-02
WH_PCT .774 1.412E-02 9.805E-03 2.691E-02 -.276
KID_PCT -.422 .792 .194 -.140 -1.06E-02
OLDPCT 1.732E-02 -.646 .563 -.207 -.277
CITPCT .521 -8.09E-02 .543 .488 .247
HHSPCT .234 -.846 -.225 .201 -3.42E-03
ENGPCT .614 -.155 .436 .434 .319
STUPCT -.308 .768 .312 -.181 6.448E-02
CARPCT .542 .314 9.362E-04 .165 -.532
TIMEAVG -.101 .448 .282 .346 .215
HIEDPCT .742 -.137 -.219 -.315 .330
LAB-PCT .353 .370 -.694 .326 9.602E-02
UEMPPCT -.703 -.114 .201 5.441E-02 .346
HHIMED .779 .263 6.899E-02 -.443 .247
WAGEPCT .364 .545 -.602 .215 7.529E-02
INCPC .749 -.158 -1.98E-02 -.440 .299
POVPCT -.842 -.166 4.568E-02 -4.85E-02 .225
OWN PCT .493 .417 .575 -.176 -9.70E-02

Extraction Method: Principal Component Analysis.
a. 5 components extracted.
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Rotated Component MatriR

Component

1 2 3 4 5

POPDEN -.238 -.276 -2.58E-02 .276 -.535
WH_PCT -.184 .696 .334 5.018E-02 .209
KID_PCT .890 -9.47E-02 -.197 9.807E-02 -.116
OLD_PCT -.309 6.694E-02 1.262E-04 -.863 9.900E-02
CIT_PCT -.112 .153 .120 -7.39E-02 .904

HHSPCT -.919 -2.07E-02 3.671E-02 -.109 5.954E-02
ENGPCT -.221 .139 .250 -1.70E-02 .866
STUPCT .898 -8.65E-02 -6.76E-02 2.613E-02 -2.53E-03
CAR_PCT 8.474E-02 .814 -2.13E-02 .138 .116
TIMEAVG .432 -.108 -.192 .191 .429

HIED_PCT -.287 .172 .822 .180 6.984E-02
LAB_PCT -.100 .248 7.795E-02 .883 -3.73E-02
UEMPPCT .139 -.721 -.313 -.182 1.534E-02
HHIMED .185 .336 .872 8.672E-02 .153
WAGE_PCT .110 .302 .139 .848 -5.09E-02
INCPC -.203 .188 .884 -3.13E-02 .101
POV_PCT 9.318E-02 -.735 -.387 -.194 -.237
OWN PCT .494 .461 .347 -.243 .388

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 6 iterations.

Component Transformation Matrix

Component 1 2 3 4 5
1 -.239 .627 .622 .157 .371

2 .862 .215 -.013 .458 .020

3 .367 .000 -.031 -.717 .592
4 -.253 .057 -.624 .405 .615
5 .028 -.746 .472 .295 .364

Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
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Component Plot in Rotated Space

Corpponent 2 0.0

0.0

Component 1

1.0
0.0

Component 3
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Cluster

Case Processing Summarf,b

Cases
Valid Missing Total

N Percent N Percent N Percent
3510 100.0 0 .0 3510 100.0

a- Correlation between Vectors of Values used
b- Average Linkage (Between Groups)

Frequencies

Statistics

Average Linkage (Between Groups)
N Valid 3510

Missing 0

Average Linkage (Between Groups)

Cumulative
Frequency Percent Valid Percent Percent

Valid 1 1126 32.1 32.1 32.1
2 834 23.8 23.8 55.8
3 554 15.8 15.8 71.6
4 652 18.6 18.6 90.2
5 344 9.8 9.8 100.0
Total 3510 100.0 100.0

Average Linkage (Between Groups)

5

4

3

1
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Type A
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
REGR factor score 1126 -2.37854 2.25021 9.30E-02 .6258153
1 for analysis 1
REGR factor score 1126 -1.29033 1.87634 .5075302 .4259647
2 for analysis 1
REGR factor score 1126 -2.26905 .83423 -.5734094 .3956712
3 for analysis 1
REGR factor score 1126 -4.33009 2.16332 -.3365303 .7914509
4 for analysis 1
REGR factor score 1126 -1.71424 2.30495 .4203638 .5583690
5 for analysis 1
Valid N (listwise) 1126

ype B
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 834 -1.59022 2.74270 .7347097 .5822489
1 for analysis 1
REGR factor score 834 -2.89482 1.27751 .1079922 .6804259
2 for analysis 1
REGR factor score 834 -1.41121 2.22043 -.1610852 .6303040
3 for analysis 1
REGR factor score 834 -2.45766 2.47741 .3012717 .6896203
4 for analysis 1
REGR factor score 834 -5.52860 1.59971 -.9374701 1.2806465
5 for analysis 1
Valid N (listwise) 834

ype C
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation
REGR factor score 554 -3.22573 .92134 -1.26434 .9694702
1 for analysis 1
REGR factor score 554 -3.23530 1.33865 -.1928597 .6778682
2 for analysis 1
REGR factor score 554 -2.05349 4.03954 4.30E-02 .6981376
3 for analysis 1
REGR factor score 554 -1.02361 2.86054 1.1332380 .5928583
4 for analysis 1
REGR factor score 554 -4.08883 1.41161 -.1425747 .7458039
5 for analysis 1
Valid N (listwise) 554 ------------
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Type D
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 652 -3.17420 2.14270 -.2263603 1.0096770
1 for analysis 1
REGR factor score 652 -4.70221 1.46284 .1385772 .6107641
2 for analysis 1
REGR factor score 652 -1.08903 7.92172 1.3382666 1.2615267
3 for analysis 1
REGR factor score 652 -7.18732 1.61761 -.5715461 1.0579298
4 for analysis 1
REGR factor score 652 -2.98500 1.84889 .1170600 .4828452
5 for analysis 1
Valid N (listwise) 652

ype E
Descriptive Statistics

N Minimum Maximum Mean Std. Deviation

REGR factor score 344 -2.53048 2.72893 .3794078 .7125027
1 for analysis 1
REGR factor score 344 -8.47196 .52401 -1.87515 1.6015598
2 for analysis 1
REGR factor score 344 -1.34349 1.24279 -.3382918 .5301673
3 for analysis 1
REGR factor score 344 -5.95330 1.70000 -.3706201 .9510669
4 for analysis 1
REGR factor score 344 -.63803 3.48027 .9046037 .5375006
5 for analysis 1
Valid N (listwise) 344
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