
Aperture Imaging for Three

Dimensional Resolution of Fluid Flows MASSACHUSETTS INSTTE
OF TECHNOLOGY

JUL 2 9 2011
Jesse Belden

LIBRARIES
Submitted to the Department of Mechanical Engineering~
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHIVES

June 2011

© Massachusetts Institute of Technology 2011. All rights reserved.

A uthor ..................................
Deprtment of Mechanical Engineering

April 29, 2011

Certified by ........... . ....... . ..... ................. .

Alexandra H. Techet
Associate Professor of Mechanical and Ocean Engineering

Thesis Supervisor

A ccepted by ....................................................
David E. Hardt

Ralph E. and Eloise F. Cross Professor of Mechanical Engineering
Chairman, Department Committee on Graduate Students

Synthetic



Synthetic Aperture Imaging for Three Dimensional

Resolution of Fluid Flows

by

Jesse Belden

Submitted to the Department of Mechanical Engineering
on April 29, 2011, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Mechanical Engineering

Abstract

Fluid mechanics and instrumentation have a long history together, as experimental
fluids studies play an important role in describing a more complete physical picture
in a variety of problems. Presently. state-of-the-art instruments for fluid flows aim
to resolve various quantities in three-dimensions. This thesis describes a novel three-
dimensional imaging system intended to extend laboratory measurement capabilities
in complicated flows where knowledge is incomplete. In particular, the imaging
system is designed to perform three-dimensional velocimetry in densely seeded flows
where object geometry may partially occlude the field as well as to measure and
locate bubbles, droplets and particles in three-dimensions in multiphase flows. An
instrument of this kind has ramifications in a variety of engineering applications from
air-sea interaction to Naval hydrodynamics to turbulence and beyond.

The imaging system is based upon synthetic aperture (SA) imaging, which has
received much attention in the computer vision community recently. In focus images
from an array of synchronized cameras are recombined in software post-capture using
a refocusing algorithm to generate a focal stack of synthetic images. Each synthetic
image has a narrow depth of field, and objects residing at this depth appear sharp
while off-plane objects appear blurred. The refocusing algorithm not only allows
for 3D reconstruction of a scene, but also enables "see-through" effects, whereby an
object occluded in some of the camera views will be seen in the synthetic images.

In this thesis, considerations for development of a three-dimensional measurement
system for fluid flows based on the SA imaging field are made. A high-performance

'M. Levoy. Light fields and computational imaging. Computer, 39(8):46-55, Aug. 2006.



three-dimensional particle image velocimetry technique is described and validated.
Also, a method for auto-calibration of nutli-camera setups for fluids experiments
is derived and developed. Finally, algorithms are generated for application to mul-
tiphase flows and the technique is applied to a circular plunging jet with results
showing excellent agreement to prior literature and yielding new insight into the
problem.

Thesis Supervisor: Alexandra H. Techet
Title: Associate Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

The field of fluid dynamics presents tremendous challenges to theoretical, experimen-

tal and computational methods owing to the wide-ranging length and time scales,

complicated multiphase physics and coupled flow-structure dynamics, among other

challenges. The ubiquitous impact of the field on engineering applications rang-

ing from Naval hydrodynamics to renewable energy to biology to microscale devices

demands active advances in all methods. With respect to theory, closed form solu-

tions to the governing equations (typically at least Navier-Stokes) are rare, thus for

many problems of interest the equations require simplifications in order to be solved.

Computational methods are constantly advancing to accommodate more and more

complicated situations. In each case, experimental investigation of the problem is

often required to validate either the theory or computational method.

It should come as no surprise that fluid dynamics and instrumentation have had

an integral relationship for many years. Much like the complete closed form Navier-

Stokes solution, or the infinitely resolved computational scheme, the fully four di-

mensional (3 space + time) instrument capable of measuring all relevant fluid quan-



tities does not yet exist. A variety of instruments have been developed to measure

the various quantities of interest in 1-3 dimensions with various levels of resolution;

herein, the focus will lie on instrumentation for velocity measurements and multi-

phase flows. Velocimetry in fluids has seen the evolution from point measurements

of velocity using pitot-static tubes [1], hot-wire anemometry [2], or laser doppler

anemometry [3] to two-dimensional resolution of two or three components of veloc-

ity using particle image velocimetry (PIV) [4] or Stereo-PIV [5]. The developing

state-of-the-art in velocimetry is three-dimensional, three-component (3D-3C) veloc-

ity field measurements [6, 7, 8, 9, 10]. Measurements of the bubble, spray or droplet

properties in multiphase flows followed a similar evolution from point measurements

using conductivity or optical probes [11] to two-dimensional measurement of bubble

or spray properties using planar shadow imaging [12]. Three-dimensional measure-

ments in multiphase flows are also available [7, 13], but are not as developed as

3D velocimetry. For both velocimetry and multiphase flow measurements, many of

the state-of-the-art 3D instruments are based on imaging. However, many of these

imaging systems often suffer limitations on resolution and/or total resolvable volume

size, possess limited applicability in situations with optical occlusions due to objects

in the flow, or often do not extend to measurement in multiphase flow regimes.

This thesis describes a novel three-dimensional imaging system intended to extend

laboratory measurement capabilities in complicated flows where knowledge is incom-

plete. In particular, the imaging system is designed to perform three-dimensional

velocimetry in densely seeded flows where object geometry may partially occlude

the field as well as to measure and locate bubbles, droplets and particles in three-

dimensions in multiphase flows. The target volume sizes have typical macroscale

laboratory length scales (O(10-m) - O(lm)).

Before delving into the specifics of the imaging system described in this thesis,



perhaps we should first examine some areas in fluid dynamics where information

is lacking. A report by the U.S. National Committee on Theoretical an Applied

Mechanics [14] presented key research areas in fluid dynamics. While a single instru-

ment cannot serve every area, efforts for advancing instrumentation to meet needs in

a variety of areas outlined in the report are warranted. Turbulence has long been an

area of active research and affects many engineering applications related to particle

transport [15], air-sea interaction [16] and mixing [17], to name a few. The report [14]

cites the advances in understanding of turbulence due to experimental methods, and

cites the need for advances in three-dimensional measurement to better understand

the physics across multiple scales [14]. Also highlighted in the report are the chal-

lenges associated with modeling environmental flows, which span multiple scales.

Models often incorporate sensor data [14], and thus understanding processes on a lo-

cal scale (for example, fundamental physics of air-sea interaction [16, 18]) may serve

to improve accuracy in the larger model (e.g., hurricane forecasting). Finally, flow

control appears in many engineering settings and involves the interaction of actua-

tors with the fluid [14]. Therefore, understanding the fluid-structure interaction aids

in modeling, design and development of control strategies for flow control devices.

While important fluid dynamics topics extend far beyond those mentioned here,

this thesis will focus on advancing instrumentation in the areas of three-dimensional

velocimetry, measurement in three-dimensional multiphase flows and extension to

fluid-structure interaction.

The previous discussion motivates two performance requirements of the imaging

system: the ability to determine the location of objects in three-dimensional space,

and the capacity to image in flows where partial occlusions exist and still faithfully

reconstruct occluded objects. The foundation for each requirement is built by consid-

ering a classic single lens imaging system. One might expect any 3D imaging system



to somehow "encode" depth, as an imaging system in its most basic form compresses

a 3D world onto a 2D plane. Consider the schematic of a classic single lens imaging

system shown in Figure 1-1(a). If the focal plane is infinitely thin, then rays from

objects off the focal plane will intersect the image plane within a circle (neglecting

diffraction) resulting in a blurry image; the radius of the circle increases with in-

creasing distance from the focal plane. In this way, even a single lens system encodes

depth to a degree; however, the circle is known as the "circle of confusion" [19],

as an ambiguity exists as to whether the object lies in front of or behind the focal

plane. Furthermore, to extract the depth location of objects from a blurred image

requires detecting changes in the blur pattern, which is difficult for a normal circu-

lar aperture [20]. To extract 3D information from an imaging system then requires

unambiguous encoding of depth, combined with some post capture computation to

decode the depth. Therefore, 3D imaging methods typically fall under the field of

computational imaging, which combines non-standard image capture methods with

post-capture processing [19].
Additionally, Figure 1-1(b) schematically shows the ability of a single lens system

to "see-through" a partial occlusion if the occluding object is smaller than the lens

aperture, as discussed by Levoy [19]. Many rays from objects on the focal plane still

reach the image plane to form an image. However, for the fluids flows of interest, the

occluding objects may often be as big or bigger than the lens aperture. Also, the see-

through effect only allows for formation of images of objects on a small focal plane,

but we are interested in obtaining information about objects distributed throughout

a volume with large depth dimension.

Synthetic aperture (SA) imaging using camera arrays developed as a means for

extending 3D reconstruction and see-through effects to larger scales [19, 21, 22, 23,

24, 25]. As described by Levoy [19], placing several cameras in an array is analogous
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to imaging with a large lens as the cameras sample rays over a large aperture. Each

camera captures an image of the scene entirely in focus, and individual images are

recombined in software to yield a synthetic image that appears to focus on an isolated

plane [21]. Furthermore, the depths of objects are encoded by the parallax between

cameras [24], as shown schematically for the nine camera array in Figure 1-2. By

establishing the relationship between image and world points, each camera image can

be reprojected back onto surfaces in the volume and averaged to form a refocused

image [24]. For example, if the images in Figure 1-2 are reprojected onto the plane

at Zi and averaged, then point A will appear in sharp focus in the refocused image,

while point B will appear blurred due to the parallax. Adding more cameras reduces

the signal from off plane points. The ability to see-through partial occlusions is

inherent in the image refocusing, while the object depth is encoded by parallax and

quantified by the image to world point mapping. Figure 1-3 shows an application

of the SA refocusing method to images taken of an object placed in a bubbly flow

captured using a ProFusion 25 camera array. The bubbles provide a large amount

of occlusion of the object in any one image (Figure 1-3(b)), but after application

of the SA refocusing algorithm, much of the detail about the object can be seen

(Figure 1-3(c)). Refocused images can be generated at several depths to create a

focal stack, similar to wide-field microscopy [26, 27], from which a 3D reconstruction

is performed.

A brief review of other 3D imaging methods aimed at resolution on the macro

scale is now presented. Several other methods exist for resolving 3D scenes, but the

methods of data acquisition seem to fall into three broad categories: internal optics

alteration, holography and multiple-viewpoints. Internal optics alteration involves

placing additional optical element(s) in the optical pipeline to alter the formed images

in some controlled fashion. In the case of coded aperture imaging (e.g. [28, 29, 20]),
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Figure 1-2: Schematic ishowing a 3D depiction of image capture by a 9 camera array,
and subsequent refocusing on two planes.

a mask is inserted at the aperture plane, which encodes the blur function such that

the deconvolution problem is not ill-posed and allows for digital refocusing at dif-

ferent depths post-capture. However, coded aperture does not solve the problem of

reconstructing scenes with partial occlusions. The active wavefront sampling (AWS)

technique makes use of an eccentric rotating aperture to generate images from dif-

ferent viewpoints on a single image sensor [30]. Another internal optics alteration

involves placing a microlens array after the main lens but before the image sensor

plane [31, 32]. Imaging systems of this type enable capture of a light field [19], which

allows for many post-capture processing benefits such as generating synthetic views

from different viewpoints, refocusing on different depth planes and potentially even

reconstructing scenes with partial occlusions [31, 32, 33, 34]. Using a microlens array

requires sacrificing some overall X-Y viewable dimensions as the microlenses form

images on subregions of the image sensor. Furthermore, it seems as though the size

of occluding object that can be "seen through" would be smaller than for SA imag-
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Figure 1-3: Raw image of an object placed in a water tank (a), raw image of the same
object placed behind a bubble field (b) and SA refocused image using raw images
from all 25 cameras demonstrating the see-through capability of the SA imaging
method.



ing, as the baseline over which the sampling points are spaced is smaller, but there

appears to be very little literature on refocusing with occlusions using a microlens

light field camera. It should be pointed out that SA imaging is a subset of light field

imaging [32].

Holography is a technique in which the three-dimensional locations of objects in

a volume are deduced from the interference pattern of the light waves emanating

from objects and a coherent reference wave that is incident upon the field [8]. The

nature of the interference pattern is used to back out information about the phase

of light diffracted from objects in the volume, which is related to the distance of

the objects from the sensor (i.e., depth in the volume) [35]. Holography has found

many application areas in fluid mechanics, especially with the availability of large

format digital sensors. Holographic PIV has been developed for resolving 3D velocity

fields [36, 8, 37, 38] and is reviewed more thoroughly in Chapter 2. Holography is

also used in identification of biological samples in the ocean [39, 40, 41]. Finally,

holographic systems are being used to measure the size of bubbles and droplets

in multiphase flows as well [13]. Holography is typically limited to measurement

in volumes with low void fraction or particle density because occlusions cannot be

effectively dealt with [37, 13].

Multiple viewpoint techniques involve either moving cameras or placing cameras

over distributed locations, and a variety of algorithms exist for reconstructing 3D

scenes from multiple viewpoints. Moving cameras is not an option for fluid measure-

ments where each image must be captured simultaneously due to the motion of the

fluid. Stereo imaging is well-established in the computer vision community [42, 43].

As described by Vaish et al. [43], to obtain the see-through effects, multiple cam-

eras must be used in conjunction with appropriate algorithms, which falls under the

heading of SA imaging. Synthetic aperture imaging is a form of multi-baseline stereo



imaging, with algorithms that allows for objects to be missing in some views, but still

enables reconstruction in 3D [43]. Optical tomography involves solving the inverse

problem of determining 3D objects from projections onto image planes [44, 45]. If the

sensors are distributed over a large angle (> 1800), as for medical imaging, then accu-

rate and efficient algorithms for reconstruction are available [45]. However, in fluids

experiments, the sensors are not normally distributed over such a large angle and

algebraic reconstruction techniques (ART) are required [45, 46]. Three-dimensional

PIV techniques based on ART and variations have developed and are becoming more

widely used in the community [46, 9, 47]; tomgraphic-PIV is described in more detail

in Chapters 2 and 3. As discussed in Chapters 2 and 3, ART based tomographic

techniques do not effectively deal with occlusions. Finally, inspired by coded aperture

imaging, digital defocusing particle image velocimetry (DDPIV) generates a single

composite image from three or more views and determines object depth by measuring

the size of the coded "blur" pattern [48, 7, 49]. DDPIV can accommodate occlusions,

but the fields can not be too optically dense as each pattern must be identified by

the search algorithm. Bubbly flows have also been resolved with DDPIV systems,

typically with low optical density [7, 50].

Although the ability of SA imaging to deal with partial occlusions and encode

the 3D location of objects are promising attributes, developing SA imaging into a

measurement system requires several considerations that are detailed in this thesis.

In particular, we will often aim to extract information from the refocused images

(e.g. geometry of a bubble) and determine accurately the plane of best focus for

an object. To accurately place extracted information in a world coordinate frame

requires accurate calibration. For many fluids studies, calibration requires consider-

ation of the nature of the imaging system, where an air-glass-water transition exists

between the cameras and volume of interest. Much of the available literature on SA



imaging focuses on implementation of the refocusing algorithm to produce images

for observation only, with particular application to surveillance [22, 23, 24]. The

technique has also found applications in display and novel view rendering in the

computer vision community [21]. Typically, multi-camera arrays for SA imaging are

calibrated for environments where the pinhole model applies [21] or plane-to-plane

homographies are used to generate the refocused planes [22, 23, 24]. As will be

shown in Chapter 4, linear camera or plane-to-plane models fail to adequately de-

scribe the common fluid flow setup involving air-glass-water transition in the camera

lines of sight. Determining the plane of best focus is part of the 3D reconstruction

problem, and is common in computer vision [51, 43, 52]. Also, many holographic

reconstructions apply focus metrics to determine object depth [13, 53, 41]. Vaish

et al. [43] discussed methods for 3D reconstruction specifically from SA refocused

images based on various metrics (e.g. shape from focus and shape from stereo). In

this thesis, metrics for 3D reconstruction and subsequent feature extraction for 3D

PIV and SA refocused bubble images are described in Chapters 2 and 5, respectively.

Chapter 2 presents the development of a three-dimensional particle image ve-

locimetry technique based on the synthetic aperture imaging system (dubbed 3D

SAPIV) and comes directly from an article published in Measurement Science &

Technology [10]. The 3D SAPIV technique enables larger seeding densities and thus

improved resolution over the current state-of-the-art in 3D PIV. A canonical vortex

ring flow is imaged with a low-cost camera array and serves as a benchmark for

the 3D SAPIV technique, and results are in excellent agreement with the expected

outcome and similar 2D PIV results.

In Chapter 3, several practical aspects of synthetic aperture imaging are dis-

cussed. The design of the low-cost camera array used in Chapter 2 is described in

further detail, as is a high-speed camera array. Then, comparisons between synthetic



aperture imaging and ART-based optical tomography are drawn, particularly with

respect to the computational performance, the ability of each algorithm to handle

partial occlusions and the amount of "ghost particles" (or reconstruction artifacts)

present in 3D PIV volumes reconstructed with each method. The current implemen-

tations of the synthetic aperture imaging algorithms are shown to outperform the

tomographic algorithms in both computational performance and in reducing ghost

particles, and have the ability to reconstruct volumes with partial occlusions, which

the discussed implementations of tomography do not possess.

Chapter 4 describes a novel method of auto-calibration of multiple cameras. Cal-

ibration of multiple cameras presents a huge challenge if handled with traditional

methods. However, if information is shared across cameras, then the calibration

can be simplified greatly. The cameras can be calibrated simply from images of

corresponding points and a small amount of reference geometry. In Chapter 4, the

calibration model accounts for a common situation in fluids experiments in which

the cameras are placed in air and view a scene in water through a wall. Cameras

can be in general location and orientation, and the induced refraction is accounted

for. The algorithm for auto-calibration of cameras of this nature is developed and

represents one of the contributions of this thesis.

Chapter 5 discusses the application of the synthetic aperture imaging technique

to the bubbly flow induced by a circular plunging jet. This classic problem presents

an ideal test case as the bubble concentration and size is readily varied by altering the

jet height. Although the circular plunging jet is not a new problem, certain aspects

remain unresolved. In particular, a three-dimensional bubble size distribution has

never been reported due to the complexity of the flow and the lack of suitable instru-

mentation. Results from the experiment demonstrate the capability of the synthetic

aperture imaging technique to resolve bubble sizes and locations in three-dimensions



in flows with relatively high air concentration. The resulting three-dimensional size

distributions represent the first data sets of their kind, to the knowledge of the au-

thor. Some insights are drawn for a range of experimental parameters and compared

with previous work on the problem.

Finally, Chapter 6 presents conclusions for the entire thesis, summarizes the SA

imaging measurement technique with a "road map" for SA projects and highlights the

contributions of the work. The appendices contain several important but peripheral

details not included in the main text. Some details of the numerical scheme used to

solve part of the calibration in Chapter 4 and additional plots from Chapter 4 are

included.
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Chapter 2

Three-Dimensional Synthetic

Aperture Particle Image

Velocimetry [1]

2.1 Introduction

Efforts for resolving three-dimensional velocity fields are justified by the need to

experimentally resolve flows that are highly three-dimensional and to validate nu-

merical simulations of complex flows. The ability to spatio-temporally resolve flow

features from small to large scales in arbitrarily large volumes is the goal of any

3D PIV system. Of course, there have been many roadblocks to achieving all of

these goals with a single system, and compromises must be made. Two-dimensional

particle image velocimetry (2D PIV) is the most pervasive method for resolving ve-

locity fields, thus it is not surprising that recent efforts to resolve 3D flow fields have

extended many of the fundamentals of 2D PIV to the third dimension.



Several methods exist for resolving 3D particle fields, or any 3D scenes for that

matter, but the methods of data acquisition seem to fall into three broad categories:

multiple-viewpoints, holography and internal optics alteration. The technique de-

scribed herein falls into the multiple-viewpoint category, and makes use of an algo-

rithm known as synthetic aperture refocusing to examine the imaged volume and is

thus referred to as synthetic aperture PIV (SAPIV). Herein, we focus on the applica-

tion of the principles of synthetic aperture imaging to develop a measurement system

for resolving three-dimensional fluid velocity fields. The system performance is eval-

uated theoretically and numerically. The practical utility of SAPIV is demonstrated

through an experimental study of a canonical vortex ring.

The evolution of 2D PIV is described by Adrian [2], and is not reviewed here.

One of the earliest, but still frequently utilized, methods for 3D PIV is two camera

stereoscopic PIV, which is primarily used to resolve the third component of velocity

within a thin light sheet [3]. Maas et al. [4, 5] and Malik et al. [6] use a 3D par-

ticle tracking velocimetry (PTV) method which resolves the location of individual

particles imaged by two, three or four cameras in a stereoscopic configuration. They

report measurements in a large volume (e.g. 200 x 160 x 50 mm 3)1 , but with very

low seeding density (~1000 particles). Through precise calibration and knowledge

of the imaging geometry, the particle field can be reconstructed. More recently, im-

provements to PTV methods are presented by Willneff & Gruen [7]. In general, low

seeding density is a typical limitation of PTV, yielding low spatial resolution in the

vector fields.

Another technique which makes use of multiple viewpoints is defocusing digital

particle image velocimetry (DDPIV) [8, 9, 10]. In theory, DDPIV capitalizes on

the defocus blur of particles by placing an aperture with a defined pattern (usually

'The notation mm3 will be used throughout this thesis to refer to cubic millimeters.



pinholes arranged as an equilateral triangle) before the lens, which is a form of coded

aperture imaging [11]. The spread between three points generated by imaging a

single particle corresponds to the distance from the camera along the Z dimension. In

practice, the spread between particles is achieved using three off-axis pinhole cameras

which causes a single point in space to appear at separate locations relative to the

sensor of each camera. As described in [12, 13], the images from all three camera

sensors are superimposed onto a common coordinate system, an algorithm searches

for patterns which form an equilateral triangle, and based on size and location of the

triangle the 3D spatial coordinates of the point can be resolved. A main limitation of

this technique appears to be seeding density, because the equilateral triangles formed

by individual particles must be resolved to reconstruct the particle field. Pereira &

Gharib [9] have reported simulations with seeding density of 0.038 particles per pixel

(ppp) in a volume size of 100 x 100 x 100 mm 3, and experiments with seeding density

of 0.034 ppp in a volume size of 150 x 150 x 150 mm 3 . The technique has also been

efficiently implemented with a single camera using an aperture with color-coded

pinholes, to measure velocity fields in a buoyancy driven flow in a 3.35 x 2.5 x 1.5

mm3 volume with seeding density ~0.001 ppp [14].

Tomographic-PIV also uses multiple viewpoints (usually 3-6 cameras) to obtain

3D velocity fields [15, 16]. Optical tomography reconstructs a 3D intensity field from

the images on a finite number of 2D sensors (cameras); the intensity fields are then

subjected to 3DPIV cross-correlation analysis. The seeding density for tomographic-

PIV seems to be the largest attainable of the existing techniques. Simulations by

Elsinga et al. [15] show volumetric reconstruction with seeding density of 0.05 ppp,

and recent tomographic-PIV experiments typically have seeding density in the range

of 0.02-0.08 ppp [16, 17]. The viewable depth of volumes in tomographic-PIV is

typically three to five times smaller than the in-plane dimensions [15, 16, 18]. Elsinga



et al. [15, 16] thoroughly characterize the performance of tomographic-PIV, and we

have adopted many of the same metrics in evaluating the synthetic aperture PIV

method presented herein since both methods are based on 3D cross-correlation of

reconstructed intensity fields.

Holographic PIV (HPIV) is a technique in which the three-dimensional location

of particles in a volume is deduced from the interference pattern of the light waves

emanating from particles and the coherent reference wave that is incident upon the

field [19]. The nature of the interference pattern is used to back out information

about the phase of light diffracted from objects in the volume, which is related to

the distance of the objects from the sensor (i.e. depth in the volume) [20]. Holo-

graphic PIV makes use of this principle to image particle-laden volumes of fluids,

and extract information about location of particles in the volume. Meng et al. [21]

provide an extensive review of film and digital Holographic PIV techniques. In holog-

raphy, the size of the observable volume is ultimately limited by the size and spatial

resolution of the recording device. Zhang et al. [22] have reported very high resolu-

tion measurements of turbulent flow in a square duct using film-based HPIV, where

particles were seeded to a reported density of 1-8 particles/mm in a volume mea-

suring 46.6 x 46.6 x 42.25 mm 3 . Although film has much better resolution and is

larger than digital recording sensors, Meng et al. [21] extensively cite the difficulties

of film based holographic PIV, which have likely prevented the method from being

widely utilized. In contrast, digital Holographic PIV is more readily usable, but is

often limited to small volumes and low seeding density [21]. A digital hybrid HPIV

method has been implemented by Meng et al. [21] which allows for measurement in

volumes with larger depth, but the size of the in-plane dimensions are limited by the

physical size of the digital sensor, and seeding density remains low. Sheng et al. [23]

have presented recent results of measurements in a turbulent boundary layer with



increased seeding density (0.014 ppp) in a volume measuring 1.5 x 2.5 x 1.5 mm3 .

The synthetic aperture PIV technique is implemented using an array of synchro-

nized CCD cameras distributed such that the fields of view overlap. Images are

recombined in software using a refocusing algorithm, commonly applied in synthetic

aperture applications [24, 25]. The result is sharply focused particles in the plane

of interest (high intensity), whereas particles out-of-plane appear blurred (low inten-

sity). Due to the multiple camera viewpoints and the effective reduction of signal

strength of out-of-plane particles in image recombination, particles that would oth-

erwise be occluded can in fact be seen. The 3D intensity field of particle-laden flows

can be reconstructed by refocusing throughout the entire volume and thresholding

out particles with lower intensities. Typical 3D PIV techniques can then be applied

to the intensity fields to extract velocity data. This technique enables larger vol-

umes to be resolved with greater seeding density, yielding higher spatial resolution

than prior 3D PIV methods. Additionally, the algorithms are simple and robust and

build on established image processing techniques. Results of simulated particle fields

show the ability to reconstruct 3D volumes with seeding densities of 0.17 ppp (6.68

particles/mm 3) when the ratio of X-Y to Z dimension is 5:1 (50 x 50 x 10 mm3

volume), and 0.05 ppp (1.08 particles/mm 3) when the ratio of X-Y to Z dimension

is 4:3 (40 x 40 x 30 mm3 volume). A vortex ring flow field is imposed on each of

these simulated volumes, and 3D PIV analysis yields highly-resolved vector fields.

Results are presented from an experimental implementation of SAPIV using a cus-

tom built camera array to study a vortex ring in a 65 x 40 x 32 mm3 volume. Design

considerations for experimental 3D SAPIV implementation are discussed through-

out the paper. The experimental data presented are benchmarked with 2D PIV, and

demonstrate the ability of SAPIV to resolve 3D flow fields, providing a useful and

flexible tool for making 3DPIV measurements.



2.2 Synthetic Aperture Methodology

2.2.1 Light Field Imaging

Synthetic aperture PIV is based on the concept of light field imaging, which involves

sampling a large number of light rays from a scene to allow for scene reparame-

terization (Isaksen et al. [24]). In practice, one method used by researchers in the

imaging community for sampling a large number of rays is to use a camera ar-

ray [26, 24, 27, 25]. The novelty of the approach presented herein is the application

of the reparameterization methods to 3D PIV, and the development of the technique

into a measurement system, including the generation of algorithms to reconstruct

3D particle intensity fields from the refocused images. The technique is broken down

into sequential components in the list below.

1. Image Acquisition: Image capture is performed using an array of cameras

typically arranged in a multi-baseline stereo configuration, which view the scene

from different viewpoints. The cameras can be placed at arbitrary locations

and angles as long as the desired refocused planes are in the field of view

(FOV) of each camera. The depth of field of each camera is large enough such

that the entire volume of interest is in focus. The multiple viewpoints array

captures many more light rays than can be seen with one camera (i.e. light

field imaging [24]).

2. Synthetic Aperture Refocusing: The light fields are reparameterized using

synthetic aperture refocusing [24, 27, 25].

3. 3D Intensity Field Reconstruction: 3D intensity fields generated by a

fluid seeded with flow tracers are extracted from images refocused using the



synthetic aperture refocusing method.

4. 3D Cross-Correlation: Typical 3D intensity field cross-correlation methods

similar to those used in Tomographic-PIV [15, 16] operate on the reconstructed

3D intensity fields to extract velocity fields.

2.2.2 Synthetic Aperture Refocusing

In synthetic aperture techniques, images captured by an array of cameras each with

large depths of field are post-processed to generate one image with a narrow depth of

field on a specific focal plane [24, 26]. Through synthetic aperture refocusing, further

post-processing allows the location of the focal plane to be arbitrarily placed within

the imaged volume [24, 27, 25]. This technique provides many desirable implications

for 3D PIV; namely, a particle-laden volume can be captured at one instant in time

and synthetic aperture refocusing allows for the reconstruction of particles at known

depths throughout the volume post capture.

In general, the post-processing for synthetic aperture refocusing involves project-

ing all images onto a focal surface (planar or otherwise) in the scene on which the

geometry is known, averaging the projected images to generate one image, and re-

peating for an arbitrary number of focal planes [24]. The working principle of the

synthetic aperture technique is demonstrated with a simplified example. Consider

the case where two cameras at different X locations view the same portion of the

reference plane in figure 2-1. If the images from each camera are mapped to the ref-

erence plane, and then all images (now in reference plane coordinates) are averaged,

the point A will be in sharp focus in the averaged image. However, points not on

this plane (i.e., at different depths) will appear out of focus because of the parallax

between cameras. In the average of the reference plane aligned images, the images



of point B from the two cameras will appear at the points where the gray rays in

figure 2-1 intersect the reference plane, which are separated by A. By adding more

cameras, mapping images to the reference plane and averaging, the signal of point

A will grow increasingly larger than the "noise" of the off-plane points. Note that

this "noise" does not refer to actual image noise, but the signal from particles not

on the plane of interest. The concept is shown schematically in 3D in figure 2-2(d),

which shows image capture by a 9 camera array, and subsequent refocusing on two

planes. By positioning the cameras on a sufficiently large baseline (larger separation

between camera centers of projection (COP's)), some of the cameras can see particles

which are occluded in other images [24, 26, 27, 25]. Therefore, the partially occluded

particles retain a high signal in the refocused image.

2.2.3 Three-Dimensional Volume Reconstruction

The goal of the synthetic aperture PIV technique is to reconstruct 3D particle inten-

sity fields which are suitable for cross-correlation based 3D PIV processing. The start-

ing point for volume reconstruction is the implementation of the synthetic aperture

algorithm to generate refocused images on planes throughout the volume. Thereafter,

the actual particle field must be extracted from the refocused images and organized

into a volume with quantifiable locations.

To implement synthetic aperture refocusing, relationships between the image co-

ordinates and focal planes in world coordinates must be established (i.e., a set of

mapping functions). In the simulations presented herein, cameras are represented

with a pinhole model, and the mapping functions can be generated by an algorithm

presented in [25], which we refer to as the map-shift-average algorithm. This algo-
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subsequent refocusing on two planes.
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rithm is suitable for pinhole cameras with no image distortion and no changes in

optical media in the line of sight (e.g. air-glass-water transition). In practice, map-

ping functions that can account for distortion and changes in optical media can be

generated by more sophisticated calibration techniques, as is done for the experiment

discussed in Section 2.3. For example, as employed by [17], a planar calibration grid

can be placed at several planes throughout the volume to generate mapping func-

tions, and error in these functions is reduced using a volume self-calibration tech-

nique [28]. The map-shift-average algorithm represents the most basic that is used

in synthetic aperture refocusing, but it is helpful in describing the technique and is

also implemented in the simulations presented in Section 2.2.4.

Map-Shift-Average Algorithm

The first step in the map-shift-average algorithm is to align all images on a

reference plane [25]. The reference plane is an actual plane in the view of the cameras

which, in practice, is defined using a planar calibration grid. Images are aligned on

the reference plane by applying a homography which, as described in [29], is a central

projection mapping between two planes given by

bx' hnl h12 h13 x

by' h21 h2 2 h23 y (2.1)

b L h3  h32 h33 1

where b is a constant, h33 = 1, and the vectors x' and x are the homogeneous

coordinates of points in the reference plane and the image plane, respectively. In this

way the raw image from the ith camera, 1i, is mapped to a new image in reference

plane coordinates, Ip. Hartley & Zisserman [29] describe robust algorithms for



estimating the homography based on the images of several points on the reference

plane.

Light field imaging with camera arrays offers the ability to refocus on arbitrarily

shaped focal surfaces [24, 27, 25]. For the simulations herein, we restrict the situation

to refocusing on fronto-parallel planes where the raw images are captured with a

camera array where all camera COP's lie on the same plane. For this restricted case,

the mapping that must be applied to refocus on each fronto-parallel plane is simply a

shift of the reference-plane aligned images by an amount proportional to the relative

camera locations [27]. The coordinates of image points on the new focal plane are

given by

xJ 1 0 pkAXC, (

y" = 0 1 1~

where yk is a constant that determines the location of the kth focal plane of the

refocused image, and AXc, and AYo, are the relative camera locations of the ith

camera. This portion of the algorithm transforms the ith reference plane aligned

image, IRP, to an image on the kth focal plane, IFP2 . The relative camera locations

can be found using a simple calibration method presented in Vaish et al. [27] which

operates on the images from the camera array of points on planes at several depths.

No a priori knowledge of the camera locations or optical configurations are required

to implement this algorithm.

In the final step in the refocusing algorithm, the mapped and shifted images (now

all aligned on the kth focal plane) are averaged. The resultant image is referred to



as the refocused image, and is given by

=S~ 1~ Fk (2.3)IsA, = ( IFPki

where images are combined from N cameras [25]. Particles that lie on the plane

of the refocused image appear sharp and have high intensity, while particles not

on this plane are blurred and have lower intensity. The only difference between

the methodology described here and the practical realization comes in the mapping

functions used to align all images on the focal planes. Rather than using the linear

homography and homology, a higher order mapping will likely be required to deal

with distortions and changes in optical media [17, 28].

Focal Plane Spacing and Viewable Depth

Theoretical analysis of the focal plane spacing and viewable depth is presented

using the two camera model shown in figures 2-1 & 2-2. Here, we define the focal

plane spacing, 6Z, as the distance between refocused planes throughout the volume,

where Z is the distance from the front of the experimental volume. The viewable

depth is the total depth dimension (Z,) of the reconstructed volume. The simple

two camera model is sufficiently general to establish the theoretical limits of the

system, and the results can be applied to design and predict the performance of

various arrangements. A full scale simulated model is implemented in Section 2.2.4

to examine the effects of parameters not considered in this theoretical treatment,

such as particle seeding density, number of cameras and mapping error.

In the model of the imaging system shown in figure 2-1, the image sensors are

parallel to each other and the camera centers of projection lie on the same plane.



The geometric imaging optics are described by four parameters: the focal length (f),
distance from the lens to the front of the imaged volume (so), distance from lens to

image plane (si) and magnification (M(Z) = -si/(so + Z)). Also, the focal length

is related to s, and si through the imaging condition: 1/f = 1/si + 1/s.

To examine the effect of camera layout on focal plane spacing, we start by con-

sidering the relationship between points in physical space and the images of these

points. The coordinates of a general point, A (see figure 2-1), projected onto the

imaging plane of one of the cameras is given by

xA KQ- AI (XA - Xc) - dc (2.4)
[so +ZA

where Xc is the X coordinate of the camera center of projection in global coordinates,

and dc is the displacement of the image sensor from the center of projection (zero

as shown). We define the value of "initial" magnification as M (Z = 0). The

dimension of each pixel projected into physical space is given by

6X = (2.5)
M (Z)

where p is the pixel pitch (width of a pixel).

As described earlier, the first step in the reconstruction is to align the images on a

reference plane. In the model in figure 2-1, the reference plane is chosen (arbitrarily)

to be the plane in physical space on which point A lies. In figure 2-2, the image sensors

are shown with the centers aligned along the z-axes of the local image coordinates.

To align the images on the reference plane would require a shift of the image sensor

(or equivalently, the digital image) of camera 2 by an amount equal to SA = XA2 -XA 1

(the disparity of the images of point A) in the negative x-direction of the camera 2



coordinate system. Since point B does not lie on the reference plane, sB = XB2 - LB

does not equal SA, and thus points at different depths are disambiguated.

The focal plane spacing, 6Z, is dictated by the image plane shift required to

refocus on another plane. To move from the reference plane to the secondary plane

shown in the model, the image plane must be shifted by an amount equal to SA - sB,

which is given by

sAi - s =A (2.6)A-s= AX O + ZB - So + ZAI

where AXc = XC2-XCi is the separation between the camera COP's. The minimum

amount that the image sensor can be shifted by is the width of one pixel (assuming

no spatial interpolation), therefore SA - sB >= p. Letting ZA = Z and ZB = Z + F6Z

and imposing the minimum shift requirement yields

AXc r * - M(Z)= p (2.7)
Iso + Z) + 6Z

Solving Equation 2.7 for 6Z gives

AXc (286Z = -Si (2.8p + AXc - M(Z) M(Z)

Dividing the top and bottom of the first term in the bracket by 1/so yields

6Z = -si '0(2.9)
-5 + -( ) M(Z) M(Z)

Equation 2.9 contains the convenient geometric parameter, AX, which is the ratio

of the camera spacing to the distance from the front of the imaged volume. For

convenience, we will let D = . This parameter characterizes the baseline of theso



system. Equation 2.9 can be further simplified by applying Equation 2.5 at Z to

replace p and rearranging,

6Z 1 + -Z D Dsjjo (2.10)
6X 1  X

Dso

For typical PIV applications, it is reasonable to assume 6X < Ds,; applying this

approximation yields

6Z 1 Z
6X D Ds(

Therefore, the ratio 3Z/oX is a linear function of Z with intercept defined by the

camera baseline and slope defined by the camera baseline and the imaging system

optics. The depth of field in the reconstructed volume is directly related to 6Z/oX.

When 6Z/6X is small, the camera lines of sight are at large angles to one another,

and the physical depth over which particles are in focus is small (small depth of

field). Conversely, larger 6Z/6X leads to a larger depth of field, which is manifested

as reconstructed particles which are elongated in Z.

In theory, the overall viewable range in X, Y and Z is limited only by the field

of view (FOV) and depth of field (DOF) of a single camera of the array. In reality,

images from the outer cameras of the array must be shifted with respect to the central

camera image to refocus at different depths. The outer edges of the refocused images

have a lower signal-to-noise ratio than regions where all images contribute to the

average. This effective limitation on the FOV can be characterized by the number

of image shifts required to refocus through an entire volume, which is given by

Z
N = " (2.12)

6Z



where Z, is the depth of the volume. Since images are shifted in integer pixel in-

crements (assuming no interpolation), it is possible to calculate the region of each

refocused image to which all images will contribute. As will be seen in Section 2.2.4,

this effect does degrade the performance near the outer edges of the larger recon-

structed volumes. This effect could be mitigated by excluding the portions of the

shifted images which don't contribute from the average, but this adjustment to the

refocusing algorithm has not been included here. Nonetheless, the implications of

the technique are that the observable range of the system is highly scalable, with

the ability to trade-off depth of field for viewable range much as one would trade-off

X-Y resolution for FOV with a single camera.

3D Particle Intensity Field Extraction

Once the refocused images have been generated, the images must be processed

to extract the actual particles from the blurred, lower intensity background. Figure

2-3(a) shows a zoomed view (250 x 250 pixels) of simulated image from the central

camera of the array and figure 2-3(b) shows a refocused image from the 50 x 50 x

10 mm3 volume simulation which will be described in detail in Section 2.2.4. The

refocused image has a higher background "noise" level than the raw image or a

typical 2D PIV image due to the averaging of multiple images, however the "noise"

is probabilistic. If we consider the intensity fields of the N images aligned on a

given focal plane to be independent and identically distributed random variables,

1, I2, ... , 1N, with means y and standard deviations o, then the central limit theorem

states that the distribution of the average of the random variables will be Gaussian

with mean y and standard deviation of u/v/N. Therefore, the intensity distribution

of a refocused image (which is an average of the focal plane aligned images) can be



modeled as Gaussian. Figure 2-4(a) shows the intensity histogram for a reference

plane-aligned image from one camera of the array and the histogram for the refocused

image in figure 2-3(b) is shown in figure 2-4(b). Clearly, the distribution of intensity

for the single camera image is not Gaussian, but the shape of the distribution of the

refocused image follows a Gaussian distribution quite well, as indicated by the model

fit. As more particles are added, the mean of the individual images becomes larger,

and thus the mean of the refocused image becomes larger. Actual particles appear

with high intensity values, and are thus outliers with respect to the distribution of the

refocused image. Intensity thresholding can be applied to retain actual particles and

eliminate background "noise" from the images. It was found that a threshold value

around three standard deviations above the mean intensity of each refocused image

yielded acceptable reconstruction. Figure 2-5 shows the refocused image from figure

2-3(b) now thresholded to reveal the true particles. By refocusing throughout the

volume and thresholding the refocused images, the three-dimensional intensity field

is reconstructed. Although the thresholding method may require more optimization,

it appears that by detecting the outliers in the refocused images the true particle

field can be reconstructed, attesting to the simplicity of the SAPIV technique.

2.2.4 Simulated Camera Array

A 5x5 camera array model is simulated to investigate the system performance as

a function of particle seeding density, size of measurement volume and error in the

mapping function. The effect of array layout and camera number on reconstruc-

tion performance is also investigated by changing the spacing between cameras and

removing certain cameras from the array, respectively. Cameras are arranged with

COP's on the same plane and equal spacing along X and Y between all camera



Figure 2-3: Zoomed views (250 x 250 pixels) of a (a) simulated image from the central
camera of the array and (b) refocused image using all of the simulated images of the
array.
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Figure 2-4: Intensity histograms for a single simulated image aligned on a given focal
plane (a) and for a refocused image on that focal plane (b).



Figure 2-5: Zoomed view (250 x 250 pixels) of the thresholded refocused image from
figure 2-3(b) revealing the particles and removing the background noise.

COP's (unless otherwise noted). In order to overlap the fields of view, the cameras

are angled such that the ray passing through the center of the measurement volume

intersects the center of the image sensor. For this arrangement, the map-shift-average

algorithm applies. The perspective due to the angling of the cameras is compensated

for when the reference plane homographies are applied to the images.

The ability of the system to resolve the particle field in four different measurement

volume sizes is examined. The volume sizes (X x Y x Z) are 50 x 50 x 10 mm3,

40 x 40 x 30 mm3 , 50 x 50 x 50 mm3 and 100 x 100 x 100 mm3 . For each volume,

the system performance is evaluated for several different camera baselines, D, and

for each camera baseline the particle seeding density is varied. For all simulations

presented herein, the cameras are modeled with 85 mm focal length lenses and the

imaging sensors are 1000 pixels x 1000 pixels with a pixel pitch of 10pm. For the



100 x 100 x 100 mm3 volume, the initial magnification is set to M(Z=0) = -0.1 and

for the other three volumes the magnification is M(Z=0) = -0.2.

Reference plane homographies are calculated for each camera from calibration

images of known points on several Z planes with the central camera of the array

as the reference camera. The camera positions relative to the central camera are

established using the calibration method described in [27]. The calibration images

are used to establish the shift required to refocus at each depth in order to define the

conversion between voxels and physical units in the Z dimension. Herein, we define

a voxel as having the dimensions of a pixel in X and Y, and dimension equal to

the focal plane spacing in Z. Because integer pixel shifts are used in the map-shift-

average algorithm, a given calibration depth may not correspond exactly to any of

the refocused images. Therefore, the actual voxel to Z calibration is approximated by

fitting a gaussian curve to the summed intensity from refocused images surrounding

each calibration plane and finding the voxel corresponding to the peak of the fit.

Particles are randomly seeded within the volume and imaged using the camera

array. Once the image plane coordinates of a point are known, a realistic model of

the intensity distribution must be applied. A standard method of simulated image

generation is to apply a Gaussian intensity profile as described in [3]. The distribution

is applied to each camera image for each pixel location, which forms an image similar

to the one presented in figure 2-3(a).

After simulated images have been formed by each camera, the map-shift-average

algorithm, followed by intensity thresholding and three-dimensional field reconstruc-

tion, is carried out for each numerical experiment. In order to quantify how well the

intensity field is reconstructed, the same measure of reconstruction quality, Q, used

in Elsinga et al. [15, 16] is applied here:



Q ZXyz Er (X, Y, Z) - Es (X, Y, Z) (2.13)

X/ Y'z Er2 (X, Y, Z)- Ex,Y,z E82 (X, Y, Z)

where Er is the reconstructed intensity field and E, is a synthesized intensity volume

based on the known particle locations.

Baseline spacing affects the Z dimension of the voxels such that they represent

larger physical sizes than the X - Y dimensions, therefore the intensity distribution

in the synthesized field is scaled in Z in voxel space such that in physical space

the intensity distribution is spherically symmetric. This ensures that a perfectly

reconstructed particle would yield a Q value of 1 when compared to the synthesized

field.

The value of Q is calculated for each numerical experiment conducted, and we use

the same requirement as in [15] of Q > 0.75 for the reconstruction to be considered

adequate. In all cases other than the 40 x 40 x 30 mm3 measurement volume, the

outer 50 edge pixels were cropped prior to calculating Q because of the effective loss

in FOV as described earlier (in the 40 x 40 x 30 mm 3 , the images do not fill the

entire image sensor and thus the outer pixels of the reconstructed images contain

no particles). Figures 2-6(a)-(c) present the reconstruction quality as a function of

particle seeding density for various camera baselines in each volume. The number of

seeded particles, maximum particle seeding density (C) and number of particles per

pixel (ppp) in each case are summarized in Table 2.1. To find the maximum seeding

density, simple linear interpolation of the data was used to find the seeding density

corresponding to Q=0.75.

In the case of the 50 x 50 x 10 mm3 measurement volume, the reconstruction

quality falls off with increasing seeding density, and also decreases with increasing

camera baselines. For larger seeding density, the reduction in reconstruction quality



is expected; the occurrence of off-plane particle overlap is increased, and the over-

all signal-to-noise ratio decreases in the refocused images. The reason for reduced

reconstruction quality with increasing baseline is less obvious. Investigation of the

data reveals that the reason for the degradation in reconstruction quality with in-

creasing baseline is due to the more extreme warping of the particle images imposed

by the homography which maps images to the reference plane. The particles become

elongated in the mapped image which raises the background noise in the refocused

images. This may be mitigated by placing the outer cameras of the array a normal-

ized distance D/2 from the inner cameras (which determine the focal plane spacing

of the system and would still be placed a normalized distance D from the central

camera) but requires interpolation when shifting images from the outer cameras of

the array. This has been implemented in the case labeled D = 0.5 uneven spacing,

and indeed the reconstruction quality is improved for the same seeding density. For

this configuration, the achievable seeding density is C = 5.24 part./mm3 and the

resultant particles per pixel is 0.13.

Simulations in the 50 x 50 x 50 mm3 volume show a similar trend as for the

50 x 50 x 10 mm3 volume, with Q decreasing with increasing C more rapidly for a

larger camera baseline. However, the achievable seeding density is lower than for the

volume with smaller depth (e.g. C = 0.37 part./mm3 for D = 0.2). The reasons for

the lower seeding density and the lower actual number of particles that can be seeded

as compared to the 50 x 50 x 10 mm 3 volume are four-fold. First, the larger depth

of field of each camera requires a larger f-number which increases the particle image

diameter; this results in a larger mean intensity in the refocused image. Second, the

depth of the volume creates more likelihood of particle overlap on each simulated

image, which can, in a sense, decrease the dynamic range of the system by increasing

the likelihood of saturated pixels. Third, the larger depth creates a higher likelihood



of overlapping of many different out-of-focus particles in the refocused images. These

false particles may be retained in the thresholding if enough images overlap. Finally,

the limitation on the field of view imposed by the image shift contributes to the loss

in reconstruction quality because some images contribute zero values to the average

toward the outer regions of the refocused images, thus true particles have a lower

intensity value. This can be mitigated by averaging only the portions of the image

which are known to contribute to the refocused image, but that technique has not

been implemented here. Tuning the camera array and reconstruction algorithms to

enable more seeding in the very large volumes is the subject of ongoing work. By

decreasing the dimensions of the volume somewhat, more particles can be seeded,

even in volumes where the Z dimension approaches that of the X - Y dimensions,

and all are relatively large. Simulations in the 40 x 40 x 30 mm 3 volume are carried

out at only one array configuration - D = 0.4 uneven spacing - and it was found

that a seeding density of C = 1.08 part./mm3 corresponding to 0.05 particles per

pixel could be achieved. As shown section 2.2.5, this seeding density allows 3D PIV

measurements to be made in this volume with reasonable spatial resolution.

Finally, the camera magnifications are reduced to accommodate the large 100

x 100 x 100 mm3 measurement volume. The trend for reconstruction quality as

a function of seeding density and baseline is similar to that observed for the other

volumes studied. The total number of particles that can be seeded is, however, larger

than for the 50 x 50 x 50 mm3 volume for comparable camera baselines. Thus, trading

off X-Y resolution allows for more particles to be seeded even with increasing depth

dimension. Overall, these results indicate that the synthetic aperture PIV technique

is capable of imaging extremely densely seeded volumes where the depth dimension

is somewhat reduced, and still quite densely seeded volumes when the Z dimension

approaches that of the X-Y dimensions.
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Figure 2-6: Effect of particle seeding density (C, particles/ (mm) 3) on reconstruction
quality, Q, for various camera baselines in a 50 x 50 x 10 mm3 volume (a), a 50 x 50
x 50 mm 3 volume (b) and in a 100 x 100 x 100 mm3 volume (c).

The effect of camera number on reconstruction quality is investigated in the 50

x 50 x 10 mm3 volume by using only some of the cameras in the array. Figure 2-

7(a) shows Q as a function of camera number with seeding densities of 2,3 and

5 part./mm3 . Clearly, the reconstruction quality reaches a point of diminishing

returns as more cameras are added, and the most efficient number of cameras seems

to be in the range of 10-15. Finally, to determine an upper limit to the allowable

error in calibration, simulations in the 50 x 50 x 10 mm 3 volume with 13 cameras

and 3 part./mm3 are carried out imposing error in the reference plane homography.

This results in the misalignment of mapped images on each focal plane. The total

misalignment error is defined as ERP = e + and is the same for all cameras,

but Ex and cy are randomized for each camera so as not to introduce any bias. For

each value of eRP, ten simulations are carried out such that different random values

of ex and cy are applied to each mapping for each simulation; the mean value of Q is

then found for each ERP. Figure 2-7(b) shows the mean value of Q as a function of

ERP; the error bars represent three standard deviations from the mean. The value of
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Figure 2-7: Reconstruction quality, Q, as a function of camera number for various
particle seeding densities (a) and error in reference plane mapping (b) in the 50 x 50
x 10 mm 3 volume.

ERP corresponding to a mean value of Q = 0.75 was found to be 0.45 pixels. Volume

self-calibration techniques such as that described in [28] are capable of reducing

mapping errors to less than 0.1 pixels; therefore, we expect the synthetic aperture

PIV technique to be robust to the error levels that will exist in mapping functions

applied in actual experiments.

2.2.5 Synthetic 3D Flow Fields

Two synthetic flow fields are simulated to assess the ability of the synthetic aper-

ture PIV method in reconstructing 3D intensity fields that are suitable for cross-

correlation based 3D PIV analysis. In each simulation, the fluid motion is prescribed

by the same equation for a vortex ring as used in Elsinga et al. [15, 16], where the



Table 2.1: Summary of resolution and particle seeding density for simulated mea-
surement volumes.

Measurement C part./pixel
Volume (mm3) D 6X(mm) 6Z6X (part./mm 3) (ppp) # part.

0.2 0.05 5.00 >10 >0.25 >250 000
0.4 0.05 2.50 6.68 0.17 166 960

50 x 50 x 10 0.5 0.05 2.00 3.26 0.08 81 537
0.5 (uneven) 0.05 2.00 5.24 0.13 131 040

40 x 40 x 30 0.4 (uneven) 0.05 2.51 1.08 0.05 51 988

0.1 0.05 10.24 0.70 0.09 87 371
50 x 50 x 50 0.2 0.05 5.13 0.37 0.05 46 229

0.4 0.05 2.56 0.14 0.02 17 159

0.11 0.1 9.40 0.16 0.16 164 240
100 x 100 x 100 0.21 0.1 4.70 0.10 0.10 95 028

0.32 0.1 3.13 0.05 0.05 51 659

velocity magnitude is given by

8 KR R (2.14)

where R is the radial distance of a point from the toroidal axis of the vortex ring and

1 is a length scale determining the size of the vortex ring (chosen to be 4 mm). The

constant, K, is a conversion factor from voxel to physical units and is required since,

in the present case, the synthetic particles are seeded in physical space and imaged

by the model camera array. The toroidal axis forms a circle of diameter 20 mm. The

first synthetic experiment is carried out in a 50 x 50 x 10 mm 3 volume where the

central axis of the toroid is parallel to the Z-axis. The volume is seeded with 125,000

particles (C = 5 part/mm3), and images are simulated in a 21 camera array with

spacing D = 0.5 (uneven spacing, see Table 2.1) and magnification M(Z=0) = -0.2.

This results in a reconstruction quality of Q = 0.76. The maximum displacement in



this flow field is 0.3 mm which corresponds to 6 voxels in X and Y and 2.9 voxels in

Z.
Since the reconstructed volumes are intensity fields, a cross-correlation based

PIV calculation is suitable for calculating vector fields. In the present study, we

have adapted an open-source 2D PIV code, matPIV [30], for 3D functionality. A

multipass algorithm with a final interrogation volume containing 32 x 32 x 16 voxels

and 75% overlap generates 327448 vectors (122 x 122 x 22 vectors). The Z dimension

of the interrogation volumes in voxel units is half that of the X-Y dimension because

the focal plane spacing is twice the pixel size for this camera configuration. Each

interrogation volume contains approximately 20 particles, based on the gross particle

seeding density.

Figure 2-8(a) shows the resultant velocity field with every tenth vector plotted

in X and Y and every vector plotted in Z. The Z voxel and velocity values are

multiplied by N to create the correct aspect ratio for plotting purposes. The fields

are plotted in voxel units; if converted to physical units, the data set would not be

cubical. Two slices are shown with normalized velocity magnitude contours revealing

the vortex ring structure and symmetry. The maximum velocity magnitude in the

exact known field is used to normalize the velocity magnitude in the processed field.

Figure 2-8(b) shows the vector field and a vorticity iso-surface (0.15 voxels/voxel)

with every sixth vector plotted in X and Y and every vector plotted in Z.

To quantitatively evaluate the performance, both the reconstructed 3D intensity

fields and the synthesized 3D intensity fields are processed using the 3D adaptation

of matPIV, and each is compared to the exact velocity field. The error is defined

as the difference between the processed and exact field at every vector location. By

comparing the PIV results for both fields, error due to the PIV algorithm itself can

be identified. Both the synthesized and reconstructed volumes are processed using
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exactly the same window sizes, PIV code and filtering routines. We will refer to the

vector fields resulting from PIV processing of the reconstructed 3D intensity fields

and the synthetic 3D intensity fields as the reconstructed vector field, and synthesized

vector field, respectively.

Figure 2-9 shows scatter plots of the error in each vector component for the

reconstructed vector field (a & b) and the synthesized vector field (c & d). The

error is further characterized by calculating the 90% precision interval for the error

in each vector component. This is summarized in table 2.2 along with the maximum

magnitude of velocity in the exact field. The fourth column is the 90% precision

interval for error between the reconstructed and exact field, and the fifth column

is the 90% precision interval for the error between the synthesized and the exact

field. The precision intervals seem rather large, but comparison between the error

in the reconstructed and synthesized vector fields shows that the difference between

the precision interval values are small compared to the actual error magnitude. This

indicates that most of the error is due to the PIV algorithm itself, and a much smaller

percentage is due to the actual intensity field reconstruction. This is supported by

the error scatter plots in figure 2-9, which show only slightly more spread in the

error for the reconstructed velocity fields. To examine this further, the numerical

experiment was repeated with the velocity magnitude increased by 3 fold everywhere

in the flow field. As shown in Table 2.2, the precision interval magnitude increases

for both the reconstructed and synthesized vector fields, but the difference between

the precision intervals essentially remains the same. This further points to the PIV

algorithm as the largest source of error in the vector field. This is not surprising since

the 3D PIV algorithm is not very sophisticated, and we would expect a reduction in

error magnitude with a more advanced 3D PIV algorithm.

In the second simulated flow, a vortex ring of the same size is oriented with the
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Figure 2-9: Scatter plots of the error in the reconstructed vector field (a u , v
components) & (b - u, w components), and error in the synthesized vector field (c -

a, v components) & (d - u, w components). All plots are for the vortex ring in the
50 x 50 x 10 mm 3 volume.



Table 2.2: Summary of PIV error in three simulated flow fields. The fourth column
is the 90% precision interval for error between the reconstructed and exact field, and
the fifth column is for the error between the synthesized and the exact field.
Measurement IVmal 90% precision interval 90% precision interval
Volume (mm 3 ) Component (voxels) (voxels) - recon. (voxels) - syn.

u 6 ± 0.37 ±0.33
50 x 50 x 10 v 6 ± 0.38 ± 0.34

w 2.9 ± 0.20 ± 0.14

U 18 ± 1.69 ± 1.62
50 x 50 x 10 v 18 ± 1.72 ± 1.62

w 8.7 ± 0.90 ± 0.80

u 7.3 ± 0.54 ± 0.48
40 x 40 x 30 v 7.3 ± 0.43 ± 0.36

w 2.9 ± 0.19 ± 0.14

central axis of the toroid parallel to the X-axis, such that the ring spans deeper

into the flow in the Z dimension. The 5x5 model camera array is used with spacing

D = 0.4 (uneven spacing, see Table 2.1) and the magnification is set to M(Z = 0) =

-0.2. The maximum displacement in the flow field is 0.37 mm which corresponds

to 7.3 voxels in X and Y and 2.9 voxels in Z. A particle seeding density of C =

1 part/(mm) 3 in a 40 x 40 x 30 mm3 volume results in a distribution of 48,000 particles

(resulting in Q = 0.76). The lower seeding density requires larger interrogation

volume sizes in order to contain an appropriate number of particles, therefore a final

interrogation volume containing 60 x 60 x 24 voxels is used with each containing 27

particles based on the seeding density. Using 50% overlap in the multipass 3D PIV

calculation yields 18,432 vectors (32 x 32 x 18), which includes the imaged area that

contained no seeding particles (with a magnification of -0.2, images of the seeded

volume did not span the entire imaging sensor). Figure 2-10 shows the vector fields

results, with figure 2-10(a) revealing velocity magnitude on a slice in an X - Y plane
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Figure 2-10: Three-dimensional vector field resulting from PIV processing of the
reconstructed intensity volumes using SAPIV in the 40 x 40 x 30 mm3 volume.
Figure 2-10(a) shows slice in an X - Y plane with normalized velocity magnitude
contours and figure 2-10(b) shows the vector field and a vorticity iso-surface (0.15
voxels/voxel).

with every second vector plotted in X and Y and every vector plotted in Z. Figure 2-

10(b) shows the vector field with every third vector plotted in X and Y and every

vector plotted in Z and 0.15 voxels/voxel vorticity iso-surface.

Figure 2-11 shows the error scatter plots resulting from the difference in veloc-

ity components between the reconstructed and exact vector fields (a & b) and the

synthesized and exact vector fields (c & d). Table 2.2 summarizes the 90% preci-

sion interval for this experiment as well. The data again indicate that the largest

percentage of the error is due to the PIV algorithm. The reason for the difference

in errors in the X and Y dimensions for this case is likely due to the orientation of

the vortex ring, which induces larger spatial gradients in the X-Z plane than in the

Y-Z plane.
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Figure 2-11: Scatter plots of the error in the reconstructed vector field (a - u, v
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Figure 2-12: Experimental setup with camera array imaging a vortex ring illuminated
with a laser volume.

2.3 SAPIV Experimental Implementation

2.3.1 Experimental Apparatus

To illustrate the capabilities of the SAPIV technique in practice, a canonical 3D

flow field is captured experimentally using an array of eight cameras. Instantaneous

3D-3C SAPIV and classic 2D PIV velocity data of a piston-generated vortex ring are

acquired for comparison.

The experiment is conducted in a glass tank (504 x 254 x 280 mm3 ) seeded with

neutrally buoyant particles (50 pm diamter) yielding an estimated seeding density of

C = 0.23 particles/mm3 . A cylindrical piston-driven vortex ring generator (40 mm

inner diameter) is mounted in the center of the tank. The outlet orifice diameter

of the cylinder is 30 mm and the piston stroke length and velocity are 10 mm and

15 mm/s respectively. Based on the total stroke length (as opposed to integral of

piston velocity over time), the ratio of stroke length to outlet orifice diameter is

L/DO = 0.33. The camera array images from the side of the tank (figure 2-12)

..................... .... ........ . ........



with all cameras mounted on a common frame. Initially, the array included nine

cameras; however, the camera in the upper left corner of figure 2-12 had outdated

firmware that did not support the appropriate triggering and therefore is not used

in this study.

The cameras are Point Grey Research, Inc. Flea2 cameras (FL2-08S2M/C), ar-

ranged in a rectangular array mounted on 80/20 @ aluminum rails (figure 2-13), with

~150 mm spacing between cameras. Cameras are angled in order to overlap the fields

of view. The array is placed approximately 760 mm from the center of the water

tank. As the number of cameras in the array increases, the hardware cost associated

with the array will increase. Thus it is important to consider the minimum number

of cameras necessary for successful volume reconstruction. Simulations showed that

the reconstruction quality reaches a point of diminishing returns as more cameras

are added, and that the most efficient number of cameras seems to be in the range

of 10-15, as shown in figure 2-7(a).

All eight cameras in the array capture 1024 x 768 pixels, 8 bit, monochromatic

images at 10 frames per second. Each camera is equipped with a Nikon Nikkor

50 mm lens. At the given frame rate, each camera requires 8 megabytes per second

(MBps) of bandwidth, totaling 64 MBps to capture the entire event. The cameras

use the IEEE 1394b serial bus interface standard which is rated to support 80 MBps

for each bus, which provides ample bandwidth for the eight cameras. The cameras

are connected to a single computer which records the data onto three hard drives.

A custom C++ program using PointGrey's SDK libraries was developed in-house

to interface with the cameras. The data are stored on one of three hard drives

in AVI files with a raw encoding to maintain information integrity (i.e., no image

compression). After completion of the capture sequence, the software reorganizes

the data to place all of the necessary files into a single location.



Figure 2-13: Photograph of the camera array. Nine cameras are mounted with 50 mm
lenses on an extruded aluminum frame. Only eight cameras are used in the study.

While the cameras record at 10 frames per second (fps), classic PIV frame strad-

dling timing is used to obtain appropriate image pair time spacing. A Litron 532nm,

180 mJ/pulse, dual cavity Nd:YAG laser is used to illuminate the particle volume.

The laser pulse duration is 4 ns, and inter-frame straddling time is 8 ms. A lOX

beam expander creates a cylindrical laser volume with a 40 mm diameter, and a

10 mm fanning optic spreads the laser beam into a 1 mm thick laser sheet for the 2D

PIV images. A Berkeley Nucleonics Corporation timing box is used to synchronize

the cameras and laser. While the focus of this effort is 3D-3C PIV using SAPIV, 2D

PIV images of the vortex ring are used for benchmarking and comparison.

2.3.2 Particle Volume Reconstruction

To achieve proper focus in synthetic aperture images, accurate mapping between

image and world coordinates is required. The mapping is found by imaging a preci-
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sion machined calibration plate traversed through the target volume with Z location

increments of 2 mm. Since the SAPIV technique involves reprojecting the images

onto several planes throughout the volume, a suitable coordinate system must be

established on the calibration plate. Here, we use the average calibration in pix-

els/mm from the center camera image of the plate at the Z location farthest from

the cameras to convert the reference geometry of the calibration plate from mm to

pixels. Second-order polynomial fits are used to map image coordinates to reference

coordinates on each Z calibration plane, and linear interpolation is used to find the

polynomial fits on Z planes between each calibration plane. This approach follows

that of prior Tomographic-PIV studies where polynomial fits are used to deal with

the distortion introduced when imaging through an air-glass-water transition [28, 17].

As described in [28], even with higher order fits, the errors in mapping functions can

be in excess of 0.5 pixels, but volume self-calibration can be used to reduce the errors

to 0.1 pixels or less. As discussed in section 2.2.4, the error in the mapping func-

tions should be less than 0.45 pixels for adequate reconstruction in SAPIV. Volume

self-calibration is not implemented in the present experiment, yet reconstruction still

yields a volume which is suitable for 3DPIV. We expect that implementing volume

self-calibration will improve greatly the particle yield rate in the reconstruction.

The synthetic aperture images are formed with focal plane spacing of 0.2 mm in Z.

Theoretically, the number of focal planes that can be generated within an illuminated

volume is infinite, but the information on each plane will not necessarily be unique,

as the sharpness of a refocused object is determined by the degree to which mapped

images of the object overlap. For example, it is possible to generate focal planes very

close to each other by shifting all images by a very small amount. However, if the

shift size is much smaller than the refocused object, the two refocused images will be

essentially indistinguishable, in which case the information is redundant. Therefore,



focal plane spacing (which determines voxel size) should be made large enough so

as not to retain redundant information. The depth over which objects are in focus

can be controlled by changing the camera baseline, D; for the present experiment, D

= 0.2. Ultimately, smaller focal plane spacing should yield better resolution in the

Z dimension of the reconstructed fields, and thus the vector fields. The influence of

focal plane spacing and camera baseline on the accuracy and resolution of 3DPIV

vector fields is the subject of ongoing work.

Other volumetric PIV studies have discussed the need for image preprocessing to

deal with non-uniformities in laser profiles and pulse intensities, as well as to remove

background noise [31, 28]. Prior to refocusing, images in this study are subjected to

the following preprocessing steps:

1. Subtract sliding minimum (window size = 10 pixels)

2. Convolve with 3x3 Gaussian kernel

3. Equalize histograms to histogram of image with highest contrast

4. Increase contrast by trimming the bottom and top 0.1% of intensity values

5. Subtract sliding minimum (window size = 10 pixels)

After preprocessing, the images are mapped to each plane throughout the volume,

averaged to form the synthetic refocused image, and thresholded to retain particles

to generate an intensity volume for each time instant. Because the mapping functions

are not simple linear homographies, interpolation is required to re-project the images;

here, a bilinear interpolation is used. Figure 2-14 shows a preprocessed image from

the array, a synthetic aperture refocused image at one depth (Z = 5 mm) and a

thresholded image at the same depth. It is estimated from the preprocessed images



Figure 2-14: Zoomed views (140 x 140 pixels) of a preprocessed 3DPIV image from
single camera of the array (a), a refocused image at Z = 5 mm (b), and thresholded
image at the same depth (c).

that the seeding density is 0.026 partices/pixel (ppp) (C = 0.23 particles/(mm) 3 ),

and the actual number of particles in the reconstructed volumes is 9863 particles

for the first time instant and 9890 particles for the second time instant (C = 0.13

particles/(mm) 3 ). The reason the yield rate is low in the reconstructed volumes

is due to errors in the calibration which have not been reduced through the use

of volume self-calibration. Images of particles that span two pixels or less in the

original camera images tend to not be properly reconstructed in 3D space because

the calibration error can be on the same order as the particle size.

Figure 2-15(a) shows the intensity histogram and Gaussian fit for a refocused

image from the 8-camera array experiment. The mean intensity value is very low,

but actual particles in the refocused image have high intensity; therefore the signal-

to-noise ratio in the refocused image is very large and the in-focus particles can

readily be determined (figure 2-14(c)). Figure 2-15(b-d) show the histograms from

simulations in a 50 x 50 x 10 mm 3 volume imaged with 9 cameras and seeding

density of 0.05 ppp (b), 0.075 ppp (c) and 0.125 ppp (d). With increasing seeding
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density, the mean and standard deviation of the intensity of the refocused images

increases, which reduces the signal-to-noise ratio of actual particles. Despite the

reduced signal-to-noise ratio, the simulations produced adequate reconstruction of

the intensity volume for the 0.075 ppp case (reconstruction quality, Q = 0.77) and

also provided reasonable reconstruction for the 0.125 ppp case (Q = 0.71). The

signal-to-noise ratio of actual particles for each of these simulated cases is much

lower than for the SAPIV experiment, indicating that seeding density can be greatly

increased in future experimental studies.

Once reconstructed, the intensity volumes are ready for cross-correlation based

3DPIV analysis; the adapted version of matPIV is again employed. A multi-pass

algorithm with one pass at an initial interrogation volume size of 128 x 128 x 64 voxels

and two passes at an final interrogation volume size of 64 x 64 x 32 voxels and 50%

overlap generates a 23 x 31 x 11 vector field. Each 64 x 64 x 32 voxels interrogation

volume contains approximately 15 particles. The resultant vector field resolution

is 2.1 mm in X and Yand 3.2 mm in Z. Post-processing consists of a filter based

on signal-to-noise ratio of the cross-correlation peak, a global filter which removes

vectors five standard deviations above the mean of all vectors, and a local filter

which removes vectors which deviate by more than three standard deviations from

the median of a 3 x 3 x 3 vector window. The filtered field is interpolated using

linear interpolation and smoothed with a 3 x 3 x 3 gaussian filter. At this point

some mention should be made of the overall processing time. The time required to

reconstruct the two volumes used to generate the 3D vector field is 18% of the time

required for the 3DPIV processing of the fields. Therefore, the limiting time factor

in processing is the 3DPIV analysis, which demonstrates the relative efficiency of the

synthetic aperture refocusing technique.

Processing of the 2D PIV data is also performed with matPIV; a multi-pass
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algorithm with one pass using initial interrogation window size of 64 x 64 pixels and

two passes with a final window size of 32 x 32 pixels and 50% overlap is used to

create a vector field with vector spacing of 1.03 mm. Post-processing for the 2D

vector fields also consists of the signal-to-noise, global and local filters, as well as

linear interpolation and smoothing with a 3 x 3 gaussian kernel.

2.3.3 Experimental Results

Experimental results for the instantaneous 3D velocity data of the vortex ring are

shown in figure 2-16(a); the resultant 3D vector field and an iso-vorticity contour

(magnitude 9 s 1 ) are plotted at one time instant. For ease of comparison between

the 3D SAPIV and 2D PIV data, we normalize all lengths by the orifice diameter

(D, = 30 mm), as is done in Weigand & Gharib [32]. The origin of the X-Y-Z global

coordinate system is placed approximately at the center of the outlet orifice of the

vortex generator, with Y positive up and Z decreasing in the direction away from the

cameras. In figure 2-16(a) the ring has propagated to a distance Y/DO ~ 3.72 below

the orifice outlet. Every vector in Z is plotted and every second vector is plotted

in X and Y directions. The measured SAPIV volume is only limited by the volume

which is illuminated by the laser. The iso-vorticity contour shows an incomplete

ring, due to the fact that the ring is not centered in the laser volume and part of

the ring is outside of the illuminated region. Cross sectional slices of vorticity, with

planes at Z/D, = 0.003 and X/DO = 0, are plotted in figure 2-16(b). As expected,

isolated regions of vorticity are located where the ring passes through the planar cut

in the 3D volume. The vorticity magnitude on the X-Z slice is slightly lower than

for the X-Y, which is likely due to the lower resolution of the vector field in the

Z-dimension. By locating the peaks in the normal vorticity component in each core



cross-section on the plane passing through Z/D, = 0.003, the normalized diameter

of the vortex is found to be D/DO = 0.77.

Data from the 2D PIV experiments are used to compare and benchmark the

3DPIV results. Figure 2-17(a) shows the velocity and vorticity on an X-Y plane of

the 3D SAPIV data at Z/D, - 0.11, and figure 2-17(b) shows velocity and vorticity

resulting from a 2D PIV experiment, where the laser sheet is located at approximately

Z/DO = 0.15. The slice of the 3D data at Z/DO = 0.11 is the location in the vector

field nearest to the 2D laser sheet. Although the 2D and 3D experiments could not

be performed simultaneously, the experimental vortex ring generator is designed to

be repeatable, and the vortex ring is at approximately the same Y-location for the

2D and 3D vector fields shown in figure 2-17. Qualitatively, the topology of the

vortex ring compares well between the slice from the 3D and 2D data. The distance

between the positive and negative cores of the vortex ring is D/DO = 0.82 for the

2D data, and D/DO = 0.77 for the 3D plane at Z/DO = 0.11.

For quantitative comparison, the velocity, vorticity and circulation are examined

and compared for the 3D and 2D data. In figure 2-18(a), u and v velocity profiles

from the 2D vector field are plotted against X/DO at Y/DO = -3.75. The profiles

show good qualitative agreement with those presented in [32]. In addition to the 2D

profiles, two profiles from the 3D data are plotted. The u and v velocity profiles are

plotted against X/Do at Y/DO = -3.72 and Z/Do = 0.11 (X-Y plane), and the v

and w velocity profiles are plotted against Z/Do at Y/DO = -3.72 and X/DO = 0

(Y-Z plane). The Y-Z velocity profile contains no data for Z/Do < -0.32, due to

the fact that the ring is not entirely in the illuminated volume and thus not resolved

beyond Z/DO < -0.32. Profiles from the 3D data show good quantitative agreement

with the 2D profiles. The maximum negative v velocity from the 3D X-Y and Y-Z

profiles are 6% and 8% below the maximum negative v velocity for the 2D profile,
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Figure 2-16: (a) Experimental SAPIV velocity vector field for the vortex ring with
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sectional cuts of vorticity through the vortex ring center, with superimposed velocity
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Figure 2-17: Vorticity contours and vector fields from (a) 3DPIV cut and (b) 2DPIV
instantaneous slice through the vortex ring.

respectively. The profiles from the 3D data also capture the sign reversal in v velocity

as the profile moves through the core, and the spatial decay in velocity moving away

from the core.

Along each of the same profiles, the component of vorticity normal to the plane

containing the profile is plotted in figure 2-18(b). The trends in all profiles agree

very well, but the vorticity calculated from the 3D data underestimates the peak

magnitude as compared with the vorticity from the 2D data. This is likely due to

the lower spatial resolution in the vector fields (2D data was processed with smaller

interrogation windows), which results in a spatial averaging of velocity gradients

during the cross-correlation calculation. Also, the smoothing implemented in the

post-processing of the vector field is more likely to remove gradients in the 3D data,

because the gaussian kernel is three-dimensional, and thus the smoothing is based

on more neighboring vectors.

Finally, to serve as another quantitative measure for benchmarking the 3D SAPIV
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system the circulation, F, is calculated on a variety of planes. The circulation is

calculated by taking the line integral of velocity around a rectangular contour on

a particular plane. Here, we calculate the circulation in the 2D data, as well as

on several planes for the 3D data, using rectangular contours of increasing size to

encompass up to one half of any 2D slice (i.e., encompassing one vortex core). Each

contour is centered around the location of maximum surface-normal vorticity on the

plane under consideration. The inset of figure 2-19 shows the location and angle

of each plane on which circulation is computed. For the 3D data, nine planes are

chosen with angles varying between 0' - 180', as well as one additional plane located

at Z/DO = 0.11, on which the circulation is calculated for both cuts through the

vortex ring core. Figure 2-19 shows the circulation plotted against area enclosed by

the integration contour for each plane.

For a symmetric vortex ring, the circulation on half of any one plane containing
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the axis passing through the ring center should be constant. From figure 2-19, it

can be seen that the magnitude of circulation remains relatively constant regardless

of plane angle, for a given integration contour size. The maximum difference in

peak circulation is 2.69 cm2/s (13.5 % of maximum) for the angled planes. On

the plane passing through Z/D, = 0.11, as well as for the 2D data (laser plane at

Z/DO = 0.15), the peak circulation is reached at a smaller integration contour size

than for the planes passing through the central ring axis, because the bisected cross-

sections are offset from the center of the ring. Nonetheless, the maximum circulation

magnitude on the offset planes for both the 2D and 3D data is within 7% of the

maximum found on the planes which pass approximately through the central axis of

the ring.

The quantitative agreement between the 3D SAPIV data and the 2DPIV data

confirms the viability of the SAPIV technique for making accurate measurements in

3D volumes. Although the simulations show the ability to reconstruct very densely

seeded fields, the seeding density was kept rather low (0.026 ppp in the raw images)

in this experiment to ensure proper reconstruction. However, it is expected that

increased seeding density can be achieved in practice.

2.4 Conclusion

Synthetic aperture PIV offers a novel and exciting method for imaging complex 3D

flow-fields with high seeding densities and partial occlusions. SAPIV draws on the

concept of light field imaging, which involves sampling and encoding many rays from

a 3D scene, and is practically implemented with an array of cameras. Recombining

the camera array images using synthetic aperture refocusing provides many desirable

capabilities for 3D fluid flow measurement; namely, the ability to digitally refocus



on isolated planes post-capture, to effectively "see-through" partial occlusions by

exploiting the multiple camera viewpoints and to capture volumetric information at

a single time instant. We expect the capabilities of the synthetic aperture system to

be flexible enough to measure in other flow environments, such as multi-phase and

bubbly flows or flows with partial obstructions.

Simulations showed that a single array arrangement allowed for measurement

within volumes with depth ranging from 10mm to 50mm. Altering the optics on the

cameras enables further scalability of the measurement range, as was shown in the

simulation of the 100 x 100 x 100 mm 3 volume. In this manner, the behavior of the

camera array is similar to the behavior of a single-lens camera: we have control over

the viewable depth for a given magnification and can change the FOV by changing

the magnification. Two simulated flow fields demonstrated the performance of the

technique in resolving vector fields with high resolution and in a relatively large

volume. The focal plane spacing of the system in the Z dimension, which is related

to the depth of field, was theoretically derived for the simple model of two coplanar

image sensors. The observed focal plane spacing in the simulations agreed extremely

well with that predicted by the theory, despite the fact that the camera image sensors

in the simulated model were not coplanar (the cameras were angled). This shows

that the concise theory derived is an accurate and useful tool for predicting the depth

of field of the refocused images as a function of camera baseline and optics.

The results of the 3D PIV experiment indicate that SAPIV is a viable technique

for efficiently and accurately resolving a range of 3D flow fields. In practice, the

hardware implementation successfully captured an instantaneous 3D velocity vector

field for a vortex ring, with only eight cameras, in a volume with an aspect ratio

(Z:X-Y) that is comparable to some of the largest found in the literature. 3D

SAPIV results compared well with the 2D PIV experimental data for a similar vortex



ring. The signal-to-noise ratio of actual particles for each of the simulated cases was

much lower than for the SAPIV experiment, indicating that seeding density can be

greatly increased in future experimental studies, which will allow for increased vector

resolution.

The simulations indicate that synthetic aperture PIV can resolve particle fields

with seeding density and volume sizes competitive with the state-of-the-art; however,

we have made no mention of the efficiency with which the system performs. We have

reported the number of particles per pixel based on the number of pixels in one

camera, perhaps a measure of efficiency is to divide the particle number by the

total number of pixels (e.g. 13 cameras x 1000 pixels x 1000 pixels). Table 2.3

compares this measure of efficiency for several volumetric studies, including the D =

0.4 configuration for the 50 x 50 x 10 mm3 simulation using 13 cameras and the 8

camera experiment from the present study, as well some representative results from

Tomographic-PIV, Holographic-PIV, Defocusing DPIV and PTV. The comparison

is not intended to give a concrete answer as to the most efficient method, rather to

test whether the efficiency of the synthetic aperture PIV technique lies in the realm

of other techniques, as it does.

Regardless of the notion of efficiency, performance is the bottom line for a 3D PIV

system, if the cost is acceptable. Thus, a practical consideration that naturally arises

is how to deal with such a high number of cameras needed for synthetic aperture

PIV. Certainly, with a large number of cameras the cost of a system becomes a

concern. We have developed an eight camera array which performs double-pulsed

frame straddling PIV at 10 frames per second with a total system cost (excluding

laser) of less than $15,000, in present-day dollars. An array of high speed cameras

for fully time-resolved experiments will be more costly, but SAPIV offers the ability

to trade-off individual camera sensor size for a technique that synthesizes smaller



Table 2.3: Comparison of efficiency of some
Volume

Technique Size (mm3) # cameras
SAPIV (simulation) 50 x 50 x 10 13
SAPIV (experiment) 65 x 40 x 32 8
Tomo-PIV [15] 35 x 35 x 7 4
Tomo-PIV [16] 37 x 36 x 8 4
Tomo-PIV [17] 100 x 100 x 20 4
HPIV [33] lox lox 10 1
HPIV [23] 1.5 x 2.5 x 1.5 1
DDPIV [9] 100 x 100 x 100 3
DDPIV [34] 150 x 150 x 150 3
PTV [4] 200 x 160 x 50 3

3D PIV techniques.

# part.
125000
9860
24500
114500
100000
2000
56250
40000
35000
3000

part./pixel
0.125
0.015
0.05
0.08
0.024
0.0015
0.014
0.038
0.034
0.0038

part./
total pixel #
0.01
0.002
0.013
0.02
0.006
0.0015
0.014
0.013
0.011
0.0013

sensors, potentially making a high-speed system affordable for 3DPIV.

Another form of cost is the required computation time; all data processing was

performed on a Macintosh Power Mac G5 computer with a 3 GHz Quad-Core Intel

Xeon Processor and 2 GB of RAM. Reconstruction and 3D PIV analysis was im-

plemented in Matlab, and the codes are not optimized at this point. However, the

computation time to implement the map-shift-average algorithm, refocus and thresh-

old the images, and assemble them into the reconstructed volume for two timesteps

in the simulated 40 x 40 x 30 mm3 volume required 15% of the time taken to com-

pute the vector fields with 3 passes and 50% overlap (67 minutes to reconstruct the

two timesteps, and 446 minutes to perform the PIV processing). For the SAPIV

experiment, the time required to reconstruct the two volumes used to generate the

3D vector field (62 minutes) was 18% of the time required for the 3DPIV processing

of the fields (414 minutes). This attests to the relative simplicity of the refocusing

algorithm. Therefore, the actual 3D PIV calculations will dominate the computation

time for synthetic aperture PIV.

In order to fully realize the capabilities of SAPIV, further work is required to



address several practical issues and challenges, and is ongoing. For example, vol-

ume self-calibration can greatly improve the image reconstruction quality and allow

for increased seeding densities. The ability of the SAPIV technique to reconstruct

the intensity fields without the use of volume self-calibration in the present study

underscores the capability of the method. In addition, increasing the camera base-

line spacing is expected to increase Z resolution. By increasing the baseline, the

depth-of-field can be reduced allowing for more distinction between particles in the

Z direction, which we expect will yield higher resolution in Z. In practice, this

requires further investigation to determine acceptable minimum and maximum base-

line spacing limits, as well as the maximum flow volume size that can be resolved for

a given baseline spacing.

Ultimately, Synthetic Aperture PIV (SAPIV) provides a new and novel method

for 3D-3C, quantitative flow velocimetry, which offers the ability to reconstruct very

dense flow fields in relatively large volumes for a wide range of applications.
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Chapter 3

Practical Aspects of Synthetic

Aperture Imaging

3.1 Introduction

This chapter presents several practical aspects of synthetic aperture (SA) imaging

ranging from hardware realizations to computational performance. First, the design

and operation of two multi-camera SA systems is presented. One system is the low-

cost array discussed in Chapter 2, where details of the timing and control software

are expounded upon. The other system consists of high-speed Photron cameras and

is applied to a multiphase flow in Chapter 5. Some comparisons are then drawn

between SAPIV and Tomographic-PIV, particularly with respect to computational

performance, the ability to deal with occlusions and the issue of "ghost" particles.
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3.2 Synthetic Aperture Imaging System Design

3.2.1 Low-Speed

The first application of SA imaging for fluid flows was for 3DPIV, as described in

Chapter 2. Fully time-resolved PIV requires a high-speed camera(s) and laser, but

frame-straddling PIV still allows for exploration of a variety of flows with an order

of magnitude lower hardware cost. Therefore, the first camera array for SA imaging

in this thesis was constructed with the goal of performing frame-straddling PIV [1]

and is referred to as the low-speed camera array; the details of frame-straddling PIV

are reviewed later in this section.

The low-speed camera array constructed for 3D SAPIV comprised machine vision

cameras; the Flea 2 model FL2-08S2M/C from Point Grey [2]. The cameras, shown

in Figure 3-1, are attractive due to their small size, low cost and C-mount threads,

which allows for a variety of lenses to be used. Each cameras captures 1024 x 768

pixels (4.65 x 4.65 pum pixel size), 8 bit, monochromatic images. The cameras pro-

vide no on-board memory and stream data via the IEEE 1394b (FireWire) interface

standard, which supports 800 megabits/second (Mb/s) transfer rate (equivalently

100 megabytes/second (MB/s)). Therefore, the host computer for this type of cam-

era array must be configured to provide ample bandwidth for data transfer. A Dell

PrecisionTM 690 Workstation served as the host computer for the low-speed array.

Figure 3-2 displays a schematic of the data flow for the low-speed camera array.

The array configuration strategy involves connecting cameras to PCI-e 1394b cards

installed in the computer. Point Grey offers dual bus PCI-e 1394b cards that fit into

a single PCI-e slot in the computer [2]. For the low-speed array in this thesis, at most

two cameras were connected to each PCI-e 1394b bus with each bus supporting 80
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MB/s transfer rate. A portion of the computer RAM is partitioned in a RAM disk

configuration, which acts as a temporary secondary storage to allow for writing of the

streamed images. The RAM disk is necessary because the write speed of a standard

computer hard disk drive is typically too slow to support the total throughput of the

camera array in real time. For the type of hard drive found in the host computer

(SATA 7200 RPM) the typical write speed is 129 MB/s [3]. The images are instead

written to RAM disk and transferred to the hard disk drive post-capture. The data

throughput for each camera is given by

0.8 MB (F frames (3.1)frame see
If N cameras are connected to each PCI-e bus and operated at the full frame rate

of the Flea 2 model FL2-08S2M/C cameras (30 frames/sec) then the upper limit on

cameras per bus is

S0.8 MB) 30 frames) < 80MB/sec
frame sec -

N < 3 cameras. (3.2)

For the low-speed array used in this work, only two cameras (or less) were used

per bus. The limit on total number of cameras in the array then becomes either

the RAM disk write speed or the number of PCI-e slots available on the com-

puter. Six PCI-e slots are available on the Dell PrecisionTM 690 Workstation, of

which four are fitted with PCI-e cards. With four cameras per card (two cam-

eras per bus, two buses per card) the total data throughput at full frame rate is

(16)(0.8 MB/frame)(30 frames/sec) = 384 MB/sec. The write speed of the RAM of

the host computer (DDR2 667 MHz (PC2-5300)) is 5333 MB/sec. Thus, the number
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Figure 3-1: Picture of the Flea 2 model FL2-08S2M/C from Point Grey [2].

of PCI-e slots generates the limiting factor in total data throughput. As a final con-

sideration for the data capture, the RAM disk partition limits the duration of the

recording. Therefore, the total number of frames that can be acquired is a function

of the amount of RAM available on the host computer, and the RAM disk must be

smaller than the total amount of RAM.

A custom C++ program designed in house and based on the Point Grey Flycap-

ture SDK initially managed the image acquisition'. However, the support software

has since been switched to the commercial Streampix 5 software offered by Nor-

pix [4]. The software facilitates setting of camera parameters, initiation of capture,

recording onto the RAM disk and subsequent writing to the hard disk drive. These

are the key aspects of the image acquisition software, and any software capable of

performing these tasks should be adequate.

Another crucial consideration of the camera array not yet addressed concerns

the timing of cameras during image capture. To properly refocus the data using the

SA algorithms requires accurate synchronization of image capture across all cameras.

While Point Grey's MultiSyncT M software synchronizes cameras across different PCI-

'Michael Axiak was responsible for the programming and testing of the code.
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Post-Capture Processes

Figure 3-2: Data flow schematic for low-speed camera array.

e buses, the deviation is ± 125ps, which is too large for applications of SA imaging

for fluid flows. Therefore, all cameras are hardware triggered using an external

timing signal generator that provides much smaller latency than the software timing

signal. The timing signal is generated with a Berkeley Nucleonics Model 505 Pulse

Generator. Each camera is set to a mode (trigger mode 14) that starts frame exposure

with a rising or falling pulse edge, exposes for a pre-set amount of time, and overlaps

the frame readout with the next frame exposure.

Because one of the main applications of the low-speed camera array is frame-

straddling PIV, the interframe time is also of critical importance. Figure 3-3 shows

a timing diagram for a frame-straddling PIV setup. The interframe time, tif, is the

time between the end of one exposure and the beginning of the next. In frame-

straddling PIV, image pairs are generated by pulsing one laser at the end of one
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Figure 3-3: Frame-straddling PIV timing diagram for low-speed SAPIV camera array.

frame exposure and a second laser at the beginning of the next exposure, thereby

generating a small time gap, At, between images. The shortest time scale of the

flow field that can be measured is limited by At and therefore ultimately limited

by the interframe time. For the Flea camera array, the minimum interframe time

that worked reliably without dropping frames was 250ps, which is short enough to

provide resolution for most water flows.

A final practical consideration for the low-speed array involves mounting the

cameras on a frame that allows for enough degrees of freedom such that different

volume size can be viewed with different camera arrangements. Figure 3-4 shows

the frame used for the low-speed array. Aluminum 80/20@ members provide the

structure of the frame. Each camera is bolted to an aluminum L-bracket which

is attached to one of three cross members, and thus has two degrees of freedom:
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Figure 3-4: Degrees of freedom of the cameras and 80/20@ frame.

rotation about the bolt axis and translation along the cross member, shown by the

yellow and red arrows in Figure 3-4, respectively. Also, each cross member can be

translated along the rails to which it is attached (shown by the blue arrows). Finally,

the attachment rails for the top and bottom cross members can be rotated to angle

the cameras, as shown by the green arrows. From experience, this frame design

affords enough freedom of movement to spread the cameras out in a desired array

configuration and overlap the fields of view (FOV) of all cameras.

Typically, alignment of camera FOVs involves placing a target in the center of

the volume of interest and moving the cameras until the target appears in the center

of the image. Each camera is then focused by fully opening the aperture (smallest

f-number) to reduce the depth of field (DoF) and focusing on the target. Next, the

aperture is partially closed (larger f-number) and the target moved to the front and

back of the volume to ensure that the entire volume lies within the DoF. If the target
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ever appears out of focus, the aperture is closed further.

3.2.2 High-Speed

The high speed camera array, shown in Figure 3-5, consists of nine Photron cameras.

High speed cameras offer far more capability than low speed machine vision cameras

for at least an order of magnitude higher cost. Among the advantages offered by

the high speed cameras is full temporal resolution (up to 0(1000 Hz)), improved

sensitivity and a larger format image sensor. Also, the Photron cameras contain at

least 2 GB of on-board memory, which removes the need for the careful data flow

considerations associated with the low speed camera array. Data is downloaded from

each camera post-capture via gigabit ethernet. Camera synchronization is accom-

plished by setting one camera to be the "master camera" and outputting a timing

pulse from the master to the other cameras in the array. This camera array is used

for the plunging jet experiment described in Chapter 5.

3.3 Comparison of SAPIV and Tomographic-PIV

This section draws further comparison between SAPIV and Tomographic-PIV based

on the work described in Chapter 2. First, a comparison of the computational

performance of each algorithm is discussed, along with the ability (or lack there-of)

of each algorithm in dealing with partial occlusions in the flow. Then, the amount

of "ghost particles" present in the reconstructed particle fields is evaluated.
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Figure 3-5: Array of high-speed Photron cameras.

3.3.1 Algorithm Performance

Some subtleties of the SA algorithm along with several similar Tomographic-PIV

algorithms are now discussed. First, the computational performance of several algo-

rithms is presented. After discussing the algorithms, comparisons of computational

performance for typical experimental configurations highlights the relative efficiency

of the SA method. Then the ability (or lack there-of) of each algorithm in dealing

with partial occlusions in the flow is discussed.

As presented in Chapter 2, the formation of SA images is described mathemati-

cally as

N

Is A, - N IFPki (3-3)
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where IFPk, is the image from camera i aligned on the kth focal plane and N is the

number of cameras. A variant of the SA algorithm that can enhance signal-to-noise

ratio for well calibrated images is given by

N

IS = 1 (IFpki)n (3.4)
i=1

as suggested by [5], where n is an exponent between 0 and 1. Henceforth, the algo-

rithms making use of Equations 3.3 and 3.4 will be referred to as the additive SA

(ASA) and multiplicative SA (MSA) algorithms, respectively. In order to determine

the computational performance, the number of operations in each step of the pro-

cessing is accounted for. With respect to the SA software, the number of operations

associated with each processing step from application of the calibration to reproject

images through the construction of the refocused volume is considered. To repro-

ject images onto focal planes requires a transformation function derived from the

camera calibration for each plane. Appendix A derives the transformation functions

for a variety of calibrations; therefore, the number of operations corresponding to

reprojection with pinhole camera models is simply stated here. To form the matrix

H requires six operations, inversion of H requires 53 operations and applying scale

and shift requires 27 operations resulting in 86 operations for each plane and each

image. For all cameras and the entire volume, 86Nnz operations are required, where

N is the number of cameras and n, is the number of voxels in the depth direction

(or, equivalently, the number of focal planes in the volume). Each pixel must then

be transformed to the focal plane, which requires nine operations for matrix mul-

tiplication and two more for conversion from homogeneous to actual coordinates.

Therefore, application of the transformations to each pixel in all cameras for all focal

planes necessitates 11piNn, operations, where pi, is the number of pixels in the
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input images (assumed to be the same for all cameras). In general, the projections

of the input image pixels onto the output image plane will not correspond exactly to

the discretized output image, and the output image pixel intensity values must be

interpolated from the projections of the input image, and described by Pratt [6]. A

bilinear interpolation function defined by [61 as

10(i',j') (1 - a) [(1 - b)J(i, j) + bI(ij + 1)] +

a [(1 - b)I(i + 1,j) + bI(i + 1,j + 1)] (3.5)

is used to define the output image (Is) where (a,b) is the displacement in x and y

between the pixel (i', j') in the output image and the projected pixel (i, j) from the

input image. For each pixel in all cameras for all focal planes, 14po0 tNnz operations

are required, where pout is the number of pixels in the output image. Finally, with

all images reprojected onto the nz focal planes, application of either Equation 3.3

or 3.4 yields the refocused volume. For the additive SA algorithm, this final step

requires pnz(N + 1) operations to sum the intensity values at each voxel and divide

by the total number of contributions, assuming now that pout = pi = p. For the

multiplicative SA algorithm, 2pNn, operations are needed to raise each contribution

to the power n and multiply each resulting value. In summary, the total number of

operations required to refocus one volume using the additive SA algorithm is
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NoASA =86Nnz + 11pNnz + 14pNnr +pnz(N + 1)

NoASA pnz (26N + 1) + 86N1

NoASA pnz (26N + 1) = NvOx (26N + 1) (3.6)

where Neox = pnz is the total number of voxels in the reconstructed volume and

the 86N/p is dropped because p is typically > 0(106). Furthermore, calculation

of the transformations is typically only required once, as the same transformations

are applied to each time step. The total number of operations corresponding to the

multiplicative SA algorithm is

NOMSA = 86Nnz + 1 1pNnz + 14pNnz + 2pNnz

Nous ~ 27pNn, = 27NNvox (3.7)

Attention is now turned to the number of operations associated with several

Tomographic-PIV algorithms; namely, the multiplicative algebraic reconstruction

technique (MART) algorithm discussed by Elsinga et al. [7], a variant of MART

with a multiplicative first guess (MFG) presented in Worth & Nickels [8] and two

algorithms described in Atkinson & Soria [9], each making use of a multiplied line-

of-sight (MLOS) input. In multi-detector imaging systems, it is assumed that the

intensity on the detector is given by the line integral of a three-dimensional intensity

field along the line-of-sight of the detector [9]
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P JI(x, y, z)dli (3.8)

where, for multiple cameras, P represents the ith pixel intensity. The problem of

optical tomography involves solving the inverse of this equation; in other words,

estimating the three-dimensional intensity field I(x, y, z). Typically, variations of al-

gebraic reconstruction techniques have been used for Tomographic-PIV because they

are most suitable to a limited number of viewpoints [10, 9]. The MART algorithm

is an iterative technique where the intensity of each voxel is updated according to

Iki+1 _ g( Pi kt (3.9)
3 gWijIk

and k refers to the iteration, i refers to the pixel, j is the current voxel, y is a

relaxation parameter and Wij is a weighting matrix defining the intersection of each

pixel line-of-sight (LOS) with each voxel [7]. Equation 3.9 is evaluated for each

pixel, and in order for a voxel to retain a high intensity value, the corresponding

pixel(s) in each camera must "see" the voxel [7]. The implication of this algorithm

is that if one camera has an occluded view of an object (zero intensity), then the

object will not be reconstructed. This effect is in contrast with the SA algorithms,

and will be discussed in further detail shortly. Also, in accordance with the integral

of Equation 3.8, the summed projected intensity along the LOS should equal the

pixel intensity; therefore, if one LOS intersects with many other LOS from the other

cameras, the intensity will be divided among these voxels (and, in many cases, form

ghost particles. According to [8], the total number of operations applied in MART

is given by
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NoMART 4ktNN ,,(8L + 4)

where N;,- is the average number of voxels considered in each iteration, L is the

average length of each pixel LOS and kt is the total number of iterations (typically

five [7]). The large computational cost associated with MART stems from the need

to iterate over every pixel and every voxel, and also the storage of Wij, which is very

large.

Worth & Nickels [8] proposed a method for reducing the number of voxels consid-

ered by initializing the iterations with a multiplicative first guess (MFG). The MFG

involves multiplying the intensity of each pixel back-projected through the volume,

and raising the result in each voxel to the power 1/N. This is very similar to the

multiplicative SA algorithm defined in Equation 3.4, with three notable differences.

First, any pixel with an occluded view (zero intensity) will cause the object to not

be reconstructed. Note that this is also the case for the multiplicative SA algorithm,

except that an adjustment is made in the SA algorithm whereby zero pixels are re-

placed with small values, which do not reduce the reconstructed voxel intensity to

zero when raised to the small exponent n [51. In contrast with the SA methods that

only require storage of the transformations between each image and each focal plane,

the MFG method still requires storage of the large Wij matrix. The third difference

is that a small number of cameras is still used in the MFG method. Interestingly,

Worth & Nickels determined that the reduction in accuracy in a 3D simulated veloc-

ity field was very slight when using simply the fields reconstructed by MFG compared

to the fields reconstructed by MFG followed by MART. This indicates that the small

improvement in accuracy as a result of MART may not be worth the huge computa-

tional penalty. In particular, if the initial reconstruction could be further improved
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in accuracy - say, by the effective use of more cameras in conjunction with an SA

algorithm - then the difference in accuracy would likely be very small and not worth

the increase in computational cost. The number of operations of the MFG method

is

NOMFG = Nvox(8N + 1) (3.11)

plus the number of operations defined in Equation 3.10; the reduction in cost comes

from iterating over fewer voxels.

A similar first guess proposed by Atkinson & Soria [9] called multiplied line-of-

sight (MLOS) also reduces the computational cost of the tomographic algorithm.

The approach is essentially the same as the MFG algorithm, except that the cam-

era calibration equations combined with interpolation are used to project the pixel

lines of sight into the volume, making the algorithm even more similar to the mul-

tiplicative SA. Again, an object must be seen in all cameras in order to be recon-

structed using the MLOS approach. The number of operations of the MLOS step is

O(120NNvox) The number of operations of the tomographic reconstruction is reduced

by considering only voxels containing non-zero values. Atkinson & Soria make use

of two different iterative tomographic algorithms following the initial MLOS guess:

a simultaneous algebraic reconstruction technique (SART) and a simultaneous mul-

tiplicative algebraic reconstruction technique (SMART). The number of operations

for each algorithm are

NoMLOS SART (24N + 4)Nn.z.vox (3.12)

NOMLOS-SMART = (24N + 3)Nn.z.VOz (3.13)
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Table 3.1: Comparison of computational performance of several 3DPIV algorithms.

Algorithm No N Nn.z.vox N 0ox L kt Initial No Total N

ASA NvOx (26N + 1) 9 - - 0 8.81(109) 8.81(109)

MSA 27NNvo0  9 - - - 0 9.11(109) 9.11(109)

MART 4ktNNoo(8L + 4) 4 - 1.1(107) 30 5 0 2.15(1011)

MFG Nvo(8N + 1) _ 4 - 6(106) 20 5 1.238(109) 8.00(1010)
-MART +4ktNNvox(8L + 4)

MLOS 120NNvoo 4 3.38(105) - - 5 1.80(1010) 1.81(1010)
-SART +(24N + 4)Nn.z.VOX

MLOS 120NNo 4 3.38(105) - - 5 1.80(1010) 1.81(1010)
-SMART +(24N + 3)Nn.z.vor

where Nnzcox is the number of non-zero voxels in the volume.

Table 3.1 compares the theoretical computational performance for each algorithm

assuming a setup described in [8] that has NvO = 3.75(107) and ppp = 0.05. Four

cameras are assumed for each tomographic algorithm, and nine cameras for each

SA algorithm (in Chapter 2, nine cameras adequately reconstructed a field with

ppp = 0.05 for the additive SA algorithm). The number of non-zero voxels (Nnzvox)

is calculated assuming each reconstructed particle is represented by a 3x3x6 voxel

patch, and the values of Nvo0 and L are given in [8]. The SA algorithms and the

two Tomographic-PIV algorithms with enhanced initial fields each improve upon

the computational performance of MART significantly. The mulitplicative SA algo-

rithm requires 16.3, 6.1 and 1.4 times fewer operations than MART, MFG-MART

and MLOS-S(M)ART, respectively. This indicates that the SA algorithms offer an

efficient method of reconstructing intensity fields, particularly when the number of

cameras must be increased to accommodate larger seeding density.

Perhaps the more important contrast between the SA and Tomographic types of
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algorithms lies in the ability to deal with partial occlusions. While not as relevant for

3D PIV applications containing simply particle images, occlusions may be far more

prevalent in multiphase (e.g., bubbly) flows or if the volume of interest contains

objects (e.g., cylinder, propeller). In this case, as alluded to throughout the previous

discussion, Tomographic algorithms will not reconstruct objects occluded from any

one view. However, the additive SA readily reconstructs objects present in enough

views to have sufficient signal over the background noise. Furthermore, by making an

adjustment to raw images whereby zero pixels are replaced with small values, which

do not reduce the reconstructed voxel intensity to zero when raised to the small

exponent n, the multiplicative SA algorithm also enables reconstruction of partially

occluded objects [5]. In Chapter 5, the multiplicative SA algorithm is applied to a

densely occluded bubble field with excellent results.

Finally, because the Tomographic algorithms impose the constraint that the line

integral of intensity must equal the pixel intensity, the intensity value assigned to

particle locations is reduced when the instances of LOS intersection are increased

(some intersections are true particles, some are ghosts particles [7]). Presumably,

this is the reason why most Tomographic-PIV studies investigate volumes with a

much smaller depth dimension than X-Y dimensions (e.g., [11]), as increasing the

depth dimension increases the instances of LOS intersections. In contrast, the SA

algorithms do not divide intensity among intersection points, but rather allows for the

number of LOS intersecting each voxel to determine the relative magnitude of voxel

intensity. This allows for the depth dimension of the volumes to increase. The next

subsection concerns the amount of "ghost particles" generated in SA reconstructions.
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3.3.2 Ghost Particles

In particle tracking velocimetry (PTV) [12], Tomographic-PIV [7] and SAPIV, "ghost

particles" occur when the lines of sight from different particle images overlap in the

reconstruction volume. In Tomographic-PIV, this results in a false positive par-

ticle [7] and similarly in SAPIV, some (usually not all) camera lines of sight will

combine to result in a false particle with reduced intensity relative to the true parti-

cles. As reported by Elsinga et al. [13], for velocimetry techniques that make use of

cross-correlation analysis, the ghost particles influence the measurement only when

correlated in adjacent time steps. They showed this to occur in regions of small

depth-wise flow gradient (i.e., small Bu/az); the ghost particles caused underesti-

mation of the local flow velocity. The results of their study indicate that not only

do ghost particles result in local error in velocity estimation, but the error is de-

pendent of local gradients, and thus non-uniform throughout the field. Novara et

al. [14] proposed a method for reducing the number of ghost particles by estimating

the velocity field using two or more reconstructed volumes, deforming one accord-

ing to the velocity field and averaging to reduce the incoherent (or unpaired) ghost

particles. Although they showed this method to improve the signal to noise ratio,

coherent ghost particles in low gradient regions would tend to remain in the volumes

and bias the error according to the study by Elsinga et al. [13]. Furthermore, the

method of [14] is very computationally intensive as multiple iterations of the original

Tomographic-PIV algorithm are required.

The amount of true and ghost particles present in the thresholded reconstructed

volumes for all the simulated cases presented in Chapter 2 are calculated here. To

determine the number of true and ghost particles reconstructed requires the identifi-

cation of possible particles. First, each reconstructed volume is thresholded so that
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the smallest 10% of intensity values are removed and the volume is then converted

to binary. Then, particles are identified using a three-dimensional connectivity al-

gorithm and the centroid of each particle is calculated. To distinguish between true

and ghost particles, any particle with centroid within a 1.5 voxel radius of a known

particle position is considered a true particle; this was the method used in [7]. Any

particle not within a 1.5 voxel radius is considered to be a ghost particle, as are

any duplicate particles. In other words, only one particle can be associated with

each known location and all others are ghost particles. As was done for the simula-

tions presented in Chapter 2, the outer 50 pixels (in X-Y) around the volume were

discounted due to the effective reduction in field of view.

Figure 3-6 shows the results of the ghost particle study applied to the simulated

50 x 50 x 10 (mm) 3 volume, with camera baseline D = 0.4, and varying number

of cameras. Figure 3-6(a) shows the percentage of actual particles accurately recon-

structed as a function of number of cameras, while Figure 3-6(b) shows the number

of ghost particles expressed as a percentage of accurately reconstructed particles,

versus number of cameras. Note that the y-axis on Figure 3-6(b) is log scale. As

expected, adding cameras serves to reduce the number of ghost particles, to a very

low percentage, even for high seeding density (e.g. 0.125 particles/pixel). The per-

centage of accurately reconstructed particles actually peaks between 9-13 cameras,

then levels off with increasing camera number. This effect is most likely attributable

to the fact that in the original simulations (Chapter 2), the threshold was adjusted

to maximize reconstruction quality (Q) for each test, and therefore was not uniform

for all tests. The percentage of accurately reconstructed particles is higher, but the

number of ghost particles is also higher, and therefore the most accurate overall re-

construction still occurs for larger camera numbers. Note that for 25 cameras, the

percentage of accurately reconstructed particles does begin to decrease, and this is

123



due to the same reasons that caused a decrease in reconstruction quality as discussed

in Chapter 2.

The additional data points come from available data in the literature; E refers

to data from Elsinga et al. [7] and Al, A2 and A3 refer to data from Atkinson

& Soria [9]. In [7], the data come from application of the MART algorithm to a

simulated 35 x 35 x 7 (mm) 3 with ppp = 0.05 viewed with four cameras. In [9],

the reconstruction is simulated in a 2D volume in voxel space of size 1000 x 1 x 200

voxels and equivalent 3D seeding denisty of ppp = 0.0167 viewed with 3 cameras.

The cases Al, A2 and A3 refer to application of one iteration of MLOS-SART, one

iteration of MLOS-SMART and five iterations of MART, respectively. The cameras

have similar angles with respect to the optical axis in all cases. For reference, the

SAPIV volume size in voxels is 1000 x 1000 x 82 (due to application of integer

shifts described in Chapter 2) and in [7] the size is 700 x 700 x 140 voxels. The

lower number of voxels in the SAPIV case may reduce the number of estimated

ghost particles somewhat, but this would need more investigation. If the SAPIV

ppp = 0.05 curve were extended to fewer camera numbers, the percentage of ghost

particles would still be an order of magnitude lower than found in [7]. However, the

percentage of accurately reconstructed particles would be approximately 10% larger

for the Elsinga data. Although no curve with similar seeding density is presented

for the SAPIV data, the Atkinson data points clearly produce a larger number of

ghost particles. If a reduction in ghost particles is the goal, clearly a larger number

of cameras coupled with the SAPIV algorithm provides a good solution.

Several authors (e.g. [15, 14]) have cited a theoretical prediction for the ratio of

ghost particles to actual particles defined as
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Figure 3-6: Percentage of actual particles accurately reconstructed as a function of
number of cameras (a) and number of ghost particles expressed as a percentage of
accurately reconstructed particles, versus number of cameras (b).

Ng pppN-1 . A N . 1zX, =

where N is the number of cameras, A, is the particle image area in pixels and lz is the

volume depth dimension in voxels. Presumably, because SAPIV and Tomographic-

PIV are closely related, the theory should apply to SAPIV data. The theoretical

prediction using the parameters for the simulations plotted in Figure 3-6(b) are shown

in Figure 3-7 to dispel the notion that this theory gives an accurate prediction of the

ratio of ghost to actual particles. Clearly, the theory does not properly predict the

dependence of number of ghost particles on camera number. Also, the prediction of

values for the Tomographic-PIV setups are orders of magnitude of from the reported

data. This brings into question whether this theory - often cited as a design tool in

Tomographic-PIV - should be used at all.

Figure 3-8 summarizes the percentage of actual particles accurately reconstructed
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Figure 3-7: Percentage of actual particles accurately reconstructed as a function of
number of cameras (a) and number of ghost particles expressed as a percentage of
accurately reconstructed particles, versus number of cameras (b).
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as a function of number of actual particles (Figures 3-8 (a),(c) and (e)) and number

of ghost particles expressed as a percentage of accurately reconstructed particles

(Figures 3-8 (b),(d) and (f)), versus number of actual particles in each simulated

volume. For all cases, 25 simulated cameras were used. The percentage of particles

accurately reconstructed decreases linearly with increasing seeding density, while

the number of ghost particles increases non-linearly. This indicates that, beyond a

certain seeding density, the noise will begin to rapidly wash out the signal. Figure 3-8

(f) shows what appears to be an anomalous data point for D = 0.2 in the 50 x 50 x

10 (mm) 3 volume; the number of ghost particles actually peaks below the maximum

seeding density. This is again likely due to using a threshold that retained more

accurately reconstructed particles (as indicated in Figure 3-8 (e)), but retained too

much noise.

To summarize, the SAPIV algorithm provides a relatively computationally ef-

ficient method of reconstructing volumes from many cameras. In turn, the use of

many cameras dramatically reduces the instances of ghost particles and increases the

number of accurately reconstructed particles, which should ultimately lead to more

accurate velocity vector fields.
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Figure 3-8: Percentage of actual particles accurately reconstructed as a function
of number of actual particles in 50 x 50 x 10 (mm) 3 volume (a) and number of
ghost particles expressed as a percentage of accurately reconstructed particles, versus
number of actual particles (b) in 50 x 50 x 10 (mm) 3 volume. Plots (c-d) and (e-f)
show the same quantities for the 50 x 50 x 50 (mm) 3 volume and 100 x 100 x 100

(mm) 3 volume, respectively. For all cases, 25 simulated cameras were used.
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Chapter 4

Camera Calibration

4.1 Introduction

One of the major challenges inherent in multi-camera setups is calibration. Camera

calibration generally refers to the need to establish a relationship between points

in the world viewed by the camera and points in the image plane of the camera.

Moreover, in the context of quantitative imaging, the calibration must be a metric

calibration such that measurements made in the images are true measurements of

the world.

A conventional approach to camera calibration involves imaging a known set of

points or object. Many researchers have taken the approach of traversing a pre-

cision machined calibration plate throughout a volume and taking images at each

location(e.g. [1, 2]). However, this classic approach of using images of an accurately

placed object to calibrate the camera becomes unreasonable when multiple cameras

must be calibrated throughout an entire volume. This method places a burden on

the user to very accurately align the calibration plate at several locations and even
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still the calibration points may not truly coincide with the assumed known world

points. Furthermore, any changes to the cameras (voluntary or not) nullifies the

calibration.

This chapter presents a method for calibrating a multi-camera system that re-

quires explicit knowledge of only a small number of world reference points. In partic-

ular, the method accounts for a typical situation encountered in experimental fluids

studies, in which an air-glass-water transition exists between the cameras and ob-

jects of interest. Given enough cameras, points in 3D space are over constrained and

the relative location of world points can be determined exclusively from images of

the points in each camera. Subsequently, the points can be aligned with a world

frame using a minimal amount of reference geometry. Cameras are modeled based

on the physics of the imaging system, rather than an empirical approach, making

the calibration more flexible. Because explicit knowledge of the world points is not

required, the initial calibration can be updated from point correspondences at any

time if any changes are made to the cameras (assuming some reference geometry is

still available, or the calibrations have not deviated too far from the true calibration;

this will be discussed in detail).

Several researchers in the computer vision community have investigated the prob-

lem of calibrating cameras with unknown world points, primarily for imaging systems

where the camera is assumed (with good accuracy) to have a single viewpoint (i.e.,

pinhole camera models) [3, 4, 5, 6, 7, 8, 9]. As will be shown, direct application of

a pinhole model to the imaging system with an air-glass-water transition is inaccu-

rate because the system ceases to have a single viewpoint (this was also discussed

in [10]). Nonetheless, calibration methods of this type provide a useful framework

for the model developed later in this chapter. Zhang [11] developed an algorithm

for calibration of a single camera using images of a planar grid at different arbitrary
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locations. The procedure returns the intrinsic camera parameters and is simple to

implement; however, only the extrinsic parameters defining the relation of the camera

to each plane are calculated. In order to make accurate measurements, the location

of the camera(s) relative to a Euclidean world frame is required. Sturm [12] de-

scribes a method of self-calibration using the motion of a single camera, which is not

as relevant here.

Of more interest are the multi-camera self-calibration methods, which involve

solving for camera parameters and world point locations using only images of the

world points in many cameras. Hartley & Zisserman [4] describe the general frame-

work for the multi-camera self-calibration problem with pinhole cameras, and many

other authors have solved the pinhole self-calibration problem in a variety of ways [3,

5, 6, 7, 8, 9]. Svoboda et al. [9] developed a particularly useful mutli-camera self-

calibration method and Matlab code [13] which involves solving the problem as out-

lined in [4], but allows for point correspondences to be missing in some views. The

calibration provides cameras and world points (both previously unknown) in a Eu-

clidean coordinate system that is within a similarity transform of a reference world

coordinate system. Some known reference geometry must be supplied to align cam-

eras and world points with the reference coordinate system; this is the case for all

self-calibration codes for the traditional pinhole camera models [3, 5, 6, 7, 9]. How-

ever, the reference geometry is much easier to provide than accurately controlled

calibration points throughout an entire volume as far fewer points are required.

The first step in a multi-camera calibration is to establish an appropriate model

for the cameras. As mentioned previously, most existing auto-calibration techniques

assume the pinhole camera model, which is accurate when all world scenes and cam-

eras are in the same medium. The technique presented here accounts for the typical

situation encountered in experimental fluids studies, in which an air-glass-water tran-
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sition exists between the cameras and objects of interest. A classic pinhole model

is assumed for the cameras, but the refraction at the interfaces is accounted for.

Other authors (e.g. [14]) have used empirical models (namely, third order polynomi-

als) to map planes in space to images to account for the non-linearity introduced by

refractive interfaces, and subsequently reduced the error in the mapping functions

through an iterative procedure. However, this method pre-supposes relatively well

controlled placement of calibration planes and is not as flexible as a physics based

modeling approach. The refractive model developed herein incorporates (up to) the

11 parameters of a pinhole model (6 exstrinsic, 5 intrinsic) and assumes a planar

wall with accurately measured thickness. However, the wall thickness and geometry

could be left as free parameters in the model. The cameras and points are initialized

either from educated guesses based on knowledge of the setup, or via a linear auto-

calibration commonly applied in computer vision settings [9]. As will be shown, the

initial guesses are not required to be very accurate. Then, the world coordinates of

each point are adjusted to minimize the summed reprojection error across all cam-

eras using a non-linear minimization procedure. Using the new world points, the

camera model parameters are adjusted to minimize the summed reprojection error

across all points. This procedure is iterated until the reprojection error is reduced

to an acceptable level.

This chapter first discusses a framework for calibrating multi-camera systems for

a general relationship between world and image points. The framework allows for

choice of camera model based on the physics of the system. Then, the details of

the classic pinhole camera model are presented, followed by the description of the

refractive model. Results are presented from a thorough study of the multi-camera

refractive model calibration using a simulated array of cameras. Comparisons are

drawn between the accuracy of the refractive model and direct application of a pin-

134



hole model. Also presented is the accuracy and convergence rate of the calibration

procedure as a function of the number of cameras, error in the image point mea-

surements and error in the initial conditions. Finally, the method is applied to real

SAPIV experiments to demonstrate the accuracy, and the improvement in results

over traditional calibration methods.

4.2 Framework for Calibration

In the most general sense, a camera images 3D points in the world onto a 2D image

plane. We can represent the general action of a camera mathematically as,

u= F (Xi ; pk) (4.1)

which refers to the projection of the ith point into the kth camera. In equation 5.5,

uk is the 2x1 vector of the th image point coordinates in the kh camera, [Ui, vi],

Xi is the 3x1 vector of the ith world point coordinates, [Xi, Yi, Z]T and pk is a set

of parameters defining the model of the kth camera. The specific form of the model

and the parameters will be discussed in later sections.

In the conventional calibration approach, the world points are assumed known

and the corresponding image points are measured. Each image coordinate provides

an independent equation; therefore, we have 2N equations for b unknown parameters

for each camera, where N is the number of points. This gives the requirement that

N > b/2, but in practice more points than required are used and the parameters are

found using a least-squares minimization due to measurement noise. In this case,

the measurement noise is assumed to be Gaussian and is manifested as error prone
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image point coordinates, and therefore the "best-fit" solution minimizes the sum of

squared geometric reprojection errors. The geometric reprojection error is defined

as,

er = | -- ||2 = ||u - F(X ; P ||2  (4.2)

where u are the measured image coordinates, and Ci and P are the reprojected im-

age coordinates and camera parameters estimated in the minimization, respectively.

Typically, a Levenberg-Marquardt nonlinear minimization algorithm is used to esti-

mate the camera parameters [4].

Now consider the case where all camera parameters and world point coordinates

are unknown. All that is known are the image point correspondences across cameras;

in other words, it is assumed that the image of each world point can be paired with

the corresponding images of the same point in each camera. In this situation, there

are 2N x M equations for all image coordinates in M cameras. The number of

unknowns is 3N for the coordinates of the world points and bM for the camera

parameters. Therefore, we have the requirement that

2NM > bM + 3N. (4.3)

Rearranging this expression gives more insight into the requirements

N > bM (4.4)
- 2M - 3
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Immediately it becomes clear that at least two cameras are required, which we knew

intuitively. This expression also gives a requirement for the number of points that

must be imaged given a certain number of cameras. Again, many more than the

minimum number of points should be imaged to get a best-fit of the parameters and

world points.

As will be discussed in the next section, linear models for multi-camera systems

allow for the camera parameters and world points to be estimated via matrix factor-

ization, followed by Euclidean stratification. This is the subject of auto-calibration

in the computer vision community [3, 5, 6, 7, 8, 9]. A nonlinear minimization is

usually only applied as the final step to model adjustment [4]. With a nonlinear

camera model, a direct linear solution is not an option and an iterative nonlinear

minimization procedure must be used with some initial starting point. The approach

adopted here is essentially an interleaved bundle adjustment [4), except the model for

the cameras can be nonlinear in general. The method is shown in figure 4-1. Initial

estimates for the camera model parameters and world point coordinates can come

from a linear auto-calibration algorithm, or simply from educated guesses based on

the experimental setup (that are reasonable based on the volume of interest). As will

be shown in section 4.4.2, the final results of the iterative algorithm are not affected

by the initial conditions, although the convergence rate may be slower. However,

a practical calibration method will be presented which enhances the accuracy and

speed of the algorithm.

Once initialized, the world points are projected into each camera, and the repro-

jection error calculated for each point. The iterative procedure is carried out while

some statistical measure of the reprojection error (e.g., mean over all points in all

cameras) exceeds a desired tolerance, or until there is no reduction in the reprojec-

tion error. If the reprojection error exceeds the tolerance, the algorithm goes into a
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loop for all cameras (1 to M), with the camera model parameters being adjusted to

minimize the summed reprojection error due to all points. Then, a loop is run that

uses a nonlinear minimization method to minimize the summed reprojection error in

all cameras by adjusting the world point coordinates but keeping the camera models

constant. The loop runs for all points (1 to N). Using updated cameras and points,

the reprojection error is re-evaluated and the procedure continues.

The question of how to construct the camera model is addressed in the next two

sections, followed by application of the calibration algorithm to simulated and real

data to demonstrate the suitability for multi-camera setups.

4.3 Pinhole Camera Model

A large body of work has been published in the computer vision community centered

around calibration of the pinhole camera model [4, 15, 16]. Much of this section

follows directly from Hartley & Zisserman [4], but development of the pinhole model

is required before discussion of the refractive model.

Figure 4.3 depicts a typical imaging configuration for a pinhole camera in an

multi-camera setup. The camera center is, in general, removed from the origin of the

world coordinate system and is angled arbitrarily. X-Y-Z is the fixed world coordi-

nate system, Xcamc-Yeam-Zcam is the camera coordinate system with origin located at

the camera center, and x-y are the coordinates at the image plane (in physical units,

not pixel units).

The pinhole camera model is developed assuming points are represented using

homogeneous coordinates [4]. A homogeneous 4-dimensional vector defines a world

point,
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Figure 4-1: Flowchart of the iterative calibration procedure.
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zcam

(X,Y,Z)

Figure 4-2: Coordinate systems for pinhole camera in air.

X = [wX, wY, wZ,w] = [X1 , X 2, X 3 , X 4]T

where w is an arbitrary scale factor. The Cartesian coordinates of the point are

found by

x4x4 '
x2Y =X
X4'

x3
x4

(4.6)

Similarly, a homogeneous 3-dimensional vector defines a point on the image plane:

x = [bx, by, b]T = [I, X 2 , X3 ]T. Writing points in homogeneous coordinates allows for

the projection of world points onto the image plane to be written mathematically as

a matrix equation
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x = PX (4.7)

where P is the 3x4 pinhole camera matrix, which can be written as

P= KR[I | -Xcam] (4.8)

where K is the 3x3 camera calibration matrix, R is the 3x3 rotation matrix, I is

the 3x3 identity matrix, Xcam are the Cartesian coordinates of the camera center ex-

pressed in the world coordinate frame, and the double underlines have been dropped

from matrix variables. The rotation matrix and translation of the camera center

define what are referred to as the extrinsic parameters, because they describe the

camera orientation in the world frame. In general, six extrinsic parameters define the

camera: three rotation angles (#, a, 0) and three coordinates of the camera center

(Xcam, Ycam, Zcam). The rotation matrix can be defined in terms of rotations about

three axes (according to Euler's rotation theorem); one possible set of rotation an-

gles to take the world coordinate frame to the camera coordinate frame are shown

in figures 4-3(a)-4-3(c). Each rotation can be written as a 3x3 matrix
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cos# 0

0 1

sin 0

-sin#

0

cos#

1 0 0
0 cos a sin a

0 -sina cosa

(4.9)

cos 0 sin 0 0

R3 sin0 CoS 0 .

0 0 1

The total rotation matrix is found by multiplying the individual matrices in the

correct order

cos 0 cos # + sin0 sin a sin #
- sin 0 cos # + cos 0 sin a sin #

sin # cos a

sin0cosa -cos0sin#+sin0sinacos#

cos 0 cos a

- sin a

sin 0 sin # + cos 0 sin a cos #
cos # cos a

(4.10)

The intrinsic camera parameters define the camera calibration matrix, K
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Figure 4-3: Three rotations required to describe the orientation of the camera coor-
dinate system.

KI-musi

0

0

S

0

matX

mt 1 (4.11)

where si is the distance from the camera center to the image plane, s is a skew factor,

mu and mv are scalar constants which convert physical units to pixel units, and t,

and ty are offsets that account for a origin of the image coordinates that is not in the

center of the image plane, as is often the case in practice and is shown in figure 4.3.

The reason for using two scalars, mu and mn, is to account for the situation in which

the aspect ratio of the camera pixels is not equal to one. Ignoring this rare case, and

also excluding the skew factor which is not often necessary in practice, the camera

calibration matrix becomes
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Figure 4-4: Coordinate systems for pinhole camera in air.

-b 0 u1
K = 0 -b v, (4.12)

0 0 1

where m and si have been replaced with one constant, b and we have also replaced

mt, and mt, with u, and v0, respectively. Therefore, in most common applications

found in the laboratory setting, there are 9 parameters (3 intrinsic, 6 extrinsic) that

define a pinhole camera; however, as many as 11 parameters can be used in general.

4.4 Refractive Imaging Model

A very common configuration in fluids experiments is for the cameras to image from

the air through a glass or acrylic tank full of water or another fluid. In this case,

direct application of the pinhole model between world and image points is not valid

as the refraction of light should be accounted for in the model of the system. As

shown in Figure 4-5, if the rays emanating from the world points are drawn along

the path taken in water (as would be assumed in a pinhole model), they do not meet
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in a single point in the air. Even with exactly known world and image points, the

resulting pinhole model would contain error as discussed by Treibitz et al. £101.

Before proceeding with a description of a model that does accurately describe

this situation, it is useful to quantify how inaccurate the pinhole model is. Using the

method for projection through refractive media that will be described in 4.4.1, points

randomly located in a simulated volume of water are projected into cameras in one

of the simulated arrays from Chapter 2. A five mm thick glass wall is also place

between the water and the cameras. Application of the pinhole calibration to the

exactly known world and image points yields an errant model. Figure 4-6 shows the

histogram of reprojection errors for one camera from the array: the mean reprojection

error (which in this case is also the true error) is 0.411 pixels and the standard

deviation of the reprojection error is 0.269. The maximum reprojection error using

the model described in this section (which accounts for refraction) is 2 x 10-8 pixels.

As discussed in Chapter 2, the synthetic aperture refocusing technique begins to

rapidly degrade in refocusing quality with true error in the mapping function above

0.4 pixels, particularly for PIV images. Therefore, even with zero measurement noise

the pinhole model is insufficient for SAPIV.

In order to make the multi-camera approach relevant for fluids related studies,

an accurate model which accounts for the refraction in the line of sight is required.

Treibitz et al. [10] proposed a camera model that accounts for refraction but assumes

the image plane is parallel to the container wall and requires placement of an object

at accurately known depth. These constraints were acceptable for their application,

but not for the present case where cameras can be in arbitrary position relative to the

container wall and little or no requirement should be placed on locating calibration

objects accurately. With these goals in mind, this section aims to develop a model

suitable for accurate auto-calibration of multi-camera systems with refraction.
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water

air

refractive pinhole

Figure 4-5: Schematic of imaging through changing medium. Modeling the refraction
results in the (blue) rays correctly meeting in a single point. Application of a pinhole
model is not valid as the (red) rays do not meet in a single point.

0.1:

-$ 0.

0.5 1
Reprojection Error, [mm]

Figure 4-6: Reprojection error in one simulated camera
of the pinhole model to a refractive imaging system.

emanating from application
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One assumption made in the model is that the wall of the tank is planar, which

is true in many practical situations. However, the geometry could be altered or even

left as an adjustable parameter if the situation required it. A three-dimensional view

of the imaging system model is depicted in Figure 4-7(a), while Figure 4-7(b) shows

the two-dimensional view in the plane of the ray. The angle of a light ray at each

interface is governed by Snell's law

ni sinO1 = n 2 sinO2  (4.13)

where n is the index of refraction of the medium (assumed known in the model)

and 0 is the angle the ray makes with the normal to the interface. Applying Snell's

law at the air-tank interface, and defining the angles in terms of lengths shown in

Figure 4-7(b) gives

'CA _n2 TB-rA (4.14)
T A2  A 2  

(rT - 2 + dB2

where TA and TB are the radial distances from an axis parallel to the Z-axis and

passing through the camera center to the point of intersection of the chief ray with

the front and back of the tank wall, respectively. The distance dB is the thickness

of the wall and is assumed to be known. The distance dA is given as dA = ZW - ZC,

where Zw is the Z-coordinate of the front of the wall and Zo is the Z-coordinate of

the camera center, all expressed in the world coordinate frame. The model assumes

a set value for Zn, which fixes the orientation of the X-Y plane. As will be discussed,

the camera centers and point coordinates are free parameters, and thus fixing Z"

does not impact the accuracy of the model. Similar application of Snell's law at the

tank-water interface yields the equation
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rB - A _n3 rP - TB (4.15)
(rB- rA)2 + dB2  ?22 Tp-rB)2 ± + 2

where the distance dp is given as dp = Zp - (Zw + dB), where Zp is the Z-coordinate

of the point.

If we assume for the moment that the world point and camera center coordinates

are known, then equations 4.14 and 4.15 provide two equations for two unknowns

(rB and rA). Each segment of the ray lies in the same plane, as shown in the end

view in Figure 4-8. Therefore, the X - Y coordinates of the point of intersection

with the front of the tank wall can be defined in terms of the plane angle, #, which

is fixed by the camera and world point coordinates,

YP - Yc
tan# = (4.16)

XP - XC

XA =rA COS$ + Xc (4.17)

YA =rA sin# + Yc (4.18)

Now that the coordinates of the point of ray intersection with the front of the

tank wall are known (recall that ZA = Z. is fixed in the model), this point can be

projected into the cameras using a standard pinhole model, because there are no

more changes in index of refraction in the path of the ray. Mathematically, the final

step in projecting the world point into the camera is given by

X = PXA (4.19)
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Figure 4-7: Three-dimensional view of the refractive imaging system model with
planar wall (a), and two-dimensional view in the plane of the ray (b).
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Figure 4-8: End view of refractive imaging model showing each segment of the ray
lying in the same plane.

where x are the homogeneous image coordinates (3 x 1 vector), XA are the homo-

geneous world coordinates of point A (4 x 1 vector), and P is the pinhole camera

matrix (3 x 4 matrix).

4.4.1 Implementation of the Refractive Imaging Model

Assuming, for the moment, that all world points and camera parameters are known,

we need only to solve equations 4.14 and 4.15 for the two unknowns, rB and rA,

followed by application of equations 4.16 - 4.18 for the coordinates of point A in the

world frame. Equations 4.14 and 4.15 are non-linear and therefore must be solved

numerically. The equations can be posed as a simultaneous root finding problem

which can be solved using a mutli-equation Newton-Raphson scheme [17]. First,
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equations 4.14 and 4.15 are rewritten as

f TA n 2  
rB -r-A

T A2 +dA rv B-TA) 2 dB 2

T B - TA n 3  rp - TB

(T B - T A 2 dB 2 n 2 (T_ B 2 +dp 2

(4.20)

(4.21)

The true solution simultaneously makes f and g zero. At each iteration, the unknown

values are updated using

TA i+1TA-

TBi+1__,iTBi+1TB -

Og Of 1[ OrB 8TB
Of Og Of 8g
rA OTB OrB OrA.

OTA OTAOf ag Of Og
.rA 8TB OTB OTA.

where i denotes values from the previous iteration. The partial derivatives in equa-

tions 4.22-4.23 are given in Appendix B. The convergence rate of the multi-equation

Newton-Raphson scheme is very fast. Figure 4-9 shows a sample convergence plot for

the solution to equations 4.20 & 4.21 for one point randomly seeded in a simulated

volume. With an error tolerance of 0(10-8), the Newton-Raphson scheme typically

converged in less than 10 iterations.
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iteration

Figure 4-9: Convergence plot for solution to equations 4.20 & 4.21 using simultane-
ously Newton-Raphson scheme.

4.4.2 Multi-Camera Auto-Calibration of Refractive Imaging

Systems

Attention is now turned to the auto-calibration of a multi-camera system in a re-

fractive imaging environment, where the model discussed in the previous section

applies to each camera. To reiterate, the problem we are faced with is solving for

the world point coordinates and camera parameters (Xi, p'), given only image point

correspondences (ut) across several cameras. In this section, an efficient method for

generating calibration point correspondences is first discussed. Then, the simulated

camera environment from Chapter 2 is used to assess the performance of the calibra-

tion procedure in a controlled, quantifiable manner. The accuracy and convergence

rate of the calibration procedure as a function of the number of cameras, error in the

image point measurements and error in the initial conditions is discussed. Finally,
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application of the method to real data demonstrates the accuracy of the method.

The refractive imaging model is actually described by the same parameters as

used in the pinhole model. However, explicit knowledge of the coordinates of the

camera centers are required to solve equations 4.20 & 4.21. Therefore, rather than

using the entries of the camera matrix (P) as the free parameters in the minimiza-

tion, the extrinsic and intrinsic parameters are the free parameters. Insertion of the

parameters into equation 4.8 allows for construction of the camera matrix, which

can subsequently be used in equation 4.19 to project points into the cameras using

matrix multiplication. Either a linear auto-calibration method or simply estimations

of the parameters from measurements of the physical setup can be used to initialize

the cameras. Any reasonable initialization provides good convergence rate, and does

not affect the accuracy of the final model.

In finding the best-fit location of the world points, the three coordinates of each

point could be left as free parameters and a loop run for N points to find the best

fit coordinates. However, the overall convergence of the algorithm can be somewhat

slow if a large number of calibration points are used. A more efficient method is to

place a planar grid at arbitrary locations within the volume, which provides several

benefits. First, planar grids can often be generated with relatively high accuracy

for low cost (for example, by printing a checkerboard pattern). Second, instead of

adjusting three coordinates for N calibration points, the 6 parameters (3 rotation

angles, 3 translation distances) needed to define a plane in the world frame are used

as the free parameters for each plane. Because each grid point is assumed to be

known with high accuracy relative to a reference origin point on the grid, N world

points are defined by 6K parameters for K planes, rather than 3N parameters.

A typical number of plane locations sufficient for calibration is K = 5, giving 30

parameters to be adjusted; this number of parameters corresponds to 10 world point
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coordinates, which is far fewer than normally used for calibration [9]. The overall

convergence rate is therefore faster, because an extra constraint (that points lie on

a plane) is physically imposed. Finally, this method is very amenable to practical

implementation. Many open source codes exist for accurate corner detection on

checkerboard grid images [18], and the grids are easy to produce on a high accuracy

printer.

The grid should be placed at several plane locations to fill up the volume of inter-

est with calibration points. Although knowledge of all grid locations is not required,

some reference geometry with accurately measured coordinates in the world frame

should be imaged by all cameras. All linear, pinhole model-based auto-calibration

methods require alignment with known geometry in the world frame [9], but it is ex-

pected that the requirements for the refractive algorithm are less stringent. Nonethe-

less, some known points are required, and the reason will be discussed with the results

of the calibration of the simulated refractive multi-camera system.

The coordinate system definitions for the simulated camera array correspond to

those shown in Figure 4-7(a) & 4-7(b). A wall thickness of 5 mm is used for all

simulations presented herein, and Z = 0 corresponds to the front of the wall. Several

numerical experiments are performed to test various scenarios. For the first set of

numerical experiments, 5 unchanging calibration planes with an 11 x 11 grid of

points are used to establish point correspondences; the grid locations are shown in

figure 4-10.

The variables in the first set of experiments are summarized in Table 4.1; each

combination of the three variables is used. The variables o (e,) , o (e,) refer to the

amount of noise imposed on the image point measurements. For each point in each

camera, zero mean Gaussian white noise is added to the true u and v components

of each point, where the standard deviation in eu and e, (the noise) corresponds

154



Table 4.1: Variables in the first set of numerical experiments for the simulated re-
fractive camera calibration.

No. of Cameras o (en) , a (e,) [pixels] [o (ex) , o (ey) , o (ez)] /D

3 0 0.001
0.1 0.005

7 0.5 0.01
1 0.1

13 2 0.2

to the values shown in Table 4.1. The image point error variable simulates the

fact that in reality, image points are not measured perfectly, although corner finder

algorithms can often measure checkerboard grid patterns to accuracies on the order

of 0.1 pixels [18].

The other variable in the simulations is the amount of error imposed on the initial

values of the world points. The third column in Table 4.1 expresses the standard

deviation of the error added to the world point coordinates as a fraction of the

maximum volume dimension, D. A zero mean Gaussian distribution again defines

the noise in each coordinate. This variable is used to perturb the initial estimates of

the camera parameters (as well as the world points) from the true values by finding

the camera parameters using the errant world points. For the first set of numerical

experiments the volume size is 50 x 50 x 50 mm3 , therefore the raw value of the

standard deviation of the noise ranges from 0.05 mm to 10 mm. For each initial

world point error level, the range of image point error levels is tested, with the same

cameras being used. Different cameras are used for each world point error level to

not introduce any bias error.

For the simulations, the camera parameters varied in the calibration procedure

are: the scale (b) two rotation angles (#,a) and the camera center coordinates
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Figure 4-10: Location of calibration grid planes for the simulated camera calibration
tests.
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(Xc,Yc,Zc). Only two rotation angles are actually imposed in constructing the

simulates array, and thus only two are left as free parameters; in the application to

real data, all three rotation angles are left as free parameters. The image coordi-

nate offsets (Uo,vO) are assumed known based on knowledge of the image sensor size.

The two rotation angles are initialized to zero and the scale is initialized to the true

value; however, the scale will deviate from the true value in the initial iterations

using errant world and image points, and thus initializing to the true value does not

bias the final result. Matrix decomposition of the camera matrices found from linear

calibration modeling methods (direct linear transform, [4]) yields initial estimates of

the camera center coordinates. These initial estimates deviate significantly from the

true values because the linear calibration method assumes a pinhole model.

Next, a Levenberg-Marquardt least-sqaures fitting method adjusts the camera pa-

rameters [4]; this corresponds to the k for loop in Figure 4-1. The sum of squared re-

projection errors (i.e., Euclidian distance between measured and reprojected points)

for all points within each camera serves as the objective function minimized by the

Levenberg-Marquardt algorithm. This objective function is suitable when the errors

are assumed follow a Gaussian distribution. Then, the i for loop in Figure 4-1 is

carried out using a non-linear least-sqaures fitting method to adjust either the three

coordinates of each world point or the six parameters of each plane to minimize the

summed reprojection error across all M cameras. The auto-calibration procedure is

repeated according to Figure 4-1 until some stop criterion is reached. Herein, when

the largest value of mean reprojection error from all cameras is changing by less than

0.001 pixels, the procedure is stopped.

As a final step of the auto-calibration procedure, the world points are aligned with

a known reference coordinate system. As alluded to earlier, some known reference

geometry is required for the alignment. In the case of a linear, pinhole model-
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based auto-calibration, the resulting world points are in a Euclidean frame that

is within a similarity transform (scaling, translation and rotation) of the reference

world coordinate system. This is due to a non-uniqueness of the solution to the linear

auto-calibration problem. Because of the nature of the refractive model-based auto-

calibration described herein, it is expected that the solution will be unique up to a

translation of all points and cameras in X and Y and rotation about Z, because the

wall is of infinite extent. Therefore, far less alignment with reference geometry should

be expected compared to the linear auto-calibration methods. If a calibration grid

provides the point correspondences, scaling of the world points is not necessary since

it is included in the definition of the grid. From prior simulations, it was also observed

that the world points resulting from the first refractive auto-calibration routine were

only translated and not rotated from the true points. Therefore, alignment with the

world reference frame for the simulated data requires only translation, which can be

accomplished using only one accurately measured reference point.

The red star in Figure 4-10 is the single "known" reference point for the sim-

ulations. The translation is calculated by subtracting the known reference point

coordinates from the calculated reference point coordinates resulting from the first

refractive auto-calibration routine. The world points are then translated to the refer-

ence coordinate system, and the auto-calibration routine is repeated; the procedure

typically converges within two iterations. In the application to real data described

in Section 4.4.3, more reference points are required, and the reasons are expounded

upon in that section.

The results of the simulations are presented in a variety of plots pertaining to the

desired results of the auto-calibration procedure. The convergence rate of the entire

procedure, final errors in reprojected image points and accuracy of the calculated

world points constitute the metrics of interest in this study. Figure 4-11 shows the
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convergence plots for the auto-calibration algorithm applied to 7 simulated cameras.

For all plots, the standard deviation of error in the imposed image point measure-

ments is 0.5 pixels. The initial error in world point coordinates increases from plot

4-11(a) to 4-11(e). The base 10 logarithm of mean reprojection error is plotted on the

y-axis with iteration number plotted on the x-axis. For large initial world error levels,

the initial mean reprojection error is quite large (0(100) pixels for o- (ew) /D = 0.2),

but reduces rapidly to 0(1) pixels. For all initial world error levels, the solution

converges in relatively few iterations, except for the case of o- (ew) /D = 0.1. Al-

though the large initial errors are reduced very rapidly, the convergence to the low

error levels is slightly slow. This is likely due to the nonlinear fitting algorithms

reaching areas of low gradient with respect to the parameters. Convergence plots in

Appendix C for all other simulation tests show similar results.

Figure 4-12 shows the image point error summary for all seven camera simulations

and the definition of each error is depicted in Figure 4-13 to facilitate explanation of

the plots. The blue curves in Figure 4-12 refer to the mean initial image measurement

error, which is imposed in the simulations. The red curves refer to the final mean

reprojection error measure between the reprojected points and noisy "measured"

points. The final true mean error - between the reprojected and true image points

- is shown by the black curve, and could not be measured for real applications, of

course. For each plot, y-axis contains the mean error and the x-axis represents the

imposed standard deviation of the image point errors. The symbols on each curve

correspond to different initial values of ew/D: o - 0.001, A - 0.005, D - 0.01, x - 0.1,

* - 0.2. As previously mentioned, different cameras are used for each initial value

of world point error. Therefore, each of the seven plots (Figures (a)-(f)) shows the

results for different cameras, but the cameras are not the same across all world error

levels.

159



102

10

100

0

10

102

10

Li, ioo

10

10

10 2

15 2 2.5 3 3.5 4
Iteration

(a)

-Camera 1
-Camera 2

-Camera 3
-Camera 4

Camera 5

-+-Camera 6
-Camera 7

2 3 4 5
Iteration

10 +Camera I
- -Camera 2

+Camera 3

10 -- Camera 4
Camera 5

-- Camera 6

0 QL L:+Camera 7
10

10-

in2

2 3
Iteration

5 10 15
Iteration

4 5 6 7 8
Iteration

(e)

Figure 4-11: Convergence plots of the auto-calibration algorithm applied to 7 sim-
ulated cameras. For all plots, the standard deviation in the imposed image point
measurements is 0.5 pixels. The initial error in world point coordinates increases
from plot (a) to (e).
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Appendix C contains the corresponding figures for the three and 13 camera stud-

ies (Figures C-16 - C-19). Immediately, we observe that the final mean reprojection

error curves fall almost exactly on the mean initial image measurement curves. This

indicates that the reprojected points do minimize the objective function, and there-

fore provide the best estimate of the true points in a least-squares sense. Further-

more, the black curves reveal that the true mean error between reprojected and true

points is significantly smaller than the mean reprojection error (etrue/erep ~ 10%),

but increases with increasing imposed image point error. The initial value of world

point error has very little effect on the final true mean error.

In conclusion, the most effective manner to reduce true error in reprojected image

points is to accurately measure the image points in the first place. This statement

is obvious. Less obvious is the fact that relatively large reprojection error does

not necessarily indicate an inaccurate calibration. Even with mean reprojection

error of 2.5 pixels, the true image point error is on the order of 0.25 pixels. This

brings up a subtle point that appears to often be overlooked in the literature. The

reprojection error is not itself a measure of the accuracy of the calibration, it is an

objective function that we try to minimize. The accuracy of the estimated world

point locations truly defines the accuracy of the calibration, which is discussed next.

Since the true location of world points is known in the simulations, we can deter-

mine the accuracy of the calibration by comparing the calculated and known world

points. Figure 4-14 and 4-15 show the mean (4-14(a)-(c) and 4-15(d)-(e)) and stan-

dard deviation (4-14(f)-(h) and 4-15(i)-(j)) of the final error in each component of

the world points divided by the volume dimension plotted as a function of the initial

world point error level. The imposed image point error level corresponds to each

row of plots. The final mean error level appears to be random and uncorrelated

to the initial world point error. However, the standard deviation of the final world
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Figure 4-12: Final mean reprojection error after convergence of the auto-calibration
procedure. The red and blue curves refer to the final mean reprojection error and
the mean initial image measurement error, respectively; the final true mean error is
shown in black. The symbols correspond to different initial values of ew/D: o - 0.001,
A - 0.005, El - 0.01, x - 0.1, * - 0.2.
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Figure 4-13: Definition of calibration errors summarized in Figure 4-12.

163

. ......... ....... .... .--, -......... .... ............. ... ................ . .......



point error generally does increase with increasing initial error point level. To put

the error in better context, consider the dimension of a pixel back projected from

the center camera into the middle of the volume, dpi.; for the simulated camera ar-

ray, dp2. = 0.052 mm. The magnitude of the errors are relatively small, with the

maximum value of mean and standard deviation in the final error of 0.33dpix and

1.17dpi, respectively, for the seven camera study with o- (e,) = o (e,) = 2 pixels. In

each case, the maximum error is in the Z component.

Nonetheless, it it hypothesized that the increase in final world point error with

increasing initial world point error may be in part due to the algorithm settling into a

local minimum. To attempt to mitigate this effect, it is proposed that the calibration

algorithm be applied to randomly selected subsets of the cameras, similar to a random

sample consensus (RANSAC) approach [19]. Each calibration yields estimates of the

world point coordinates (or plane parameters) and if the difference between the world

point estimates exceeds some threshold, the calibration is repeated using new subsets.

The initial values of the plane parameters used for the next iteration are the average

of the set of plane parameters estimated from the previous iteration. The net effect

of this procedure should be to reduce any bias error that may occur when applying

the calibration routine to a single set of cameras.

To test this approach, the simulated camera array with eight cameras is used, with

the subset size equal to four cameras. The actual cameras composing each subset

varies randomly for each iteration. When the standard deviation of the difference

in all coordinates of the points estimated using the two camera subsets is less than

0.001 mm or the maximum standard deviation of the differences exceeds that of the

previous iteration, the loop is stopped. The plane parameters are then taken as the

average of the set of plane parameters estimated from the iteration providing the

minimum value of standard deviation of differences between estimated world points,
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locations after the final iteration of calibration procedure applied to 7 simulated
cameras. Rows 1-3 correspond to imposed image points error levels of o (e") =

o- (e,) = 0, 0.1 and 0.5 pixels, respectively.
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and the original calibration routine is then applied to all eight cameras. The results of

this approach are summarized in Figures 4-16 and 4-17, which show histograms of the

mean and standard deviation of world point error for results from the randomized as

well as the original calibration method. As observed for the previous study, the mean

world point error appears random and is typically an order of magnitude smaller than

the standard deviation in world point error. In general, the randomized calibration

procedure reduces the standard deviation in world point errors, and the effect is most

pronounced for large imposed image point errors and initial world point errors. The

increased accuracy comes at the cost of increased computational effort, however, and

may not be necessary depending on the required accuracy for a given experiment.

Finally, to characterize the accuracy of the calibration throughout the entire vol-

ume, 500 random points are distributed within the volume and projected to image

coordinates using the exact cameras. Gaussian noise is added to the image points

in the same five amounts as used for the previous simulations. Five tests are car-

ried out whereby the world point coordinates are estimated using the noisy image

points and both the exact cameras and the cameras estimated from the correspond-

ing auto-calibration. This offers a direct comparison of the accuracy of the refractive

auto-calibration procedure in estimating world point locations since the most ac-

curate estimation will come from using the exact cameras. Figure 4-18 shows the

histograms of error in the Z coordinates for the estimated world points with initial

world error level of o (ew) /D = 0.2 for all five image point error levels. The blue

bins correspond to the difference between the known points and the points found us-

ing the estimated cameras and the red bins correspond to the difference between the

known points and the points found using the exact cameras. The error distributions

for the X and Y coordinates resemble that for Z, but have a smaller standard devi-

ation. With the exception of the first histogram (corresponding to zero image point
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error), each displays the same general distribution with standard deviation increas-

ing with increasing imposed image point error. Furthermore, the similarity between

histograms coming from the exact and estimated cameras attests to the accuracy of

the auto-calibration procedure. Figure 4-19 shows the distributions of error in the Z

coordinates for the case of image point error equal to o (en) = o- (e,) = 0.5 pixels and

all five initial world error levels. Interestingly, the distributions are approximately

the same for each case. Therefore, the accuracy of the calibration is a function of

the accuracy in image point measurements, but not of the error in the initial guesses

of world point locations, as we would hope.

As a final measure of accuracy in world point estimation, the same world grid

points are projected into the same simulated cameras used above, except there is no

index of refraction change between the points and the cameras. This corresponds

to projection of points by pinhole cameras. The linear auto-calibration procedure

described in [9] is then applied using the image point correspondences across the

cameras. The resulting world points and cameras from the linear auto-calibration

procedure require alignment with the true world reference frame. The similarity

transform was calculated between the reference grid (at Z = 0) as well as four off-

plane control points and the corresponding world points estimated by the calibration

algorithm. Alignment using simply the reference grid still resulted in large error in

the world points, hence the use of additional control points.

Figure 4-20 shows the distributions of world point Z-coordinate error resulting

from the linear auto-calibration applied to the same points and cameras as used in

the refractive simulations that generated Figure 4-18 (but now without refraction).

The five plots correspond to increasing image point error levels, where the same

imposed image point error levels used in the refractive auto-calibration simulations

are used here. The shape of the distributions resembles those shown in Figure 4-
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18, with the magnitude of the errors being at least as large, if not larger for the

linear auto-calibration procedure as compared with the refractive auto-calibration.

Figure 4-21 shows the distributions of world point Z-coordinate errors resulting from

the linear auto-calibration applied to the same points and cameras as used to generate

Figure 4-19. Because this calibration procedure does not require initial world point

estimates, each plot in Figure 4-21 simply corresponds to a different set of cameras.

The magnitude of the errors are, in general, larger than the error resulting from

the refractive auto-calibration procedure, even though the standard deviation of

imposed image point error is the same. Overall, this indicates that the refractive

auto-calibration algorithm presented in this chapter is as or more accurate than the

linear auto-calibration presented in [9]. Furthermore, more reference geometry is

required for accurate alignment of the linear auto-calibration results than for the

refractive results.

4.4.3 Application of Refractive Auto-Calibration to Real Data

The refractive auto-calibration procedure is now applied to the calibration images

from the 3D PIV vortex ring experiment presented in Chapter 2. In that experiment

a precision calibration grid traversed through 11 planes in the volume in 4 mm

increments generated the calibration points. With the grid located at the middle

calibration plane (reference plane, see Figure 4-22), the distance between the front

of the plane and inside of the front tank wall was measured at each edge of the grid

to attempt to align the grid plane parallel to the front tank wall. From there, the

precision traverse moved the grid 20 mm towards the front tank wall, then 40 mm

toward the back tank wall, with 4 mm increments between planes. The accuracy of

the traverse is expected to be be on the order of ±0.0 1 mm [20]. The auto-calibration
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procedure described in this chapter aims to eliminate such tedious alignment, which

may itself be prone to errors.

To test the auto-calibration procedure with real data, the accuracy of the initial

estimates of the plane parameters given to the algorithm is progressively decreased

over three tests by varying the initial estimates of the Z location of each plane. All

planes are assumed to be parallel to the front tank wall. For the first test, the initial

estimates of the Z coordinate of the plane locations ranges from -20 mm to 20 mm

in 4 mm increments; these correspond to the assumed true locations based on the

precision alignment. For the other two tests, the initial estimates of the Z coordinate

of the plane locations ranges from -10 mm to 10 mm in 2 mm increments and -5 mm

to 5 mm in 1 mm increments, respectively. For each test, the grid-based randomized

auto-calibration approach with four camera subsets yields camera parameters and

world point estimates. A single grid point from the central plane location is taken

as the reference point for all tests, similar to the simulations. Point correspondences

are found using a circle detector with subpixel accuracy [21].

Figure 4-23 shows the mean and standard deviation of the reprojection error for

each camera and each calibration test. Clearly, the initial estimates of the plane lo-

cations has little impact on the final reprojection error. Furthermore, the magnitude

of reprojection errors is relatively small in each camera, indicating good accuracy

in the image point measurements. Figure 4-24 shows two calibration images with

measured image points and reprojected world points for each test plotted on the

image. Figure 4-24(a) shows an image from camera 1 with the grid at the location

farthest from the front wall and Figure 4-24(b) shows an image from camera 3 with

the grid middle (reference) location. For each image, zoomed views of a grid point

are shown for clarity.

The accuracy of estimated world points is harder to characterize than the accu-
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Figure 4-22: Schematic of the calibration setup for the 3D SAPIV vortex ring ex-
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Figure 4-23: Mean (a) and standard deviation (b) of the reprojection error for each
camera and each calibration test for the 3D PIV vortex ring experiment.
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location farthest from the front wall and (b) shows an image from camera 3 with the
grid middle (reference) location.
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racy in the image point measurements, given that these points are unknown. The

most accurate and precise portion of the physical calibration procedure is the trans-

lation of the grid along the Z axis by the precision traverse. Therefore, as a measure

of accuracy in the world points, the difference between Z-coordinates of correspond-

ing grid points from adjacent plane locations is calculated. The nominal spacing

between planes (according to the translation requested of the traverse) is 4 mm.

Figure 4-25 shows the mean value of Z distance between estimated world point lo-

cations on adjacent planes; the value k refers to the distance between planes PA and

Pk+1. The error bars represent one standard deviation from the mean. For all tests,

the estimated mean plane spacing is larger than 4 mm, which may be due to a bias

in the traverse itself. However, the accuracy of the calibration method is evident

from the data. The plane spacing fluctuates by less than ±0.02 mm for all tests,

which is again likely due to the accuracy of the traverse itself. This is supported by

the fact that each calibration test predicts the fluctuations similarly, and therefore

the fluctuations are not due to the calibration algorithm. Therefore, by this metric,

the calibration accuracy approaches the accuracy of the traverse in locating world

points, even when the initial estimates of plane locations are poor.

Attention is now turned to a possible bias error between the different calibration

tests. Figure 4-26(a) shows the estimated world point locations resulting from the

calibration algorithm for the three test cases. The two tests with poorer initial

conditions appear to have a bias error whereby the entire set of points is rotated

(and possibly translated) from the test 1 data set even though all estimted points

are aligned with the same reference point. Keep in mind that the test 1 data set is

not the ground truth (which is unknown), but is used here as the reference data for

discussing the bias error.

Figure 4-23 shows that the reprojection error for each camera in each test is
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reduced to roughly the same level, which begs the question: are there multiple com-

binations of world points and camera parameters that yield a solution to the problem

(i.e., that minimize the sum of squared reprojection errors)? Because the wall is as-

sumed to be of infinite extent, translations of the world points and camera centers in

X and Y will or course give the same result, but this is mitigated by alignment with

the reference point. Also, the entire set of world points and camera centers could be

rotated around the Z-axis and still yield the same result, but this does not explain

the apparent rotation of world points about the X and Y axes in Figure 4-26(a).

Therefore, to investigate this error further, the 9 innermost cameras (3 x 3 ar-

rangement) from the simulated camera array described in Chapter 2 are used. First,

the same grid points as shown in Figure 4-10 are projected into each camera using

the refractive model to generate true image points. Then, the calibration for each

camera is found using these true image points and a series of perturbed world points.

The calibration is calculated using the Levenberg-Marquardt method to adjust the

camera parameters with the sum of squared errors between reprojected and true im-

age points serving as the objective function. The idea being that, if the calibration

found using the perturbed world points and true image points contains no error (i.e.,

projects the perturbed world points to the original true image points), then there are

multiple combinations of world points and camera parameters that yield a solution.

Note that this statement is true for linear auto-calibration methods (e.g. [9]), but is

not expected to be true for the refractive auto-calibration method given the imposi-

tion of more physical constraints. The perturbed world point locations are generated

by imposing a rigid rotation ranging from -4 to 40 in 0.5' increments about the ver-

tical axis passing through the centroid of the world points and separately by shifting

the world points along the Z-axis by an amount ranging from 0 mm to 50 mm in 5

mm increments. The resulting mean error between the reprojected and true image
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points for each case is shown in Figure 4-27. Note that these plots do not represent

the sensitivity of the cameras to changes in point locations, but rather are indicative

of the sensitivity of the auto-calibration method to changes in points locations be-

cause the algorithm finds the best fit camera parameters based on the world point

locations and true image points.

The mean error never reaches zero except for when the world points reside at

their true location. For the central camera (camera 5) the error remains small in-

dependent of translations of points along the Z-axis; however, the auto-calibration

algorithm attempts to minimize the summed reprojection error across all cameras

when estimating world point coordinates, which would be non-zero. The results of

this simulation indicate that, under perturbations of the world points via a rigid

rotation about a vertical axis or translation along the Z-axis, there are no camera

parameters that yield a minimum solution. In other words, a unique solution exists

for the world point locations and camera parameters with respect to these motions.

Still the question remains of why an apparent rotation and translation of world

points for the real data was observed. Some insight can be shed by noting the caveat

that, for the simulation test above, the image points are assumed to be measured

with perfect accuracy; in practice, this is never true. A similar analysis is now ap-

plied to the real data. Assume, for now, that the camera parameters and world

points estimated from test 1 represent the true solution. Projecting the test 1 es-

timated world points into each camera then gives "true" image points. A similar

analysis as applied to the simulated data is used here. For tests 2 and 3, the best fit

camera parameters are found using the estimated world points from each respective

test - considered to be the "perturbed" world points - along with the "true" image

points resulting from test 1. The mean error between the "true" image points and

the projections of the perturbed points using the new camera parameters is shown
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Figure 4-27: Mean error between the reprojected and true image points for rigid
rotation ranging from 4' to 40 in 0.50 increments about the vertical axis passing
through the centroid of the world points (a) and shifting the world points along the
Z-axis by an amount ranging from 0 mm to 50 mm in 5 mm increments (b).

by the black lines in Figures 4-28(a) & 4-28(b). The magnitude of these errors is

relatively small compared to the original mean reprojection error calculated for each

test (also shown in Figures 4-28(a) & 4-28(b)). Furthermore, the error between the

new reprojected points and the original measured image points equals the original

reprojection error with very small discrepancy. These results show that, in practice,

multiple combinations of world points and camera parameters that yield a minimal

solution exist. With perfectly measured image points, we would not expect this to be

the case. However, because there is error in the image point measurements, multiple

combinations of world points and camera parameters that minimize the reprojection

error can be found even if the reprojected points differ from the true image points.

To ensure that the error indeed corresponds to a rigid rotation and translation

of the world points and not something more problematic like skewing, the similarity

transformation is calculated between the estimated points on the reference plane
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(middle plane) and the assumed location of points on the reference plane for each

test case. The transformation is calculated using the method described in [22]. The

hypothesis is that if most of the error between data sets is reduced simply through

application of a similarity transformation, then the error is effectively due to the

estimated points being placed in a coordinate system which is rotated and translated

from the true coordinate system. Figures 4-29, 4-30 & 4-31 show the histograms of

the point-by-point differences in each coordinate between estimated points for all

test cases; the blue bins and red bins correspond to differences calculated before

and after application of the similarity transformations, respectively. It should be

noted that scale was also left as a parameter in the similarity transformation, and

was calculated to be one for each test, which is consistent with the notion that scale

is fixed by the grid. In Figures 4-29 & 4-30, which show histograms of the error
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between test 1 and test 2 points and test 1 and test 3 points, respectively, the error

is significantly reduced in all coordinates, particularly in Z, after alignment with

the reference plane. The error reduction for the difference between test 2 and test

3 points - shown in Figure 4-31 - is less dramatic since these points were estimated

near each other in the first place. Therefore, the conclusion is drawn that the world

points estimated by the calibration procedure are located in a coordinate system

that is within a rotation and translation of the true coordinate system due to the

auto-calibration procedure settling into a local minimum.

To attempt to remove this bias error, it is proposed that some accurately known

points be imaged during the calibration, and a similarity transformation calculated as

discussed here. As described in [22], at least three points are required in theory, but

more points provide better noise immunity. Also, the point correspondences can be

coplanar, but not collinear. Therefore, a calibration grid placed at one well-controlled

location could provide the reference points, or the reference geometry could even be

provided by an object in the volume of interest (e.g. shaft, foil, etc). Linear auto-

calibration methods like that of Svoboda [9] all require reference geometry to align the

resulting world points with a reference coordinate system because the output of these

techniques are within a similarity transformation of a world frame (including scale).

However, what should be mentioned with respect to the refractive auto-calibration

discussed in this chapter is that the relative location of world points resulting from the

calibration procedure is very accurate as evidenced by the calculated plane spacing

in Z for all tests. The points are simply estimated in a world frame that is rotated

and translated from the true frame.
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Figure 4-29: Histograms of the point coordinate differences between test 1 and test
2 before (blue bins) and after (red bins) reference plane alignment.

187

......... .



30 lnitial Calibration

EReference Plane Aligned

25-

20-

15

10I

5-

-8.4 -0.3 -0.2 -0. - X , [mm 1 0.2 0.3 0.4

(a)

-0.2 -0.1 0 0.1
Sb3'

(b)

Figure 4-30: Histograms of the point coordinate differences between test 1 and test
3 before (blue bins) and after (red bins) reference plane alignment.
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Figure 4-31: Histograms of the point coordinate differences between test 2 and test
3 before (blue bins) and after (red bins) reference plane alignment.

189

-- ------- ------------ . ..... .



4.5 Conclusions

A novel method for performing auto-calibration of a multi-camera setup viewing

through an air-glass-water transition was presented. The method contributes to

multi-camera fluids experiments, where it is desirable to avoid tedious alignment

of calibration grids in multiple locations. Traditional pinhole camera model based

auto-calibration algorithms do not apply when an air-glass-water transition exists

between the cameras and the scene, and therefore the refraction was accounted for

in the present model resulting in improved accuracy. Cameras can be in general

location and orientation with respect to the wall. The accuracy of the method was

demonstrated by applying the technique to real calibration data where explicit knowl-

edge of grid locations was removed. World points were shown to be reconstructed

in a frame that was within a rotation and translation of the true reference frame;

alignment with the true reference frame can be achieved through knowledge of at

least three well-controlled reference points.
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Chapter 5

Application to Multi-Phase

Circular Plunging Jet

5.1 Introduction

Bubbly flows are ubiquitous in a variety of engineering problems ranging from air-sea

interaction to ship surface signature to propellor cavitation to industrial processes.

However, measurement of these flows presents several challenges. Often, interesting

flows are optically dense due to large void fractions, which limits applicability of

several techniques. Full temporal and three-dimensional spatial resolution of the

bubble fields is a desirable outcome of measurement, but further limits the class of

available instruments. Conductivity probes offer a proven method for measuring void

fraction and bubble count rate, but only do so locally and are invasive [1]. Acoustic

measurements using hydrophones can provide overall void fraction and bubble count,

as well as bubble size spectra [1], but cannot provide detailed information about the

location or track of bubbles within a flow. Other authors used planar shadow imaging
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to resolve bubble size and location in two dimensions [2]. To obtain information

about the location and track of bubbles in three-dimensions as well as size, three-

dimensional imaging techniques are often the tool of choice. Pereira et al. [3] applied

defocusing digital particle image velocimetry to measure bubble fields, although the

bubble sizes were relatively small. Tian et al. [4] used digital holography to measure

bubble size and location with a very efficient algorithm allowing for near real-time

output. However, the digital holographic approach is typically limited to lower void

fractions or flows that are not too optically dense.

In this chapter, a technique based on synthetic aperture (SA) imaging that en-

ables instantaneous resolution of three-dimensional bubble fields is discussed. The

fields can be quite dense, since SA imaging allows for reconstruction despite partial

occlusions.

To generate a flow field with variable bubble density and size, we employed the

classic experiment of a circular plunging jet impinging on a free surface. A circular

plunging jet impinging on a free-surface tends to entrain bubbles that are carried

downward within a conical volume under the influence of the jet momentum before

ultimately rising to the surface outside of the conical volume under the influence of

buoyancy [5, 6], as depicted in Figure 5-1 for an experimental case studied herein.

A large body of literature exists on the multi-phase circular plunging jet problem.

Extensive reviews on the subject are offered by Bin [5] and Chanson [6]. By far

the most prominent experimental methods used to investigate the subject have been

single point measurements (e.g., conductivity probes) and two-dimensional imaging;

therefore data sets are inherently limited to two-dimensional, at most. Several studies

described the different regimes of entrainment, which are dependent of the jet being

laminar or turbulent [7, 8, 9, 10, 11, 12]. When the jet is laminar, the free-surface

undergoes a large, cylindrical like deformation creating an air sheath and does not

195



entrain air until a critical Weber number where the jet radius and velocity exceeds

a critical value [7, 8, 9, 10, 11, 12]. The entrainment occurs beneath the free-surface

where the sheath begins to break up into bubbles. For turbulent jets, wave-like

instabilities on the surface of the jet cause cavities to be periodically pinched off at

the surface, and the resulting air pockets are entrained and broken up by the high

speed jet [7, 8, 1, 12]. As described by Chanson & Manasseh [1], the entrainment

caused by turbulent jets can be further broken down into three regimes corresponding

to increasing impact speed (for a given jet height). In regime I, small bubbles are

individually entrained directly from the free-surface. In regime II, larger air cavities

for periodically at random locations around the periphery of the impact point, and

air packets are sheared from the cavities and entrained. Finally, in regime III, an

air cavity forms around the entire periphery of the impact point and packets are

continually broken off and entrained into the flow. Relatively small changes in impact

speed and/or jet height can have a large effect on the regime of air entrainment, and

thus the amount of air entrained.

Figure 5-2 show instantaneous views from a high speed camera zoomed in on the

near surface region for the experiments presented in this chapter. Each case appears

to demonstrate the characteristics of regime II entrainment. For jet height h = 7 mm

(referring to nozzle height above the free-surface), small bubbles are entrained after

pinching off from the periodic air cavities. In the case of jet height h = 21 mm, the air

cavities are larger, and air packets are sheared off and entrained, and subsequently

break up into smaller bubbles. Finally, for jet height h = 43 mm, the periodic air

cavities are larger still and more air packets are sheared off and entrained, increasing

the overall volume of air in the flow.

Another set of studies is concerned with what Chanson terms the developing flow

region [6], which contains the developing air diffusion layer. Below the initial entrain-
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Figure 5-1: Sample instantaneous high-speed image of a bubble-entraining circular
plunging jet.
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(c) h = 43 mm

Figure 5-2: Near-surface view of jet impact point showing the entrainment regime
for the various jet heights.

ment point, air concentration is initially very high at the entrainment point and low

elsewhere, and the air diffuses radially with increasing depth [1, 13, 14]. The data

presented in this chapter all corresponds to depths lower than the developing flow re-

gion. The concentration profiles ultimately merge, and the maximum concentration

is found on the jet centerline, which occurs above the point where the fluid velocity

profiles merge; the region between these two points is called the redistribution flow

region [6]. Finally, the region where both the concentration and velocity profiles have

merged is called the fully-developed flow region. Many previous studies discuss the

fully-developed flow region with particular emphasis on measuring bubble penetra-

tion depth, the size of the conical volume containing downward moving bubbles and

overall characteristics of the bubble distributions [5, 15, 16, 1].

The phenomenon is an excellent candidate for determining the ability of a sys-

tem to resolve multi-phase flow fields. It is simple to set-up, easy to scale by simply

changing the jet diameter or speed, and a quasi-steady state plume can be formed

in just a few seconds. For these reasons we have utilized a turbulent air entrain-

ment setup to perform measurements of a multi-phase flow field using the synthetic
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aperture imaging technique. Furthermore, due to the experimental challenges, sev-

eral aspects of the problem remain unresolved providing an opportunity to shed new

insight based on the data yielded from the SA imaging technique.

This chapter first discusses the experimental setup and parameters of the plunging

jet. Then, the details of the application of the SA imaging method to this problem

are discussed. Next, two algorithms are presented for extracting bubble size and

locations from the refocused SA images, including a novel metric for defining bubble

features. Finally, the time-averaged bubble distributions and 3D bubble locations

resulting from three test cases are presented. The tests are put in context of existing

literature on the subject, and results are compared to several scaling laws showing

excellent agreement. A quantitative measure for defining the penetration depth and

width of the bubble cloud is also presented. Finally, a scaling law for total air

concentration as a function depth below the free-surface is proposed, and is believed

to be the first presentation of such a result.

5.2 Experimental Methods

To generate a steady-state jet, an outlet tube and nozzle was mounted below a tank

with constant head height of water, as shown in Figure 5-3. The tube and nozzle

inner diameter could be set at either 6.35, 9.53 or 12.7 mm. All data presented

in this chapter comes from the 6.35 mm nozzle setup with the nozzle exit at three

different heights above the free-surface. A bilge pump cycled water from the test

tank to the head tank at a flow rate equal to the flow rate through the nozzle. As a

fail-safe to ensure maintenance of a constant head pressure, an overflow outlet and

tank was untilized. The head and overflow tanks, outlet tube and nozzle were all

mounted to a vertically arranged precision traverse to allow the nozzle height (and
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thus just impact velocity) to be varied without changing the overall pressure drop

between the head tank and the nozzle outlet.

Table 5.1 summarizes the experimental parameters for the tests presented in this

chapter; h is the jet height and V and Di are the impact velocity and diameter,

respectively. Although the nozzle diameter and outlet velocity remain constant,

the impact velocity and jet diameter change as a function of jet height due to the

conversion of potential to kinetic energy. Assuming a steady state jet and uniform

velocity profile, the diameter and velocity at impact are estimated from application

of Bernoulli's equation, according to [17]. The dimensionless parameters reported in

Table 5.1 are the Reynolds number, given by,

Re = VDi (5.1)

where v is the kinematic viscosity of water, the Froude number, defined as

v 2
Fr =12 (5.2)

gDi

where g is the gravitational acceleration, the Weber number, given by

We = D(5.3)

where o is the surface tension between water and air (73 mN/m for clean water) and

the Morton number defined as

g4a3
Mo = g p3 (5.4)

aT3

Nine high speed Photron Fastcam cameras (two model SA1, four model SA3,
three model SA5) arranged in a 3 x 3 array imaged the flow (Figure 5-4). The
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Figure 5-3: Experimental setup for bubble-entraining free-surface piercing jets. The
dashed box denotes the hardware that is mounted to the traverse.
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Table 5.1: Physical parameters for the plunging jet experiment.

h (mm) V (m/s) Di (mm) Re Fr We Mo

7 6.29 3.45 2.17 x 104  112 514 2.52 x 10-1
21 6.17 3.59 2.21 x 104  119 544 2.52 x 10 1 1

43 6.01 3.78 2.27 x 104  128 589 2.52 x 10- 1

cameras were mounted on a custom 80/20@ frame which allowed the cameras to

be angled and thus the field of view (FOV) of each camera to be overlapped. All

cameras were equipped with Nikon Nikkor 50 mm lenses set to f/8 in order to keep

the entire volume of interest in focus; this is a pre-requisite for the synthetic aperture

refocusing [18]. Cameras were synced to a master camera and each acquired 1024

pixel x 1024 pixel, 12-bit images (later saved as 8-bit tiff images) at a rate of 1000

frames per second (fps). A white backlight and diffuser provided illumination for

the flow. Backlighting causes the edges of bubbles to appear dark against the white

background [2, 19]. Setting the exposure time to 0.1 ms (10% of the total frame

length) afforded enough light without causing bubbles to streak within the image

(due to over exposure). A sample image from the central camera of the array (pre-

processed for contrast enhancement) is shown in Figure 5-5.

5.3 Synthetic Aperture Imaging

Synthetic aperture imaging is a subset of light field imaging, which captures as many

light rays emanating from a scene as possible [20, 21]. Synthetic aperture refocusing is

a post-capture algorithm that reprojects in-focus images from multiple cameras onto

planes in the imaged scene and recombines the images to create refocused images;

objects that lie on these focal planes appear sharp while objects not on this plane
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Figure 5-4: Arrangement of nine high speed Photron Cameras on a custom
80/20@ frame.
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Figure 5-5: Sample pre-processed image from the central camera of the array from
the 6.25 mm nozzle test at jet height h = 21 mm.
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appear blurred [20, 21]. The application of synthetic aperture refocusing to three-

dimensional particle image velocimetry (3D SAPIV) was described thoroughly in

our previous work(Chapter 2 and [18]), and many of the same principles apply here.

In general, the first step in SA refocusing involves establishing mapping functions

between the camera image planes and world coordinates

u = F (X ; p) (5.5)

where u' is the 2x1 vector of the J'h image point coordinates in the ith camera,

[us, vy]T, Xy is the 3x1 vector of the jth world point coordinates, [Xi, YJ, Zj]T, pi

is a set of parameters defining the model of the ith camera and F defines the form

of the model. Using this model, each image from N cameras is reprojected onto k

focal planes. The reprojected image from the ith camera onto the kth focal plane will

be referred to as IFP2 . In [18], the refocused images were generated by taking the

arithmetic mean

N

IsA= IFPki . (5.6)
i=1

In Tomographic PIV [22], reprojected rays are multiplied together to enhance the

signal-to-noise ratio. However, if any camera has an occluded view of an object (i.e.,

zero or a very small value for a pixel), multiplication brings the entire reprojected

voxel to zero. Instead of using Equation 5.6, the signal-to-noise ratio can be improved

by refocusing the images according to

N

ISAk = J ( IFPi ) (5.7)
i=1
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as suggested by [23], where n is an exponent between 0 and 1. This allows for

enhancement of the signal-to-noise ratio without letting any camera with an occluded

view of an object to prevent that object from being refocused, because a small number

raised to an exponent between 0 and 1 is non zero. Equation 5.7 was applied to all

data in this chapter using n = 1/3, a value found through experimentation.

Many options exist for the specific form of F, and the parameters are normally

found via a calibration procedure. In the present paper, a precision machined calibra-

tion plate traversed through the target volume with Z location increments of 5 mm

provided calibration targets. The average calibration in pixels/mm from the center

camera image of the plate at the Z location farthest from the cameras was used to

convert the reference geometry of the calibration plate from mm to pixels (herein,

4.1 pixels/mm). Second-order polynomial fits served as the mapping functions be-

tween image coordinates and reference coordinates on each Z calibration plane, and

linear interpolation was used to find the polynomial fits on Z planes between each

calibration plane, as has been used in [24, 25, 18]. The spacing between focal planes

was set to 0.2 mm, which was chosen to be large enough such that adjacent planes

were not redundant. For more information on focal plane spacing, see [18].
Refocused images at depths -10, 0 and 10 mm are shown in Figure 5-6 for a

single time step from the 6.25 mm nozzle test at height 21 mm. All images were

preprocessed to enhance contrast prior to application of the refocusing algorithm.

The red circles on each image highlight locations where a certain bubble is in focus

on one depth plane, but blurred from view on other depth planes.
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(a) Z = -10 mm (b) Z = 0 mm (c) Z = 10 mm

Figure 5-6: Synthetic aperture refocused images at (a) Z = -10 mm, (b) Z = 0 mm
and (c) Z = 10 mm. The red circles on each image highlight locations where a certain
bubble is in focus on one depth plane, but blurred from view on other depth planes.
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5.4 Feature Extraction

It is evident that SA refocusing is a powerful technique for isolating the depth location

and in-plane features of bubbles in a dense flow, but the features must be extracted

from the focal stack in order to quantify certain parameters. In this study, we are

interested in measuring the bubble sizes and three-dimensional locations. In this

section, two algorithms for feature extraction are presented: a "minimum image"

algorithm suitable for less optically dense flows, and a "local feature" algorithm for

more dense flows. Each is based on a novel metric for defining bubble features defined

next.

5.4.1 Bubble Features

Prior to detailing the steps of the algorithm, a metric is first developed that distin-

guishes bubbles from noise (note that noise refers to both measurement noise and

out-of-focuse information)'. The metric will be used in generating an attenuation

function in the first extraction algorithm, and will serve as a bubble detector in the

second algorithm.

In observing the raw bubble images formed in backlighting experiments, the dis-

tinguishing feature of bubbles are clearly the dark edges. Therefore, one can define a

"gradient feature", f(g), to help define bubbles, which comes from a set of possible

gradient features: f C { |gx , ggy t , V g }. Similarly, higher order derivatives are

also possible, but we restrict ourselves to the first order in this work. In particular

we consider a gradient feature in the x and y components defined as the absolute

value of the components of the in-plane gradient

'The bubble feature metric was co-developed with Dr. Sai Ravela of MIT EAPS Department.
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f(g (ij,d)) g (ij, d) = Ij~d) (5.8)
Ox

where the in-plane gradient is calculated on the dth depth layer of the focal stack and

f(g, (i, j, d)) is defined similarly. In the present implementation of the algorithm, the

gradients are calculated using centered finite differences, but future implementations

will account for scale changes in bubbles sizes when calculating the gradient A region

of the refocused image containing a bubble will contain large values of f due to the

presence of bubbles edges. Therefore we aim to construct a summary metric that

indicates the likelihood that a region contains a bubble by calculating the expectation

of samples of f taken from the local region. However, to calculate the expectation,

we require a model for the probability distribution of f. For the types of images

in this study, large values of gradient are far less likely, and therefore we propose a

probability distribution based on a gradient feature potential defined as

L (f = ep -(5.9)

where v > 0. The probability distribution of gradient features can then be defined

as

p L = ; 0 < p (f)< 1. (5.10)
f L (f)

For discrete images, L (f) can never be zero and therefore neither can p (f). A

distribution with large probability corresponding to likely bubble regions (i.e., larger

values of f) will be more amenable to the construction of an attenuation function

that suppresses non-bubble features, which is an ultimate goal of the derivation of

this metric. Thus, the distribution defined in Equation 5.10 is used to define a new
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distribution that gives higher probability in regions of stronger gradients, which are

assumed to be associated with in-focus bubbles. The "bubble feature potential" is

defined as

1
- (f < 00(5.11)

and the bubble feature probability distribution is then given as

V)~ (f)Y exp (f /V) 0< <1(f)) ep /v 0 < @ (f) 1 . (5.12)
f7y(f) Efexp(f/v)

Now, we can return to the original goal of determining the likelihood that a

bubble exists in a local region by calculating the expectation under V) using samples

of f taken from the local region. First, the values of f in the local region are

rewritten in vector form as F = [f(i - n, j - ny , d), ---f (i + n, j + ny , d)]T, where

l, x ly = (2nz + 1) x (2ny + 1) is the size of the local region. Then the expectation

of f under @ for the region centered at (i, j) is given by

Ix:.l?

E (ij d) = EV, [F] = Fk (Fk) (5.13)
k=1

Inserting the definition of V) (f) into Equation 5.13 gives

lx (1V exp(F/v) Xy
E (i, j,d) Fk oexp(k Fk exp (F/v) (5.14)

k=1 Ek exp ( Fk/v) ) =

where the constant Ek exp (Fk/v) in the denominator is dropped. Finally, inserting

the gradient feature used herein gives

la-ly

Ex (i, j, d) = Ig| exp 9gk /V) (5.15)
k=1
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where Ey (i, j, d) is defined similarly and v is yet to be defined.

5.4.2 Minimum Image Bubble Feature Extraction Algorithm

The minimum images algorithm is applied to the data from jet heights h = 7 mm

and 21 mm. The steps of the proposed algorithm for feature extraction are listed

below, and each is explained in further detail thereafter:

1. Apply attenuation function to suppress noise and make refocused images good

candidates for feature extraction.

2. Generate minimum images over depth windows and store corresponding depth

maps.

3. Generate edge map of minimum images and label possible features.

4. Apply either Hough transform (for "large" bubbles) or grayscale threshold (for

"small" bubbles).

5. Validate resulting bubbles.

The first step in the algorithm involves making the focal stack images better

candidates for feature extraction; namely, by reducing the amount of out of focus

noise and leaving the sharply refocused bubbles. Here, we aim to construct a noise

attenuation function that suppresses noise and rewards regions with large gradients

based on the bubble feature metric defined above. The metric gives a single value for

each depth layer and is therefore calculated on a windowed version of the refocused

volume to emphasize local features. For the data presented here, the window size

is l, x ly x nz voxels, where l and l are length scales chosen to be 7 voxels in the
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present study and nz is the depth dimension of the entire refocused volume in voxel

units.

First, the windowed refocused volume (I, assumed to be grayscale) is normalized

I (i, j, k) = Io (i, j, k) - (5.16)

where o- is the standard deviation of intensity values in the windowed refocused

volume. For each depth layer of the windowed refocused volume, Equation 5.15 is

applied to the x and y components with v = 2/o-s, where U is the variance of the

normalized windowed volume, which is equal to one. A more appropriate definition

is to find v from a fit to sample data; this was not done herein, but will be in future

applications. Clearly, large values of gradient magnitude result in large values of

Ex and E.. The final metric is calculated as the maximum of the metric applied to

x-direction data and y-direction data, E (d) = max (Ex (d) , Ey (d)), for each depth.

The metric is calculated in windows covering the entire volume; no window overlap is

used in the present study. Because the metric is a summation of functions of the local

gradient, it rewards regions with large gradients; for example, the edges of bubbles.

Therefore, the length scale, 1, should be chosen such that portions of bubbles are

within the window rather than a single edge pixel, for example. However, making

the length scale too large will retain unwanted information, and thus the choice of I

is somewhat experimental.

Figure 5-7 shows E as a function of depth for one window of the bubble volume.

Slices from the original refocused volume at three depths are shown on the graph.

The first image corresponds to the largest peak, and as can be seen a bubble is

contained within the window. The second image contains a smaller bubble that has

less well defined edges. This bubble does cause a spike in E, but the peak is not as
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Figure 5-7: E as a function of depth for one window of the bubble volume. Slices
corresponding to peaks are shown.

large because the gradients are not as strong. Finally, the third windowed image is

more representative of the background noise, and does not increase E much over the

background level.

The question still remains: what form should the attenuation function take?

Here, we use the discrete cumulative distribution function (cdf) of E, which naturally

assigns low levels a value near zero and high levels a value near one. The cdf values

corresponding to each calculated E are assembled into a matrix; the nodes of the

matrix are at the in-plane centers of the windows at each depth layer. Finally, the

cdf matrix is interpolated onto a matrix of equal size to the refocused volume and

the interpolated matrix is multiplied point-by-point by the refocused volume.

The second step of the algorithm involves isolating the focus plane of the bub-

bles. Rather than applying a focus metric to every refocused image, a "minimum"

image is calculated over a depth window, similar to other previous works [4]. Many
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Figure 5-8: Discrete cumulative distribution function of E with the depths from
Figure 5-7 marked.

metrics exist for defining the minimum image (e.g., gradients, entropy), but because

the bubbles edges are defined by local minima in intensity, the intensity value itself

serves as the metric in this study. At each pixel, the minimum intensity value is

found over the depth of a stack of refocused images and the depth corresponding to

each minima is recorded into a depth map. Other authors (e.g. [4]) have used this

approach over the entire focal stack for lower density flows, but the larger bubble

density in the present study would lead to many overlapping bubbles in the minimum

image. Therefore, the focal stack is windowed to yield stacks of smaller depth, and a

minimum image and depth map is generated for each window. Herein, a window size

of 50 voxels yielded minimum images with relatively few instances of bubble overlap,

but also was large enough to contain the depth of focus of even large bubbles. Sample

portions of minimum images are shown in Figure 5-9; Figure 5-9(a) is a minimum

image generated from the original refocused volume and Figure 5-9(b) is generated
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from focal planes processed by the attenuation procedure.

Labeling potential features on the minimum images constitutes the third step

of the algorithm. A Sobel edge detector operates on the minimum images to de-

fine edges, which are subsequently labeled using an algorithm based on connectivity

of neighboring pixels. This results in segmented portions of the minimum image

corresponding to different bubbles, although bubbles very near to each other may

get grouped into a single feature. Any feature described by three or less pixels is

removed; this removes noise, but also some potential small bubbles. In the future,

more robust noise rejection will be implemented.

In the fourth step of the algorithm, geometric properties of the bubbles are

extracted from the labeled features. As discussed in [26] for backlighting of bubbles

with an incoherent source, if bubbles are large enough, the edges will appear dark

and a bright spot appears in the middle, but for smaller bubbles the middle bright

spot is less evident and only dark edge pixels appear. This effect carries through to

the minimum images generated from SA refocusing. Figure 5-10(a) shows a "large"

bubble from a minimum image with well defined edge pixels and a bright center,

while Figure 5-10(b) shows a "small" bubble which consists only of dark edge pixels.

To extract size and location from large bubbles, a Hough transform or similar edge

pixel voting scheme offers a good solution. For the lower jet heights the bubbles are

primarily spherical and a circle Hough transform detection scheme similar to that

described by [27] is applied. To determine ellipse parameters with higher accuracy,

the vote weighted average of the parameter value with the highest votes and the

parameter values on either side is taken for each parameter. This approach is not

suitable for small bubbles that lack sufficient edge definition. For each small bubble, a

local region is thresholded using the mean grayscale value (similar to [26]), to generate

a binary image with zeros defining the bubble and ones defining the background. The
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Figure 5-9: Minimum image using the original refocused volume (a), and minimum
image after application of the attenuation function (b).
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Figure 5-10: Example of a large bubble with well defined edge (a), and small bubble
with less edge definition (b).

centroid and equivalent diameter formed by the dark pixels are calculated from the

binary image. To distinguish between large and small bubbles in this study, the

equivalent diameter of each feature from the initial labeling is calculated and any

feature with diameter less than four pixels is considered to be a small bubble. As a

fifth step to the algorithm, any detected bubble entirely within a larger bubble is

considered to be noise and is removed and overlapping bubbles are merged.

The contours of bubbles detected on the same portion of the minimum image as

shown in Figure 5-9(b) are drawn in blue in Figure 5-11. Clearly, there is a high

rate of success in bubble detection. In more dense and noisy areas of the minimum

images, the instances of noise detected as bubbles and missed detection of overlapping

bubbles increases, but overall the results are very good. Figure 5-12 shows results

from various portions of different minimum images, again indicating the overall high

success rate of the algorithm.

For each detected bubble, values from the depth map inside the bubble contour

and within one pixel distance of the contour are used to define the depth location
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Figure 5-11: Result of the bubble feature extraction algorithm. Bubble contours are
overplotted on the same portion of the minimum image shown in Figure 5-9(b).
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of the bubble. The depth is calculated as the weighted mean of contributing pixels

from the depth map. Conservatively, the resolution of the depth location is ± 0.1

mm (half the focal plane spacing), but the resolution is likely even better due to the

weighted average.

5.4.3 Local Bubble Feature Extraction Algorithm

For cases with more and/or larger bubbles (as for jet height h = 43 mm), the min-

imum image algorithm begins to break down as the instances of bubble overlap

increases. A second algorithm is described here, with the keys steps given as:

1. Apply two passes of the bubble feature metric & attenuation algorithm de-

scribed in the previous sections.

2. Find local peaks in the bubble feature metric (E) and group neighboring peaks.

3. Apply steps 3-4 of the minimum image algorithm to a local region of the refo-

cused images corresponding to each group of E peaks.

4. Validate resulting bubbles.

This algorithm is built around the fact that the bubble feature metric itself is

an excellent bubble detector, as indicated by the signal-to-noise ratio for bubbles

shown in Figure 5-7. In the first step of the algorithm, the attenuation function

based on the bubble feature metric is applied to the refocused images, and then

again to the attenuated images to further reduce noise. In this implementation of

the algorithm, the windows for calculating E are overlapped by 50%. The second

step involves identifying local peaks in the bubble feature metric that are above a

noise threshold determined from investigation of the data. Peaks are then grouped

220



together by finding connected regions in which each peak is within one half window

in X and Y and ±10 voxels in Z of another peak; grouped peaks define potential

local features.

In the third step, steps 3-4 of the minimum image algorithm are applied to local

regions of the refocused images defined by the grouped peaks. The refocused image

from the average depth of the grouped peaks is used. A grouping may contain mul-

tiple bubbles, and therefore the Hough transform from the previous section is first

applied to each labeled local region to split the labeled features if multiple bubbles

exist (indicated by multiple high values in the Hough accumulator). The bubbles for

the higher jet height tend to take on oblate spheroidal shapes with elliptical cross

sections, and thus the circle Hough detector becomes unsuitable for defining the bub-

ble parameters. Therefore, an elliptical variation of the Hough transform described

by [28] is implemented. Finally, validation of the resulting bubbles is carried out in

the fourth step. Any bubble with no E peak within the contour defined in the X-Y

plane, or with ±5 voxels of the bubble depth in Z is removed. Also, bubbles with a

minor to major axis ratio below a certain threshold were removed, as these typically

constituted detection of partial edges of bubbles. Finally, bubbles entirely within

other bubbles are removed, and partially overlapping bubbles are either merged or

the smaller bubble is removed if the dimensions of the larger bubbles are more that

1.5 times bigger (typically, the smaller bubble is noise or a partial edge in this case).

Figure 5-13 shows bubble contours plotted on their associated attenuated refo-

cused images for five adjacent depths. The results indicate that the algorithm is

successful in isolating the plane of sharpest focus for the bubbles and estimating ac-

curate contours. In some cases, the contours are influenced by part or all of another

bubbles in the local region, which influences the estimation of the contour, but over-

all the results are very promising. In future work, the algorithm will be made more
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robust to nearly overlapping bubbles. Figure 5-14 shows bubble contours plotted

over various portions of minimum images calculated with a 50 voxel depth window.

To reiterate, the minimum images are not used in this algorithm, they are simply

used here as a tool for qualitatively evaluating the results. Overall, the algorithm

performs very well, even in the higher density areas, but is subject to noise in very

dense regions with nearly overlapping bubbles, as just discussed. The algorithm is

also occasionally prone to "locking on" to bubbles that have very strong edges on one

part of the bubble, but not all the way around the bubble perimeter. In some cases

where it appears as though two different contours are describing the same bubble,

the results are misleading. For example, in the lower right image of Figure 5-14,

the two contours pointed out by the blue arrows appear to describe a single bubble,

but review of the individual refocused planes clearly shows two distinct bubbles at

different depths, with accurate contours. This underscores the need to use the local

bubble feature extraction algorithm as opposed to the minimum image algorithm for

more optically dense flows.

5.5 Results and Discussion

The ensuing sub-sections discuss calculation of global and local bubble distributions,

bubble penetration depth and local features of the air concentration for the cases

study in the present work. Comparisons are drawn to existing results and scaling

laws where available, and a new scaling law is proposed for concentration as a function

of depth. To facilitate explanation of the results, some definitions are first made. The

total concentration at a given depth is defined as
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Figure 5-13: Results of the local bubble feature extraction algorithm on isolated
refocused images.
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Cy (Y) = j j C(Y, R)dOdR = 2F C(Y, R)dR (5.17)
0 0 0O

where it is assumed that the bubble distributions are axisymmetric (C = C(Y, R)).

The maximum value of total axial concentration is defined as Cy = max (Cy(Y))

and occurs at depth Y. The maximum concentration at a given depth, for all values

of R is defined as Cma,(Y) = max (C (R) )

5.5.1 Global Bubble Distributions

The SA refocusing and bubble detection algorithms were applied to data from each

of the jet heights. For jet heights h = 7 mm and h = 21 mm, the minimum image

version of the extraction algorithm applied to 50 time steps yielded 3D bubble size

distributions. Alternatively, the local peak detection algorithm was applied to 49

time steps of the h = 43 mm jet height data, due to the increased amount of occlusion.

Figures 5-15 and 5-16 displays the time-averaged distribution of the calculated

bubble radii for h = 7 mm and h = 21 mm and ellipse dimensions for h = 43 mm,

respectively, with error bars representing the 95% confidence intervals. The range

of radii is 0.138 mm to 2.38 mm for the h = 7 mm and 0.244 mm to 2.44 mm for

h = 21 mm data. The low end of the range for h = 7 mm data corresponds to just

over half of the size of a pixel back-projected into physical space and thus represents

the low end limit on resolution for this implementation of the algorithm. For the

h = 43 mm case, the range of dimensions (major axis a or minor axis b) is 0.1946

mm to 4.32 mm. The distributions reflect the expectation that more small bubbles

remain in the volume than large bubbles due to buoyancy. However, as discussed in

Section 5.5.2, the distribution of "large" and "small" bubble is more subtle than one

would expect. It should be pointed out that the global bubble distributions reported
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Figure 5-15: Distribution of the calculated radii of the bubbles with 95% confidence
intervals.

in prior work were measured using either a global acoustic measurement technique

or the integrated results from single point sensors [1]. The bubble distributions

reported herein represent the first instantaneous distributions in which the size and

3D location of each bubble is known, to the knowledge of the author. The total

concentration in the downward flowing bubble cone, Ct, are reported for each case

in Table 5.2. While the total concentration is not that large (0.34% for the highest

jet height), the concentration reaches nearly 8% locally in some regions of the flow

for h = 43 mm.

Figure 5-17 shows the bubble diameter distributions on a single plot, as well as a

zoomed view of the distributions (for elliptical bubbles, diameters are approximated

as d = 2a). Figure 5-17(c) - reprinted from Chanson & Manasseh [1] - is a bubble

distribution measured using an acoustic sensor with experimental parameters corre-

sponding to h = 5 mm, di = 25 mm and V = 3.9 m/s. In general, the shape of
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Table 5.2: Characteristics of the entrained bubble region for various jet heights.

h (mm) Ct,0 (%) Y (mm) Deq (mm) a

0.02
0.23
0.34

211.5
160
120

87
61.6
48.1

11.6
10.9
11.3

the distributions are in very good qualitative agreement, though the data from the

present study contain much larger counts of small bubbles (d <~~ 1.5 mm).

The plots of three-dimensional spatial location and size of the bubbles in the

flow field shown in Figures 5-18 - 5-20 yield further insight into the 3D distribution

of bubbles. Marker sizes are scaled by the bubble diameter (or by 2a for h = 43

mm data). Figure 5-18 corresponds to jet height h = 7 mm; clearly the bubble

entrainment rate is low and the entrained bubbles are small. More interesting is the

higher jet height case of h = 21 mm shown in Figure 5-19. The bubble distribution
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distributions (b) and results from Chanson & Manasseh [1] corresponding to h = 5
mm, di = 25 mm and V = 3.9 m/s.
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reflects the well-known conical volume [15, 16], which contains the downward moving

bubbles and relatively stationary bubble cloud. As can be seen, the large bubbles

present in the flow reside close to the axis of the nozzle where high momentum fluid

entrains the bubbles. Smaller bubbles are more uniformly distributed throughout

the flow and penetrate deeper. Ultimately, buoyancy overcomes drag and bubbles

(large and small) rise toward the surface outside of the conical volume. Some bubbles

rise all the way to the surface, while some are re-entrained in the high-momentum

region of the jet. Figure 5-20 shows a similar picture, but the bubble distribution

now contains significantly more large bubbles. Also, the bubbles do not appear to

penetrate as deep as for the h = 21 mm jet height, which is potentially surprising

given the increased jet momentum. However, this effect is well-documented in the

literature [15, 16] and is discussed further in Section 5.5.2

5.5.2 Penetration Depth and Local Bubble Distributions

The penetration depth of bubbles entrained by a circular plunging jet has been dis-

cussed by several authors, notably Clanet & Lasheras [15] and Suciu & Smigelschi [16].

As described by Clanet & Lasheras, the entrained bubbles are transported along the

axis of the jet as well as radially and larger bubbles appear deeper in the flow due to

coalescence; this behavior is reflected in Figures 5-19 - 5-20. Ultimately, the bubbles

become so large that buoyancy overcomes drag, and the bubbles rise to the surface.

Visually, this is marked as a sharp transition beyond which large bubbles are not

observed in the flow. However, smaller bubbles continue to descend beyond this

transition. Clanet & Lasheras define the penetration depth as being one half of the

maximum bubble cloud width above this transition point. Clearly, the definition

of penetration depth is somewhat qualitative. The quantitative measures presented
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Figure 5-18: From left to right: raw image from center camera of the array re-
projected onto the Z = 0 mm focal plane, X - Y view of bubble size and spatial
distribution, Z - Y view of bubble size and spatial distribution for jet height h = 7
mm, and color bar corresponding to the two bubble distribution plots.
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Figure 5-19: From left to right: raw image from center camera of the array re-
projected onto the Z = 0 mm focal plane, X - Y view of bubble size and spatial
distribution, Z - Y view of bubble size and spatial distribution for jet height h = 21
mm, and color bar corresponding to the two bubble distribution plots.

231



40 20 0 -20 -40
X, [mm]

100-

120-

140-

160-

180 -

200
40 20 0 -20 -40

X, [mm]

zu

40

60

80 -

100 -

120-

140-

160--

180

200 20 0 -20
Z, rmml

Figure 5-20: From left to right: raw image from center camera of the array re-
projected onto the Z = 0 mm focal plane, X - Y view of bubble size and spatial
distribution, Z - Y view of bubble size and spatial distribution for jet height h = 43
mm, and color bar corresponding to the two bubble distribution plots.
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herein provide a more concrete definition of the penetration depth. In order to

more quantitatively define the penetration depth, each volume is discretized into

bins along the axial (Y) and radial dimensions. Bins are spaced by AY = 20 mm

and AR = 8 mm in the axial and radial dimensions, respectively. This facilitates

calculation of the concentration locally; a sharp drop in concentration should occur

at the transition point discussed in [15]. Figure 5-21(a) shows the concentration as a

function of depth normalized by the impact diameter for jet height h = 43 mm data;

C, is the maximum concentration across all depths. The plot reveals a definitive

drop in concentration at Y/Di = 21.6. The penetration depth is calculated as the

average of the depth corresponding to the sharp drop in concentration and the depth

of the previous bin (one bin closer to the free-surface); this depth is marked by the

dashed red line. The reason for calculating the depth as the average depth of these

two bins is due to the fact that the bin corresponding to the dramatic decrease in

concentration includes none of the prominent cloud of bubbles. Because we want the

penetration depth to correspond to the bottom of the bubble cloud, the average of

the two depths is taken. For the jet height h = 7 mm data, no drop in concentration

is observed indicating that the penetration depth occurs outside of the field of view

of the refocused volume. For this case, the penetration depth is estimated from raw

image sequences, but for the other two cases the drop in concentration is observed

and the penetration depth calculated accordingly.

Suciu & Smigelschi [16] investigated the penetration depth for a range of jet

heights and observed the behavior seen in the present work in which increasing jet

height leads to a reduction in penetration depth. Ultimately, the penetration depth

reaches a limiting value, called Ze in [16], which is constant even for increasing jet

height. Figure 5-22 shows a reprint of Figure 3 from Suciu & Smigelschi of dimen-

sionless penetration depth as a function of dimensionless jet height with data from
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Figure 5-21: (a) Concentration as a function of depth for the jet height h = 43 mm
data. Concentration is calculated in bins centered around X - Z planar cuts through
the jet. (b) Concentration as a function of radial displacement from jet centerline
for the jet height h = 43 mm data at Y/Di = 18.3. Error bars show range of one
standard deviation from the mean.
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the present study plotted as well. For data from the present work, the red markers

denote normalization of the jet height by impact diameter and the blue markers de-

note normalization by nozzle diameter (as was done in [16]). The penetration depth

calculated for jet height h = 43 mm is considered the limiting penetration depth for

the present study, although it is possible that the true value of Ze is actually some-

what smaller; h = 43 mm was the highest jet height studied. Despite differences in

the nozzle diameter, the data show excellent agreement with work of [16], indicating

a consistent scaling of dimensionless penetration depth in the present work.

Calculation of the penetration depth enables measurement of the width of the

bubble cloud (defined as equivalent diameter, Deq in [15]) and subsequent calculation

of the jet spreading angle. To define the equivalent diameter here, the concentration is

plotted as a function of radial displacement from jet centerline for the Y bin above the

penetration depth. Again, this is a more quantitative measure than proposed in prior

literature [15] and the author recommends this quantitative definition of the width of

the bubble cloud. Figure 5-21(b) shows this plot for the jet height h = 43 mm data at

Y/Di = 18.3. The equivalent radius is defined as the point at which the concentration

decreases to 5% of the maximum at the given depth; linear interpolation is used to

find the corresponding radius, which is marked by the red dashed line in Figure 5-

21(b). Assuming the jet radius to be zero at the free-surface, the jet angle can be

calculated from the equivalent diameter and the corresponding depth. Table 5.2

summarizes the penetration depth (called Y henceforth), equivalent diameter of the

bubble cloud and angle of jet spreading (a) for each jet height. Previous studies have

reported jet angles in the biphasic region in the range of 12-13' [16, 15] . Although

close to this value and the values reported in [15], the angles are slightly less for

the cases presented herein. The most likely explanation for this is the variability in

definitions of the equivalent diameter across measurement techniques.
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Figure 5-22: Dimensionless penetration depth as a function of dimensionless jet
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are data points added from the present work normalized by impact diameter and
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While the bulk features of the flow have been discussed and are in excellent

agreement with existing scaling laws, the nature of the transition region from large

to small bubbles has not been discussed. This is the main thesis of the paper by

Clanet & Lasheras [151. Bubbles rise to the surface when buoyancy becomes larger

than the drag force on the bubble. The equilibrium point occurs at the terminal

velocity, UT. As discussed in [15], if the terminal velocity increased monotonically

with bubble size, then bubbles of decreasing size would appear at monotonically

decreasing depths in the flow. However, at the transition point, the bubble size

changes dramatically. This is due to the non-monotonic dependence of terminal

velocity on bubble size [15], which was discussed for single bubbles by Maxworthy et

al. [29]. Figure 5-23 shows a reprint of Figure 4 from Maxworthy et al. [29], which

shows the terminal velocity of single bubbles as a function of bubble diameter at

various Morton numbers. The terminal velocity first increases monotonically with

diameter, then suddenly decreases to a minimum. The dashed red and blue lines

are generated from data from the h = 21 mm and h = 43 mm cases, respectively.

First, the maximum diameter the terminal velocity corresponding to the maximum

diameter is found for each case. For jet height h = 43 mm, the maximum value of 2a

is greater than the diameter corresponding to the minimum in terminal velocity, and

thus the minimum UT is used. The point at which the rising portion of the curve

(Mo = 2.72 x 101) reaches the terminal velocity is then found; this point gives the

cutoff for the largest bubbles expected to remain in the flow. For the h = 21 mm

case, the distribution should contain bubbles with diameter up to 4.88 mm before

the transition point, then only diameters below 1.05 mm below the transition point.

Similarly, for h = 43 mm case, the largest bubbles pre-transition should correspond

to 2a = 8.64 mm, while after transition the sizes should also be limited to 2a < 1.05

mm. Figures 5-24(a) & 5-25(a) show the bubble distributions in various axial bins
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for h = 21 mm and h = 43 mm, respectively. The red line marks the penetration

depth. Clearly, below the penetration depth, a significant drop of in the number

of large bubbles exists. Figures 5-25(b) & 5-25(b) show the bubble distributions

in the two bins below the penetration depth, with the red dashed line marking the

expected transition size cutoff value. In each case, the transition size cutoff is located

within the size bin containing the most bubbles. Some bubbles of larger size exist

below the transition, but this is partially due to the bin below the penetration depth

containing part of the bubble cloud above the transition region. The data indicate

a clear and sharp decrease in bubble size consistent with the physical arguments of

Clanet & Lasheras [15] and Maxworthy et al. [29].

The local distributions also provides evidence for a region of coalescence above

the penetration depth. The distributions show an increase in the instances of larger

bubbles (for jet heights h = 21 mm and h = 43 mm), which is visually manifested as

the bubble cloud. In this region, bubbles tend to have an increased residence time

due to a temporary balance of buoyancy and drag, and thus the chances for bubble

coalescence increase. This coalescence region was observed in [15].

5.5.3 Air Concentration

To this point, no discussion of the spatial dependence of concentration has been made.

It is desirable to understand both the axial and radial dependence of concentration

for various initial conditions for many engineering problems. Although the three

cases of jet height presented in this work represent a limited data set, the bubble

distributions span a wide range from deeply penetrating, sparsely distributed bubbles

(h = 7 mm) to more densely distributed bubbles with penetration depth approaching

the limiting depth (h = 43 mm). It should be noted that prior to the making the
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calculations presented in this sub-section, it was observed that the jet had a slight

angle (1.5') with respect to the vertical. Therefore, all of the data were rotated

about an axis parallel to Z and passing through the impact point to align the Y-axis

of the data with the jet axis.

Figure 5-26(a) displays the total air concentration, Cy, in each axial bin for the

three jet heights. Only bubbles within the conical volume defined by the calculated

cone angle (plus a 10% offset in radius at each depth) are considered, as these are

expected to be the downward moving or stationary bubbles. The data appear similar

only insofar as the concentration rises from near zero to a maximum value, then

decreases rapidly below the penetration depth. We now propose the following scaling:

the concentration is normalized by the maximum total axial concentration, CYm,
and the depth corresponding to the maximum concentration (Ym) is subtracted from

Y and the resulting values are normalized by the penetration depth (i.e., Y* =

(Y - Ym)/Yp). Figure 5-26(b) shows a scaled version of the data from the three

cases, demonstrating the collapse of the data onto a single curve using the proposed

scaling. Although more cases need to be studied to verify the scaling law across

varying nozzle diameters and a wider range of velocities, the results are potentially

impactful. Given the measurement of maximum concentration and corresponding

depth, coupled with a measurement of the penetration depth, the entire total axial

concentration profile, Cy(Y) can be predicted for any jet height, at least for the

regime II entrainments types. Each of these measurements can be made with a single

point conductivity probe, which is amenable to measurement in situ in engineering

applications. Figure 5-27 shows the collapsed data fit with a Gaussian function plus

an offset defined as
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C -Y*2
Y= A exp - + (I - A) (5.18)

Cy, (20.2)

where the parameters of the best fit are found to be A = 0.903 and o = 0.1894; the

function captures the data with high accuracy.

It is well-established that in the fully developed flow region, the concentration

takes on a Gaussian dependence as a function of radial distance from the jet axis [30,

6, 5]. In fact, in a re-analysis of data from van de Donk [30], Bin [5] showed that all

profiles collapse to a single curve given by

C(Y R) - -0.69315 R 2  (5.19)
C(Y,0) R 5  /

where C(Y, 0) is the concentration on the jet axis and Ro.5 is the radial coordinate

corresponding to the point at which C(Y, R) decreases to 50% of C(Y, 0). In the fully

developed flow region, the maximum concentration Cmax(Y) should be the same as

C(Y, 0). The raw concentration profiles for the present data are shown in Figure 5-

28, and for some depths that the maximum value of concentration occurs not on the

jet axis, but at one radial bin removed. This typically occurs at smaller Y locations,

which indicates that the air diffusion layer could still be developing at these depths.

More evidence is required to confirm this. Another possible explanation is that the

shift in the maximum away from the jet centerline is caused by the slight angle of

the jet, which itself would cause the concentration profile to be non-axisymmetric

and/or may be causing the location of the jet centerline to be incorrectly calculated.

Nonetheless, an alteration to equation 5.19 is proposed where C(Y, 0) is replaced

with Cmax(Y) and Ro.5 becomes the radial coordinate corresponding to the point at
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Figure 5-26: Total axial concentration as a function of depth for each jet height
(a) and scaled total axial concentration as a function of scaled depth showing the
collapse of all three cases onto a single curve for each jet height (b).
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which C(Y, R) decreases to 50% of Cma2) in an attempt to collapse the concentration

profiles to a single curve. The results are shown in Figure 5-29; the data collapse very

well onto the theoretical curve for the jet height of h = 21 mm, and reasonably well

for the other two cases, although the slope predicted by the theory underestimates

that shown by the data. In most cases, the data points that deviate far from the curve

for R/Ro.5 > 2 are caused by a small number being divided by a small number, and

thus are likely due to measurement noise. Data points near R/Ro.5 = 0 that deviate

far from the curve correspond to depths where the maximum concentration does

not occur on the centerline. It should also be pointed out that other authors [30,

6] presented observations that the maximum concentration decreases linearly as a

function of depth, but the maximum value of concentration measured here increases

at first with depth to a maximum, then subsequently decreases. More investigation

is required to compare this with existing data in the appropriate regimes, but the

present data clearly show a region where the maximum concentration increases with

depth.

Combining the scaling proposed for the total concentration as a function of depth

with this well-established scaling of concentration with radial distance provides a

potentially powerful predictive tool, if the dependence of either Cmax or Ro.5 on

Y is known. First, consider writing the total concentration in terms of the radial

concentration profiles as the integral

Cy(Y) = 27r - - C(Y, R) dR
2 _C(

Cy (Y) = 7r '0Cmax (Y) exp 063R 2 dR (5.20)
-oo0 0.5
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making a transformation of variables by letting v = R/b where b = Ro. 5/v'0.69315

Equation 5.20 can be rewritten as

Cy(Y) = 1sb Cmax(Y) f exp (--v2) dv (5.21)

where the integral is now the gaussian integral and thus Equation 5.21 becomes

Cy(Y) = r3/ 2b Cmax (Y)= Cmax(Y)Ro.5 (Y) 06315 (5.22)
v/0-. 6 9315

This expresses the total concentration at a given depth in terms of the maximum

concentration and radial coordinate corresponding to 0.5Cmax(Y) at that depth. The

next task involves functionally described either Cmax (Y) or Ro.5 (Y).

Figure 5-30(a) shows the maximum concentration as a function of depth for each

jet height. In Figure 5-30(b), the depth is scaled as before and the scaled maximum

concentration is defined as

Cmax (Y) - min(Cmax(Y))
max(Cmax (Y)) - min(Cmax (Y)) (5.23)

The scaled data show a consistent trend of relatively constant maximum concentra-

tion, followed by linear increase to depth Ym, then linear decrease to the penetration

depth. After the penetration depth, the maximum concentration appears to be rel-

atively constant (or at least slowly decreasing), but more data is needed to confirm

this. Note that for jet height h = 7 mm, no data exists beyond Yin, which alters

the scaling as the minimum concentration usually occurs beyond this depth. Con-

sidering only jet height h = 21 mm and h = 43 mm, it appears as though the data

again collapse to a single curve as shown in Figure 5-30(c). Linear fits are shown

for the increasing and decreasing regions of C*. The end of the sharply decreasing
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region coincides with the penetration depth, but the physical reason for location of

the start the sharply increasing is not yet clear. Each linear fit is forced to have an

intercept of 1 and the slopes of the increasing and decreasing regions are 2.21 and

-2.87, respectively. Chanson [6] proposed that Cmax(Y) could be described by a line

with negative slope, but the data presented herein show a region of linear increase,

and the decreasing region is clearly not defined by a single line.

The above analysis indicates that the entire concentration distribution for any jet

height can be determined given five point measurements: min (Cmax), max (Cmax),

Ym, R0 .5 at Ym and Y,. The value of Cmax and corresponding depth, Ym could

be measured using a conductivity probe, for example, and similar for min (Cmax).

With Cmax determined, the radial location where C = 0 . 5Cax can be found, and

corresponds to R 0 .5 . Finally, Y, could be determined by finding the depth location

corresponding to the sharp drop in concentration. Inserting Ro.5(Ym) and Cmax(Ym)

into Equation 5.22 yields Cy(Ym), which is by definition Cym. Therefore, the total

concentration, Cy is fully described using Equation 5.18, Cmax (Y) is found from the

curve in Figure 5-30(c) and Equation 5.22 sets R 0 .5 (Y); Equation 5.19 can then be

used to find the radial concentration profile at any depth.

5.6 Conclusions

The pervasiveness of bubbly flows in engineering applications demands continued ad-

vancement in measurement methods to fully understand physical processes, particu-

larly in dense bubble flows. A method for reconstructing a dense three-dimensional

bubble field was presented in this chapter. The bubble field was induced by a tur-

bulent plunging jet impinging on a free-surface. Synthetic aperture refocusing of

images captured by multiple cameras allowed for generation of a focal stack. Bub-
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bles appear in sharp focus on the slice of the stack corresponding to the true depth of

the bubble, and appear blurred on other slices. Two extraction algorithms enabled

measurement of bubble size and location throughout the volume. The resulting size

distributions and instantaneous location gives insight into the spatial distribution of

various size bubbles in the flow. The data were shown to be in excellent agreement

with existing work, and a new scaling law for the total concentration as a function

of depth was proposed. Ultimately, time-resolved bubble tracks can be generated

from the data sets. The technique has ramifications for a variety of multiphase flow

problems which demand instrumentation capable of measuring in dense fields.
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Chapter 6

Summary and Conclusions

This thesis presented the development and implementation of a novel three-dimensional

measurement system for resolving fluid flows based on synthetic aperture (SA) imag-

ing. Synthetic aperture imaging using camera arrays allows for reconstruction of a

3D scene post-capture, and the scene may have partial occlusions in any view [1]. By

extending these attributes to experimental fluid mechanics, this thesis exploited the

capabilities to develop a 3DPIV method as well as a technique for resolving optically

dense bubbly flows. The key steps involved in an SA imaging fluid flow measure-

ment project are summarized in Figure 6-1. Synchronized image capture using low

and high speed camera arrays was described in Chapter 3. Chapter 4 developed

the auto-calibration method and referred to calibration point correspondence algo-

rithms. Formation of SA refocused images and subsequent feature extraction and

post-processing for 3DPIV and multiphase flows was presented in Chapters 2 and 5,

respectively.

The main contributions of the thesis include:

* Development of a three-dimensional particle image velocimetry method (3D
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SAPIV [2]) capable of resolving flows with larger seeding density than previ-

ously reported in the literature.

" Design and implementation of a low-cost camera array consisting of machine

vision cameras for use in SA imaging fluid flow studies.

" Generation of a multi-camera auto-calibration technique capable of calibrating

cameras when an air-glass-water transition exists between the cameras and the

scene and the cameras are in general location and orientation.

" Creation of a novel bubble identification metric for SA refocused images.

" Development of a bubble property extraction algorithm based on the bubble

feature metric.

" Generation of a quantitative measure for defining bubble penetration depth

and bubble cloud width in plunging jet flows when only qualitative definitions

existed previously.

" Proposal of a scaling law for total air concentration as a function of depth for

plunging jet flows, regardless of jet height.

" Proposal of a scaling law for maximum air concentration as a function of depth

for plunging jet flows, regardless of jet height.

" Enabled description of entire concentration distribution for any jet height based

on scaling laws using only five point measurements.

By way of further demonstrating capabilities of the SA imaging measurement

method for fluid flow, and to motivate future work, preliminary results from a liquid
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jet in cross-flow experiment are presented'. This problem is important in combustion

applications [3]. Figure 6-2 shows the experimental setup for the liquid jet in cross-

flow experiment. The low-speed camera array is used to image the experiment with a

white flash providing illumination. Because only a thin acrylic wall lies in the optical

path (no water), the Svoboda [4, 5] auto-calibration toolbox accurately calibrates

the cameras using a checkerboard grid placed at random locations and one reference

location. Figure 6-3(a) shows a raw image from one camera of grid at the reference

plane and Figure 6-3(b) displays a portion of an SA refocused image at depth of the

reference plane. The sharpness of the SA refocused image qualitatively demonstrates

the accuracy of the auto-calibration technique.

Figure 6-4 shows a raw image from one camera in the array of the liquid jet in

cross-flow. The image depicts the complex structure of the jet breakup with a solid

liquid core breaking up into ligaments and finally into droplets. A large amount of

optical occlusion is present in the flow. Figure 6-5 shows the results of SA refocusing

of the images. A range of focal depths is shown; Z = 0 mm coincides with the nozzle

axis and Z decreases away from the cameras. The refocused images reveal some

of the complex structure of the jet not seen in the single camera view, and enables

placement of structures and droplets in 3D space. Initial results of feature extraction

using edge detection are shown in Figure . The suitability of the technique for this

difficult problem is evident, and the foundation has been laid for systematic analysis

of the structure at various flow conditions in the future.

Other avenues for future work include:

* Improvement in bubble feature extraction algorithm accuracy through param-

'This work is in collaboration with Scott Phillips, Darin Knaus and Patrick Magari of Creare,
Inc. and Tom Milnes, Barry Scharfman, Prof. Doug Hart and Prof. Alexandra Techet at MIT. The
work was funded under Navy STTR N00014-10-M-0248, Technical Officer Dr. Clifford Bedford.
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Figure 6-2: Jet in cross-flow experimental setup.

(a) (b)

Figure 6-3: Raw image from one camera of grid at the reference plane (a) and portion
of an SA refocused image at depth of the reference plane (b).
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Figure 6-4: Raw im age of liquid jet in cross-flow.

262



(a) Z = -0.7 mm

(c) Z = 0.8 mm

(e) Z = 2.3 mm

(d) Z 1.5 mm

(f) Z = 3 mm

Figure 6-5: SA refocused images of the jet in cross-flow at various depths revealing
complex structure.
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Figure 6-6: Raw image from a single camera of the array (a) and estimated depth of
features from edge detection algorithm (b).

eterization of scale for gradients and iterative contour estimation.

" Further validation of the scaling laws proposed in Chapter 5 through an ex-

panded range of experimental parameters.

" Implementation of bubble tracking algorithms for multi-phase flows.

" Application of SA imaging to flows through occluding geometry (e.g., coral

reefs)

" Replication of computational turbulence studies for direct comparison and val-

idation

* Application to three-phase bubble/liquid/solid particle flows

The synthetic aperture imaging based measurement system developed in this

thesis provide a new and novel method for 3D-3C, quantitative flow velocimetry and
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3D reconstruction of optically dense multiphase flows with potential to impact a wide

range of applications.
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Appendix A

Reprojecting Images to Focal

Planes

To reproject images onto each focal plane requires a transformation function derived

from the camera calibration. The reprojection operations for both the pinhole model

and the refractive model described in Chapter 4 are presented. Note that in deriving

the number of operations in Chapter 3, the pinhole model was considered.

The projection of world points to image points in a pinhole camera camera is

given by

U P11 P12 P13 P14
Y

v = P21 P22 P23 P24  (A.1)

P31 P32 P33 P34

where u and X are written in homogeneous coordinates and P is the camera pinhole

matrix. To reproject an images onto the kth focal plane at location Z, a 3 x 3

267



matrix is first defined by substitution of Z into Equation A. 1

P11 P12 P13Z + P14
P21 P22 P23Z + P24  (A.2)

P31 P32 P33Z + P34

The inverse of H takes points from image planes to world planes, but the scale and

offset of the points in the world planes needs to be defined. Scale and shift can be

incorporated into another 3 x 3 matrix

a 0 sx

D = 0 b sy (A.3)

0 0 1

where a and b are user-supplied scale factors in X and Y and sx and sy are user-

supplied offsets in X and Y, respectively. Finally, the 3 x 3 transformation required

to take image points to world points at the plane located at Z is

T = DH-1 (A.4)

To reproject images to focal planes using the refractive camera model, the points

are first projected to the front surface of the wall using Equations A.1 - A.4, where

Z is replaced with Z,. The angle of each back-projected ray incident upon the

wall is calculated from the know camera center coordinates and the coordinates of

the intersection point of the ray with the wall. Ray tracing through the remaining

media (wall and water) and scaling and shifting yields the world points in the desired

coordinate system.
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Appendix B

Terms in Newton-Raphson Solver

The partial derivatives in equations 4.22-4.23 are given by

of

OTA T A
2 dA2 - (TA2 dA2)

3 /2

( 2 / _

(TT Ar B) dB 2

n 2 /n1 (TA - rB) (2TA - 2T

2 ((TA - rB)2 -dB2 ) 3/
2

(TA - TB) (2TA - 2TB)

2 ((TA - TB)2 -dB2) 3 / 2

n1 (TA - TB) (2rA - 2TB)

(TA - TB) 2 + dB2) 3 / 2

B) n2/n1

(TA - TB)2 + dB
2

(TA - TB) 2 dB 2
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2 + 3/ 2

(rA -rB) ± dB 2 (rB --Tp)2 ± d 2arB

(TA - TB) (2rA - 2rB)

2 ((rA - rB )2 + dB2) 3/ 2

3/1n2 (rB - Tp) (2TB - 2rp)

2 ((TB - TP)2 dP2) 3/2
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Appendix C

Additional Calibration Figures

Additional plots from Chapter 4 are included in this appendix.

C.1 Convergence Plots

271



10

10

101

102

02

10

10

102

10-2

-0-Camera 1
-'-Camera 2
-u-Camera 3

2 4 6 8 10 12
Iteration

-0- Camera 1
2 -A- Camera 2

-n- Camera 3

10

1 1.5 2 25
Iteration

(b)

3 3.5

5 10 15 20 25 30
Iteration

(d)

5 10 15 20 25
Iteration

Figure C-1: Convergence plots of the auto-calibration algorithm applied to 3 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 0 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-2: Convergence plots of the auto-calibration algorithm applied to 3 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 0.1 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-3: Convergence plots of the auto-calibration algorithm applied to 3 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 0.5 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-4: Convergence plots of the auto-calibration algorithm applied to 3 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 1 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-5: Convergence plots of the auto-calibration algorithm applied to 3 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 2 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-6: Convergence plots of the auto-calibration algorithm applied to 7 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all

plots, the standard deviation in the imposed image point measurements is 0 pixels.

The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-7: Convergence plots of the auto-calibration algorithm applied to 7 simu-
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The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-8: Convergence plots of the auto-calibration algorithm applied to 7 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 0.5 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-9: Convergence plots of the auto-calibration algorithm applied to 7 simu-
lated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 1 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-10: Convergence plots of the auto-calibration algorithm applied to

ulated cameras; log of the mean reprojection error is plotted on the y-axis.

plots, the standard deviation in the imposed image point measurements is 2

The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-11: Convergence plots of the auto-calibration algorithm applied to 13 sim-

ulated cameras; log of the mean reprojection error is plotted on the y-axis. For all

plots, the standard deviation in the imposed image point measurements is 0 pixels.

The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-12: Convergence plots of the auto-calibration algorithm applied to 13 sim-

ulated cameras; log of the mean reprojection error is plotted on the y-axis. For all

plots, the standard deviation in the imposed image point measurements is 0.1 pixels.

The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-13: Convergence plots of the auto-calibration algorithm applied to 13 sim-

ulated cameras; log of the mean reprojection error is plotted on the y-axis. For all

plots, the standard deviation in the imposed image point measurements is 0.5 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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Figure C-15: Convergence plots of the auto-calibration algorithm applied to 13 sim-
ulated cameras; log of the mean reprojection error is plotted on the y-axis. For all
plots, the standard deviation in the imposed image point measurements is 2 pixels.
The initial error in world point coordinates increases from plot (a) to (e).
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C.2 Final Error Summary Plots
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Figure C-16: Final mean reprojection error after convergence of the auto- calibration

procedure applied to 3 cameras. The red and blue curves refer to the final mean

reprojection error and the mean initial image measurement error, respectively; the

final true mean error is shown in black. The symbols correspond to different initial

values of ew/D: o - 0.001, A - 0.005, EO - 0.01, x - 0.1, * - 0.2.
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Figure C-17: Final mean reprojection error after convergence of the auto-calibration
procedure applied to 7 cameras. The red and blue curves refer to the final mean
reprojection error and the mean initial image measurement error, respectively; the
final true mean error is shown in black. The symbols correspond to different initial
values of ew/D: o - 0.001, A - 0.005, F - 0.01, x - 0.1, * - 0.2.
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Figure C-18: Final mean reprojection error after convergence of the auto-calibration
procedure applied to 13 cameras (plots for other 7 cameras shown in Figure C-19).
The red and blue curves refer to the final mean reprojection error and the mean
initial image measurement error, respectively; the final true mean error is shown
in black. The symbols correspond to different initial values of ew/D: o - 0.001,
A - 0.005, L - 0.01, x - 0.1, * - 0.2.
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Figure C-19: Final mean reprojection error after convergence of the auto-calibration
procedure applied to 13 cameras. The red and blue curves refer to the final mean
reprojection error and the mean initial image measurement error, respectively; the
final true mean error is shown in black. The symbols correspond to different initial
values of ew/D: o - 0.001, A - 0.005, E - 0.01, x - 0.1, * - 0.2..
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C.3 Final World Point Error Summary Plots
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Figure C-20: Mean (a-e) and standard deviation (f-i) of the error in world point
locations after the final iteration of calibration procedure applied to 3 simulated
cameras. Each row of figures corresponds to an increasing value in the imposed
image point measurement noise.
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Figure C-21: Mean (a-e) and standard deviation (f-i) of the error in world point
locations after the final iteration of calibration procedure applied to 13 simulated
cameras. Each row of figures corresponds to an increasing value in the imposed
image point measurement noise.
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