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Abstract
This thesis describes a new concentrating solar power central receiver system with

integral thermal storage. Hillside mounted heliostats direct sunlight into a volumetric absorption
molten salt pool, which also functions as a single tank assisted thermocline storage system.
Concentrated light penetrates the molten salt and is absorbed over a depth of several meters; the
molten salt free surface tolerates high irradiance levels, yet remains insensitive to the passage of
clouds. Thermal losses to the environment are reduced with a refractory-lined domed roof and a
small, closeable aperture. The molten salt and cover provide high and low temperature heat
sources that can be optimally used to maximize energy production throughout the day, even when
the sun is not shining. Hot salt is extracted from the upper region of the tank and sent through a
steam generator, then returned to the bottom of the tank. An insulated barrier plate is positioned
vertically within the tank to enhance the natural thermocline which forms and maintain hot and
cold salt volumes required for operation. As a result, continuous, high temperature heat extraction
is possible even as the average temperature of the salt is declining.

Experimental results are presented for sodium-potassium nitrate salt volumetric receivers
optically heated with a 10.5 kilowatt, 60-sun solar simulator. Designs, construction details and
performance models used to estimate efficiency are presented for megawatt-scale molten salt
volumetric receivers capable of operating with low cost nitrate or chloride salt eutectics at
temperatures approaching 600 'C and 1000 'C, respectively. The integral storage capabilities of
the receiver can be sized according to local needs, thereby enabling power generation on demand.

Thesis Supervisor: Alexander H. Slocum
Title: Pappalardo Professor of Mechanical Engineering, MacVicar Faculty Fellow
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Chapter 1: Introduction

Motivation

Solar thermal power technologies offer much promise for satisfying global energy needs

and can be used for "clean" power generation - but current solutions fail to be widely

implemented due to their relative inefficiencies and high costs. Nevertheless, Concentrating Solar

Power (CSP) is still considered one -of the most promising technologies for large scale renewable

power generation. In the southwestern United States alone, 45 CSP projects exceeding 11 GWe

are planned for development [1]. However, conventional designs are at best modestly efficient

and resource intensive resulting in levelized costs of energy far exceeding fossil-powered plants.

Widespread adoption to achieve aggressive goals, such as California's 33% Renewable Portfolio

Standard prescribing 15-20 GWe of renewable energy by 2020, will require advanced technology

development and rapid deployment.

Solar Thermal Power

CSP technologies

A robust renewable energy portfolio is likely to include systems that enable energy

storage with electricity production when there is limited sunlight. Conventional photovoltaic

panels convert direct and diffuse sunlight into direct-current electricity, which can be inverted

into alternating-current line voltages and frequencies (Fig. 1.1). However, instantaneous electrical

output is directly related to the instantaneous sunlight, or solar insolation, striking the

photovoltaic panel. Currently, storage of electrical energy for later use is costly and impractical at

larger scales. In contrast, CSP systems use reflective or refractive optics to focus incoming direct

sunlight onto an absorber. This absorber, or receiver, can achieve high temperatures and heat can

be extracted for industrial or chemical processes, or to drive a heat engine and generate

mechanical or electrical power. Energy storage is simplified by the use of sensible, latent or

chemical heat storage means. CSP with thermal energy storage has the potential to produce
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around-the-clock baseload power, or meet peak electric power demands, irrespective of

instantaneous solar fluctuations.

Conventional high temperature CSP systems have evolved to utilize a central power

tower, whereby mirrored heliostats focus sunlight on a receiver placed atop a tower, designed to

reduce heliostat shadowing and increase optical efficiency. Point-focus systems can achieve high

optical concentrations, typically greater than 600 'suns' (1 sun = 1 kW/m2 ), resulting in high

receiver temperatures and improved power cycle efficiencies relative to line-focus (e.g., parabolic

trough, linear Fresnel) or non-concentrating solar collectors [2]. Central receiver systems allow

for large, more efficient, centralized power conversion equipment and simplified thermal storage

as compared to small distributed parabolic dish units (Fig. 1.2).

Photovoltaic Concentrating
TPV) Solar Power

(CSP)

semiconductor mirror receiver Th

Vdc4Q

power e-
cycle

Figure 1.1 - Solar power: PV vs. CSP
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Figure 1.2 - CSP collection technologies

(courtesy E. Blanco, PSA)

CSP Receiver designs

There are numerous CSP receiver designs in the realm of point focus solar power towers,

each attempting to address the functional requirements of capturing and converting concentrated

sunlight into usable, high temperature heat. Receiver collection efficiency can be defined as the

ratio of collected energy to incident energy, and ranges from 0.72-0.90 [2], [3]. Collection

inefficiencies include surface reflection losses of the incident concentrated solar flux, radiative,

convective, and conductive losses to the surrounding environment, and parasitic pumping power

requirements for active heat transfer fluid (HTF) flow within the receiver. For an ideal absorber of

concentrated solar flux, an upper bound to the collection efficiency qrec can found as [4], [5]:

collected energy = a -(1
7rec =incident energy C , (1.1)
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where the receiver's absorptance and emittance are denoted by a and e, respectively, <o is the

incoming solar radiation, C is the optical concentration ratio and o is the Stefan-Boltzmann

constant.

In general, collection efficiency improves as receiver surface temperature, Trec, and

effective emissivity (e'= e/C) decreases, favoring designs which can tolerate high flux collection

and whose geometry approaches that of an ideal black-body absorber [4]. Physical systems have

additional convective and conductive losses that can be minimized by increasing concentration,

thereby reducing exposed surface area and insulating the receiver. Surface-receiver reflection

losses can be minimized by applying high absorptivity coatings to receiver surfaces, tuned to be

highly absorbing in the visible spectrum and having low emissivity in the infrared spectrum.

However, Kirchhoff's law must hold true (i.e., for every wavelength a; = e;,) and as receiver

temperature increases, the emissive power spectrum shifts towards lower wavelengths and the net

"spectral selectivity" decreases. However, high HTF temperatures result in improved power cycle

efficiency, which is limited by Carnot efficiency t h calculated as:

useful work output _ W T (1.2)

heat from receiver Qrec Trec

where W is the work done by the power cycle, Qrec is the heat supplied to the power conversion

cycle by the receiver and T, is the ambient temperature. Equation (1.2) provides a theoretical

upper bound to the power cycle efficiency; real systems are subject to losses and irreversibilities

and the resulting power cycle efficiency is reduced, particularly as the rated unit size decreases.

Overall solar-to-electric system efficiency, 'isolar-electric, can be found as the product of

individual efficiencies:

7slr-electric = 77 op 7e*7thh ' 1ele (1.3)
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where, r,'k is the optical efficiency, a function of collector (heliostat field) geometry, mirror

reflectivity, cleanliness and shape, and qele is the electrical conversion efficiency, which includes

conversion and parasitic power consumption losses. It can be seen from Equations (1.1) to (1.3)

that high receiver efficiencies require low operating temperatures; however this results in low

power cycle and overall system efficiencies. Low solar-to-electric efficiencies require more

heliostat collection area, increasing capital costs and subsequent levelized costs of energy that the

CSP plant produces.

Conventional receiver designs

Conventional surface absorption tube-based receivers have been studied and tested, only

to exhibit low capture efficiencies, parasitic fluid pumping losses and raise long term durability

concerns [2], [6], [7]. Tubular receiver designs circulate a heat transfer fluid through an array of

tubes onto which concentrated sunlight is focused (Fig. 1.3a & 1.3b). As a result, the highest

temperature of the receiver is the tube's exterior surface, which must conduct the heat inwards to

the colder, flowing heat transfer fluid (Fig. 1.4a). Daily and instantaneous solar variations create

large temperature gradients, thermal strains and high temperature creep which all must be

mitigated to avoid low-cycle fatigue failures of the tubing. Consequentially, maximum allowable

flux values are limited to avoid thermal degradation of the receiver tubing [8]. Lata et al. cites the

tradeoffs between tube diameter, wall thickness, receiver durability and pressure drop in

conventional tubular receiver designs while describing a "new" external tubular receiver capable

of achieving slightly higher maximum fluxes, up to 1.0 MW/m 2, thereby reducing receiver

surface area and losses while increasing overall plant efficiency [9].

Volumetric absorption can reduce radiative and convective losses to the environment

while increasing HTF operating temperature and capture efficiency [10]. Figure 1.3c depicts a

typical volumetric air receiver [11]. Volumetric absorption reduces the susceptibility of receiver

or HTF overheating and failure due to transient solar fluctuations. Ideal volumetric receivers have
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a peak temperature located within the HTF that is hotter than the receiver surface temperature,

reducing radiative losses, as shown in Fig. 1.4b.

Receivers can be utilized with efficient north heliostat fields (in the northern hemisphere)

in cavity or directional designs, whereby a concave receiving surface can be used to reduce

convective and radiative losses at the expense of the receiver's acceptance angle (Fig. 1.3a &

1.3c). Alternatively, an external receiver presents a constant area target for heliostats, regardless

of azimuthal position (Fig. 1.3b). However, a full 3600 circular field is non-optimal, as heliostats

south of the receiver suffer from poor optical (cosine) efficiencies. As a result, the southern

perimeter of an external receiver experiences reduced concentrated flux relative to the northern

side of the receiver, and is typically used for HTF preheating [7], [9].

Unfortunately, both surface and volumetric receiver designs are subject to surface

reflection losses. Incoming concentrated flux is reflected, directly and diffusely, away from the

receiver surface and back into the environment. Conventional cavity (Fig. 1.3a) and external (Fig.

1.3b) tube-based receivers, such as those used in the PSI 0, PS20 and Solar I and II CSP test sites,

respectively, are designed so that incoming flux strikes the tube near-normally to its surface. A

fraction of the incident light is reflected off the receiver's surface and cannot be recaptured. Much

effort and costs are spent applying spectrally selective solar absorption coatings, or relying on

surface oxides to grow and reduce the tube's reflectivity - but the absorptivity of the tube surface

presents an upper bound to tube-based receiver efficiency. Similarly, conventional volumetric

absorption receivers rely on quartz aperture windows to isolate the HTF from the environment.

Even with advanced conical aperture windows (as shown in Fig. 1.3c) designed to reduce surface

reflection losses, a portion of the incident flux is returned to the environment. Additionally,

aperture windows will absorb some of the incident energy throughout the solar spectrum, and

completely block the small but non-zero contribution in near infrared portion for which quartz

and sapphire are opaque. Perhaps more significantly, large aperture windows are costly, fragile

components and require active cooling in high-concentration systems.



r / (B)

Figure 1.3 - Central receiver designs

From [2], [6], [7], [11]

(A)

concentrated
sunlight

losses

opaque
tube wall

Surface
absorption

(B)

concentrated
sunlight

losses
T,

transparent
aperture window

Volumetric
absorption

Figure 1.4 - HTF flow and temperature profiles in conventional receivers
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Heat transfer fluid

The design of a receiver depends significantly upon the choice of HTF. Working

temperatures, system sizing, materials compatibility, ease of energy transfer, toxicity and cost are

key parameters used to select fluids. Materials besides fluids can be used as the primary heat

transfer "fluid" within the receiver, including fluidized particle beds which transfer heat to a

working HTF [5]. Some receivers are designed as high temperature chemical reactors, whereby

the working fluids are the reactants and products themselves [10]. Typical HTFs include

water/steam, air, molten salts (also known as fused salts) and liquid metals [12].

Early central receiver solar thermal power plants were designed with closed-loop direct

steam generation receivers, creating pressurized steam fed directly into a power cycle. The

receiver simply acted as a solar-powered boiler for a conventional Rankine power cycle [3].

Volumetric absorbers have been designed to heat air, typically as part of a solar-assisted gas

turbine (i.e., Brayton) power cycle [11]. However, hot steam and air are low density fluids and

subsequent thermal storage dictates energy transfer to a more efficient storage medium [13], [14].

Heat exchangers are needed each time energy is transferred to a new medium, increasing system

cost and complexity.

Utilizing molten salts as the working fluid enables simple subsequent thermal storage,

due to their high heat capacities and wide operating temperatures. Tube-based receiver designs

have migrated to using molten salt as the primary HTF and storage medium [6], [9], [14]. While

molten salts possess ideal heat transfer properties, relatively low viscosities and low costs, they

can freeze. The binary sodium-potassium nitrate "solar salt" mixture (60-40 wt.%), which has

seen widespread adoption in central receiver CSP plants, has a freezing temperature of 222 'C

[6]. Molten salt can be kept circulating in the receiver piping throughout the night, or the receiver

can be drained as the sun is setting. Unfortunately, both methods require ancillary heaters and

present additional risks should the salt freeze, requiring electric heat tracing on long piping runs,
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valves and manifolds. Despite these measures, operating problems still occur; for example, the

Solar Two CSP demonstration plant was disabled by frozen salt in pipes and clogged preheater

manifolds during the daily filling process [6].

Alternative receiver designs

An alternative approach to volumetric absorption, initially proposed by Sandia in 1974,

utilizes a cascading molten salt waterfall in a Direct Absorption Receiver (DAR), as shown in

Fig. 1.5 [15-19]. A portion of the concentrated flux is absorbed within the salt film, and the

remainder is absorbed on a darkened alloy sheet that supports the salt film, effectively

transferring thermal energy into the salt. Experiments using centimeter-thick molten salt waterfall

films were found to be marginally absorbing to incoming sunlight, and the salt was doped with

high absorptivity particles to collect the required energy within the salt film [15]. Unfortunately,

the exposed active fluid flow, surface reflection losses, film instabilities, variations in output HTF

Support surface

Collection
manifold

Receiver
support

tower

Figure 1.5 - Molten salt waterfall Direct Absorption Receiver (DAR) concept

From [16]
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temperature as a function of varying solar flux, and the cost of pumps, manifold and piping

preheaters limits the practicality of such systems [20].

Additional receiver designs are possible if the traditional power tower approach is

abandoned. Beam down systems, as originally proposed by Rabl in 1976, seek to relocate the

receiver to ground level to avoid some of the tower-based receiver constraints [21]. To achieve

this configuration, a secondary reflector is positioned atop a tower which redirects concentrated

light from the heliostat field to the receiver. Typical Cassegrain optical geometry is employed,

utilizing a hyperbolic secondary mirror. Heliostats aim at the (virtual) upper focus, above the

secondary reflector, and the receiver is placed at the lower focal point. A ground-level receiver

enables the use of novel materials and geometries for receiving concentrated sunlight-notably a

liquid free surface (Fig. 1.6) [22], [23]. Similarly, Yogev [23] and Epstein [24], [25] suggested a

beam down system where the light was to be beamed into the central region of a metallic annulus,

whereby molten salt or molten metal flows and is heated in the outer annular region. Since Rabl's

proposal in 1976, significant experimental work has occurred on beam down towers and ground

receivers, especially for reforming materials [22], [26].

However, beam down optics are costly, incur additional reflection losses and pose high-

flux durability issues. The maximum flux impinged on the secondary mirror is typically limited to

35 kW/m 2 to avoid active cooling and optical degradation, which dictates a relatively large mirror

area [27]. A tower still needs to be constructed, and it may shade a significant portion of the

heliostat field. Tertiary concentrators are needed to compensate for the increased sun spot size due

to the increased focal length created by the beam-down geometry. Non-imaging optics are used as

tertiary concentrators to increase flux levels at the receiver aperture, the most common being

Compound Parabolic Concentrators, or CPCs [28]. Unfortunately, CPCs require active cooling to

reject heat and, both from high-flux reflection losses within the CPC and heat from the receiver

itself. Additionally, the use of quartz aperture windows to isolate the receiver chamber reflect and

absorb a portion of the incident energy and raise long term durability concerns [24], [26].
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Figure 1.6 - Beam down system with ground level molten salt receiver concept

CPC concentrates light before passing through aperture window (not shown) and into receiver.
Two-tank thermal storage is illustrated. From [24]

There is a precedent for solar collection systems which do not utilize an overhead

secondary mirror, but instead take advantage of natural terrain. Solar furnaces are used for high

temperature materials characterization and synthesis, not for power production. Two high-flux

solar furnaces, one in Odeillo, France and the other in Parkent, Uzbekistan, utilize hillside

mounted heliostats to collect light and direct it horizontally into a large parabolic mirror having a

horizontal optical axis. This parabolic mirror further concentrates the light onto a small area at its

focus (Fig. 1.7). The Odeillo solar furnace facility uses 63 south-facing flat mirror heliostats to

track the sun's movement and focus it down on the north facing parabola focused on a target built

into one wall of a building that holds offices and laboratories [29]. This system can achieve flux

levels above 16 MW/m2 (albeit across a few cm-wide focal spot), capable of heating objects

Hot saftstrs
tank 

q
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beyond 2800 *C, with a total power of 1 MWt [30]. The NREL high-flux solar furnace system

also employs a heliostat which redirects light near-horizontally towards a ground-based,

horizontal axis secondary reflector system.

The primary drawback to multiple reflection designs is up to 10% of the energy is lost

with each reflection [31]. Research beam down CSP and solar furnace systems achieve high

concentrations with large, precision optical elements - whose cost and durability have prevented

the commercial adoption of similar geometries to ground-level based receiver CSP systems.

1 2 3 4 5 6 7 8

Figure 1.7 - Odeillo 1 MW solar furnace utilizing hillside heliostats

From [29]
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Thermal storage

Regardless of the receiver design, CSP systems benefit from thermal storage for

dispatchable energy production. CSP plants without storage can only produce power while the

sun is shining - although the thermal inertia of the receiver allows for some flexibility due to

cloud transients, on the order of a minute or so, as opposed to the truly instantaneous output of

photovoltaic systems. A well-designed thermal storage system allows for heat extraction

irrespective of instantaneous solar conditions so power production can occur shifted (minutes,

hours or even days) relative to the maximum solar resource. However, some demonstration CSP

plants have been designed with a co-firing gas turbine scheme as an alternative to thermal storage

systems [11]. This provides the turbine with constant input power, regardless of solar fluctuations.

Unfortunately, the gas turbine is driven at nights and during periods of low insolation, offsetting

the truly "clean" energy benefits the CSP field may provide.

Thermal energy storage can be divided into three categories: sensible, latent or chemical

[13], [32]. Sensible heat systems rely on a temperature increase within media to store energy.

Latent heat storage utilizes phase change materials, usually at constant temperature, releasing

their enthalpies of fusion or vaporization. Alternatively, reversible endothermic reactions can be

used to provide chemical heat storage. Regardless of the means of thermal storage, functional

requirements include high energy density, operating temperature compatibility, excellent heat

transfer characteristics, low losses, ease of control, safety, durability, mechanical and chemical

stability and low storage system costs.

Current CSP systems which address thermal storage utilize remote sensible heat storage

of various designs, dependent on the receiver HTF: tanks of pumped molten nitrate salts, banks of

thermal oil-filled steel pipe bundles encased in concrete, or hot-air heated hollow refractory brick

chambers [13], [14]. These designs require an active heat-transfer fluid flow, with associated

high-temperature pumping issues and costs.
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Molten salt thermal storage

Molten salt is a preferred media for high temperature "direct" thermal storage, whereby a

single fluid functions as both the receiver HTF and the sensible heat storage medium. Direct

systems eliminate the need for a heat exchanger between the receiver HTF and the storage media.

Molten salts have high densities and specific heats, which increases volumetric storage efficiency.

Additionally, they can be formulated to operate across various temperature ranges and have very

low vapor pressures, enabling them to be used in unpressurized systems. Molten salts are cheaper

and more environmentally friendly than organic heat transfer oils used in parabolic trough

systems [33]. However, as mentioned previously, molten salts have relatively high melting

temperatures.

Two designs are used for molten salt direct thermal storage: two-tank systems and single

tank thermocline systems. In a two-tank system, salt is heated by the receiver and directly stored

in a "hot" tank. From the hot tank, salt is pumped to a heat exchanger, or steam generator, for the

power cycle, where heat is extracted and its temperature is reduced. From here, it is pumped to a

"cold" storage tank; the cycle repeats when the salt is then pumped to the receiver to be reheated

(Fig. 1.6). The advantage to the two-tank system is that the cold and hot salts are stored

separately; however, two tanks must be constructed with each capable of storing the entire system

volume [34]. Daily temperature and pressure cycling of the tank walls are severe as the salt

volume is transferred nearly completely from one tank to the other.

In contrast, a thermocline system uses one tank, whereby the hot and cold salts are stored

in the same tank. In traditional CSP systems, cost-savings have been obtained with single tank

systems relying on temperature stratification via natural thermocline formation [35]. The hot salt,

with reduced density, floats above the cold salt. Hot salt is extracted from the top of the tank and

cold salt is returned to the bottom. Care must be taken to design the tank proportions and locate

the extraction and return ports so fluid motion does not disturb the thermocline [33], [36]. The
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stratification which forms can be enhanced with the use of solid filler materials within the tank,

reducing mixing and stabilizing the "thermocline" zone that forms between the hot and cold

fluids. Tests using dual media thermocline tanks with silica particles (sand) in molten nitrate salts,

while confirming chemical stability, have shown the filler material tends to settle and pack over

time due to the vertical cycling of the thermocline's position, as the system is charged and

depleted repeatedly [37].

Divided single-tank storage

Copeland et al. has shown "rafted thermocline" designs effective at boosting thermal

stratification in water tanks, with suggested designs for molten salt thermal storage tanks (Fig.

1.8a) [38-40]. Similarly, Andrews describes a water storage tank with a movable, internal baffle

designed to separate hot and cold layers [41]. In these designs, an insulated, horizontal barrier

plate is weighted to achieve neutral buoyancy directly at the thermocline interface. Hot fluid is

removed (or added) from the top of the storage tank, and cold fluid is returned (or removed) to

the bottom, and the barrier plate follows the thermocline position. As described by Wang et al.

[42], "a unique problem occurs with thermocline systems at high temperatures because radiant

heat transfer becomes significant: transparent liquid salt offers no resistance to radiative transfer,

and radiation between a hot ceiling and a cool bottom can induce convection currents that destroy

the thermocline." The barrier plate would limit both conductive and radiative transfer within high

temperature storage systems, increasing tank utilization. However, passive rafted thermoclines

would rely on two parameters difficult to control in high temperature molten salt tanks:

maintaining neutral buoyancy at the hot-cold thermocline interface; and a near perfect seal with

the side walls to prevent leakage around the divider raft. Indeed, tests performed in water showed

the neutrally buoyant raft design may display instabilities and tilt and/or jam in the storage tank

[38].
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An alternative design was suggested by Laing, whereby a movable, radial wall is

positioned between hot and cold salt volumes. (Fig. 1.8b) Although Copeland's and Laing's

concepts would reduce thermal losses relative to two-tank and dual media thermocline designs,

sealing at high temperatures with high temperature gradients would prove problematic.

(A)

67
69

Figure 1.8 - Divided single tank molten salt thermal storage concepts

(A) Rafted thermocline (side view); From [40]
(B) Radial partition (top view); From [43]

Objectives

For widespread adoption, CSP designs must show improved efficiency, robustness,

energy storage and exhibit low capital and operating costs. Designs capable of increased working

fluid temperatures will be favored for the resulting flexibility in choosing and improvements in

power cycle efficiencies. For example, the helium Brayton cycle, operating at temperatures

exceeding 800 'C, and supercritical CO2 power cycles, operating at 700'C turbine inlet

temperature and 20 MPa pressure, are expected to exceed supercritical steam Rankine cycle

efficiencies [44].
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Scope of Thesis

To address these concerns, this thesis describes the design of a high-temperature CSP

system with integral energy storage. In the proposed system, concentrated light is beamed

through an aperture directly into a large molten salt filled thermal receiver. The light that enters

this salt pond will penetrate, scatter, and be absorbed through the volume of salt, rather than on a

surface. As a result, salt temperatures of up to 1000'C and a large thermal energy storage capacity

can be achieved in a relatively small volume. The salt pond receiver acts as a buffer between the

diurnal and instantaneous variations of the heliostat field's solar flux and the power generation

unit - providing dispatchable Concentrated Solar Power on Demand (CSPonD).

This work builds on preliminary research done at MIT by an interdisciplinary team led by

Prof. Alex Slocum. Collaborating with researchers from MIT's nuclear, mechanical, materials

science and chemical engineering departments, designs have been evaluated and refined for

reliable, cost-effective performance. Over the course of the project, the team has examined the

various building blocks of the CSPonD system: optical and thermal salt properties; receiver

structure; convective salt flow fields; heat extraction configurations; optimal heliostat layout and

power block operation.

This thesis will provide design guidelines for CSPonD receivers: scaling laws, material

selection, performance estimates, operational guidelines and cost information. Chapter 2

describes the CSPonD concept, including the functional design of the molten salt receiver.

Optical, thermal and economic performance estimates are given in Chapter 3 for the proposed

receiver. Chapter 4 details experimental work conducted at MIT using lab-scale test receivers,

heated with a high-flux solar simulator designed specifically for that purpose. Chapter 5 outlines

a typical CSPonD system design for idealized hillside heliostat field geometry. Finally, Chapter 6

summarizes the salient points of the CSPonD system and future research paths are identified.
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Chapter 2: The CSPonD Concept

System overview

A new high-temperature CSP system with integral energy storage is presented, whereby

concentrated light is beamed through an aperture directly into a large molten salt filled thermal

receiver. The light that enters this salt pond will penetrate, scatter, and be absorbed through the

volume of salt, rather than on a surface. The salt pond will act as a buffer between the diurnal and

instantaneous variations of the heliostat field's solar flux and the power generation unit -

providing dispatchable Concentrated Solar Power on Demand (CSPonD).

Concentrated sunlight penetrates and is absorbed by a passive eutectic molten salt pool,

also acting as single tank assisted thermocline storage system. Absorption through a significant

depth tolerates rapid changes in solar intensity without receiver damage; single tank thermocline

storage enables high temperature thermal energy to be fed into a power cycle, even as the average

temperature in the receiver decreases [45]. Concentrated Solar Power on Demand (CSPonD)

could provide 24/7 power and thus help fill a critical need in solar power, that of energy storage

[46].

Figure 2.1 depicts a schematic of the CSPonD system. Heliostats mounted on a hillside

beam light directly into a molten salt receiver at the base of the hill, or into a one-bounce system

with the receiver at the top of the hill. This eliminates costly beam-down optics, reflective losses

and a tall receiver tower. Cosine effect losses associated with hillside heliostats beaming light

downwards to the receiver are offset by the elimination of a tower and separate hot and cold

storage tanks and their associated high-pressure, high-flow pumping systems.

The CSPonD DAR simplifies the system by eliminating the conventional tower-based

receiver, materials-driven temperature limits on receiver structure, remote thermal storage system

and high pressure pumps. Volumetric absorption results in increased performance and durability:

higher temperatures, improved power cycle efficiency; and enables a collocated & smaller storage
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Hillside heliostat fieldSteamgener

Molten salt loop

Figure 2.1 - CSPonD beam down system architecture

system. The molten salt surface is self-healing - tolerating high solar flux transients without

irreparable sudden or cumulative damage to the receiver. A small aperture and refractory-lined

domed roof reduce losses to the environment and reflect thermal radiation back into the pond. Hot

salt is pumped from the top of the tank through a steam generator and then returned to the bottom

of the tank. An insulated barrier plate is positioned within the tank to provide a physical and

thermal barrier between the thermally stratified layers, maintaining hot and cold salt volumes

required for continuous operation. As a result, high temperature thermal energy can be provided

24/7 or at any desired time.

For the near term, a salt commonly used in CSP plants can be used: sodium-potassium

nitrate (i.e., solar salt: 60/40 wt.% NaNO3-KNO 3) which has a low melting point of 222C.

Although above 600*C solar salt decomposes and becomes corrosive and dangerous, systems

have been built and operated to pump it between hot and cold storage tanks and a steam generator

[34], [47]. The power block, including salt pumps, heat exchanger/steam generator and power

generation device, for a nitrate salt based CSPonD system will be very similar to those that can be
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commercially obtained. Hence, for a near term CSPonD system, a steam power cycle will be

assumed with peak steam temperatures of 500-540 'C.

The amount of storage required depends on local needs and economic conditions.

Assuming a 300 K temperature swing, solar salt provides roughly 540 kJ/kg or 240 kWth/m3

sensible heat storage. With a conservative thermal-to-electric conversion efficiency of 30%, one

can assume it takes about 14 m3/MWe/h of nitrate salt for non-sunshine operation. For example,

2500 m3 of salt can provide 180 MWeh of energy storage, capable of powering a 50 MWe turbine

for 3.6 hours without additional solar input. This volume of salt can be contained in a 5 m deep,

25 m diameter CSPonD receiver. Obviously, supplying a large power cycle will require a large

heliostat field, necessitating a large receiver aperture with increased losses. However, local

economic conditions may dictate mid-afternoon and early evening power production - whereby a

smaller heliostat field can charge a CSPonD receiver throughout the morning and then used to

meet demand. Thus, the CSPonD system can be rated by continuous power production, not peak

power as is typical of traditional CSP systems without thermal storage.

Inspiration

It is known that volumetric absorption results in higher working fluid temperatures and

reduced thermal losses, as discussed in Chapter 1. Absorption over a depth reduces temperature

gradients within the working fluid, in contrast to surface absorbers with localized heat fluxes.

Additionally, many fluids are solar selective: nearly transparent to visible light and highly opaque

in other wavelengths. A fluid with this characteristic allows for efficient volumetric absorption

over a significant depth, while at the same time preventing excessive radiative transfer within the

fluid. An analog found in nature is water, such as oceans or deep lakes. In clear, particle-free

water, the penetration depth / (also termed characteristic length or mean free path) of visible light

is 10-30 m; for infrared energy with a wavelength of 1.5 pm, / is less than 0.5 mm [48].
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The selective absorption behavior of fluids are exploited in engineering systems - notably

solar ponds, otherwise known as salt gradient ponds. In these one-sun solar thermal collection

systems, incoming sunlight penetrates through a depth of saline water before striking a darkened

pond bottom. The water is stratified with a freshwater layer added on top of the salt water, so that

a vertical salinity and density gradient are established in the near-stagnant pool. The pond bottom

is typically a black plastic liner which is highly absorbing in the visible spectrum. As a result, the

solar energy is converted to thermal energy at the bottom of the pond. The heavier, yet warmer

salt water remains in the bottom region of the pond due to the stabilizing salinity gradients,

forming a non-convective zone between the top and bottom layers. Natural convection is

suppressed even with the existence of an inverted temperature profile. Thermal transfer is limited

to conduction across the vertical layers of the pond, with reduced convective losses due to cooler

surface temperatures. Even without additional concentration, these large area collectors can

achieve temperatures in excess of 90 'C in the lower storage zone [49].

Since solar ponds operate at relatively low temperatures with large exposed areas, the

primary methods of heat loss are surface convection and evaporation. However, increasing optical

concentration allows the exposed surface area to be reduced or working temperatures to be

increased, or both, as in the proposed CSPonD receiver. Obviously, a working fluid other than

water is needed for high temperature operation; hence the choice of molten salts.

Initial design concept

The initial objective was to develop a new type of CSP system to simultaneously receive

and store thermal energy in a volume of molten salt using a beam down solar power tower. As

initially proposed by Slocum et al., an insulated storage tank filled with transparent molten salts

containing nanoparticles replaces the solar boiler and thermal storage system of traditional CSP

central receivers [46]. Light from the primary heliostats is focused and reflected downward by

secondary mirrors on the beam down tower through a small aperture into an insulated graphite
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lined salt-filled tank on or underground (Fig: 2.2). This beam down reflector can either be a

monolithic or tiled hyperbolic reflector or an array of servo controlled secondary reflectors which

can better control the focus.

The aperture acts as a thermal diode to let large amounts of energy in, but little out. Light

is absorbed by nanoparticles in molten fluoride or chloride salts which transfer their heat by

conduction to the bulk salt and by scattering light to graphite walls. The container walls serve to

increase the heat capacity of the system. The use of nanoparticles would allow controlled bulk

heat absorption in the transparent salt and thus allows for much higher radiation fluxes. Natural

circulation of salt is upward where heated and then downward through graphite blocks with

cooling channels. The hottest salt is at the top of the tank where it can be extracted and fed to a

heat exchanger associated with the power cycle. The reservoir acts as a capacitor so full power

can always be directed into it, regardless of time of day or a passing cloud, and the steam

generator can extract heat as needed on a continual basis.

E
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storage media
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Figure 2.2 - Initial CSPonD system concept

Beam down secondary reflector (left) directs concentrated sunlight into a ground-level molten
salt receiver (right; cross-section shown). From [46]
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As the project progressed, it became clear that some aspects of the initial concept must

change. Most revisions were motivated by cost savings and design simplifications; particularly

elimination of a beam down secondary mirror as described in the next section. Experimental

testing revealed some flaws with other aspects of the design. For example, nanoparticle-enhanced

salts were found to be too absorbing and difficult to keep well mixed. Some salt eutectics initially

selected for the system reacted in the presence of an oxidizing atmosphere. Similarly, graphite

container materials were consumed in high temperature atmospheric salt melt testing; keeping

either would necessitate an inert purge gas over the system with possibly a transparent aperture

window. Modifying the design to eliminate these risks enables a more robust system with reduced

complexity and capital costs. However, the distinguishing feature of the CSPonD concept has

remained: absorption of the light through a significant depth of the salt.

Hillside heliostats

As described in Chapter 1, there is precedence for the location of heliostats on a hillside

to direct sunlight to a secondary reflector, then redirecting the power to a receiver on the ground

[29]; however, up to 10% of the energy is lost with each additional reflection, not to mention

high-flux secondary mirror cooling concerns, operation and installation costs. Meanwhile, there

appears to have been a "land rush" for acquiring rights to flat, sunny land perceived to be needed

for other types of solar power systems, which have increased the overall costs of traditional CSP

systems. Motivated by these concerns, plus the fortuitous initial CSPonD evaluation site of the

hilly southern coastal region of Pentacomo, Cyprus, a new design was proposed which eliminates

the beam down secondary reflector.

The system presented here thus reflects the solar energy from a heliostat field on a

hillside directly into a receiver. Hillside mounted heliostats simultaneously collect sunlight while

also acting as the beam down optic, reducing overall system complexity and cost. In the northern
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hemisphere, a south-facing hillside field allows for direct beam down entry into the molten salt

pond as shown in Fig. 2.3a. Alternatively, a receiver can be placed atop a north-facing hillside,

creating a beam up "virtual tower" configuration with a reflective lid cover (Fig 2.3b). CSPonD

collector fields can be built on otherwise undesirable steep terrain, further reducing system costs.

With the correct site selection, heliostat packing density can be increased even as shading and

blocking losses are decreased - without altering the landscape. Blake et al. describes a site having

a natural slope to the south of 10-13*, accommodating heliostat terracing with minimum

excavation, resulting in increased collection efficiency for power tower systems [50]. Methods

developed by utility companies for emplacing utility poles on moderately steep terrain can be

used for heliostat installation, and automated spray systems can be utilized for cleaning the

mirrors.
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Figure 2.3 - Representative hillside CSPonD sites in White Sands, NM

(A) Beam down. (B) Beam up, whereby lid acts as short-bounce secondary reflector. From [51]

Noone et al. describes a numerical tool developed to evaluate potential sites for beam up

and beam down CSPonD configurations [51]. Optimal sites not only have excellent solar

insolation, specifically direct normal isolation, but also possess ideal terrain features. For
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example, 10,000 km 2 areas were examined in White Sands, NM and China Lake, CA, both

located in high solar resource areas and mountainous regions. For those cases, optimal beam

down receiver locations were found to have efficiencies of 70% and 68%, respectively. In the

beam up configuration, both case sites have optimal receiver locations with efficiencies of 77%

[51]. These efficiencies take into account cosine efficiency, shading and blocking losses due to

the terrain; optical losses due to reflectivity, mirror shape and tracking errors are not included.

Representative sites with highest efficiency from the White Sands, NM area are shown in

Fig. 2.3. The 10,000 km 2 White Sands area examined could provide 20 GWe of power 24/7,

assuming that 15% of the land can be utilized and of this land 30% is covered by heliostats, with

a solar-to-electric efficiency of 22% and a modest direct normal insolation of only 4.8

kW/m2/day, which averages out to 200 W/m2 over a 24 hour basis. Similar results are obtained for

China Lake; the remainder of the high insolation region of the southwest US can be analyzed

similarly, opening up new territory for renewable power generation.

Volumetric receiver pond

Concentrated solar flux passing through the aperture can follow one of three paths:

refracted into the molten salt; reflected off the salt surface towards the inside surface of the

receiver lid; or directly impinged on the inner surface of the lid (Fig. 2.4). A collection efficiency

analysis, while the receiver is "on sun" is presented in Chapter 3. In general, capture efficiency

increases with input flux concentration as the system geometry approaches that of a blackbody;

the self-healing nature of the molten salt surface tolerates higher fluxes than conventional tube

based receivers - and can achieve greater efficiencies as heliostat field technology and achievable

concentration improves. The unique dual heat-source nature of the salt and lid in CSPonD

receivers will allow more flexibility for operators to maximize useful heat extraction for their

particular system.
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Figure 2.4 - CSPonD receiver cutaway view

Yellow arrows denote light path within receiver.

Absorption of radiation within salt

The energy that is transmitted through the salt will decay as a function of the optical path

length , according to the Beer-Lambert law:

I = I2 Oe- (2.1)

where the attenuation (or extinction) coefficient /A varies strongly with wavelength and

moderately with temperature. The attenuation coefficient is defined in terms of the absorption, K,

and scattering, -,, coefficients as:

182 = + US (2.2)

The attenuation coefficient is related to the absorptive index, k, in the complex index of

refraction, m = n - ik, where n is the refractive index, as:

(2.3)

Cold salt
from HX

4;rk
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All three coefficients physically represent the inverse of exponential characteristic

lengths and have the dimensions of length-' [52]. The attenuation coefficient describes the mono-

directional penetration of the light inside the medium, while absorption and scattering coefficients

are used to distinguish between the two physical phenomena causing the light attenuation [53].

For the CSPonD DAR, the attenuation and absorption coefficients allow estimation of both the

light penetration into the pond, and how much of the solar light can be absorbed by the salt itself.

Unfortunately, the distinction between scattering and absorption is not trivial experimentally; the

measurement of the combined effects into the attenuation coefficient is much simpler [53-56].

Historically, molten salts have been considered weakly absorbing, or even fully

transparent (i.e., k =/ = 0) in the visible region [16], [54-56]. Indeed, this was the motivation to

"seed" the molten salt with a suspension of highly absorbing nanoparticles as described in the

initial concept. However, recent experiments using longer path lengths through molten salt, on the

order of 10 cm, have obtained non-zero values for the attenuation coefficient, which includes both

absorption and scattering. Passerini's experiments have found attenuation coefficients for molten

nitrate, carbonate and chloride salts of interest are on the order of 0.01 cm-1 over the visible

spectrum [53]. For example, a 5 m path length through molten salt would absorb 99% of the

incoming concentrated visible radiation. Molten salts have been shown to be strongly absorbing

and opaque in the infrared spectrum, for 2 > 2 e, where the cutoff wavelength Ae is determined by

the spectral absorption characteristics of the liquid [57]. Typically, Ae ranges from 1.5 to 3.5 gm

[54-56]. Figure 2.5 plots values for the complex index of refraction for molten nitrate salts.

The measured attenuation coefficient of solar salt at 350 'C has been applied to the

reference AMI.5 solar irradiance plot of ASTM G173-03, as shown in Fig 2.6. AMI.5 refers to

an "air mass" of 1.5; that is, 1.5 times nominal atmosphere thickness, corresponding to a solar

zenith angle of 48.2', and is typically used to for characterization of solar power systems [5].

Even though the range of valid experimental data is only from 400 to 800 nm, nearly 55% of the
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terrestrial solar insolation falls within this range. At a depth of two meters, 93% of the solar

energy from 400 to 800 nm is absorbed by the nitrate salt.

The light attenuation characteristics are critical as they strongly affect temperature

gradients within the salt and overall system design. For example, in large deep ponds created for

large amounts of thermal storage, forced circulation of the salt could be required to prevent

overheating of the top surface of the salt. Conversely, if the salt is found to be too transparent,

overheating of the container structure could occur.

Thermal transport within salt

The radiative transfer equation (RTE) is used to calculate the radiative heat transfer rates

within, and to the bounding wall of, a participating medium:

dIA SA ^ I, (si )(D* (S^,S^)dQ (2.4)-1 =SVIA = VA IbA -,A + 0' (2.4
ds 4zr

where <D;* is the scattering phase function, describing the probability that radiation is scattered

from direction sj into direction s. Equation (2.4) states that the spectral radiative intensity I;, along

a path s in the direction of s is modified by three factors: spectral emission of the fluid at elevated

temperatures; extinction or absorption and outscattering (scattering of radiation away from s); and

in-scattering (scattering from all other directions Si into direction s) [52]. The blackbody, spectral

intensity, I&, of the fluid at temperature T is given using the Planck function:

n2 2C
'b2(A, T) n (2 C2 (2.5)

X 5exp T 1

The constants C and C2 are equal to 0.59544 x 10-16 W-m2 and 14388 pm-K; n is the refractive

index of the medium into which the black body emission is being evaluated. Equation (2.5)
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evaluates Io in vacuum/air, not in the medium. It is desirable to keep track of the radiative energy

in terms of the incident wavelengths that have been measured outside the fluid (i.e., in air), as the

wavelength of a given bundle of radiative energy can vary as it propagates along a medium with

varying properties as a function of temperature [60].

The RTE must be solved, followed by integration over all directions and all wavelengths

to obtain the radiative heat flux qr:

q,. = f4 17(S)s dQdA (2.6)

Unfortunately, as Modest writes, solutions to the RTE

...which is an integrodifferential [sic] equation infive independent variables
(three space coordinates and two direction coordinates), is a truly daunting task
for all but the most trivial situations, even at the spectral level. Integration over
all wavelengths, due to the complicated nature of radiative properties, tends to
add another dimension to the level of difficulty." [52]

The ultimate goal is to solve the RTE simultaneously with the heat transfer equation (HTE) and

the Navier-Stokes equations to fully describe the fluid flow and temperature fields within the

receiver as a function of the incoming intensity distribution. The difficulty is interfacing these

equations: the RTE describes the ballistic transport of photons inside a medium which has a

certain optical thickness; the HTE describes the diffusion of heat thru molecular and lattice

vibrations, and the Navier-Stokes equations describe the motion of the fluid particles themselves

[61], [62].

That simultaneous analysis is beyond the scope of this thesis; Nave presents a numerical

tool for cases where scattering can be ignored [63]. However, a simplified one-dimensional

analytical model can be used to give insight into the system's behavior. The HTE in one

dimension, x, is:
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aT a 2 T
pc, =k -T +qgen (2.7)

where qgen is the volumetric heating from the incident solar radiation, including any volumetric

heat loss due to thermal re-radiation from the medium at high temperatures, which is simply the

negative of divergence of the radiative heat flux:

qgen = -V' r (2.8)

Scattering effects can assumed to be small compared to absorption for pure fluids such as molten

salts, and the RTE can be simplified to: [53], [64]

dI 2  -

= K AIb -b2 1A (2.9)dx

A multi-region approach can be used, whereby a gray medium approximation is used so that the

extinction coefficient is equal for all wavelengths in the region; that is #=8;, [52], [64]. For the

simplified case where only the incident solar radiation is considered, omitting the blackbody

emission term, the volumetric heating becomes: [65], [66]

qgen (x) p fIo e-x (2.10)
dx

Lenert presents numerical solutions to Eqs. (2.7) to (2.9) using a two-region gray body

approach for no-flow volumetric receivers [64]. Region I represents wavelengths smaller than 2

pm, while Region II wavelengths are greater than 2 pim. Figure 2.7a depicts the volumetric

heating profile for a receiver with a Region I optical thickness is #L = 4, such that 98% of the

incident solar radiation is attenuated within one pass of the receiver. The optical thickness of

Region II is set to infinity, such that the fluid is a black body radiator in the IR. Figure 2.7b shows
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the developing temperature profiles over time for the same receiver, subject to surface convection

and radiation losses.

Initially the temperature profile closely resembles the heat release profile; however, an

inverted temperature profile develops as time progresses. The gradient at the top of the receiver is

dominated by the heat loss from the top surface, while volumetric heating dictates the profile

towards the bottom of the receiver. As the temperature of the fluid increases to high temperatures

(above 900 K), the medium begins to radiate in the spectral region which is no longer "optically

thick," as predicted by Eq. (2.5). Hot spots inside the receiver will re-radiate more intensely so

the temperature profile begins to average out.

To further avoid hot spots and minimize system complexity, natural convection within the

salt is needed. Temperature inversions beyond critical values (i.e., Rayleigh numbers exceeding

the critical value for the particular geometry and molten salt) will incite buoyancy driven flow

and natural convection loops. This can be designed into the pond using numerical methods [63].

Preliminary results using the full variable-property Navier-Stokes equations to produce direct

numerical simulations show thermal gradients can be used to create plumes to mix the salt [67].

0 0
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Figure 2.7 - Volumetric absorber heating profile

(A) Volumetric radiative heating profile, 8L = 4. (B) Temperature distribution within fluid.
From [64]
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Non-imaging lid

The hillside heliostat field allows for direct entry into the molten salt pond for a majority

of rays; any that are reflected or off-target can be redirected or absorbed by a grazing incidence,

non-imaging cover over the pond (Fig 2.3). An important design goal is to shape the cover to

function as a diffuse reflecting concentration booster, not unlike the CPC units used in beam

down towers [68], [69]. This cover serves two additional purposes: to reduce losses to the

environment and to condense a majority of the vaporized salt which otherwise would be carried

away.

Both the molten salt pond and the lid will exchange heat with each other and to the

environment by radiation, convection and conduction; the primary heat transfer mechanism is

through radiation. The system cover will be lined with refractory firebrick and backside cooled,

so the salt vapor rises and condenses on the inner surface of the cover, akin to frost collecting on

evaporator coils within a refrigerator. The resulting white surface will grow until the thickness

results in a thermal resistance that condenses the salt vapor, but the surface continually melts and

returns liquid salt to the pond. The liquid/solid interface is expected to act as a diffuse reflector to

incoming light that reflects off the surface of the salt, which serves to further insulate the pond

and reflect radiation into the molten salt. Solidified salt has a very high reflectivity in the visible

and near-infrared spectrum (p - 0.9) and behaves nearly as a Lambertian reflector; liquefied salt

will be subject to grazing-angle Fresnel surface reflections and as such, much of the light

impinged onto the lid will be reflected back to the pond [70]. The energy that is transferred to the

lid is from lower-temperature, longer wavelength radiation from the salt surface. Only a small

fraction of incoming photon energy is converted to thermal energy at the lid.

The vapor pressures of molten salts are fairly low, on the order of 0.001 bar for chloride

salts at 900 'C. As a result, the overall fuming rate is low, given as 0.2 kg per square meter of

exposed salt area per hour for a chloride salt bath at 870 'C [71]. For the 5 m deep x 25 m

diameter, 180 MWeh system discussed previously, this equates to roughly 100 kg/h, or less than
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0.06% of the entire salt mass. Lower temperature nitrate CSPonD systems will have lower salt

vapor pressures and mass transfer, and reduced radiative transfer between the salt surface and the

lid as compared to higher temperature carbonate or chloride salt systems.

The lid is not dependant on mass transfer for cooling - active cooling will be employed to

obtain the desired lid operating temperature. Cooling loops would be concentrated in high heat

flux regions, and various zones can be employed for temperature control throughout the lid. It

may be found that the optimal lid design is not isothermal, but has varying temperature to limit

radiative transfer and convective losses. As a result, the shape and temperature of the lid, and

aperture location with respect to the lid structure, can be configured to minimize losses to the

environment [72-76].

The collected cover energy, unique to CSPonD systems, can vary from 2-20% of the

incident solar power and this intermediate-temperature heat is used elsewhere in the plant [77].

This depends primarily on the plant layout: hillside topology, operating temperatures, and

seasonal and diurnal position of the sun. As analyzed by Ghobeity et al., in a dual-purpose

desalination and electricity production plant using the CSPonD concept, heat collected by the

cover can be used for preheating feed water to the steam generator or desalination feed water [77-

79]. The CSPonD receiver can thus provide two heat extraction loops: low temperature from

actively cooling the pond cover, and high temperature directly from the heated molten salt. These

can be optimally controlled to maximize power output, even when the sun is not shining.

Integral Divided Thermocline Storage

The top surface of the salt needs to remain at a constant level for consistent solar

absorption; hence, the tank is split into two zones with a moving barrier plate. The top zone is the

hot salt side, and the bottom zone is the cold salt side, as shown in Fig. 2.8. A corrosion and creep

resistant "divider plate" axially separates these two zones, providing a physical and thermal
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Figure 2.8 - CSPonD storage system at various states of charge

(A) At end of a sunny day, divider plate has moved down and the hot salt region is fully charged.
(B) After prolonged heat extraction without solar input, the divider plate has moved up and the

cold side is full.

barrier between the thermally stratified hot and cold layers within the tank. The divider plate is

well insulated and near-neutrally buoyant; it is moved axially by small actuators with negligible

power consumption to maintain the hot and cold salt volumes required for continuous operation.

Hot salt is extracted from the top of the receiver tank, sent to a steam generator and returned to

the bottom of the receiver tank at a lower temperature.

There is a generous annular clearance between the divider plate edge and tank walls. This

clearance prevents binding and allows for annular salt flow past the plate during daytime charging

of the system, where colder salt from below moves past the annular clearance space between the

barrier plate and tank wall to be reheated. Incoming light penetrates deeply and a portion of it will

be absorbed on the divider plate causing convection currents, heating the hot salt to a uniform

high temperature. As the system collects more energy and the top hot section grows in thickness,

the divider plate is lowered in the tank. Nighttime energy extraction, with a closed aperture, is

accomplished by raising the divider plate, following the natural thermocline progression upward



Chapter 2: The CSPonD Concept

as the hot salt volume decreases. As a result, high-temperature steam can be provided even as the

average temperature of the salt in the tank decreases.

Figure 2.8a shows the end of a sunny day: the divider plate has moved down and the hot

side is fully charged. Figure 2.8b depicts the system after a prolonged period of heat extraction

without any solar input: the aperture is sealed with an insulated door, reducing losses to the

environment and the divider plate has moved up and cold side is full.

Design and control

The annular gap between the divider plate and tank walls can have a significant effect on

system performance. An excessively large gap will fail to limit conduction, mixing and radiative

transfer (which dominates as temperatures increase and the molten salt begins to radiate more

energy in shorter wavelengths where the extinction coefficient is low) between the hot and cold

salt layers; a very small gap may cause jamming due to thermal strains on the divider plate, and

could possibly create salt freezing failures between the divider plate and tank walls, immobilizing

the system. As the divider plate is lowered when the aperture is open and the tank is being heated

by sunlight, colder salt from below moves past the annular clearance space between the barrier

plate and tank wall to be reheated (Fig. 2.9). Semenyuk describes a means to calculate exergy

losses for mixing two working bodies differing only in temperature [80]. For a nitrate CSPonD

receiver with hot salt at 823 K, cold salt at 523 K and ambient temperature of 300 K, the

exergetic mixing efficiency (1 = no losses) is found as 0.935; this value approaches 1 in higher

temperature systems as the salt temperatures increase.

The salt-filled annular clearance between the loose fitting divider plate and tank walls

acts as a buffer by limiting thermal gradients as the divider plate moves. Degradation of the tank

walls due to thermal shock is reduced compared to well-sealed barrier thermoclines with sharp

thermal interfaces [39]. Clearly, for constant divider plate speeds, the blow-by salt velocity is

inversely proportional to the annular gap area.
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Figure 2.9 - Schematic of divider plate motion during charging

Salt blow-by plumes (A) wide gap: weak, low momentum; (B) narrow gap: high momentum.

For a cylindrical tank, with gap clearance ogap much less than the tank diameter Drank, the

annular gap area can be approximated as:

Agap = 7rDtank ogap (2.11)

The total volumetric flow of the gap blow-by salt is the sum of the heat exchanger volumetric

flow QHx and the volume of salt displaced by the moving divider plate, acting as a piston:

Qgap = QHx + 7rDtank2 - Vplate (2.12)

where vplate is the velocity of the plate. The average velocity of the annular salt flow becomes:

vgap = Qgap / Agap (2.13)

As depicted in Fig. 2.9, different gap clearances will result in different flow and mixing

patterns. Previous work on buoyancy-driven laminar thermal plumes and turbulent thermal and

(A) (B)
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jet plumes provides insights into probable plume geometry, fluid entrainment mixing and plume

spreading angles [81-83]. Figure 2.9a shows a relatively wide clearance, which results in very

slow velocities past the divider plate, and weak laminar plumes of cold salt. However, Fig. 2.9b

depicts a gap sized to ensure a well-mixed plume of cold salt. In this case, cold salt has enough

momentum to penetrate far into the heated salt region; subsequent Rayleigh instabilities (to be

discussed in Chapter 4) and the laminar-turbulent or fully turbulent nature of the plume promotes

good mixing. However, relative "blow-by" salt velocities are slow (much less than 1 cm/s for a

nominal 10-20 cm annular clearance on typical systems) during the daily "charging" downward

motion of the plate, displacing fluid and pumped cold salt returning from the heat exchanger.

Additionally, the gap should not be made so small that the expelled molten salt creates a

high drag force as the divider plate is positioned. A very small gap would result in high velocity

salt blow-by flow, with increased flow resistance; a large drag force on the divider plate would

require larger positioning actuators. An estimate for the drag force on the divider plate can be

found as:

Fdrag - V2 Psalt Vgap2 Cd Apiate (2.14)

where psat, and Apiae are the density of the molten salt and area of the divider plate, respectively.

For a circular flat plate perpendicular to the fluid flow, the drag coefficient, Cd, is 1.12 [61].

Modifications to the flat concentric disc divider plate geometry can be envisioned which

alter the thermal and physical separation and mixing characteristics. For example, bypass holes,

perforations, or grooves of appropriate size can be employed on the divider plate to alter

performance, creating areas of differential flow which cause plume instabilities and promote

mixing in the upper region. Figure 2.10 illustrates a design flowchart for obtaining desired divider

plate gap performance.

The divider plate would likely be a ribbed steel or corrosion resistant alloy plate. Without

insulation, however, it would be heavy; yet only a modest thickness of insulating firebrick is
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Figure 2.10 - Design process for divider plate gap

needed to make it near-neutrally buoyant in the molten salt. Alternatively, a hollow tubular

structure can function to thermally separate the hot and cold sides while maintaining near-neutral

buoyancy. The hollow chambers could be designed with a slight internal pressure at the operating

temperature to minimize hydrostatic stresses in the chamber walls. This could be achieved by

making the divider from a series of capped pipes. Another method of construction would entail a

fluid-tight outer shell, utilizing insulative filling material. The upper surface of the divider plate

would likely be made from stainless steel or other suitable high temperature alloy, compatible

with molten salts. Over time, a rough oxide layer will form, increasing the surface's absorptivity
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and causing the reflected energy to be diffusely scattered. This will enhance the development of

hot spots and create a temperature inversion within the upper hot salt layer, initiating convective

mixing cells. The upper surface of the divider plate may even employ three-dimensional features

to magnify this effect.

As identified by Lata et al., thermal deformations in service pose additional concerns

[84]. With the upper surface of the divider plate at the hot temperature, and the lower surface at

the cold temperature, an overall state of bending deformation is developed due to thermal strains.

This spherical domed shape would decrease the working height of the storage tank, in addition to

potentially triggering structural problems in the divider plate. Not to mention that a curved

divider plate would alter the naturally plane interface between the two salt layers, and thus, the

overall effectiveness and insulating properties of the assisted thermocline would be altered.

However, simply adding ribs and other features to increase the geometrical stiffness and/or

preforming the divider plate can alleviate all of these problems. Additionally, ribbing or

corrugating reduces the chance of local buckling - mitigating the risk that the divider plate would

morph into a giant wavy "potato chip" over time.

An optimal design will be near-neutrally buoyant and well insulating, yet still promote

adequate mixing of the annular salt plume. When these objectives are achieved, the drag and

restraining forces on the divider plate become negligible; the radial clearance between the divider

plate and the tank walls creates Stokes-like flow of the slowly moving plate and salt. As a result,

low cost actuators can be utilized to position the slowly moving divider plate. An additional

element of operational control is gained by actuating the divider plate, avoiding raft instabilities

and jamming failures inherent in passive divided thermocline systems. Figure 2.11 depicts a

possible control scheme for divider plate position in the tank. This strategy is illustrated in Fig.

2.12 over two day/night cycles: one "ideal day" and one mostly cloudy "transient day." As a

general rule, if the instantaneous solar input to the CSPonD receiver is less than the rate of heat

extraction (equal to the mass flow rate of salt to the heat exchanger multiplied by the product of
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Figure 2.11 - Position control strategy for divider plate

Cp is the specific heat capacity of the molten salt.

the specific heat of the salt and its corresponding temperature drop) , the divider plate would be

moved up in the tank to maintain the required hot & cold volumes. Figure 2.12a illustrates a

CSPonD receiver designed to provide continuous, 24/7 power extraction; Fig. 2.12b depicts the

same CSPonD receiver used in a larger load-shifting application for several hours each afternoon

and early evening. In both cases, the CSPonD receiver is able to supply the power cycle with the

design load regardless of instantaneous or diurnal solar variations.

Greater power cycle efficiencies can be realized with the use of larger steam turbines.

This can be accomplished with larger CSPonD receivers or several smaller units feeding a

I II
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common power block. However, many locales will favor the use of CSP-generated power for

peaking purposes, with greatly reduced storage needs, as in Fig. 2.12b. After peak demand

subsides, heat extraction can be stopped and nighttime losses from the well-insulated receiver are

minimal.
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Figure 2.12 - Simplified divider plate positioning example for two day/night cycles

Ideal solar input (left) and transient, cloudy solar input (right).
For a constant 20MW extraction system (A) and a load-shifting eight hour, 60 MW system (B).
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Heat extraction

The power block salt pumps and heat exchanger/steam generator considered for a near-

term nitrate salt CSPonD system are commercially available and have been proven on CSP

parabolic trough plants with separate molten salt storage systems [34], [47]. The CSPonD system

could likely support increased power cycle temperature requirements and the two zone tank could

still be used. A high temperature CSPonD could supply hot salt directly to the power block heat

exchanger; alternatively, two salt loops can be used where hot salt is blended with some cold salt

recycled from the heat exchanger to create a constant salt temperature entering the heat

exchangers. The power extraction system in high temperature designs can be leveraged from salt

handling and power cycle technology developed for the molten salt reactor (MSR), part of the

Aircraft Nuclear Propulsion Program [85]. The MSR program successfully tested reactor designs

with salt temperatures over 800 'C, a primary salt to secondary salt intermediate heat exchanger,

and a secondary heat transfer loop with a pump that rejected heat to an air-blast heat exchanger.

Liquid salt pumps were tested up to 6,000 L/minute at temperatures exceeding 700 'C [86], [87].

Typical molten salt systems employ vertical shaft centrifugal pumps which insulate and

mount the drive motor above the salt storage tank. A conventional bearing assembly supports a

long vertical shaft and impeller, with salt-lubricated lower bearings suspended into the liquid salt

tank [20], [88]. The pump could be mounted towards the rear of the CSPonD DAR with a salt

pickup located to extract hot salt from the upper region of the tank. The cold salt return can be

accomplished with a vertical pipe whose exit is near the tank bottom, preferably diametrically

opposite the hot salt pickup. This accomplishes two design simplifications: it eliminates any

radial protrusions into the tank walls, and establishes a unidirectional flow pattern within the

receiver. However, a cold salt return pipe which does penetrate the tank at a lower elevation

would allow for a passive gravity draining, an ideal countermeasure in a worst-case emergency

tank draining and shutdown.
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Weir flow extraction

As an alternative to the vertical shaft centrifugal pump method, a weir, or waterfall edge

can be built into the back wall of the receiver. Similar to "infinite edge" pools where water spills

over a horizontal edge into a catch basin and is pumped back into the pool, a molten salt weir

would provide a simple means of hot salt extraction for the heat exchanger, before being pumped

back into the lower zone of the divided thermocline tank. There are several precedents besides

swimming pools for the design; high temperature variants include chemical refining bath

skimmers and glass tank furnaces, whereby a notched platinum weir plate is used to limit molten

glass flow at temperatures approaching 1300 'C [89], [90]. A CSPonD weir plate need not be

made from costly refractory alloys; chromium-nickel high temperature alloys will suffice.

Weir-based salt extraction would provide several benefits. Any surface scum or debris

would be continually swept over the weir, providing a clean salt surface for light penetration.

Further, as in pool systems, a weir reduces liquid-container surface wave propagation - in effect

"smoothing" the pond should a severely choppy surface develop. Additionally, the catch basin or

trough below the weir can be sized to accommodate thermal expansion of the entire volume of

salt, so that a separate expansion tank is not needed to keep the salt surface at a constant height

within the receiver.

A centrifugal pump can be used to flow the salt from the catch basin through the heat

exchanger, thereby forcing cold salt to return to the bottom of the tank, as shown in Fig. 2.13a.

Alternatively, the weir's position can be controlled to alter the static head present in the catch

basin. If the nominal pressure drop on the molten salt side of the heat exchanger is designed to

correspond with the nominal salt level in the catch basin, alterations to the catch basin level will

cause a corresponding change in flow through the heat exchanger. Figure 2.13b depicts a

schematic of such a system. The cold return would obviously need to be pumped back into the

CSPonD DAR - but the colder salt temperatures would dramatically improve pump reliability
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Figure 2.13 - Weir hot salt heat extraction scheme

Weir provides "skimming" action on pond surface: (A) hot salt can be pumped to HX;
(B) static pressure head in catch basin can be used to controlflow to HX

and performance. An order-of-magnitude check shows the concept feasible only if a low pressure

drop heat exchanger is employed: a 5 m nitrate solar salt (density of 1740 kg/m3 at 550 'C)

column results in 85 kPa static pressure head. Existing nitrate salt evaporators and superheaters

have been designed with full load salt side pressure drop limits of 450 kPa (65 psi) [47].

System sizing considerations

In the range from 1 kWe to 100 MWe, power block efficiency increases with size, while

the cost per unit power produced decreases. Conversely, due to the divergence of the sun's rays,

light spillage and collection efficiency decreases with increasing field area and heliostat range.

Even with perfectly focused heliostat optics, the sunspot image at the receiver is equal to the

heliostat range multiplied by angle subtended by the sun, 0.520 (0.09 radians). As an example, a

range of 10 m results in roughly a 90 cm diameter image; a one-kilometer range creates a 9 in

diameter sunspot with appropriately spherically shaped mirrors. For each locale, there is an
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optimal heliostat field size which maximizes collected power while still maintaining a small solar

image and aperture size to so radiative losses are manageable.

Thus the CSPonD system may be deployed in arrays with the option of multiple CSPonD

systems feeding a common central power generation plant. There are large economics of scale

associated with steam turbines; but, there are complications in long-distance heat transport and

coupling multiple power sources. Fortunately there are examples, such as multiple coal plants

including the Tennessee Valley Authority's Bull Run plant, where two boilers feed a common

steam plant. More recently, up to 8 modular nuclear reactors are planned to feed high-temperature

steam to a single turbine in a Chinese program to develop modular high-temperature nuclear

reactors. A two-reactor station is under construction to demonstrate the reactor and combined

steam system [91].

Materials selection

Molten salt selection

Janz has compiled a comprehensive database with a wide array of property data for

thousands of molten salt mixtures of varying composition [59], [92]. More recently, Williams has

examined molten salts for use in the Next Generation Nuclear Plant (NGNP) [87]. As previously

mentioned, some salt eutectics that appeared ideal on paper (e.g., low melting point, wide

operating temperature range) were found to be reactive in lab furnace melting experiments. For

example, the presence of a moist atmosphere triggered the formation of an acidic gas (HCl) in a

candidate magnesium-sodium-potassium chloride salt mixture above 450 'C. While these salts

may be ideal for use in sealed, non-oxidizing NGNP cooling loops, using similar salts at high

temperatures would necessitate an inert purge gas over the CSPonD system - possibly requiring a

transparent aperture window. In keeping with the intent to develop a low-cost, open receiver
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system, there is renewed interest in alternate salt mixtures capable of operating in air without

degradation.

Fortunately, commercially available molten salt baths, successfully used in open-bath

metallurgical heat treating processes for several decades, provide promising salt candidates for

CSPonD receivers. There is a large industrial experience base with water-soluble, inorganic salts

used in the thermal processing of metal components moved in and out of the salt bath [71], [93].

Low-cost eutectic salt mixtures achieve the desired operating ranges: low temperature (130-600

'C) quenching/tempering nitrate-nitrite and nitrate salts; high temperature (400-800 *C)

tempering/drawing carbonate salts; and neutral high-speed hardening (850-1100 *C) chloride salts

(Fig 2.14). All salts are very fluid at their respective working temperatures, with low viscosities

and surface tensions. Table 2.1 lists common metallurgical heat treatment salt compositions and

representative properties.

Figure 2.14 - Open air NaCl-KCl salt bath at 900 C for metal heat treating

(Picture taken at Metallurgical Solutions, Inc. in RI)

The heat treating industry has developed standard methods to test and control the salt

chemistry using chemical rectifiers and periodic removal of metallic oxides which settle to the

bottom of the tank. The rate of impurity buildup will be much lower for CSPonD than for a heat
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treatment bath with its daily throughput of steel parts. Regardless, it is anticipated that impurities

in suspension will have a significant effect on the attenuation properties of the salt and will

therefore have to be closely monitored and controlled.

Table 2.1 - Representative metallurgical heat treatment salts appropriate for CSPonD

Freezing Decomposition Volumetric
Salt type Composition (wt. %) Fezn temp sitio heat capacitypoint (C tep(C) (kj/M3 -K)

Binary nitrate 60:40 222 593 2920(solar salt) NaNO 3:KNO 3

Ternary carbonate 32:35:33 397 850 3560(Cartescal) Li2CO 3: K2CO3:Na 2CO 3

Binary chloride 60:40 660 1000 1740(#4 high speed hardening) NaCl:KCl

Nitrate and chloride datafrom [92], [94]; carbonate from [92], [95].

Upon first glance at Table 2.1, it would appear that the carbonate ternary eutectic salt is

an excellent choice for all CSPonD DARs. It possesses a relatively low melting point and a wide

operating temperature range, and has a high volumetric heat capacity. Unfortunately, this salt

contains a significant amount of lithium carbonate, which increases the salt price relative to

binary mixtures which contain cheaper commodity-based salts of sodium and potassium. Indeed,

the ternary carbonate salt may prove economical on small-to-medium size systems where the cost

of salt needed is small in relation to the overall system cost. Water introduced into carbonate salts

has been shown to cause hydrolysis of the molten solvent, forming bicarbonate and hydroxide

ions [96]. Purification and regeneration can be accomplished by bubbling carbon dioxide through

the melt.

Nitrate salt mixtures are well known in the thermal processing industry, and favored in

CSP and chemical processing applications for their relatively low melting temperatures and
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chemical stability up to their peak operating temperature. A common ternary eutectic salt is

potassium nitrate, sodium nitrite and sodium nitrate (i.e., Hitec@ Heat Transfer Salt: 7:53:40

wt.% NaNO 3:KNO 3:NaNO 2) which melts at 142 'C and can be safely heated to 450 'C. However,

when heated to higher temperatures in an open system, the nitrite is slowly oxidized by

atmospheric oxygen into nitrate, which raises the freezing point.

The sodium-potassium nitrate solar salt (60:40 wt.% NaNO3:KNO 3) previously

mentioned as ideal for a near-term CSPonD system, which is widely used for CSP thermal

storage, has a melting point of 222'C. In contrast to the carbonate eutectic, water has a significant

solubility in the binary nitrate melt; it can be rapidly and reversibly taken up or removed from the

melt up to 600 'C. Over the temperature range 500-620 'C, there is thermal decomposition of the

nitrate ion to form nitrite and oxygen [97]. Additionally, pure carbon dioxide attacks the melt at

all temperatures above 250 'C, producing carbonate ions. The solubility of carbonate is strongly

temperature dependent and is approximately 5 mol% near the eutectic point [98]. Such a high

solubility presents little concern for a thermal storage system because an extremely long time

would be required to absorb enough CO 2 from the atmosphere to saturate a large mass of molten

salt, however thermal cycling may result in carbonate precipitation, causing problems in pipes

and the heat exchanger. If carbonate and nitrite buildup is a significant problem, then regeneration

of clean melt can be achieved by bubbling pure nitrogen dioxide, or a nitrogen dioxide/oxygen gas

blend through the salt [99]. Carbonate ions, dissolved water and nitrite ions can be detected by

direct in situ electrochemical measurements; the CSP plants using nitrate salts have not had

problems regarding salt contamination or impurity precipitation [7], [34], [47]. However, both

nitrate and nitrite-nitrate salt mixtures can produce hazardous and corrosive nitric acid fumes if

heated beyond 700 *C.

The long term goal is to design a CSPonD system capable of using very low cost, stable

salts, such as the sodium-potassium chloride mixture (60:40 wt.% NaCl:KCl) that can operate



Chapter 2: The CSPonD Concept

safely up to 1000*C. Such a high temperature source could easily power more advanced, efficient

power cycles, increasing overall solar-to-electric efficiency. As mentioned previously, some

chloride salts can generate small quantities of gaseous hydrogen chloride as a hydrolysis product

during their melting. Hydrogen ions can be introduced into molten salts from atmospheric

moisture, from the bath lining, or it can be present in incompletely dried salt. The quantities are

far below any hazardous limits based on thermodynamic calculations and industrial experience. If

required, there are two control strategies: (1) salt additives (i.e., sodium hydroxide) to reduce the

thermodynamic potential for HCl generation, and (2) controlled atmosphere blanketing of the salt

to minimize moisture input. Fortunately, the potential for HCl generation using the binary

chloride salt is low, as evidenced by decades of successful use in the metallurgical industry.

Common chloride salt rectification methods include bubbling gaseous methyl chloride through

the salt, or adding ammonium chloride pellet blends as needed.

The short list presented of three candidate salts should not be considered final by any

means. Much research is being conducted on new salt formulations which have reduced freezing

temperatures and wider operating ranges, in the hopes of developing more robust sensible heat

thermal storage fluids. For example, Bradshaw and Brosseau describe quaternary nitrate salt

mixtures which melt at temperatures below 100 'C and have thermal stability limits beyond 500

'C [98], [100]. These mixtures contain calcium nitrate and lithium nitrate to depress the melting

point of a sodium-potassium nitrate solar salt mixture. These and other candidate salt

formulations can be evaluated for use in CSPonD systems based on thermal and optical

properties, cost and availability.

Safety

Molten salt baths create a special set of hazards due to their high working temperatures.

The salts previously described are not inherently dangerous to the environment when at ambient

temperature: solar salt is used extensively as fertilizer and the components of the binary chloride
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salt are used in food preparation. Lithium, potassium and sodium carbonate are used in

medicines, soaps and water softening agents, respectively. But molten salts can create bums, fires

or even trigger explosions if the conditions are right. Lipsett describes violent explosions and

damaging shock waves as molten metals come into contact with water - molten salts can have the

same behavior [101]. Care must be taken so that the salt pond is thoroughly protected in the case

of inclement weather and driving rain.

Nitrate and nitrite salts, while operating at lower temperatures than other molten salts,

can cause explosions. These mixtures are powerful oxidizing agents, and in the molten state they

become highly active [102]. This requires extra care in handling and temperature control,

because, as mentioned, nitrate salts are subject to rapid breakdown with emission of toxic and

reactive fumes when overheated.

The use of quartz windows was considered to reduce thermal losses and eliminate mass

transfer across the aperture. However, as mentioned in literature and as observed in testing, quartz

crucibles in contact with many salts tend to lose their optical clarity with time [103]. The salts

chosen as appropriate for CSPonD systems have limited toxicological and environmental effects

should some condense outside the receiver; however, any system which regularly loses heat

transfer fluids (other than steam) to the environment will likely be denied an operational permit.

Fortunately, the salt bath heat treating industry provides guidance. Taken from the ASM

Handbook on heat treating, regarding the evaporative nature of a NaCl-KCl bath [71]:

Salt bathfurnaces that operate at temperatures above 650 'C (1200 'F) will
fume.... Sodium chloride and potassium chloride are both edible; however, in
large quantities they can be a nuisance. The best way to overcome this nuisance
is to capture it at the source.

Salt bath furnaces employ ventilation hoods, either offset from the salt surface or directly

overhead to capture salt fumes at their source (Fig. 2.15). The salt vapors are drawn into the

intake, and condense on the intake plenum. The accumulated salt is scraped off during routine
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maintenance. A similar system can be installed above the aperture or integrated into the lid of the

CSPonD receiver, perhaps utilizing an intake plenum with an automated salt scraping and

collection system. Salt vapor and thermal losses can also be mitigated with the use of air curtains

installed across the aperture [104].

Figure 2.15 - Side draft fume hood used to collect salt vapors

Fume extractor at rear of 600 'C tank with condensed salt buildup
(Picture taken at Metallurgical Solutions, Inc. in RI)

Pond construction

There is a wealth of knowledge in regards to commercial salt bath furnace construction

[93]. Stainless or carbon steel tanks are used to contain nitrate salts, depending on their operating

temperatures, and are externally heated using combustion or resistance heating methods. Typical

high temperature chloride salt baths utilize internal mortarless refractory firebrick insulation,

followed by a mild steel outer casing and external ceramic fiber insulation. A "freeze plane" is

formed within the alumina-silica firebrick, and as a result, the steel tank is not exposed to

corrosive molten salts. These internally-insulated tanks are heated using submerged or over-the-

top electrodes, whereby electrical current (on the order of kiloamperes AC) heats the salt through

Joule heating.
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A similar internally-insulated design is used to construct the CSPonD receiver. The tank

is internally insulated with mortarless insulating refractory brick, whose thermal resistance and

mass limits temperature swings at the mild steel tank shell, as depicted in Fig. 2.16 [105]. If

needed, a thin corrugated alloy liner can be employed which reduces erosion and spalling of the

refractory brick in the tank [106]. As demonstrated in CSP hot salt storage tank designs, thin,

thermally conductive corrosion-resistant liners can be used to reduce axial thermal gradients and

thermal shock to the internal firebrick from fluctuating salt levels. This internally-insulated

design has been shown to be more cost-effective than a stainless steel tank with external

Steel tank

Distance from tank exterior

Figure 2.16 - Tank wall insulation schematic

Cross-section adapted from Kolb [104] and Gabbrielli and Zamparelli [105].
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insulation [106]. Metallurgical salt baths have proven commercial "super-duty" alumina/silica or

pure silica fireclay bricks adequately resist corrosion from molten nitrate or chloride mixtures

[71]. Recent tests have verified the cyclic stability of silica particles in molten sodium and

potassium nitrate at the temperatures considered [37]. The hydrostatic pressure is transferred

directly to the steel vessel through the flexible liner and the firebrick layer. Brackets can be

welded to the steel shell to provide stability of the firebrick column. Electric heating elements can

be embedded in the tank floor insulation as a contingency, to prevent the salt from freezing during

extended periods of inclement weather.

The lid and closeable aperture doors can be lined with refractory bricks or lightweight

insulating refractory board. As mentioned previously, the cover will be backside cooled to

enhance the buildup of salt that condenses on the inner surface of the cover. However, the salt

vapors would also condense on the inner surface of quartz aperture window, reducing its effective

transmission. This fogging is a primary reason why a quartz window for the aperture is not being

considered.

The external surface of the receiver is wrapped in a layer of ceramic fiber insulation,

which is in turn, covered by a thin aluminum protective cladding. The entire system is surrounded

within a secondary containment area, whereby molten salt can gravity-drain into a catch basin or

culvert in cases of severe emergencies or major overhauls [34].

Corrosion considerations

While metallurgical salt baths have short (1-3 year) service lives before being rebuilt,

CSP systems utilizing molten salts as a thermal storage medium need to operate for 20 years or

more. As a result, extensive research has been conducted to determine the corrosive effects of

molten salts on container and piping materials [6], [37], [47], [88], [107-110]. Similar to heat

treatment baths, nitrate salts are compatible with stainless steels and mild steels depending on

operating temperatures. Goods et al. describes solar salt (nitrate) corrosion rates as linear with
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respect to time [108], [109]. At 570 0C, the annualized rates of metal loss were found to be

between 6-15 im/year for AISI type 304 and 316 stainless steel specimens, depending on salt

impurity content. The same mixtures at 316 *C result in corrosion rates of 1-4 pm/year in A36

mild steel. Similarly, Gabbrielli and Zamparelli suggest the use of AISI type 321 stainless for hot

salt tank liners, whereby the increased alloy content reduces corrosion rates [106]. A corrosion

allowance can be incorporated into metallic CSPonD tank components, such as the flexible tank

liner.

Carbonate salts are known to be compatible with stainless steels, nickel-based alloys and

high chromium alloys up to 700 'C; electrofused alumina ceramics can be used with oxidizing

atmospheres up to 1000 'C [111]. However, molten carbonates can dissolve significant amounts

of silica; any refractory materials in contact with carbonate salts should not contain any

significant silica content.

Chloride salts are more troublesome, due to their increased working temperatures and

inherent corrosive nature with ferrous alloys. As Seybolt writes [112]:

When Ni-20Cr alloys and stainless steels are oxidized while submerged in molten
[chloride] salt, readily oxidizable alloy components, such as chromium, and in
some cases iron, migrate to the surface to form non-adherent, granular and thus
nonprotective oxides. This loss of alloy constituents causes a counter current
flow of vacancies which condense into an interconnecting pore network filled
with salt.

This mechanism of intergranular corrosion with non-adherent oxide layers removed by the molten

salt can lead to premature container failure. However, higher nickel alloys such as Alloy 600 can

be used, and alternative Fe-Cr-Ni-Si austenitic (UNS S30815) and Fe-Cr-Si ferritic stainless

alloys have been shown to form protective silicate layers limiting corrosive attack [113], [114].

Both alumina and silica refractory materials are compatible with molten chlorides; hence,

common A12 03 -SiO2 insulating firebricks are used extensively as low cost high temperature

molten salt container materials.



CHAPTER 3: CSPonD Performance



78



Chapter 3: CSPonD Performance

Receiver heating and efficiency analysis

Irradiance distribution within receiver

For a central heliostat located on the optical axis of the receiver aperture, the input flux

will be restricted to an ellipse of major axis Di, projected on the salt surface, calculated as:

D, = Da /sin $ (3.1)

where Da is the aperture diameter and # is the nominal beam-down angle measured from

horizontal. A portion of the incoming concentrated light is reflected off the molten salt-air

interface. This reflected fraction can be calculated from the Fresnel equations describing light as

it moves between media of different refractive indices. The reflection coefficients for s- and p-

polarized light are: [115]

-2

R sin(0, - 0,)(32R5 =1 (3.2)
sin(0, + O, )

- -2

R tan(0, - 0,).3
tan(0, + O,

The angles that the incident, reflected and refracted rays make to the normal of the

interface are given as i, 0, and 0,, respectively, and related by Snell's Law and the law of

reflection:

nsalt sin 0, = nair sin 0, (3.4)

r 0, (3.5)

where

0, =900 - (3.6)
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Since the incident light is unpolarized, containing an equal mix of s- and p-polarizations, the

reflection coefficient, R, is:

R = (R, + R /2 (3.7)

Equation (3.7) can be used to find the percentage of the incident energy which is reflected

onto the lid. Most CSPonD beam down systems will be designed to operate with a 100 beam

down angle or greater. Below this value, the surface reflection intensity increases dramatically,

increasing the heat load to the lid as shown in Fig. 3.1. For the sample case of nitrate solar salt

with $ = 20* and nsa = 1.413 [58], 84.7% of the incoming radiation refracts into the salt while

15.3% reflects onto the lid. It is important to recall that this reflected intensity is not necessarily

lost to the environment as in traditional designs; the lid can, and should, be designed to reflect

this radiation back to the salt and/or capture this energy. The reflected intensity calculated here

1.0

C

0

00.5
C

0.0
30 60
Beam down angle (#)

Figure 3.1 - Reflection coefficient for various beam down angles
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for a smooth surface represents an upper-bound, as the salt surface will likely have small surface

waves due to convective and extracted salt flows. Haltrin et al. has shown wavy water interfaces

to have reduced reflection coefficients as compared to smooth interfaces [116].

The intensity of the refracted light at various salt depths is then found with Equation

(2.1). Figure 3.2 illustrates the incoming solar irradiance distribution for a centralized heliostat on

the optical axis of the receiver, simulated using MATLAB. An entire heliostat field array can be

aimed to create a circular illumination distribution on the salt surface; much of the incoming

radiation will be absorbed near the top of the salt surface and towards the rear of the tank. Hence,

it is logical to extract high temperature salt in this location for the power cycle.

input flux

g' aperture

salt d = 0 m

1 m

2 m

3 m

4 m

5 m

tank wall
(height scaled)

Figure 3.2 - Irradiance distribution within CSPonD receiver

Relative irradiance for a single heliostat along the CSPonD receiver's optical axis, normalized
to 1 kW/m 2 peak intensity. A complete heliostat field can be aimed to create a circular

illumination on the salt surface.
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Capture efficiency analysis

A simplified model can be used to give first order efficiency estimates while the proposed

CSPonD receiver is "on sun." Key assumptions include:

= Uniform input flux is completely captured by the aperture

= Lid is well insulated to the outside environment

- Energy directed to the lid is completely absorbed

- Air/salt vapor above the pond is at the lid temperature

- No mass transfer through aperture (i.e., salt vapors from pond surface condense onto lid)

"Capture efficiency" (#capme) is defined as the fraction of incoming energy entering through the

aperture that is retained by the receiver - used to heat both the pond and the lid. Unique to

CSPonD receivers are these dual zones for heat rejection available at different temperatures.

Operators can choose to utilize low temperature lid designs for power cycle preheating, or hybrid

needs such as desalination feedwater heating or combined heat and power. High temperature lid

heat can be employed for primary power cycle heating, followed by superheating with the higher

temperature molten salt heat reservoir. Figure 3.3 depicts an energy balance diagram on a

simplified CSPonD DAR.

Energy to lid:
Qi

Qreflected

vaporization

rad, pond-lid

System Losses: Qconv, pond-lid

.rad, lid-aperture

conv, lid-aperture

Qrad, pond-aperture

Qtank

Figure 3.3 - Simplified CSPonD DAR geometry and energy balance diagram
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Figure 3.4 shows the design inputs used to calculate collection efficiency. Lid and salt

pond temperatures are just some of the key parameters needed to characterize a CSPonD receiver.

Others include input flux concentration, nominal pond diameter and average beam down angle of

the incoming concentrated light. Aperture size is driven by system sizing and input flux

concentration, and is used to calculate the system's geometrical view factors needed for accurate

radiative loss estimates to the environment. Other losses include conduction though the tank walls

and convection to the outside environment. The collected energy can be separated into net

amounts which are absorbed into salt and into the lid.

Beam down
angle

oncentration

Power rating

Assume wrst cas.values

Key Pond specs: ar

* Storage capacity

* Absorption depth
Radf

* Nominal diameter view f
* Salt temperature

* Lid temperature

Assume worst case values:

* Salt emissivity = 1
* Lid emissivity = 1
* Salt-air convection

coefficients

Figure 3.4 - Schematic of CSPonD receiver "capture efficiency" calculation

System design parameters are indicated in black boxes

-U

Cppurey
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Aperture area is determined by system sizing and input flux concentration<P:

Aa= Qin/ (3.8)

and is used to calculate the system's geometrical view factors needed for accurate radiative loss

estimates to the environment. For a central heliostat located on the optical axis of the receiver

aperture, the input flux will be restricted to an ellipse of major axis, Di, given by Eq. (3.1).

Clearly, if D, is greater than or equal to the nominal design pond diameter, Dp, a portion

of the incoming light will 'spill' onto the inside of the lid structure. A hemispherical lid cover is

assumed, which has a surface area:

A1= 27tD 2  (3.9)

where

Dz= min( Dp , Dp) (3.10)

and

Ap = 7/4 -D 2  (3.11)

The following view factor relationships can be derived using the radiation view factor for

any finite area of any shape on interior of hemisphere to the hemisphere's entire base [117], the

view factor reciprocity relationship, and the fact that the pond surface "sees" only the lid and

aperture areas:

Fp-I= 1- 2 (Aa/Ap) (3.12)

Fp,a ' (Aa/Ap) (3.13)

Fi-a V2 (a/AI) (3.14)
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The radiative heat transfer from the pond to the lid, from the pond to the aperture, and from the

lid to the aperture can be found using:

Qrad, -2 = F1-2 A1 2 (3.15)

Emissivities of unity were assumed to set an upper bound on heat losses through the aperture as

the view factors vary with aperture size and input flux concentration; in physical systems the salt

surface is expected to have an emissivity ~ 0.9, and the lid may have emissivity values ranging

from 0.1-0.9. In fact, the lid emissivity, temperature and geometry may be tailored throughout the

lid's surface to lower the overall heat losses to the environment.

The convective heat transfer from the pond to lid and from the lid to the aperture can be

approximated as:

Qconv,1-2= h A1 ( Ti - T2 ) (3.16)

where standard correlations for a heated surfaces can be used to find estimates for the natural

convective coefficient, h, for the salt and lid geometry.

An evaporation rate, y, defined as the mass of salt per exposed surface area per unit time

vaporized, can be assumed to calculate vaporization heat transfer from the pond's surface:

Qvap = y AMvap Ap (3.17)

Conductive heat loss through the tank walls can be assumed as a percentage of the overall system

capacity:

Qtank Qin (3.18)
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Using Equations (3.2), (3.3) and (3.7) to find the reflection coefficient, the incoming power

absorbed directly into the salt becomes:

if Dip : Dp:

Qdirect,salt:' Qin (1 - R)

if Dip> Dp:

Qdirect,salt = Qin (1 - R) - (Dp / Dip)2

(3.19)

(3.20)

The incident power reflected and spilled onto the lid is:

(3.21)Qreflect - Qin - Qdirectsalt

The net power to the salt is:

Qsalt = Qdirectsalt - (Qradp-a ± Qtank)

- (Qvap + Qconv p- + Qradp-l)

and similarly, the net power to the lid becomes:

(3.22)

(3.23)Qlid = Qreflect - (Qrad l-a + Qconv,l-a)

+ (Qvap + Qconvp-l + Qradp-l)

The capture efficiency, 77capture, can be calculated as:

(3.24)q capture _ gin - QIosses

gin

where

Qlosses = Qrad I-a + Qconv,i-a + Qradp-a + Qtank (3.25 )
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The exergetic efficiency, or ratio of useful work available versus the incoming solar flux,

for the pond, lid and overall CSPonD receiver can be calculated using Carnot cycle efficiencies,

with an ambient rejection temperature of T,:

%salt = (Qsalt / Qin) - (1 - To ! Tp,) (3.26)

Zlid (Qid / Qin) ' (1 - Tw / T) (3.27)

Zsys = Zsat + Zlid (3.28)

Table 3.1 lists the nominal design values used to find overall CSPonD capture

efficiencies for a 600 MWth storage system. The capture efficiency as defined by Eq. (3.24) is

plotted for the high (chloride) and low (nitrate) temperature designs, each with an assumed lid

temperature set at the freeze point of its respective salt (Fig. 3.5). At this lid temperature, a self-

sustaining salt vapor condensation and recycling loop is expected to develop within the receiver's

cavity, limiting heat and mass transfer outside of the receiver. For comparison, Solar I and Solar

II peak and average receiver collection efficiencies are shown [7]. Note peak concentrations are

limited to less than 1000 suns to avoid receiver tube failure for both Solar I and II receivers.

Table 3.1 - Nominal CSPonD design values for capture efficiency analysis

Parameter Design value

Peak power rating, Qn 65 MWt

Thermal storage 600 MWth

Salt volume 2500 m3

Pond diameter, D, 25 m

Average beam down angle, # 21.40
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Tube based-receivers, such as those used in Solar I and II, are designed so that incoming

flux strikes the tube near-normally to its surface. Unfortunately, a fraction of the incident light is

reflected off the receiver's surface and cannot be recaptured. In contrast, the CSPonD receiver

captures reflected light with the lid and converts it to useful heat, or depending on lid temperature

and construction, redirects it back into the salt. Both designs are subject to radiative and -

convective losses - but the proposed CSPonD receiver aperture area can be reduced as the

centroid of the aperture plane, by definition, functions as a virtual focal point for the heliostat

field and can be minimized without concern for material limitations. The incoming concentrated

light diverges after passing through the aperture; in addition, volumetric absorption throughout

the molten salt tolerates higher incoming fluxes since it is distributed over a significant depth. As

a result, overall efficiency is superior in high concentration CSPonD systems.

1.0

0 -- NREL Sol II Nitrate Salt: 550*C0.8 -salt 5650C lid temp 2400C

NREL Solar I: Chloride Salt: 9500C
. -steam 5000C lid temp 660*C

0.6-

0.4 -

0.2 -

0.0
0 500 1000 1500 2000 2500 3000 3500

Peak concentration (kW/m 2, 'suns')

Figure 3.5 - CSPonD DAR capture efficiency

Nitrate salt: pond at 550 0C, lid at 240 'C; Chloride salt: pond at 950 *C, lid at 660 'C.
Solar I and Solar II peak and average receiver efficiency values shown, from [7].
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Figure 3.6 plots the availability, or exergetic efficiency, of the CSPonD receiver. The

useful captured energy flows of the pond and lid are calculated using Eqs. (3.26), (3.27) and

(3.28) with Carnot efficiencies for salt and lid temperatures, rejecting heat to the environment at

25 *C. The chloride salt design, with high salt and lid temperatures (950 'C and 660 *C), exhibits

greatest overall system availability. It is interesting to note at low input flux concentrations,

nearly all of the captured energy is available at the lid; very little is directed to the molten salt

pond. The simple explanation is that low concentrations require large apertures and large

illuminated pond areas, both of which increase losses from the molten salt to the lid and the

environment.

200 600 1000 1400 1800 2200 2600
Peak concentration (kW/m 2, 'suns')

3000

Figure 3.6 - Exergetic capture efficiency of CSPonD receiver

The useful energy of the pond and lid are calculatedfor their respective temperatures, rejecting
heat at 25 C.
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Design parameter sensitivity analysis

Figures 3.7-3.9 examine the sensitivity of the 65 MWt nitrate salt (TsaIt = 550'C) CSPonD

receiver's efficiency to various design parameters: nominal pond diameter, average beam down

angle, and lid temperature. Varying the nominal pond diameter can drastically shift the amount of

power directed to the pond or lid (Fig. 3.7). Three receiver regimes are illustrated: (a) Pond

undersized: a portion of the incoming is light spilled onto lid walls, the amount of this spillage

and heat gain onto the lid decreases as the input flux concentration increases; (b) Pond exactly

sized for a specific aperture and particular beam-down geometry; (c) Pond oversized: the exposed

pond surface can be reduced to match the illuminated area, increasing concentration enables

further reductions in exposed salt surface area, further reducing losses and heat gain onto the lid.
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Figure 3.7 - Effect ofpond diameter on capture efficiency

Constant # =21.4, Tsal = 550 'C, Td 240 0C
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Again, at low input flux concentrations nearly all of the captured power is available at the lid;

very little is directed to the molten salt pond.

The abrupt change in slope of the net power to the salt and lid occurs at regime (b),

corresponding to the specific input flux concentration which results in a projected aperture height

exactly equal to the nominal pond diameter for a specific beam down angle. Below this point, the

required aperture area is larger than the projected pond area and the power delivered to the salt

decreases linearly with concentration, intercepting the x axis at the input flux concentration which

corresponds to the radiative and convective losses off of the salt's surface towards the lid and

aperture. Above this input flux concentration the aperture, exposed salt area and losses are

reduced, which incrementally increases power to the salt.

Similarly, Fig. 3.8 shows larger beam down angles (i.e., steeper hillsides for the heliostat

field) are effective at directing more of the incoming energy into the salt. A steeper beam down

angle has two effects: firstly, the illuminated or projected area of the aperture on the horizontal

molten salt pool is decreased, reducing required exposed salt area and subsequent losses.

Secondly, Fresnel reflections off of the salt surface are reduced, reducing the fraction of incident

light which is reflected onto the lid. The net heat to the lid approaches Fresnel reflection limits for

unpolarized light at very high concentrations.

Figure 3.9 shows reduced capture efficiency with increasing lid operating temperatures,

due to larger radiative and convective losses through the aperture. On the other hand, a higher lid

temperature reduces radiative exchange from the salt pond to the lid - effectively keeping more

energy in the salt. For example, with 240 'C lid and 550 'C salt temperatures, roughly 18 kW/m2

is lost from the salt surface to the lid. For the 2500 M3, 25 m diameter salt tank, this is roughly

14% of the incoming power when the receiver is on sun at the 65 MW, design point. With the

aperture closed for 16 hours, salt-lid radiative transfer would result in nearly 140 MWth of energy

transferred to the roof - nearly one-quarter of the 600 MWth (equivalent tol 80 MWeh at /th=
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0.30) storage capacity. This upper bound assumes a fully-exposed salt surface and a constant salt

surface temperature.
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Figure 3.8 - Effect of beam down angle on capture efficiency

Constant D, = 25 m, Tsait = 550 C, Tid=2400 C

Fortunately, high solar concentration enables reductions in exposed salt surface area,

further reducing losses and heat gain from the salt to the lid. As mentioned in Chapter 2, shaping

the lid to function as an integrated "concentration booster", or CPC, will allow for increased

irradiance on the salt surface while minimizing exposed salt area. The lid can be designed so high

flux regions on the optical axis of the receiver pass through the aperture to the salt unabated,

while lower intensity peripheral light skims the narrowing lid internal contours with grazing angle

reflections before striking the salt, as depicted in Fig.3.10.
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Also, the pond free-surface will cool due to radiative, as well as internal convective heat

transfer while off-sun. As a result, heat transfer from the pond to the lid will decrease.

Additionally, if energy was not extracted from the lid at a sufficient rate, the lid temperature will

increase; low lid thermal mass will result in quicker heat up and reduced nighttime losses. One

possible operational strategy would slow or stop energy extraction from the lid towards the end of

the day while still on sun, allowing the lid temperature to equilibrate with the salt, reducing

radiative transfer. An extreme implementation of this strategy could blast cooling air over the salt

surface, creating a protective, solidified salt shell surface which limits radiative transfer to the lid.

The salt crust layer could easily be melted away with concentrated sunlight during the next

daytime heating cycle. Yet another strategy would be to deploy a "radiation shield" over the salt

surface when the receiver is off-sun to substantially reduce radiative transfer to the lid. This

device could be as simple as a sliding metallic shield or a folding trap door, with or without

insulation throughout its thickness, whereby the upper surface of the metal has a significantly

lower emissivity than the molten salt [118].

Lid temperature control

Even with a fully-exposed salt surface area, the lid temperature can be controlled by

varying the amount of heat extracted from its cooling loops. Figure 3.11 depicts lid temperature

as a function of lid heat extraction while the CSPonD receiver is on sun for various salt

temperatures and input flux concentrations. Directionally-dependent lid absorptivity and

emissivity features can be incorporated to reduce overall heat loading impinged on the lid.

Similarly, lid lining materials which are spectrally selective and have stronger absorption and

emission in the infrared can reduce lid temperatures. Fortunately, both solidified salts and

refractory materials possess this characteristic [70].
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Figure 3.11 - On sun lid temperature for various lid heat extraction percentages

Spectrally selective lid linings (i.e., condensed salt vapors) result in cooler lid temperatures.

Figure 3.12 plots lid temperatures explicitly as a function of salt surface temperatures, for

a spectrally-selective lid surface (avis/kir = 0.44) while the receiver is on sun. The stagnation

temperature is shown in Fig. 3.12a, whereby no heat is extracted from the lid. Figure 3.12b

illustrates much cooler lid temperatures can be achieved with 20% lid heat extraction during the

daytime. At night, when there is no incoming light reflected onto the lid, temperatures can be

controlled with much less lid heat extraction, using the methods described in the previous section

to minimize pond-to-lid radiative losses.
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Figure 3.12 - Lid temperature maps as afunction of salt temperature while on sun

(A) Stagnation temperature, no lid heat extraction; (B) 20% lid heat extraction.

In contrast, Fig. 3.13 plots lid temperatures for beam up systems (as was depicted in Fig.

2.3b). In the beam up configuration all of the incoming concentrated light is directed at the lid.

The fraction of incoming energy reflected into the salt, given by pvis = 1 - a,,, is drastically

reduced as compared to a beam down system. As a result, the lid temperatures are dramatically

higher and relatively insensitive to salt temperature and heat extraction rates. The option of using

spectrally selective lid material becomes invalid as the lid temperatures rise and begin emitting

more energy in the visible spectrum. Lid temperatures higher than salt temperatures would

suggest making the lid the source for the primary heat extraction loop, for increased power cycle

options and efficiencies. This is all possible; it is just important to note that the receiver for a

beam up CSPonD system will need to be designed differently than a beam down CSPonD system.

Also, while these lid temperatures are in the operating range of high quality refractory ceramics,

the diurnal cycling and extreme thermal strains while the receiver is on-and-off sun will likely

cause incrementally accumulating degradation and premature failure of the lid lining materials.



Chapter 3: CSPonD Performance

850 -\80\

800 - 70-

)750 - 750E E

~700 70

650 650

0 10 15 2000 25M 3000 500 1000 1500 2000 2500 30
Peak Concentration (kW/m

2
, suns) Peak Concentration (kW/m

2
, suns)

Figure 3.13 - Lid temperature maps for a beam up system on sun

(A) Stagnation temperature, no lid heat extraction; (B) 20% lid heat extraction.

If highly reflective lid materials are used, lid temperatures can be kept much cooler.

Figure 3.14 depicts lid temperatures for the case of pas, = 0.9 with a 20% lid heat extraction rate.

This reflectivity is a realistic upper bound, as higher quality mirror surfaces would likely be

damaged in such close proximity to the salt bath. An active gas-purging scheme would likely be

needed to keep the lid surface clean and free from oxidation at elevated temperatures, adding

complexity and risk. An alternate scheme would limit heat extraction from the lid, so a flowing

salt film can be circulated from the salt pond onto the lid to be heated, as a hybrid between a

CSPonD receiver and the salt film receivers presented by Bohn and others [15-19].

In summary, estimates for CSPonD receiver capture efficiency show improved

performance relative to conventional tube-based CSP receiver designs. To maximize the net heat

gain to the molten salt pool, and minimize the heat input to the lid, the following design

objectives are emphasized: beam down angle and lid temperature are maximized while the pond

exposed surface area is minimized. Losses are reduced and capture efficiency is improved with

increasing input flux concentrations, whereby the system's cavity-like geometry approaches that
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of a blackbody absorber. It is known that smaller apertures reduce reradiation losses but intercept

less sunlight; as a result the optimum aperture size becomes a site-specific compromise between

maximizing radiation capture and minimizing radiation losses [119].

However, these efficiency calculations have assumed that the lid captures all of the

internal losses from the pond (convection, salt vaporization, salt-to-lid radiation) and it can be

fully utilized. A real system is expected to have additional losses from the lid to the environment.

Nevertheless, the unique dual heat-source nature of the salt and lid in CSPonD receivers will

allow more flexibility for operators to maximize useful heat extraction for their particular system.
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Figure 3.14 - Lid temperatures for a highly reflective lid beam up system on sun

20% lid heat extraction, pvis = 0.9.
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Operational issues

Optimal control

As presented by Ghobeity, Noone and Mitsos, heat collected by the cover can be used for

preheating feed water to the steam generator or desalination feed water in a dual-purpose

CSPonD desalination and electricity production plant [77], [78]. Optimal operating conditions

result in highest income while ensuring the most efficient use of both the low and high exergy

streams, which varies with local energy and water cost structures.

Similarly, the use of the two heat extraction loops for electricity production can be

optimally controlled to maximize power output, even when the sun is not shining. Local

economic conditions and power requirements will dictate whether the CSPonD DAR is best

suited for continuous heat extraction or, alternatively, used to supply peaking load power cycles.

Risks and countermeasures

Table 3.2 lists risks and associated countermeasures with the CSPonD system. Similar to

metallurgical salt baths and CSP molten salt thermal storage systems, salt freezing is a significant

and catastrophic concern. In molten salt heat treatment tanks, if the heating electrodes fail or

power is disrupted for several days and the tank is not drained properly, large frozen salt masses

must be broken up with a jackhammer, usually destroying the container in the process.

Fortunately, CSPonD operators can slow or stop heat extraction from the system if a prolonged

period of inclement weather is forecasted. In severe cooling scenarios, the divider plate can be

lowered to the bottom of the tank, expelling the cold layer at risk of freezing to the upper region

of the tank which allows direct heating with incoming light. The CSPonD receiver will be well-

insulated to minimize conductive losses to the environment; similar to CSP hot salt storage tanks,

the salt temperature is expected to drop only 1-3 degrees per day when heat extraction is stopped

with a sealed aperture [33]. Even so, it is prudent to follow CSP hot salt storage tank precedent
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and install a supplementary heating element in the receiver. Typical heater installations are

beneath the tank bottom to eliminate conductive transfer to the earth below; the divider plate

itself also presents an excellent location for in-tank immersion heating should the need arise.

Minor salts leaks in pipes and valves can be repaired if shutoff valves are incorporated

into the plumbing circuit. Major leaks will require immediate attention and the salt must be

evacuated to a suitable area. For imminent emergencies, the entire CSPonD DAR can be sited

within a bermed earth area cleared of flammable debris, or positioned to gravity-drain out of a

low-lying valve into a lined culvert. The evacuated salt will solidify and can be removed without

worry of environmental damage. For planned system shutdown, salt can be pumped to a small

(few meters high) "prilling tower" where it is sprayed into the air and freezes into small particles.

As mentioned in Chapter 2 and described by Paxson, salt fumes near the CSPonD DAR's aperture

can be contained with a fume extraction system [104]. If this is not sufficient, an air curtain can

be used to eliminate mass transfer across the aperture. Spent salt can be recycled into the system

or sold for agricultural or commercial uses.

Rain can be prevented from entering the system with weather monitoring stations and a

well-sealed aperture door. Unanticipated sprinkles can be mitigated with a visor-like feature

above the aperture. It is unlikely that birds or other animals will enter the system, as has been

observed with other high-flux CSP central receivers. If organic material did enter the molten salt

bath, it would likely be flash-pyrolyzed and the remains would be slowly dissolved in the melt.

Dissolved or suspended impurities can be removed with chemical rectifiers, either in solid or

gaseous form, added to the salt. Larger floating debris and scum can be removed from the pond

surface with the weir heat extraction method described in Chapter 2. Filters can be employed

upstream of the pump and heat exchanger to prevent clogging.
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Table 3.2 - CSPonD risks and countermeasures

Risk Countermeasure

Salt freezing Stop heat extraction; supplemental heater

Salt leaks Shut off valves in plumbing circuit; catch basin for entire system

Salt fumes Fume extraction system; air curtain

Salt impurities Chemical or gaseous rectifiers

Rain Aperture door & visor

Animals entering system Flash-fry barbeque*

Floating debris Weir "skimming" salt extraction; debris filtering

Uneven heating of salt surface Heliostat aiming strategy

Hot spots within salt Natural convection; textured divider plate; bypass salt circulation

Long startup times Combustion-assisted heating

*Animals are known to keep away from intense heat; thus, systemic organic contamination does not pose a
measurable risk

The salt surface may become illuminated unevenly depending on the sun's position and

direct normal irradiance available. However, the heliostat aim points (particularly the near-field

heliostats with solar image sizes much smaller than the aperture) can be shifted to produce a

uniform distribution. A dynamic optical mixing strategy can be employed by allowing the near-

field heliostats' projected sunspots to traverse across the salt surface in regular synchronized

patterns, effectively "stirring" the salt. By design, hot spots within the salt are mitigated by

natural convection cells, which can be enhanced by texturing and altering the reflective properties

of the upper surface of the divider plate.

System startup provides another concern. As discussed before, unmelted salts have low

emissivity and absorptivity, with resulting high reflectivity in the visible spectrum. Incoming

concentrated light will be mostly reflected off an unmelted, salt-filled pond. As a result, more

thermal energy is needed to melt the entire salt mass in a reasonable amount of time. The salt can
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be premelted in a separate combustion-fired melting line and pumped to the receiver, as is the

case with conventional molten salt CSP systems. Alternatively, gas burners can be installed in the

roof of the receiver, similar to gas-fired glass furnaces. The combustion jet will convectively heat

and melt the salt, and also heat the lid, which will radiate back to the salt. The aperture can be

opened during the daytime to provide solar-assisted melting.

Melting behavior

Solidified eutectic salt mixtures are essentially opaque, even in small granular form, and

can be modeled as a diffusely reflecting surface. The fraction of the concentrated radiation 0

impinged on solidified salt that is absorbed, independent of direction, is denoted by the

absorptivity, asold. The next heat flux to the salt becomes:

q = 'oid (3.29)

If aohd is small for the wavelength of radiation considered, the net heat flux to the solidified salt

will be low. However, the energy that is transmitted to the opaque salt will be absorbed over very

short distances, and as a result, localized heating still occurs.

Assuming the penetration depth of the radiation is small compared to the container depth,

wall effects and surface losses are neglected, the unmelted salt can be modeled as a semi-infinite

medium heated by a constant surface flux, q. The temperature distribution is given as: [120]

2q 7 _ 1
T(x, t) = To + 2 at e + 4erf({) - (3.30)

where

x
d = (3.31)

2 5
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and

2 eY2
erf g)= f e-' dy (3.32)

x represents the depth into the heated medium; k is the thermal conductivity, and a'= k/pc, is the

thermal diffusivity of the medium (the symbol a'is used to avoid confusion with absorptivity, a)

which are assumed to be constant with temperature. Equation (3.30) is used to calculate the

surface temperature for various concentrated sunlight intensities impinged on the salt surface as a

function of time, assuming a solar-weighted average a/,d = 0.1 [70] (Fig. 3.15). Average

properties for solidified nitrate solar salt at 150 'C are used: k = 0.9 W/m-K, and a'= 3.0 x 10-7

m2 /s [121], with an initial temperature To = 25 'C.
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Figure 3.15 - Surface temperature progression for illuminated solid nitrate solar salt
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As Fig. 3.15 shows, relatively long times are needed to melt the salt when the irradiance

is low. For the range of concentrations achievable with current heliostat technology (0 = 500-

1500 kW/m2), the time needed to heat the uppermost salt surface to the melting temperature Tmet,

is on the order of 1-10 seconds, not accounting for radiative or convective losses.

Once the salt reaches Tmez,, energy is absorbed as the solid begins to melt. Landau solves

the one-dimensional Stefan problem to describe the temperature distribution in a homogeneous

medium heated by a constant surface flux q and undergoing a phase change, whereby the liquid is

removed immediately on formation [122]. The heat equation is solved with the Stefan boundary

condition on the evolving boundary, whose position is denoted by s(t), between its two phases:

BTds
q =-k-i +pL (3.33)

ax dt

where L is the latent heat of fusion of the medium. The non-dimensional Stefan number is defined

as the ratio of specific heat to latent heat for the solid salt as:

Ste = eP (Tmeit - TO) (3.34)
L

Assuming constant thermal properties, the time when an infinitesimally thin layer begins to melt

is given as:

pL ,a
tlet -______.Ste (3.35)

2q 9

And the steady-state velocity v of the melt front is found as:

ds q
- -> V = (3.36)
dt pL (1+ Ste)
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Figure 3.16 plots tmelt and v as a function of q for the chloride and nitrate salt mixtures.

The thermal properties of the solid chloride and nitrate salt mixtures are listed in Table 3.3. The

chloride salt, with its larger heat of fusion and thermal diffusivity than the nitrate salt, takes

longer to melt and melts at a slower rate. However, both salts will begin melting within 1-10

seconds at current maximum central receiver CSP input fluxes of < = 1500 kW/m 2 (considering

Eq. (3.29) -> q ~ 150 kW/m2), agreeing with the results of Eq. (3.30) and Fig. 3.15. The relatively

slow steady-state melting speed can be increased by supplementing the solar energy with the

resistive heating elements under the tank and possibly integrated into the divider plate for freeze

protection. Another, perhaps more costly way to accelerate melting would utilize radiative and

convective heating from overhead gas-fired burners as mentioned previously.

The small penetration depth assumption in the above analysis can be justified by the fact

that frozen salt is composed of many randomly oriented crystalline grains, each much larger than

the wavelength of the incident energy. The macrocrystalline structure is opaque to visible light;

causing multiple internal reflections at crystal grain boundaries and defects. Additionally,

solidified industrial salt is usually in the form of small (1-5 mm) spherical granules which further

serves to scatter incoming radiation. As such, the energy which is not diffusely scattered is

absorbed within a short distance.

Table 3.3 - Thermal properties of solid salt media

Salt p k c, L a'
(kg/m3) (W/i-K) (J/kg-K) (kJ/kg) (m2/s) Ste

Nitrate 1812 0.9 1339 147 3 x 10~7 1.80

Chloride 1603 1.2 837 426 9 x 10-7 1.25

Datafrom [13], [92], [121], [123].
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Figure 3.16 - Melt initiation time and steady-state melting velocity for surface heated salt

Semi-infinite salt region; liquid removed immediately upon formation.

Maximum flux limitations

Once the salt begins melting, it will flow by gravity through the voids in the unmelted

salt granules, cool and refreeze as it loses heat to its surroundings. At first, the molten salt will

completely disappear into the porous media below and the assumptions of the previous analysis

hold. But after some time, the melt will accumulate at the top of the unmelted bed and not run off.

This modified Stefan problem has been analyzed by several researchers, some even modeling the

"mushy" two-phase zone that develops in semi-transparent media [124-126].

The modeling of the two-phase melt zone progression is beyond the scope of this thesis;

however, an analogy can be made from laser processing of materials concerning solid-liquid-

vapor behavior. Melt pools formed by high-intensity laser beams are subject to rapid convective

mixing, controlled by density and surface tension gradients in the liquid phase [127-129]. As
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such, the molten salt puddle will experience the same effects and become well mixed as at it

grows within the pond. Interactions with the solidified salt boundary will limit localized

overheating of the rapidly growing salt puddle.

The only concern lies at the onset of heating, whereby an infinitesimally thin layer is

melted and cannot flow to equilibrate its temperature. In this scenario, laser welding and

machining provides guidance as to the maximum allowable surface flux before thermal

decomposition, or worse, vaporization takes place. Schumacher shows that a surface layer will be

melted or vaporized from a solid by a beam of radiation without significant heat conduction

losses (i.e., quasi-adiabatic) if the beam power density exceeds a critical amount, found as: [130]

qcrit = rrpLa' (3.37)

where / is the penetration depth of the radiation and L* is total specific heat up to the temperature

of interest, including the latent heat of melting and/or the heat of vaporization. In the CSPonD

case, L* includes the specific heat of the solid from ambient to the melting point, the latent heat of

melting, and'the specific heat of the liquid up to its decomposition temperature Tdecou,.

If the absorbed flux is greater than qcrt, heat will not be transferred quickly enough into

the surrounding solid and the salt will overheat. A value must be assumed for I due to a lack of

data for solidified eutectic salts; as explained before, the penetration depth is likely small and on

the order of the crystal size for the opaque salts. Therefore an average / = 1 mm was assumed for

solid salt, or equivalently, an attenuation coefficient of A = 10 cm-1 and absorptive index for peak

visible light = 550 nm of k = 4x 10-, found using Eq. (2.3). Representative values for the critical

flux on the solidified salt mass, <Ocr, found by Eq. (3.29) and (3.37) are listed in Table 3.4 and are

much greater than what is possible with conventional central receiver heliostat technology. It is

important to note that these flux limits are based on flux impinging directly on the salt surface. A

simple beam down CSPonD receiver without concentration booster geometry integrated into the
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lid will have a flux projection factor of 1/sin# as described by Eq. (3.1) that reduces the apparent

intensity from the aperture plane to the horizontal salt surface.

A different approach is used to find the maximum achievable temperature imposed on the

salt during high flux melting. Dabby and Paek present an analytical model for material removal

from the front surface of a semitransparent solid illuminated by a high-intensity laser beam [131].

Their one-dimensional model finds that transient subsurface temperatures may exceed the surface

temperature, potentially causing explosive removal of material. This technique can be used to

improve productivities during laser drilling; unfortunately, explosive liquid salt removal is not a

goal in the CSPonD system. However, their model can be used to find the maximum value for

temperature overshoot during melting:

Tmax 1+ Ste
melt Ste(3.38)

Twit Ste

This occurs when the non-dimensional quantity B 4 0

kL*
B= ->0 (3.39)

qlc,

Peak overshoot temperatures during melting are listed in Table 3.4 for the nitrate and

chloride salt mixtures. The value for the nitrate salt is well beneath the salt's decomposition

temperature; the value for the chloride salt is excessively high due to the salt's high latent heat

and high melting temperatures. However, as Eq. (3.39) shows, B - 0 requires a very large heat

flux q to be imposed on the system. Approximate overshoot flux intensities on the solidified salt

mass, OOS, found by Eq. (3.29) and setting B = 0.1 in Eq. (3.39) are listed in Table 3.4, and again,

are much greater than what is possible with conventional central receiver heliostat technology.

Simply limiting q to a reasonable value will eliminate the temperature overshoot to acceptable

values.
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Table 3.4 - Maximum allowable flux and peak temperature overshoot during melting

Salt L* &cnt Tmax 0os

(kJ/kg) (MW/m2) (OC) (MW/m 2 )

Nitrate 969 16.6 496 65.1

Chloride 1327 60.1 1406 190.2

L* calculatedfrom [13], [92], [121], [123].0 values based on Eqs. (3.29),(3.3 7),(3.39) with asold =0- L

Once the entire volume of salt is molten, a temperature profile similar to Fig. 2.7b will

develop. Surface losses (radiation, convection) will create a negative temperature gradient in the

uppermost salt layer, whereby a temperature inversion will be created. This in turn, will create

buoyancy driven convective motion, mixing the salt. All of this occurs during heating regardless

of incident flux intensity. However, if incident flux levels are high enough, one could foresee a

situation whereby the subsurface temperature exceeds the allowable limits for the salt,

particularly if power removal from the system is small compared to the incoming solar radiation.

A method to control salt temperatures during high incoming solar fluxes is shown in Fig.

3.17. A bypass loop is added parallel to the heat exchanger loop so hot salt can be extracted from

the upper surface and purposely mixed with the bottom cold salt layer. The resulting warm salt

return flow will convect upwards, mix with the cold salt and depending on the divider plate

velocity, flow past the annular clearance and facilitate additional mixing in the upper region.

Figure 3.17a depicts the concept for low heat exchanger extraction rates. Alternatively, Fig. 3.17b

shows the bypass loop in use when there is no heat extraction through the heat exchanger. This

method would allow for nearly any realistically achievable CSP flux intensity to be impinged on

the salt surface, provided the bypass loop mixing flow is sufficiently high enough. As a prior art

reference, a similar bypass method was utilized on the Solar II molten salt steam generator loop

when molten salt flow extraction from the storage tank was greater than heat exchanger energy

demands [47].
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Bypass
valve

(A) Mixing
valve

Figure 3.17 - Salt bypass loop to prevent hot side salt overheating

Bypass and mixing valves can be incorporated to prevent upper salt layer overheating during
high solar flux periods for: (A) moderate heat extraction rates (B) no heat extraction.

Economics

CSPonD systems are expected to benefit from reduced capital costs and result in lower

levelized costs for energy produced. A majority of the cost in CSP systems is the heliostat field

and although hillside beam-down geometry results in significant cosine losses compared to

conventional beam-up configurations - the CSPonD receiver is expected to exhibit an increased

collection efficiency. Additionally, the capital and operating cost for a CSPonD receiver is

significantly reduced with extensive use of low-cost refractory materials, extremely low-cost salts

as the HTF and storage medium and lack of high pressure heat transfer fluid pumps.

Thermal storage costs

The proposed molten salts are attractive in terms of cost per unit energy stored. Table 3.5

presents a comparison of energy storage costs for the different salts as compared to synthetic oil,
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widely used as the HTF (and in some cases the thermal storage fluid) in parabolic trough CSP

plants. Although these costs are solely for the sensible heat storage media and do not include tank

structure or ancillary equipment, there appears to be strong economic benefit to using chloride

and nitrate salts.

Table 3.5 - Sensible heat thermal energy storage media costs

Energy storage Temperature Heat capacity Costs per kg Costs per kWth
medium Cold ('C) Hot ('C) (kJ/kg-K) ($/kg) ($/kWth)

Synthetic oil 250 350 2.3 3.00 43.0

Nitrate salts 250 550 1.6 0.50 3.7

Carbonate salts 450 850 1.8 2.40 11.0

Chloride salts 700 950 1.1 0.13 1.7

Chloride costs from [87]; others from [13].

System costs

CSPonD system cost estimates including conservative as well as optimistic estimates for

subsystem performance, as calculated by Mitsos and presented by Slocum et al., are presented in

Table 3.6 [67]. NREL's solar System Advisor Model (SAM) was used along with the economic

assumptions by US Department of Energy for Call DE-FOA-0000 104 set for 2020, including

some incentives [3]. The optimistic scenario gives an optimistic economical levelized cost of 0.07

$/kWeh, while the conservative estimate is 0.33 $/kWeh [67].

This economic analysis was conducted for a 4 MWe continuous electrical generation

system, capable of producing 24.5 to 31.5 GWh per year. This equates to a capacity factor of 0.70

to 0.90, much higher than is possible with solar photovoltaic or even conventional CSP systems
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with limited storage. Although the levelized cost of energy produced is high compared to present

fossil fuel costs, it is not necessarily high compared to conventional CSP systems. The wide range

of uncertainty in the economic estimates clearly demonstrates the need for further research, in

particular with regards to i) the detailed large-scale design and simulation of the receiver along

with selection of salt and materials, ii) the best use of the site-specific land available via optimal

placement of heliostats and iii) the optimal integration of the receiver's salt pond and lid with the

power cycle, including a cogeneration scheme.
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Table 3.6 - Upper and lower bounds for predicted CSPonD levelized cost of energy

Property Units Conservative Optimistic

Rating and efficiencies

Average specific direct normal radiation kW/m 2  0.25 0.30

Nameplate capacity MWe 4.0 4.0

Heliostat overall efficiency MWt/MWt 0.5 0.6

Pond efficiency MWt/MWt 0.6 0.9

HX efficiency MWt/MWt 0.9 1.0

Power cycle efficiency MWe/MWt 0.3 0.4

Availability*Capacity factor*(1 -Derate) 0.7 0.9

Capital cost. Excluding contingencies, tax and land which are included in SAM

Heliostat specific cost* $/m2  215 150

Pond cost $MM 4.8 1.9

Heat exchanger cost $MM 0.2 0.1

Power block cost $MM 4.8 2.4

Utilities, piping, site work* $MM 8.6 3.5

Operating costs $MM/yr 2.0 0.5

Calculated properties

Overall efficiency MWe/MWt 0.08 0.22

Direct normal radiation required MW 49.4 18.5

Heliostat area required m2 197,530 61,730

Heliostat cost $MM 42.5 9.3

Operation hours/yr 6,132 7,884

Yearly electricity produced GWh/yr 24.5 31.5

Capital cost $MM 61 17

SAM results $/kWh 0.33 0.07
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From [67]
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A high-flux large-area solar simulator has been designed and characterized for the

purpose of studying lab-scale CSPonD volumetric molten salt receivers. The light from seven

1500 W metal halide outdoor stadium lights is concentrated with a specular aluminum cone,

achieving fluxes greater than 60 kW/m2 (60 suns) at the output aperture [132]. The details of its

design and characterization are presented in the Appendix. The following sections describe the

design and testing of various lab-scale molten salt receivers, used to validate the CSPonD

concept.

Single tank volumetric receiver

Optical heating tests of a single tank, volumetric molten salt receiver were performed to

examine the temperature distribution of industrial-grade molten nitrate salt (Coastal Chemical

Hitec* Solar Salt 60:40 wt.% NaNO3:KNO 3 mixture; melting temperature 220-240 C). A well-

insulated AISI type 316L stainless steel receiver, 67 mm inner diameter x 250 mm long, was

fabricated from NPS 2 % Sch 1OS pipe (73 mm OD x 3 mm wall thickness) and instrumented

along its length with eight type K sheathed thermocouples. Four thermocouples protrude into the

volumetric receiver to measure centerline temperatures, while the remaining four are positioned

near the receiver wall (Fig. 4.1). Low expansion, high strength reinforced silica matrix refractory

board (Zircar RSLE-57) with a 63.5 mm aperture was mounted to the bottom of the concentrator

to limit heating to only the exposed salt surface.

The salt mixture was premelted to approximately 250 'C using a hot plate, as the 60-sun

peak flux provided by the MIT CSP simulator would take several hours to melt an otherwise

adiabatic salt container, and then the filled receiver was placed under the solar simulator to be

optically heated (Fig. 4.2). The simulator was successful in heating the nitrate salt and keeping it

molten. Figure 4.3 shows the appearance of the molten salt-filled receiver, removed from the

simulator, and illuminated with a laser pointer to demonstrate the transparent nature of the salt.
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Thermocouples
(8X)

Figure 4.1 - Schematic of single tank test receiver

For optical heating tests with molten nitrate (60/40 Na-K) salts.

Figure 4.2 - Solar Simulator with single tank volumetric receiver at aperture.
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Figure 4.3 - Molten nitrate solar salt mixture in single tank test receiver

Premelted, then optically heated to 330 'C by MIT CSP solar simulator - removed for photo. The
red light is from a laser pointer used to demonstrate the transparent nature of the salt.

Figure 4.4 plots the temperature distribution in the single tank volumetric receiver at

various heating times. Thermal stratification was observed, although the upper third of the salt

was nearly at the same temperature as the surface, indicating volumetric energy absorption

throughout that region of the receiver. It is interesting to note that the uppermost tank wall

temperature, denoted by the unfilled data points, is hotter than the salt surface temperature. One

explanation for this could be the divergent nature of the output rays from the simulator's non-

imaging secondary concentrator (shown in Fig. A. 12). As a result, the absorptive receiver walls

are heated selectively in the upper region, which in turn, heat the salt in near the top of the

receiver more than volumetric heating effects alone.

As an aside, it is worth discussing the significant heat losses through the bottom of the

test receiver. The bottom of the cylindrical vessel was formed by welding on a 3.2 mm thick AISI

type 316L stainless steel plate. This plate was made oversized (152 x 152 mm) to provide a large
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Figure 4.4 - Temperature distribution of nitrate salt mixture in single tank test receiver

Heated by solar simulator; tank wall temperatures are denoted by the unfilled data points.

base and stability for the tall aspect-ratio receiver. Unfortunately this caused the plate to function

as a heat sink, dissipating heat similar to a thermal fin. The heat losses leaving the test receiver

are dominated by the bottom plate as evidenced the slope of the temperature curves on Fig. 4.4.,

even though the vessel was placed on a 2" (50 mm) thick slab of insulating calcium silicate.

Large-scale systems will obviously be constructed with an adequate thickness of better

performing insulation, mitigating a significant portion of the conduction losses out of the bottom.

It is interesting to compare the temperature evolution in the test receiver with that of an

idealized volumetric absorber model presented by Lenert, as shown in blue on Fig. 4.5 [64]. For

comparison, the temperature evolution for an equivalent power, surface-flux heated receiver is

denoted by black curves. There is good agreement between the simplified volumetric absorption

model presented in Chapter 2 and illustrated by Fig. 4.5, and the experimental data, as indicated

by the qualitative agreement between the curves. Even though the test system has significant
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conduction losses through the bottom as compared to the insulated boundary condition imposed

on the model, it is clear that the experimental receiver is not behaving as a surface-flux heated

system.

T

1 "I I I I I I

0 0.2 0.4 0.6 0.8 1 1.2

Figure 4.5 - Volumetric versus surface heating temperature profiles

Non-dimensional temperature (0) progression at various times; volumetric heating (blue) versus
surface heat flux (black). Exponentially decaying volumetric heating profile (red) shown in inset.

From [64]

Divider plate equipped receiver

Additional tests were carried out using a volumetric molten salt receiver equipped with a

movable divider plate, designed to partition the receiver into two thermally separated regions

(Fig. 4.6). A 316L stainless steel receiver was designed with proportions similar to the

aforementioned 600 MWth receiver to fill the nearly the entire simulator aperture area: 280 mm

inner diameter x 80 mm high. The divider plate was constructed from 3.2 mm thick 316L

stainless steel with a 6.4 mm thick layer of rigid silica insulation board (Zircar RSLE-57) affixed
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Positioning
linkage

Divider plate

Simulator
aperture

Test receiver
280 mm ID x 80 mm

Figure 4.6 - Schematic of movable divider plate test receiver

to the underside, and given a nominal 8 mm annular clearance to the tank walls. The divider plate

position was controlled via a crank-slider mechanism driven by a gearmotor installed outside the

receiver. The receiver and divider plate were instrumented at several locations with type K

thermocouples and the receiver was wrapped with ceramic fiber insulation followed by layers of

fiberglass insulation. 5 L of Hitec* Solar Salt was premelted to 250*C and optically heated with

MIT CSP solar simulator. Figure 4.7 shows the salt-filled receiver in, and removed, from the

simulator. As in the single tank experimental receiver, the molten salt appears virtually

transparent when melted.

Figure 4.8 depicts the temperature distribution of the volumetric receiver for different

positions of the divider plate. The divider plate succeeds in providing excellent thermal separation

between the upper (hot) and bottom (cold) sections. The bare stainless steel top surface of the

divider plate absorbs much more energy than the relatively transparent salt; as a result, the hottest

region of the receiver is the top surface of divider plate. This is excellent for establishing natural

convection cells in the top region and promoting uniform, isothermal conditions which maximize

thermal storage in a given volume of salt.
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Figure 4.7 - Molten nitrate solar salt in movable divider plate test receiver

Volumetric receiver (A) inside solar simulator output aperture; (B) removedfrom simulator.
The divider plate is clearly visible in its raised position near the surface of the salt.

Unfortunately due to packaging constraints, there is insufficient thermal resistance across

this small-scale divider plate resulting in significant conduction losses to the lower cold region.

The conductivity of the RSLE-57 silica board is 0.64 W/m-K, nearly the same as the molten salt.

Even though the divider plate prohibits mass transfer and convective mixing between the layers,

the observed temperature difference of 30 K implies a conductive heat flux of nearly 3 kW/m2

across the plate (area times thermal resistance: A -Rh ~ 0.01 m2-K/W); far too much for this small,

low-power testbed. Full scale systems would utilize significantly more effective insulation, on the

order of 10-20 cm with reduced thermal conductivity, providing a greater thermal resistance and

limiting heat transfer while providing the design value of 300 K across the divider plate.

The light mostly penetrates to the divider plate in this small scale test system - and

cannot accurately predict how a full scale machine would truly work. In a larger and deeper

system, the upper surface of the divider plate will receive less radiation. However, with full-

thickness insulation on the divider plate, conduction through the bottom plate will decrease. It is

expected that natural convection in the upper hot salt region will remain of the same magnitude
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Figure 4.8 - Temperature distribution of nitrate salt in divider plate test receiver

Heated by MIT CSP solar simulator; the movable divider plate is denoted by the
box located (A) near the salt surface and (B) near the bottom of the test receiver.
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since radiant flux intensities will be greater in full-scale systems, and a temperature inversion

should still occur in the hot salt region. Accordingly the Nusselt number (the ratio of convective

to conductive heat transfer across the divider plate) is similar to this experiment.

Natural convection characterization

The nearly isothermal upper salt region, clearly evident in Fig. 4.8b, is a result of

convection above the divider plate. This type of natural convection occurs when buoyancy forces

overcome viscous forces in a plane of fluid heated from below. Hexagonal recirculating flow

cells, termed Bdnard cells, develop when the horizontal fluid layer becomes unstable. Ignoring

container effects, the critical temperature difference between the lower heated surface, Th, and

colder upper surface, Tc, for this flow to begin corresponds to the critical Rayleigh number:

Ra= , =1708 (4.1)
Va'

where £ is the thickness of the fluid layer and g is the acceleration due to gravity. fi', v and a'

represent the fluid's coefficient of volumetric expansion, kinematic viscosity and thermal

diffusivity, respectively [120]. If Ra < 1708, the viscous forces overcome the buoyancy forces

and the fluid remains motionless with heat transfer progressing solely by conduction. On the

other hand, turbulent convection sets in if the temperature difference Th - T, increases to a value

corresponding to Ra = 50,000, destroying the regular cellular flow patterns.

Figure 4.9 maps the three distinct heat transfer regimes for various fluid thicknesses and

temperature differences. Fluid properties correspond to the nitrate solar salt used in this

experiment, taken at a temperature of 350 'C giving fl'= 3.7 x 10-4 1/K, v = 1.3 x 10-6 m2 /s, and a'

= 1.8 x 10-7 m2/s [92]. Clearly, for all but very thin fluid layers, even the smallest temperature

difference will produce convective mixing in the salt layer above the divider plate. In the scale

model, there is approximately a 2 cm salt thickness above the divider plate in the "up" position
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(Fig. 4.8a) - the measured 15-20 K temperature inversion is sufficient to induce turbulent mixing.

Similar behavior is seen in the "down" position (Fig. 4.8b) for 5-10 K temperature difference in

the 5 cm salt layer.

1

0.1

0.01

Turbulent
convection

Cellular
convection

~~~~~~~~~---------------------

Conduction

20 40 60 80

Temperature difference Th - T, (K)

100

Figure 4.9 - Heat transfer regimes for hot nitrate salt layer above divider plate

Active flow receiver

Further testing was conducted using a divider plate-equipped volumetric receiver

integrated into a natural convection loop. The solar simulator heats the receiver, which is at a

lower elevation than a non-insulated fluid storage reservoir. Buoyancy force drives the hot, less

dense fluid through the receiver outlet pipe and into the higher elevation reservoir. Heat is

rejected at the reservoir, causing the cooler, denser fluid to return to the receiver, whereby it is

reheated and the cycle is repeated (Fig. 4.10). The "thermosiphon" driving force for the flow is
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(A)
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Reservoir

1K

Test receiver
120 mm ID x 175 mm

Quartz window

Receiver

Figure 4.10 - Schematic of active flow thermosiphon test receiver

(A) Fluid in the receiver is heated by the MIT CSP solar simulator, flows upwards to the
reservoir, cools, and then returns to the receiver to be reheated; (B) Coolfluid enters the bottom

and flows past the divider plate before exiting the top of the test receiver.
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the loop buoyancy, which is the difference in weight of the columns of fluid in the loop, and is

exactly dissipated by the friction pressure drop APfrI,,On around the system: [133]

APfriction = fp(T)gdz (4.2)

where the fluid density p(T) varies with temperature.

A 120 mm inner diameter x 175 mm high 304L stainless steel bucket was modified for

use as the thermosiphon receiver. Inlet and outlet '%" NPT port fittings were silver brazed on

diametrically opposite sides near the bottom and top, respectively. Additional ports were installed

on the receiver bottom to facilitate fluid draining, mounting a central 3.2 mm 316L sheathed type

K thermocouple profile probe, and securing a divider plate actuation rod. A quartz window, 3.2

mm thick, was sandwiched between upper 6061-T6 aluminum and lower 304L stainless steel

clamping flanges with a 3.2 mm high temperature silicone sheet gasket as shown in Fig. 4.11.

Figure 4.11 - Active flow test receiver construction details
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The quartz window was necessary to contain the fluid as the receiver was mounted at a

lower elevation than the fluid reservoir, a necessary condition for thermosiphon flow. Flexible

and rigid 304L stainless steel pipes (nominal 2" NPS) connect the receiver to a 170 mm diameter

x 193 mm cylindrical type 304L reservoir; the entire system was externally insulated using

ceramic fiber and fiberglass insulation. A divider plate was fabricated from 170 mm diameter x 1

mm thick type 304L, providing a 5 mm annular gap to the receiver wall for the blow-by fluid

flow. A 25.4 mm slab of closed-cell rigid glass insulation (Foamglas*: k - 0.04 W/m-K; p ~ 120

kg/m3) was affixed to the underside of the stainless divider plate. Additional type K

thermocouples were mounted at the connection pipe fittings on both the receiver and reservoir

and to the top and bottom surfaces of the divider plate. The thermosiphon system was designed

with a nominal 5 L capacity; when filled with this volume, the free surface of fluid in the

reservoir is approximately 140 mm above the top of the receiver. The system was validated using

water as the working fluid. Optical heating data using the solar simulator are depicted in Figs.

4.12 and 4.13.

As Fig. 4.12 shows, the solar simulator was successful in inducing thermosiphon flow in

the water-filled system. However, the heating rates were much too intense and the simulator

easily boiled water above the divider plate, as shown on Fig. 4.13. Surging steam flow cycles are

evident, created by vapor pockets within the upper portion of the receiver that remain trapped and

block thermosiphon loop flow. Once pressure increases, the slug of steam is forced out of the

receiver outlet pipe, allowing the receiver to fill and the process to repeat again.
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Figure 4.12 - Temperature evolution in thermosiphon system: water
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Figure 4.13 - Divider plate temperature in thermosiphon system: water
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Fortunately, removing the external insulation on the receiver, reservoir and piping and

adding a cooling fan directed at the reservoir were found to eliminate the percolations (Fig. 4.14).

Once flow is initiated, the forced convection of air over the reservoir tank's exterior serves to cool

the water entering the reservoir quicker, resulting in reduced receiver inlet temperatures, faster

thermosiphon flow and minimal boiling rates. The ripples in divider plate temperature in Fig.

4.14 are the result of moving divider plate within the receiver: every 10-15 minutes the divider

plate was moved upwards approximately 10 mm along the receiver's axis.

120

100

Thermosiphon
flow initiated

0 2000 4000 6000 8000 10000 12000

Time (s)

Figure 4.14 - Temperature evolution in non-insulated thermosiphon system: water

The divider plate is moved upwards approx. 10 mm every 600-900 s beginning at t = 6500 s.

131



Chapter 4: Experimental Testing

Figure 4.15 plots the vertical temperature profile within the receiver after the divider

plate is repositioned and temperatures reach steady-state values. For convenience, the non-

dimensional temperature 0 is plotted, defined as:

0= T-To

'nlet - TO
(4.3)

The upper surface of the divider plate increases in temperature as it is moved up within

the receiver, while the fluid region below remains isothermal, regardless of divider plate position.

It is also important to note the receiver outlet temperature (Fig. 4.14) remains nearly constant

even as the divider plate is moved within the receiver (except for the anomaly at t = 12000 s,

where the divider plate is moved above the receiver outlet port). These observations support the

original design intent of maximizing thermal storage within the receiver and providing constant

high temperature output, even as the system's overall state of charge varies.

Divider
plate top

1.4
T - Tw

0 =
Tiniet - T

1.8

Figure 4.15 - Temperature profile within active flow test receiver: water
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Next, the thermosiphon system was prepared for use with molten nitrate solar salt.

External resistance wire and band heaters, totaling 3.2 kWe, were added to the receiver, reservoir

and piping to preheat the system above the 222 'C freezing point of the salt. Figure 4.16 shows

the system outfitted with heaters and insulation in preparation for the premelted salt addition.

Each heater was wired in independent zones, manually controlled to prevent localized

overheating. Additional thermocouples were added near the heaters on the exterior of the tanks

and piping to monitor hot spots and system temperatures.

Figure 4.16 -Active flow test receiver for use with molten nitrate solar salt

(A) Receiver sits a lower elevation w.r. t. the fluid reservoir; all piping and tanks are well
insulated; (B) Supplemental heaters preheat the components prior to molten salt addition.

Once the system was sufficiently heated, 5 L of premelted Hitec* Solar Salt was added.

The reservoir and piping heaters were turned off, while the receiver heater was left running until

thermosiphon flow was established. The lid was left off the reservoir container to allow heat to

escape and cool the hot salt before it flowed back into the receiver to be heated. The receiver
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heater was then turned off and the solar simulator was turned on, providing optical heating to the

flowing system (Fig 4.17).

Unfortunately, the solar simulator was not powerful enough to prevent the system from

cooling. This is due to the increased surface area of the thermosiphon system components, as

compared to the divider plate-equipped receiver with the same system volume presented in the

previous section. However, as shown in Fig. 4.17, the MIT CSP solar simulator did alter the

cooling rates within the receiver, notably the upper surface of the divider plate and upper regions

of salt.

t2  t

Solar simulat

- Tank inlet
- Tank outlet

- Rec. outlet
- Rec. inlet

--- Rec. x/L = 0.25
-Rec. x/L = 0.47
--- Rec. x/L = 0.69
--- Rec. x/L = 0.90

Div. plate top
------ Div. plate bot

3 t4

or on

2000
Time (s)

2500 3000

Figure 4.17 - Temperature evolution in thermosiphon system: nitrate salt

Figure 4.18 plots snapshots of the salt temperature profile at various times (4 > t3 > t2>

ti), for a constant divider plate position, during the optical heating period depicted in Fig. 4.17.
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This profile is noticeably different than the water-filled receiver as shown in Fig. 4.15. This is due

to the higher operating temperatures of the salt-filled receiver, with significantly increased heat

losses. For example, the bottom surface of the water-filled receiver is nearly adiabatic, as

evidenced by the constant temperature profile below the divider plate. The salt-filled receiver, on

the other hand, has a noticeable temperature gradient in the lower salt region from non-negligible

heat losses. Similarly, the high temperature salt receiver exhibits a negative temperature gradient

above the divider plate, due to increased surface radiation and convection losses on the quartz

window.

Irrespective of the additional system losses, it is interesting to note the temperature

difference across the divider plate increases as time progresses, even with the active fluid flow.

Also, the region of salt below the divider plate acquires a more uniform temperature distribution

as compared to the initial condition without simulator heating input.
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0.8 - Divider plate
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-0

0.4

0.2 
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Figure 4.18 - Temperature profile within active flow test receiver: nitrate salt
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Flow velocity characterization

Although the thermosiphon loop flow velocity was not directly measured (available

measuring devices would impose significant pressure drops, altering or eliminating the

thermosiphon flow), it was estimated using Schlieren flow visualizations of the hot fluid entering

the reservoir. The flow pattern is illustrated in Fig. 4.19 for water and in Fig. 4.20 for solar salt

using a thermal imaging camera. In both cases, the flow was estimated to be on the order of 1

cm/s out of the 1/4" NPT (9.2 mm ID) pipe fitting; equivalent to a volumetric flow rate of 660

mm 3/s or 2.4 L/h. Assuming a uniform velocity across the 5 mm annular gap, the fluid would

pass at a velocity of 0.4 mm/s - relatively slow, similar to that of a full-size system.

The Richardson number, Ri, is the dimensionless ratio of potential to kinetic energy,

relating the importance of natural convection to forced convection in fluid flows with active heat

transfer. For the active flow receiver, it can be defined as:

.g/J'ATLRi= 2 (4.4)

where AT= Tdiv - Tinlet is the temperature difference between the upper surface of the divider

plate and the inlet fluid temperature, v is the fluid velocity in the tank-divider plate annulus, and L

is a characteristic length, which, in this case, equals the depth of the divider plate's upper surface.

Natural convection is negligible when Ri < 0.1, forced convection is negligible when Ri > 10, and

neither is negligible when 0.1 < Ri < 10 [120]. For 35 < L < 120 mm, Ri = 0.5-1.6 x 104 for the

water-filled test receiver (,8'= 2.1 x 10-4 1/K, AT = 10 K); for the solar salt-filled receiver (pl'=

3.7 x 10-4 1/K, AT= 30 K), Ri= 2.4-8.2 x 104. Obviously the Richardson number varies with

divider plate position, but these values indicate natural convection dominates.

Additional trials were conducted with varying reservoir-receiver height differentials (140

60 mm), but this did not have a noticeable effect on the apparent fluid velocity. This implies the

flow was limited by the small diameter fittings and ports which imposed significant restrictions to
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the flow. Nevertheless, pipe sizes were kept small in order to keep flow velocities relatively high,

as it is known that low salt flow velocities in sections of unheated pipe are prone to freezing

[134].

Figure 4.19 - Flow visualization in reservoir of active flow test receiver: water

Figure 4.20 - Infraredflow visualization in reservoir of active flow test receiver: nitrate salt
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Quartz aperture window

One of most interesting observations during the active flow receiver testing was the

appearance of the quartz aperture window. Figure 4.21 shows the quartz window after several

hours operating with water as the working fluid, and again at various intervals with molten salt in

the thermosiphon system. Obviously, condensed water vapor remains a liquid on the heated

window surface. On the other hand, condensed salt vapor builds up and solidifies on the cooler

aperture window and reduces its effective transmittance. After a short period (0.5 h) the window

is significantly clouded and the energy input to the system is decreased. After a long run under the

simulator (4 h), the window is essentially opaque and what little heating that is accomplished

progresses via conduction from the obscured quartz window's inner surface.

Figure 4.21 - Quartz aperture window appearance on active flow test receiver
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This clouding is one of the main reasons that a sealed system complete with a transparent

aperture window is not being considered for a large scale CSPonD receiver. Even if the inner

surface of the window was kept cool and isolated with a protective gas shield, as is done on high

flux volumetric receiver-reactor vessel designs, a significant portion of the incident flux is

reflected off or absorbed within the window material. The same holds true for high temperature

aperture window variants, operating above the salt's melting temperature, which would allow for

transparent liquid salt to condense on its inner surface.

Heating considerations

Regrettably, the 60-sun solar simulator was not capable of heating the salt above 380 'C

in any of the test receivers. This was to be expected with high system losses: conductive losses

from the small receivers with their large surface area-to-volume ratios; plus radiative and

convective losses from the salt surface. In fact, CSP trough plants operating with optical

concentration ratios ranging from 40-80 have difficulty heating working fluids in excess of 350

C, so it is no surprise that the MIT CSP solar simulator could not achieve higher temperatures

[2]. However, the simulator proved sufficient to demonstrate the volumetric absorption,

convective salt mixing, and movable divider plate concepts.

In general, a perfect receiver without any conductive or convective losses will have a

"stagnation temperature" Trnax found by setting the receiver efficiency /rec = 0 in Eq. (1.1) as: [4]

Tmax = eff (4.5)
CeffU

where the effective absorptivity and emissivity are denoted by aegf and eg, respectively. For this

highest temperature to be achieved, a perfect receiver must be radiating energy at the same rate at
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which it is receiving it. This implies no heat extraction and capture efficiency qcapure = 0, as in Eq.

(3.24).

For these test receivers, no "useful" heat was extracted; assuming a perfect receiver and

aeff = eeff, the minimum flux < required to obtain Tnax = 380 'C is only 10.3 kW/m2 . This

confirms that there were significant conduction and surface losses. These small scale experiments

cannot provide insight to how a full scale machine would truly work; hence, numerical modeling

is required to design the full scale tank and divider plate system, and then testing of a deep tank

system. Full scale systems will utilize much greater flux levels with an insulated system cover.

The geometry will approach that of a blackbody absorber and have significantly reduced system

losses, which will increase achievable salt temperatures.

Salt melting for the experiments

For all tests, the nitrate solar salt was premelted on a hot plate before being placed under

the solar simulator. Initial single tank receiver trials attempted to heat and melt the salt optically,

but were unsuccessful. Figure 4.22 shows the unmelted salt appearance in the single tank

receiver, prior to being placed under the simulator.

The solid salt granules are very reflective in the visible spectrum (evidenced by their

white appearance), and as a result, they absorb only a small minority of the incident power. As

discussed in Chapter 3 and plotted in Fig 3.15, very long times are needed to melt the salt at low

input flux concentrations. For example, the 60 kW/m 2 solar simulator would require a few hours

to create a melt puddle on the salt surface. Unfortunately, this long time constant also allows for

the diffusion of thermal energy radially outwards, and in the case of these small receivers, the

container wall-effects dominate at longer times - preventing optical melting of the salt.
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Figure 4.22 - Appearance of unmelted solar salt used in tests

"Prilled" (pre-mixed) pellets, 1-3 mm diameter.

Figure 4.23 plots the measured salt surface temperature profile as compared to Eq. (3.30),

the surface temperature of a semi-infinite body subject to a uniform heat flux. Initially, there is

good agreement between the measured and predicted temperatures, but the wall-effects become

noticeable after only one hour under the simulator.

An alternate optical melting strategy demonstrated by Rojas utilized metallic pieces

embedded or placed on top of the solidified salt surface [135]. The metal has a higher absorptivity

than solid salt; hence the metallic pieces achieve higher stagnation temperatures and heat more

quickly. The heat from these "melting seed" components is transferred to and initiates melting in

the surrounding salt. Tests were conducted with stainless steel spheres (1-5 mm diameter) and

short lengths (10-30 mm) of stainless and copper tubing, with the complete volume of salt in

various 5-10 L receivers optically melted by the MIT CSP simulator within a few hours. Once

fully melted, the metallic melting seed components sank to the bottom of the receiver and

remained for the duration of testing.
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Figure 4.23 - Solid salt temperature during heating with solar simulator

Measured surface temperature as compared to Eq. (3.30) for a semi-infinite body subject to a
uniform surface heat flux on the surface; reflectivity of solid salt estimated to be ~ 90%.

Another interesting occurrence worth mentioning is the appearance of freshly melted salt.

When melted for the very first time, the industrial solar salt mixture developed a foamy, brownish

scum on the surface, as shown in Fig. 4.24. This floating layer was not observed in salt mixtures

prepared from chemically pure reagent grade materials, although it was noted by prior researchers

and salt bath thermal processors using the commercial grade salts [3], [53], [105].

A call to the salt manufacturer indicated that the floating layer was likely due to anti-

caking additives added to the salt, and would dissipate after a several hour "bake out" period.

Samples were collected and solidified from the clear lower salt region and the floating scum

layer, depicted in Fig. 4.25, and sent for analysis. Figures 4.26 and 4.27 show X-ray diffraction

data for the clear and scum layers, respectively.
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Figure 4.24 - Virgin melted solar salt with foamy surface scum

Figure 4.25 - Solidified pure and surface scum salt samples
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X-ray diffraction testing proved inconclusive, as there were no detectable contaminants in

the dirty scum layer as compared to the clear salt sample. Fortunately, the scum layer did

dissipate after the salt remained molten for several hours. In the interest of time, much of the

foamy layer was ladled off and discarded before proceeding with the experiments. Subsequent

trials using premelted salt did not exhibit the foamy layer upon melting, confirming the

manufacturer's comments regarding the burn-off nature of the foamy layer. In a full-size system,

any initial foamy salt layer which forms can be removed using the weir salt extraction and pond

skimming flow, as discussed in Chapter 3. Alternatively, the salt can be ordered in large-block

form without the anti-caking additive, thereby eliminating any foaming issues.
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Figure 4.26 - X-ray diffraction datafor pure solar salt
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Figure 4.27 -X-ray diffraction datafor brownish surface solar salt scum
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This chapter is used to illustrate the design process for a generalized CSPonD receiver

utilizing "idealized" hillside collector field geometry. Although the design is conducted for a

single design point (solar noon on a specific summer day), a similar process can be employed

using yearly solar position and historical meteorological data to provide a year-round optimal

design catered to a site's specific solar resource and energy demand profiles.

Field geometry

Table 5.1 lists the site specific parameters for the idealized heliostat field under

consideration, provided by Noone. Due to the site's south-facing slope, the fraction of ground

area covered by heliostats can be greater than traditional level-ground central receiver CSP fields.

Figures 5.1 and 5.2 plot top and side views of the field geometry. The y-axis of the staggered

radial hillside field points towards true north and is aligned with the optical axis of the receiver;

the receiver aperture is located at (0,0,0) and is denoted by a red dot.

Table 5.1 - Idealized heliostat field site parameters

Parameter

Site location

Site latitude

Design point

Solar elevation angle

Direct normal irradiance (DNI)

Mirror area

Mirror reflectivity

Mirror tracking and shape errors, net

Number of heliostats

Total heliostat area

Hill angle (grade)

Land area

Value

San Diego, California

32.80

solar noon, July 22

77.50

1000 W/m 2

100 m2

0.93

1.2 mrad

813

81,300 m2

36.9 (75%)

132,000 m2
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Figure 5.1 - Idealized hillside field 813 heliostats, top view
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Figure 5.2 - Idealized hillside field: 813 heliostats, side view
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Receiver flux distribution

The radiant intensity distribution at the aperture plane can be calculated by assuming

each heliostat is aimed so its reflected beam is centered at the aperture. Although other aiming

strategies may be employed, perhaps to illuminate the salt surface more uniformly or

preferentially heat certain areas within the receiver, this allows for a simplified evaluation of peak

flux values and corresponding spatial and angular distributions which are used to design the

receiver aperture geometry.

Each heliostat mirror is spherically shaped to give a focal length equal to its slant range r.

However, the finite size of the sun and heliostat optical errors results in beam spread and

defocusing effects at the aperture. The total angular distribution of each heliostat is modeled as

the convolution of an error cone and a Gaussian distribution with a root-mean-squared value

defined as:

2 2 2(51
atotal sun + optical

where asn = 4.5 mrad. For example, if a heliostat is one kilometer from the receiver (r = 1 kin),

the projected sunspot image intensity at the receiver has a RMS radial width of 4.5 m, even

without any mirror shape or tracking errors. The optical error uoptcal includes sources such as

mirror shape errors, surface imperfections and roughness, and tracking errors. Values of 0
oplical

0.5-2.0 mrad are typical; an average value of Optical = 1.2 mrad was assumed for this idealized

field [136]. As a result of these errors, individual heliostat image beam spread radius becomes

rqotal, and the corresponding peak intensity obtained at the aperture is:

= 
(5.2)

2rr(rUo,,,1y
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where p is the mirror reflectivity, qs is the cosine efficiency of the heliostat in question, <Po is the

incident flux and A is the heliostat mirror area. More complex and accurate modeling schemes

can be utilized with a "pillbox" distribution for the incoming solar irradiance and contour error

models or ray-tracing simulations to arrive at the flux distribution at the receiver aperture,

accounting for mirror shape and tracking errors; these methods are described by Winston and

Vant-Hull [5], [28].

Figure 5.3 plots the relative peak intensities received at the aperture for each heliostat of

the idealized field. Clearly, the heliostats closest to the receiver with small slant range r project

the highest intensities upon the aperture. Conversely, heliostats with large slant ranges result in

low peak intensities and large beam widths at the aperture. For this reason, peripheral heliostats

added to very large fields (i.e., with r > 1 km) have minimal effect on overall system capacity for

fixed aperture sizes.

400 4
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Figure 5.3 - Peak intensities at aperture for idealized heliostat field

Quiver-plot vector length denotes relative peak intensity value for individual heliostats.
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The directional distribution of the concentrated flux at the aperture origin is shown in

Figs 5.4 and 5.5. Again, the vector length denotes relative intensity corresponding to the

particular heliostat location. These plots can be used to identify receiver acceptance angles and

optimal orientations for the aperture plane, which does not necessarily have to be vertical. For

example, the peak flux for this particular idealized field and receiver location is captured on an

aperture whose normal is inclined approximately 220 upwards from horizontal. Figure 5.6 plots

the flux distribution from the entire heliostat field for this particular inclined aperture plane. Note

1 1 1 1

0.8

0.6-

0.4-

0.2 -

-0.5 0
x (M)

0.5

Figure 5.4 - Directional distribution offlux at the aperture origin: top view
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Figure 5.5 - Directional distribution offlux at the aperture origin: side view
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Figure 5.6 - Cumulative flux distribution projected on aperture plane

Calculatedfor 220 inclined aperture plane.

z* is the local z-coordinate on this tilted plane; the peak flux at the design point is calculated as

901.4 kW/m2. The net energy directed at the receiver, accounting for cosine and reflectivity losses

is 46.4 MWt, which is equivalent to an optical collection efficiency qop, = 0.57 for the 81,300 m2

heliostat field. The average cosine efficiency for the field at the design point is qcos = 0.61.

Shading and blocking losses are neglected under the assumption that the hillside staggered radial

layout is selected to eliminate such effects at the design point [51].

Next, the aperture is sized to maximize the net energy gain to the receiver. For this

CSPonD receiver, the lid is designed with integral CPC flux-boosting geometry. The profiles of

the x-y and z-y 2D truncated parabolic concentrators are determined by the input flux directional

distributions: the concentration ratio is selected as C, = 1.55 across the x direction with a ± 300
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acceptance angle; C. = 3.5 for the z* direction with a t 120 acceptance angle [28], [137].

However, the z* direction maps to an elongated projection on the salt surface, as given by Eq.

(3.1). For this specific case with the aperture tilt angle (equivalent to the nominal beam down

angle #) of 220, the equivalent concentration ratio from the aperture to the salt surface is given as:

A
C =_a =CXCZ sin# =2.0 (5.3)

Aip

Thermal losses from the receiver are a function of lid and salt temperatures, and lid, pond

and aperture areas; these are calculated as outlined in Chapter 3 for various aperture sizes and the

CSPonD parameters given in Table 5.2. The lid area, no longer spherical, is composed of the

converging walls at the exit of the truncated CPC geometry which redirect reflected light back

towards the salt pond surface. The reflective CPC area as a function of the aperture area is given

by Duffie and Beckman for the x direction as A cpcAa = I and Acpc/A, = 2.2 for the z* direction

[137]. Since the peripheral, low concentration radiation strikes the CPC walls at glancing angles

of attack, pressed refractory board can be used in place of metallic or glass mirrors; providing

reasonably high reflectivity while offering excellent durability in the salt vapor environment.

Figure 5.7 plots the intercepted optical energy and heat loss from the receiver for various

aperture areas. To simplify calculations, the aperture width is fixed at 1.5 times the aperture

height, a proportion suitable for this heliostat layout and resulting flux distribution. The net

energy to the receiver is reaches a maximum value of 38.1 MWt at an aperture area of 294 m2,

corresponding to a 21 m wide by 14 m high CPC aperture opening. At this size, the aperture

intercepts 43.0 MWt, or nearly 93% of the total flux directed towards the receiver. The spillage, or

amount of concentrated radiation falling outside of the aperture, is 3.4 MWt which is 7.3% of the

total amount incident on receiver. Including spillage losses, the receiver efficiency is qrec = 0.82;

discounting spillage losses, /rec = 0.89.
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Table 5.2 - Idealized CSPonD receiver parameters

CSPonD Parameter

Salt

Hot salt temperature

Cold salt temperature

Lid temperature

Aperture inclination angle

Aperture width

Aperture height

Aperture area

Lid CPC concentration ratio, width

Lid CPC concentration ratio, height

Lid opening width

Lid opening height

CPC aperture/exposed salt area

Value

Nitrate solar salt

550 0C

250 0C

240 OC

220

21 m

14 m

294 m2

1.55

3.5

13.6 m

4 m

2.0

The average number of reflections undergone by radiation passing through a CPC can be

found as:

1
N=1 -(5.4)

where C is concentration ratio of the CPC in question. For this receiver, N= 0.33 in the x

direction and N= 0.71 in the z* direction, indicating a large portion of the incoming flux passes to

the salt without impinging on the CPC inner walls. Indeed, comparing the lid opening size (13.6

m x 4 m) with Fig.5.6, the peak flux in the central region will pass directly through to the molten

salt. It is assumed that the light which does impact the refractory-lined CPC does so at grazing

angles, nearly parallel to the CPC walls. Even though the CPC walls are not specular reflecting
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metallic mirrors, the grazing angle incidence results in high reflection coefficients and much of

the energy will be reflected towards the salt. As the light progresses deeper within the CPC and

lid structure, some rays will impinge at non-grazing angles and create greater heating loads on the

lid. Hence it is reasonable to concentrate the lid heat extraction in this location.

Monte-Carlo ray tracing simulations, while beyond the scope of this thesis, can be used to

find flux distributions on the salt surface, taking the reflective properties and geometry of the lid

into consideration. The resulting flux distribution and subsequent radiative heat load to the molten

salt and the lid can be found using the methods presented in Chapter 3.

-10
100 200 300 400

Aperture area (m)
500

Figure 5.7 - Net energy flow into receiver for various aperture sizes

Calculated for nitrate solar salt CSPonD receiver.
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Thermal storage sizing

This particular CSPonD receiver is sized for 600 MWth of energy storage. As described

in Chapter 2, 2500 m3 of solar salt contained in a 5 m deep x 25 m diameter tank and thermally

cycled with a 300 K temperature difference provides this amount of sensible heat storage.

Depending on heat extraction rates the system will take several sunny days to fully charge; a

reasonable amount of daily energy input collected by the receiver for this particular heliostat field

and an average DNI resource of 7.2 kWh/m2/day, typical of CSP installation sites in the

southwestern United States, is 275 MWth.

Assuming a modest heat extraction rate from the salt pond of 40 MWt for six hours each

day, the mass flow of salt for the heat exchanger required is:

rhsait - = 41.5 kg/s (5.5)

The receiver will require 10 sunny days to completely charge the tank buffer volume, while still

providing 240 MWth of energy to the power cycle each day. Once fully charged, the system

could provide full-load power from its 360 MWth reserve for an extended cloudy period spanning

an additional 9 hours, equivalent to an extra day and a half of operation.

Divider plate sizing

As explained in Chapter 2, divider plate sizing is a balancing act between thermal

resistivity, neutral buoyancy and annular flow restriction during system charging. A nominal 20

cm annular gap is selected to ensure robust operation without risk of binding or damage to the

tank walls. This gap results in an annular blow-by flow velocity v = 1.9 mm/s while the divider

plate is stationary and the full-load flow of salt is circulating. Equation (4.4) can be used to find

the Richardson number: with even a small 10 K temperature difference between the divider

plate's upper surface and the cold upward annular flow at a depth of 1 m, Ri = 1.0 x 104 .Again,
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the Richardson number varies with divider plate position, relative speed and temperature

difference, but this value illustrates that natural convection dominates the upper salt mixing

behavior relative to forced convection.

Copeland has suggested making the barrier plate's thermal resistivity roughly equal to

that of the fluids above and below [38]. To achieve this, the divider plate is outfitted with a 135

mm thick layer of closed-cell rigid glass insulation (i.e., Foamglas), which has thermal

conductivity k = 0.042 W/m-K. The conductive heat transfer from the upper salt layer to the

colder bottom layer can be modeled using a thermal resistance circuit as shown in Fig. 5.8, where

the divider plate insulation provides one path for heat flow and the annular salt area between the

divider plate and tank walls provides a parallel conduction path. The effects of the metal divider

plate structure can be ignored due to its high conductivity relative to the salt and insulation. Using

the thermal resistance analogy, the heat flow rate Q can be found as:

AT
Q= (5.6)

Req

where Req is the equivalent resistance of the thermal network. For each conductive layer, or heat

path, the thermal resistance R is:

R = (5.7)
A k

The equivalent resistance of the parallel divider plate/salt annulus circuit is found as Req =

4.7 K/kW, giving a net axial heat transfer rate Q = 64 kW for AT= 300 K. Over a twenty-four

hour period this is 1.5 MWth, or only 0.3% of the system capacity - sufficiently low for efficient

thermocline storage. As a check, the equivalent salt thickness which gives a thermal resistance

equal to the combined divider plate and salt annulus Req = 4.7 K/kW is found as 1.3 m which is

well within reason for the 5 m deep receiver.
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The divider plate's insulation lightweight density p = 120 kg/m 3 will "float" a substantial

thickness of AISI type 321 (UNS S32100) stainless steel with a density of p = 7920 kg/m3

Specifically, the insulation thickness of 135 mm results in a buoyancy force that will support over

135 tons of stainless steel. If this mass is distributed uniformly over the divider plate area, this

equates to a 35.8 mm thick plate! A more logical and cost-effective approach utilizes a shelled

divider plate with 6.35 mm thick upper and lower surfaces, supported by a network of structural

beam reinforcements. If additional weight is needed, inexpensive ballast (i.e., steel plates) or

heavier insulation (e.g., calcium silicate: p = 280-1400 kg/m3, insulating firebricks: p up to 3100

kg/m3) can be added to the interior, taking care not to short-circuit the desired insulating

properties of the plate assembly. This shelled structure need not be totally sealed and salt-tight

since the salt will not penetrate into the cellular glass foam. Indeed, an airtight construction may

prove problematic as internal gas pressures may warp or rupture the structure. Pressure

equalization ports eliminate any hydrostatic buckling forces on the plate. This particular grade of

austenitic stainless steel is formulated for improved high temperature properties and resistance to

carbide precipitation and intergranular sensitization-corrosion in the 400-800 'C range.

Salt annulus h Divider plate

Rsalt= 15.6 K/kW Rdv= 6.6 K/kW

k= 0.55 W/m-K k= 0.042 W/m-K
A 16 m 2  A = 484 m 2

L 135 mm L 135 mm

Figure 5.8 - Divider plate thermal resistance circuit
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Tank and lid insulation considerations

Various refractory and insulating materials can be utilized to minimize thermal losses

from the receiver and keep overall costs down. As discussed in Chapter 2, the salt bath heat

treatment industry has decades of experience designing tanks which can withstand the high

temperatures and corrosive environment created by molten salts. Typically, all but the lowest

temperature tanks are designed with a super-duty firebrick liner. These bricks are laid dry in

mortarless courses and provide excellent thermal shock resistance while their relatively high

density and conductivity serves to stabilize the salt bath temperature. A typical product is

alumina-silica KX-99 firebrick; if needed, a 99% silica firebrick such as SR-99 can be used for

severely corrosive environments, perhaps near the salt-air interface. Firebrick is manufactured in

various shapes, but the most common size is 9" x 4.5" x 3" (230 mm x 115 mm x 75 mm).

Behind this layer, courses of less-dense, low conductivity insulating firebrick (IFB) provide the

primary thermal barrier within the tank walls. This layer is designed with sufficient depth such

that a "freeze plane" of salt is forms within the IFB.

Because the IFB layer contains and isolates the liquid salt, the tank can be constructed

from low cost A36 structural steel or equivalent. The steel shell is sized to handle the hydrostatic

load imposed by the molten salt and transferred by the refractory layers; standard codes and

guidelines for field-erected water, oil or other liquid storage tanks can be used. The hydrostatic

pressure at the bottom of the tank is simply:

P = pgH (5.8)

where H is the depth of the tank. For this system H= 5 m and P = 88 kPa, which at 550 'C is well

below the hot compressive load limits for typical IFB. For example, IFB class 20 (service

temperature less than 2000 'F/1093 'C) does not measurably creep under a compressive load of

10 psi (69 kPa) at 1093 'C; allowable loads are much higher at reduced temperatures.
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The exterior of the tank is covered in low-density, low conductivity fibrous insulation.

Typical products include ceramic fiber insulation (i.e., KaowoolTM) or mineral fiber insulation, as

specified by ASTM C 1393, Perpendicularly Oriented Mineral Fiber Roll and Sheet Thermal

Insulation for Pipes and Tanks. Both materials possess thermal conductivity k < 0.1 W/m-K.

The fiber insulation is shielded and protected from moisture and degradation by metallic

lagging. Typically, lagging is applied as thin overlapping or sealed-seam sheets made from

galvanized steel, stainless steel or aluminum. Galvanized lagging has a zinc coating of at least

0.90 ounces per square foot (275 g/m 2) conforming to ASTM A924, Standard Specification for

General Requirements for Steel Sheet, Metallic-Coated by the Hot-Dip Process, to prevent

atmospheric corrosion. Stainless steel (typically AISI type 304, 2B cold-rolled exterior finish) and

aluminum (7072 clad) lagging materials rely on the formation of chromium and aluminum

oxides, respectively, to resist degradation. Additionally, any of the materials can be painted to

enhance durability.

The proposed tank wall materials are listed in Table 5.3. The heat loss can be found using

a series thermal resistance network and Eq. (5.6), substituting each layer's thickness and thermal

conductivity data into Eq. (5.7). A convection coefficient of h = 8 W/m2-K is assumed with

ambient temperature T, = 25 'C on the exterior surface of the lagging, whereby R, = 1/hA. The

overall thermal resistance is Req = 12 K/kW; for Tat = 550 'C, q = 112 W/m2 , Q = 44 kW at the

tank periphery. Over an entire day, this is 1.1 MWth, only 0.2% of the system capacity.

Because the tank wall thickness is much less than the tank radius, this simple flat-plate

analysis provides reasonably accurate results, within a few percent of the true values determined

for cylindrical geometry. Figure 5.9 plots the temperature profile within the tank wall for the two

temperature extremes: Tsat, = 250 'C and 550 'C. The design goal of maintaining the salt freeze

plane within the IFB is met and the exterior lagging temperature is less than 40 'C for both cases.
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A similar analysis can be conducted for the tank bottom. Conduction losses into the earth

are limited with an extra layer of cellular glass insulation or firebrick beneath the steel tank floor,

in place of the fiber insulation and lagging material.

Table 5.3 - Tank wall materials

Layr tickess Thermal
Layer Specification/Trade name Layer thickness Therml k

(W/m-K)

Super-duty firebrick KX-99 115 1.4

Insulating refractory brick ASTM C155: IFB 20 460 0.15

Steel tank shell ASTM A36 12.7 54

Ceramic fiber insulation Kaowool (6 lb/fl3) 101.6 0.070

Exterior lagging ASTM B209: 7072 clad 1.6 250
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Distance from salt (cm)

Figure 5.9 - Tank wall temperature profile
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The lid insulation is designed similarly, except the heavy firebrick layers are replaced by

lightweight ceramic fiber insulating board. The lightweight density (p ~ 270-300 kg/m 3) of these

wet-formed alumina-silica fiber boards reduces the load on the lid support structure. These

materials (i.e., Fiberfrax Duraboard) have high visible light reflectance and very low conductivity

k < 0.1 W/m-K, which reduces overall heat loading to the lid. Additionally, the chopped-fiber

construction is thermal-shock tolerant and limits crack propagation should any defects form. The

rigid board layer contains a freeze plane similar to the IFB in the tank walls, behind which fiber

insulation reduces temperatures such that a mild steel shell can be used for the lid structure.

Again, this steel structure is covered on the exterior with fiber insulation and lagging. The low-

temperature heat extraction loops can be integrated into the backside of the steel lid shell, thereby

providing an extra barrier between the lid HTF (likely pressurized water/steam) and the receiver

interior.

Table 5.4 lists the lid construction materials which can are used to find thermal losses as

described previously with natural convection on the outer surface of the lagging. The overall

thermal resistance of the lid is Req = 1.6 K/kW, an inner lid temperature Tlid = 240 'C results in q

=133 W/m2 and Q = 130 kW for a hemispherical lid covering the entire salt surface. Over a

twenty-four hour period this is 3.1 MWth or 0.5% of the system capacity. Figure 5.10 plots the

temperature profile throughout the lid; note the steel lid structure is approximately 160 'C - an

ideal temperature for power cycle water preheating. A similar insulation strategy is incorporated

into the aperture door structure.
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Table 5.4 - Lid construction materials

Layer thickness Thermal
Layer Specification/Trade name m) conductivity k

(W/m-K)

Ceramic fiber insulating board Fiberfrax Duraborard 19.1 0.084

Ceramic fiber insulation Kaowool (6 lb/fl3) 25.4 0.070

Steel lid shell ASTM A36 6.4 54

Mineral fiber insulation ASTM C 1393 Type I 50.8 0.055

Exterior lagging ASTM B209: 7072 clad 1.6 250

Daily conductive and convective heat losses from the external surfaces of receiver are

very low, less than 1% of the 600 MWth storage capacity. Equation (3.30) can be used to estimate

the temperature drop in the molten salt at the tank wall as a function of time t, assuming

isothermal initial conditions near the tank wall:

AT = 2q a 5.9)

Figure 5.11 plots Eq. (5.9) for the nitrate salt exposed to typical tank wall heat fluxes qwall

of this design. In extended periods of inclement weather, the system can idle for several days, or

even weeks, without risk of the entire mass of salt freezing solid. The temperature drop calculated

by Eq. (5.9) is an upper bound, since the physical system has additional thermal capacitance from

the super-duty firebrick lining and convective mixing within the salt. Once salt begins freezing,

the solidifying front is dictated by the Stefan problem as described in Chapter 3, which reduces

the temperature gradient even further. Even so, the first region to freeze will be lower cold salt

region below the divider plate. Hence, it is wise to incorporate a supplementary heater to

underside of the tank bottom shell. Heating elements installed here can be turned on when the

lower tank temperature is below a critical threshold, thereby preventing further heat loss and
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Figure 5.10 - Lid temperature profile
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Figure 5.11 - Temperature drop in molten salt at tank wall interface

Calculated using Eq. (5.9)for nitrate salt with various tank wall heat loss qtank values.
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subsequent freezing. For this 25 m diameter design, a total of 50 kW of electric resistance heating

elements (preferably several zones each wired in separate circuits for reliability purposes) is

sufficient to overcome 100 W/m2 losses through the tank bottom.

As a second contingency, the cold salt return line can be fitted with a "freeze valve" to

allow passive draining of a majority of the salt volume in a worst-case situation. The freeze valve,

as described by Briggs in the Molten Salt Reactor report, consists of nothing more than a nearly-

flattened length of uninsulated stainless tubing, whereby a frozen salt plug forms [138]. During

emergency drain scenarios, the exterior of this freeze valve is heated quickly and gravity-draining

of the tank ensues. Salt flow can be stopped by blowing a stream of ambient air on the tube's

exterior.

Power cycle considerations

The low temperature heat extraction from the lid is assumed to be fully utilized in

feedwater preheating, or depending on plant layout, even in the evaporator section. The design

heat extraction rate from the receiver is 40 MWt - a fairly small value for large scale power

generation equipment. Smaller steam turbines do exist in the 5-10 MWe range, but larger 30-100

MWe units are more efficient, reliable and cost less per watt power produced. If larger scale

production is desired, a solution is to gang multiple CSPonD salt ponds together as discussed in

Chapter 2. This has the added benefit of redundancy, increasing overall system reliability.

Some ganged unit designs will transfer hot salt to a central steam generation unit; others

will use collocated steam generators to produce steam at the receiver and then transport this steam

to a central turbine station. Still other designs may utilize an intermediate heat transfer fluid to

extract heat from the individual receivers and transfer it to a centralized power block. The

specifics of these implementations are beyond the scope of this thesis; for this idealized system, a

single turbine is directly coupled to this pond with an assumed thermal efficiency for the heat

exchanger-power cycle of r/th = 0.38.
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Power cycle efficiencies are likely to vary depending on the use of water or air cooling,

but this value represents a mid-range estimate. As a result, the gross electrical power produced by

this receiver is 15.2 MWe. Again, it is important to note that the CSPonD system produces this

power continuously at this output during the power producing phase, unlike conventional PV

system and CSP systems without storage which throttle output from peak, matching the solar

resource available. This allows grid operators to easily integrate CSPonD-produced energy into

their systems without worry of power variability and unexpected brownouts.

Parasitic power consumption

The salt pumping power can be found multiplying the nominal pressure drop across the

steam generator, APHx = 450 kPa (taken from a representative molten salt steam generator [47])

with the volumetric flow rate of the salt:

MhAP
PUMP - =10.4kW (5.10)

Although the value obtained with Eq. (5.10) does not account for fluid frictional losses in

the piping or fittings between the tank and the steam generator or inefficiencies in the pump

motor itself, the pumping power is only 0.15% of the total electrical power produced. This is in

stark contrast to the pumping power requirements for traditional power tower designs, which

must pump the HTF up to the top of the receiver tower at significant flow rates. For example, the

proposed 150 MWe SolarReserve Crossroads CSP plant uses a 200 m tall tower to support its

external cylindrical receiver. With a reported AT= 277 K, pumping the required amount of nitrate

solar salt to the tower - assuming no frictional losses in the long supply pipes or receiver -

requires 1.9 MWe, or 1.3% of the gross electrical output [139]. Additionally, conventional tubular

receivers impose a significant restriction on the HTF flow, adding to the already large pumping

power requirements. In this CSPonD system, a 152 mm (6") diameter pipe would have a salt flow
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velocity of 1.3 m/s, resulting in a negligible pressure drop in comparison to APHX over the short

pipe length needed. Similar low pumping power estimates can be obtained for the lid cooling

loop.

With the divider plate properly ballasted and only slightly negatively buoyant, actuation

forces are minimized. The speed requirements are minimal as well: extracting all of the storage

energy in a short six hour 100 MW, burst results in a maximum divider plate speed of 0.2 mm/s.

The combined low force and low power requirements for the divider plate actuators make the

positioning power negligible; six (for redundancy) continuous duty winch-type electric

gearmotors can be used with a peak power draw of less than 1 kW each.

Central receiver system comparisons

It is worth comparing this CSPonD system design to other state-of-the-art central receiver

designs, particularly those in planning or under development. A representative direct-steam

generation system is eSolar's design, which employs a multitude of small 1.14 m2 heliostat

mirrors. Seven of these mirrors are aligned into individual "sticks" [140]. A module consists of

one power tower and cavity-type tubular receiver with a dedicated heliostat field located north

and south of the receiver. Twelve modules occupying roughly 80 hectares (200 acres) feed steam

to a 46 MWe eSolar power unit with a turbine generator set and a steam condenser [141]. There is

only minimal thermal storage (15-30 minutes) associated with the eSolar plant. For reference

purposes, the 81,300 m2 mirror area CSPonD hillside field presented in this Chapter can be

equivalently outfitted with a total of 71,315 eSolar heliostats, occupying 10,188 eSolar heliostat

"stick" modules.

An alternate approach is utilized by SolarReserve and Brightsource, whereby one large

3600 circular heliostat field heats a single receiver. Specifications for the proposed SolarReserve

100 MWe Crescent Dunes Tonopah plant indicate that it will occupy 2.5 square miles (1,040

hectares) of Nevada desert [142]. The 30.5 m tall tubular cylindrical solar salt receiver sits atop a
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168 m tall tower; a two-tank nitrate salt system is designed with ten hours of thermal storage and

functions as the HTF [143]. The design presented by Brightsource for their 370 MWe Ivanpah

plant, composed of three circular field/receiver modules each with their own power block, is

slated to occupy 5.5 square miles (1416 hectares); however the direct steam generator receivers

are designed without thermal storage of any kind and requires natural gas firing during off-peak

solar periods [144].

Table 5.5 compares the specific land usage and power production for the CSPonD,

eSolar, SolarReserve and Brightsource CSP concepts. Clearly, the CSPonD system offers the best

energy output per unit land area by exploiting parabolic dish-like hillside terrain, and more

significantly, CSPonD's integral energy storage enables prolonged cloudy-day power generation.

It is interesting to note the general trend regarding plant size as mentioned previously: smaller

heliostat fields/receiver combos have greater optical efficiencies, which tends to outweigh very

large plant gains in power block efficiency. As such, systems like CSPonD and eSolar, comprised

of smaller optical modules connected in groups to larger power block units, will provide the most

efficient land utilization.

To provide a direct solar-to-electric design point comparison, if the CSPonD receiver was

producing electricity in-phase with the incident solar energy striking the collector field (i.e.,

without time-load shifting or daily accumulations to its "buffer" pond storage), r/solar-electric as in

Eq. (1.3) becomes:

qsolar -electric = 77op, 7rec rh7ele = (0.57)(0.82)(0.38)(0.98) = 17.4% (5.11)

The parasitic electrical power efficiency is conservatively estimated as /ele = 0.98 resulting from

cooling fans, fluid pumps and generator losses. The overall efficiency found in Eq. (5.11) is

greater than conventional designs, and as a result, the capital costs per installed megawatt are

expected to be lower for CSPonD systems.
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Table 5.5 - Comparison of central receiver CSP performance

eSolar SolarReserve Brightsource
Parameter CSPonD' [14la Tonopah Ivanpah

[142], [143] [144]

Receiver type Volumetric: Tubular: Tubular: Tubular:
Cavity Cavity External External

Receiver HTF solar salt steam solar salt steam

Thermal storage capacity (h) 15 - 10 -

Module size (MWe) 15.2 3.8 100 123.3

Number of modules per power block 3 12 1 1

System size (MWe) 46 46 100 370

Daily power production duration (h) 6 4.8"1 13.3 4.8"

Backup energy storage capacity (h) 9 - - -

Daily energy produced (MWeh) 276 221 1330"' 1776v

Average DNI (kWth/m 2/day) 7.20v 7.20v 7.36 7.44

Heliostat mirror area (M2) 243,900 218,880 1,071,361 2,295,960

Land area (hectares) 39.6 80 647 1416

Energy produced per mirror area 1.13 1.01 1.24 0.77
(kWeh/m 2/day)

Energy produced per land area 0.70 0.28 0.21 0.13
(kWeh/m 2/day)

17solar-electric, based on mirror area 15.7% 14.0% 16.8%"'. 10.4%

lsolar-electric, based on land area 9.7% 3.8% 2.8%"' 1.7%

Notes:

i) CSPonD power block assumed t7rh 0.38 for 46 MWe unit, extracting 40 MWt from each receiver.

ii) Daily power production duration for eSolar and Brightsource calculated for equivalent full-load solar
power production (i.e., morning and late afternoon power output < peak power output due to lack of
storage).

iii) SolarReserve Tonopah plant projected power output = 485,000 MWeh/yr (13.3 h/day operation) which
will deplete storage completely each day under certain circumstances. As such, the system will provide
reduced output on days after depleting the thermal storage capacity. If a more realistic 10 h/day operation is
used, 17solar-elecric becomes 12.6% and 2.1% based on mirror and land area, respectively.

iv) Brightsource plant capable of 8 hours full-load operation (2960 MWh) each day with natural gas assist
heating.

v) Average DNI values assumed for typical CSPonD and eSolar southwestern US location.
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It is important to note that the CSPonD summer solar noon design point calculations

occur for the worst heliostat collector efficiency due to the beam down field geometry. Figure

5.12 plots the cosine efficiency for a heliostat on the optical axis with a beam down angle of 200,

roughly the average for the idealized field, at solar noon throughout the year. As can be seen, COS

reaches a minimum during the summer months when the sun is at its highest in the sky.

Conversely, ioes increases dramatically in the winter months, when the solar elevation angle

(complement of the solar zenith angle) is lower.

For comparison, the cosine efficiency for a power tower heliostat is shown in Fig. 5.12,

which beams up at a 500 angle. This beam up angle is typical of the shorter-range mirrors which

impose the greatest fluxes upon the receiver. While qos remains relatively high and constant

throughout the year (hence the motivation for a high tower), the solar energy available to collect

throughout the year follows the general trend illustrated by the solar elevation curve: peak energy

is available during the longer days of summer, while winter's shorter days limit collection time

and solar energy resources. As a result, conventional power towers are designed, and can provide

their peak rated power during solar noon in the summer, but fall short during other seasons. In

contrast, the increased relative collection efficiency of a CSPonD system during off-summer

months allows for more uniform power production throughout the year, providing a higher

capacity factor and annual energy output per rated peak power.

A similar analogy holds for early morning and late day collection when the sun is lower

on the horizon: CSPonD systems will have an increased optical efficiency relative to solar noon.

As a result, the net power as compared to the peak midday power to the receiver will fluctuate

less than in conventional power tower systems. Further details are presented by Ghobeity, Noone

and Mitsos, who analyze the CSPonD system collection behavior year-round to optimize heat

extraction and power production for a given site [51], [77], [78].
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Figure 5.12 - Year-round cosine efficiency at solar noon

Calculatedfor San Diego, CA (latitude = 32.80);
single heliostat located on the optical axis of the receiver.

Design details of receiver

Figures 5.13 through 5.20 illustrate design features as described in the previous section.

The CSPonD receiver is shown on a concrete foundation pad; pilings support the cantilevered

CPC which protrudes from the front of the tank. The aperture door assembly is not shown; it can

be located in two places: large horizontal or vertical sliding doors covering the CPC inlet

aperture; or a smaller set of doors at the CPC exit and lid interface. Locating the aperture door at

the latter site would result in reduced heat losses while the receiver is off sun and the door is

closed. However, additional design constraints would be imposed so that light is not impeded by

the support structure when the door is open. A simple garage-type door which rotates up and out

towards the heliostat field offers a possible solution, whereby the backside of the door forms a

portion of the CPC's inner surface while open.
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Figure 5.13 - Isometric perspective view of receiver

Cold salt inlet

Figure 5.14 - Front and side views of receiver

(dimensions in meters)
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Figure 5.15 - Cross-section of receiver

Figure 5.16 - View facing CPC entrance aperture
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Figure 5.17 - Exploded view of CSPonD receiver

(Foundation removed and tank dome made transparent for clarity)
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Figure 5.18 - Tank and divider plate cross-section detail

(dimensions in meters)

Tank shell

-Fiber insulation

lagging

Insulating
DETAIL A firebrick

Figure 5.19 - Typical tank wall insulation details

(dimensions in meters)
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Figure 5.20 - Scale of receiver w.r.t. heliostat field area
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Conclusions

A CSP system has been presented where hillside mounted heliostats direct sunlight into a

volumetric absorption molten salt receiver with integral storage. The CSPonD DAR simplifies the

system by eliminating the conventional tower based receiver, materials driven temperature limits

on receiver structure, remote thermal storage system and high pressure heat transfer fluid pumps.

Volumetric absorption into the passive molten salt pond results in increased performance and

durability, enabling working fluid temperatures approaching 1000 'C and improved power cycle

efficiency.

The receiver pond is internally insulated with firebrick and has a relatively small aperture

and a refractory lined lid, whereby salt vapor condenses on the inner surface to form a self-

healing reflective surface. This construction reduces secondary heat losses and avoids thermal

fatigue associated with boiler tube-type receivers while achieving high temperatures needed for

efficient power generation. In addition, the receiver volume also acts as the thermal storage

volume. The use of low cost inorganic salts as the receiving medium, heat transfer fluid and

thermal storage medium simplifies design; thermal storage media costs of 3.7 and 1.7 dollars per

kilowatt-hour are achieved with binary sodium-potassium nitrate and chloride salt mixtures,

respectively.

Hot salt is extracted from the top of the tank over a weir through a heat exchanger and

then returned back into the bottom of the tank. An insulated divider plate provides an additional

thermal barrier between the thermally stratified hot and cold layers within the tank, and the

divider plate is moved axially up and down to provide high temperature thermal energy even as

the average temperature of the salt in the tank decreases when the sun is not shining. The near-

neutrally buoyant divider plate limits conductive heat transfer between the upper and lower salt

regions to less than 1% of the storage capacity over a twenty four hour period.

CSPonD systems are expected to benefit from reduced capital and operational costs,

resulting in lower levelized costs for energy produced. The capital cost for a CSPonD receiver
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and integral thermal storage system is reduced through the extensive use of low-cost refractory

materials, low-cost salts and by eliminating the need for a second cold salt storage tank. A

majority of the capital expense in CSP systems is the heliostat field, and although hillside beam-

down geometry results in additional cosine losses compared to conventional beam-up

configurations, these cosine losses decrease in winter months. Thus, the CSPonD system can

deliver power closer to its rated design capacity throughout the year, resulting in improved

capacity factors relative to power tower designs. Operational cost, a portion of which can be

measured in terms of parasitic energy consumption, is much lower in ground level CSPonD

receivers as compared to that needed to pump heat transfer fluid to tall, tower mounted receivers.

Experiments with solar simulator heated lab-scale molten nitrate salt volumetric receivers

indicate viability of the concept, while recent fundamental measurements of the attenuation

properties of molten salts in the visible spectrum provide insight into large-scale volumetric

absorption behavior [53]. Furthermore, an analysis of hillsides in the southwestern United States

shows good potential for CSPonD system development at considerable scales [51]. A preliminary

economic analysis using NREL's solar System Advisor Model indicates a levelized cost of

electricity of 0.07-0.33 dollars per kilowatt-hour produced; the large variability is due in part to

the pricing uncertainty of large numbers of heliostats and the relative uncertainty in predicting

system efficiencies of such a novel and untested (at scale) system [67].

Perhaps the greatest benefit of the CSPonD system is its ability to provide dispatchable

power as needed, likely during peak-power demand times when the cost of energy is high, using

otherwise non-desirable hilly terrain in areas with high solar resources. Granted, very large

contiguous gigawatt-scale hillside fields are neither practical nor likely to be available, but a

hybrid desert system can be envisioned which combines the inherent storage and power time-shift

capabilities of several CSPonD field/receiver modules with large tracts of photovoltaic or

traditional CSP fields that produce power in phase with instantaneous solar irradiance. Such a

hybrid system, utilizing high desert plains and surrounding foothills with CSPonD-storage would
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enable wider adoption of solar into the electric grid, meeting the proposed Renewable Portfolio

Standards (RPS) many states are enacting.

Thesis contributions

This thesis has provided a description of a new volumetric molten salt receiver solar

thermal power system with integral storage, termed Concentrated Solar Power on Demand:

CSPonD. Specific contributions have included:

" Design methodology & guidelines for the CSPonD system,
including the hillside collector field

" Design guidelines for the collocated storage system, including the
actuated divider plate

" First-order thermal and performance models for the CSPonD
receiver

* Design rules for scaling, build & test of the receiver and storage
system

" Development of a low cost high-flux solar simulator for indoor
volumetric receiver testing

a Conducting volumetric absorption experiments with passive, high
temperature molten salt receivers

Design parallels

It is worth mentioning other systems from which the CSPonD DAR can borrow, or has

borrowed, inspiration. As an example, the aperture door mechanism and construction details can

take inspiration from large observatory domes and retractable sporting stadium roofs.

The CSPonD beam down design was quickly termed the "doghouse" - and much to our

surprise, a special type of glass pool furnace exists, known as a doghousefurnace! A low-
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temperature variant of the doghouse design which many have unwittingly been exposed is the

common open-hearth pizza oven. Newer designs incorporate active air extraction above the

opening which increases heating within the oven and reduces heating of the customers outside the

oven. The CSPonD salt fume extraction loop shares a similar goal: keeping salt in the receiver

and reducing heat losses to the environment. Figure 6.1 depicts these analogies from which

numerous lessons can be learned in design, materials and construction.

Figure 6.1 - Design parallels for the CSPonD system

Clockwise from bottom left: glass melting furnace; furnace interior;
doghouse material entry; open-hearth pizza oven; observatory; stadium.

Images from [71] and Creative Commons
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Future work

The next step in the research is to design a 20-100 kWt test receiver that has an aperture

size to receive light from a typical concentrating heliostat, so a commercial array can be easily

modified and used without needing additional concentrating optics at the aperture. This receiver

would, however, be designed with the full anticipated depth of a larger system, so the optical

penetration and convective mixing propeities anticipated for the MWe sized CSPonD system can

be evaluated.

A detailed thermal and optical study of the receiver should be conducted using numerical

methods, including modeling the convective flow field within the receiver. This is not a simple

task, as it requires the simultaneous solution of the HTE, RTE and the Navier-Stokes equations.

When combined with a site-specific ray tracing analysis of the heliostat field and proposed

receiver lid and tank geometry needed to obtain accurate incoming radiation distributions, this

task becomes quite the challenge - and is best left for computational savants. However, this

modeling is mandatory before building a large-scale system to accurately characterize and predict

year-round CSPonD performance.

On a smaller scale, experiments with material processing lasers can be used to verify the

maximum flux limitations imposed on various solid and liquid molten salts as calculated in

Chapter 3. Following on the lab-scale theme, other candidate salts can be examined for their use

in a CSPonD open receiver, particularly the newly developed quaternary eutectic nitrate salts with

very low melting points and high decomposition temperatures [98], [100].

Tangential research paths, perhaps to be explored by others in the field, include using the

parts or all of the CSPonD system in diverse applications. One concept would use the solar-

heated CSPonD molten salt receiver to feed molten salt pyrolysis reactions for production of

hydrogen or other chemicals to displace fossil fuels in transportation applications. Yet another,

somewhat more related application could incorporate molten salt volumetric receivers on a much
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smaller scale (10- 100 kWe) for use in distributed parabolic dish power generation, providing

much needed energy storage to these small, optically efficient systems. Yet another application of

CSPonD technology incorporates the un-sealed divider plate concept into thermal storage tanks,

for water, molten salt, or any other fluid tank combination. Indeed, SENER's large CSP solar

trough plant, Andasol I: 49.9 MWe with 6 hours thermal storage, is planning to install a 7 m

diameter x 10 m high tank to test an insulated divider-plate equipped single tank thermocline

system [84]. Data from these large scale tests, using solar salt (with only a 100 K temperature

difference due to the low peak temperatures obtainable with a trough collection system) will be

key to "selling" the CSPonD concept for commercial applications. Finally, research into the

integration of CSP modules into larger power blocks is needed: particularly which chained-

receiver configuration and thermal transport fluid provides optimal connectivity: molten salt,

steam or yet another HTF.

On a research (as opposed to gargantuan commercial solar power purchase agreements)

scale, the current funding trend towards "Micro CSP" systems with 0.1 - 50 MWe output favors

the development of individual CSPonD-type modules. Indeed, several funding opportunities exist

for CSPonD proof-of-concept units located on government and public land in the western United

States. Regardless of whether a CSPonD demonstration program is funded, the smaller scale of

these projects will hopefully stimulate the development of more efficient and affordable heat

engines in the Micro CSP range. This is greatly needed, as the poor thermal efficiency of smaller

power blocks is the largest detractor from overall solar-to-electric CSP system performance.
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A low cost high-flux solar simulator

Solar simulators are an invaluable tool for solar energy research. Commercial off-the-

shelf simulators are designed to provide small areas of uniform, nearly collimated light, matched

to terrestrial solar spectra for photovoltaic (PV) cell testing. Typical flux output intensities are a

few 'suns' (1 sun = 1 kW/m 2); thus they do not usually provide the high intensities required for

concentrating solar power testing. Custom made solar simulators have been built to provide the

intensities necessary for CSP research, ranging from 30-100 kW/m2 (30-100 suns) and upward,

but have cost hundreds of thousands of dollars. These research simulators utilize high power

xenon arc lamps, precision engineered optical elements and active cooling circuits [145-148].

The design, development, and testing of a low-cost solar simulator, including details of

its construction are provided in this Appendix. The goal was to design and build a solar simulator

for under $10,000 that would offer similar testing capabilities to more expensive, high-flux

research simulators. The only drawback is that the light is not collimated with the simple

concentrating optics that are employed. Although the unit is designed for CSP thermal testing,

specifically to study the absorption behavior of volumetric molten salt receivers, it could be

utilized for concentrated PV testing provided collimated light was not needed.

Further characterization of output irradiance could be performed in accordance with

ASTM 927, "Standard Specification for Solar Simulation for Photovoltaic Testing" to classify the

simulator for more widespread use.

Detailed Design

The design of the solar simulator can be broken down into three subsystems: light source;

adjustment structure; and concentrator. Table A. 1 lists the primary functional requirements and

associated specification targets for the solar simulator. Figure 1 shows the completed simulator.
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Table A. 1 - Solar simulator functional requirements & design specifications

Requirement Design Parameter Specification

Emulate solar heating Metal halide lights with Output flux 50 kW/m2

metal reflective
concentrating optics

Adjustable for Aperture Height 0 Aperture height I 1
different receivers Adjustability via nested

perforated tubing

Tiltable for non- Aperture Rotation pivot 0' Aperture angle 900
normal incidence
Large output spot Conical concentrator Aperture diameter 20 cm

Low cost Commercially available and Cost $10,000
simple components

Figure A.] - MIT metal-halide CSP solar simulator

10.5 kW; 038 cm hexagonal output aperture; 2.1 m x 2.1 m x 2.6 m (LxWxH) overall size.
Subassemblies: (1) Frame; (2) Light Mounting Frame; (3) MH Light; (4) Pivot Tube; (5) Lifting Winch; (6)

Tilt Adjustment Plate; (7) Secondary Concentrator.
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Light Source

Xenon arc lamps, favored by commercial solar simulator manufacturers, can be filtered to

have an emission spectrum closely matching that of terrestrial sunlight. They are available in high

power single bulb configurations which can be coupled with a single ellipsoidal mirror, resulting

in a tightly controlled spot size [148]. However, high power xenon arc lamps and their associated

drive electronics are expensive products, with nearly 10 times the costs-per-watt than commodity

light sources.

Metal halide (MH) lamps were determined to be the most practical light source due to the

significant price difference. However, MH lamps come with quite a few drawbacks worth

mentioning, although they were determined not to be detrimental to our CSP testing needs. The

'unfiltered' emission spectrum of does not match the emission spectrum of sunlight as closely as

that of xenon arc lamps (see Fig. A.8 in the Testing & Characterization section). Also, the long

'filament' in large MH bulbs does not lend itself to precise focusing - resulting in an increased

minimum achievable spot size relative to xenon arc lamps.

MH lamps are widely used in industrial and sports lighting applications, and are thus

readily available and inexpensive. Common MH outdoor stadium lights utilize 1500 W BT-56

bulbs and NEMA standardized spun-aluminum ellipsoidal reflector geometries. Light distribution

is described by NEMA 1-6 type ratings: Type l is a narrow beam (10-18'); Type 6 is a wide flood

(100-13 00) [149]. Figure A.2 shows the luminous intensity distributions for the most common

types, NEMA 3 and 5. NEMA 3 reflectors were chosen for their narrow, high intensity output

beam.
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Figure A.2 - Luminous intensity distribution for various MH reflectors

1500 W MH sports lighting fixtures with NEMA 3 and NEMA 5 ellipsoidal reflector geometry.
(Photometric datafrom [150])

Seven off-the-shelf (Complete Lighting Source: p/n SP1500MHMT) 1500 W outdoor

MH units with integral ballasts, adjustable mounts and NEMA 3 reflectors are utilized for the

solar simulator. The lights are arranged in a hexagonal array with the seventh light in the center.

The simulator is configured for two 30A/208V power sources with fused safety cut-off switches

and individual circuit breaker and in-line fuse protection.

Adjustment Structure

The frame must be easy to assemble, stiff, and support the weight for the MH lights,

ballasts and secondary concentrator - about 160 kg. The frame also must be designed for ease of

adjustment, disassembly and short range mobility so it can be moved within the lab, or between

laboratories.
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Base

Perforated steel tubing was chosen for its strength, stiffness, availability, low cost, and

ability to safely set components at different heights with positive engagement pins. For

portability, the frame is designed to separate into two A-frame style halves. The frame footprint

measures approximately 2.1 m x 2.1 m. The base is equipped with casters for short-range

mobility while assembled.

Adjustable Height

To accommodate test receivers/absorbers of various heights, perforated steel sleeves are

employed over the frame uprights. The sliding sleeve assemblies are positioned using frame

mounted load-lifting hand winches with integral safety brakes. Steel wire rope is used for the

winches, extended over pulleys mounted to the top of each upright support and attached to an

eyebolt on each sliding sleeve assembly (Fig. A.3). Zinc-plated steel quick release pins, 7/16"

(11.1 mm) diameter, are used to lock the height adjustment sleeves in place.

Rotatable output

The simulator was designed to rotate about a horizontal axis to enable testing of various

CSP receiver designs, some requiring non-vertical illumination - particularly the case of glancing

angle irradiation over a liquid free-surface. Aluminum extrusions are assembled into a lightweight

hexagonal frame, allowing direct mounting of the six peripheral MH light/ballast modules in a

compact arrangement to enable pivoting of the entire light assembly.

The hexagonal frame assembly is mounted to a 2" schedule 40 (60.3 mm OD x 3.9 mm

wall) steel pipe, supported on both ends by pillow-block mounted bearings. The central MH light

is bolted to a bracket welded directly to the pipe's midsection. The pipe and aluminum extrusions
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Figure A. 3 - Simulator support frame

Nestable, perforated square tubing with pillow block bearing mount for height adjustments.
Vertical adjustments accomplished with load-lifting winches (2X), located on support uprights.

were sized to keep deflection of the frame to a minimum, regardless of the tilt position. Efforts

were made to keep the unit balanced so manual tilt adjustments can be made easily. An aluminum

adjusting plate was designed to lock the simulator's rotation angle at 5 degree increments, and

attached to the pipe with a captive stainless steel torque rod loaded in double shear (Fig. A.4).

The torque rod serves as a "fuse" yielding to prevent tip-overs at torque of 11,800 lb-in (1,333 N-

m), corresponding to an eccentric load of 380 lb (1.69 kN) applied at the edge of the 62" (1.6 m)

wide light support frame. A single 7/16" (11.1 mm) diameter steel quick release pin locks the

angular adjustment. The quick release pins are rated for 13,230 lb (58.8 kN) in single shear,

which equates to a maximum load capacity of 3,400 lb (15.1 kN) at the outer extremes of the light

support frame, more than adequate for the lights and mounting structure.
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Figure A.4 - Rotation adjustment plate

Plate attached to MH support assembly, consisting of a steel 2" schedule 40 pipe mounted in
pillow-block self-aligning bearings, supporting the hexagonal aluminum extrusion light support

structure.

Secondary Concentrator

A simplified secondary concentrator is utilized to boost the flux available at the output

aperture. Designs of non-imaging concentrators are well known - typical designs are variants of

compound parabolic concentrators (CPCs) or flow-line concentrators (FLCs), as shown in Fig.

A.5 [5]. A truncated FLC was selected for the simulator, resulting in a hexagonal conical structure

with reasonable concentration performance that is very simple to manufacture.

As noted in the design of flat 2-dimensional cone concentrators, there is a distinct

tradeoff between increased concentration, number of reflections, and the length of the

concentrator. SolTrace, NREL's ray-tracing freeware, was used to simulate the optical

performance of the secondary concentrator. However, the software did not allow for individual

light sources (i.e., the array of seven MH lights) to be defined, so the entrance plane of secondary

concentrator was illuminated with uniform, collimated input flux. Simulated output flux results

are shown in Fig. A.6 for the conical design geometry with a 24.90 half-angle. Predicted

concentration across the output aperture is boosted with noticeably increased concentration in the

center.
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Figure A. 5 - Flow-Line Concentrator geometry

Simplfiedflat-cone construction along hyperbolic asymptotes is utilizedfor the solar simulator.
The asymptotes have a half angle 0 relative to the z-axis. Flux aimed between iC will be

concentrated on to -a, resulting in a concentration of C/a (C2/a 2 for a hyperboloid of revolution).
From [5]

-0.054
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0
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Figure A.6 - Output aperture flux ray tracing results

Ray-tracing simulation results, concentration ratio (output flux/input flux) at exit aperture of
secondary concentrator. 24.90 conical secondary concentrator geometry; 300,000 rays with a

uniform input flux directed parallel to the concentrator's z-axis. A "hot spot" of over 6x
concentration is predicted in the center of the output aperture.
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Commercial specular reflective 'bright' anodized aluminum (Lorin Industries ClearBrite*

1 mm thick Al 5657-H25) used in custom signs and lighting was chosen for the concentrator

panels for its low cost, low mass and excellent heat dissipation characteristics. An aluminum

frame was fabricated top and bottom for rigidity and ease of attachment to the lights. Additional

provisions were made on the output aperture frame for mounting a hyperboloidal neck to further

boost the concentration, if needed for future tests. Contoured aluminum adapter plates are used to

distribute the stress of the concentrator load without deforming the thin MH primary reflectors,

and top 'filler' reflectors close the gaps between the MH lights. (Fig. A.7)

Figure A.7 - Secondary concentrator structure

Mounting plates distribute the load evenly on the reflector domes to avoid distortion. Specular
anodized aluminum sheet (1 mm thickness) is utilized for the reflective surfaces.
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It was assumed that natural convection over the concentrator's large outside surface

would be sufficient to prevent overheating inside a climate-controlled laboratory environment

with ambient temperatures near 25 0C. For example, a worst case calculation of all the input

power (10.5 kW) reflected an average of two times over the secondary concentrator (assumed

reflectivity = 0.89; surface area = 4.9 M2 ) gives a heat flux of only 450 W/m2 much less than

midday sun.

During operation, the upper portions of the simulator, including the primary MH light

reflectors and the top of secondary concentrator, become slightly warm to the touch. However,

during periods of prolonged operation exceeding several hours, the bottom 10 cm of the

concentrator reaches temperatures of 140 'C. This is expected, as there are an increased number

of reflections near the output aperture and heat from the receiver can conduct into the secondary

concentrator. If needed, the concentrator's operating temperature can be reduced by adding

external finned surfaces or water cooling the distal end of the panels, or cooling the output

aperture mounting frame directly.

Testing & Characterization

After the solar simulator was assembled, the following tests were performed to determine

its suitability for use in our CSP testing: solar spectral match and flux intensity determination.

Spectral Distribution

An Ocean Optics USB 650 spectrometer was used to compare the simulator output from

350-1000 nn (VIS-NIR) to midday sun. A pinhole aperture was placed over the sensor to avoid

saturating the spectrometer while collecting the simulator's spectra. As shown in Fig. A.8, the

spectral intensity of the simulator - while not a perfect match for sunlight - is a reasonable

approximation in the range tested. The NIR intensity peaks typical of MH lights are clearly
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visible beyond 800 nm. The MIT CSP simulator delivers 10.9% of its 350-1000 nm energy in the

800-1000 nm range, as opposed to the sun's measured 5.9% over the same range.

300 400 500 600 700 800 900 1000

Wavelength (nm)

Figure A.8 - Spectral intensity comparison for the MT CSP simulator

Comparisonfor the MIT IH CSP simulator vs. measured midday sun spectra. All curves were
normalized to result in identical intensities when integrated over the test spectrum: 350 to 1000

nm.

Intensity Distribution

A simple calorimetric experiment was conducted to quantify the flux distribution across

the output aperture. A flux gage was not available for use, so a small aluminum disc (029.3 mm x

1.3 mm thick) was instrumented with a thermocouple and placed in the output aperture. Figure

A.9 plots the transient temperature behavior of the disc at various radial positions across the

output aperture. After only 20 minutes under the simulator lights, the absorber disc temperature
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Figure A. 9 - Calorimetric absorber target temperature

Al sheet disc, 029.3 mm x 1.3 mm thick, 6061-T6 millfinish. Note decreasing temperatures as the
target is radially offset from the center of the output aperture.

approached steady-state values. Between each measurement run, the simulator was turned off and

allowed to cool to ambient temperature. The absorber disc was examined after each run, but did

not exhibit any noticeable change in appearance or oxidation discoloration. As expected, the peak

temperature is reduced as the absorber was moved away from the center of the output aperture.

The small, conductive disc is assumed to be at a uniform temperature, which gives an

indication of the average flux received onto its surface. Assuming steady-state conditions, a

simple energy balance can be used to calculate the incoming flux in terms of the absorber

temperature and its surface properties. The energy balance diagram is shown in Fig. A. 10. Since

the disc was placed on a thick layer of ceramic fiber insulation and the aperture opening was
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lowered onto this insulation blanket, the horizontal disc can be modeled as well-insulated on the

back side and without forced convection losses on the top surface. However, the hot disc

promotes free convection to develop on its surface, and radiates heat to its lower temperature

surroundings. The thin edge area of the absorber disc is ignored for these calculations.

qin

qradiative = f( 7) q reflected = ( -asolar) qin

+. qfree convection = f(N u, Gr, Pr)

Figure A. 10 - Heat flux balance for top surface of horizontal absorber test target.

Back side is insulated.

Free convection losses can be estimated using correlations for natural convection above

heated horizontal discs. These can be found in standard heat transfer textbooks and are of the

form:

Num = c ( Gr - Pr )" (A.1)

The correlation coefficients for laminar flow over a hot horizontal plate given as c=0.54 and n =

[120]. Nu is the Nusselt number, Gr is the Grashof number and Pr is the Prandtl number,

evaluated at the mean air temperature, T and defined as:

Num = hn - L / k (A.2)

Gr= gpL3 ( T - T,) / v 2  (A.3)

Pr v / a (A.4)

Tm=(T+ T,) / 2 (A.5)
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where

,p= 1/T, (A.6)

In the case of a horizontal circular disc of diameter D, the characteristic length L to be used in

Equations A.2 and A.3 is:

L = 0.9 D (A.7)

The free convection and radiative heat flux losses are calculated as:

qfree convection =hm (T- T)

qradiative = En C (~~ _ T4 )

(A.8)

(A.9)

The reflected heat flux, where asolar is the disc's solar spectrum absorptivity, is simply:

(A.10)qreflected = (1 - asolar) * qin

The energy balance for the disc is:

(A. 11)qin = qreflected + qradiative + qfree convection

combining Equations (A.9) and (A. 10) to solve for the incoming flux provided by the simulator:

(A.12)qin = (1 / asolar) - ( qradiative ± qfree convection )

A Biot number << 0.1, validates the assumption of the target disc as a lumped mass of

uniform temperature. With the thermal conductivity of the disc denoted by kAl, the Biot number,

Bi, is defined as:

(A.13)Bi= hm-L/kAl
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Representative flux calculations for the absorber disc at each test position are presented

in Tables A.2 and A.3. The calculated output intensity at various radial positions is shown in Fig.

A. 11. As expected, calculated optical power is greatest at the center of the output aperture.

However, the ray-tracing predicted central "hot spot" was not observed, with calculated values

decreasing only slightly as a function of the radial offset from center. One explanation for this

discrepancy could be the ray-tracing modeling limitations which could not capture the seven

discrete, aimed MH light sources - but instead required the use of a uniform input beam.

Table A.2 - Absorber disc properties

disc diameter, characteristic ambient temp, asolar en kA,(W/m-K)
D (m) length, L (m) Ta, (K)

0.0293 0.0264 298 0.11 0.05 164

It is worth noting the various sources of uncertainty in the above calculations; particularly

the effects of ambient temperature (T,) and the absorber disc's surface properties (asolar and ,).

Before each run, the simulator and secondary concentrator were allowed to cool to the ambient

temperature of the room, approximately 25 'C. The measurement runs were short, only 20

minutes duration, and the base of the secondary concentrator did not exceed 50 'C at the end of

each run. Setting T, = 50 'C (as opposed to T, = 25 'C) equates to 6%, 1% and 6% difference in

the values of flux calculated in Eqs. (A.8), (A.9) and (A.12), respectively.

The absorber disc surface property uncertainty has a much greater effect on the calculated

performance. Tabulated values were used for the solar absorptivity and normal spectral emissivity

of mill finish aluminum sheet. Ozisik [120] lists asolar = 0.14 and Eg = 0.06, while Love [151]

shows asolar = 0.11 and c, = 0.05. This large variation in the solar absorptivity (21%) translates to

an equally large variation in calculated flux. In addition, the spectral output of the simulator does

not match that of the sun exactly, and one would expect a slightly different value for the effective
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"simulator absorptivity" of the aluminum absorber disc. Because the simulator has additional

spectral output in the near infrared region, the "simulator absorptivity" should be bounded

somewhere between the spectral emissivity (NIR-IR) and solar absorptivity (VIS-NIR). For this

reason, the absorber disc's nominal values were set to those defined by Love, asolar = 0.11 and , =

0.05. Bounding lines are shown on Figure 11 for Ozizik's values and the limiting case defined by

Kirchhoff's law: c, = asolar = 0.11.

Table A. 3 - Calculation of output flux levels

disc offset from center (cm) Equation

0.0 2.5 5.1 7.6 10.2 from text

steady-state disc 730 726 704 673 654
temp, T (K)

Tn (K) 514 512 501 486 476 (A.5)

v (m2 /s) 3.96E-05 3.93E-05 3.80E-05 3.6 1E-05 3.49E-05

a (m2 /s) 5.87E-05 5.84E-05 5.64E-05 5.36E-05 5.20E-05

k (W/m-K) 4.20E-02 4.18E-02 4.11 E-02 4.01E-02 3.95E-02

Pr 0.674 0.674 0.673 0.672 0.672 (A.4)

Gr 9.64E+04 9.71E+04 1.O1E+05 1.07E+05 1.1OE+05 (A.3)

Num 8.62 8.64 8.72 8.84 8.91 (A.1)

h,, (W/m2 -K) 13.72 13.71 13.61 13.45 13.35 (A.2)

qfree convection (kW/m 2) 5.93 5.87 5.52 5.05 4.75 (A.8)

qradiative (kW/m2) 0.78 0.77 0.67 0.56 0.50 (A.9)

qin (kW/m 2) 61.0 60.3 56.4 51.0 47.7 (A.12)

Bi 0.0022 0.0022 0.0022 0.0022 0.0021 (A.13)

204



Appendix: Solar Simulator Design

70 - - - En= asoar = 0.11

60

50

40

30

20

U '

0 2 4 6 8 10

X = radial offset from aperture center (cm)

Figure A.1] - Calculated aperture flux distribution

Flux distribution, accountingfor free-convection and radiative losses of the test target. Al sheet
disc absorber, 029.3mm x 1.3mm thick, millfinish. Heavy solid line corresponds to absorber
disc spectral emissivity, e, = 0.05, and solar absorptivity, asolar = 0.11 [151]. Bounding dotted

lines correspond to 8n = 0.06, asolar = 0.14 [120] and en = asolar = 0.11.

The MIT CSP simulator was successful in heating nitrate salts and keeping them molten

in small-scale receivers of various designs. It is interesting to note the divergent nature of the

output rays, as shown in Fig. A.12, due to the non-imagining nature of the secondary concentrator

optics.

Component Costs

The costs of the major subassemblies are detailed in the bill-of-materials listed in Table

A.4. Direct material cost for the simulator is under $5,000.
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Figure A. 12 -Appearance of output rays

Output limited by a 63.5 mm aperture. Clearly visible are the primary (from the MH lights) and
secondary (reflectedfrom the concentrator) rays. The non-imaging nature of the concentrator

results in divergent rays as they travel away from the aperture.

Table A.4 - Bill of Materials for the MI T CSP solar simulator

Item No. Assembly Description Quantity Cost (ea.) Cost (total)

1 Frame Welded steel tubing & casters 1 $280 $280

2 Light Mounting Hexagonal aluminum extrusion 1 $510 $510
assembly

3 MH Light 1500W MH Stadium Lights 7 $285 $1,995
with ballasts, NEMA 3
reflector

4 Pivot Tube 2" schedule 40 pipe & pillow 1 $170 $170
block bearings

5 Winch Load lifting winch & cable 2 $100 $100
accessories

6 Adjustment Aluminum plate (waterjet) for 1 $200 $200
Plate angular adjustment

7 Concentrator Aluminum (reflective 1 $650 $650
anodized) concentrator and
supports

- Electrical Wiring, conduit, breaker boxes, - - $600
disconnect switches, etc

- Hardware Assembly hardware and quick - - $350
release adjustment pins

Hardware Total: $4,855
Assembly/Fabrication Labor: 50 h @ $25/h (Direct Labor+Overhead) Total: $1,250

Total: $6,105
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