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Abstract

Sampling the vast volumes of the ocean requires tools capable of observing from a dis-
tance while retaining detail necessary for biology and ecology, ideal for optical methods.
Algorithms that work with existing SeaBED AUV imagery are developed, including habi-
tat classification with bag-of-words models and multi-stage boosting for rockfish detection.
Methods for extracting images of fish from videos of longline operations are demonstrated.

A prototype digital holographic imaging device is designed and tested for quantitative
in situ microscale imaging. Theory to support the device is developed, including particle
noise and the effects of motion. A Wigner-domain model provides optimal settings and
optical limits for spherical and planar holographic references.

Algorithms to extract the information from real-world digital holograms are created.
Focus metrics are discussed, including a novel focus detector using local Zernike moments.
Two methods for estimating lateral positions of objects in holograms without reconstruction
are presented by extending a summation kernel to spherical references and using a local
frequency signature from a Riesz transform. A new metric for quickly estimating object
depths without reconstruction is proposed and tested. An example application, quantifying
oil droplet size distributions in an underwater plume, demonstrates the effi cacy of the
prototype and algorithms.
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Chapter 1

Introduction and Background

Gathering information about biological activity in marine environments has historically

been challenging. An immense volume of water, high pressures, mobility, and the range

of size scales have all had an impact on our ability to collect data. The oft-quoted metric

is that more is known about the surface of the moon than the ocean [329] —because the

measurement is that much easier despite the literally astronomical distances.

Tools to meet the challenge of biological and ecological sampling in the ocean have been

growing in ability. The original sampling devices, nets and hooks, could return rudimentary

information about certain species in a rough area. Their simplicity belied the amount of

work required back in the laboratory. Later nets which could include improved spatial

information by opening or closing on cue were developed in the late 1800’s and are still

used today albeit with electronics to control the spatial sampling [421]. Modern devices

which take advantage of electronic sensors and microprocessors are able to shift the burden

of observation to the device itself. Instruments which capture data remotely through sound

and light have enormously expanded the volume that can be sampled. Given that the ocean

is estimated to have 1.3 billion cubic kilometers of water [58] and a seafloor larger than 350

million square kilometers, the ability to reach further is especially critical.

An understanding of the biology and ecology of the oceans goes well beyond an acad-

emic curiosity. The immediately obvious connection is that the ocean provides food and

sustenance for humans and animals alike: in 2008, fish and seafood provided 15% of the an-

imal protein for 3 billion people. Some 90 million metric tons of fish and aquatic plants are
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captured each year, and another 50 million metric tons harvested through aquaculturing.

Fishing and aquaculture provide jobs and financial support (including dependents) for 540

million people, about 8% of the world population. Fisheries exports were worth a record

$102 billion (US dollars) in 2008 [120],[119]. Less obvious is the regulating effect that the

ocean has on global temperature and chemistry.

Changes in marine biodiversity “increasingly [impair] the ocean’s capacity to provide

food, maintain water quality, and recover from perturbations” [428]. Humans have had a

visible impact on worldwide fish populations, decimating certain populations and signifi-

cantly altering the natural balance of many others [304],[34]. Unfortunately, the effect of

fish populations is highly coupled, affecting animals lower in the food chain and modifying

the predator-prey balance [430]. Overfishing in particular has been a long-standing prob-

lem in human history. Correcting overfishing, when possible, takes decades to centuries to

achieve a stable balance [171].

The presence of humans also alters the chemistry of coastal areas through pollution and

chemical run-off, affecting the marine balance in less direct ways than fishing [171]. Even far

from the coasts, changes to the atmosphere are taken up by the ocean as it absorbs carbon

dioxide and various anthropogenic chemicals. For example, the ocean is estimated to have

absorbed around half of the carbon dioxide released from the combustion of fossil fuels.

This has lead to a dramatic reduction in seawater pH and dissolved carbonate, affecting

both the plant and animal life that depends on precise acid levels and chemical balances

[112],[301].

A number of marine taxa are also sensitive to changes in temperature, leading to ob-

servable changes in the biodiversity [382]. Changes in both global and local temperature,

both natural and human generated, have the ability to affect these species [143],[346].

Regulatory checks and balances can help preserve the environment and protect the

future of the fisheries [34]. The process naturally requires good data about the current

state of critical factors and an accurate understanding of how decisions will affect future

populations [60],[93]. This is one of the critical areas where ocean sampling and observation

enter the picture: obtaining the basic biological and environmental data to inform policy

and science.
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The interconnectedness of marine ecology means that information is required on multiple

scales, and that observations about one species can provide input about another [279],[271].

Plankton, the smallest denizens of the aquatic food chain, are a prime example. Changes to

the plankton population can ripple through the entire chain over time [21],[78],[376],[425].

The concentration and health of various plankton can also serve as sensitive indicators for

global temperature and various environmental impacts [38],[429],[162],[111]. Tracking these

changes generates predictions for the various domains that plankton populations impact —

primarily animal, plant, and chemical [154],[22].

1.1 Sampling methods and devices

Gathering the fundamental data about plankton and fish populations, habitats, and the

state of the oceanic environment again returns the discussion to the sampling problem. The

ideal sampling instrument would be able to operate over a wide range of biological sizes,

discriminate between species, collect data throughout a large volume of water, provide the

3D locations of all the objects in the volume, operate throughout the full ocean depth,

and include information about the physical environment (salinity, temperature, currents,

particulate matter, chemistry, etc.) —all without disturbing the subjects under study and

thus ensuring an accurate measurement. These goals are by no means an exhaustive listing

of “ideal”, but provide achievable goals with which to compare the various methods of

collecting information in a marine environment. Several of the commonly used instruments

for both large scale and planktonic sampling are worth reviewing with these goals in mind.

1.1.1 Large scale measurements

At the largest scale, satellites such as the SeaWiFS1 can provide multispectral information

about the upper layer (centimeters to a few meters) of the ocean based on backscattered

light. Phytoplankton concentrations (including the ability to discriminated between a few

dominant species), chlorophyll content, and size parameters can be correlated to colorimetric

measurements [9],[68],[437]. The spatiotemporal coverage of a satellite depends on its orbital

1The SeaWiFS recently stopped collecting data in December of 2010.
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track, so that analyses are over relatively long time scales (days to years) and lack precise

lateral position information (order of kilometers).

Sound has the ability to travel long distances through water, allowing for long-range

sensing and extremely large sampling volumes using sonar. The distance and resolution

are coupled to the wavelength so that sonar is reliably capable of imaging large fish and

returning information about biomass [421],[172]. However, to reliably use sonar, models for

scattering need to be created and tested. Detecting fish in the water column is easier than

near the bottom where strong reflections occur, obscuring the return signal.

Optical solutions provide high resolution and easily interpretable results. Cameras and

strobes are regularly mounted onto autonomous underwater vehicles (AUVs) and remotely

operated vehicles (ROVs), used by divers, towed behind a vessel, or lowered on cables.

They have the ability to image large volumes of water and visually discriminate between

fish species and other centimeter- to meter- sized objects. Capturing information about

benthic environments is done regularly. Optical methods are dependent on illumination

and low scattering. Obtaining quantitative results from image sets can be time consuming

and challenging.

1.1.2 Traditional plankton measurements

The earliest scientific device, a plankton or fish net, sweeps through a volume of water behind

a vessel. Nets can sample incredibly large volumes of water. Detailed microscopic analysis

of the captured animals provides high specificity, including information about life stage, gut

contents, and reproductive status. Biochemical analyses, including DNA extraction, can

also be performed. The three downsides are that spatial information is lost or rough at

best, counting the species by hand in the laboratory is laborious and requires the talents of

an expert, and the animals are forcibly removed from their environments. Nets which open

and close at specific depths, for pre-set times, or which respond to signals from a control

line (either physical or electronic) improve the spatial specificity slightly [421],[420].

The Continuous Plankton Recorder (CPR) is a variation of the net-capture-observe

philosophy. Instead of collecting plankton using a fixed cod end, water is filtered past a silk

mesh that is slowly transferred between two spools. The position of plankton on the mesh is
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combined with knowledge of the CPR’s path to piece together the location. The CPR is also

innovative is that it is attached to ships of opportunity as they cross the Atlantic shipping

lanes and has been providing data about plankton and micronekton along the transit lines

since 1931, one of the longest running experiments in plankton sampling history [298],[412].

Efforts to automatically analyze plankton captured by CPR-like devices and nets has

resulted in the ZooScan system. The captured plankton are laid onto a specialized flatbed

scanner and imported into a computer where they are recognized using various machine

learning approaches. The ZooScan reduces the effort of a human expert in analyzing each

planktonic sample [147].

Nets have several problems that makes them unsuitable for certain types of biologi-

cals. In particular, fragile objects such as gelatinous animals, trichodesmium colonies, or

larvacean houses are destroyed or significantly underestimated [299],[87]. There may also

be problems with avoidance, as some motile zooplankton can sense the shear from an ap-

proaching net and escape its path [42].

Pumps can increase the water sampled in an area, and are especially useful for studying

small-scale relationships. The objects must be immotile, so that pumps are more often used

for phytoplankton, microzooplankton, and particulates [289]. Pumps, like nets, have the

downside of destroying fragile particulates.

1.1.3 Modern plankton measurements

Sonar, especially high frequency or multi-beam/multi-frequency setups, has seen continued

interest for measuring plankton distributions. Euphausiids (krill) and jellies with air voids

reflect sound with greater effi ciency and can be measured to a degree. There has also been

work to estimate plankton biomass using sonar. The three biggest problems for sonar are

that most plankton is small and soft and thus does not effi ciently reflect sound, models

can only account for general categories of plankton, and the exact sonic properties of the

water need to be know to account for changes in the observed signal. The consensus

is that sonar may give rough estimates of biomass in certain populations, but is not a

suitable tool for determining species or genus, especially for scales less than a millimeter

[121],[172],[413],[421].
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Non-imaging solutions have also been proposed and used for plankton measurements.

The Optical Plankton Counter (OPC) and its later cousin, the Laser Optical Plankton

Counter (LOPC) project a light sheet through the water and measure the statistical dis-

tribution of light intensities on a set of photodiodes. The OPC/LOPC provides spherical

equivalent diameters of objects between about 1.5 mm and 35 mm, thus providing a size

spectra only [158],[159],[59]. The Laser In Situ Scattering and Transmissometry (LISST)

[3] has also been used to estimate phytoplankton size distributions. Laser light is diffracted

from a small volume and imaged by ring photodetectors. Similar to the OPC/LOPC, the

LISST provides size distributions only and is sensitive to the diffraction pattern [186],[185].

Optical plankton devices have proliferated as cameras and electronics have advanced.

The Video Plankton Recorder (VPR), CritterCam R©2, Underwater Video Profiler (UVP)

[146], and ZOOVIS (and ZOOVIS-SC, for “self-contained”) are all examples of camera-

strobe pairs that use direct area imaging. The VPR images microscopic objects with a long

working distance and is designed to be towed at high speeds (up to 10 knots for basin-scale

measurements). It has a strobe opposite the camera at a slightly oblique angle (a ring in later

versions) and essentially captures dark field images in either monochrome (original VPR) or

color (VPR-II) [85],[84],[86],[88]. The Critter-Cam used Schlieren imaging for phase imaging

of microscopic animals with a long working distance [363]. The ZOOVIS instruments use

sheet illumination with a thickness on the order of the depth of field, and the camera is

situated to image side scattering. The ZOOVIS is designed to be lowered downwards so

that plankton encounter the light sheet before nearing any mechanical components, reducing

avoidance [30],[28],[374].

Line scan camera systems have also been created for imaging plankton. The Shadowed

Image Particle Profiling Evaluation Recorder (SIPPER) [311],[299] and In Situ Icthyoplank-

ton Imaging System (ISIIS) [79] both image objects by recording the shadow projected onto

a line scan camera as the device is towed through the water. The SIPPER is intended for

smaller plankton while the ISIIS is for larger mesoplankton and nekton. Both systems de-

2The CritterCam R© was developed through a National Geographic Society grant and refers to a ruggedized
video camera that can be used to image animals in their natural habitats. Research using the planktonic
version has been extremely limited since the 1990’s. However, the CritterCam R© (or Crittercam) has been
attached to various animals since then, including whale sharks, seals, and various baleen whales —all which
have close connections to plankton.
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pend on the camera to be towed to generate images and the resulting sample volume (and

image distortion) is a function of the tow speed.

Systems for particle imaging include the FlowCytobot [266] and the Submersible Flow-

CAM (available commercially from Fluid Imaging Technologies). These pump water through

an intake tube into an imaging chamber fitted with microscope optics. Pumps are intended

for use with immotile, infrangible particles between a few microns and about half a mil-

limeter.

The final class of optical measurement devices to discuss here is holographic devices.

These occupy an interesting niche between imaging and non-imaging, as the hologram is

the diffraction pattern but is later reconstructed as an image. Notable devices include the

a drifting unit from Katz et al., the eHoloCam, a device from Jericho and Kruezer, and

the recently released commercial LISST-HOLO. The Katz unit was designed to drift with

currents just below the surface, capturing holographic video of plankton interacting within

their natural environment [281]. Jericho and Kruezer intentionally image microplankton

[179],[137], and there are questions about avoidance that have not been addressed. The

devices from Katz and Jericho/Kruezer both appear to be demonstration units and have seen

limited use in biological studies. The eHoloCam has potential for biological studies and has

been used a limited number of times. Its optical design includes a Q-switched laser, so that

the device is best used on powered platforms [366],[367]. Current work with the eHoloCam

seems to have stalled since about 2008. Sequoia Scientific, the manufacturers of the LISST,

released a holographic version of a particle profiler in 2010. The engineering is rudimentary

but allows basic holographic images to be recorded and reconstructed [321],[253]. A more

complete review of holographic devices and their capabilities is included in Section 3.3.

The operating characteristics of the various imaging systems are primarily engineering

and implementation choices. For example, the depth range can be extended for each in-

strument by using larger housings and syntactic foam. Similarly, power systems and data

storage can be modified with enough time, effort, and grant money.

Several excellent papers further review the state of plankton imaging and optical imaging

within the ocean, and provide an extended discussion of the exact needs that the devices

are attempting to meet [82],[88],[172],[93],[334],[173],[421]. A review paper from Kocak et
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al. that discusses new techniques and methods in imaging may be particularly interesting

for optical scientists [193].

1.1.4 Combined systems

Each of the individual systems already discussed has its benefits and specific measurement

regimes. Both temporary and permanent combinations have been tried with success for

specific types of missions. For example, VPRs mounted to AUVs such as JASON, REMUS,

or ABE are able to autonomously map out 2D areas or 3D volumes with fine detail [134],

and attempts have been made with ROVs to track zooplankton [302],[317]. Common probes

such as conductivity/temperature/density (CTD) sensors and fluorometers have been in-

corporated into later redesigns such as the VPRII [88] and the ZOOVIS-SC [374]. The

BIOMAPPER-II is a particularly wide-reaching system that combines a VPR, CTD, flu-

orometer, transmissometer, radiometers, cameras, and sonar into a single towed platform

[413].

1.1.5 Challenges for microscale optical devices

Direct collection of plankton by nets, CPR, divers, or other similar methods all have the

same bottleneck: the need to identify the sample contents. Experts have to painstakingly

re-sample and examine the contents. As expected with direct examination, the species

resolution is extremely high. Automated or semi-automated systems such as the ZooScan

can help reduce the need for an expert but still requires sample preparation and hands-on

lab work and have taxonomic resolutions similar to the in situ imaging systems [147]. The

rate at which samples can be processed and identified makes nets limited in their coverage

and has led to the current sparsity of global data coverage.

Optical devices for plankton are faced with the trade-off between depth of field (DOF)

and resolution3: the depth is proportional to the square of the resolution (see Chapter 3 and

3Optical resolution is defined as the minimum separation in the object plane at which two points can be
discerned as distinct objects [36],[145],[155]. This is a property of both the optical and sampling system.
Unfortunately, the “resolution”quoted by a surprising number of authors in the device literature is the pixel
size of a detector or the diameter of the smallest isolated point object they can visually observe. Comparisons
of resolution and depth of field should be taken with a grain of seasalt.
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Device Resolution DOF Min. object
VPR4 10− 50 µm (meas.) 0.7− 5 cm (meas.) 300 µm

CritterCam R© 15 µm (measured) 50 mm (measured) (unknown)
SIPPER > 50 µm (pixel size) 96 mm (as reported) 500 µm

ISIIS > 68 µm (pixel size) 20 cm (as reported) 1-2 mm
ZOOVIZ 50 µm (measured) 1 cm (illumination) 1 mm
HoloPOD 6− 12 µm (meas.) > 250µm per slice 150 µm

Table 1.1: Optical sampling capabilities of popular plankton imagers. The resolutions
and DOF are quoted as listed in the literature. Measured values for the VPR are based on
placing a test object at various locations and judging the useful limits from images captured
by the camera. The DOF for the CritterCam was done similarly, using instead a crossed
reticle target and visual judgements. The ZOOVIZ DOF was quoted as the thickness of the
light sheet illumination. The resolution and DOF of the HoloPOD is based on both theory
and measurement, and is discussed in greater detail in Chapter 3. The minimum object size
is based on reports from the literature regarding the smallest object that could be reliably
identified by the authors.

Figure 3-1 in particular). For example, capturing images with a 50 µm lateral resolution

results in a DOF of only 2.5 mm. Extremely good resolution also requires a high numerical

aperture and thus a minimum lens diameter that grows linearly with the working distance

(or, more precisely, with the inverse optical path length, Equation 3.24). The resolution,

DOF, and minimum object size for the more popular optical devices which can identify

plankton species are listed in Table 1.1, with resolution and depth of field as quoted in the

literature. These values are considered the working values, determined by experimenting

with the actual devices using different targets. The trend is for resolutions greater than 50

µm and limited measured DOFs, so that these instruments are primarily useful for larger

plankton. Fast frame rate cameras are used to achieve the necessary sampling volumes.

The digital holographic imaging device reported on in this thesis, the HoloPOD, is included

as the final entry in the table. It was designed with a goal of imaging a large range of

plankton sizes, 150 µm to 30 mm, with an extended sampling volume per hologram and

a volume per unit time comparable to the other optical devices. Chapter 3 reports on the

theory, design, and testing of the HoloPOD device.

The optical samplers showcase two other issues that are important for plankton science.

The first is that the sampling should be quantifiable. The VPR calibrates its sampling

volume by measuring point scatterers at locations distributed through the imaging volume
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and setting a threshold on a focus metric [318]. The CritterCam does not have a well-

defined depth range, instead relying on object images to be too defocused or too poorly lit

outside the intended sample. The SIPPER and ISIIS systems both require good estimates

of the flow velocity to calculate the imaged volume at any instant in time. The ZOOVIZ

assumes that the sheet illumination has a sharp spatial cut-off and that objects outside

the illumination are not imaged. On the other hand, the HoloPOD has an exact image

volume. The second major issue is that of avoidance. Several motile zooplankton and

micronekton are able to sense the shear from an approaching device and will attempt to

escape, skewing the totals downward. The ZOOVIS and VPR are specifically designed to

reduce flow effects by using an extended working distance, with fluid modeling performed

on the VPRII to limit shear in the image volume to levels lower than the detection threshold

for most copepods [88]. The SIPPER, on the other hand, funnels its samples through the

center of a large duct-like area, potentially leading to significant avoidance. The HoloPOD

has a long working distance and a small hydrodynamic footprint, significantly reducing the

shear and avoidance concerns.

Quantifying the images captured by optical devices is another significant challenge.

Plankton imaging devices have a well-defined goal and design, so that the number of meth-

ods and software is as numerous as the devices themselves. Examples include AutoDeck

and Visual Plankton (VPR/VPRII), Pisces (SIPPER), ZooScan (nets) [147], ZooImage

and PhytoImage (FlowCAM), and the Plankton Analysis System and Plankton Interactive

Classification Tool (PAS and PICT, general plankton recognition) [246].

1.1.6 Challenges for macroscale optical devices

Cameras mounted on AUVs, ROVs, and carried by divers offer a vastly different set of con-

ditions. Variation in the background, orientation, and deforable objects means that experts

are often required for parsing the imagery into useful data. Estimating habitat coverage, for

example, often involves randomly sampling portions of the imagery and classifying the ob-

served points. The totals are then estimated from a small portion of the dataset. Similarly,

counting fish species involves an observer searching through images and tallying the num-

bers of the specific fish of interest. Needless to say, this can be incredibly time consuming
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and slow, especially for missions that capture hundreds to thousands of pictures per dive.

Addressing the need for automated methods in marine imagery is the goal of Chapter 2.

Methods of determining habitat types and detecting rockfish from a downward looking AUV

camera can not only aid a human observer but provide starting points for additional data

such as estimating the sizes of fish or correlating habitat with abundance that would be

especially time consuming using standard approaches. Detection and grouping of fish as

they are caught on longlines will also be presented, an above-the-water marine application

that has bearing for protecting the fisheries below.

1.2 Contributions and highlights

The main goal of this thesis is to develop and analyze tools for use in detecting and iden-

tifying biologically relevant objects in aquatic environments. The majority of the effort is

focused on automated methods that are computationally practical for the large datasets

generated in oceanography. Good sampling practice is also stressed, with attempts to es-

timate and measure the error of various algorithms or predict the performance of a new

holographic device for plankton imaging.

The first foray is working with traditional images captured by digital cameras. A bag-

of-words model is shown to be particularly good at correctly identifying habitats in AUV

imagery. Small image patches provide an optimized filter, and recognition rates are im-

proved by computing an independent components analysis on the filter basis. A multistage

detector for rockfish is created from the same dataset, and includes discussion about why

the detector and its features perform as they do. Chapter 2 concludes with detection and

grouping of fish caught during longline operations and recorded by low bandwidth webcams.

An improved digital holographic imaging device for use with in situ plankton measure-

ments is presented in Chapter 3. Theory predicting how it performs under motion and

with limited bit counts informs the engineering decisions. An analysis of the spatial and

bandwidth limits of spherical reference holography is done using Wigner transform meth-

ods, providing a complete and demonstrably useful model for general in-line holography.

The specific engineering variables and choices for the digital holographic unit are discussed,
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testing performed, and a prototype unit constructed. Real-time software for reconstruct-

ing the holographic images is presented. Theory and simulations describing the effects of

particle fields, such as observed in marine holograms, is discussed.

Computational algorithms for extracting information from holograms captured by the

prototype are presented in the fourth chapter. These are especially important for digital

holography, limited in widespread use a lack of suitable algorithms for general imaging and

descriptions of their performance. Various focus metrics are presented with an emphasis

on fast computations for large reconstruction volumes. A novel focus metric that uses local

Zernike moments as edge detectors is presented. For holograms which do not require full

reconstructions, methods are suggested for quickly estimating the lateral position and depth

of objects within holograms. Two approaches are presented for detecting objects laterally,

one that extends a summation kernel to spherical reference holography and another that

applies local frequency estimates to find areas consistent with a holographic signature. A

new depth estimator is proposed, based on a normalized spectral response, and is demon-

strated to have excellent depth resolution and noise insensitivity. The performance of focus

metrics, lateral detectors, and the depth estimator with real-world oceanic holograms is

presented. The methods are then applied to locating and sizing oil droplets in the Gulf of

Mexico during a recent oil spill.

The final chapter discusses a number of extensions and ideas based on the work presented

in this thesis.
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Chapter 2

Traditional Imaging Methods

Photography is arguably one of the best ways to record information from a distance about

our complex world. It has a long list of benefits: photography has an incredibly high space-

bandwidth product compared to other measurement methods, camera and lens systems are

well understood and developed, there is a high degree of flexibility in the imaging (for exam-

ple, passive or active lighting, different spectral ranges, color filters, use of digital sensors,

post-processing methods, and temporal information through video), the resulting picture

is easy for a human to interpret, and many photographic setups can be inexpensive and

simple —all of which contributes to the popularity of photographic methods for both the

lay audience and scientific studies. The advent of digital cameras and improved computa-

tional methods have further boosted the abilities of photography to the point where it is a

ubiquitous tool for both science and everyday life.

One of the challenges with modern imaging is that pictures are easy to capture, so that

a scientific deployment can involve hundreds or thousands of pictures. The burden on an

educated observer to quantify the data in those images can be immense —and incredibly

time consuming. Computational methods which can reliably replace an observer, or filter

out the important information for an observer, have a number of useful benefits: the ability

to make complicated measurements (e.g., computing area coverage or fractal dimension),

returning results faster than a human, and possible implementation on a vehicle for in situ

decisions as a few examples.

This chapter focuses on automated methods for extracting specific information from

22



oceanic images using image processing and machine learning. Two particular data sources

are used as examples: seafloor images captured by a downward looking camera on an

automated underwater vehicle (AUV), and a low resolution video camera watching fish on

a longline as it is pulled into a boat. These sources differ from many others (i.e., traffi c and

surveillance cameras, product quality control on conveyor belts, or photography in urban

environments) in that the relevant information rarely follows a preferential orientation and

there is not a straight-forward generative model which describes the varied shapes of the

animals in the images. The methods developed in this chapter have application beyond

oceanic use, as the purpose is to create texture recognition, object detection, and similarity

grouping which has enough flexibility to work on the particularly challenging class of aquatic

habitats and animals, all valid for cases with more constraints such as man-made textures

and objects.

The term “traditional imaging”is used here to denote a detector and lens combination

designed to image a plane of the image space onto the sensor —no steps are taken to modify

the imaging system for the specific task aside from stopping down an aperture or selecting a

different lens. The primary goal is to work with the images created from traditional imaging

systems purely from the computational side after capture.

2.1 Habitat classification from textures

Biological information about the seafloor is immediately useful for oceanic biologists, chemists,

and ecologists [60],[312],[394],[249]. Seafloor data has secondary use in the fisheries, as many

crustaceans, mollusks, and certain profitable fish are benthic during larval stages of their life

—if not their entire lives. Information about reef and coral ecology, along with the species

inhabiting those areas, can be used as sensitive indicators for changing temperatures and

chemical balances in different parts of the ocean [312],[142],[279],[429].

Habitat discrimination and species identification requires a high level of details and

a broad field of view. Both tasks benefit from reliable color information. The SeaBED

autonomous underwater vehicle (AUV) is engineered to provide imagery that meets these

goals: high quality, a large field of view, careful color correction, and a fast enough imaging
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Figure 2-1: Samples of each of the six texture classes evident in the SeaBED images.

rate to acquire continuous swaths of data. During a single deployment, the SeaBED dives

to depth, then cruises a few meters above the sea floor capturing several thousand images

to an internal storage device [337],[338]. The image are retrieved when the AUV surfaces.

Human experts can then analyze the images, searching out animals and interesting features

(see, e.g., [384]).

Automated methods for extracting information from seafloor data has thus far been lim-

ited. The best examples are related to surface topology measurements: three-dimensional

topology is made possible with multiple cameras and advanced algorithms for estimating

pose and position [284],[283]. Describing the contents of the seafloor automatically is a dif-

ferent matter entirely. Unsupervised clustering may give computational results, but returns

categories which have limited semantic meaning (see, e.g., [52],[285],[353], where multiple

clusters correspond to the same category while other environmentally distinct categories are

combined into the same cluster). Figure 2-1 shows samples acquired by the SeaBED and

illustrates both the subtle visual differences possible (e.g., between mud, sand, and rubble)

along with the gross differences (e.g., between mud and coral/bio1) — both reasons why

unsupervised learning is perhaps not the appropriate approach for habitat recognition.

The goal of this project is to use machine learning to perform habitat recognition through

a texture recognition framework. The example data comes from ten SeaBED dives (Daisy

Bank and Coquille Bank off the coast of Oregon and Santa Lucia Bank off the coast of

Southern California; see [384] for location maps), a total of around 31,000 images (1.25

MPx color JPEGs, 10 GB total). The images were rigorously color corrected by the SeaBED

1The class label coral/bio denotes rocky areas which have significant biological growth over the surface,
or which have a coral-like appearance due to the biological activity. It does not necessarily indicate a true
coral.

24



team, so that color can be used for classification of species and habitats both. Examples of

the five predominant habitat classes, along with a sixth class to represent camera errors, are

shown in Figure 2-1. The images have a significant range of size and orientations, though

there is a bias for upward-facing shadows due to the fixed position of the strobe lights on

the AUV. The habitats can also be mixed: sand coats the tops of large rocks or fills the

area between rubble, for example. As mentioned, there is also a fine line between rocks and

rubble and between coral/bio and rocks.

Texture classification has seen a number of new approaches in the past decade [440],

including the use of “bag of words”models popularized by Varma and Zisserman [398],[399].

The bag of words (BoW) model compares the statistical distribution of filter responses for

different textures, much like distinguishing between different documents by examining the

frequency of characteristic word choices2[368]. It is particularly simple in that it disregards

the spatial relationships between pixels, so that the filter response at one pixel is taken to

be independent of its neighbor, and thus the distributions of the underlying random field

need not be estimated. This in turn reduces the possible dictionary space and requires

fewer training examples to estimate the distribution space. For natural textures without a

preferred orientation (and thus a larger distribution space than oriented textures), this can

be especially beneficial.

This section discusses recognition of seafloor textures using bag-of-words models, start-

ing initially from the original Varma-Zisserman filterbank-based techniques and expanding

out to incorporate multiple models per class label. An alternate view of filtering using

image patches is explored, with links to optimal filter selection and transformation spaces.

The resulting methods are tested for their classification accuracy, then used to measure

areal habitat coverage across the full dataset —providing results to a problem which would

be challenging and extremely time consuming for a human observer, but computationally

tractable for a single desktop computer.

2The bag-of-words model uses many typographic terms based on its lexicographic foundation, the most
notable here being a “dictionary”, or codebook, of the most common texture “words”.
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2.1.1 Bag of words for texture classification

The bag of words model uses the statistics of an unordered collection of related elements to

perform recognition [440],[368]. In the case of texture recognition, those related elements

are the texture descriptors computed at each pixel in a digital image, termed “textons”

by the computer vision community. A new texture is recognized by first determining the

best texton to represent each pixel, then comparing the frequency of each texton against

its expected frequency for known textures. The term “best” is intentionally vague, as its

meaning will change depending on how the similarity between feature vectors is measured3,

but is in general a measure of minimum distance.

Training is performed in two steps (Figure 2-2). In the first step, a series of filter

responses are computed for each pixel in a set of training images for a single class, forming

a feature vector at each pixel. The feature vectors are aggregated and quantized into

representative clusters using k -means, with each cluster center representing a texton for

that training class. The textons for all training classes are gathered into a dictionary of

representative textons.

The second step of training uses the dictionary to estimate texton distribution models

for each class. The feature vectors are again computed for each pixel in a training image,

then each pixel is labeled with the dictionary texton which has the smallest distance to the

feature vector. (If the filters are normalized to the same value, the response for each feature

vector component is on the same order and a Euclidean distance can be used. A weighted

Euclidean distance or a Mahalanobis distance, Equation 2.8, may be a better choice if the

filters have different magnitudes [80],[236].) The frequency distribution of texton labels is

then computed and becomes the model for that particular training image. A class model can

be estimated by averaging together the models for each training image in that class if the

models are similar enough, by using k -means or another clustering algorithm [106] to select

a limited number of models if there is dissimilarity between models of the same training

class, or by maintaining the entire collection of image models. The first two options have

3One simple example is a feature vector which includes components with different scales, such as local
mean and local entropy. In that case, a Mahalanobis distance [236] may be more appropriate than a Euclidean
distance.
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Figure 2-2: Steps in VZ texture recognition. In the first stage of training, sample images are
passed through a set of filters and their responses clustered to create a set of representative
textons for that class. The second stage computes class models based on the frequency of
the different textons appearing in the training images. Classification is done by passing new
images through the same filterbank and computing its distribution of texton responses; the
class with the most similar texton distribution is selected as the sample’s label.
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the ability to remove or reduce the effect of outliers, while the last option can be sensitive to

outliers (which may be desired in some cases) and requires all training images to be labeled

correctly.

Recognition of textures is done using a similar method as the second training step. The

texton labels are again computed for each pixel of the image of an unknown texture, then

the texton distribution is computed. The distribution is compared against the class models

and the class with the smallest χ2 value is selected as the best estimate. The χ2 distance

is calculated as

χ2 =
∑
i

(xi − yi)2

xi + yi
(2.1)

for two discrete distributions x and y, where xi is the value of the ith bin of x [368].

A number of variations for BoW are immediately obvious: the k -means clustering dur-

ing the dictionary creation step can be replaced by affi nity propagation [128], k -nearest

neighbors [106], or a hierarchical mean shift [278] with the ability to adjust the impor-

tance/similarity of individual textons; the χ2 distance can be replaced by other distribution-

distance measures such as a symmetric Kullback-Leibler [180], Bhattacharyya [4],[33] (which

itself is directly related to the Matusita distance [4],[247]), or Kolmogorov-Smirnov metrics;

the texton dictionary can be pruned to remove textons appearing in multiple classes; and

so on. The interest here is in the overall method, and minor tweaking is left to future

users. The remainder of this section will concentrate on using k -means for computationally

effi cient clustering, affi nity propagation when selecting multiple models per class, and χ2

for comparing models.

2.1.2 Texture descriptors

The traditional Varma-Zisserman (VZ) approach uses filter responses to represent a texture

description. Their preferred filter bank is the MR8 bank, which includes eight filters: three

sizes of bar filters, three sizes of edge filters, a Gaussian, and a Laplacian of a Gaussian. Each

bar and edge filter is computed for multiple angles and the maximum response across the

angles is used as that filter’s overall response [398]. Other filter banks are certainly possible;

see [398] for descriptions of several types compared in their work. In the exploratory phase
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for this work, a filter bank of scaled and oriented Gabor filters [198], one using Hu invariants

[164], and one composed of local statistics (local mean, local variance, and scaled local

entropy) were tried. The filter bank of local statistics gave reasonable results despite its

ad-hoc nature and provides a baseline for comparison. The other filter banks gave poor

results and were not explored further.

Recently, the idea of using image patches extracted directly from the texture images

was proposed as a new feature vector. A small block of pixels around the pixel of interest

is reshaped into a vector, normalized appropriately, and used directly to create the texton

dictionary in the same way as a vector of filter responses [399]. The texton label assigned

to each pixel is then the dictionary texton with the minimum Euclidean distance to that

pixel’s image patch.

The patches used here were created by combining grayscale and color information. The

image was first converted to grayscale, mean subtracted, and normalized to the standard

deviation to remove intensity artifacts. Each n×n normalized intensity patch was reshaped

into an n2 × 1 vector. Color information was included by appending a 3 × 1 vector of

the mean values of the RGB color channels over the patch, made possible by careful color

correction performed during the data acquisition. The RGB values range from [0, 1] , so

that they have similar magnitudes as the normalized intensity information. The use of

non-linear color spaces, color invariants [395],[396],[45], or a
(
3n2
)
× 1 vector which retains

all of the data from each of the color channels are left for future study. Notably, non-linear

color spaces such as HSV or HSL [383] would require a distance metric which incorporates

the angular hue component.

The patch approach has several benefits. First, it does not require a specific filter bank,

removing one level of obfuscation and experimentation. The patch textons may actually be

better than arbitrarily selected filter banks as they are the result of using vector quantization

with each texture, forming a compact set of exact representations [140]. Second, patches can

act like a kernel method by increasing the dimensionality of the problem, possibly leading

to better discrimination [106]. Third, as Varma and Zisserman point out [399], large-scale

gradients or textures can be categorized by examining the histograms of the local gradients,

so that much of the same information as in filter banks is present in patches.
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Evidence that texton patches contain similar information to filters can be seen by ex-

amining the selected textons. Figure 2-3 shows an example texton dictionary selected for a

set of 5× 5 patches. A number of patches depict bars, edges, and corners with various ori-

entations, similar to the MR8 filter bank, but with additional specificity for the scales and

spatial frequencies present in the observed data. For comparison, the texton dictionary se-

lected by Varma and Zisserman is shown in Figure 2-4, which includes a significant number

of man-made textures. The VZ dictionary again contains a large number of bars, edges, and

corners, though with a number of high-frequency stripes to accommodate the synthetically

manufactured textures. Both of these dictionaries suggest that bars, edges, and corners are

good representations of the information content in generic textures. Work from Torralba et

al. suggests that this extends to generic images as well: they use a boosting algorithm to

select patches (which are used in their work as filters) which provide good recognition and

discrimination between a large number of object categories [385]. Their best filter patches

are shown in Figure 2-5 — and include a number of bar, edge, and corners along with a

few more specific filters for classes which are otherwise diffi cult to discriminate. The overall

message is that patches can contain the same information as filter banks, while offering high

specificity and the ability to generalize.

Dictionary textons are selected in BoW for each class alone, then aggregated together.

This has the potential of generating redundant textons. Some dictionaries may also be

linearly dependent, since patches span Rn2+3 at most and dictionaries which contain more

than n2 + 3 elements are easy to generate. Two transforms to increase the disciminability

and independence of the textons were considered: an eigenmode decomposition and an

independent components analysis.

The eigenmode decomposition was computed by taking the singular value decomposition

(SVD) of a set of dictionary textons. The singular vectors corresponding to non-zero singular

values (a total of n2 + 3 at most), termed “eigenpatches”when the SVD is applied to patch

textons, are retained as an appropriate basis set for transforming patches into the shared

eigenspace. The first training stage is modified by projecting the previously-determined

dictionary textons into the eigenpatch basis to form a new, transformed dictionary. The

second stage is performed by again extracting patches from images, then decomposing the
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Figure 2-3: Patch textons selected by k -means for the habitat classification problem. The
patches are 5× 5 pixels each and there are 30 textons per class for a total of 180 dictionary
textons. The textons flow from top to bottom in order of their ordinal class number (Figure
2-1).

Figure 2-4: Dictionary patch textons selected for a collection of man-made textures; figure
is from [399].

31



Figure 2-5: Patch filters selected by boosting for recognizing a large class of man-made
objects and textures; figure edited from [385]. Note that the majority of the edges and
bars have vertical, horizontal, or 45 degree orientations due to their origin from man-made
objects —which is different from unoriented natural objects.

patches into the eigenpatch basis to form transformed feature vectors. These eigenpatch

vectors are used with the transformed dictionary to create the class models. The recogni-

tion step similarly includes an eigenpatch transformation when computing models for the

unknown texture.

An example set of eigenpatches corresponding to the patches in Figure 2-3 is depicted

in Figure 2-6. (Colors may be inverted since the singular vectors have a sign ambiguity.)

The first few eigenpatches depict bars and edges, similar to Figures 2-3, 2-4, and 2-5 and

the MR8 filter bank — these are the basic building blocks which form the basis of many

images. Higher spatial frequencies are reserved exclusively for the eigenpatches correspond-

ing to the eigenvalues with smaller magnitude (higher indices). However, a significant

amount of energy is spread into the higher-index eigenpatches (20% of the energy is in the

last 14 of 28 patches), indicating that there may be useful discriminability in the higher

eigenpatches. The problem is that these higher-index eigenpatches individually have small

energy compared to the common low-index eigenpatches, making the difference between the

transformed patches diffi cult to detect.

The second transformation attempts to find a more discriminable basis set by using an

independent components analysis (ICA). The ICA finds a basis in which the data are less

Gaussian and are thus closer to being statistically independent [170]. The resulting “ICA
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Figure 2-6: Eigenpatches for a set of 5× 5 patches. A total of 28 patches are available here
due to the additional three color components. Eigenpatches have been normalized for dis-
play, and colors may be inverted. The patches are formed by reshaping the intensity portion
of the singular vector and applying multiplying by the mean “color”. The eigenpatches are
shown in decreasing order of how much signal energy they represent.

patches” are, in one sense, more unique and thus give better discriminability. Figure 2-7

shows the ICA patches generated from the forward ICA transform4 corresponding to the

patch dictionary of Figure 2-3 [169],[138]. (Color may be inverted; similar to eigenpatches,

the ICA transform vectors do not include sign information.) The ICA patches tend to

highlight small peaks or dips and, perhaps more importantly, where those peaks and dips

appear in the patch: the shifts, such as between ICA patches 2, 4, and 8, differ in Fourier

space by their phase ramps. (Similarly, consider ICA patches 10, 14, and 22). This suggests

that the ICA patches are types of phase-space filters. The ICA patches are used like the

eigenpatches, transforming image patches during the model generation stage of training and

recognition.

4An ICA includes both a forward and inverse transform. The forward transform describes the underlying
components which are used to generate the observed features, while the inverse maps observations back to
the independent feature space. This is comparable to the U and V matrices of the SVD, where a matrix A
is decomposed into A = USV T .

33



ICA 1 ICA 2 ICA 3 ICA 4 ICA 5 ICA 6

ICA 7 ICA 8 ICA 9 ICA 10 ICA 11 ICA 12

ICA 13 ICA 14 ICA 15 ICA 16 ICA 17 ICA 18

ICA 19 ICA 20 ICA 21 ICA 22 ICA 23 ICA 24

ICA 25 ICA 26 ICA 27 ICA 28

Figure 2-7: ICA patches computed for 5×5 pixel image patches; shown here are the forward
ICA transforms.

2.1.3 Multiple models per class

Natural textures are particularly prone to have greater variation within each semantic class.

For example, the difference between small boulders and large rubble is visually apparent,

leading to distinct models for each component —but both have the same connotation for

a biologist since they support the same set of species. There are also a number of images

where the difference between rubble and small boulders is minor (or some rubble exists with

a set of small boulders and vice versa), so that consistently labeling the images cleanly into

two separate classes is diffi cult at best. The best solution for this case would be to include

multiple models, at least one for small boulders and one for rubble, under the same rocky

label.

There are two ways of creating multiple models per class. One is to retain a model

for every image in the training set. This has the ability to map out a large feature space,

assuming each of the training images has the correct label. Unfortunately, this approach can

be sensitive to outliers, especially if models from one class overlap into the area of another

class. Another issue is that many more training samples are required to adequately map

out the feature space belonging to each class. Clustering models together can help alleviate
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some of these issues: it reduces the effects of outliers and can select reasonable models with

fewer samples. A caution with clustering is that it reduces the specificity of the feature

space-to-class mapping. In this work, clustering was used to choose a limited number of

relevant models for each class so that a smaller number of training samples could be used.

Clustering, or unsupervised learning, has a huge proliferation of methods. Already,

k -means was discussed as a simple way of selecting specific numbers of clusters — if the

number of clusters is known a priori. Besides needing to know the number of clusters, it

has a potentially serious drawback: the cluster centers are taken as the mean of the cluster

elements, so that cluster centers may not actually be members of the set (especially if the

wrong number of clusters are used).

Affi nity propagation (AP) is a new method which uses the similarity between elements

to select a few elements which best exemplify the cluster characteristics. It has been shown

to select better clusters than k -means in several cases, can better accommodate clusters

with varied sizes, and can cluster based on non-standard similarity metrics [128],[252]. One

of the reasons that AP is used in this work is that the clustering algorithm returns a measure

of the net similarity of the clusters, NS(p), and the number of clusters, C(p), as a function

of the initial clustering preferability, p. An AIC-like criterion [46],[7] is computed as

AIC ′ = 2C (p)− 2NS (p) ,

and the model clusters corresponding to the minimum AIC ′ are selected as the appropriate

models for the training class. The original derivation from Akaike includes a logarithm of

the likelihood function [7], which is replaced by NS here as a way to approximately measure

the agreement of the data with the clustering. The scale value of two was selected exper-

imentally to give reasonable clustering results. The similarity between clustering elements

was computed using the χ2 distance. Most training classes in the habitat data set resulted

in one to four models per class.
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2.1.4 Classification accuracy

The real-world seafloor habitats of Figure 2-1 from the SeaBED AUV dataset were tested

for classification accuracy using statistical filters5, direct image patches, eigenpatches, and

ICA patches. A total of 631 images with uniform class membership, as judged by a human

expert, were selected randomly from the over 30,000 images in the example dataset and

labeled with one of mud, sand, coral/bio, rock, rubble, or camera-error as the true class label.

Representative textons were found by randomly selecting 10,000 textons from each class and

using k -means to compute k cluster centers; the k clusters were aggregated from each class

to form a complete dictionary with a total of 6k texton elements. Patch transforms were

applied to the entire dictionary. Methods which used a single model per class formed the

model from the 10,000 textons used to initially form the dictionary since they represented

a random selection drawn throughout the class. The multiple models per class case used

twenty images randomly selected from each class to form an initial set of models. The

texton frequencies were computed for each of the twenty images and affi nity propagation

used to select appropriate class models. Images corresponding to the models selected to

represent the class were removed from the test set. The confusion matrix and true positive

rate were recorded for each experiment. Throughout this sub-section, k is the number of

textons per class used when creating the dictionary, n is the number of pixels per edge in

an image patch (i.e., the patch is sized n × n), a “-S” following a method name denotes

that the results were computed using a single model per class (e.g., “Eigenpatches-S”) and

a “-M”denotes the use of multiple models per class.

Overall classification rates for the ad-hoc collection of statistical filters (local mean, local

standard deviation, and scaled local entropy) is shown in Table 2.1. The statistical filters

gave better performance than either the MR8 or Gabor filter banks despite its contrived

nature. The table is shown for the sake of providing a baseline: for the SeaBED images,

overall recognition rates of 85-89% are possible with the right set of filters. (Gabor and

MR8 were in the 65% to 80% range.) The goal for patch methods is then to improve the

5Additional testing with MR8 and Gabor filter banks was done, but is not reported here: the results
were poor and not particularly illuminating. The statistical filters themselves are reported here for the sake
of providing a baseline.
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k Filter-S Filter-M
10 85.9% 86.7%
30 89.1% 84.6%

Table 2.1: True positive results obtained using statistical filters.

n k Patch-S Patch-M Eigenpatch-S ICA patch-S ICA patch-M
3 10 83.0% 81.1 84.3 91.3 90.6
3 30 84.6 87.9 84.8 92.1 93.0
5 10 84.6 75.1 84.9 92.2 92.9
5 30 86.7 78.9 86.5 93.5 92.1
7 10 82.3 78.7 83.0 92.2 92.6
7 30 86.4 78.8 86.2 93.5 92.9
9 10 82.4 74.6 92.2 92.7
9 30 85.6 80.7 92.9 92.9
11 10 83.5 69.0
11 30 84.0 77.6

Table 2.2: Recognition results for various patch-based methods. Values are the overall true
positive rates.

recognition rates significantly over the rates from filter methods.

A selection of results for patches are shown in Table 2.2 (additional experiments with

larger n and additional patch-based methods, such as MRFs, such as in [399], is not shown

here). The direct use of patches, Patch-S, has comparable results to the statistical filters

and better results than the MR8 filter bank, supporting the idea that patches have enough

representational power to rival filters. This in itself is useful as it reduces the work required

by an expert in finding and selecting a specific filter bank. Patches with multiple models

have significantly worse performance due to confusion between the coral/bio, rock, and rubble

classes. These classes would have had at least one model close to a model from the other

classes, a drawback of having too many models to span a small feature space. The use of

eigenpatches did not significantly increase the discriminability above that of direct patches.

ICA patches, both single and multiple model, increased the recognition rates markedly, by

6-10% over direct patches. The statistical independence generated by the ICA transform

appears to boost the discriminability and is worth the additional computational effort in

computing the ICA (a slow process for high-dimensional data but done only once during

training) and applying the transform to each patch.
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Statistic Patch-S Patch-M Eigenpatch-S ICA patch-S ICA patch-M

Mean TP Rate 84.4% 78.2 85.0 92.7 92.7
Std. Dev. 1.48% 4.92 1.28 0.69 0.76
Best (n, k) 86.7% (5,30) 87.9 (3,30) 86.5 (5,30) 93.7 (5,60) (7,60) 94.8 (9,60)
Total Number 16 10 6 24 24

Table 2.3: Statistical summary of experiments with patch-based methods. Mean, standard
deviation, and best recognition rate are percentages.

Mud Sand Coral/Bio Rock Rubble Error TP Rate
Mud 97 100%
Sand 3 272 3 97.8%

Coral/Bio 26 2 2 86.7%
Rock 2 3 101 11 86.3%
Rubble 1 2 85 96.6%
Error 2 1 0 18 85.7%

Table 2.4: Confusion matrix for the best classifier found during experimentation. The true
class is listed in the rows, the estimated class in the columns. Zeros are left blank for clarity
of comparison.

The mean classification rate across all (n, k) combinations is shown in Table 2.3 for each

method. The statistics assume that the major contribution is from the method as opposed

to the patch size or dictionary size and provide rudimentary evidence that the ICA patches

are indeed better than the other patch methods. For the direct patch, sizes of up to n = 11

were used for a total of sixteen experiments. For the ICA patches, a total of 24 experiments

were tried with dictionaries ranging from ten to sixty textons per class in steps of ten.

The confusion matrix corresponding to the best recognition rate over all the experiments,

94.8% overall true positive, is shown in Table 2.4. The confusion matrix corresponds to ICA

patches-M with n = 9 and k = 60. The greatest source of confusion is between coral/bio,

rocks, and rubble —all of which have a similar visual appearance. In particular, the difference

between small rocks and large rubble is a matter of opinion, so that the classifier error may

not have a major impact on the final biological understanding.

The ICA patches showed markedly better recognition rates over filters, direct patches,

and eigenpatches. Examining the results as a function of n and k, shown for both single

and multiple models per class in Figure 2-8, indicates that the high rates are not statistical

flukes but vary smoothly with the parameters. The variation across the parameter space
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Figure 2-8: Recognition rates as functions of the patch size and number of dictionary textons
per class for the ICA transform. The scale is the same for both parameter spaces.

(including models) is only 4.2% —smaller than the difference between means of the methods

in Table 2.3. It is interesting to note that the worst recognition occurred for both the single

and multiple model cases when (n, k) = (3, 10) . The combination of small patch size and

small dictionary may not have allowed enough description of the classes to provide adequate

discrimination. There is also evidence that both model methods have improved performance

for larger dictionaries —but that as the flexibility in describing the model space increases

(i.e., increasing from single to multiple models per class), more information is needed in the

patch size and number of textons. It is also interesting to note that the single model case

has a plateau at n = 5 to n = 7, suggesting that some minimum patch size is necessary to

describe the habitats, but that too large a patch may be too specific and actually decreases

the recognition rates.

2.1.5 Habitat area coverage

The motivating goal for creating a habitat recognition engine is to use the classifier to

automatically map out environments at dive sites and to estimate area coverage of the

different classes. Obtaining a rough estimate of the habitat area coverage would be possible

by classifying images spaced far enough that there is no overlap. The SeaBED AUV makes

it possible to go one step further and compute a high-quality map of the survey habitats:

the images from the example dives were captured at a fast enough rate compared to the

AUV velocity and altitude to result in a 20% to 50% overlap between consecutive pictures
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(see, e.g., [284]). The degree of overlap makes it possible to align the images to create

a continuous map while simultaneously reducing the error by classifying portions of the

images in the overlap region two or more times from slightly different viewpoints.

Estimating the area coverage was done in three steps. In the first, each of the images

were subdivided into blocks. The best classifier from the previous section, ICA patches-M

(n = 5, k = 60), was used to find the best class estimate for each block; an example is

depicted in Figure 2-9. Next, SIFT features [232],[233] were computed on two consecutive

images and the two were registered by using RANSAC with an affi ne transformation be-

tween pictures [43],[417],[117]; Figure 2-10 shows an example alignment. The assumption

of an affi ne transformation allows for scale, rotation, and translation between two images

[368], reasonable for an AUV maintaining approximately the same or a slowly changing

perspective between images. Finally, the overlap between image blocks was calculated us-

ing the transforms computed between frames. Figure 2-11 shows an example of calculating

the overlap and determining the weighting factor for each block based on the number of

pixels it contains which are not represented in any other image and the number of pixels

appearing in two or more images. The weights, the AUV altitude, and the classifications

were used to compute the area of each class present at each image point. The habitats for

the first Daisy Bank dataset is shown in Figure 2-12. The Daisy Bank (dive 3) dataset is

strongly homogeneous, containing mostly mud in the upper portions and rocks in the deeper

areas. This is similar to the other dives, where most of the habitat was dominated by one

or two types —and usually found within a particular area. This suggests that incorporating

Markov chains for fast habitat estimates [353],[106] or Markov random fields [191],[368] for

high-resolution mapping would be appropriate for future recognition work.

2.2 Detection of rockfish

The AUV images of the floor used for habitat classification include a variety of species. The

interest in this section is detecting and identifying rockfish from those images, a commer-

cially important group of bottom-dwelling fish. There are more than 70 species of rockfish

that live off the West Coast in the areas where the AUV source images were captured
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Figure 2-9: Example of classifying an image into habitat blocks. To the left, an image is
divided into 24 blocks, denoted by the white lines. The class of each block is estimated and
recorded (top center). The top right plot shows the χ2 distance of each block to the nearest
class model. Note that the block with the fish and its shadow has a higher χ2 distance,
but is still recognized correctly. The bottom center plot, log(SI), serves as an indicator of
the frequency of that pixel’s texton appearing in the class dictionary and was used as an
internal diagnostic.

Figure 2-10: Alignment of two consecutive images using SIFT and RANSAC. On the left
are the two images which are to be aligned. In the center, green and red dots mark the SIFT
features used to compute the alignment; yellow circles denote the corresponding points in
the best RANSAC model, with white lines connecting between the dots to indicate the
movement between frames. To the right is the result of applying the transform to align and
stitch the images together into a single swath.
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Figure 2-11: Computing the area overlap between several consecutive frames. To the left,
the blocks of the current frame are shown with the outlines of the next two frames and
the previous two frames overlaid. The color of each block denotes the amount of overlap
it shares with other frames. To the right, the weighting factors for each block are broken
down into how many unique pixels the block contains, how many pixels appear into two
images (“double pixels”), and how many pixels appear in three images (“triple pixels”).
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Figure 2-12: Estimated coverage area for each habitat class (Daisy Bank dive 3). The gray
line is the AUV’s position over time. The size of each dot indicates the amount of each
class present at that location; for visualization, ten images were binned together for each
dot present. The dive contained mostly mud and rocks with limited coral/bio, sand, and
rubble with no errors detected.
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Figure 2-13: Examples of rockfish (top row), other biologicals seen in the dataset (middle
row), and backgrounds (bottom row). The backgrounds include biologically active areas
where rocks were heavily covered with grasses and brittle stars. Some of the other species
present also proved challenging to discriminate against rockfish due to similarities in shapes
and colors.

[255],[231]. Rockfish are estimated to have life spans of 100 or more years and mature

slowly [231],[51]. Overfishing has had significant impacts on their numbers with warnings

about extinction for a number of species [260], leading to emergency closures of many Pa-

cific fisheries areas in the early 2000’s [49],[50],[27], with outcry from commercial and sport

fishing [242],[26]. Information about the numbers of rockfish, their sizes, and where they

can be found is crucial to not only understanding their life cycle and status but for setting

appropriate and responsible fishing levels [171],[394],[51],[34],[365],[427].

The goal of this section is to develop a detector which can find images of rockfish in the

SeaBED imagery; examples are depicted in Figure 2-13. Results from the detections can be

presented to a human expert for time-effi cient verification and species-level classification,

or used directly with the measured error rates to estimate rockfish counts. Size information

and class membership probabilities are by-products of the detector. The detector itself is

composed of three stages: the first finds candidate regions, the second uses rudimentary

shape information to prune out noise, and the third combines shape and color characteristics

to better classify objects as rockfish or non-rockfish. Effort is made to maintain a low

removal rate of rockfish at each stage.
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2.2.1 Boosted detection

The first step for finding rockfish is to determine all the possible images of fish in the

AUV images. Once those candidate image regions have been found, they can be used in

later classification stages. The goal for this subsection is then not to necessarily describe

the regions and their contents perfectly, but to suggest areas that share many of the same

characteristics as the rockfish of interest.

The initial challenge is to separate out foreground objects from varied backgrounds.

Controlled environments make detection easy by artificially creating a background which

has statistics vastly different from the objects of interest so that regions of interest can be

determined by thresholding or a simple statistical analysis [419],[361],[311],[442],[79]. The

SeaBED images have distinctly non-trivial backgrounds: clutter, texture, color, lighting,

and competing species all make the background hard to predict — even with the habitat

detection methods developed in the previous section. For example, one immediate idea is

to mark areas with statistically improbable textons (given the region’s habitat classifica-

tion) as objects. The problem with this is two-fold: there is enough natural variation that

statistically improbable regions are not reliable indicators of foreground object regions, and

similar textons as used for the backgrounds are present on the objects of interest. One good

example is textons generated from biologically active rocky areas, where the natural flora is

a good indicator of the habitat type and shares characteristics (such as color) with rockfish.

The end result is that statistical thresholding, either on image features or textures, does

not provide a working solution.

The alternative taken here is to create a boosted classifier that uses multiple features

to indicate whether a pixel should be foreground or background, providing the same result

as a detector. Boosting is a flexible meta-classifier that has the ability to combine a series

of weak classifiers into a stronger classifier. For images, thresholding on a single feature

provides a simple and direct weak classifier, and is suitable for boosting if the thresholding

is able to correctly classify at least better than randomly. The decision boundary created

by a series of boosted thresholds need not be linear, either, able to construct complicated

boundaries through the feature space without necessarily needing a kernel transform or

prior knowledge of the distributions of the features [127],[129],[269],[368].

44



A selection of color and structural image features were used for the first round of boost-

ing. A training set of 410 rockfish and 1881 non-rockfish patches (negative detection sam-

ples; 1502 samples of ground/texture and 379 samples of species other than rockfish) were

randomly selected and extracted from the SeaBED images of the previous section and used

to compute the training features. A hue-saturation-value (HSV) color space was found to

be more discriminative than an RGB color space as most rockfish have a high saturation

and value components while many of the naturally occurring backgrounds have lower satu-

ration. The mean and standard deviation of each HSV color component was calculated in a

local neighborhood. Since the hue value is an angle, statistics of the cosine and sine of the

hue were used instead. Structural information was provided by a series of monogenic fil-

ters at four scales (bandpass regions) computed on saturation and value component images

[114],[198]. The mean energy and standard deviation of the filter responses was retained. A

local neighborhood around each pixel of interest was computed by using Gaussian weights

for the local mean and standard deviation. A spatial variance of σ = 5 was found to be

better than larger neighborhoods.

Training performance of the boosted classifier using LogitBoosting and the HSV-based

features is shown in Figure 2-14. The boosting is repeated twenty times with a random 20%

of the samples removed for testing, giving rise to the depicted uncertainty at each stage. The

learning plots indicate excellent detection for the training samples after only a few rounds

of boosting; each round corresponds to adding a weak classifier with a threshold selected to

minimize the weighted training error [127],[129]. Figure 2-15 shows examples of applying

the boosted detector to each pixel in an image. (See Section 4.1.3 for more discussion on

using boosted decision stumps as a detection filter in image processing applications.)

The actual performance of the boosted detector is slightly lower after including mask-

ing operations (morphological filters to remove detections considered to be too small and

connecting nearby detections) and testing on complete images, with around 7% of rockfish

going undetected through the entire dataset. The detection rate is strongly dependent on

the habitat type, Table 2.5, where the habitat was determined by the dominant environment

using the methods of Section 2.1. The table represents 10% of the images from the data

set, randomly selected for hand verification. Areas with rocks and higher numbers of other
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Figure 2-14: Training rates for initial object detection using boosting. Error bars are ±1σ,
computed by repeating the training twenty times while holding a fraction of the data for
testing.

species led to the lowest detection rates due to occlusions, shadows, and other species with

similar colors and shape such as brittle stars. Fortunately, this suggests that the true counts

can be estimated based on the habitat and its known error rate [347],[165],[166],[423].

2.2.2 Shape pre-processing and spurious detection removal

The first stage located regions that shared characteristics with samples of rockfish based

on their color and basic structure. For the example dataset, it returns more than 130,000

detections for around 30,000 source images, an average of 4.3 regions per image. Reducing

the number of detections by starting to analyze the contents of the regions is the goal of the

second stage —and also the beginning of a transition between detection and classification.

The two share a particularly fine line at this juncture because the detection process already

includes some classification decisions related to size (i.e., rockfish are assumed to have some

minimum size during mask creation), and the second stage uses shape estimates which could

be considered size measurements in their own right.

Computing features on an object again means that the background and the foreground
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Figure 2-15: Boosting using HSV-based color and structure features selected for rockfish.
Left column: sample images from three different habitat types. Center: pixel-wise classifier
response at each pixel; a positive Fx is a strong indicator that the area has rockfish-like
features, while a negative response indicates background. Right: a mask constructed from
setting Fx ≥ 0 and applying morphological operators. Yellow boxes surround correct
detections of the rockfish in the images. Note that sample A contains a number of other
bright red features, some of which are detected and will need to be filtered in later stages.
The mask from sample C is disjointed, but will be corrected during the second classifier
stage.
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Habitat Images Rockfish det. True count Det. rate #/image
Mud 454 78 79 98.7% 0.17
Sand 1848 141 145 97.2% 0.08

Coral/Bio 26 32 33 97.0% 1.27
Rocks 420 560 618 90.6% 1.47
Rubble 220 81 83 97.6% 0.38

Overall 2968 892 958 93.1% 0.32

Table 2.5: Detection rate of rockfish as a function of the habitat type for a randomly-
selected subset of images. Rock and coral/bio habitats have a larger number of occlusions,
confounding species, texture variation, and shadows. The higher prevalence of nooks and
crevices may also lead to more juvenile or smaller rockfish in those areas (consistent with
Tolimieri et al.), also contributing to more challenging detections. The average number of
rockfish per image is based on the hand-verified true count over the sample.

need to be separated. The previous discussion about detection provided some estimates

about a local region on a pixel-wise basis. Thresholding and morphological operations on

the boosted detection strengths gives an initial guess for size. However, since the pixel-

wise boosting was derived from local area operators, the resulting detection map is smooth

and each pixel has the potential for representing information outside of the object. Initial

attempts to segment the image regions around the boosted detection blobs using grow-

cut caused many of the small areas to disappear completely or the large objects to grow

beyond their boundaries. Grow-cut expects a good initialization to determine properties

of the foreground and background pixels with high certainty, filling in the uncertain pixels

based on its learned properties and the relative pixel positions [401]. The non-locality and

smoothness of the boosting-based initial guess was not suffi cient.

A level-set segmentation proposed by Chan and Vese [57] is less sensitive to initialization

[345] and was found to have excellent results for the rockfish. The Chan-Vese model finds a

contour, C, which minimizes the squared error of some value, v, inside and outside a contour

while simultaneously minimizing the contour length. For segmentation, intensity or color is

often chosen as the value of interest. The idea of squared error implies that a correct value

is known; Chan-Vese estimate the correct level with the mean value inside and outside the
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contour at each iteration. The minimization functional is then

CV (C) = αL (C) + β

∫
in(C)

|v − µ (vin)|2 dxdy + γ

∫
out(C)

|v − µ (vout)|2 dxdy, (2.2)

where L (C) is an energy functional on the length or shape of the contour (which can be

adjusted for different applications), µ (vin) is the mean of the value inside the contour C,

µ (vout) is similarly the mean of the value outside the contour, and the shorthand in (C) and

out (C) indicates regions inside the contour and outside the contour. The scalars α, β, and

γ adjust the relative importance or weighting for each term. Additional energy terms can

be included as needed [57]. It is interesting to note that the error terms are thinly-disguised

variance estimates: normalization by the area or number of pixels can be absorbed into the

weighting constants and becomes unnecessary if in (C) and out (C) are nearly equal in size.

Equation 2.2 can then be thought of as finding a segmentation that minimizes the variance

or that maximizes the consistency within each group.

A consistent value for the segmentation was available from the earlier HSV-based met-

rics. The rockfish tended to have high color saturation compared to their surroundings and

similarly had a higher brightness. The product of the saturation and value channels pro-

vided a reasonable key for discriminating objects. Fast shape metrics are computed on the

Chan-Vese regions masks, including area, perimeter, and the size of a fitted ellipse (major

axis length, minor axis length, and eccentricity).

Two different methods for quickly pruning non-rockfish objects were examined. First,

a linear discriminant analysis (LDA) was tried for the sake of providing a baseline. The

LDA seeks to maximally separate two classes by finding an optimal projection direction

(see Section 2.3.1 and [106] for background and discussion). The optimality assumes multi-

variate Gaussian distributions for the data in each class, which is decidedly not the case for

positive-valued size descriptors. A log transform increases the Gaussianity of the distribu-

tions enough so that, while not guaranteed to be optimal, the disciminability of the LDA

projection is significantly increased.

A test set of 500 rockfish regions and 2500 non-rockfish regions were used to estimate

removal rates for different combinations of features. The LDA was computed for each set of
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Figure 2-16: Removal rate of background objects based on a threshold chosen to limit the
expected removal rate of rockfish regions. The dotted green line is computed with the
log-transform of all five simple shape features, while the solid blue line is the removal rate
achieved with only the log transform of the major and minor axes of a fitted ellipse. At a
2% predicted rockfish removal rate, more than half the non-rockfish detections are removed;
a threshold on the LDA-projected value which results in a 5% rockfish removal rate leads
to around 70% removal of non-rockfish detections.

features and the samples of each class were projected onto the resulting LDA direction. A

kernel density estimator (KDE) was used to compute the cumulative distribution functions

(CDF) of the projection for each class. Rockfish and background object removal rates are

plotted in Figure 2-16 for the entire set of log-transformed size variables and for only the log

of the major and minor axes. The fact that the log-transformed axes have a similar expected

non-rockfish removal rate suggests that the majority of the discriminative information lies

in those two features. Indeed, the other features are closely related to the log-transformed

axes lengths: the log-area is proportional to the sum of the log-axes, and the log-eccentricity

can be shown to be approximately linear with the log-axes for eccentricities close to unity

(as would be the case for rockfish; the monogenic filters also biased the detections towards

areas with higher eccentricities). Perimeter is closely related to area (see [57] and their

reference 7), so that much of that feature is contained in the axes features as well.

The second rockfish-background discrimination method again uses boosting, this time

to specifically create a non-linear decision boundary and with a modification for the desired

loss rate. To see how the boosting should be modified, it will help to understand how the

classifier is created under normal use where there is no specific loss function. Adaptive

boosting (AdaBoost) creates a strong classifier in an attempt to minimize an indicator
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function of the form

J (F (x)) =
〈
e−CF (x)

〉
, (2.3)

where C ∈ [−1, 1] is the true class label6, F (x) is the classifier indicator function constructed

on the features of sample x and a series of weak classifiers, and 〈·〉 denotes taking an

expectation. Then

〈
e−CF (x)

〉
= P (C = 1|x) e−F (x) + P (C = −1|x) eF (x), (2.4)

and by differentiating with respect to F (x) and solving for the zero, the optimal F (x)

satisfies

F (x) =
1

2
log

(
P (C = 1|x)

P (C = −1|x)

)
. (2.5)

Classification is done on the F (x) response by setting C = 1 for F (x) ≥ 0 and C = −1

for F (x) < 0. This is then selecting for the maximum class membership probability based

on the training data [129]. Incorporating a risk, such as for miss-classifying a rockfish as

a background object, is as simple as adding weights (or priors, for that matter) to the

selection,

Fλ (x) =
1

2
log

(
λ1P (C = 1|x)

λ−1P (C = −1|x)

)
,

Fλ (x) = F (x)− 1

2
log

(
λ1

λ−1

)
, (2.6)

where λ1 and λ−1 serve as the risk for the C = 1 and C = −1 classes. The risk terms can

be used as additional weighting factors in Equation 2.3 to specifically generate a new Fλ,

or as Equation 2.6 shows, simply used to shift the decision threshold of the original F (x)

classifier constructed without weights. This second, more intuitive alternative is preferable

since it requires little a priori knowledge about a correct λ ratio during the training phase

and the threshold can be adjusted after training.

6The peculiar restriction of C ∈ [−1, 1] for two-class AdaBoost actually serves as an indicator: F (x) is
designed to have the same sign as the sample’s true class, and CF is then positive when the classifier and
the training data agree or negative when they differ. The amount of misclassification, a larger |F | with an
erroneous sign, leads to larger exponential weighting.
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Figure 2-17: Decision landscape for a boosted classifier trained to lose 2% of rockfish samples
based on simple shape descriptors (the same log-axes feautres as the LDA of Figure 2-16).
The thick line indicates a decision boundary on F (x) with the actual F (x) value depicted
as the background color. Training samples are marked as white dots (positive: rockfish)
and black ×’s (negative: background). The boosting uses decision stumps, which lead to
rectangular decision areas.

A classifier was created using LogitBoosting with 80 stump classifiers and the log-axes

features on the same data set as used for the LDA tests. A CDF was estimated with a KDE

and used to find a threshold for F (x) corresponding to a 2% rockfish removal rate for the

training data. The threshold corresponds to a 72% background removal rate, around 20%

higher than for the LDA at the same expected rockfish removal rate. Figure 2-17 shows

why the boosting has better performance. The LDA uses a single decision threshold in

the projected data, corresponding to dividing the feature space into two half-spaces. The

boosted decision threshold is actually a complicated line, going nearly diagonally through

the feature space, then transitioning to a nearly vertical cut-off around log(a) = 3.5 (where

a is the major axis length in pixels). The negative sample points in the upper left of the

feature space are specifically excluded by the boosting.

Figure 2-16 shows two other important aspects of boosting. The rectangular shaped

areas are a result of using decision stumps as weak classifiers. Each stump is built on a

single feature and threshold. The diagonal decision boundary suggests that, while enough

52



decision stumps can reproduce complicated boundaries, linear classifiers constructed on

both variables would have been better choices for this case (especially since processing time

is not an issue with this small of a number of samples and features). There is some evidence

of overfitting as the decision threshold zig-zags around regions to fit data points. The second

point is that enough data is necessary to shape a complicated decision boundary. Here, the

limited number of positive samples does not adequately flush out the diagonal decision line.

Checking the performance of the LDA and boosted classifiers for removing spurious

background was done by resampling the training data and applying the classifiers to the

new samples. A Gaussian mixture model (GMM) was fit to the positive and negative

training data, resulting in two mixture components for the rockfish samples and four mixture

components for the background. The higher number of mixture components for each class

guarantees that the LDA is not optimal since each class is not fit well with a single Gaussian.

The non-Gaussianity also suggests that results from resampled data will not be identical to

results from the training data. In fact, the LDA classifier removes 1.3% of the rockfish while

discarding 53% of the background. The boosted classifier removes 4.4% of the resampled

rockfish and 71% of the background. The slightly higher removal rate from the boosted

classifier may be an effect of overfitting to the training data.

Finally, it is worth noting that both the LDA and boosted classifier provide simple

metrics for predicting a sample’s membership in either the rockfish or background class by

estimating the distributions of the LDA projection or the F (x) values. These probabilities

can be combined with later stages rank samples and present only those with the greatest

uncertainty to a user for verification.

2.2.3 Shape-based classification

The second stage selected against non-rockfish objects which could be quickly identified

using simple size features and fast calculations. The remaining detections require more

in-depth features.

Sirovich and Kirby proposed the use of an eigenvector decomposition for face matching

in a representation now known as “eigenfaces”. A series of sample face images are sized and

aligned, then each face is reshaped into the column vector, providing the columns in a data
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matrix. The principle components of the data provide a compact basis that is optimized

to represent the variance. Matching is done by finding the shortest Euclidean distance

(or other preferred distance metric) between the vector of basis coeffi cients of an unknown

sample and the known database of faces [339],[192],[388],[24],[434].

A similar idea was tested with the fish shapes. The Chan-Vese detection regions were

resampled to a fixed number of pixels and aligned using the orientation of the major axis of

the fitted ellipse. A singular value decomposition of the aligned region information gave a

compact basis for describing the shape. Four bases were used for experimentation, one for

the rockfish regions, another for the background objects, and two bases computed on the

region outlines of the training set rockfish and non-rockfish. Initial experiments using the

bases for classification showed significantly better results from the outline bases over the

region bases. A resampling size of 40× 40 pixels gave the best classification for the training

samples, balancing computation time, specificity, and dimensionality.

Example “eigenfish”from the positive (rockfish) and negative (background) samples are

shown in Figures 2-18 and 2-19. The first few eigenfish (or, more appropriately, “eigen-

nonfish”, for the negative samples) corresponding to the largest singular values are bar-like

and edge-like, and describe how the energy is distributed around the axis in more detail

than the major and minor axes values of the second stage classifier. The P4 and P5 eigenfish

indicate a narrower tail than the body, with an ambiguity in the orientation direction. The

highest-energy positive and negative eigenfish share a large number of characteristics, which

indicates that they might not be particularly discriminating for classification. Eigenfish

selected by a best-first heuristic [152],[106] are shown in Figure 2-19 in order of selection.

Each of these eigenfish show greater amounts of asymmetry, suggesting that the variations

are actually more useful for classification.

The shapes in Figure 2-19 are also reminiscent of Zernike polynomials (see, e.g., Figure

4-11). Zernikes and other image moments have a long history of use for image recognition

[188],[63],[25],[183],[372]). Normalized Zernike moments were calculated on the same regions

and outlines without resampling and realignment as another shape feature.

Classification tests on the eigenfish and Zernike moment features were run ten times each

with 66% of the training data randomly selected for training and the remaining samples
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Figure 2-18: The first six eigenfish outlines in order of the energy each represents. The
top row is the eigenvectors of the positive training samples (rockfish). Negative training
samples (background) are on the bottom row. Red and blue colors indicate opposite signs,
with white being zero.

P2

N1

P3

N2

P7

N4

P9

N7

P11

N8

P12

N9

Figure 2-19: Eigenfish outlines selected by Weka as potentially useful features for classifi-
cation tasks, in order of their ranking. The number indicates which eigenvalue the image is
derived from, with the greatest energy in the smaller eigenvalue indices. Positive (rockfish)
samples are on the top row and negative (background) samples are in the bottom row. Red
and blue indicate opposite signs with zero as white.
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used for testing. A naïve Bayes classifier achieved around 78% correct classification for both

Zernike and eigenfish feature sets and provides a comparison baseline. Trees and different

boosting schemes are able to achieve around 79-81% overall correct classification for the

Zernike moments; boosting gets 79% correct for the eigenfish while trees are able to achieve

a 74% rate. A k-nearest neighbor classification was also used with k = 5 neighbors, following

the pattern matching methods applied with earlier eigenface work, achieving 72% and 81%

for eigenfish and Zernike moments respectively. In general, the Zernike moments provide

better classification with much less computation and without needing a good orientation

estimate.

The first detection stage incorporated information about local color and its spatial dis-

tribution. Detections were counted as areas with enough boosted pixels that were above

a fixed threshold, a limited measure of the distribution of the first-stage boosted detec-

tor response F1 (x). By considering each pixel’s response as a weighted vote for a class

membership, the full distribution of F1 (x) within the object region can be thought of as a

population weighted vote for the object. The cumulative distribution functions (CDF) for

rockfish and background samples which passed the second-stage boosted classifier are plot-

ted in Figure 2-20, with the rockfish CDFs lying to the right of the background object CDFs

(and with better separability near the high F1 (x) region). The visible separation between

the two sets of CDFs suggests an additional set of features: the F1 (x) values where the

CDF reaches prescribed probability values. This is a discrete representation of the inverse

CDF and provides a description of both the shape of the curve and its position. The set

of inverse CDF features gives around 79% overall classification accuracy using 80 rounds

of LogitBoosting, with indications that improvements are possible with additional boosting

rounds.

Classifiers using combinations of the Zernike-based shape descriptors, detection inverse

CDF values, and fast shape metrics (eccentricity, perimeter, circularity, and perimeter-

to-area ratio) were tested with LogitBoost and eighty decision stumps. The results were

averaged across ten runs of a leave-n-out scheme, where 66% of the data was randomly se-

lected for training and the remainder held for testing in each iteration. Overall classification

rates, Table 2.6, suggest that the inclusion of all three feature sets is worthwhile, especially
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Figure 2-20: Distributions of the boosted detector response within Chan-Vese object re-
gions of training objects which passed the second-stage classifier. The CDF curves of the
rockfish samples (in blue) lie to the right of the non-rockfish samples (in red), indicating a
consistently higher response strength through much of the region aside from the distribu-
tions tails. The distributions overlap more at the bottom (the area of negative F (x) and
low CDF) than at the top of the curves.

since all three sets are fast to compute.

Multi-stage classifier in use

A classifier with 400 decision stumps and LogitBoosting was built with all three feature

sets for the third stage of selection. Testing was done using hand-verified detections from

10% of the images (the same as used for Table 2.5), a total of 892 rockfish and 10,482 non-

rockfish; 845 rockfish and 3346 non-rockfish detections survived the boosted second stage

classifier. The third stage had an 88.6% overall classification accuracy, 80.4% accurate with

Zernike F (x) ICDF Fast Shape Est. TP Rate
× 79.8%

× 79.1%
× 83.0%

× × 84.6%
× × 84.7%

× × 85.6%
× × × 87.0%

Table 2.6: Initial tests on combinations of three feature sets for the Chan-Vese regions. An
x marks which sets were used in that particular test. The estimated overall true positive
rate is averaged over ten runs.
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Habitat Images #Rockfish Stage 1 Stage 2 Stage 3 Det. rate Prec.
Mud 454 79 78 74 57 72.2% 0.75
Sand 1848 145 141 138 121 83.4% 0.65

Coral/Bio 26 33 32 28 12 36.4% 0.25
Rocks 420 618 560 526 419 67.8% 0.71
Rubble 220 83 81 79 70 84.3% 0.81

Overall 2968 958 892 845 679 70.9% 0.69

Table 2.7: Numbers of rockfish for each habitat through the detection-classification stages.
The data comes from a hand-verified random sample of the original image set.

rockfish and 90.7% with non-rockfish. The precision for returning rockfish was 0.69, so

that the number of false positive from background objects is still high but not nearly as

dominating as after the first stage of detections (a precision of 0.085). Results for each

habitat type are summarized in Table 2.7. The two habitats with the lowest detection rates

have the highest number of occlusions and confounding species (in particular, brittle stars).

Fortunately, the coral/bio class has few images throughout the dataset, and the detection

errors are less detrimental to the overall counts.

Boosted classifiers are expected to have high response strength (high F (x)) for objects

that have a high probability of belonging to the positive and negative sample classes. A

portion of the test samples classified as rockfish after the third stage are shown in Figure

2-21 in order of decreasing classification strength from left to right. The majority of the

errors are in the right side of the image, corresponding to low classification strength, as

expected. This is also the area where a human observer can make the most of their time,

verifying the detections which were particularly challenging for the computer.

Great care is taken to ensure that measurement devices have a negligibly low bias

or a constant bias which can be reliably corrected. The SeaBED AUV is a particularly

interesting case in that the optical design can be characterized during the design phase but

the biological component of bias can only be assumed or estimated. The SeaBED has a

potential issue with avoidance, scaring away target species with bright strobes [384]. There

is approximately a one-third overlap between consecutive frames with the top portion of

the nth image aligning with the bottom portion of the (n+ 1)th frame (Figure 2-11 shows

an example of the overlap). If the SeaBED strobes are causing rockfish to hide or flee, this
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Figure 2-21: A selection of objects returned by the multistage detector-classifier as possible
rockfish. Samples are arranged in order of decreasing third-stage classification strength from
left to right (colum-major order). Most non-rockfish objects are found in the right side of
the collage, corresponding to a low class membership probability.
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Figure 2-22: Left and center: spatial distributions of rockfish and background object regions
from the hand verified data. Right: detection ratio of rockfish compared to non-rockfish
objects, averaged over a local area.

would appear as a lower detection rate for rockfish in the lower part of the images.

The hand-verified data used for testing during the classification stage sheds some prover-

bial light on avoidance. The Chan-Vese regions for both known rockfish and known back-

ground objects are superimposed together in Figure 2-22. The total number of detections

is higher towards the top half of the frame, which may be partly due to the angle of the

strobes relative to the frame and stronger shadows to differentiate the structure and shape of

objects. The key, however, is that the ratio of rockfish detections to non-rockfish detections

is nearly constant over the frame, 0.18 - 0.21 rockfish detections to non-rockfish detections

per pixel on average. The edges and corners have greater amounts of noise and erroneous

detections, decreasing the detection ratio in those areas. Constancy over the majority of

the frame strongly suggests that the rockfish are not preferentially avoiding the SeaBED

unit.

The rockfish and habitats share a similar problem of over counting. The image capture

rate of the SeaBED means that consecutive images have overlapping areas, and rockfish in

those regions can be counted two or more times. The SIFT-RANSAC image registration

discussed in Section 2.1.5 for habitats can also be re-applied here to determine which de-

tections might match between frames. Orientation estimates of the rockfish provide clues

for the direction of travel so that motion may be easier to accommodate. Overlap in this

case may actually be beneficial if distributions for size or swimming speed are known for

the rockfish: the length and velocity (both in pixel units) might help estimate the height of

the rockfish above the seafloor and thus correct the size for camera perspective. Similarly,

shadows can be used in relatively flat habitats (e.g., mud, sand, and rubble) to estimate the
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height of a rockfish above the floor. These ideas are left as future work, all made possible

by a reliable detection process.

2.3 Longline detection and linking

Longline fishing refers to the practice of fishing by distributing hooks and bait along a trawl

line several hundred meters to kilometers long. The longline may be weighted so that it

sinks to the ocean floor (bottom or demersel longline; associated with halibut, sablefish,

rockfish, and groundfish) or suspended in the water column (pelagic longline; associated

with swordfish and tuna). In Canada, longlines account for around 6% of the commercial

catch by value and about 3-4% by weight [132]. The US is similar. The line is pulled

back into the fishing vessel and the catch is immediately pulled from the hooks as it comes

into the boat. Monitoring and tracking the number of each species caught on the line

is currently done by a trained observer, either on-board the vessel or by reviewing video

footage of the operation afterwards, and is only done for a fraction of the fishing fleet. Even

reviewing the video afterwards can be time consuming, especially given the number of boats

actively fishing any one area —so that critical decisions from the fisheries management can

be delayed, leading to potentially dangerous results for the ecosystems and sustainability

of the fisheries [171],[430],[251].

Longline fishing has received vocal criticism for its problems with unintended bycatch.

Seabirds get caught by the hooks as they attempt to eat the bait or small fish caught by

the line [41],[181]. A number of small sharks and sea turtles are susceptible to similar

problems [124],[446]. Counts of species unintentionally caught on the lines can help both

activists and the fisheries improve practices [132], better protect the ocean environment

[430],[171],[124],[427], and even estimate the populations of species which are otherwise

diffi cult to count [258].

The application goal of this section is to use intelligent image processing methods to

detect and localize images of fish as recorded by the video equipment on long line fishing

vessels, linking together the various views of an animal so that an observer can quickly

scan through and count the fish. Along the way, methods are developed for background
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removal which is tolerant to motion and for determining which samples are likely the same

animal. The final stage of linking samples is particularly challenging because of the low

temporal sampling of the video, allowing significant motion between frames and making

traditional methods of motion tracking, area deformation [443], and color tracking [280]

moot. Priors are limited to thresholds that the user can set interactively, or those priors

which the methods estimate and learn.

The sample data for this section comes from real-world longline fishing operations. A

webcam with low spatial and temporal resolution was mounted rigidly on each boat using

an arm facing towards the entrance chute. Images of 480 × 640 pixels were recorded at

approximately five frames per second and compressed to save disk space. (The examples

shown came from a video recorded at 5 fps; the methods here were developed on samples

ranging from 5 to 10 fps.) The videos include motion from the water, workers, and the

fishing line itself. Typical lengths range from 30,000 frames to 60,000 frames, with the

active line retrieval limited to the middle 50-80% of the video. The workers routinely reach

down to grab the fish using a hook, tossing back unsalable fish and sharks. Nothing is

modified on the boats or the imaging to specifically aid in localization. The line routinely

pauses while workers deal with diffi cult fish or problems in the line itself. An example frame

and captures of fish are shown in Figure 2-23.

2.3.1 Detection of anomalous areas

The first step of detecting objects in the video is to determine what counts as an anomaly and

what is expected. To that end, estimating the background and regularly occurring objects

gives the normal view against which to measure motion. A stationary viewpoint and focus

for the camera helps limit the variation. However, slow changes in the illumination over time

mean that the background cannot be approximated as a constant. Using a moving average

over a number of neighboring frames to estimate the background allows for adaptation to

slowly changing illumination and shadows, but leads to false positives from fast-moving

structures such as wave occlusions. Weighting the background map by the inverse of the

variance creates a map of normalized z-scores and reduces false positives from areas which

see higher variance but is still susceptible to large perturbations.
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Figure 2-23: Examples from longline videos. Left: looking towards the Ocean Foam deck.
Fish are pulled up onto the white platform with color stripes; a worker (in purple gloves)
is visible above the platform, and the water is visible as a dark are to the bottom of the
frame. Right: samples of fish images from the Southern Dawn; similar species are visible
in the Ocean Foam data used as an example in this section. The images have not been
resampled or scaled.

The longline videos show a number of regularly occurring structures: occlusions on the

side of the boat due to wave motion or global illumination changes from cloud cover and

sun direction. This suggests finding representations of these regular structures that can

be used to selectively remove background elements [410],[309]. A random sample of Ne

frames is taken from the video, median filtered to remove small specular highlights from

wave reflections, then low-pass filtered and reduced in size to Mr ×Nr pixels. Resampling

the image balances the amount of computation required against the available information

contained in the frames, as significant compression and poor optical clarity of the cameras

limits the actual resolution and information. Each reduced frame is normalized against its

mean to remove global illumination effects, then reshaped into a column vector as a single

background sample of size 3MrNr × 1 = Np,r, where the third dimension comes from the

three RGB color components. The vectors are collected into a single matrix of background

samples, E, and the mean value subtracted from each pixel. An implicit assumption is

made that the randomly selected frames used to form the background data matrix have

a similar appearance as during the time period when the line is retrieved. Utilizing time

periods outside of the active time retrieval time helps weight the background estimation
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Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4

Eigenvector 5 Eigenvector 6 Eigenvector 7 Eigenvector 8

Figure 2-24: First eight eigenvalues of U for a sample set of frames, reshaped from a vector
into an image. The eigenvalues are in order of decreasing energy (singular values). The
images are of the side of a boat: the dark area at the bottom is water, the colorful stripes
in the center-right are the edge of the platform that the longline is pulled onto, and the
white and black stripes to the upper left are the side of the boat. The first and second
eigenvectors are due to vertical wave motion that obscures a portion of the hull. The effect
of shadows and splashing can be seen in eigenvectors 5 and 8 especially.

towards regular structures which are not related to the fish themselves and thus increases

the probability of detecting fish as anomalies.

A singular value decomposition (SVD) is computed on the collection of background

vectors, E = USVT , where U and V are orthonormal matrices and S is a diagonal matrix

of singular values. The column vectors of U contain a basis which best represents E, with

the singular values describing the energy that each vector of U represents [387]. (Note that

since E was mean-subtracted, the columns of U are the non-singular principle components.

This saves on computation time, as the SVD is computed on the E matrix, size Np,r ×Ne,

while the PCA is computed on the full covariance matrix of size Np,r×Np,r [106].) Only the

first Ne non-zero singular values and associated vectors are required at most. The first few

background eigenvectors associated with the singular values of highest energy are shown in

Figure 2-24 for an example video captured aboard the Ocean Foam, reshaped back to the

original size of Mr ×Nr × 3.

The background estimate is formed for each new frame by applying the same median

filtering and resampling, then decomposing the frame into the U basis. Typically, only the
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first nbkg = 4 to 10 eigenvectors of U are required to represent the changing background

elements without describing elements associated with fish. Note that this again limits the

number of eigenvectors from the SVD that need to be computed.

Predicting which frames are more likely to contain an interesting object limits the num-

ber of frames that must be passed through later, more computationally demanding process-

ing steps. A linear discriminant analysis (LDA) provides a fast estimate of the probability

that a frame may be interesting or blank by finding a single projection direction that max-

imally separates two labeled data classes. The projection direction vector, −→w , is calculated

as

−→w = (ΣI + ΣB)−1 (−→µ I −−→µ B) , (2.7)

where −→µ I and
−→µ B are the mean of the interesting frames and blank (non-interesting)

frames, and ΣI and ΣB are the associated covariance matrices for each class [106],[24].

Taking the dot product of −→w with a resampled frame gives a scalar value, c, for the data’s

position along the −→w direction. Computing the distributions of c for the interesting and

blank frames gives a way of estimating the probability that the c value for a new frame will

have visual information worth processing.

The LDA makes a number of assumptions. One is that the data can be represented by

a single multivariate Gaussian, so that the mean and covariance are adequate to represent

the distributions for each class. Deviations from Gaussianity reduce the separability. In

this instance, Gaussianity of the pixel values of each class is assumed to be a reasonable

estimate. A second assumption is that the number of samples for each class is equal so that

the uncertainty in the true covariance, as estimated by the sample covariance, is the same

for both classes. A larger number of non-interesting samples biases the separation direction

−→w towards interesting frames. The −→w direction can be corrected by including a n1/2
I and

n
1/2
B factor for each covariance matrix in 2.7, where n is the number of samples of each class

type [106],[24]. For the purpose of predicting which frames may be interesting and avoiding

false negatives, the bias is preferable.

One issue that arises during the LDA calculation is that the ΣI and ΣB matrices are

rank-deficient. Each is Np,r×Np,r in size, but are constructed from nI and nB samples and

thus have a maximum rank of nI or nB. In general, Np,r is an order of magnitude larger
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than either nI or nB. The solution is to reduce the dimensionality of the data samples so

that the covariance matrices are full rank [24],[189]. Since the SVD already contains a good

representation of the expected images, the firstmin {nI , nB} vectors ofU are used to project

the frames into a lower-dimensional subspace of the eigenspace. The covariance matrices in

the U eigensubspace are then full rank, assuming the data vectors are linearly independent

(the U matrix is orthonormal, so the transformation itself is linearly independent). At this

point in the processing chain, the number of eigenvectors from U which must be retained is

max {nbkg,min {nI , nB}} , where nbkg is the number of eigenvectors fromU used to estimate

the background. The remainder of U can be discarded to save memory.

Labels for the frame data are estimated from the statistics of the frames. The Maha-

lanobis distance [80],[236],

DM =
[
(−→p −−→µ )

T
Σ−1 (−→p −−→µ )

]1/2
, (2.8)

is calculated for each RGB pixel sample −→p , where −→µ is the mean color at that pixel location

and Σ is the color covariance matrix. If Σ is diagonal, the Mahalanobis distance reduces

to a variance-normalized Euclidean distance. The scalar distance indicates the probability

that the pixel belongs to the distribution described by (−→µ ,Σ) ; small distances indicate high

probability of membership, while large distances indicate that −→p is improbable. Frames

with enough pixels above a pre-selected DM threshold are considered to be interesting,

while those with low DM values are labeled as blank. This approach avoids the necessity of

a human observer to provide the labels themselves.

Automatic labeling using the Mahalanobis distance provides a decision for interesting

versus blank based on a fixed threshold, making a similar decision as from the LDA for

whether further processing should be applied. The difference is that the LDA provides a

probability for which hidden class which the frame belongs to based on its c value. This

allows a Bayesian network to be constructed [106], assuming that theDM labels are adequate

for estimating the transition probabilities between the hidden classes. The solution of the

Bayesian network then provides a better estimate of whether an interesting object exists in

the frame by combining information from the neighboring frames and observations.
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Finding specific regions in the individual frames marked for processing which are anom-

alous from the background was initially done using the Mahalanobis distance. Thresholding,

morphological operations, and region processing were applied to determine candidate object

patches. The main drawback was that fish which had a similar color to the background

had small DM values and poor edge gradients, so that the object detection would become

disjointed. Improvements in the object segmentation were attempted using graph cuts

[39],[238] and grow-cuts [401] on the patches, with region seeds estimated using both the

Mahalanobis distance and object color statistics estimated using the candidate patches.

Unfortunately, both methods suffered from significant overflow in the regions of color sim-

ilarity and provided poor object segmentation. They also showed sensitivity to the region

seeds and method parameters, and are not recommended without additional priors to con-

strain the cut regions—which require, in many cases, significant user intervention to generate

[125],[239].

A statistical matching using the patches with high DM proved to have better results

in joining together similar regions. Candidate object patches which were near each were

extracted from the image. The Hotelling’s T 2 statistic [163],[393], the multivariate gener-

alization of Student’s t, was calculated on the color distributions between the two patches

as

T 2 =
n1n2

n1 + n2
(−→µ 1 −−→µ 2)

T
S−1 (−→µ 1 −−→µ 2) , (2.9)

where n1 and n2 are the number of samples in each patch,
−→µ 1 and

−→µ 2 are the mean color

values. Matrix S is the pooled covariance matrix composed from the two patch covariance

matrices Σ1 and Σ2 as

S =
(n1 − 1) Σ1 + (n2 − 1) Σ2

n1 + n2 − 2
. (2.10)

The T 2 statistic follows an F distribution with appropriate scaling for the number of samples

and dimensions, which gives the probability that the two patches were sampled from the

distribution of colors [393]. For those patch pairs with a low enough F -test and thus a high

probability of being drawn from the same distribution, the convex hull around the patches

was used to find the area connecting the two patches which was not originally detected. The

entire set of pixels within the convex hull is then fit to a series of Gaussian mixture models
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Figure 2-25: Three examples of fish which change appearance significantly between frames,
making traditional tracking especially poorly suited for this application. Each view of a fish
is taken from consecutive video frames at the recorded resolution.

(GMM) with one to three components using the Rissanen value (minimum description

length) to determine the best number of mixtures [37],[208]. If one mixture is predicted,

the three regions are grouped together into a single detection; if two or more mixtures are

more likely, the candidate patches remain separate detections and the connecting region is

ignored. The GMM is slower than the T 2 statistic to compute, but can combine all three

regions with better reliability and noise tolerance.

2.3.2 Linking detections

Motion tracking traditionally relies on small and predictable changes in appearance between

steps in time [149],[368]. Zhong et al. note that

“Many object tracking applications share the following properties: 1) the inter-

frame motion of the object is small so that the object in the next frame is in

the neighborhood of the object in the current frame, 2) the same point on the

object has a consistent color/gray scale in all the frames of the sequence, 3) the

boundary of the moving object has a relatively large motion field, and 4) the

boundary of the object has a large image gradient value.”[443]

Low temporal sampling relative to the motion means that small deformations are unlikely

(point 1) and that the color is likely to change as the fish rotates (point 2) (Figure 2-25).

Color similarity to the background makes points 3 and 4 unreliable, as does the amount of

motion from other objects in the region of interest.
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Grouping detections from multiple frames using probabilistic models was used in defer-

ence to traditional tracking methods. The probabilistic approach allows for greater variation

between each sample and does not rely on strong predictors for the motion field. First, the

assumption is made that for two detections within a short time span of each other, the

probability that they are from the same fish (or other object), ps, is a function of the rel-

ative size, change in position, and color similarity. A second assumption is made that the

functions for each descriptor are independent and follow an exponential decay, so that

ps '
1

Z
exp

(
−∆fabT

2
ab

)
exp (−∆fabl (∆

−→x ab)) exp (−∆fabs (na, nb)) , (2.11)

where ∆fab is the number of frames between two detections a and b, T 2
ab is the Hotelling

statistic computed on the colors, l (∆−→x ab) is a function on the relative change in position

between two detections, and s (na, nb) is a function which describes the relative size; the

1/Z term is for normalization. The exponential decay assumption is made because ∆fabT
2
ab

follows nearly an exponential for real data. The other two terms also happen to have a

nearly exponential decay for intuitive comparison functions: if s (·) is defined as

s (na, nb) = β

∣∣∣∣∣ na − nb(nanb)
1/2

∣∣∣∣∣ , (2.12)

so that it measures a relative change in the size, ∆fabs (·) also follows an exponential. Here,

na and nb are the number of pixels in the detections, and β is a scalar used to adjust the

importance of this term. The distance similarity function, l (·) , is set to be

l (∆−→x ab) = α [max {‖∆−→x ab‖2 −∆xallow, 0}]1/2 , (2.13)

where ∆xallow is a threshold before a distance penalty is applied and α is an importance

factor. The distribution of ∆fabl (·) is rougher, but approximately exponential.

The ps function is used in a graphical model to determine which detections belong to the

same object by linking detections across frames. The problem is made more tractable by

setting a fixed limit on the number of frames, ∆fmax, that can elapse without an object being

detected before it is removed from contention. Periods of the video with no detections for
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Figure 2-26: Example graphical model for linking together detections across frames. De-
tections are depicted as nodes, and arrows indicate that a later detection might have been
generated from the object as the earlier detection. Line thickness is proportional to the
dissimilarity between detections. Source and null super-nodes allow for a new object to
appear into the view or an object to be removed.

at least ∆fmax are thus considered to be unrelated, forming separate graphical models. An

example model is depicted in Figure 2-26, with nodes (black circles) representing separate

detections. Panel A is a set of detections at each point in time, with two detections joined

by the Hotelling/GMM method discussed in the previous section (detection 6). All possible

links between detections at each frame are shown in panel B, where ∆fmax = 2 in this

example and the line thickness indicates the dissimilarity. Two super-nodes are added to

the graphical model, the source and sink of panel C, to allow objects to enter and leave the

scene. Links to these super-nodes extend to every regular node.

The probability that an object enters the scene, produces the detections, then exits

the scene is found by computing the most probable path over the graphical model. The

probability, a product over the links, can be linearized by taking a log transform. The

probability of two detections being generated by the same object, Equation 2.11, becomes

a linear sum,

wi = − ln (Z) ∆fab · I∆f (∆fab ≤ ∆fmax)
(
T 2
ab + αl (∆−→x ab) + βs (na, nb)

)
, (2.14)
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where I∆f (·) serves as an indicator function for whether the frame difference is less than

the allowed maximum. The value wi is the negative log-likelihood of ps for link i, so that a

low wi indicates a strong similarity between a
i→ b. The weight for the links from the super-

nodes is similarly the negative log-likelihood of the transition probability for an object to

enter or exit the scene. In practice, the super-node weights are set to be higher than most

of the node links but are set by some amount of trial and error since the normalization

factor, Z, is not known a priori —and may change between different videos.

The best temporal linkage is found by solving a binary minimization problem over the

graphical model,

min C =
∑
i

wiei

s.t.
∑

i∈{IN}j

ei = 1 ∀j

∑
i∈{OUT}j

ei = 1 ∀j

ei ∈ [0, 1] , (2.15)

where ei are binary decision variables, one per edge, for whether that edge was used as

a link, {IN}j is the set of edges leading into node j, and similarly {OUT}j is the set of

edges going out of node j. The setup forces each node to have exactly one incoming and one

outgoing edge link, either between frames or to the source/null super-nodes. A solution of

this type is depicted in panel D of Figure 2-26. It is worth noting that Equation 2.15 is a

minimum/maximum flow problem [32], which is a well-studied problem and has a number

of solution techniques [144],[76],[65],[32],[195].

The graphical model does an excellent job linking together similar detections between

frames if the detection was reasonable. There are some issues when colors are estimated

poorly or when objects overlap (such as a gloved hand grabbing a fish) that are diffi cult

to overcome without using mixture models in the similarity functions. Examples of linked

detections are shown in Figure 2-27.
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Figure 2-27: Examples of linked detections in three distinct periods of video. Areas around
detections are shown above the nodes, and blue lines connecting nodes indicate the most
probable links for the given settings. Examples A and B have correct links between the
detections. Example C shows a case where the color and size change enough between frames
7 and 8 that the detections are not linked as a single object.
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2.3.3 Improvement suggestions

The two greatest challenges of working with the longline video are the similarity between

background and objects, and the low temporal resolution. Modifying the background so that

it contains colors or textures that would not naturally occur in the fish species of interest

would make extracting the regions significantly more reliable. Good extractions in a few

videos would also allow a system to automatically learn shape and color priors, which could

then be used for improved segmentation in videos that did not have modified backgrounds

[125],[239],[66],[215] or to estimate distributions on motion for better probabilistic tracking

[214]. A higher frame rate decreases the uncertainty in the estimation process, as the

changes between frames are much smaller. A video recorded with lower spatial resolution

(240× 320 pixels, for example) but higher frame rate (10-15 frames per second) would take

less disk storage space than the current size (480 × 640 at 5 fps) but offer more useful

information for tracking and identification.

Setting correct thresholds for each step can be somewhat challenging, especially with-

out priors to guide the self-discovery (such as predicting interesting frames from the LDA).

One area where that could improve is through labeling the processed links. Matter et al.

have demonstrated software for guided categorization that is able to learn the classification

as the user sorts images, feeding back the known labels to create a better system on-the-

fly [246]. Labels from a similar type of interactive classification/sorting system could be

fed back to the graphical models to adjust α and β since the flow problem has fast solutions.
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Chapter 3

Digital Holographic Instrument

Development: Lab to Ocean

The microscopic scale provides the basis of the life in the ocean. The smaller plants and

animals form the basis of the food chain for larger animals; charismatic examples include

the baleen whales, adapted to filter plankton as their primary food source [78],[425], or

many of the commercial fish stock such as cod and haddock that rely critically on plankton

populations during their larval development [21],[74],[376],[304],[271]. The majority of the

biomass is apportioned to the smaller scales [324], so that microscopic populations can

have a significant impact on the greater oceans. For example, a significant disagreement

in the oceanic nitrogen balances was partly solved through a detailed survey of bacterial

trichodesmium colonies [87].

Studying marine life on the microscopic scale is particularly diffi cult. Traditional meth-

ods such as net sampling are able to sample a large volume, but at the loss of spatial

resolution, destruction of fragile samples, and involved effort to re-sample and identify the

collected species. Non-contact methods for in situ measurements revolve around optical and

sonic methods. Sonar is unfortunately not able to identify species and has size limits based

on the wavelength, so that while it can penetrate further in an aqueous environment, it

does not offer the detail needed for species-level biological studies [172],[413],[421]. Optical

approaches have the best chance at achieving species-specific measurements coupled with
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Figure 3-1: Tradeoff between lateral resolution and depth of field. The curve marks the
maximum (approximate) limit that can be achieved based on k = 1 and assuming perfect
imaging through the entire optical system. Real-world media limits standard optical systems
to lie below these curves.

high precision regarding the location of each sample in the ocean.

Optical methods tend to be limited by size and resolution constraints. Lateral resolution,

δxy, is given by

δxy =
kλ

NA
, (3.1)

where λ is the wavelength, k is a constant that depends on the imaging and resolution

criterion, and NA is the numerical aperture of the imaging system. (The constant k ranges

from 0.5 to 1.22 for various criteria and imaging modalities.) The corresponding depth of

field (DOF), δz, is then

δz '
λ

2NA2
=

δ2
xy

2k2λ
. (3.2)

Observing over a large volume with high lateral resolution thus requires a trade-off (Figure

3-1) [297]. Specialized optical systems can modify the DOF or resolution for fixed NA

[102],[55],[444] but are still subject to a net loss [145]. The basic point remains that high-

resolution imaging is incongruent with large imaging volumes.

Observing biology in an ocean environment adds physical separation between the mea-

surement device and the sample. An instrument needs to not only journey to the sampling

location but survive the trip, meaning that thick optical windows and housings are necessary.

A few instruments rely on bringing samples closer to the imaging system by suctioning or
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otherwise restricting movement of plankton [266],[311],[59],[179],[137]. Avoidance in these

devices is likely, or the strategies for capture (i.e., a narrow slit that the plankton enter

naturally [179]) are not scalable to zooplankton which have strong escape responses to

fluid perturbations, such as copepods [47],[426],[168]. Systems such as the Video Plankton

Recorder [88] are designed to reduce avoidance effects by using additional relay optics to

transfer images from a volume further from the instrument housing to the recording camera.

This has the result of increasing the size of the housings and relay lenses.

Digital holographic imaging is an ideal solution for in situ plankton measurements. It

has a number of abilities and benefits:

• High spatial resolution on the order of microns to tens of microns is easily achievable,

allowing for genus- or species-level identification and precise size measurements

• Holograms of large volumes can be recorded, on the order of hundreds of milliliters per

exposure, important for sparse plankton distributions; the size of the optical volumes

are well-characterized, important for concentration and size data

• The focal position can be computationally selected after the hologram has been cap-

tured

• Lens-less imaging is possible, significantly reducing the size of underwater housings

• Setups can be designed to be robust, compact, and flexible, with inexpensive and

low-power components

• The hologram is recorded digitally, so that the data is immediately available for ad-

vanced digital image processing; similarly, the hologram can be stored to disk or

archived and reconstructed at a later time with any number of algorithms and mea-

surement goals (i.e., plankton identification, particle size distributions, characterizing

water clarity, or estimating fluid flows)

• Orientation and 3D position of objects within the volume can be determined

This chapter discusses the development of a digital holographic imaging system suitable

for in situ plankton studies. In particular, the system is designed for large sample volumes,
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deep ocean deployments, and robust operation under harsh usage conditions. These three

design goals already differentiate the new system from other holographic devices. The first

half of the chapter briefly introduces digital holography, then discusses theoretical issues

relevant to understanding the design and device performance. The second half of the chapter

describes the development and practical implementation of the new holographic imaging

system in a marine environment. Specific contributions of note include a Wigner analysis for

understanding the properties and limits under spherical reference waves, modeling motion

effects, the creation of an in situ prototype, and theory for understanding how oceanic

particle distributions appear in holograms.

3.1 Introduction to digital holography

Digital holography (DH) is the title given to a number of related electronic techniques in

holography [267],[205],[314],[315],[286]. In the past two decades it has come to mean that

a hologram is recorded directly onto a digital sensor and the optical field is reconstructed

computationally . Much of the previous work in holography since Gabor invented the tech-

nique in 1948 is applicable to fully digital systems with modifications for discrete sampling

of the signal and a reduced space-bandwidth product (as compared to holographic films

and plates). In addition to traditional approaches, techniques which take advantage of the

digital representation for reconstruction and advanced filtering are now available.

A hologram is the coherent interference of an optical field diffracted (or reflected) from

an object and a fixed beam used as a reference. A coherent laser beam is first shaped into a

fixed reference wave, r (x, y). Digital holography requires the reference to either be known

via measurements or modelled. Reference waves with a planar phase,

rp (x, y, z) = exp (i [kxx+ kyy + kzz] + φ) , (3.3)

or a spherical phase,

rs (x, y, zs) = exp

(
i2π

λ

√
x2 + y2 + z2

s + φ

)
, (3.4)
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are the two most common and easily formed references. (The “shape” is that of a surface

of constant phase in the reference field.) The wave vector,
−→
k = [kx, ky, kz] = 2πŝ/λ, gives

the direction (pointing along ŝ) and wavelength, λ, of a propagating wave component. The

depth, zs, in the spherical phase reference is the distance from the source of the spherical

wave to where it is measured. The sign of the phase is somewhat arbitrary [145], as is the

offset of the phase, φ. (During hologram formation, the phase offset of the reference will

be seen to cancel with the phase offset of the object’s reference component. Since the φ

component cancels, it will be ignored for the sake of clarity.) These equations describe only

the phase, leaving the amplitude and temporal components of the wave for later discussion.

The object wavefront is created when the reference interacts with an object in either

reflection or transmission. A small object located at position za along the optical axis is

modelled as a complex-valued transparency, t (x, y) = At (x, y) exp (iφt (x, y)) , representing

the absorption, At, and phase delay, φt, caused by an object. The field directly after the

object is

a (x, y) = [1− t (x, y)] r (x, y, za) , (3.5)

= r (x, y, za)− r (x, y, za) t (x, y) = r (x, y, za) + o (x, y; za) , (3.6)

written in the second form to explicitly show that the field is the sum of the reference, r,

and an object wave, o. This field propagates some distance, zp, to a second plane parallel

to a (x, y) (Figure 3-2) where the field is described by a convolution with a point-spread

function (PSF), h (x, y; zp) . The object wave is written as

o (x, y; zp) = −
∫ ∫

t (x, y) r (x, y, za)h
(
x− x′, y − y′; zp

)
dx′dy′, (3.7)

= [−t (x, y) r (x, y, za)] ∗ ∗h (x, y; zp) (3.8)

= o (x, y; za) ∗ ∗h (x, y; zp) , (3.9)

where the ∗∗ symbol represents a two-dimensional convolution. The point-spread function

is the equivalent of an impulse response in signal processing and describes how an infinites-

imally small point source spreads out over space as it propagates. The convolution assumes
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Figure 3-2: Coordinate system used in digital holography: x and y are lateral directions,
and the signals propagate along the positive z direction.

that the PSF is spatially invariant and that the propagated object wave o (x, y; zp) remains

linear [145], both common and easily satisfied assumptions. The latter requirement is only

a concern for high energy fields [17]. The reference wave component can be written simi-

larly by convolving r (x, y, za) with h (x, y; zp) , or more commonly, using knowledge of the

reference itself; r = rp and r = rs both have analytical forms for any plane of interest.

The object and reference waves interfere at a detector plane to create an intensity pattern

known as the hologram. The intensity is the time-averaged amplitude of the electric field

and is given by

I (x, y, z) = |r (x, y, z) + o (x, y; zp)|2 , (3.10)

= |r|2 + |o|2 + r∗o+ ro∗ (3.11)

= |r|2 + |o|2 + 2 Re {r∗o} , (3.12)

where r + o gives the electric field, |·|2 is the squared amplitude of the complex field, and

the conjugation forces I to be real-valued, encoding the phase information of the waves into

the intensity amplitude [313],[145],[259]. The dependences of r and o on x, y, z, za, and zp

will be hidden for clarity until needed.

Equation 3.11 forms the basis of holography and deserves some discussion. The |r|2
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term is the amplitude of the reference wave and is often referred to as the “DC”term since

it is nearly constant over (x, y) for a well-formed reference and does not change appreciably

with the object. The |o|2 term is the amplitude of the object wave, termed the “halo”

due to the slight defocused glow it imparts to reconstructed fields. The amplitude of the

diffraction is assumed to be weak compared to the reference wave so that |r| � |o|, realistic

for small objects, so that |o|2 / |r|2 is negligibly small and o∗o is a small fraction of r∗o or

ro∗. These last two terms, r∗o and ro∗, contain the object wave information modulated

by the reference wave and are the image and “twin image”terms. The so-called twin is a

secondary object image that appears to have been generated on the opposite side of the

hologram plane thanks to the conjugation —though the working difference of which term

is actually the image and which is the twin depends on preference for how the hologram is

reconstructed.

Equation 3.11 hides a number of assumptions and details; for detailed discussion about

the specifics of scalar diffraction theory, conditions for weak diffraction, and transparency

functions, the reader is referred to the seminal texts of Goodman [145] and Born and Wolf

[36]. The equation also assumes that the reference and object waves are coherent with

each other, which depends on the coherence of the source, decoherence imparted by the

propagation medium, and the optical setup. Holography with partial coherence is indeed

possible, and is discussed in the literature [105],[104]; the assumption of high coherence is

made here and is suffi cient for the discussion in this chapter.

The “digital” part of digital holography refers to both recording the hologram on an

electronic sensor and reconstructing the field computationally. A CMOS or CCD camera

records the intensity directly, and the hologram can either be reconstructed immediately or

stored on disk for later use. The key differences between camera types and models include

a number of factors which are discussed in later sections of this chapter.

Reconstruction is performed computationally by deconvolving the hologram. Two sim-

plifications will make the result of the deconvolution more practical. The first simplification

is that the |o|2 term in Equation 3.11 is negligibly small and can be ignored. The second is

that the |r|2 term can either be subtracted by assuming a known |r|2, measuring the mean

|r|2 over a number of holograms, or by filtering the low spatial-frequency components. Al-
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ternately, since the |r|2 term acts as an offset in both the hologram and the reconstructed

image, it does not negatively affect the actual reconstruction process. Assuming that the

|r|2 term is removed, however, clarifies the process. The intensity pattern after removing

|r|2 and |o|2 is then

Ĩ = r∗o+ ro∗. (3.13)

Multiplying by the reference wave (or its conjugate; the same steps are applicable) and

dividing by |r|2 gives
Ĩr

|r|2
= o+

r2o∗

|r|2
, (3.14)

the object wave at the detector plane, o, and a scaled term from the twin image. If the

reference wave r is a plane wave aligned with the detector, r2/ |r|2 = 1 and the hologram

represents o (x, y)+o∗ (x, y) . A plane wave at an angle to the detector results in a modulation

of the o∗ term by exp (−i2 [kxx+ kyy]) exp (−i2kzz) ; the kzz component becomes a constant

phase offset. The effect with a spherical reference is similar, doubling the phase modulation

on o∗.

Information about the object is contained in o and o∗, though it is obscured by prop-

agation, Equation 3.9. Fortunately, removing the effect of propagation is possible because

the PSF (the convolution kernel), h, can be derived from the physics of scalar diffraction

theory as

h (x, y; zp) =
zp
iλ

exp (ikd (x, y, zp))

d (x, y, zp)
2 , (3.15)

where d (x, y, zp) =
[
x2 + y2 + z2

p

]1/2 is the distance a ray1 emitted from the point source

travels to the point (x, y) on the plane a distance zp away. For zp � x and zp � y, the

d2 ' z2
p term is nearly constant in the denominator and the exponential can be approximated

using the first three terms of its Taylor series expansion, yielding

hf (x, y; zp) =
eikzp

iλzp
exp

(
ik

2zp

[
x2 + y2

])
, (3.16)

the well-known Fresnel approximation. These two PSFs have direct Fourier transforms

1The concept of a “ray”in the context of fields and waves is admittedly odd. In this case, a ray is likened
to a small portion of the wave traveling in the same direction towards the same point.
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given by

H (u, v; zp) = exp

(
i2πzp
λ

[
1− (λu)2 − (λv)2

]1/2
)
, (3.17)

Hf (u, v; zp) = exp (ikzp) exp
(
−iπλzp

[
u2 + v2

])
, (3.18)

where u and v are the spatial-frequency variables corresponding to the x and y directions,

respectively. (These functions are the equivalent of a transfer function in signal processing.)

The equation for H is valid only when the argument in the square root is positive; outside

this limit, the waves become non-propagating evanescent waves. The equation for Hf relies

on the same assumptions as hf , which in the context of the Fourier transform means that

u and v correspond to plane wave components travelling at shallow angles relative to the

optical axis. Goodman includes more detail on the derivation of these kernels and the

necessary assumptions [145]. The numerical error in using Hf over the more exact H

becomes extremely small when zp is even a few millimeters, and has been examined by a

number of earlier researchers (see, e.g., [217]).

The kernels of Equations 3.17 and 3.18 have a number of useful properties. One is that

the product of j kernels can always be combined into a single kernel,

∏
j

H (u, v; zj) = H

u, v;
∑
j

zj

 , (3.19)

so that j propagations are equivalent to a single propagation over a distance
∑
zj . This im-

mediately gives the inverse kernel, H−1, as H−1 (zp) = H (−zp) , so that HH−1 = exp (0) =

1; equivalently, H−1 (zp) = H∗ (zp) . (The explicit dependence of H on u and v is hidden for

the sake of clarity here an in following sections unless necessary for the exposition; rather,

the propagation distance, zp, is the variable of interest.) The physical interpretation is that

the inverse kernel is a propagation in the negative (backward) zp direction. In addition to

sums, it will also be useful to note that the magnitude of H is constant over u and v, and

that H is symmetric. The same properties hold for the Fresnel approximated kernel.

Deconvolution to reconstruct an optical field is done by multiplication in the spatial

frequency domain with the inverse kernel. Taking the Fourier transform of the intensity,
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3.14, gives

Î (u, v; zp) = F
{
Ĩr

|r|2

}
= O (u, v; zp) + F

{
r2o∗

|r|2

}
, (3.20)

= A (u, v)H (u, v; zp) + F
{
r2

|r|2

}
∗ ∗A∗ (−u,−v; zp)H

∗ (−u,−v; zp) ,(3.21)

where O (u, v; zp) is the Fourier transform of o (u, v; zp) and A (u, v) is the Fourier transform

of −t (x, y) r (x, y, za) . Multiplying by the inverse kernel,

Î (u, v; zp)H
−1 (u, v; zp) = A(u, v) + F

{
r2

|r|2

}
∗ ∗A∗ (−u,−v; zp)

×H∗ (−u,−v; zp)H
−1 (u, v; zp) , (3.22)

= A (u, v) + F
{
r2

|r|2

}
∗ ∗A∗ (−u,−v; zp)H (u, v;−2zp) ,(3.23)

since H (zp)H
−1 (zp) = 1 and H∗ (zp)H

−1 (zp) = H (−zp)H (−zp) = H (−2zp) . The first

term is the spectrum of the field just after the object and the second term is the twin

image. The twin is the conjugate of the object, back-propagated by 2zp, and results in a

severely out-of-focus object image if zp is large compared to the object size. (The exact

conditions are better quantified using Wigner relations developed later in this chapter,

Section 3.2.) Since H has a constant magnitude, ill-posed division by small numbers is

not a concern and Tikonov regulation [31] is not necessary2. Taking the inverse Fourier

transform of Î (u, v; zp)H
−1 (u, v; zp) gives the reconstructed optical field at zp. Figure 3-3

shows an example reconstruction of a copepod, displaying the magnitude of the field. The

twin image is visible as ringing around the object.

The second term can be simplified significantly by considering three common reference

waves. If r is a plane wave with normal incidence to the detector, r/ |r| = 1 and F
{
r2
}
is

a delta function centered at the (u, v) origin, leaving A∗ unchanged. If r is a plane wave

inclined to the detector, then r2/ |r|2 = exp (i2 [kxx+ kyy]) and the resulting delta function

shifts A∗ away from the origin. The third common reference is to set r = rs, a spherical wave,

2Tikonov regularization and Wiener filters may be helpful in the case of strong noise with good priors on
the noise power or the noise spectral distribution. Spectral windows, such as the power filtering discussed
later in Section 3.3.4 in conjunction with removing the effects of Bayer color filters, is a version of Tikonov
with priors based on the assumed distribution of replicated spectra.
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Figure 3-3: Example reconstruction of a digital hologram. Left: a 1024×1024 sample of the
interference pattern recorded on the digital detector. Center: the magnitude of the optical
field, reconstructed at a depth of zp = 40.6 mm from the detector. Right: detail of the
in-focus field at the object depth. Ringing around the object is due to the twin image. The
reference has not been subtracted in this hologram and provides a bright background but
otherwise does not affect the image.

which applies a spherical phase distortion to o∗ (x, y) in the spatial domain. The additional

phase is the equivalent of passing o∗ through a thin lens before back-propagating. Later

in Section 3.2, a Wigner domain analysis show that in the case of spherical references,

reconstructing r∗o+ ro∗ is the better option to retrieve the transparency function t (x, y) .

Reconstructing optical fields through the Fourier-domain back-propagation approach

includes a number of benefits. Both H and Hf have analytical Fourier transforms and can

be calculated on-the-fly faster with modern hardware than loading pre-calculated kernels

from a disk. (The difference between the two is that H is more exact than Hf for small

zp [217],[145], and the square root in H can be computationally expensive, around 2-5

times slower than a multiplication [344]. However, if multiple reconstructions are done,

the square root term can be pre-calculated and stored to memory if the marginal savings

are critical.) Additional Fourier-domain filters can be chained into the processing during

the reconstruction. Multiple reconstructions can be done at an accelerated rate by noting

that the initial Fourier transform of the hologram needs to be computed only once, then

stored to memory for subsequent use with each new propagation distance. Reconstructions

on planes angled with respect to the hologram plane are possible with a remapping of the

spatial frequency data [245].
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Figure 3-4: Components of the complex-valued reconstructed optical field for a mixed phase-
amplitude object.

Other methods for reconstructing the field are possible and have uses for certain applica-

tions. These include compressive sensing approaches [40],[151], direct inversion [187],[349],

wavelet decompositions [221],[222], or a Fresnel transform [115],[409]. The Fourier transform

method is selected here for its balance between computational speed, memory usage, oper-

ational transparency, and the ability to chain multiple filters in a single operation. A large

amount of prior work has shown that the method is more than suffi cient for reconstructing

images of plankton [217],[254],[95],[281],[366],[367].

The reconstructed field is complex valued, giving immediate access to more information

than traditional holography (Figure 3-4). The real and imaginary components are useful as

diagnostics, as components of focus metrics [89],[274], as representations of the objects, or

for computing the quantitative phase of imaged objects [75]. The squared magnitude gives

the intensity which would be observed using optical reconstruction methods.

The propagation and reconstruction depths in this section assume an inverse optical

path length, as opposed to a physical length. The inverse optical path length (IOPL) is

IOPL =

∫ L

0

1

n (x)
dl, (3.24)

where n is the real part of the index of refraction and the integral is over the physical path

length. For n > 1, the IOPL represents an optically foreshortened distance [136],[161],[113].

This is especially important for oceanic holography, where the waves pass through water

with an index of refraction n = 1.33− 1.35 [291],[256] and at least one optical window with

n ranging from ∼ 1.4 − 1.8 [155]. Care should be taken to use the IOPL to specify the

recording and reconstruction parameters, then back-correct using the geometry and indices
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of the particular setup if the physical distance is needed. Of particular note, the distances

given throughout the remainder of this chapter and the next are the inverse optical path

lengths unless stated otherwise.

The actual index variation within aqueous environments tends to be small enough over

the scale of a device that distortions of objects are not noticeable. (Conversely, the bi-

ologicals imaged have enough intrinsic shape variations that distortions were usually not

recognizable.) Exceptions include mixing regions, where salinity, density, and temperature

may be all be fluctuating within the image volume. If distortions are a concern, Tippie

et al. suggest methods for estimating and correcting certain phase distortions given some

assumptions about the object image [381],[378].

The introduction here is meant to give the reader a working understanding of digital

holography and is not intended to be a complete survey of the field. A number of excellent

books and references on the subject are available for those interested in the finer points. In

particular, Goodman [145] and Born and Wolf [36] cover the foundations of scalar diffraction

theory; Schnars and Jüptner [313],[316], Kreis [202], Poon [287], Milgram and Li [254],[217],

and Domínguez-Caballero [95] provide more detail regarding the general application of

digital holography.

3.1.1 Modeling motion during exposure

Understanding the effects of motion on hologram formation describes what to expect from

vibrations and object movement during the exposure, of particular interest for in situ sam-

pling of active biological objects. The observed intensity at the detector plane is proportional

to the time average of the squared electric field magnitude [36],

I ∝
〈
E2
〉

= 〈(r + o) (r + o)∗〉 , (3.25)

which gives rise to Equation 3.11 if r and o are considered to be constant and the expec-

tation value is thus constant. (The term “constant”in this context means that the spatial

component of the waves is not changing over the integration time.) The period of the time

averaging is taken to be longer than the electric field oscillation period. Consider a simple
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case where g = cos (ωt) ; the time average over a time period of length T is then

〈
g2
〉

=
1

T

∫ T

0
cos2 (ωt) dt =

1

2

cos (ωT ) sin (ωT ) + ωT

ωT
, (3.26)

and the relative error of stopping the integration at T = τ s is cos (ωτ) sin (ωτ) /ωτ. The

numerator has a maximum possible value of 0.5, so that the maximum error is 0.5/ωτ. For

visible wavelengths, τ s & 1 ps is long enough to reduce the error to a tiny fraction of a

percent, so that r and o need only be spatially constant over τ s. The total energy measured

at the detector is the sum of the intensities over many short moments in time —in a sense,

the sum of picosecond moments3. A hologram is thus the incoherent sum of these short-time

intensities [94].

Consider now the specific case of an object which translates laterally over the exposure

time but does not change its transparency function, such as objects carried by water flowing

quickly through a holographic volume. The field just after the object during period m is

am (x, y) = [1− t (x− xm, y − ym)] r (x, y, za) , (3.27)

= [1− t(x, y) ∗ ∗δ (x− xm, y − ym)] r (x, y, za) , (3.28)

where xm and ym are the spatial shifts of the object transparency. The δ function acts to

shift the transparency in space over the motion path. The resulting object wave during

period m is

om (x, y; zp) = (−r(x, y, za) [t(x, y) ∗ ∗δ (x− xm, y − ym)]) ∗ ∗h (x, y; zp) . (3.29)

If an in-line, planar reference is assumed, r (x, y, za) = |rp| and the constant-valued reference

can be removed from the convolution. (This simplification makes use of the fact that the

exp (ikz + φ) plane wave phase offset cancels during hologram formation, so the phase can

3A more conservative measure of “moment”is found by noting that light takes around 1.5 ns to travel a
0.5 m optical distance, the average distance between the laser and detector in this chapter. Thus, photons
which are being absorbed by the detector at t = 0 cannot interact with photons impacting the detector at
t = 1.5 ns, since those later photons had yet to be emitted from the laser. This time period is three orders
longer than τs, but guarantees (quantum mechanics aside) that the intensities received during these periods
can be summed incoherently. Experiments with nano-second pulses [225] further reinforce the concept.
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be ignored. Alternately, φ can be chosen arbitrarily so that exp (ikz + φ) = 1.) Applying

the associativity of convolutions, om becomes

om = − |rp| t (x, y) ∗ ∗h (x, y; zp) ∗ ∗δ (x− xm, y − ym) , (3.30)

= o (x, y; zp) ∗ ∗δ (x− xm, y − ym) , (3.31)

where o (x, y; zp) is the object wave that would result from a stationary object.

The observed hologram is the sum of holograms from each period,

I (z) =
∑
m

(rp (z) + om (z)) (rp (z) + om (z))∗ ,

= m |rp|2 +
∑
m

|o ∗ ∗δm|2 + r∗p
∑
m

(o ∗ ∗δm) + rp
∑

(o∗ ∗ ∗δm) , (3.32)

= m |rp|2 +
∑
m

|o ∗ ∗δm|2 +
(
r∗po+ rpo

∗) ∗ ∗∑
m

δm, (3.33)

where δm = δ (x− xm, y − ym) is the shifting function for period m. The sum of deltas,∑
m δm, is a collection of points along the motion path. As m becomes large, the sum

approaches a smooth curve through (x, y) space with intensity proportional to the time spent

at that location, the equivalent motion point-spread function. Noting that the convolution

of the constant |rp|2 with any real-valued point-spread function remains proportional to

|rp|2 , the hologram with motion can be written as

I =
(
|rp|2 + |rp| o+ |rp| o∗

)
∗ ∗
∑
m

δm +
∑
m

|o ∗ ∗δm|2 . (3.34)

An approximation, IL, to I is found by convolving a stationary hologram with the lateral

motion PSF, giving

IL =
(
|rp|2 + r∗po+ rpo

∗ + |o|2
)
∗ ∗
∑
m

δm, (3.35)

=
(
|rp|2 + r∗po+ rpo

∗
)
∗ ∗
∑
m

δm + |o|2 ∗ ∗
∑
m

δm, (3.36)

so that the only difference between the actual hologram and the motion-approximated

hologram is in the halo term (Figure 3-5). The assumption that |o|2 is negligible compared

88



Figure 3-5: Simulating lateral motion of the object by blurring a stationary hologram. Left:
stationary hologram. Center: IL, the approximation found by convolving the stationary
hologram with a sum of δ functions (the motion PSF). Right: the motion hologram I. The
difference between I and IL is on the order of the machine precision for this example.

to |rp|2 makes the error negligible. Image reconstruction works similarly, in that the image

of a moving object is nearly equivalent to the image of the stationary object convolved

with the motion PSF, aside from the halo term. Understanding how lateral motion affects

holographic reconstructions is then a matter of understanding how the motion PSF affects

a general image4.

The next case to consider is axial motion of the object, again assuming that t (x, y) is

not changing significantly over the exposure. The field after the hologram is

am = [1− t (x, y)] r (x, y, za,m) , (3.37)

where za,m is the axial position of the object at the mth period. The field propagates a

distance zp,m to the detector at timem, where zp,m = zp+(za,0 − za,m) and zp is the distance

between the object and the detector at m = 0. The electric field at the detector is

E = r (x, y, za,m) ∗ ∗h (x, y; zp,m) + [−t (x, y) r (x, y, za,m)] ∗ ∗h (x, y; zp,m) ,

which can be simplified if the reference is again an in-line plane wave, so that r (x, y, za,m) =

4One recent example comes from Reference [94], in which the authors use the blurring of a hologram to
estimate particle velocities in the lateral direction. The “phenomelogical relationship”of their Equation (3)
actually arises from a short, linear motion blur, where their v/vo relates to the blur length.
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|rp| exp (ikza,m + φ) . Substituting the Fresnel approximation for h gives

rm =
|rp| exp (ikzp,m)

iλzp,m
exp (ikza,m + φ) , (3.38)

om = −|rp| exp (ikzp,m)

iλzp,m
exp (ikza,m + φ)

[
t (x, y) ∗ ∗ exp

(
ik

2zp,m

[
x2 + y2

])]
,(3.39)

for the reference and object wave components of E. The phase components will again cancel

in each of the m different rmo∗m and r∗mom terms of the hologram, despite the non-equal

za,m, so that the phase can be ignored. Assuming that the motion is small so that zp,m ' zp,

the hologram is then

I = m |rp|2 +
∑
m

|om|2 +
|rp|
λz2

p

∑
m

[
t (x, y) ∗ ∗h′f (z p,m) + t∗ (x, y) ∗ ∗h∗′f (zp,m )

]
, (3.40)

with the prime on h′f denoting that it has the same chirp component as hf but without the

constant phase offset. If a further assumption is made that t (x, y) is real-valued (i.e., has

only absorption), then I becomes

I = m |rp|2 +
∑
m

|ok|2 +
2 |rp|
λz2

p

t (x, y) ∗ ∗
∑
m

cos

(
k

2zp,m

[
x2 + y2

])
. (3.41)

The effect of the summed cosines is to average out the higher spatial frequencies. The

Fresnel approximation was used here for the sake of making the phase cancellation readily

apparent; the exact PSF gives essentially the same result, but with a square root in the

cosine argument and marginally different intensity scaling.

The h (zp,m) PSFs can also be written as a chained convolution,

h (zp,m) = h (zp) ∗ ∗h (za,0 − za,m) . (3.42)

Using the same assumptions as before, the hologram can be factored as

I = m |rp|2 +
∑
m

|om|2

+
|rp|
λz2

p

t (x, y) ∗ ∗
∑
m

[
h′f (zp) ∗ ∗h′f (za,0 − za,m) + h′∗f (zp) ∗ ∗h′∗f (za,0 − za,m)

]
.(3.43)
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If the axial velocity is constant during the exposure, this last equation can be simplified by

a change of variables: zp is set to be the propagation distance at the middle of the exposure,

and the object moves a total distance of zr. The propagation PSF then becomes

h (zp,m) = h (zp) ∗ ∗h
(
−zr/2 +

zr
M
m
)
≡ h (zp) ∗ ∗hzr,m, (3.44)

where M is the total number of time periods under consideration. The sum of propagation

convolutions becomes

∑
m

h (zp,m) + h∗ (zp,m) =
∑
m

[
h (zp) ∗ ∗hzr,m + h∗ (zp) ∗ ∗h∗zr,m

]
, (3.45)

= [h (zp) + h∗ (zp)] ∗ ∗
∑
m

hzr,m, (3.46)

which comes from noting that hzr,m = h∗zr,M−m. Substituting back into the hologram for-

mation equation,

I = m |rp|2 +
∑
m

|om|2 +
2 |rp|
λz2

p

t (x, y) ∗ ∗ cos

(
k

2zp

[
x2 + y2

])
∗ ∗
∑
m

hzr,m. (3.47)

This form makes it apparent that motion in the axial direction is approximately the same

as convolving the stationary hologram with
∑

m hzr,m.

The hzr,m sum becomes an integral in the limit. The integral in the spatial domain, how-

ever, is not particularly illuminating. Instead, taking the Fourier transform and evaluating

the integral gives

zr/2∫
−zr/2

exp
(
iπλzρ2

)
dz =

exp
(

1
2 iπλzrρ

2
)
− exp

(−1
2 iπλzrρ

2
)

iπλρ2
,

=
2 sin

(
1
2πλzrρ

2
)

πλρ2
,

= zr sinc

(
1

2
λzrρ

2

)
, (3.48)

where ρ2 = u2 + v2 and (u, v) are the Fourier-domain spatial frequency variables. This last

equation makes it clear that the axial motion reduces the high spatial frequencies of the
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hologram.

Equation 3.48 also gives a simple limit for zr so that no spatial frequencies are lost by

requiring the zeros of the sinc function to be located beyond the detector’s spatial frequency

band. The first zero of the sinc occurs when 1
2λzrρ

2 = 1. Defining the detector’s maximum

frequency to be ρ = ρdet, the motion range should be constrained to zr < 2/λρ2
det to force

the zero outside the detector bandwidth. This is twice the maximum depth of field for a

Nyquist-limited sensor (see Section 3.2.4 and noting that the δDOF defined in that section

is a unidirectional measurement) —though as will be seen later, the depth of field condition

can be relaxed based on the object’s spatial frequency content. What can be expected is

that the fine-detail contrast will decrease slightly for objects with high frequency content

as their total axial motion shift approaches the depth of field. Objects with low spatial

frequency content should be able to translate further without visible degradation of the

image.

The same types of arguments can be applied to motions of the detector and the reference

wave source when using a planar reference. Lateral and axial motion of the source is

particularly simple to handle, as it only modifies the phase offset of the wave. As noted

during the discussion here, the phase offset cancels during in-line hologram formation5 and

translational motion of the source should be impossible to measure. Motion of the detector

is the same as for a moving object, a matter of changing physical reference frames. Lateral

motion of the detector results in blurring along the motion path. Axial motion reduces high

frequency detail, though it may not be noticeable if the displacement during the exposure

is on the order of the depth of field —typically around 200 µm for modern detectors and

visible wavelengths.

Tilting a planar reference beam slightly away from the normal makes little difference

to the hologram formation. Matsushima et al. have derived relations for the fields on two

arbitrarily aligned planes [244],[245] (see also Delen and Hooker, [91]). Of interest here is

the relation between the field at a hologram plane normal to the optical axis and one that

has been rotated by a small angle ϕ about the y axis. They shown that the spectrum in

5Phase-shifting holography necessarily relies on an independently controlled reference beam for this
reason.
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the rotated plane, G (û, v̂) , is related to the spectrum in the un-rotated coordinate system

F (u, v) by

G (û, v̂) = F (û cosϕ+ ŵ (û, v̂) sinϕ, v̂)×
∣∣∣∣cosϕ− û sinϕ

ŵ (û, v̂)

∣∣∣∣ , (3.49)

where

ŵ (û, v̂) =
[
λ−2 − û2 − v̂2

]1/2
(3.50)

is the component of the wave vector in the ẑ direction of the tilted plane (the normal to the

tilted plane). The second term in Equation 3.49 is the Jacobian and corrects the energy of

the transformed waves; Matsushima notes that for small ϕ, the Jacobian is approximately

constant. Holography typically has small u and v compared to w, and consequently ŵ sinϕ

is considerably larger than û cosϕ. This results in a noticeable shift in the center of the

spectrum from u0 to û0. Fortunately, a shift in the Fourier domain is equivalent to mul-

tiplying the spatial function by a complex exponential– which for optics is a plane wave.

Following exactly the same arguments as earlier, this plane wave factor will cancel out dur-

ing the hologram formation since both the r and o terms include this same phase multiplier.

Thus, the G spectrum can be shifted back by û0 for comparison against F to observe how

the spatial frequencies in the hologram formed by F would be mapped into the hologram

formed by G.

Figure 3-6 plots the remapping function between û in the tilted plane and u in the

original plane. (As noted, the û0 shift has been included here for transparency in visualizing

how reconstructed image frequencies are remapped.) The lines are calculated for a detector

with 9 µm pixel pitch and a wavelength of 658 nm, and only the central line at v = v̂ = 0 is

displayed; non-zero v̂ have nearly negligible influence since v̂/ŵ is 0.036 or less. For even a

relatively large ϕ = 0.25, the difference between u and û is extremely small, around 2 mm−1

at the highest spatial frequencies. The mapping is nearly linear, varying by a small fraction

of the spatial frequency. The end result is that for small ϕ, the hologram formed on a

tilted detector is nearly identical to the original hologram. The reconstructed image should

have a slight demagnification along the x direction due to the cosϕ factor, but remains a

faithful reproduction of the original object. The image can be corrected by resampling in

the spectral domain [90] or in the spatial domain if ϕ is small and the non-linearity of ŵ
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Figure 3-6: Coordinate transformation between û and u. Left: the values of the spatial-
frequency remapping for three angles; the lines vary by only a few mm−1 at most. Right:
the non-linearity of the remapping function, measured as the deviation from a linear fit.
The amount of deviation is extremely small over the range of spatial frequencies under
consideration.

can be ignored.

Rotational motion of the detector leads to a blurring of the image in the rotation di-

rection by remapping the spatial frequencies over a small range of û. The highest spatial

frequencies have the most shift during the remapping, around u (1− cosϕ) for small ϕ.

Maintaining this frequency shift to be on the order of ∆u, the sampling in the frequency

space, means that (1− cosϕ) ∼ 1/N, where N is the number of samples. While this is a

rough approximation and says little for the change in the actual image, it gives a useful

rule-of-thumb limit: for N = 1024, ϕ is around 2.5◦.

Spherical reference waves have many of the same results when the motion is small. In

particular, the rotation of the detector results in the same spatial frequency remapping.

Axial motion includes a slight change in a magnification factor M, where the magnification

is given by Equation 3.63 and any losses due to blurring are highly object dependent. The

spherical source has rotation invariance if the rotation is around the virtual (or real) point

source.

The general conclusions for this section are two-fold. One is that a number of different

types of motion can be approximated by convolving the stationary hologram with a ker-

nel representing the motion PSF. Some types of motion, such as axial movement, may be

negligible if the total change in position is small over the exposure time. General motion,

including objects with changing transparency functions, can be modelled by incoherently
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summing a number intensity holograms. The second conclusion is that in-line holography

is especially robust to changes in the detector and source positions, both translational and

rotational, and robust against axial motion within the imaging volume. Shorter exposure

times make the hologram less susceptible by decreasing the distance that any one compo-

nent or object can travel during that time period. Planar and spherical references have

invariances which can be useful for robust designs.

3.1.2 Minimum number of bits

Holograms are particularly resilient to errors because the information about any one point

is distributed across a larger spatial extent as the signal propagates. One consequence is

that a reduced number of bits is required to store reasonable information about an object.

For example, Domínguez-Caballero demonstrated that images can be reconstructed from

the most limiting case of two binary levels, though with a significantly reduced clarity [95].

Figure 3-7 shows two examples of a simulated test object, a stylized “MIT”, for the case of

a binary hologram and a two-bit (four-level) hologram. While the quality is lacking, there

is a surprising amount of detail available.

The required bit count affects the engineering choices in a number of areas. The two

most obvious are that a detector needs to have a high enough dynamic range to record the

minimum number of bits in the first place, and that it has a high enough sensitivity to do

so during the laser strobe period. The hologram signal also needs to be balanced against

the background within the limits of the detector’s saturation level.

Estimating the minimum number of bits necessary for a reconstruction requires a metric

for image quality and a ground truth. The ground truth is provided by simulated holograms

computed with a suffi ciently high number of bits. A number of metrics could be used

for comparison of the image quality. The family of squared error metrics includes mean

squared error, sum squared error, root mean squared error, and the normalized mean square

error, and all describe different transforms on the statistical variance of the difference [116].

Squared error metrics are themselves a subset of `p norm metrics, of which the `1 and `∞

are used for mean error and maximum error, respectively; a fractional p allows interpolation

between sum squared error (p = 2) and a sum of the absolute error (p = 1). A proposed
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Figure 3-7: Example reduced bit-count holograms and the resulting reconstructed images.

metric using singular value decompositions measures the spectral differences between images

[333]. Other recent methods focus on comparing the structure and various components

which are preferred by the human visual system, but are not used here due to their lack of

quantifiable relationship to the digital imaging and object recognition problem.

The normalized mean squared error (NMSE) was selected for its invariance properties

and for its relation to the signal-to-noise ratio (SNR). It is defined by Fienup as [116]

NMSE ≡ E2 =

∑
i (fi − αgi)2∑

i f
2
i

, (3.51)

where f is the ground truth image, g is the measured image, i is the discrete pixel index.

Because g may have an unknown scale factor, α is used to compensate, and is chosen to be

α =

∑
i figi∑
i g

2
i

, (3.52)

which minimizes the sum squared error and thus provides the best possible match between

the expected signal and the measured data. The NMSE is related to the SNR since the
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Figure 3-8: Approximate SNR of reconstructions from holograms with reduced bit counts

numerator in 3.51 essentially represents the noise power and the denominator the signal of

interest, so that

SNR ≈ 1− 〈NMSE〉
〈NMSE〉 , (3.53)

valid for SNR away from unity and assuming that the noise is approximately uncorrelated

with the signal.

Simulations were computed using an ensemble of 85 test objects to create digital holo-

grams. Reconstructions using holograms with reduced bit counts were compared against

the reconstructions from the original 32-bit digital holograms. The approximate SNR com-

puted from the ensemble average NMSE is plotted in Figure 3-8, with the -3dB level denoted

by the thick dotted line. The -3dB line, while somewhat arbitrary, corresponds well with

human observations that the reconstructed image does not change significantly above about

five bits. Moreover, signals with fewer bits still have a surprisingly high SNR. For engineer-

ing decisions, a minimum limit of around 4.5-5.5 bits is recommended —with the caution

that this simulation does not include additional noise beyond discretization errors of the

recorded hologram. Additional bits would be necessary to overcome significant detector

noise or random noise due to the medium or laser source.
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3.2 Wigner transform analysis for spherical reference waves

Holograms recorded with planar reference waves have been well-studied and understood due

to their simplicity. On-axis planar references reduce to constant-valued scale factors, while

off-axis planar references give a sinusoidal modulation to the object wave and thus act as

carrier waves. These effects and their consequences are described in detail in the literature

[145],[313].

The topic of spherical reference waves in holography has appeared at various times in

the literature (see, e.g., [145],[313],[433],[137]), but has seen limited analysis as the math

becomes more complicated—typically showing how to reconstruct an image and demonstrat-

ing the change in image size (and thus resolution). This section seeks to explain the limits

of a holographic system which uses a spherical reference wave, and differs from previous

analyses in its use of Wigner transforms to make the mathematics intuitive. In addition

to explaining image size and resolution limits [227], the Wigner formulation can also be

used to explain the depth of field and volumetric sampling [230] as functions of the object

and detector bandwidths. The results and methods in this section are applicable to both

spherical and planar references by taking the limit as the spherical source position goes to

infinity.

The discussion here is more than academic. A good understanding of hologram forma-

tion and useful limits under spherical references enables their use in real-world applications,

such as the in situ prototype of Section 3.3. It will also be seen that spherical references

have a number of equivalences with planar references, useful for the laboratory holographer.

Axial misalignment of collimators, lens aberrations, finite point-sources, and non-uniform

beams (particularly, Gaussian) cause approximately spherical phase deviations, so that the

ideal plane wave is actually a shallow spherical wave. Holograms can still be recorded and

reconstructed robustly without a second thought from most experimenters despite these

imperfect planar references. The derivations in this section will show why reconstruction

with a planar reference does not affect the image and why most users of digital holography

will never know, or need to know, that their reference is actually spherical.
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3.2.1 Wigner distribution and optical formulation

The Wigner transform is a powerful analytic tool that describes the frequency content of a

signal at a particular point in space, one of the Cohen class of space-frequency distributions

[19],[20]. In this respect, the Wigner transform shares some similarities with short-time

Fourier transforms [8],[340], S-transforms [360],[359], and wavelet analyses [362]; one differ-

ence is that the Wigner does not use any windowing. It also happens to have a number of

particularly useful properties for optics [20]. This discussion will make use of the Wigner

transform’s ability to convert diffraction into geometric transforms. Understanding how

an optical system affects a particular component of a signal is a matter of applying the

geometric transform.

The Wigner transform is defined for a 2D signal f (x, y) as

W (x, y, υ, ω) =

∫ ∫
f

(
x+

x′

2
, y +

y′

2

)
f∗
(
x− x′

2
, y − y′

2

)
(3.54)

× exp
(
−i2πυx′

)
exp

(
−i2πωy′

)
dx′dy′,

where the x′ and y′ coordinates are dummy variables used in the integration and (υ, ω)

are the spatial frequencies corresponding to the (x, y) spatial directions. The transform

includes elements of both an auto-correlation and a Fourier transform. As a consequence

of keeping both the spatial and spatial-frequency information, the dimensionality doubles

from f ∈ C2 to W ∈ C4. For clarity and out of convention, the remainder of the discussion

will look only at the (x, υ) components, limiting the Wigner to a two-dimensional function.

The arguments can easily be extended to the full 4D case as needed.

Signals which have phase up to quadratic order are represented naturally by Wigner

transforms. Consider first a space-domain signal, f (x) , written as an envelope function,

A (x) , multiplied by an additional phase exponential, exp (iφ (x)) . This type of signal could

occur in an optical system by inserting a phase transparency as a mask; one common

example is a lens. Substituting f = A exp iφ into the 1D Wigner equation gives

W (x, υ) =

∫
A

(
x+

x′

2

)
A∗
(
x− x′

2

)
exp

(
i

[
φ

(
x+

x′

2

)
− φ

(
x− x′

2

)
− 2πυx′

])
dx′.

(3.55)
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If φ (x) is a quadratic phase signal, φ (x) = απx2 + 2βπx + γ. The squared terms in the

argument of the exponential cancel yielding a linear argument,

i

[
φ

(
x+

x′

2

)
− φ

(
x− x′

2

)
− 2πυx′

]
= i

[
2απxx′ + 2βπx′

]
− 2πυx′

= −i2π [υ − αx− β]x′. (3.56)

The bracketed term is the frequency argument of the Fourier transform. The first conse-

quence is that a phase offset, γ, does not affect the Wigner transform. The key, however,

lies in the induced mapping: what would have appeared at W {A (x)} (x, υ) = WA (x, υ)

is mapped to W {f (x)} (x, v − αx− β) . In other words, the Wigner transform converts

multiplicative quadratic phase exponentials in the spatial domain into geometric linear

transforms of the Wigner frequency component.

The Wigner transform can also be defined using Fourier-transformed functions. Taking

F (υ) = F {f (x)} (υ) as the Fourier transform of f, the Wigner transform becomes

W (x, υ) =

∫
F

(
υ +

υ′

2

)
F ∗
(
υ − υ′

2

)
exp

(
i2πxυ′

)
dυ′. (3.57)

Using the same type of arguments as before, operations which result in a quadratic phase

exponential in the spatial frequency domain lead to a geometric remapping of the x coordi-

nate of the Wigner transform. One example is that of free-space propagation (see, e.g., the

Fresnel kernel, Equation 3.18).

Both mappings can be combined as

W{A} (x, υ) = W {f} (ax+ bυ, cx+ dυ) = Wf

(
x′, v′

)
, (3.58)

for a general optical system with quadratic phase, where here x′ and υ′ represent the

remapped variables. (Note that the linear coeffi cient, β, is set to zero without concern,

as most optical components do not shift the coordinate system. An exception would be a

glass wedge or prism, but that is not of interest here.) The constants a, b, c, and d relate

elegantly to the ABCD matrices [155] of geometric ray optics: as Bastiaans shows, they

are the same coeffi cients [19],[20]. Hence, the Wigner transform provides a powerful link
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between geometric and diffractive optics by using the same ABCD ray matrices to remap

Wigner coordinates.

Three particular ABCD matrices will be useful here. The first is for free-space propa-

gation, x′
υ′

 =

1 λz

0 1

x
υ

 = Lp (z)

x
υ

 , (3.59)

where z is the propagation distance and λ is the wavelength. The Lp (z) function represents

the propagation matrix. The second is for multiplication by a quadratic phase,

x′
υ′

 =

 1 0

−1/λz 1

x
υ

 = Ll (z)

x
υ

 , (3.60)

where the Ll (z) function represents a lens-like matrix. The z in this matrix is the axial

position at which the quadratic phase appears to converge, which makes sense for both

the focal length of a lens and a spherical wave emitted from (or converging towards) a

point. Both the Lp and Ll matrices result in a shearing transform of the Wigner domain

coordinates, the first in the spatial direction and the latter in the spatial-frequency direction.

The final ABCD matrix to mention is a magnification,

x′
υ′

 =

M 0

0 1/M

x
υ

 = LM

x
υ

 , (3.61)

with M as the magnification factor. This matrix can be derived from the first two by, for

example, computing the composite ABCD matrix of a 4f system.

3.2.2 Insights to space-bandwidth limits

The geometric remappings of the Wigner transform can be used to understand how the

information in a hologram is propagated through a system. The information content of

an unknown object is assumed to be contained within a particular space-bandwidth region.

While this is never exactly true in reality (a finite spatial extent requires an infinite frequency

extent and vice versa), the space-bandwidth region can be arbitrarily set as some fraction
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Figure 3-9: Physical variables for describing a spherical reference hologram. The source is
a distance zs from the object, then the reference and object beams propagate a distance zp
to the detector. The detector has half-width xd.

of the signal’s total energy or to contain some components of particular interest to the

problem [226]. In keeping with tradition, the object’s significant space-bandwidth is denoted

in Figure 3-10 as a rectangular region with a dot used as an orientation guide for the

eye. Transformations of the Wigner coordinates are visualized as the equivalent transforms

applied to the space-bandwidth rectangle.

The most general case for modeling an in-line hologram is using a spherical reference

wave, of which a planar reference is the limit as the source distance goes to infinity. The

source expands from a real or virtual point source located at a distance zs from an object of

interest, as shown in Figure 3-9. The spherical reference, r, illuminates an object, creating

the object wave, o. Both the spherical reference and object waves propagate a distance zp

where they form an interference pattern on a detector. The detector has a half-width of xd

and is able to record spatial frequencies from zero to ±υd = ±1/2∆, where ∆ is the pixel

sampling pitch.

Formation of a hologram in the Wigner domain is shown in Figure 3-10. The initial

space-bandwidth of the object is modeled as enclosed within a rectangular region. The

product of the spherical reference wave and the object to create the object wave results in a

shearing in the υ direction, a transformation of (x, υ) by Ll (−zs) . Propagation shears the

space-bandwidth region in the x direction, modeled by Lp (zp) . The useful components of

the intensity pattern at the detector are r∗o and o∗r, the first of which is denoted in panel

(c). The multiplication of o with r∗ is equivalent to transforming the coordinates with

Ll (zs + zp). Panel (d) depicts the final state of the object space-bandwidth as recorded

on the detector for the o term. The second intensity component, o∗r, is the conjugate, and
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Figure 3-10: Transformations of object bandwidth during hologram formation. The object
bandwidth, (a), is sheared vertically in (b) due to the spherical reference wave. Propagation
shears the bandwidth horizontally, (c), before the object and conjugate of the reference, r∗,
interfere to create the hologram. The final result is depicted in (d), with dotted lines
denoting a possible detector bandwidth.

is simply a mirrored copy of r∗o over the υ = 0 axis due to conjugation properties of the

Wigner transform [20],[373].

The composite mapping from a point in the object space, (x, υ) , to a point on the

detector space, (x′, υ′), is given by the product of the three ABCD matrices as

x′
υ′

 = Ll (zs + zp) Lp (zp) Ll (−zs)

x
υ


=

 1 0

−1/λ (zs + zp) 1

1 λzp

0 1

 1 0

1/λzs 1

x
υ


=

(zp + zs) /zs λzp

0 zs/ (zp + zs)

x
υ


= LH (zs,zp)

x
υ

 . (3.62)

The matrix LH (zs,zp) combines the three transform matrices into a holographic system

matrix. It can be decomposed to give additional insight into the operation of the entire

system [156]. Denoting a magnification factor

M =
zs + zp
zs

, (3.63)
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LH can be written as a product of an LM matrix and an Lp matrix as

LH =

M λzp

0 1/M

 =

1 λMzp

0 1

M 0

0 1/M

 . (3.64)

The magnification factor is exactly as is predicted from using similar triangles with geometric

optics [145]. The propagation matrix from the decomposition 3.64 shows that the magnified

object image can be reconstructed by numerically back-propagating using a planar reference

wave with equivalent distance zeq given by

zeq = Mzp =
zp (zp + zs)

zs
. (3.65)

The results here are in agreement with more laborious analyses [145],[313], but with a

significantly streamlined methodology and transparency.

Using LH to gain insight to object and detector space-bandwidth limits first warrants a

brief divergence into aliasing as it applies to holography. The theory is described by gener-

alized sampling, an extension of Shannon-Nyquist sampling, and accounts for the additional

spatial component to the bandwidth of a signal [354],[355]. One-dimensional signal process-

ing shows that sampling a signal with a fixed sampling rate leads to regular replication of

the signal spectrum along the frequency direction with spectral replicates centered at the

normalized frequencies ±2πn with n an integer (Figure 3-11). Spectral components beyond

normalized frequencies of ±π have the potential to overlap lower frequencies of the neigh-

boring spectral replicates. Those components are ambiguous without a priori information

about the signal and thus unrecoverable [270].

A similar replication of spectral components occurs when an interference pattern is

recorded by a detector. Again, replicates appear centered at ±2nπ in normalized frequency

coordinates, and components which extend beyond ±π overlap into neighboring spectral

regions. However, consider a signal which has undergone an operation that results in a

shift of the spatial coordinate, such as free-space propagation. The components which

extend beyond ±π into neighboring replicates do not necessarily overlap the same space-

bandwidth region, as shown in Figure 3-11(f). The result is that those aliased components
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Figure 3-11: Aliased sampling under Nyquist-Shannon and Generalized Sampling. (a), a
sample signal spectrum; (b), the discretely sampled spectrum and its virtual replicates; (c),
the recorded signal with aliased regions shaded; (d), the space-bandwidth region of a sample
signal which has undergone an x-direction shearing operation; (e), the discretely sampled
signal and its virtual replicates; (f), the recorded signal. Dotted lines denote the detector
Nyquist frequency limit.

can be recovered [356].

The space-bandwidth of the detector used for recording holographic signals can be di-

vided into three sections based on the aliasing regions of generalized sampling, shown in

the first panel of Figure 3-12. The first region, denoted by the gray rectangle, extends

from −xd to +xd in space and −υd to +υd in spatial frequency. Signals which fall on this

region are recorded without aliasing and can be reconstructed without special processing.

The second region extends vertically in the ±υ directions. Holographic signals which fall

into this region could be recovered using additional processing if they meet the criteria of

generalized sampling [356]. The third region is anything that exists beyond ±xd. Signals in

this region fall off the edge of the detector and are not recorded.

The same procedure that was used to map the object’s Wigner transform coordinates

into the detector’s space-bandwidth can be inverted to determine which components in the

object space will reach each detector region. Points (x′, υ′) in the detector space-bandwidth

are mapped to x
υ

 = L−1
H (zx, zp)

x′
υ′

 =

x′/M − λzpυ′
Mυ′

 , (3.66)

in the object space-bandwidth. The result is a stretch in the υ direction and both a shear
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Figure 3-12: Detector bandwidth and its inverse map into the object’s Wigner space. A de-
tector space-bandwidth with regions corresponding to (1) normal sampling, (2) generalized
sampling, and (3) loss of the signal (a). In (b), the detector space-bandwidth is mapped
backwards into the space-bandwidth of the object domain. Part (c) denotes the object
bandwdith region corresponding to area (1) for an inline hologram for the case where both
o and o∗ are recorded.

and a stretch in the x direction. An example of this inverse map is shown in panel (b)

of Figure 3-12. Objects whose space-bandwidth information starts in the shaded area will

have the matching r∗o intensity term recorded by the detector. The second intensity term,

o∗r, which earlier led to a mirroring of the spectral information over the x = 0 line, leads to

the same effect in the inverse mapping. Thus, to record both the o and o∗ components, an

object’s information must lie in both the shaded region and its mirror over υ = 0, depicted

as the dark shaded area of panel (c).

The inverse mapping of 3.66 can be used to solve for specific space-bandwidth limita-

tions. Consider first an object which extends to x = xo beyond the optical axis, a detector

with half-width xd, and assume that the methods of generalized sampling hold. The maxi-

mum spatial frequency which can be recorded is found by substituting x = xo into 3.66 and

solving for υ at the limit, yielding

υmax =
1

λzp
(xd −Mxo) . (3.67)

As the object’s spatial extent xo shrinks to zero, the maximum recoverable spatial frequency

approaches υrec = xd/λzp, directly related to the idea of the numerical aperture. Frequencies

beyond υrec will fall outside the detector region independent of the position of the spherical

reference source.
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Consider next the case where xo and the object’s maximum useful spatial frequency6 υo

are known or can be estimated. This leads to a limit on zp,

zp ≤
(xd − xo) zs
xo + λzsυo

, (3.68)

which gives the maximum propagation distance for that object from the detector. A similar

type of relation holds for zs,

zs ≥
zpxo

xd − xo − λzpυo
, (3.69)

beyond which the signal falls into region 3 (Figure 3-12) and falls outside the detector’s

spatial region. A common situation is that an object is to be imaged with a desired mag-

nification to meet some resolution criteria, such as for cells on a microscope slide, so that

the “best”pair of zp and zs are required. The optimal usage of the space-bandwidth of the

detector occurs when the equality in 3.68 (or 3.69) holds. Then both zp and zs as functions

of the magnification, M, can be solved for directly as

zp =
xd −Mxo

λυo
, (3.70)

and

zs =
xd −Mxo

(M − 1) (λυo)
. (3.71)

The foregoing limits apply in the case when generalized sampling conditions hold so that

no restriction was necessary on the maximum spatial frequency in the detector’s Wigner

space. Including a limit that υo/M ≤ υd, the Nyquist frequency of the detector, gives a

limiting condition for the magnification factor,

υo
υd
≤M ≤ xd − λzpυo

xo
. (3.72)

Below the minimum magnification set by υo/υd, the signal experiences aliasing and general-

ized sampling is required. Above the maximum magnification, portions of the object signal

may miss the detector. Note that equations 3.70 and 3.71 are derived for arbitrary magni-

6For example, a 10 µm resolution requires approximately υo ' 50 mm−1.
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fication factors and still hold for M limited by 3.72. Taking the lower limit, υo/υd = M,

gives a condition for the largest non-aliased object extent, the equivalent of half the field of

view, as

xFOV = xo ≤
xdυd − λzpυd

υo
, (3.73)

which can be readily re-arranged into

xoυo + λzpυoυd ≤ xdυd. (3.74)

The first term, xoυo, is the one-quarter the space-bandwidth product (SBP) of the object,

while xdυd is one-quarter the space-bandwidth product of the detector [226]. (The factor

of four is used since both x and υ are half-widths.) The conclusion is that, for non-aliased

object signals with the largest possible field, the detector must have a SBP not only greater

than the object SBP, but greater by 4λzpυoυd = 4λzpMv2
d.

3.2.3 Space-bandwidth product and sampling volume

The choice between detectors for plankton imaging is influenced by the volume of water

that they can holographically record. To make the comparison fair, the volume should be

computed with the same maximum resolution. This could be achieved by using a set of

relay optics to magnify or demagnify an image so that the same target υo can be recorded.

Adding a set of relay optics with magnification Mr results in a coordinate transform given

by x′
υ′

 =

MpMr Mrλzp

0 1/MpMr

x
υ

 , (3.75)

where the magnification due to propagation is Mp = (zs + zp) /zs, the same as for the case

without relay optics. The new system results in a slightly modified set of inequalities for

recording a signal without aliasing,

υo
υd
≤MpMr, (3.76)

MpMrxo +Mrλzpυo ≤ xd. (3.77)
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The first inequality enforces the requirement that υo is recorded at or below the Nyquist

frequency of the detector. The second inequality ensures that object information still reaches

the detector. Rearranging the inequalities gives the maximum field of view without aliasing

as

XFOV = 2
υd
υo

(xd −Mrλzpυo) , (3.78)

where XFOV is the total field and is equal to twice the largest xo. The limit at XFOV = 0

gives the maximum propagation distance which will still result in vo being recorded without

aliasing,

zp,max =
xd

Mrλυo
, (3.79)

though with the mindful caveat that a zero-width field of view requires an infinitely small

object.

The sampling volume without information loss or aliasing is found by integrating the

field of view. Defining Vs as the sample volume and assuming a square detector,

Vs =

∫ zp,max

0
X2
FOV dzp =

4

3

υ2
dx

3
d

Mrλυ3
o

=
N2xd

12Mrλυ3
o

, (3.80)

where N is the number of pixels in one direction and N2 is the full space-bandwidth product

of the two-dimensional detector [226]. Since Mr is chosen to maintain the same recordable

υo between detectors, the product υdMr = υo/Mp = υd,eff is a constant. Recalling that

υd = 1/2∆, where ∆ is the detector pixel size, υd,eff = Mr/2∆. Using the relation 2xd =

N∆, the sampling volume Vs can be simplified:

Vs =
N2

12λυ3
o

(N∆/2)

(2∆υd,eff )
=

N3

48λυ3
oυd,eff

. (3.81)

Thus, the comparable sampling volume at the same observable resolution is a strong function

of the detector space-bandwidth product. A camera with large N is highly preferred over

small N, all other properties being similar.
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3.2.4 Depth of field

AWigner viewpoint can also give insight into the apparent depth of field. The depth of field

(DOF) has traditionally been defined as δDOF = λ/2NA2 in a continuous optical system in

air, where NA is the numerical aperture [155],[145] (not to be confused with N , the number

of samples). In a discrete system, the DOF can be described similarly to the continuous

case as the amount of shift in the axial direction which would cause the minimum observable

change in the image: one pixel.

The most generic system is that of a spherical wave with relay optics, Equation 3.75. The

image can be reconstructed using an equivalent plane wave with zeq = −M2
rMp (consistent

with [328] and [313], though without the laborious derivation). The image coordinates,

(xi, υi) transform as

xi
υi

 =

1 −M2
rMpλzp

0 1

MpMr Mrλzp

0 1/MpMr

xo
υo

 =

MpMrxo

υo/MpMr

 , (3.82)

a direct magnification of the original object. Next, consider two point-like objects with

near-zero width and some maximum υo: one in focus, and one that has been displaced

axially by δz. The in-focus point has information that maps from (xo, υo) in the object

domain to (MpMrxo, υo/MpMr) in the image domain. The axially displaced object instead

has information that maps from (xo + λδzυo, υo) to (MpMr [xo + λδzυo] , υo/MpMr) . Since

the reconstructions are digital, differentiating between the images would require a one-pixel

shift in the image information, so that

MpMrxo −MpMr [xo + λδzυo] = ∆, (3.83)

which gives a simple form for the depth of field as

δz =
∆

MpMrλυo
≡ δDOF . (3.84)

Equation 3.84 relates directly to the optical DOF quoted in optics textbooks. Take a

simple example with Mp = 1 and Mr = 1. Noting that the detector Nyquist frequency is
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υd = 1/2∆, δz is

δz =
1

2λυdυo
. (3.85)

Assuming that υd ' υo and noting that υd = sin θ/λ = NA/λ for an index of refraction of

unity, the DOF is approximately

δz '
λ

2NA2
,

exactly as expected.

The Wigner formulation of the discrete depth of field, 3.84, makes it immediately ob-

vious that the DOF is directly related to the object spatial frequencies. If υo/M < υd in

the spherical reference case, then the most limiting factor is not the system NA but the

information available from the object, so that the depth of field will change depending on

the object itself. This is an effect seen during digital reconstruction, where fine details

(with high υ) are relatively easy to locate in z, but large or smooth objects (with low υ)

are diffi cult to localize axially.

3.2.5 Subtle lessons

The Wigner analysis has a number of subtle lessons applicable to both planar and spherical

reference waves that are worth repeating. The assumption here has been that the hologram

is in-line; Testorf and Lohmann discuss other lessons for off-axis holograms and generic

systems [373], and Stern and Javidi discuss changes for phase shifting [357].

A spherical reference wave is equivalent to a planar reference wave with a depth-

dependent magnification term and appropriately adjusted reconstruction distance (Sections

3.2.2 and 3.2.4). Nearly every lesson about planar references can be re-applied to spherical

references with only a few changes. One example is the understanding of how motion affects

hologram formation7 (Section 3.1.1).

Illuminating an object with a spherical reference, t (x, y) rs (x, y, za) , pre-distorts its

Wigner transform, Figure 3-10(b). The distortion increases at the same rate as the reference

7For the inclined reader, modeling motion in the Wigner domain is perhaps more straight-forward as
integrating the Wigner along the υ direction directly gives the observed intensity. The approach taken here
was to model motion using the traditional holography for the sake of consistency with past work — and
because working with the Wigner formulation may be new to most readers.
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wave as the object information propagates over free space, so that the distortion is exactly

cancelled for the r∗so and rso
∗ terms, Figure 3-10(c,d). This has a number of consequences.

The first is that the reference wave multiplier of o can be seen to cancel out, and the actual

intensity information recorded by a hologram is

I = |r|2 + |o|2 + tM (x, y) ∗ ∗h (x, y; zp) + t∗M (x, y) ∗ ∗h∗ (x, y; zp) , (3.86)

where tM (x, y) is an appropriately magnified object transparency. (The more traditional

r∗o+ro∗, Equations 3.11 and 3.13, is still used throughout this work for historical consistency

unless noted otherwise.) The same assumptions, of course, still hold: that |o|2 is small

compared to the other terms and that t∗∗h does not significantly distort the reference wave

so that an in-line hologram can be formed in the first place. The second consequence is that

normalization by the reference, Equation 3.14, is not strictly necessary since the reference

has already been cancelled from the intensity terms of Equation 3.86. Normalizing by a

spherical reference actually adds an unnecessary phase distortion which must be removed

after propagation (see, e.g., [75]).

3.3 DH prototype design

A select number of groups have attempted underwater holography in the last decade, sum-

marized in Tables 3.1, 3.2, and 3.3. Groups led by Watson and Katz both started with

film systems, then turned to digital holography around 2004-2007. Owen and Zozulya are

credited as having the first marine digital holographic imaging system, targeted specifically

at imaging particles, and was notable for illuminating the volume with a diode laser and

providing reconstruction software. Kreuzer approaches holography from a physics viewpoint

and a strong emphasis on microscopic DH. The work from his group shows an interest in

tracking sub-200 µm micro-organisms. Kreuzer et al. are one of the few groups to venture

into spherical reference holography. Work from Malkiel, Sheng, and Katz exhibits their

interest in behavioral studies of larger plankton, 150—1000 µm. Their DH unit was designed

to drift behind a boat with slight positive buoyancy so that it would rise through the water

column over a 1-2 hour sampling period, recording in situ holographic videos of zooplank-
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Device Investigators Institution Target Status Refs.

HoloMar Watson et al. Aberdeen plankton Inactive [414],[161]
Katz-Film Malkiel and Katz Johns Hopkins plankton Inactive [241]
Marine DH Owen and Zozulya WPI, Owen Res. particles Inactive [272]
Katz-DH Malkiel, Sheng, Katz Johns Hopkins plankton Inactive [281]
eHoloCam Watson et al. Aberdeen plankton On hiatus [366],[367]
J/K-DHIM Kreuzer et al. Dalhousie Univ. microplankton Unknown [179],[137]
LISST-HOLO Nimmo Smith Sequoia Sci. particles Commercial [321],[253]
HoloPOD Loomis and Davis MIT-WHOI plankton Active

Table 3.1: Notable holographic devices from the 2000’s. The devices are listed in approx-
imately the order that they appeared in the literature. This thesis is listed as HoloPOD
(Holographic Plankton Observation Device; coined by J. Domínguez-Caballero) for com-
parison.

ton. The eHoloCam developed by Watson et al. received press during 2007-2008 and was

used on a limited number of deployments to a few hundred meters. The device has promise

as a true ocean-going instrument, though the development appears to have stalled. Finally,

the LISST-HOLO is worth mentioning as the only commercial in situ DH unit, recently

available from Sequoia Scientific. The LISST-HOLO is designed specifically for capturing

holograms of particles over long periods of time and comes bundled with a Matlab GUI to

allow a user to reconstruct images, then apply their own image processing algorithms to

count and size particles.

This section discusses the HoloPOD, a collaboration between MIT and WHOI to create

a new holographic imager for real-world plankton studies. The HoloPOD differs from pre-

vious devices in its use of a large space-bandwidth product CCD to capture large volumes

without avoidance issues and the choice to use a spherical reference for compactness. The

remaining part of this chapter gives short overviews of the components, testing, and design

that went into the creation of a sea-going prototype unit. Work on the HoloPOD has in-

cluded a significant component of algorithmic development. Section 3.3.5 briefly introduces

software created for this project to interactively reconstruct holograms. Chapter 4 specifi-

cally examines methods of retrieving data from holograms with an emphasis on automation

—with special attention paid to methods derived from data captured using the HoloPOD

prototype.
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Device Imaging vol. Lat. reso. SBP Frame rate Vol/time N3/τ ×10−9

HoloMar 3500 cc 10 µm N/A film N/A N/A
Katz-Film 732 cc 3-10 µm N/A film N/A N/A
Marine DH 10 cc est. 5 µm est. 0.3 MPx 30 fps max 300 cc/s 5.3
Katz-DH 40.5 cc 7.4 µm 4 MPx 15 fps 600 cc/s 129
eHoloCam 36.8 cc 8 µm 6.3 MPx 25 fps max 920 cc/s 425
J/K-DHIM 0.9 cc 1-3 µm 1.4 MPx 7 fps 6.3 cc/s 12.5
LISST-HOLO 1.86 cc 5 µm est. 1.8 MPx 0.2 fps max 0.4 cc/s 0.52
HoloPOD 300 cc 6-14 µm 16-39 MPx 1 fps max 300 cc/s 68-185

Table 3.2: Sampling parameters of the holographic devices. The imaging volume is quoted as
per-beam for devices with multiple beams (Katz-DH and HoloMar). The lateral resolution
is the maximum quoted by the authors. Volume per unit time is the maximum achievable
given the quoted sampling volume and framerate. A better comparison for the detectors
is N 3/τ , where τ tau is the period between successive captures; this value is proportional
to the sampling volume per unit time for a desired resolution that could be achieved with
additional magnification optics.

Device Reference Laser Size Depth Power

HoloMar planar Q-switched Nd:YAG 2.4× 1× 1 m 100 m cabled
Katz-Film planar Q-switched ruby 1× 1× 1 m 500 m battery
Marine DH planar fiber-coupled diode 80× 20× 20 cm 50 m cabled
Katz-DH planar Q-switched Nd:YLF 1.2× 0.3× 0.7 m 25 m 1 hr. battery
eHoloCam planar Q-switched Nd:YAG 100× 30× 30 cm 3000 m battery
J/K-DHIM spherical Nd:YAG 50× 20× 20 cm 20 m cable
LISST-HOLO planar diode 75× 13× 13 cm 300 m battery
HoloPOD spherical fiber-coupled diode 80× 25× 30 cm 1500+ m battery

Table 3.3: Setups and configurations of the holographic devices. Device size was estimated
where not directly available; size includes the mounting platform if necessary for device
operation. Depth is the maximum quoted by the authors or, if not given, the operating
depth in the references.
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3.3.1 System components

Each of the holographic devices in Table 3.1 differs significantly based on their engineering

choices and components. This section outlines a few of the key choices made in developing

the HoloPOD, both in the laboratory and the prototype. The discussion here is intentionally

brief, as most of the engineering choices involve straight-forward calculations [100],[95],[228],

though important choices and those which differ from earlier work are paid more attention:

in particular, the laser illumination and digital detector.

Many of the early holographic systems use high-power Q-switched lasers (Table 3.3).

Pulsed lasers can have extremely high output power and short pulses (on the order of tens

of nanoseconds or less). Watson et al. and Katz et al. chose Q-switched lasers for both their

film [414],[241] and DH implementations [281],[366],[367],[415] —a fair pairing with CMOS

sensors that have low sensitivity compared to CCDs. The downside is that Q-switched

lasers tend to be bulky and have greater power requirements [335]. The eHoloCam project

specifically collaborated with a laser design firm (Elforlight, Ltd., UK) to re-engineer a

suitable Q-switched system for their device [415],[367].

Work with Domínguez-Caballero demonstrated that a high-output single-mode diode

laser is suffi cient to capture holograms with little to no blurring if a CCD with high sen-

sitivity is used for the detector [100],[95]. A diode laser can be extremely small, on the

order of a few centimeters, with the majority of the space occupied by control electronics

and packaging. For example, the diodes used for initial laboratory testing were housed in

∅3.5 × 15 cm tubes that included a controller and cooling (PPM modules, Power Tech-

nology, Inc.). Later benchtop and device diodes were set into 1 × 1.2 × 0.8 cm mounting

blocks (Blue Sky Research, FMXL modules), with 1 × 1.8 × 3 cm controllers (TMD219

driver/controller, Power Technology, Inc.). Laser power ranged from 60 mW to 100 mW.

The lasers were selected to be in the red region of the visible spectrum at 658 nm.

This is near the bottom of the absorption curve for seawater (the absorption profile for

pure water is plotted in Figure 3-13; Mobley and Aiken et al. note that total absorption

is a function of pure water, chlorophyll, and other suspended particles, but that the red

absorption is dominated by the pure water component [256],[6]) while remaining well within

the operating range of most CCD cameras. A power analysis similar to [95] for the selected
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Figure 3-13: Absorption coeffi cient for light in water, with a minimum around the blue-
green region. Data is from [319], [44], [197], and [288]. The curves diverge around 350 - 500
nm due to the extremely low absorption.

cameras and including absorption and scattering [256], Fresnel reflections from windows

and lenses (around 4% per air-glass surface unless anti-reflection coated) [155], and losses

from spatial filters (measured to be around 40%) indicated that this wavelength would

provide enough illumination over a 0.5 m propagation distance. This wavelength has two

additional benefits. One is that GaAs-doped diodes, the red and infrared wavelengths,

can be produced economically with high outputs while remaining single mode (and thus

maintain a high temporal coherence) [335]. The second benefit is that zooplankton have

a limited response (i.e., both in the delay before escaping and the magnitude, along with

the probability of initiating an escape) to red light, reducing the chance of escape behaviors

and avoidance [69],[123],[281],[48].

A mechanical spatial filter was used in the preliminary laboratory experiments and

deployments to create a point source with a Gaussian profile. The same effect can be

achieved by coupling the laser into a single-mode fiber optic [272],[250],[167] with a short

length of fiber required to reduce the high orders [407]. The fiber core has similar dimensions

to high NA pinhole filters so that the beam at the exit has the same shape as the previously-

tested pinholes, though with a smaller Gaussian width due to the lower NA of the fiber.

Fiber-coupled diode lasers from Blue Sky Research (FiberTec II and custom-assembled

FMXL modules; 0.13 NA single-mode fiber, 658 nm, 60 mW fiber output) were used for
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Figure 3-14: Comparative sampling characteristics of select scientific detectors and com-
mercial cameras available during prototype design and construction. Both CCD and CMOS
detectors are plotted. A large number of products are available in the middle of the grid,
including serveral commercial CMOS prosumer camera backs. The detector from Semi-
conductor Technology Associates is a custom-constructed 80 MPx scientific camera for
astronomy applications. Detectors to the right of the plot have larger sampling volumes,
while detectors towards the top of the plot have greater sampling per unit time.

further laboratory testing, a museum display8, two benchtop cruise deployments (Section

3.3.2), and in the prototype unit (Section 3.3.3).

The detector is perhaps the most critical design component and includes a large number

of decision variables. It is tied directly to the sampling volume and rate, image quality

and resolution, the choice of laser, and the size of the instrument. The choice of a detector

depends on the following variables:

• Space-bandwidth product. Equations 3.80 and 3.81 show that the number of pixels

8An interactive digital holography museum exhibit was created with Jose A. Domínguez-Caballero and
curator Kurt Hasselbalch and installed in the MIT Musuem in September 2009. The exhibit uses a Blue
Sky fiber-coupled diode laser and a PIC microcontroller for illumination, nearly identical to the components
used for the prototype unit (Section 3.3.3), to capture and display holograms at video rates. Users can then
pause on a single hologram and explore the volume interactively using custom reconstruction software; that
code provided the initial basis for HoloPOD Scientific (Section 3.3.5). As of March 2011, the same Blue Sky
fiber-coupled diode laser had provided illumination for around 500 million holograms and more than 100,000
user-selected holograms.
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is, to within a set of magnification optics, the deciding factor for the volume that

can be imaged at a desired target resolution. Figure 3-14 plots N3 (proportional to

the sampling volume) and N3/τ (the data rate, proportional to the sampling volume

per unit time) for a selection of scientific cameras available as of 2008 (i.e., when

the prototype unit was in the design and construction phases). (See also Table 3.2

for comparisons against the previous holographic imagers.) A large sampling volume

far from the device is also important to reduce avoidance. Several zooplankton can

sense the shear flow around an instrument and will transition to escape behaviors

within milliseconds [47],[426],[216],[88],[168]. Reducing the size of the housings and

including fairings reduces the shear for a fixed flow speed. However, there will always

be a threshold shear near the instrument. A large pixel count extends the potential

sampling volume away from the shear region.

• Data rate. The total possible sampling volume is proportional to the data rate, N3/τ .

The CCD architecture in general has slower data rates than CMOS due to the charge

transfer and readout method, and the entire chip must be read out for each capture.

Larger chips include multiple taps, directing each half (or quarter) of a CCD sensor

to different readout electronics and analog-to-digital converters.

• Sensitivity and fill factor. A CMOS chip includes analog-to-digital converters and

limited processing electronics in the pixel region, reducing the photosensitive area

available for sampling the optical field. A CCD instead uses nearly the entire pixel for

sampling, in general leading to significantly better sensitivity and lower noise [175].

High sensitivity enables shorter exposures or a less powerful laser. The lower noise

levels in CCDs increases the observed image quality. An interesting note for CMOS

is that the small photosite is nearer the ideal point sampling assumed in digital signal

processing [270]. Guo et al. address the effect of the fill factor, suggesting that the

reconstruction PSF is wider for higher fill factor but has reduced side lobes [150]. In

practice, the difference between fill factors is diffi cult to detect or smaller than other

resolution degradations.

• Pixel and detector size. Equation 3.80 gives the maximum sampling volume of a
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detector, assuming no aliasing, as

Vs =
N2xd

12Mrλv3
o

=
N3∆

24Mrλv3
o

, (3.87)

making the substitution of 2xd = N∆, where ∆ is the pixel size and N is the number

of pixels. Systems that are lens-less (i.e., for compactness, simplicity, or robustness)

have Mr = 1. Thus, the sampling volume is proportional to the pixel size and/or the

detector size. It is worth noting that detectors with smaller pixels may have better

resolution and will experience aliasing at a further distance, but that trade-off is not

enough to increase the overall sampling volume. A larger detector will likely require

a larger pressure housing.

• Implementation. The interfacing, packaging, power consumption, and cost are all

obvious decisions that must be weighed against the design of an instrument. CMOS

chips are, in general, less expensive than CCDs and have a lower power consump-

tion [175]. There is also the issue of filters commonly applied over commercial chips:

Bayer color filter arrays, infrared filters, and so-called anti-aliasing filters. The is-

sue of signal processing for Bayer filters is addressed in Section 3.3.4. A number

of astronomy-minded companies will remove infrared filters from certain models of

commercial cameras.

A series of high SBP CCD detectors were tested and utilized in this work. In particular,

the high sensitivity of CCDs allowed the use of a diode laser, making the system much

more compact and cost-effective. High pixel counts increased sampling volume significantly

while reducing the chance of biological avoidance, as discussed above. Specific CCDs and

implementations are detailed in the following sections are they were used in practice.

3.3.2 Benchtop systems with oceanic samples

The majority of laboratory test samples came from one of three locations: bottled copepods

and diatoms sold in pet stores for establishing an aquarium ecosystem, collected from Boston

Harbor, Boston, MA (Long Wharf, 42◦21′40.05′′ N, 71◦02′50.73′′ W) using a plankton net,

and from Woods Hole, MA (Eel Pond and WHOI Docks, 41◦31′28.15′′ N, 70◦40′12.44′′ W).
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These samples were used to establish the capabilities of a benchtop system and to test the

various components of the previous section with similar biologicals as the instrument would

image. Initial work on the benchtop system is reported by references [95], [100], and [228].

The benchtop system and components were further tested on two cruise deployments.

The samples collected during the cruises differed from the earlier laboratory samples in a

number of key aspects:

• The variety of species was markedly different, including a number of large and fragile

species. For biologists, it was important to show that the system could faithfully

capture images of the different plankton they were interested in studying and to an-

ticipate the visual appearance of these species in the reconstructions. The engineering

was benefitted by expanding the test database of holograms to include a wider variety

of real-world samples. This is especially important when developing algorithms which

rely on an expected size, shape, or appearance. The appearance of trichodesmium

colonies and phase objects was particularly illuminating.

• Water properties change significantly between coastal and ocean areas, especially with

respect to the concentration of scattering particles [256]. Earlier samples from Boston

Harbor were allowed to settle or reconstituted with filtered water in around 80% of the

laboratory tests; similarly, bottled samples had to be added to reconstituted seawater

to achieve the desired imaging volume for testing. Holograms captured during the

cruises focused on including the effects of the media. Unfiltered water was collected

at the surface using buckets. Water from depth was sampled from Niskin bottles and

specially-designed bottles attached to a remotely operated vehicle.

• The holographic setups were subject to the vibrations of the ships; no motion reduction

equipment (elastomer isolators, air dampers, or optical tables) was used. The optical

breadboard was secured to the workbench in both cases, further reducing isolation.

Despite the range of frequencies emanating from the ship and its engines, imaging

resolution measured using a transmissive USAF 1951 plate showed no detrimental

effects at the limits of the different setups.

The first cruise traced a path from Panama City, Panama to Woods Hole, Massachusetts
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Figure 3-15: Left: Knorr 182-15b cruise path from Panama to Woods Hole, MA, USA
through the Caribbean. Right: sea surface height anomalies during the middle of the cruise;
circles mark three target vortices where additional samples and cast data were collected.

(Figure 3-15) through the Caribbean Sea during late June of 2006. A benchtop system with

a diode laser (Power Technologies, 658 nm, 60 mW), a spatial filter (5 µm pinhole and 60x

microscope objective), and a monochrome Kodak KAF-16801E CCD (16 MPx, 9 µm pixel

pitch) were used to record holograms. Additional holograms were captured using a fiber-

coupled diode laser (Blue Sky Technologies, 658 nm, 100 mW diode output, 60 mW fiber

output, single-mode fiber with a 4 µm core). Both planar and spherical reference waves were

utilized by either collimating the output from the spatial filter (or optical fiber) or using

the raw output. Laser illumination times ranged from 1 µs to 20 µs and were controlled

to within 0.5 µs with a PIC (Microchip PIC-16F628A running at 4 MHz). Examples of

reconstructed images are shown in Figure 3-16.

The second cruise was in the Celebes Sea in the Philippines during early- to mid-October

of 2007. Two benchtop systems were tested. The first matched the benchtop system used

aboard the Knorr: a diode laser with a spatial filter used for conditioning and a monochrome

KAF-16801E CCD for recording holograms. The second system used components proposed

for constructing an in situ prototype: a fiber-coupled laser diode, lenses for adjusting the

divergence of a spherical reference, and a Kodak KAF-16803C Bayer-patterned CCD sensor

(16 MPx, 9 µm pixel pitch). The CCD was embedded into a Hasselblad medium format

digital camera back (Hasselblad CFV). Example reconstructions from the Celebes cruise
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Figure 3-16: Example reconstructions of plankton collected during the Knorr cruise. (a),
trichodesmium colony (“bowtie” shape); (b,c,e), three species of copepods; (d) a copepod
nauplii; (f) larval lobster; (g) rod diatom.

are shown in Figure 3-17.

The general conclusion from the two cruises was that a fiber-coupled diode laser with

the Kodak KAF series CCD chips results in excellent holograms. Around 1600 holograms

were captured during the Knorr-Panama cruise and around 2100 while in the Celebes, sig-

nificantly expanding the database of imaged biologicals, with the caveat that the holograms

were all hand-captured during the cruises and thus are more likely to contain objects whose

diffraction patterns peaked the interests of the investigators. No effects due to vibration

were observed in the images despite the non-ideal working environment, a positive indicator

for robustness of the mechanical setups.

3.3.3 Prototype design

A prototype in situ holographic imaging device was constructed in early 2008 using lessons

learned during laboratory testing and cruise deployments. The device has been used ex-

tensively since then to record real-world holograms of plankton, diatoms, oil (Section 4.3),

marine snow, particulate matter, and small larvae from various locations around the globe.

The main components include a fiber-coupled diode laser for coherent illumination, a lens

assembly to create a spherical reference wave, and a high pixel count detector mounted in a

commercial camera back to record holograms (Figures 3-18 and 3-19). The prototype was

constructed using two housings with an oil-filled connector to communicate between the

electronics, contained inside the camera housing, and the laser.
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Figure 3-17: Example reconstructions of a salp, copepods, chain diatom, ethmodiscus,
bacterial colony, and a ctenophore found during the Celebes cruise.

Figure 3-18: Schematic layout of the prototype components.
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Figure 3-19: Prototype holographic imager, shown mounted to a V-arm with handles. For
scale, the holes on the optical table are spaced at 1” intervals. The housing diagrams are
courtesy of Sea Scan, Inc.
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The prototype was designed with four specific and inter-related goals in mind: a large

imaging volume, good image quality, an extended depth rating, and flexible usage:

1. Image volume. Larger separation between the housings and a lower divergence lead

to increased sampling volume through increased geometric volume. The total volume

imaged at a desired resolution is also proportional to the cube of the number of pixels

along the detector’s edge, discussed in Section 3.2.3, which is a primary reason for

using a camera with high pixel count. The prototype has an imaging volume of around

300-500 mL.

2. Image quality. Identifying plankton based on morphology requires that a good image

can be obtained throughout the volume. A camera with high pixel count and low

noise is preferred. The ability to adjust the separation between housings is useful to

control the number of particles in the volume and thus the amount of cross-talk noise

present [96],[98],[97] and Section 3.4. In-line holography provides robust imaging

despite vibration and slight misalignment of the optical system (Section 3.1.1). A

diode laser with high throughput intensity and a sensitive CCD allow for microsecond

illumination periods, reducing motion blur and vibration effects to sub-pixel levels.

A lens system is used to expand the spherical reference to around 4 cm at the laser

housing’s optical window, reducing loss in the quality of the reference from particles

near the window. At the same time, the lens system partially collimates the beam to

confine the beam’s energy to the imaging volume.

3. Depth rating. Evidence suggests that there is microscopic biological activity through-

out the water column with surprising amounts below the euphotic zone [184]. A

compact and self-contained system makes sampling to greater depths feasible. A di-

verging spherical reference beam and diode laser allow a smaller housing to be used

for illumination. A camera with a large pixel count makes imaging a large volume

with good resolution feasible without including magnification optics (see also Section

3.2.3), keeping the camera housing smaller.

4. Flexible usage. The prototype was intended to be an imager which was independent of

the carrier platform. The housings have been attached to tether lines, rosettes, sleds,
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and remote operated vehicles. The camera and laser systems are controlled internally

and data is stored to a memory card in the camera back. The controller can be

reprogrammed in a matter of minutes, and camera settings can be adjusted between

dives. In-line holography with a spherical reference makes alignment nearly trivial.

The laser diode fiber coupling removes operator expertise in adjusting a spatial filter

and makes the system more robust. A spherical reference provides a depth-varying

magnification (see Section 3.2 and Equation 3.63), so that the system can record

images over a wider range of object sizes and resolutions.

A detector with high pixel count, low noise, and good sensitivity is a crucial decision that

influences each of the design goals. The two main sensors used in the laboratory benchtop

system were a Kodak KAF-16801E (16 MPx monochrome CCD with 9 µm pixels) [107] and

a Kodak KAF-16802CE (16 MPx CCD with Bayer color filter array and 9 µm pixels) [108].

The color CCD had lower sensitivity than the monochrome CCD and improved blooming

characteristics, but was otherwise similar in performance. A nearly identical color CCD,

a Kodak KAF-16803C (16 MPx CCD with Bayer color filter array and 9 µm pixels) [109]

was conveniently used in two commercial medium-format camera backs (PhaseOne P20 and

Hasselblad CFV) during prototype design and construction in 2007—2008. The backs are

compact and self-contained units for capturing and storing images with direct access to the

detector chip and facilities for remote triggering, providing a cost-effective solution ideal

for the prototype. The CCD in the prototype was replaced in 2010 with a Kodak KAF-

39000C (39 MPx CCD with Bayer color filter array and 6.8 µm pixels) [110], embedded in

a Hasselblad CFV-39 medium-format camera back.

A bandpass filter reduces the amount of light striking the CCD from wavelengths outside

the operating band [366]. This is important for using the imager near the ocean surface

where there are significantly higher background light levels and when the imager is mounted

on frames with other optically-active devices. The CCD architecture is particularly sensitive

to background light and cannot quickly clear the sensor when it has been overexposed. The

Hydrogen-α spectral line is conveniently at 656.28 nm, less than two nanometers from the

diode laser center wavelength. A number of high-quality Hα bandpass filters are available

from astronomical optics suppliers. A 6 nm bandpass filter from Astronomik (Figure 3-
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Figure 3-20: Left: Hα bandpass filter with 6 nm FWHM passband. The filter has around
78% transmission at the diode laser’s design wavelength. Right: the maximum solar ir-
radiance through the Hα filter and a given depth of seawater. The curve is computed as
a worst-case scenario: no absorption beyond that of pure water or scattering is assumed,
and the receiver surface is oriented with its normal toward the sun. Losses from Fresnel
reflections are not included.

20) was selected for the prototype. The filter removes 98.1% of the terrestrial irradiance

between 280 and 900 nm reaching the terrestrial surface on a clear day [10] at an average

US latitude. Additional absorption and scattering from seawater [256],[6] reduces the light

reaching a detector even a few meters below the surface; assuming a worst-case scenario (no

scattering or absorption beyond that of pure water), 0.6% of the terrestrial light would pass

through 5.0 meters of water and the bandpass filter both. A 36× 36 mm detector oriented

directly towards the sun receives around 5 mW from the sun at that depth.

The majority of the work in Chapter 4 regarding detection of objects in holograms

and focus metrics was done using real-world in situ holograms captured by the prototype.

Thus, the work in that chapter is directly and immediately applicable to the large quantity

of holograms captured using this system.

3.3.4 Power filtering for Bayer detectors

The requirements on detector space-bandwidth, sensitivity, cost, and ease of use may dictate

the use of a Bayer-filtered color camera if a suitable monochromatic sensor is not available.

The effect of the color filter can be seen by modeling the sensor signal, s, as a series of four
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sub-sampled arrays (Figure 3-21),

s = ηRo · comb
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,(3.88)

where o is the original object signal of interest, ∆ is the pixel size, comb (·, ·) is the two-

dimensional comb function used to model regular sampling, and the η are coeffi cients for

each color channel’s sensitivity to the illumination wavelength used to form o. The comb

assumes that point sampling at the center of the pixel is suffi cient to represent the physics

of the sampling; for low spatial frequencies or pixels with small fill factors, this is especially

reasonable. (See [203],[204],[150] for further discussion on sampling and fill factors in digital

holography.) The green channel is formed by two sub-sampled arrays, denoted as G1 and

G2, since in general these may have different hardware or software scaling factors. Taking

the Fourier transform of s and applying the shift theorem,

S(u, v) = O(u, v) ∗ ∗[ηRC2∆ (u, v) e−iπ∆(−u+v) + ηBC2∆ (u, v) e−iπ∆(u−v)

+ηG1C2∆ (u, v) e−iπ∆(u+v) + ηG2C2∆ (u, v) e−iπ∆(−u−v)], (3.89)

where C2∆ (u, v) = F {comb (x/2∆, y/2∆)} (u, v) . Applying the scaling theorem in two

dimensions,

C2∆ (u, v) = 4∆2comb (2∆u, 2∆v) . (3.90)

The consequence of convolving O ∗ C2∆ in each term of 3.89 is to shift the centers of each

spectral replicate, normally at multiples of u = 1/∆, down to u = 1/2∆ (and similarly for

the v direction replicates), shown in Figure 3-22. Since 1/2∆ is the Nyquist frequency corre-

sponding to a comb (x/∆, y/∆) sampling, the replicates result in significant high frequency

content which, if left unchecked, results in strong noise. The shifted DC components, for

example, create a high-frequency checkerboard pattern on reconstructed images.

The effect of the exponentials is easier to see by noting that each C2∆ is the infinite

sum of δ functions at intervals of 1/2∆. The product of the exponentials and C2∆ then acts

to weight each δ by a complex constant. The δ which appears at the origin results in the
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Figure 3-21: Coordinate system depicting a unit cell of a Bayer-patterned color filter.
Letters correspond to the color channels.

Figure 3-22: Replication of the original spectrum, (a), to the Nyquist frequencies, (b), due
to using a detector with a Bayer filter.

129



spectrum denoted as “A”in Figure 3-22 and is exactly

SA (u, v) = 4∆2O (u, v)
(
ηR + ηB + ηG1 + ηG2

)
= 4∆2O (u, v)WA, (3.91)

where WA acts as a weighting function. Similarly, the other spectra have weights given by

WB = i
(
ηR − ηB + ηG1 − ηG2

)
, (3.92)

WC = i
(
−ηR + ηB − ηG1 + ηG2

)
, (3.93)

WD = ηR + ηB − ηG1 − ηG2 . (3.94)

There are two interesting conclusions here. One is that if the spectral sensitivity is equal

so that ηR = ηB = ηG1 = ηG2 = η, then all the spectral weights but WA go to zero. This

is the case when a monochromatic sensor is used, or if the color channel gain is adjusted

appropriately. (Noise has the possibility of being amplified significantly in the latter case.)

The second conclusion is that spectrum “A”can be used directly to reconstruct the object

image without needing to know the spectral sensitivities of each component channel.

Filtering spectrum “A”from the other spectral replicates can be performed during the

reconstruction step with a suitable window. A windowing filter which has an extended

passband and extremely low magnitude at high frequencies is desired. This rules out a ma-

jority of the standard filters used in signal processing with the exception of Tukey windows

[31],[270]. Even Tukey windows are limited due to their single parameter: the passband can

be tuned, but not the high-frequency behavior. Instead, a two-parameter window similar

to a Gaussian window is used,

P (u) = exp

(
−α

∣∣∣∣ u

umax

∣∣∣∣p) , (3.95)

where p is the order of the window P, umax is the maximum spatial frequency, and α is

the negative natural log of the filter’s desired magnitude response at u = umax. The P (u)

window, termed a “power”filter9, is particularly adept with high p. A p ≥ 2 is preferred;

p = 2 gives a Gaussian window [31], p = 1 gives a Poisson window [340], and negative p

9This filter is referred to as a “super-Gaussian” in beam shaping applications.
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Figure 3-23: Frequency-domain windows: Tukey and P (u) , the so-called “power window”.

results in high-pass filters instead. Example one-dimensional realizations of P (u) are shown

in Figure 3-23 compared against a Tukey filter of order 0.61.

The width of the power filter in the spatial domain is plotted in Figure 3-24 and can

be used to estimate the resolution after applying the power window to an image. The

full-width at half-max (FWHM) of the filter response is independent of the image size and

is nearly unity over a large range so that the resolution is only slightly worse than with a

monochrome sensor and no high-frequency filtering. Typical real-world values of p ∼ 6−20

and P (umax) ∼ 1 × 10−5 − 1 × 10−1 result in a FWHM of ∼ 1.2 − 1.5, which corresponds

well to the experimentally observable resolution of 1.2∆−1.5∆ using resolution targets and

the same power filter settings. This FWHM is better than the resolution loss of 2.0 that

would be expected from reconstructing images only from the ηR or ηB pixels. Finally, it

is worth noting that p = 2 gives a traditional exponential window [31] (the far left range

of Figure 3-24), which invariably gives significantly increased FWHM and thus extremely

poor resolution.

Comparison images of a resolution target reconstructed using various windows, including

two power windows, is shown in Figure 3-25. The two power window examples have p = 4

and p = 8, both with P (umax) = 0.1. The corresponding FWHM values are 1.37 and

1.19 pixels, which corresponds to USAF1951 group 5/element 3 and group 5/element 4,

respectively, for this sensor. The zoomed regions show group 5/elements 1-4, and the

observed resolution limit is seen to match the FWHM predictions.
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Figure 3-25: Cropped views of windowed reconstuctions of USAF1951 resolution targets
recorded by a Bayer color filtered sensor. The two power filters have p = 4 and p = 8 and
a final value of P (umax) = 0.1. The zoomed region shows group 5, elements 1-4; the best
resolution for this sensor based on the pixel size is group 5, element 5, but is not resolvable
with any of the depicted windows.

132



The alternative to filtering is to apply scaling to each color channel based on measured

or estimated spectral sensitivities. The adjusted channels then have equal equivalent η,

so that the spectral replicates should cancel and no filtering is necessary. The problem is

that noise is also amplified, and the resulting signal-to-noise ratio (SNR) is actually worse.

Assume that N is the additive noise and o is again the signal, so that the measured signal

is yp = ηpop +Np at pixel p and the original power SNR is
∑

p η
2
po

2
p/
∑

pN
2
p . Take a simple

case of P pixels, equal op, and equal N for illustrative purposes (or, equal 〈o〉 and equal

〈N〉 , more specifically), so that the original SNR is

SNRo =
o2

PN2

P∑
p=1

η2
p =

〈
η2
〉
o2

N2
. (3.96)

Now consider normalizing the pixels against their spectral sensitivities, so that the mea-

surement becomes yp = op +N/ηp. The SNR in this scaled case is

SNRsc =
Po2

N2
∑P

p=1 η
−2
p

=
o2

N2 〈η−2〉 . (3.97)

The SNR in both cases is determined by expectations on η. If ηp is constant for all pixels,

the expectations give the same SNR. The difference occurs when ηp varies. Consider a

Bayer-patterned sensor with η = {1, 0.7, 0.7, 0.4} for the four channels. Then
〈
η2
〉

= 0.535

and
〈
η−2
〉−1

= 0.353, a 34% loss in SNR. The actual spectral sensitivities at 658 nm for

a Kodak KAF-16802CE, the sensor used by PhaseOne and Hasselblad in their 16 MPx

camera backs, are closer to η = {0.18, 0.03, 0.03, 0.02} for the red, green1, green2, and blue

channels, respectively [108]. These values give
〈
η2
〉

= 8.65×10−3 and
〈
η−2
〉−1

= 8.42×10−4

—resulting in a ten-fold loss in power SNR if the color channels are scaled instead of filtered.

3.3.5 Software for interactive reconstructions

Exploring a hologram to understand its contents can be especially challenging for large

volumes. Reconstructing slices by hand is extremely time consuming and does not allow for

immediate comparison. Writing slices to disk does allow a viewer to compare slices to find,

for example, where an object is in focus, but requires a large amount of disk space and can
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be slow.

A program, titled HoloPOD Scientific, was created with the goal of interactively recon-

structing holograms and saving useful information for later study. Holograms are transferred

to a graphics processing unit (GPU) and reconstructed using the Fourier transform method

[332],[331]. Keyboard commands or a 3D joystick are used as input to control which slices

are reconstructed and at what size. Reconstructions of 4K × 4K pixel holograms are com-

puted at 10-20 fps (faster for smaller reconstructions) and displayed directly to the screen

as the real part, imaginary part, magnitude, or phase (Figure 3-26). Individual reconstruc-

tions can be saved to disk as either an image or a Matlab file with the complex field data.

The power filter can be modified on-the-fly to select the best values given the noise present

in each hologram and whether there are spectral replicates due to a Bayer filter (see Section

3.3.4 for more on the power filter).

Along with showing the user reconstructions, HoloPOD Scientific includes the ability to

mark objects of interest and to make measurements directly on the screen. The 3D position

and reconstruction parameters for each marked object are saved to disk for later use. This

allows the user to create a database of points or objects which can be used for machine

learning applications and for testing automated algorithms; for example, edge points in

real-world holograms were marked using HoloPOD Scientific and used to determine a new

set of edge features (Section 4.1.3). Measurements of objects are also written to disk, along

with the 3D position and power filter options. The measurements were used to assess the

performance of algorithms that estimate object size (Section 4.3) and to create ground

truths.

3.4 Particle field effects

One of the largest differences between laboratory experiments and oceanic deployments is

the cleanliness of the fluid medium. Oceanic particles, from such sources as bacteria, di-

atoms, marine snow, silt, mud, and dissolved organic matter permeate real waters. The con-

centration of these components varies significantly from coastal areas to mid-ocean ranges

[256],[157],[324],[300],[5]. High particle concentrations significantly affect the image clarity,
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Figure 3-26: Screenshot of HoloPOD Scientific in use. The hologram is shown in the right
panel, with the blue square marking pixel area used for reconstructions and the embedded
green square marking the area which is being viewed by the user. The left panel shows the
magnitude of the recontructed field, zoomed in to the barnacle nauplii. A plot of the power
filter magnitude and the reconstruction parameters are displayed below the reconstruction
image. Users can mark or measure objects of interest by clicking within the reconstruction
area and the positions are automatically saved to disk.
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limiting the volume of water that can be imaged. This section aims to predict the effects of

particles on the hologram spectrum, providing intuition about how particles might degrade

the reconstructions.

The effect of particles is two-fold: scattering and absorption from particle fields provides

both noise and a reduction in the desired signal. The noise, considered here to be the

hologram signal due to random particles, can be estimated by finding the expected spectrum

given some size distribution. A number of additional assumptions are necessary:

1. Particles can be modeled as having an opacity of s (s = 0 is transparent, s = 1 is

opaque). Most observed particles have a high enough phase variation, either through

surface and internal roughness or index of refraction difference from the surrounding

medium, that they can be considered nearly opaque for digital holographic measure-

ments if they are not already opaque.

2. The probability of finding a particle at a particular 3D location is not dependent on

the other particles present. In other words, the number and size of particles is low

enough that there are not significant interactions either in occupation of space or from

fluid dynamics.

3. The expected number of particles in the observation volume, N, is known or can

be estimated. For example, Beer’s law can be shown to hold for particles in both

planar and spherical reference configurations, so that 〈Ns〉 can be estimated from the

hologram intensity if the water’s absorption is known. Estimation can also be done

using instruments such as the popular WET Labs AC-9 spectrophotometer [418] (see,

e.g., [15] for use of the b coeffi cient to estimate distribution characteristics or [300]

for estimation from the beam attenuation coeffi cient) or Secchi disks [424]. Direct

measurement of large particles can be done using digital holography (see discussion of

oil droplet size distribution estimation in Section 4.3), or of small particles using laser

scatterometers such as Sequoia Scientific’s LISST [320] or Coulter Counters (e.g., [23])

[300].

4. The amount of re-scattering of one particle’s object wave from another is assumed to

be small, so that the hologram is treated as a sum of object waves from each individual
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particle.

The intensity at the hologram plane is

I (x, y) =

∣∣∣∣∣∣r −
∑
j

sjtj (x, y) ∗ ∗hf (x, y; zj)

∣∣∣∣∣∣
2

, (3.98)

= |r|2 − r∗
∑
j

oj − r
∑
j

o∗j + 2
∑
j

∑
k

ojo
∗
k, (3.99)

where tj (x, y) is the particle transparency function of the jth particle, sj is the opacity,

hf (x, y; zj) is the standard Fresnel kernel (Equation 3.18), and oj = sjtj ∗ ∗hf (zj) is the

resulting object wave for the jth particle. The Fresnel kernel is preferred here over the exact

kernel for its mathematical properties. This is appropriate given the high variability and

uncertainty in real-world particles, so that the minor loss of accuracy from the substitution

is trivial in comparison. The negative sign before the sum denotes that the particle is treated

as absorbing and thus the real part of tj is positive. Using the traditional assumptions that

r is a plane wave with unitary magnitude and |oj
∑

k o
∗
k| � |ojr∗| so that the cross-talk

terms can be considered negligible background, 3.99 becomes

I (x, y) = 1−
∑
j

(
oj + o∗j

)
. (3.100)

The Fourier transform of the intensity is

Î (u, v) = δ (u, v)−
∑
j

[
Oj (u, v) +Ocj (u, v)

]
, (3.101)

using

F {oj (x, y)} = Oj (u, v) = sjTj (u, v)Hf (u, v; zj) exp (−i2π [uqx + vqy]) , (3.102)

and
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F
{
o∗j (x, y)

}
= Ocj (u, v) = sjT

∗
j (−u,−v)H∗f (−u,−v; zj)

× exp (−i2π [uqx + vqy]) , (3.103)

as the Fourier transforms of the object waves; T and Hf (zj) are the Fourier transforms of

tj and hf (zj). Here, the particle transparency mask is defined at the origin and laterally

shifted to a center at (qx, qy) .

The restriction on r can actually be relaxed to say that r is assumed to behave like a plane

wave, as the Wigner approach and Equation 3.64 showed that spherical reference waves are

indistinguishable from planar references at the hologram plane aside from their induced

geometric magnification of the object. Thus, the derivation here extends to spherical waves

easily by scaling tj laterally and replacing zj with zeq,j . The specifics of a spherical reference

will be discussed later in this section.

The spectral energy gives the expected signal power at each frequency component, cal-

culated as

Ψ =
〈∣∣∣Î (u, v)

∣∣∣〉 =
〈
Î (u, v) Î∗ (u, v)

〉
. (3.104)

Substituting 3.101 yields

Ψ =

〈
δ − δ

∑
j

(
Oj +Ocj +O∗j +Oc∗j

)
+
∑

j

∑
k
OjO

∗
k +OcjO

∗
k +OjO

c∗
k +OcjO

c∗
k

〉
,

= δ − δN 〈O +O∗ +Oc +Oc∗〉 (3.105)

+
〈∑

j

∑
k
OjO

∗
k +OcjO

∗
k +OjO

c∗
k +OcjO

c∗
k

〉
, (3.106)

for the spectral power. The first term is the power of the normalized reference. The second

term needs only to be evaluated at (u, v) = (0, 0) due to the multiplication by the δ function

and can be rewritten as

δN 〈O +O∗ +Oc +Oc∗〉 = δN [〈O〉+ 〈O∗〉+ 〈Oc〉+ 〈Oc∗〉] . (3.107)
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Computing the expectation for the O component,

〈O (0, 0)〉 =

∫
p (s, z,θ, qx, qy) sT (0, 0;θ)Hf (0, 0; z) dsdzdθdqxdqy, (3.108)

where θ is treated as a set of parameters which describe the possible masks. The joint dis-

tribution p (s, z, θ, qx, qy) is not strictly necessary, as each variable is treated as independent

under the problem assumptions and the functions are separable. The expectation becomes

〈O (0, 0)〉 =

∫
p (s) sds

∫
p (z) dz

∫
p (θ)T (0, 0;θ) dθ (3.109)

×
∫
p (qx) dqx

∫
p (qy) dqy (3.110)

= 〈s〉
∫
p (θ)T (0, 0;θ) dθ, (3.111)

and similarly for the other 〈O〉-type expectations. Noting that T (0, 0) is related to the

cross-sectional area of the particles, the second term of Equation 3.106 can be seen to

represent the power lost to absorption.

The double sums in Equation 3.106 can be written as self- and cross- terms. Taking the

first component as an example,

〈∑
j

∑
k
OjO

∗
k

〉
=

〈∑
j
OjO

∗
j

〉
+

〈∑
j

∑
k,k 6=j

OjO
∗
k

〉
, (3.112)

= N 〈OO∗〉+N (N − 1) 〈O〉 〈O∗〉 , (3.113)

which assumes that Oj and O∗k are suffi ciently independent. The 〈O〉 expectation is

〈O〉 =

∫
· · ·
∫
p (s, z,θ, qx, qy) sT (u, v;θ)Hf (u, v; z)

× exp (−i2π [uqx + vqy]) dsdzdθdqxdqy (3.114)

=

∫
p (s) sds

∫
Hf (u, v; z) p (z) dz

∫
p (θ)T (u, v;θ) dθ

×
∫

exp (−i2πuqx) p (qx) dqx

∫
exp (−i2πvqy) p (qy) dqy, (3.115)

again assuming that s, z, θ, qx and qy are independent. Taking the maximum beam lateral

extents to be ±xd and ±yd, and assuming the particle positions are uniformly distributed
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over the beam, p (qx) = 1/2xd and p (qy) = 1/2yd. The qx integral evaluates to∫
p (qx) e−i2πuqxdqx =

1

2xd

∫ xd

−xd
e−i2πuqxdqx, (3.116)

=
sin (2πuxd)

2πuxd
= sinc (2uxd) , (3.117)

and similarly for qy. The sinc argument can be simplified by assuming that xd is the half-

width of the detector (or on a similar order) and noting that the maximum u is the Nyquist

frequency of the detector, uNyq = 1/2∆ = npix/4xd, where npix is the number of pixels in

the detector. Substituting yields

sinc (2uxd) = sinc

(
1

2

u

uNyq
npix

)
,

which decays quickly, affecting only the lowest spatial frequencies. Assuming that the

particles are uniformly distributed over z = za to z = zb, then p (z) = 1/ (zb − za) and the

remainder of the 〈O〉 integration evaluates to

〈O〉 = 〈s〉 sinc (2uxd) sinc (2vyd)

∫
p (θ)T (u, v;θ) dθ

×
exp

(
−iπλzbρ2

)
− exp

(
−iπλzaρ2

)
−iπλρ2 (zb − za)

, (3.118)

where ρ2 = u2 + v2.

Equation 3.118 shows that 〈O〉 decays like 1/u3 from the combination of the 1/ρ2 and

sinc terms, so that the product 〈O〉 〈O∗〉 in 3.113 decays like 1/u6. For reasonable particle

densities, the 〈O〉 〈O∗〉 (and similar terms) contribute a small amount to extremely low

spatial frequencies, but can safely be ignored for mid- to high spatial frequencies. Removing

these cross terms from 3.106, the spectral power is approximately

Ψ ' δ −Υ (s,θ) +N 〈OO∗〉+N 〈OcO∗〉+N 〈OOc∗〉+N 〈OcOc∗〉 , (3.119)

where Υ (s,θ) represents the absorption loss and affects only the DC component.

The 〈OO∗〉 and similar terms of Equation 3.119 are where the interesting relationships
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are hidden. Computation of the expectation,

〈OO∗〉 =

∫
p(s)s2ds

∫
p (z) dz

∫
p (qx, qy) dqxdqy

∫
p (θ)T (u, v;θ)T ∗ (u, v;θ) dθ,

(3.120)

is aided by the fact that HfH
∗
f = 1 and the lateral shifts cancel, so that

〈OO∗〉 =
〈
s2
〉 ∫

p (θ)T (u, v;θ)T ∗ (u, v;θ) dθ. (3.121)

A similar set of results for 〈OcOc∗〉 gives

〈OcOc∗〉 =
〈
s2
〉 ∫

p (θ)T (−u,−v;θ)T ∗ (−u,−v;θ) dθ. (3.122)

The 〈OcO∗〉 and 〈OOc∗〉 terms are fundamentally different in how the Hf kernel is treated.

Taking the first of the two terms,

〈OcO∗〉 =

∫
p (s) s2ds

∫
p (qx, qy) dqxdqy

∫
p (θ)T ∗ (−u,−v;θ)T ∗ (u, v;θ) dθ

×
∫ zb

za

p (z) ei2πλzρ
2
dz. (3.123)

The matched conjugation of the kernel in Oc and O∗ results in a factor of two in the

exponentials. Evaluating the integrals gives

〈OcO∗〉 =

〈
s2
〉

(zb − za)

∫
p (θ)T ∗ (−u,−v;θ)T ∗ (u, v;θ) dθ

×exp (i2zbπλρ)− exp (i2zaπλρ)

i2πλρ2
. (3.124)

Similarly, 〈OOc∗〉 results in

〈OOc∗〉 =

〈
s2
〉

(zb − za)

∫
p (θ)T (u, v;θ)T (−u,−v;θ) dθ

×− exp (−i2zbπλρ) + exp (−i2zaπλρ)

i2πλρ2
. (3.125)

Note here the modification to the T function and its arguments as well.

The expectations can be combined if T is real and even or can be modelled as such.
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Examples include round objects such as droplets and bubbles, or diatoms and bacteria

which scatter like circular objects within the frequency bands of interest —as is often the

case within the low spatial-frequencies recorded by digital holography. Combining and

simplifying the self-power terms under the assumption that T is real and even,

ΨS ≡ N [〈OO∗〉+ 〈OcOc∗〉+ 〈OcO∗〉+ 〈OOc∗〉] , (3.126)

= N
〈
s2
〉 ∫

p (θ)T 2 (u, v;θ) dθ

×
[

2 +
sin
(
2zbπλρ

2
)
− sin

(
2zaπλρ

2
)

(zb − za)πλρ2

]
, (3.127)

or

ΨS = 2N
〈
s2
〉 [

1 + sinc
(
z∆λρ

2
)

cos
(
2zπλρ2

)] ∫
p (θ)T 2 (u, v;θ) dθ, (3.128)

= 2N
〈
s2
〉 [

1 + sinc
(
z∆λρ

2
)

cos
(
2zπλρ2

)] 〈
T 2
〉
, (3.129)

using z∆ = zb − za as the depth range and z = (za + zb) /2 as the mean depth. Equation

3.128 implies that the spectral energy from the self-terms should have a spatial-frequency

decay rate that goes with z∆ and limits to a constant, non-zero value as ρ→∞.

A set of simulations showed that ΨS was the dominant component of Ψ. A volume of

particles was constructed by approximating the volume as a series of slices. Circular particles

were placed on each slice using uniform distributions for the lateral positions and a Poisson

distribution for the total number of particles expected to be within the volume represented

by each particular slice. Combinations of discrete mono-disperse distributions were used

for the circular particle size parameter θ. The field between each slice was propagated

using the higher-accuracy exact propagation kernel, Equation 3.17. Additional accuracy for

small particles was ensured by using anti-aliased particle images and oversampling in the

simulation domain. An example hologram is shown in Figure 3-27. The spectral energy was

calculated by summing the energy of the discrete Fourier transforms of 1250 realizations of

particle fields generated in this manner. The spectral energy and its frequency-dependent

components are shown in Figure 3-28. The analytical solution is shown for ΨS using the

assumptions discussed in this section, and notably does not include the 〈O〉 〈O∗〉-type terms,
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Figure 3-27: Sample simulated particle hologram with two mono-disperse size distributions
which have equal probability.

the absorptive terms, multiple diffraction (which is included in the simulation), or the terms

which would result from including the |o|2-like “halo”terms in the model. Despite this, ΨS

represents the spectral energy well.

The ΨS of Equation 3.128 includes an integral over T (u, v;θ) , a function of the particle

shape and size. A number of particle size distributions have been proposed for oceanic

particles [330]. The most commonly used form is the Junge-type or power law distribution,

N ′ (D) = k

(
D

Do

)−γ
, (3.130)

whereDo is a reference diameter, k is the differential concentration atDo, and γ typically lies

between 3 and 4 but has a wide distribution that rages from around 2 to 4.5 [300],[256],[330].

The associated p (θ) is given by normalizing N ′ (D),

p (a) =
γ − 1

a1−γ
m

a−γ , (3.131)

where a is the particle radius and am is the minimum particle considered. If the particles
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Figure 3-28: Simulated and analytic spectral energy. From left to right: simulation, analytic
approximation using ΨS , the component of ΨS from the depth integral, and the component
of ΨS from the particle mask integral. The top row are the spectral components in a single
quadrant, while the bottom row are zoomed views of the same component. Spectral energy
plots were normalized to their maximum values for comparison. Grid points are frequency
samples, with the Nyquist limit at sample 256.

are assumed to have circular cross-sections with radius a, T (a) is given by

T (ρ; a) =
aJ1 (2πaρ)

ρ
= aπ jinc (aρ) , (3.132)

where Jν is a Bessel function of the first kind [145]. Substituting Equations 3.131 and 3.132,

the
〈
T 2
〉
integral is

〈
T 2
〉

=

∫ ∞
am

γ − 1

a1−γ
m

a−γ [aπ jinc (aρ)]2 da, (3.133)

=
K1 (γ, am)

ρ5−γ
[
K2 (γ) +K3 (γ, am) ρ5−γF2,3

(
−a2

mρ
2
)]
, (3.134)

where Fp,q is a generalized hypergeometric function which decays quickly and the Ki are

constants. The result is that
〈
T 2
〉
is strongly dominated by its ργ−5 term, demonstrated by

nearly straight lines on a log-log plot (Figure 3-29). Variations due to the Bessel function

are smoothed out.

What is particularly interesting is what happens at a typical value of γ = 3. The

resulting
〈
T 2
〉
spectra are nearly matched in slope to ρ−2 (plotted for comparison as the

solid black line with arbitrary offset), which is the expected decay rate of power spectra

for natural images and scenes (see, e.g., [397],[16],[386] and references therein). A γ of
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Figure 3-29: Expected spectra for a Junge-type distribution of circular particles.

around 2 − 3 better corresponds to the slightly higher decay rate observed in underwater

images [16]. The fact that
〈
T 2
〉
has a ρ−a relationship which matches previous research is

particularly encouraging considering the assumptions and simplifications that were used in

the derivation.

Sample plots of other popular particle size distribution models [330] and the corre-

sponding
〈
T 2
〉
are depicted in Figure 3-30. Curiously, the log-normal, beta, and gamma

distributions all have slopes of −3 in the log-log plot, as would a Junge-type distribution

with γ = 2. The distributions show strong similarities in their spectral shape and slope,

especially for moderate to high spatial frequencies. The agreement suggests that the model

is robust to the specific T (θ) or particle size distribution selected, so that a generic ρ−a

model for the spectral energy from a collection of particles is reasonable. This also explains

why estimating the full particle size distribution from the spectra may be especially diffi -

cult without distinctive distributions; as of writing, only the mean particle size has been

approached [92]10.

The specific ρ−2 model describes observed noise in “natural holograms” (i.e., those

without man-made objects such as resolution targets) extremely well. An ensemble of 1,621

holograms captured in lab and field settings was used to estimate the spectral energy of

natural holograms. Each hologram was recorded by a monochrome detector with 4096 by

4096 pixels. The spectral energy was computed for each hologram, normalized to the same

10The method proposed by [92] uses the peak around (u = 0, v = 0), the area that has slightly greater
disciminability for the different distributions —and contributions from the 〈O〉 〈O∗〉 terms.
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Figure 3-30: A variety of sample particle size distributions using popular models and the
associated

〈
T 2
〉
integrals; the integrals have been normalized to

〈
T 2 (0, 0)

〉
for comparison.

Values in parentheses after the distribution name indicate the parameters used in Matlab to
generate the distribution. The center plot shows that the majority of the energy is within
the central low-frequency lobe for nearly all the distributions, despite the variety. The
log-log plot indicates that the slope is nearly the same for all the distributions in the mid-
to high-frequency ranges, except for the Junge-type distribution and, to an extent, one of
the Gamma distributions. The similarity makes distinguishing the distributions or getting
more than the mean size diffi cult from the spectral information alone.

total energy, and averaged together. A plot of the first quadrant of the average power

spectrum is shown in 3-31. The spectrum is nearly isotropic11 and decays rapidly with

spatial frequency. A fit to the spectrum (averaged over all angles), Figure 3-32, gives an

exponent of a = −2.046 (−2.074, 2.019) with a correlation coeffi cient of 0.976. Notably, the

modulation in the spectral energy from the depth integration also tends to smooth out over

enough realizations, and only affects the lower-frequency region. As ρ becomes larger, the

sinc modulation of Equation 3.128 goes to a constant and the
〈
T 2
〉
spectrum dominates.

One caveat is that nearly all of the holograms were captured in controlled settings in sample

tanks, so that bubbles and large particulate matter would have had a greater probability of

settling or rising out of the sample volumes under consideration (see, e.g., [380],[379] which

found log-normal fits for mixed-phase flows during the settling phase). Thus, a Junge-type

distribution consisting of extremely small particles and dissolved matter would have been

more likely to occur in these holograms.

The derivations so far have been for planar references. The original premise was that

11The anisotropy is partly a function of the type of detector. Overexposure of pixels in the CCD results
in streaking along the columns Since the CCD was maintained with the same orientation, there was a slight
increase in the high spatial frequency content preferrentially in the u direction.
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Figure 3-32: Least-squared error fit to the expected power spectrum of Figure 3-31. Here,
fr = ρ and |S| is the spectral energy.
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since spherical references differ from planar only in the equivalent reconstruction distance

and magnification, the results could be expected to be similar. Further, many different

particle size distributions give ρ−α noise, so that the magnification would be expected to

re-scale the distribution but not significantly change the noise. Explicitly showing this is

more diffi cult as the depth and shape integrations become linked through their shared z

parameterization. The 〈OcO∗〉 term, for example, becomes

〈OcO∗〉 =
〈
s2
〉 ∫ ∫

p (z,θ) exp
(
i2πλρ2zeq (z)

)
T ∗ (−u, v;θ (z))T (u, v;θ (z)) dθdz,

(3.135)

where θ (z) denotes a depth-dependent scaling and zeq is the equivalent reconstruction

distance derived from Equation 3.64 using Wigner transform methods. Substituting zd for

the total distance from the spherical source to the detector, zeq (z) = zdz/ (zd − z) and

the scaling factor is M = zd/ (zd − z) (from substituting zd = zs + zp into Equation 3.63).

Assuming a circular particle mask and a uniform distribution over z = za to z = zb, the

integration becomes

〈OcO∗〉 =
〈
s2
〉 1

(zb − za)

∫ zb

za

exp

(
i2πλρ2 zdz

(zd − z)

)
×
∫
a
p (a)

[
aπzd

(zd − z)
jinc

(
azd

(zd − z)
ρ

)]2

dadz. (3.136)

Similar equations can be derived for the other components of ΨS .

Examples of the normalized spectral energy computed for a spherical reference (zd = 388

mm, za = 35 mm, zb = 240 mm, λ = 658 nm) and the same distributions as in Figure

3-30 are plotted in Figure 3-33; solid lines are the normalized spectra from the spherical

reference while dotted lines are the same spectra due to a planar reference. Modulation from

the depth integral is minimal in the log-log plot, with the dominating term coming from

the
〈
T 2
〉
integration. The spectra resulting from spherical and planar references are nearly

indistinguishable aside from the offset. The offset itself is due to the fact that zeq > zp, so

that the integration for each spatial frequency extends to larger (zb − za) for spherical than

for planar.

The results from this section provide strong theoretical support that the PSD of particle
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Figure 3-33: Normalized spectral energy curves for various distributions. Numbers after the
distribution type in the legend denote the parameters used in Matlab to generate the distri-
bution. Solid lines are the spectra using a spherical reference. Dotted lines are the spectra
for the same distributions but using a planar reference. Fluctuations at high frequencies
are due to the limited number of z samples used to compute the double integral.

noise follows a ρ−a model independent of the actual distribution. The popular log-normal,

gamma, and beta distributions have a = 3, while Junge-type distributions have a = 5− γ.

In particular, a Junge-type distribution with a = 2 agrees with the measured PSD of

laboratory holograms. Both spherical and planar references result in similar ρ−a models.

Unfortunately, since many natural objects follow a similar power distribution, filtering to

remove noise may be particularly challenging. In practice, a power filter (Section 3.3.4)

with low p ∼ 2−4 visually removes enough particle and discretization noise to make images

recognizable, albeit with extremely poor detail.

One way of decreasing particle noise is simply decreasing the sampling volume so that

it contains fewer total particles. Writing the expected number of particles in the volume as

a function of concentration, C, and cross-sectional area, A, as N = CAz∆ and substituting

into Equation 3.128 gives

ΨS = 2CAz∆

〈
s2
〉 〈
T 2
〉

+
2CA

〈
s2
〉 〈
T 2
〉

πλρ2
sin
(
πz∆λρ

2
)

cos
(
2zπλρ2

)
. (3.137)

Thus, decreasing the volume affects the oscillation rate of the sinc term but not its decay

rate. Attempting to mitigate the effects of the particle noise by changing the sampling
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volume changes instead the noise offset.

3.4.1 Image degradation

The actual effect of particle noise on a reconstructed image depends strongly on the spectral

content of the object and the imaging goals. For example, man-made objects can have sharp

edges and greater high-frequency content, exactly where ΨS becomes small. Simulations

were computed to illustrate the degradation due to particle fields and to provide an initial

step towards linking physical variables with expected image quality.

Particle field simulations were done by propagating an object image through a dense

distribution of round particles with a log-normal size distribution. (A log-normal distribu-

tion was used to provide insight because of its similarity to beta and gamma distributions,

mathematical relationships, and the possibility of limiting errors due to extremely small

particles.) The object included a synthetic copepod and groups of horizontal resolution

bars with increasing size and distance (similar to a USAF 1951 resolution chart) (see Fig-

ure 3-34) and was illuminated with an in-line planar reference. The field was propagated

a short distance using the exact kernel (Equation 3.17), then multiplied with a simulated

particle mask. The total number of particles per mask was Poisson distributed based on

the a particle concentration, the positions were uniformly distributed over the beam, and

the radius, R, followed a log-normal distribution given by

R =
1

R
√

2πV 2
exp

(
− [lnR−M ]2

2V 2

)
. (3.138)

The slice model assumes that the particles are distributed independently and that a series of

short propagation distances closely approximates a continuous volume. A complete particle

field is built by propagating the field after the particle slice by a short distance and repeating

the process until the total volume has been simulated. The hologram that would be recorded

at the detector is then the intensity of the final field. This direct simulation method has

the benefit of including re-scattering and absorption, maintaining some of the higher-order

effects.

The hologram was then reconstructed at the known object depth and a number of
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Figure 3-34: Examples of particle simulations with varied distribution parameters M, V,
and C. The left column is the hologram, the center column is the reconstruction, and the
right column is a larger view of the copepod area. The samples are arranged by increasing
bp and NRMSE from top to bottom.
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metrics computed. An area around the copepod was used to estimate the visual image

quality using the NMSE (Equation 3.51, or the NRMSE by taking the square root) [116]

and a spectral SVD-based metric [333]. (More traditional metrics such as the MSE were also

computed for comparison, but discarded as they are dependent on the total energy. Thus,

the MSE responds strongly to the total absorption and not the image quality. The NMSE

attempts to correct for energy loss.) The average contrast across each set of resolution bars

was also computed and stored.

The sample reconstructions in Figure 3-34 illustrate some of the interesting results of

the simulation. The resolution bars are clearly visible even when the copepod virtually

disappears into the noise. The exact reason why this effect occurs is speculative, but may

revolve around higher frequencies in the resolution bar spectra or stronger absorption over

the bar area. The resolution, defined as the minimum bar separation that has a contrast

above an arbitrary level, remained nearly constant through the simulations and did not have

a good fit to the predictor models. Thus, the image quality of the simulated biological object

will be reported as the primary metric for the remainder of this section. This also supports

the idea of both quantitatively measuring system performance with known engineering

methods such as resolution charts and continued testing with real-world objects (Section

3.3.2).

Relating the parameters of the model distribution to measurable values is useful for

both practical applications and for understanding the basis of the degradation. Babin et

al. follow Spinrad in writing the angle-integrated particle scattering coeffi cient, bp (λ) , as

bp (λ) = C

∫
p (R)Qb (λ,m,R)πR2dR, (3.139)

where C is the number concentration per unit volume, Qb (λ,m,R) is a scattering effi ciency

derived from Mie theory, and m is the relative refractive index [15]. Walstra approximates

Qb with good accuracy when m→ 1 by

Qb ' 2− 4

%
sin %+

4

%2
(1− cos %) , (3.140)
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where

% =
4πR (m− 1)

λ
= 2q (m− 1) , (3.141)

is a size parameter and q = 2πR/λ is the particular size parameter commonly used for

Mie scattering [408]. A typical value for m is 1.05 for oceanic particles [390], and Waltra’s

approximation is reasonable. Qb limits to 2 as %→∞, as expected from Mie theory [36], and

can be approximated as constant (within 5%) by R = 40µm for λ = 658 nm. Integrating

QbR
2 in Equation 3.139 smooths out the variations at low R so that the assumption of a

constant Qb = 2 results in only a small error for bp. The estimate becomes

b′p ' QbπC

∫
p (R)R2dR = 2πC

〈
R2
〉

(3.142)

= 2πC exp
(
2M + 2V 2

)
, (3.143)

assuming p (R) is log-normally distributed or can be approximated by a log-normal. The

prime is a reminder that b′p is an approximation to the scattering coeffi cient.

The NRMSE is a strong function of b′p (Figure 3-35). The curve is fit well by

log10NRMSE = c1 +
(
c2 + c3 ln b′p

) [1

2
+

1

2
tanh

(
c4 ln b′p − c5

)]
, (3.144)

with coeffi cients given in Table 3.4; the fit has an adjusted r2 = 0.9905. The c1 constant

is the asymptotic limit due to the twin image term. For extremely low b′p, ln
(
b′p
)
. −9

(around b′p = 1× 10−4) the image is degraded primary by additive noise from nearby defo-

cused particle images. As b′p increases, particle scattering begins to cause more significant

information loss, modeled as the linear term. The tanh function in the square brackets

is an approximation to the Heaviside function and acts to switch smoothly between the

asymptotic value and the loss function.

Future work with particles would connect the initial theory developed here to the exact

scattering and absorption coeffi cients to anticipate the oceanic areas where holography

can be used given a desired imaging resolution or quality. The Offi ce of Naval Research

maintains an online database of oceanic optical properties that links worldwide locations

with known measurements [265] that should in this prediction. The actual scattering is
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Figure 3-35: Plots of the normalized RMSE (square root of NMSE) as a function of b′p.
Error bars are plotted for the simulation values (±1σ) and are calculated based on repeated
trials with the same distribution parameters.

Coeffi cient Value Interpretation
c1 −1.735 twin image asymptote
c2 1.87 loss intercept
c3 0.105 loss rate
c4 0.416 switching rate
c5 −2.93 switching center point

Table 3.4: NRMSE predition coeffi cients
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a non-trivial combination of biological and physical phenomenon [256],[330],[390], making

this a potentially interesting and involved project in its own right.

This chapter has focused on the practical development of a prototype unit for capturing

in situ holograms of plankton and other microscale objects and understanding how engineer-

ing decisions affect the imaging. Theory was developed to understand how motion would

affect the holographic images and provide heuristics for limiting the motion. A Wigner

analysis was used to describe the fundamental capabilities of spherical reference hologra-

phy, including the resolution and bandwidth limits, the sampling volume, and depth of field.

Once the prototype had been tested and constructed, methods of quickly reconstructing im-

ages from Bayer-filtered cameras were created. The final section discussed theory regarding

particle noise, a challenge for any real-world holographic system.

Of course, capturing images is only half of the challenge. The next chapter discusses

a number of new methods for extracting the information and images hidden within the

prototype holograms. This has traditionally been one of the greatest limiting factors for the

use of digital holography. Providing faster, more reliable, and better understood methods

goes a long way towards elevating digital holography as a widespread tool.
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Chapter 4

Extracting Information and Images

from Holograms

Photography was developed over a long period starting in the 1820’s, becoming more popular

and useful as the tools improved over the 19th century [303],[422],[375]. Digital holography

faces a similar expansion: the basic technique has developed over the past several years

but faces limited use as researchers struggle with algorithms to reconstruct images and

extract information from holograms in a timely and reliable way —with enough simplicity

that the tool can be adopted by users who do not have specialized knowledge in optics,

signal processing, and computer science. The first hurdle to widespread use has been in

computational power, quickly increasing from the early 1980’s when it took minutes to

reconstruct digital holograms and practical sizes were limited to 256 pixels per side or smaller

to the latter part of the 2000’s when holograms of 4096 pixels per side can be reconstructed

multiple times per second using off-the-shelf hardware1 (Section 4.2). The second major

hurdle has been in the algorithms used to extract information from the holographic images,

which vary considerably based on the application and method of recording the hologram.

Certainly a digital hologram has more information available than a standard image, such

as having access to the real and imaginary components, the ability to arbitrarily refocus

an optical field, and having the object depth encoded into the spectrum. Making use of

1Despite the computational capabilities, most digital holography users are still content in 2010 to limit
themselves to 1− 2 MPx holograms and slower processing methods on personal computers.

156



this additional information requires a good understanding of the physics and computational

methods. It is also worth noting that some traditional image processing techniques can be

used with holographic images, but others face challenges. For example, binary thresholding

leads to poor object-background separation due to the twin image of in-line holography.

The end result is that algorithm development has been somewhat limited.

The various attempts at applying DH to marine studies are no different than laboratory

holography and have also consistently struggled with software. Owen and Zozulya, Katz et

al., and Kruezer et al. have reported that they have tools for working with holograms. In

talking with Malkiel and Kruezer, the tools are aimed at human-guided reconstructions and

working with individual holograms, so that automatically retrieving data from the images

(especially in a robust and time-effi cient manner) is a large part of what halted some of

the various historical underwater DH projects (Table 3.1). The early devices and tools also

took a greater understanding of holography and the processing methods to effectively gather

data in the first place, limiting adoption by a wider audience.

This chapter examines a number of algorithms, techniques, and methods which have

been created to work with in-line holograms, extending the toolbox available to hologra-

phers. The first section aims at locating objects within the 3D volume using focus metrics

applied to reconstructed images or through fast position estimators. The second section

talks about how a commercial graphics card can be used to significantly increase the com-

putational rates and which algorithms are more appropriate for implementation given the

restrictions imposed by the hardware. The final section presents a case study where in situ

digital holography was used to measure oil droplets, utilizing a focus metric that was more

readily applied to fast hardware reconstructions for determining candidate droplet positions

with extremely large datasets.

4.1 Detection, position estimation, and focus determination

One of the motivating factors for using digital holograms in science is that large volumes

of spatial information can be recorded in a single shot, then reconstructed at a later time

to examine the objects within the sampled volume. The reconstruction requires the 3D
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position of the object of interest, the lateral position usually within a few pixels and the

depth within approximately the depth of focus around the object. Some applications and

objects may be more lenient than others, so that the estimation need not be perfect. Other

applications which require highly focused estimates, such as exacting size determination,

benefit from further position refinement. The question that this section addresses is how

those position estimates and refinements can be done in the first place.

Object detection, position estimation, and focus determination are strongly linked. In-

tuitively, an object is located at the position where it is best in focus. Similarly, an area

where several edges are in focus denotes the presence of an object. Detection is the process

of deciding that there is enough evidence of an object or an edge to denote an object. The

distinctions in this section are somewhat arbitrary, and Section 4.1.3 intentionally merges

detection and focus metrics to create a novel method of finding edges in real-world holo-

grams.

A common technique for focus determination follows the idea of an auto-focus in a

camera. Multiple holographic reconstructions are computed and a focus metric is applied

to each slice. The metric highlights focused objects, providing simultaneous detection and

lateral positioning. The depth of the strongest focus response determines the object’s

depth. The challenge with these combined detection-position methods is selecting good

metrics which have selectivity for the objects and measurements of interest. For example,

high position sensitivity, necessary for measurements of tracer particle velocity in fluid flow

experiments, requires a metric which has a narrow peak in the depth direction. Different

focus metrics are discussed in the first part of this section, including new techniques which

give better depth and lateral estimates than current methods.

Reconstructing the entire volume can be extremely time consuming, especially when

the objects are sparsely distributed. Methods which separate the detection, lateral position

estimation, and depth estimation can be used to quickly hone in on objects, leading to

much faster retrieval of images from the source holograms. Focus metrics can then be

applied to refine the estimates. The latter part of this section discusses these fast estimation

techniques.
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4.1.1 Traditional focusing methods

Image processing has a long history with focus detection, so it is not surprising that the first

methods used by holographers followed those of the imaging community. The traditional

method works similarly to the auto-focus in a camera: the focus is scanned over some range,

and a metric is computed which relates directly to how well the image appears to be in focus

at each focal position [206].

The most basic measure of focus is to examine the edge sharpness. This is especially

useful for in-line holography where the object is often defined only by its edges due to high

absorption, high scattering angles, or multiple scattering within the object boundary. The

edge sharpness is measured directly by the magnitude of the gradient. Filters such as the

Prewitt or Sobel (see Figure 4-1) are used to compute the gradient in the x and y directions,

with the edges occurring along the largest gradient magnitude. Simple thresholding provides

a straight-forward decision about whether an edge exists at a specific pixel location; more

intelligent thresholding, such as Canny’s hysteresis thresholding, can help link together

strong edge detections with weaker edge information [54],[368].

Edge filters such as Prewitt’s and Sobel’s are well-known to be sensitive to both noise

and the gradient direction [368],[323]. A steerable gradient filter can be used instead to

calculate the edge strength, defined as

S =
−2x

σ2n2
exp

(
−x

2 + y2

σ2

)
, (4.1)

with σ acting as a filter width parameter, n is the number of pixels and serves to act as a

simple normalizing factor, and x and y are the distances of the pixels from the center of

the filter (Figure 4-1). Steerable gradient filters have two significant benefits: the obvious

one is that the Gaussian like smoothing reduces noise sensitivity (at the cost of decreasing

position sensitivity). The other benefit is that the edge gradient calculated at an angle

θ, Sθ, is a linear combination of the filter responses in the x and y directions, Sx and Sy

respectively, as

Sθ = Sx cos θ + Sy sin θ, (4.2)

so that only two filtering operations are necessary to compute the gradient in any arbitrary
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Figure 4-1: Comparison of Prewitt, Sobel, and steerable gradient edge filters. A σ of 1.5
was used for the steerable edge filter. All three filters are sensitive to horizontal lines.

direction (hence the name “steerable”) [126]. Further, the maximum gradient occurs at

dSθ/dθ = 0, or θ = arctan (Sy/S x) , and substituting this value into Sθ gives the maximum

gradient magnitude as SM =
[
S2
x + S2

y

]1/2. A steerable gradient filter is preferred over

traditional gradient filters for its noise characteristics and lack of directionality artifacts.

A Laplacian filter, the second derivative, is another common metric for edges: zero cross-

ings indicate the extrema of the gradients. The crossings can be determined by computing

the local minimum and maximum around pixels with low Laplacian magnitudes and verify-

ing that a zero crossing is possible within the nearby area. Local minimum and maximum

can be found quickly with grayscale morphological operations [402]. The Laplacian is es-

pecially sensitive to noise as a second derivative filter, and is commonly combined with a

Gaussian filter for local smoothing [368].

Domínguez-Caballero deviated from the norm and searched instead for areas with high

Laplacian magnitudes for his focus metric [95]. The reason why this works is that the second

derivative has a high value near the edge. Consider a true edge as a Heaviside step function

between a dark object (low value) and bright background (high value). Approximating a

1D Heaviside using a continuously differentiable function, the hyperbolic tangent [12],

Ha (x) =
1

2
+

1

2
tanh (kx) =

1

1 + e−2kx
, (4.3)

with higher k indicating a sharper transition at the edge, the gradient is

dHa

dx
=

2ke−2kx

(1 + e−2kx)
2 . (4.4)
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The second derivative (the Laplacian), L (x) , is

L (x) =
d2Ha

dx2
=

8k2e−4kx

(1 + e−2kx)
3 −

4k2e−2kx

(1 + e−2kx)
2 , (4.5)

=
4k2e−2kx

(1 + e−2kx)
2

[
2e−2kx

1 + e−2kx
− 1

]
. (4.6)

The term in the square bracket goes to zero at x = 0, but quickly shoots back to its limits

of [−1,+1] . The extrema of L (x) occur at

xE = −
ln
(
2±
√

3
)

2k
, (4.7)

so that as the edge becomes sharper and k increases, the extrema move closer to the true

edge. The magnitude of L (x) at the extrema is

|L (xE)| =
4k2

(
2 +
√

3
) (

1 +
√

3
)(

3 +
√

3
)3 ' 0.3849k2, (4.8)

which increases quadratically as the edge sharpness k increases. Compare this against the

gradient: while the gradient extrema is centered above the edge, the gradient magnitude

goes linearly as k/2. The quadratic factor gives the maximum Laplacian magnitude metric

greater depth discriminability than the maximum gradient magnitude as the edge comes

into focus. It should be noted that Tachiki also uses the magnitude of the Laplacian as

a focal metric, integrated over a local neighborhood [369] —with the spatial integration

removing a degree of the discriminative benefit of the Laplacian.

The local variance or standard deviation serves as a proxy for a range measurement.

It has seen use in the past for shape-from-focus techniques using ad hoc arguments for

its effectiveness [235],[369],[248]. The local variance is small when the intensity is nearly

uniform, and grows as the intensity range increases. The local variance has a benefit of

reaching a fixed maximum, which occurs when half the pixels in the local neighborhood

used for computing the statistic are dark while the others are bright. The action of using

the local variance can be seen by again using Ha to approximate an edge coming into focus.

The local variance in a neighborhood of size S around an edge is

161



V arS {Ha} =
1

S

∫ S/2

−S/2

(
Ha (x)− 1

2

)2

dx (4.9)

=
−2ekS + 2kS + kSekS + kSe−kS + 2e−kS

4kS (1 + e−kS) (1 + ekS)

=
1

4
− sinh (kS)

2kS [1 + cosh (kS)]
. (4.10)

Taking the Taylor expansion,

V arS {Ha} ≈
1

48
k2S2 − 1

480
k4S4 +O

(
k6
)
, (4.11)

shows that the local variance increases approximately quadratically with k as the edge

initially comes into focus. Similarly, the Taylor expansion of the root of the local variance,

the local standard deviation, is

σS {Ha} ≈
√

3

12
kS −

√
3

240
k3S3 +O

(
k5
)
, (4.12)

which, as expected, shows a linear rate for small k.

The key for local variance is the shape of the response as the edge comes into focus,

plotted in Figure 4-2. After the initial growth rate of k2, the sinh (kS) and cosh (kS) terms

of Equation 4.9 nearly cancel out, so that V arS goes like

V arS '
1

4
− 1

2kS
(4.13)

for large k. This means that the local variance has a good sensitivity to the initial formation

of the edge, then quickly stabilizes at a known maximum. The result is a metric which is

reliably near a known maximum value over a range of depths, then quickly disappears: a

depth-selective window, in a sense.

Also popular for holography is the use of minimum intensity as a metric [380],[11],[103].

Objects which absorb or scatter at high angles appear dark in reconstructions. As the

objects go out of focus, the energy is spread into the nearby area and the intensity tends

towards the local mean. The minimum intensity works well for particles, but is not guaran-
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Figure 4-2: Sample plot of the local variance, Equation 4.9, as the edge comes into focus.

teed to work for larger objects. Figure 4-3 shows the intensity cross-section through a point

object as it defocuses, with a distinct minima at the object. Note that a darker cone extends

out beyond the point object, so that points near to the object have minimum intensities

at defocus greater than zero, and thresholding is necessary to limit the focus metric to the

correct region. Figure 4-4 shows the intensity cross-section through a larger rect() object

with partial transmission. Pixels near the rectangle edge have minimum intensities at defo-

cus significantly different from zero, marked at lines B, C, and D —and more importantly,

a lower intensity than the object at focus. The Wigner transforms (see Equation 3.54 and

related discussion) for each of the defocus lines are plotted in Figure 4-5. The Wigners

have alternating bands of positive (red) and negative (blue) values, following 1/ |x|-shaped

bands. As the rectangular signal defocuses, the Wigner shears slightly, causing significant

portions of the negative bands to shift into single pixels, with a reduced contribution from

the corresponding positive band. The result is that the intensity at the particular pixel

drops, leading to errors in the edge and depth measurement. The point object is narrow

enough that the positive and negative bands are nearly vertical, and thus the effect is not

seen within the reconstruction pixel.

Two groups of mention have attempted to find focus metrics specific to holograms. Meng

et al. have proposed additional sets of focus metrics which make use of the complex field

present in a hologram [89],[274]. Each of these methods is developed for use with particles.

Objects larger than a few pixels have unreliable responses to these focus metrics, and they

are not discussed further here. Liebling et al. has proposed an alternate reconstruction
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Figure 4-4: Intensity cross-section through a rectangular object as a function of defocus in
the z direction. The scale is log10 of the intensity for improved visibility of the minima.
Vertical lines correspond to minima at pixels close to the object edge, each with intensities
lower than the actual edge pixels. The lines match the plots of Figure 4-5.
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Figure 4-5: Wigner transforms and intensity signals through the profiles denoted in Figure
4-4. The Wigner transform is zoomed to the central portion and the magnitude scaled by
a signed square root for visibility. Dashed lines in the top plots denote the edges of the
original rect() signal. The observed intensity is plotted below each Wigner.

technique for holograms that involves decomposing a hologram into a wavelet basis which

has been Fresnel transformed (termed “Fresnelets”), with a different Fresnel coeffi cient for

each reconstruction depth [221]. They create a focus metric by computing the energy2

of the strongest wavelet coeffi cients (to an arbitrary number or percentage) at each test

depth, with the claim that in-focus objects require few Fresnelets for representation [222].

The resulting focus metric measures the energy in the focused regions, making it related

to a localized minimum intensity type of metric. The depths with “sparsest” coeffi cients

can be reconstructed to estimate the objects and positions, or the Fresnelet coeffi cients can

be used to estimate the lateral position. There are two critical caveats for the Fresnelet

method. The first is that the Fresnel transform is additive in the complex domain, so that

the hologram’s complex field must be measured and used for the Fresnelet decompositions

—and is thus not applicable to single-shot holograms. The computational cost can also be

surprisingly limiting, on a similar order as FFT-based reconstruction. The second caveat is

that Liebling assumes the object image can be represented by a sparse wavelet basis, not

always the case for real-world objects.

2 It may be interesting to note that Liebling et al. use the `2 energy of the strongest wavelets to estimate
the `0 sparsity (albeit with a limited number of coeffi cients). This is different than compressive sensing, a
hot topic in both computer vision and holography, which uses an `1 norm.
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The traditional metrics discussed in this section can be applied either by scanning

through the depth and recording the z where each pixel maximizes its metric (Figure 4-6),

or by finding local neighborhoods in z where each pixel (or small group of pixels) maxi-

mizes its focal metric. The latter method has the downside that the number of maxima

is not known ahead of time, so that each detection grows the memory requirements. This

can be problematic when processing on a dedicated board (for example, a GPU or other

DSP board) where memory is limited and the operations are significantly faster if there are

no branches (see Section 4.2). The first method of searching for pixel-wise maxima across

all depths has a predictable and fixed memory overhead with the same operations applied

across all pixels and is thus ideal for DSP boards. This process can be thought of as a

maxima projection in the depth direction.

A pixel-wise maxima of the focus metrics assumes that each pixel responds primarily to

a single object —in other words, that the sampling volume has a sparse enough population

so that only one object is found at each pixel location in the projection. Given one object,

the probability po that another object overlaps its projection is approximately

po (r1, r2) =
π (r1 + r2)2

D2
, (4.14)

where D is the edge length of the projection area and the objects are approximated as

circles with radii r1 and r2 uniformly distributed over the D×D square. This also assumes

that r1 and r2 are small compared to D so that edge effects are negligible and that the

positions of the two objects are statistically independent. The probability that the given

object does not overlap any of the m−1 other objects in the scene is (1− po)m−1. Similarly,

the probability that none of the m objects overlap is

pm = (1− po)(
m
2 ) , (4.15)

with
(
m
2

)
denoting the number of pair-wise combinations to consider; this includes an im-

plicit assumption that the possibility of overlap between three or more objects is negligibly

small.
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Figure 4-6: Projection method for determining where each pixel maximizes its focus. The
focus metric is applied to each reconstruction and compared against the previously best-
known maximum at each pixel. If the new reconstruction slice has a better focus, the value
of the response and the depth are recorded for the pixel. A map of the maximum response
and a depth map are created through the process.
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If a uniform distribution between rmin and rmax is assumed for the radii, po becomes

po =
1

D2

∫ rmax

rmin

∫ rmax

rmin

(
1

rmax − rmin

)2

π (r1 + r2)2 dr1dr2,

=
π

6D2

(
1

rmax − rmin

)2 (
7r2

max + 7r2
min + 10rmaxrmin

)
, (4.16)

found by computing the expected overlap probability. More realistic distributions for the

radius, such as log-normals, do not have a good closed-form solution for their integrations

and po must be computed numerically.

Spherical reference holography includes an additional magnification factor as a function

of the depth, M (z) (see Equation 3.63 and related discussion). The observed object size at

the projection plane is then robs = r1M (z) . The distribution of p (robs) becomes a derived

distribution on p (r1) and p (M (z)) . The p (M (z)) function itself is challenging to evaluate

directly because it depends on assumptions for the distribution of objects over the depth.

Assuming a uniform distribution of samples over a volume between z = za and z = zb with

a spherical reference source at a distance z = zd from the detector, the distribution for

p (M (z)) = p (M) is given by

p (M) =
1

M4

3M3
bM

3
a(

M3
b −M3

a

) , (4.17)

where Ma = zd/ (zd − za) is the magnification factor at za and Mb is similarly the magnifi-

cation at zb; the cubed terms come from integrating over a pyramidal sample volume. The

effect of magnification becomes less pronounced for smooth size distributions as the derived

distribution for robs differs less from the distribution on r.

Plots of po and pm for an example case of m = 20 objects are shown in Figure 4-7.

Log-normal distributions for the object sizes, a value of D = 36.9 mm for the detector

square (4096 pixels with a 9 µm pitch per side), and volume parameters matching the

prototype unit were used for the calculations. The log-normal parameters were selected to

be similar to observed phytoplankton and zooplankton distributions [350],[186],[133],[306].

The probability of there being no overlap between any of the objects is relatively high, 75-

90%, even with large objects, so that the overall risk of overlap in a projected focus metric
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Figure 4-7: Probabilities of object overlap in a projected (pixel-wise) focus metric with
spherical reference geometry and log-normal object size distributions. Left: log10 (po) as a
function of the distribution parameters. Right: pm, the probability that none of m = 20
objects will overlap in the projection.

is small.

The estimates for probability of overlap do not include the severity, merely that the

objects intersect at some level within the projection image. A portion of the perimeter

needs to be visible from each object for it to be detected in the projection using edge focal

metrics. Tian et al. demonstrate a way of estimating which pixels in an overlap belong

to different objects using a Gaussian mixture model if the objects have a depth separation

greater than the uncertainty of the pixel-wise depth estimate [380].

4.1.2 Combined focus metrics

Individual metrics such as the image gradient or the minimum intensity have the benefit

of intuitive derivations and close relationships to physical phenomenon. Improvements are

possible by combining metrics together, at the loss of direct physical intuition. Combi-

nations based on products of individual metrics benefit from ease as compared to linear

combinations, as weights for each metric do not need to be determined.

One of the simplest combinations that will be used later in Section 4.3 is the product

of the edge gradient and local intensity. Requiring a large gradient magnitude at the same

time the image intensity is small emphasizes only those gradients which belong to dark

169



objects. The locality condition is necessary since gradients occur at the transition between

light and dark regions, and the pixel with the largest gradient would thus correspond to a

mid-level intensity value. A morphological filter is used to compute the local minimum as

the smallest value in a 3× 3, 5× 5, or similar neighborhood.

The intensity locality condition can be combined with the gradient filtering by using

a filter with a larger spatial width, such as the steerable gradient. The filter response is

then spread out over a larger area, similar to the area on which the morphological filter

would have operated. The resulting focal metric, abbreviated as SIM (S teerable-Intensity-

M aximum), is

SIM (x, y) = SM (x, y) [Imax − I (x, y)] , (4.18)

where I is the intensity at pixel (x, y) of the reconstructed slice, SM is the magnitude of

the image filtered by the steerable gradient, and Imax is a constant intensity larger than

any I (x, y) value. Imax is chosen to provide a large (Imax − I) value when I (x, y) is small.

This is preferable for GPU implementations, as direct filtering is straight-forward and faster

than the naïve implementation of morphological filters. Restricting the locality also allows

for fast, pixel-wise operations.

Other combinations are, of course, feasible. The individual metrics of the previous

section, summarized in Table 4.1, were combined using all possible groupings for a total of

57 new metrics and tested on sample holograms. The individual metrics are shown in Figure

4-8 for a copepod in a particle field; the copepod is at a distance of 40.6 mm. The gradient

and local Laplacian both have more cloud—like noise around the copepod from twin image

and defocusing effects. Defocusing leads to particularly strong gradients a few millimeters

from the actual focus, Figure 4-9, leading to depth estimation errors from these edge-based

metrics.

Measuring the performance for the metric combinations is highly dependent on the final

application goals. Extracting particles for holographic particle imaging velocimetry requires

extremely high depth accuracy and few false positives [160],[273]. Obtaining images of

animals requires few false negatives, while false positives can be removed using additional

steps in the image recognition engine. A simulated hologram with multiple objects at known

depths was used to examine the different metric combinations, recording the expected depth
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Index Metric Notes
1 Imax − I (x, y) Intensity: dark objects have high value; phase ob-

jects have little response; can help group spatially
separated edge responses

2 |∇I (x, y)| Gradient magnitude: proportional to k
3 |∇I (x, y)|2 Squared gradient: proportional to k2 for sharper re-

sponse
4

∣∣∇2I (x, y)
∣∣ Laplacian magnitude: proportional to k2, slightly off-

set from edge
5

∑
S

∣∣∇2I
∣∣ Local Laplacian: removes some of the spatial depen-

dence of the Laplacian; follows [369]
6

∑
S (I − µI)2 Local variance: acts like a window in depth

Table 4.1: Individual metrics used in combination

Figure 4-8: Individual focus metrics applied to a test hologram. (Squared gradient is not
shown.) The maximum value of the metric at each pixel is shown in the top row, while a
depth map of where the metric maximized is plotted in the lower row.

Figure 4-9: Reconstruction magnitudes for a copepod in focus (left) and slightly out-of-
focus (right). Diffraction from the thin antennae leads to strong gradients in the defocused
image.
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error, the number of correct detections, and the total number of detections.

The method for detecting objects from the maximum focus metric image can make a

significant difference. A number of approaches were tried here. First, the focus metric, FM,

is either used directly or scaled by FM1/m, where m is the number of constituent individual

metrics. Next, the local mean, µS+, and standard deviation, σS+, of the adjusted FM are

calculated with large spatial bandwidths and a z-score, FMz =
(
FM− µS+

)
/σS+, is used

to normalize against slow variations in the hologram statistics. The FMz is then thresholded

at two levels: a low level to find objects, and a high level to find reliable edge pixels for

the object. A hysteresis-like thresholding is done with the low-threshold objects and high-

threshold edges, grouping together all the edge detections which correspond to the same

object and eliminating objects which do not have strong edge detections. The collection

of edges for each object are then used to estimate depth by using one of three methods:

selecting the depth of the pixel with the maximum FMz [95], a weighted average using all

pixels and weights determined by FMz, and a weighted average with the highest 20% of

FMz values.

Results vary significantly depending on the hologram power signal-to-noise ratio (SNR)

and the threshold levels. Synthetic holograms with no additional noise had nearly equal

depth estimation performance independent of threshold level or scaling, with performance

varying depending on the metric and how the depth was estimated. Scaling the FM leads

to lower numbers of true positives, while an un-scaled FM gives more false positives. As

the SNR decreases, lower threshold values and a scaled FM lead to better depth results

for all three estimation methods. Using four or more individual metrics in the combined

metric tends to lead to higher false negatives. Three or fewer individual metrics result in

marginally better depth estimation (see, e.g., Figure 4-10, particularly the blue × and green

� symbols for un-scaled FM). For most metrics and SNRs tested, the lowest expected depth

error comes from using the entire set of detected edge pixels to compute a weighted average

(see, e.g., the red © symbol of Figure 4-10), with a number of combinations performing

near the average. Combinations which performed particularly poorly for depth estimation

at low SNR included minimum intensity and one of the two Laplacian metrics, while poor

depth estimation at high SNR came from metrics that included gradients and local variance.
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Figure 4-10: Expected depth error for a synthetic hologram with SNR = 1.0 and five
objects distributed between 45 and 65 mm for each of the different combinations of metrics.
The depth is estimated by a weighted average of the edge detections for each of the objects.
Dashed lines denote the regions for which specific numbers of metrics were used to form the
combination. The data from the red circles had better expected errors for this SNR, but
also resulted in missed detections.

The general conclusion is that the individual edge metrics vary, but using a set of lower

thresholds and a higher percentage of the detection pixels to estimate depths are both

beneficial. Any number of appropriate metrics and thresholds are available for a given task

and should be tested for the specific goal and expected SNR.

It is worth repeating that the depth error is dependent on the detection problem of

selecting which pixels to trust as edges. Section 4.3 shows improved results for real-world

holograms and smoother edges. Segmentation methods may also be useful in future work

to improve region and edge predictions.
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4.1.3 Metrics using machine learning

A second form of combining metrics comes from the field of machine learning. The guiding

principle is that human intuition only goes so far, and tends to focus on finding specific

patterns. Computers have the ability to forego preconceived patterns and search for dis-

criminative features amongst a slew of data which might mean little for a human. The role

of the user is to provide training samples and determine which algorithms are adequately

selecting for the desired results.

A database of training samples was compiled for the task of detecting in-focus edges.

A set of 1121 in-focus edge pixels (with corresponding reconstruction depths) and 1900

non-edge, non-object pixels were selected from 213 real-world holograms captured in situ

using the prototype holographic camera. A set of 1121 out-of-focus pixels was generated

by defocusing the in-focus edges by 1.5 to 5.5 mm, randomly, in both positive and negative

defocus directions. A large set of image-based features, Table 4.2, were computed for

neighborhoods centered on each of the pixels, a total of 163 local features per training

sample. It is worth noting that the individual focus metrics from the previous section were

included as potential features.

Initial examination allowed significant pruning of the feature bank. Neighborhoods of

3 × 3 pixels were too small to contain enough descriptive power from a lack of statistics,

while neighborhoods of 11× 11 or larger also lost discriminability due to averaging; filters

of 5× 5 were suffi cient. A number of the features reported similar conditions: for example,

standard deviation of the real and imaginary components was nearly identical, and had a

similar distribution as the standard deviation of the magnitude. Measures such as range

and mean value could also be removed due to variations in the overall statistics for each

hologram, keeping instead features which are intensity normalized.

Feature selection tools in Weka [152],[391] provide initial indicators for which of the re-

maining features are more likely to be discriminative for classification and detection tasks.

Computing the χ2 statistic of each individual feature for each class (in-focus, out-of-focus,

and background) against the other classes suggests that the standard deviation of the gra-

dient magnitude has surprisingly good class separability. Combinations of gradients with

intensity and local standard deviation also give good χ2 values. However, some of this sepa-
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Index Feature Neighborhood size
1 Mean magnitude 3, 5, 7, 9, 11, 13, 15
2 Magnitude standard deviation 3, 5 7, 9, 11, 13, 15
3 Minimum magnitude 3, 5, 7
4 Maximum magnitude 3, 5, 7
5 Magnitude range 3, 5, 7
6 Mean of real component 3, 5, 7, 9, 11, 13, 15
7 Standard dev. of real comp. 3, 5, 7, 9, 11, 13, 15
8 Mean of imaginary comp. 3, 5, 7, 9, 11, 13, 15
9 Standard dev. of imag. comp. [274] 3, 5, 7, 9, 11, 13, 15
10 Eigenvalues of Hessian matrix [153] 7
11 Eigenvalue ratio, λ2/λ1 7
12 Direction coher., λ1−λ2λ1+λ2

7
13 Local histogram, seven bins 7
14 Local entropy 7
15 Hu invariants and magnitudes [164],[118] 7
16 Normalized Hu invariants 7
17 Zernike moments on magnitude [188],[63] 9
18 Zernike moments, complex field 9
19 Legendre moments [64] 7
20 Gradient magnitude, statistics 7, with σ = {1.5, 2.5}
21 SIM value 7
22 Laplacian of Gaussian 7, with σ = {1.5, 2.5}
23 Laplacian magnitude 7
24 Riesz transform ampl., ν, χ [352],[392] 7
25 Phase congruency [199] 7
26 Gabor filters, maximal response [198] 7

Table 4.2: Local image features computed for in-focus edge, out-of-focus edge. Features
were used for automatically learning edge characteristics.
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rability comes from the fact that the edge gradient scales with the hologram intensity and is

affected more by overall changes in illumination than the background pixels. Using gradient

features with properly normalized holograms is thus a promising concept for future work.

Other features which had high χ2 ranks included various Hu moments, Zernike moments,

and Gabor filters. Ranking features based on an entropy-based information gain metric also

ranked various gradient, Hu and Zernike moments as more potent choices.

The actual test for any set of features is the classification that results from their use.

Initial classification tests in Weka using LogitBoost and AdaBoost models [127],[129] were

computed with 35 boosting rounds, 10-fold cross validation, and decision stumps on the

features. Using the entire set of image features (after removing the non-normalized statis-

tical features, entries 1-9, 13, and 14 in Table 4.2) gave an overall recognition rate of 86.9%

with 35 rounds of LogitBoosting. Using only the Zernike moments with the same algorithm

gave a recognition rate of 85.1%, while the Hu moments alone had a rate of 80.5%. The

individual features and select combinations from Table 4.1 had a rate of 81.7%. Results

with AdaBoost were, in general, about 6-12% lower.

The Zernike moments are particularly interesting from both an image recognition and

an optics standpoint. Zernike polynomials form an orthogonal set over a unit circle and are

complex-valued —thus ideal for decomposing optical fields about an optical axis, as used

for aberrations [36],[371]. The image moments generated from Zernike polynomials can be

made shift, scale, and rotation invariant with proper scaling and re-centering of the source

image [372]. The invariances and orthogonality make the Zernike moments particularly

good as features for recognition (see, e.g., [188],[63],[25],[183],[372]).

Forming local features from Zernike moments was done by filtering. The Zernike poly-

nomial, Zmn, is computed over a small 9×9 pixel area and used directly as a complex-valued

filter; the subscript m describes the radial order while n describes the angular order. (See

Ref. [372] for the Zmn equations.) Taking the absolute magnitude of the response makes the

moment rotation invariant, and normalizing against the Z00 moment (a unit circle) removes

intensity effects. Note that the usual steps for making the moments translation and scale

invariant are not required; the moments are made more descriptive for edge detection by

including spatial effects. A small subset of moments was found to be adequate for describ-
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Figure 4-11: Five low-order Zernike polynomials selected as local image features. The top
row shows the real part, the middle the imaginary part, and the bottom is the magnitude.
(The Z20 filter is real-valued.) The polynomial is defined only within a unit circle; the area
outside the circle is shown as black and is replaced by zeros in the image filter.

ing edges and are depicted in Figure 4-11. Interestingly, the Z20 moment shares similarities

with a LoG filter, while the Z31 and Z11 moments are have similarities to gradient filters.

The Z22 and Z33 filters both describe higher-order symmetries.

Two classifiers were trained for use as combined focus metrics and detectors. The first

uses in-focus edge points as positive samples and non-object background points as negative

samples, termed CZD here, where the D refers to object detection. The second classifier

used in-focus edge points as positive examples and both out-of-focus edges and background

samples for the negative class. This classifier is termed CZF here, using F to denote that

it specifically detects focused pixels. Both classifiers make use of LogitBoosting, which uses

logistic regressions on the erroneously labeled samples as the classifier is built [127],[129].

Training rates are estimated for the two classifiers by randomly removing 40% of the

training data for testing and creating prototype classifiers with the remaining data. The

test data is then classified and truth rates are calculated. Repeating this procedure gives

statistical limits for how well the final classifier is expected to perform with error estimates.

The training rates are shown in Figures 4-12 and 4-13, using 80 repetitions to estimate

the errors. The training rate for CZD suggests that 200 rounds of boosting are suffi cient,

while CZF has possible gains beyond 300 rounds. The CZF has lower truth rates due to
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Figure 4-12: Correct classification rates for the CZD Zernike-based detection classifier as a
function of the number of boosting rounds. Shaded regions indicate a ±2σ uncertainty.

the inclusion of only slightly defocused edge samples in the negative training class, leading

to greater feature overlap with the positive class and low separability.

Boosting is particularly well-suited for classification on image pixels. The decision stump

model used here,

Fx =
∑
i

ai + bi, fi > θi

bi, else

 (4.19)

=
∑
i

bi +
∑
i

ai [fi > θi] (4.20)

computes a classifier value Fx3 at each pixel by adding a value ai + bi to the vote if the

feature fi is greater than a decision threshold θi at boosting round i, or adding only the

baseline bi if the feature is not above the threshold. The thresholding operation makes it

easy to compute Fx across entire images of features on either a CPU or a graphics card4.

The final classification is determined by the sign of Fx: a positive value indicates support for

3Boosting was used previously in Chapter 2 for rockfish detection. The classifier there was F (x) , where
F was the indicator function and x was a feature vector for a particular sample. The nomenclature has
been changed here so that Fx represents the final output value of the classifier —and is not necessarily the

function. In other words, F
(−→x = −→f ) = Fx.

4The thresholded summation of decision stumps is simple for pixel-wise GPU implementation. Alter-
nately, a look-up-table of the sum of ai for each feature can be created based on the thresholds, and
interpolated quickly using GPU texture mapping. See Section 4.2 for discussion and details.
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Figure 4-13: Correct classification rates for the CZF Zernike-based focus classifier as a
function of the number of boosting rounds. Shaded regions indicate a ±2σ uncertainty.
The rates are significantly lower due to the inclusion of unfocused edge samples, which
share similar features with edges.

the positive training class, while negative values indicate the negative class. Classification

thresholds other than zero can be used to adjust for non-equal error sensitivities. (See

Section 2.2.2 and Equation 2.6.) The magnitude of Fx serves as a convenient indicator for

the strength of the classification and its belief level.

An example of applying the Zernike moment classifiers to a hologram is shown in Figure

4-14. The CZD gives strong and uniform responses around objects in this hologram, but

with a wider spatial extent. The CZF classifier has better localization properties but with

greater ambiguity around the small, point-like objects. This is a result of training the

classifiers based on edges, so that particles are less likely to have strong responses.

A natural extension to the Zernike moments method for holography is to include in-

formation about the appearance of in-focus and defocused edges as those edges defocus,

essentially using a set of 3D features for classification. The same five local Zernike moments

as used with the CZD and CZF classifiers were computed at planes ±2 mm and ±1 mm from

the in-focus edge and concatenated to create a 15-element feature vector describing a set of

planes around the focus. This was repeated for the out-of-focus edge points and the non-

object points. Initial tests with Weka showed an overall classification accuracy of 85.2% for

the multi-plane Zernike moment features using 35 rounds of boosting with decision stumps
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Figure 4-14: The CZD and CZF boosted classifiers applied to the sample hologram of a
copepod. The maximum value of Fx at each pixel is recorded and shown in the top row.
The corresponding depth maps are shown in the bottom row.
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and the LogitBoost algorithm. This is marginally better than the accuracy obtained for

Zernike moment features computed only at the in-focus plane —so that the additional fea-

tures do not add significant discriminability for these amounts of defocus. Other classifiers

(AdaBoost with 35 rounds, naïve Bayes, and SVMs) had lower performance rates, 6 to 13%

worse. Given the computational burden of multi-plane features, improved 3D features are

better left to future work.

Depth estimation from the Zernike moments is similar to the approach as described

for the gradient-based metrics. The CZD result is thresholded to create a map of possible

objects, and CZF provides a strong edge detection map. The edges corresponding to a single

object are then used to estimate the depth using a weighted average where the CZF Fx value

provides the weighting. Expected depth errors for the same synthetic hologram as Figure

4-10 were computed for the Zernike-derived depth maps. The best expected depth estimates

came from using a weighted average of the pixels with the highest Fx responses, and ranged

between 1.7 and 2.2 mm across SNRs between 0.1 and infinity (no added noise). This is

comparable or better than the gradient-based metrics, especially considering the consistency

of the result. One reason is that CZF includes defocused sampled points, so that it is less

likely to be fooled by diffraction effects such as those of Figure 4-9. Training using a wide

variety of real-world holograms with noise also helps make the Zernike method more robust.

However, it should be noted that, like the gradient-based metrics, appropriate thresholds

are still critical to achieving good performance —but that due to the normalization of the

Zernike moments, estimating reliable and consistent thresholds may be easier in practice.

4.1.4 Object detection from raw holograms

Detecting objects in holograms by reconstructing every slice and applying a focus metric

can be computationally and time intensive. Consider applying a steerable gradient filter: a

minimum of five Fourier transforms (two forward, three inverse) are required to reconstruct

a slice and compute the filter using frequency-domain methods. Prior knowledge about

the location of interesting objects in holograms could allow for a more judicious use of

computational resources and thus faster overall processing. Knowing the lateral positions of

objects also helps guide depth estimation techniques. This section discusses how knowledge
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about the lateral position of unknown objects can be estimated directly from the holograms

without performing reconstructions.

Li and Milgram proposed a novel solution to the detection problem by reconstructing

the entire volume of interest simultaneously. They noted that since a convolution is a linear

operator, the sum of a number of reconstructions through a volume can be computed by

convolving with the sum of the reconstruction kernels as

a1 + a2 + ...+ ak = I ∗ ∗h1 + I ∗ ∗h2 + ...+ I ∗ ∗hk (4.21)

= I ∗ ∗ (h1 + h2 + ...+ hk) , (4.22)

where k is an index and I is the recorded hologram. Since the Fourier transform is also a

linear operation, the Fourier transforms of the kernels can also be summed and used as a

single kernel in the deconvolution in the same way that a single optical field is reconstructed.

The sum of the kernels is a geometric series with a closed form solution [217],[254],[95],

termed a “summation kernel”5 (SK). As more slices are added to the SK, it approaches

an integral,

SK =

∫ zb

za

exp
(
iπλzρ2

)
dz, (4.23)

=
exp

(
iπλzbρ

2
)
− exp

(
iπλzaρ

2
)

iπλρ2
, (4.24)

using the Fresnel approximation and setting the depth to range from za to zb. The denom-

inator specifies the main action of this filter: the ρ−2 dependence serves to low-pass filter

the hologram. The result is that small objects with considerable high frequency content

tend to disappear against the background, while large objects with low frequency content

appear as large blobs.

Low-pass filtering for localization makes sense from a Wigner-domain perspective. The

propagation matrix in the Wigner domain, Equation 3.59, shows that signal energy at (x, ν)

is transferred to (x′, ν ′) = (x+ λzν, ν) .Spatial frequencies with low |ν| thus remain close

to x despite propagation, and selecting for these frequencies gives a good indication of the

5The summation kernel is also lovingly referred to as the “superkernel”.
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Figure 4-15: Magnitude of SKsph using the depth parameters of the prototype unit. A trace
of the magnitude through the center (along the dashed line) is plotted along the bottom.

reconstruction position.

The summation kernel is modified for spherical references by replacing the reconstruction

depth with its planar equivalent zeq (Equation 3.65),

SKsph =

∫
exp

(
iπλzeq (z; zd) ρ

2
)
dz =

∫ zb

za

exp

(
iπλρ2 zzd

zd − z

)
dz, (4.25)

where zd = zs + zp and is the total distance from the detector to the spherical reference

source point. Evaluating the integral gives

SKsph =

[
(zd − z) exp

(
iπλρ2 zzd

zd − z

)
− iπλρ2z2

de
−iπλρ2zdΓ

(
0,
−iπλρ2z2

d

zd − z

)]zb
za

, (4.26)

where Γ is the incomplete Gamma function and stems from the exponential integral [12],[1].

Computing the integral numerically, plotted in Figure 4-15, demonstrates that SKsph has

a similar low-pass filtering effect as SK. The differences are that the peak is slightly

narrower in SKsph than SK due to the larger equivalent reconstruction depths, and there is

less ringing due to the non-linear increase of zeq with z so that the phase variations average

out.
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Detecting objects from the SK filter is challenging due to the variability in the response

strength and size. Extremely low-frequency fluctuations in background intensity can be

larger than peaks from small objects so that direct thresholding removes all but the strong

peaks in the high intensity regions. Using local statistics to calculate a z -score for peaks

works well when the size of the local neighborhood is larger than the object of interest

but smaller than the mean separation, so that the objects do not dominate the statistics.

Selecting an a priori local neighborhood size for point-like particles is possible, but is in

general not an option for objects of unknown size.

A multi-scale approach is preferred instead. Lindeberg notes that the difference of local

statistics at different scales is an approximation for the derivative of a scale-space pyramid

in the scale direction (and an approximation to the diffusion of the original image over

different scales). That observation leads directly to the use of a scale-normalized Laplacian,

a derivative operator, for higher-accuracy blob detection [223]. The image of interest, in

this case the SK response, is smoothed at multiple scales using a Gaussian, then filtered

with a Laplacian and the response normalized to the scale. Extrema in the scale-space give

the peaks6 at appropriate scales [223],[224].

It is interesting to note that the Laplacian,

B = (∂xx + ∂yy) (sk ∗ ∗G (σs)) , (4.27)

where sk is the hologram response to the SK filter and G (σs) is a Gaussian with scale

σs, is the trace of the Hessian of the Gaussian-smoothed SK response. The Hessian is

positive definite for minima and negative definite for maxima, so that its eigenvalues have

the same sign. The trace is then expected to have a larger magnitude (when the signs of

both eigenvalues agree) near the extrema. Thus, the Laplacian blob detector seeks scale-

space peaks of the smoothed SK response. It is important to recognize that the trace

has a larger magnitude for isolated, round peaks, where both Hessian eigenvalues have

large magnitudes, than for peaks with longer extent in one direction, where the Hessian

eigenvalue in the direction of the extension is small. Thus, the Laplacian can be expected

6“Peaks” refers here to both positive and negative isolated responses. A raw hologram results in dark,
negative blobs, while a background-subtracted hologram gives bright blobs in the magnitude image.
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to detect long blobs, such as from rod diatoms and filaments, with a lower response than

for round objects.

A second approach to object detection stems from examining the frequency landscape

around an object. The summation kernel specifically seeks areas with low-frequency content.

In addition to the low frequencies near the object, there should be higher frequencies, ν,

at distances zν from the scattering point. The local frequency landscape should then dip

around an isolated object.

Computing the 2D local frequency to search for dips is surprisingly diffi cult. The Wigner

transform is one obvious choice, with the dominant local frequency selected by taking the

maximum along the ν direction; finding the transform for a large hologram, however, is

too computationally expensive to be feasible, O
(
N4
)
, where N is the pixel count of one

side. Similar methods, such as peak picking of an S -transform [359],[360],[282] or of a local

Fourier transform (analogous to a spectrogram with a sliding window) are considerably slow

to calculate, extremely limited in frequency resolution, or have poor results; a local Fourier

transform is itself O
(
N4
)
, though the reduced size of the window makes it significantly

faster than a full Wigner transform. Using a series of bandpass filters and retaining the

frequency with the maximum response is O
(
N2
)
using Fourier transforms —but also gives

poor results, often dominated by low spatial frequencies. Wavelets are worth mentioning as

methods for local frequency estimation, also O
(
N2
)
, but the appropriate choice of wavelet

and interpolation of a dominant frequency from amongst multiple scales is challenging.

One recent alternative comes from extending the Hilbert transform to higher dimensions.

The Hilbert transform is used in 1D to find the analytic signal, fa (x) = A (x) exp (iφ (x)) ,

which generates the measured signal, f (x) , by taking the real component of fa. The result-

ing analytic signal gives both an envelope amplitude, A (x) , and an instantaneous phase,

φ (x) , the latter of which can be differentiated to find the local frequency [114]. Defining

the Hilbert transform for higher dimensions is not obvious, namely because the Hilbert

transform divides the Fourier space into positive and negative frequencies —and the sign of

the frequency is ambiguous for two or greater signal dimensions [174]. Larkin et al. and
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Unser et al. propose using a frequency domain filter,

R (u, v) =
u+ iv

|u2 + v2|1/2
= eiθ(u,v), (4.28)

where u and v are the spatial-frequency domain variables, or θ is the polar angle. This

has the unique property that a slice through the center of the kernel at any angle is

anti-symmetric, just as the Hilbert transform is anti-symmetric about the frequency ori-

gin [211],[210],[392]. (It is also interesting to note that this kernel is equivalent to a spiral

phase plate with a single twist, such as used for generating optical vortices; see, e.g. [196].)

The filter that Equation 4.28 implements is known as the Riesz transform, a vector-valued

Hilbert transform [352]. The signal generated from R operating on f is f̂ , and is the ana-

logue of the imaginary component of the analytic signal —though in this case, f̂ contains

both real and imaginary components itself. The amplitude envelope is then

A (x, y) =

√
f2 (x, y) +

∣∣∣f̂ ∣∣∣2 (x, y), (4.29)

and the instantaneous phase is given by

φ (x, y) = arctan
(∣∣∣f̂ ∣∣∣ /f) . (4.30)

The local frequency is the directional derivative of φ (x, y) in the direction perpendicular to

the fringe and can be found from f and f̂ ; the details of this calculation are discussed with

more detail in [392] for the interested reader (see also their Appendix I). Unser et al. also

provide a directional coherency measure,

χ =
λmax − λmin

λmax + λmin
,

where the λ are the eigenvalues of the local weighted structure matrix, itself a local version

of a Hessian. Thus, areas with strong fringes and good orientation estimation have λmax �

λmin and χ ' 1; similarly, areas with weak fringes have λmax ' λmin and χ ' 0. The χ

metric provides a rough measure of the reliability of the local frequency estimate [392].

A wide array of techniques beyond the Hilbert transform have been developed for fre-
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quency estimation of 1D signals (see, e.g., [148],[294],[293],[213],[341],[342],[35]). These can

be utilized by interpolating a 1D signal perpendicular to the fringe direction in areas of high

directional coherency. Fringe orientation and χ are available from the Riesz method; alter-

nate orientation estimators are discussed in [212] and [126]. The Quinn-Fernandes (QF)

iterative method is used here for its speed, excellent frequency resolution, and accuracy

[294],[293] with only limited data points (and thus a highly localized area). A 2D frequency

estimate is calculated from the 1D QF estimate by taking an average of the QF frequencies

weighted by χ and by a Gaussian distance.

Comparisons of four local frequency estimation methods are shown in Figure 4-16 for

sample holograms. The first example, a synthetic chirp signal, has excellent frequency es-

timation from bandpass filters, the maxima of 2D spectrograms, and the QF interpolation.

The local frequency derived from the Riesz transform has low directional coherence in the

center of the pattern, then begins ramping up linearly away from the center. As the chirp

reaches high frequencies, the Riesz-estimated frequency actually decreases. This is due

partly to implementation: derivatives are taken using steerable gradients over a local neigh-

borhood, so that there is low-pass filtering embedded into the processing chain. Natural

objects have lower amounts of high-frequency signal, so this is less of an issue for holograms

C and D. There the Riesz actually provides a more unique signal for detection than the

spectrogram peaks or QF methods and is computed significantly faster.

Sample detections for in situ holograms captured using the prototype system are shown

in Figure 4-17. A multiscale detector was implemented and used with both the SK response

and the Riesz local frequency. Holograms A and B have small objects distributed through

the volume, many with nearly symmetric diffraction rings. The filament to the right side

of hologram A is detected by only one strong blob (#7), as expected from its smaller

Hessian trace. Similarly, the filaments in hologram E are each detected by multiple blobs

along their length. Detections using the Riesz local frequency landscape are similar to SK.

One notably exception is the filament in the bottom right of hologram E, where SK finds

an object within the bent corner (a coherent diffraction effect), towards which the Riesz

frequency shows no positive response. Hologram F does not contain any objects of interest,

and only noise and unidentifiably small particles are detected.
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Figure 4-16: Application of local frequency estimation to sample holograms. Hologram A
is a chirp signal with linearly increasing frequency, B is a synthetic hologram, and C and
D are holograms of two copepods. The frequency estimated using bandpass filters and the
magnitude are shown in the center top panels. A sliding window and its peak magnitude
method is shown in the center bottom panels. The local frequency from a Riesz transform,
its directional coherency χ, and the signal amplitude are in the top right panels. The
frequency using a Quinn-Fernandes iterative method, along with the χ vales at the sample
points and the number of QF iterations, N, are in the bottom left panels. The samples all
use the Matlab jet colorscheme, with blue as the minimum and red as the maximum. Plots
are scaled between the minimum and maximum values, except for χ, which ranges from 0
to 1.
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Figure 4-17: Object detections from summation kernel and Riesz local frequency landscapes.
The original hologram is shown in the left-most column. The SK response is the second
column, with strong (but negative-valued) detections in blue. Detections from the SK
response are in the center column, labeled in increasing order with decreasing detection
strength. The size of the circle indicates the scale. Color and transparency are also used
as hints to the strength of the detection. Only those detections which fall inside the dotted
line in the SK image are shown. The Riesz frequency landscape is the second column from
the right, with blue denoting low frequency and red as higher frequencies. Detections for
the Riesz frequency are plotted in the right-most column. Hologram C is an oil droplet.
Hologram D contains a large object, approximately the size of the largest detection scale.
Holograms A, D, and E contain thin, long objects. Hologram F contains no strong or
interesting objects, with detections based on noise.
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Detections from multiple scales are combined into a single detection here using a local

extrema scheme. Clusters are formed by comparing detections from neighboring scales

that fall within each others’ scale size, with the smaller response joining the cluster of

the stronger response. Detections which overlap multiple neighbors are grouped with the

neighbor nearest, laterally. An improvement for future work would be to use a mean-shift

type of scheme to combine each detection [72],[61] (with modifications for varied scale and

dimensionality [71],[139]), especially for filaments and large objects such as holograms D and

E. Other methods for grouping regions such as clustering and mode-seeking [106],[400],[278]

or maximally stable extrema regions [243],[101],[122] are also recommended for detecting

objects in the SK or Riesz landscapes, with the caution that these methods can be sensitive

to selecting appropriate settings.

The SK response and the Riesz frequency give complementary information. The SK

responds to local energy (and is thus related to minimum intensity type metrics), so that

objects with strong absorption and low frequency content have high contrast. SK is ex-

pected to have a better performance on holograms with high noise, such as from particles

or camera-readout, thanks to its low-pass filtering effect. The Riesz frequency responds

instead to the dominant frequency, so that small objects with strong scattering into higher

spatial frequencies should be better detected. The Riesz method is expected to perform

better for holograms with low noise. Detections that appear in both responses are likely

true objects and not false positives, especially in the case of low noise.

Deciding whether a candidate blob detection should be processed further depends on a

number of factors. An obvious criterion is that the blob should have a “significant enough”

response —which could mean that its raw response strength is high, or that its relative

response is higher compared to all the detections in a hologram.

The performance of the SK and Riesz methods was measured using a selection of 236

objects from 66 in situ holograms marked by hand. The holograms were processed by the

summation kernel and Riesz methods, and the detections compared against the known set

of objects. The summation kernel had fewer total detections for the given settings, an

average of 166 per hologram compared to 226 per hologram for the Riesz method. That

made the SK method slightly more effi cient, as fewer detections needed to be reconstructed
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Figure 4-18: Percent of known objects found within the n strongest detections, where n is
the index in the sorted detection magnitudes. The plots are the cumulative distributions
for detecting objects.

to find the specific objects: 70% of the hand-marked objects were found within the first

ten detections (those with the strongest relative blob responses), while the Riesz method

had only 62% within the first ten (Figure 4-18). Detections can also be selected based on

the raw blob response strength by setting a decision threshold. The effect of scanning the

threshold is plotted in the precision-recall curves of Figure 4-19. The Riesz method has

better performance for low recall, then approximately matches the SK method for higher

recall rates. One caveat for these results is that all objects in the holograms larger than

about 50 µm were marked to measure the SK and Riesz methods purely for their ability to

detect objects. Most plankton is larger than 50 µm, leading to larger and stronger responses

for both detection methods, so that rates for biologically interesting planktonic objects is

expected to be much higher.

The two detectors have differing performance based on which decision criteria is used:

whether the top-ranked relative detections should be reconstructed, or if detections above

a fixed absolute threshold should be used instead. This hints that a better decision for

which detections to process could be determined by a combination of factors. Future work

in improving the detectors and the processing decision, especially using machine learning

and additional features such as the coherency or spectral energy, is suggested, especially
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Figure 4-19: Left: Precision and recall rate as the blob strength decision threshold is scanned.
The Riesz method has better precision, returning fewer false positives per true positive until
the recall rate reaches about 0.55; at that point, the SK method is slightly better. Right:
the number of true positives and false positives as the decision threshold is scanned. The
total number of true positives is 236.

for noisy real-world holograms. Laboratory holograms with controlled exposures and noise

conditions are expected to give much cleaner detection results.

4.1.5 Fast depth estimation

The focus measures of Sections 4.1.1—4.1.3 are applied to a set of reconstructions to decide

the plane of best focus for some object. In the absence of any other knowledge, the depth

of an object can be determined by reconstructing every plane in the volume. This can

be computationally slow and taxing even with fast methods and processing (see Section

4.2). Interesting objects in the holograms from the prototype are rare. For example, the

previous detection section (4.1.4) had an average of 3.6 objects per hologram in the test

set —with the strong caveat that the holograms selected for hand-labeling had crossed an

initial threshold for variability and were more likely to contain objects of interest in the

first place. An a priori estimate of the depth of the objects could substantially reduce the

number of reconstructions if only a few planes needed to be searched for the in-focus object.

A limited number of depth estimators have been proposed based on the shearing properties

of the Wigner transform [268],[190], but the well-known cross-talk in Wigner transforms

with multiple objects and slow computation makes these methods inapplicable for all but

the simplest synthetic test cases.
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This section reports on recent work done by Li, Loomis, Hu, and Davis to develop a

fast depth estimator [220],[218],[219], then extends the analysis of the estimator to better

understand its limits. The original estimator has excellent performance for laboratory test

cases but suffers for in situ holograms reconstructed over extended depth ranges. A new

estimation metric is proposed based on insights gained from the original and tested on real

holograms captured by the prototype unit to measure its effectiveness.

The information in a hologram is given by Equation 3.13 (or by Equation 3.86), so that

the Fourier transform is

Î = A(u, v)H (u, v; zp) +A∗ (−u,−v)H∗ (−u,−v; zp) , (4.31)

where A is the spectrum of the illuminated object (or of t (x, y) , without loss of generality,

as discussed in Section 3.2.5; A (u, v) and a (x, y) are used here for consistency with [220]).

If the object can be approximated as real valued, the Fourier transform of A is conjugate-

symmetric and

Î = A (u, v) [H (u, v; zp) +H (u, v;−zp)] = 2A (u, v) cos

(
2π

λ
zpfr

)
, (4.32)

using the properties of H and substituting fr =
[
1− (λu)2 − (λv)2

]1/2
as the radial spatial

frequency. This equation shows that the spectrum is modulated by a chirped cosine based

on the depth of the object, zp. Determining the depth is a matter of estimating this chirp

rate.

The approach used by Li et al. is to apply a matched filter to the Î spectrum. Specif-

ically, since A is complex-valued, an `1 norm7, the sum of absolute values, is used on Î

to limit the expectation to non-zero values and provide computational tractability. The

7The `p norms (or `p in some texts) are technically vector norms [387], while the Lp norms are reserved for
functions. The derivation is illustrated on L norms for clarity, while the actual computations are performed
on discrete elements with an ` norm.

193



matched filter is then

Fc =

∫∫ ∣∣∣Î (u, v)
∣∣∣ ∣∣∣∣cos

(
2π

λ
ztfr

)∣∣∣∣ dudv, (4.33)

=

∫∫ ∣∣∣∣2A (u, v) cos

(
2π

λ
zpfr

)
cos

(
2π

λ
ztfr

)∣∣∣∣ dudv, (4.34)

where zt is the test distance. An associated metric using a sinusoid,

Fs = −
∫∫ ∣∣∣∣2A (u, v) cos

(
2π

λ
zpfr

)
sin

(
2π

λ
ztfr

)∣∣∣∣ dudv, (4.35)

will also be useful. The cosine terms of Equation 4.33 can be rewritten as

cos

(
2π

λ
zpfr

)
cos

(
2π

λ
ztfr

)
=

1

2

[
cos

(
2π

λ
fr [zp + zt]

)
+ cos

(
2π

λ
fr [zp − zt]

)]
, (4.36)

so that Fc becomes

Fc =

∫∫ ∣∣∣∣A (u, v)

[
cos

(
2π

λ
fr [zp + zt]

)
+ cos

(
2π

λ
fr [zp − zt]

)]∣∣∣∣ dudv. (4.37)

The first cosine term is related to the twin image while the second is related to the object

coming into focus and goes to unity at zp = zt. The effect of each term on A can better be

seen by examining the equivalent convolutions in the spatial domain. Noting that each of

the cosines can be written as the sum of two propagation kernels, the direct inverses are

F−1

{
cos

(
2π

λ
fr [zp ± zt]

)}
=

1

2
h (x, y; zp ± zt) +

1

2
h (x, y;− (zp ± zt)) , (4.38)

ignoring the arbitrary phase offset term. Substituting the Fresnel approximation, Equation

3.16, for h,

1

2
h (x, y; zp ± zt) +

1

2
h (x, y;− (zp ± zt)) '

cos
(

ik
2(zp±zt)

[
x2 + y2

])
i2λ (zp ± zt)

≡ c (zp ± zt) . (4.39)

The result is that c (zp − zt) dominates over c (zp + zt) due to the divisor in the kernel when
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zt is near zp, and

a (x, y) ∗ ∗ (c (zp + zt) + c (zp − zt)) ' a (x, y) ∗ ∗c (zp − zt) . (4.40)

Thus, near the focus,

Fc '
∫∫ ∣∣∣∣A (u, v) cos

(
2π

λ
fr [zp − zt]

)∣∣∣∣ dudv, (4.41)

which takes a maximum at zp = zt. Similar arguments for Fs show that

Fs ' −
∫∫ ∣∣∣∣A (u, v) sin

(
2π

λ
fr [zp − zt]

)∣∣∣∣ dudv. (4.42)

Computational experiments strongly suggest that the twin image component is not signifi-

cant over a large range of zt [220]. Both Fc and Fs should maximize at the object distance,

so that FcFs provides a simple form of voting between the two estimates and a cleaner

response. Taking the product also eliminates some issues with harmonics (Fc and Fs have

opposite signs at zt = zp/2, for example).

The Fc and Fs measures are integrated over the frequency domain for each test depth.

The computation can be reduced significantly by noting that fr in the cosine and sine terms

is radially symmetric. Rewriting Equation 4.33 in a polar coordinate system gives

Fc =

%∫
0

2π∫
0

∣∣∣Î (fr, fθ)
∣∣∣ ∣∣∣∣cos

(
2π

λ
ztfr

)∣∣∣∣ frdfθdfr, (4.43)

=

%∫
0

 2π∫
0

∣∣∣Î (fr, fθ)
∣∣∣ dfθ

 ∣∣∣∣cos

(
2π

λ
ztfr

)∣∣∣∣ frdfr, (4.44)

where fθ = arctan (u, v) is the angle in the spatial-frequency domain and % is the maximum

radial spatial frequency. The inner integration needs to be computed once per hologram.

The matched filter response can then be computed by integrating over fr for each zt, reduc-

ing the focus measure to a single integral. This approach of using a polar decomposition to

quickly compute the responses is named the PFF method (“polar frequency focus”).

One of the major caveats of the PFF is that it has cross-talk for multiple objects. Up to
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Figure 4-20: Cross-talk between multiple objects. Left: a single particle with a sharp peak
the FcFs response. Right: four objects with decreased peak contrast and spurious smaller
peaks due to cross-talk. The particle peak at zp = 80 is actually smaller in magnitude than
the cross talk at zt ' 88 mm (inset).

this point, the discussion and derivation has centered on single objects with the assumption

that the objects will be spatially rarefied enough so that the portion of the hologram used

to compute the spectrum is dominated by the spatial frequencies from only the object of

interest. The derivations become less clear as more objects are added. For a small number

of additional objects (so that the
∑
j,k

ojo
∗
k cross-talk terms are negligible), the Fc estimate

becomes

Fc '
∫∫ ∣∣∣∣∣∑

k

Ak (u, v) cos

(
2π

λ
fr [zp,k − zt]

)∣∣∣∣∣ dudv, (4.45)

where Ak and zp,k correspond to the kth object. If the k objects have well-separated spectra,

the sum is nearly independent and Fc behaves like a sum of the two responses. However,

when the Ak (and their associated depth modulations) are not independent, the absolute

value of the sum is harder to predict. Figure 4-20 illustrates the cross-talk issue between

small simulated circular particles. Each particle has a similar size and depth, so that the

spectra are not well separated. Note that the four particle case includes a spurious cross-

talk peak in the FcFs product that is actually larger than the response peak from a nearby

particle.

An `1 norm was initially chosen for its analytical tractability and fast computation. The

`1 norm, as Li notes, is also a good approximation for an `0 sparsity norm. Other norms
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Figure 4-21: Computed responses for various p-norms for a synthetic copepod (the fifth
object of Figure 4-22) located at zp = 100 mm. The response is normalized to a maximum
of 1.0 for each p-norm. Higher `p have less detection contrast, while too low of an `p leads
to high numerical noise; a “sweet spot”for this object appears to exist around p = 0.45.

are of course possible. For an arbitrary Lp norm,

Fc,p =

[∫∫ ∣∣∣Î (u, v)
∣∣∣p ∣∣∣∣cos

(
2π

λ
ztfr

)∣∣∣∣p dudv]1/p

, (4.46)

with the discrete summation performed in `p, and similarly for Fs,p. The analysis for p = 2 is

particularly elegant and leads to convenient relationships via the Cauchy-Schwarz inequality.

(Derivations for specific norms are academic in nature and follow similar approaches as for

the `1. In practice, the performance is not tied to an exact norm, varies from the analysis,

and depends upon the implementation chosen, e.g., removal of background or normalization.

Thus, the analysis for other norms is omitted here for brevity.) Figure 4-21 shows the

Fc,pFs,p response for different p-norms and a synthetic copepod hologram. The contrast

decreases for higher p, while low p has larger amounts of numerical noise.

The response of the PFF is diffi cult to predict in closed form. Instead, a number of

simulations were computed with synthetic holograms to verify its performance under var-

ious conditions (see also [220] and results presented therein). The PFF tends to give the

sharpest response peaks for small objects and those whose spectra are not radially symmet-

ric. Gaussian noise in the hologram adds an offset to the spectra but does not significantly

affect peak detection until the SNR drops below about 5. The response is consistent with

depth, expanding slightly like z1/2
p for a point source and providing extremely good depth

197



estimates (depths within 0.5 mm for a point source located between 50 and 200 mm with

a 1024× 1024 point spectrum). These results would indicate that for sparse object distrib-

utions where only a few objects are present in the hologram, the PFF provides a fast and

accurate depth estimator.

The actual performance of the PFF for real-world in situ holograms was tested using 174

hand-marked objects. Each of the holograms was captured with the prototype imager. A

1024× 1024 pixel window was extracted around the known objects, the power filter applied

(Section 3.3.4), and the PFF computed. The ensemble mean at each zt was calculated and

smoothed to estimate the bias due to particle noise, then used to normalize the individual

responses to the same apparent background level. Peak detection is done by smoothing

the responses with a series of Gaussians with increasing width, marking peaks which are

consistent across scale (similar to the multi-scale object detection in Section 4.1.4). The

positions of the peaks and the response strength at the optimal scale were extracted, and

the candidate peaks ranked by the magnitude of the response.

The statistical data for real-world holograms is, unfortunately, far from satisfying.

Higher numbers of competing objects, low spectral energy of target objects, particles, noise,

and a large depth range all make the object peaks small compared to the background. The

majority of the hand-marked objects did not correspond with the strongest peaks; on av-

erage, the objects corresponded with peaks 42% down the ranked peak list. (The best was

seen at p = 1.5, an average of 37% down the ranked list. Norms from p = 0.25 to p = 4

were tested.) The expected error between the known positions and the nearest peaks was

consistent with the error if peaks were randomly distributed over the zt depth range. The

conclusion is again that the PFF is suitable for extremely limited numbers of objects within

the holograms, decidedly not the case with marine holograms captured with the prototype

device.

The PFF peaks when the chirp terms in the object spectrum and the test filter match.

One of the problems is that this matching is weighted by the spectrum, A. A few strong

peaks in the spectra can thus affect the overall depth matching. Similarly, since the response

strength is proportional to
∫∫
|A|p dudv, an object with weak spectra content can easily

disappear into the background noise. Given that the purpose of the PFF is to estimate
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depth by comparing the chirp terms, taking steps to reduce the effects of the object spectra

should improve the results. The approach taken here is to compute a related focus metric

on a normalized spectrum,

Mc (zt; p) =

%∫
0

1

Îθ (fr; p)

[∣∣∣∣cos

(
2π

λ
ztfr

)∣∣∣∣p − µp]
2π∫
0

|I (fr, fθ)|p dfθfrdfr, (4.47)

=

%∫
0

[∣∣∣∣cos

(
2π

λ
ztfr

)∣∣∣∣p − µp] ∣∣∣∣cos

(
2π

λ
zpfr

)∣∣∣∣p (4.48)

× 1

Îθ (fr; p)

2π∫
0

|A (fr, fθ)|p dfθfrdfr (4.49)

where µp is the mean value of |cos (2πztfr/λ)|p and serves to reduce background bias (mak-

ing it closer to a true matched filter), and Îθ (fr; p) is an estimate of the spectral weighting

and is generated from the fθ integral. (Even in cases where the ensemble spectra can be esti-

mated a priori, the variations between specific samples is enough to warrant a per-hologram

estimation.) The
∫
|A|p dfθ term is assumed to vary slowly with fr and provides a limiting

envelope, while the cosine term oscillates quickly for middle- to high-frequency fr and zp

in the range of tens to hundreds of millimeters. The magnitude of the Hilbert transform

naturally provides an estimate of the |A|p envelope. However, the Hilbert transform gives

poor estimates when the frequency of the chirp is low. Numerical experiments show that

estimating |A|p using a large moving average filter provides a better Îθ normalization func-

tion. A paired focus metric, Ms, replaces the zt cosine with a sine. Like Fc and Fs, the two

Mc and Ms give similar and complementary results. However, since Mc and Ms can both

be zero or negative, the sum of the two is the more appropriate combination. This second

approach of a normalized spectrum and matched filtering on the chirp will be called the

MPFF8.

The MPFF, like the PFF, has a behavior which intuitively makes sense but is diffi cult

to predict in a closed form. A number of numerical experiments are presented to provide an

idea of what to expect. Example responses of Mc +Ms are shown for synthetic amplitude

8The approach is also termed the “1-4-5”depth estimator due to a particular parameter set.
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Figure 4-22: Focus responses for sample objects. The object is shown to the left and the
sum Mc + Ms is plotted to the right. Each object was embedded in a 1024 × 1024 pixel
array. The correct depth is zp = 100 mm in each case.

objects in Figure 4-22. Holograms at zp = 100 mm were created for each object and the

focus metric computed. In each case, the response has a clean peak at z = 100 mm and a

low background level.

The Mc + Ms responses for a simulated point source are shown in Figure 4-23. The

point source was scanned over a range of 50 to 225 mm and the MPFF used to estimate the

depth by searching for the maximum response. The width of the response grows with zp,

but the peak occurs within 0.05 mm of the actual depth. The hologram here is 1024× 1024

pixels and each response vector has been normalized to unit length for comparison of the

energy spread at higher zp.

The MPFF has excellent noise characteristics. For example, consider a noise spectrum,
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Figure 4-23: Mc+Ms for a point source. Left: a point source is scanned between 50 and 225
mm and the MPFF used to estimate the position. The response is plotted in each vertical
line. The width of the peak broadens as zp increases. The insets depict responses for small
and large zp. Right: the absolute error in the peak position as a function of zp. The black
line marks the step size in zt. The depth estimate, based on the peak, is within 0.05 mm
(the step in zt).

N (fr, fθ) , and the p = 2 norm. The fθ integral is

2π∫
0

∣∣∣∣A (fr, fθ) cos

(
2π

λ
zpfr

)
+N (fr, fθ)

∣∣∣∣2 dfθ
=

2π∫
0

A (fr, fθ)A
∗ (fr, fθ) cos2

(
2π

λ
zpfr

)
dfθ +

2π∫
0

N (fr, fθ)N
∗ (fr, fθ) dfθ

+

2π∫
0

A (fr, fθ)N
∗ (fr, fθ) cos

(
2π

λ
zpfr

)

+

2π∫
0

A∗ (fr, fθ)N (fr, fθ) cos

(
2π

λ
zpfr

)
, (4.50)

' cos2

(
2π

λ
zpfr

) 2π∫
0

|A (fr, fθ)|2 dfθ +

2π∫
0

|N (fr, fθ)|2 dfθ, (4.51)

if N and A are statistically independent so that 〈AN∗〉 = 0 and the two integrals with cross
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Figure 4-24: Mc + Ms response for a hologram with Gaussian white noise. The object is
a synthetic copepod (the fifth object from Figure 4-22) located at 100 mm. The responses
for different SNR are normalized for comparison. A strong peak around 100 mm exists
throughout the SNR range, with low amounts of added noise.

terms disappear. The spectral estimate is approximately

Îθ (fr) '

√2

2

2π∫
0

|A (fr, fθ)|2 dfθ +

2π∫
0

|N (fr, fθ)|2 dfθ

 ∗ ∗S (fr) , (4.52)

where S (fr) is a spectral smoothing function. The noise spectrum leads to a bias in Îθ and a

small amount of spectral weighting in the depth estimate, but less so than the original PFF.

Fortunately, the PFF itself was surprisingly resilient to noise, with white noise providing an

offset in the Fc estimate and the integration reducing errors from individual spectral points.

The MPFF responses with Gaussian noise added to the hologram is shown in Figure 4-24

for the synthetic copepod hologram (the fifth object of Figure 4-22), with the total response

normalized to unit amplitude for comparison. A strong peak appears at the correct location,

zp = 100 mm, throughout the range of SNRs. The width of the response increases with the

noise power, but is incredibly robust to Gaussian noise.

The effectiveness of the MPFF was tested on the set of 174 hand-marked objects in

holograms captured by the prototype unit. Plots of example MPFF responses are shown

in Figure 4-25 for four randomly chosen objects (the `1 and `2 norms are both plotted for

comparison). Peaks in the responses are visually easy to find for a few objects, while peaks
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p-norm zp err, nearest zp err, max Obj. rank Peak count Obj. Rank
0.25 2.5 mm 132 mm 6.4 31.7 20%
0.5 2.3 mm 67 mm 5.6 29.6 19%
0.75 2.2 mm 54 mm 5.0 28.2 18%
1.0 2.2 mm 50 mm 4.5 27.4 17%
1.25 2.2 mm 47 mm 4.6 27.0 17%
1.50 2.2 mm 50 mm 4.7 27.2 17%
1.75 2.1 mm 58 mm 5.1 27.4 19%
2.0 2.2 mm 62 mm 5.4 27.6 20%
3.0 2.2 mm 71 mm 5.6 29.5 19%
4.0 2.3 mm 84 mm 6.8 30.9 22%

Table 4.3: MPFF results for estimating the depth of objects in real-world hologram samples.
The expected depth error between the known object and the nearest peak in the MPFF
response is around 2-3 mm. However, the expected distance from the object to the strongest
peak is much larger, around 50-70 mm in most cases, simply due to the fact that the object
does not correspond to the strongest peak response in enough test cases. However, the
object is expected to be round at the 4th through 7th ranked peak (out of around 30
peaks), 17-20 percent of all the peaks.

for other objects can easily become hidden in the cross-spectral noise. Objects also do not

necessarily align perfectly with the peak response or even the largest raw response values.

The same multi-scale peak detection algorithm as earlier was used to identify depth regions

with a positive response at multiple scales and the peaks ranked based on the maximum

response across scales. The known object position was compared against the nearest peak

and the peak with the best rank. The position of the object’s peak within the ranked

list was also recorded. Table 4.3 summarizes the results for different p-norms, reporting

the expected values for the depth errors, the position in the ranked peak list that the

object’s peak was expected to be found, the expected number of peaks per hologram, and

the expected percentage of peaks that must be searched in the ranked list before finding

the object’s depth. In general, the objects of interest were expected to be found within

2 − 3 mm of their true depth and within the first 20% of peaks found by the algorithm.

The best results are for p = 1.0 to 1.5, with lower numbers of cross-talk peaks detected.

These p-norms lie between the blue and green curves of Figure 4-25 and are seen to be a

compromise between lower algorithm noise at small p and greater peak contrast at high p.

The ability of the MPFF to detect objects is underrepresented by the expected values
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Figure 4-25: Example responses for four randomly selected objects in the test dataset. The
true object depth is at the black dotted line; the blue solid line is the `1 FcFs response and
the dotted green line is the `2 response. The responses have been normalized against their
local means, and the `1 line had a 10-point smoothing filter applied to show the shape of
the curve beneath the noise.
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Figure 4-26: Cumulative probability of finding the object at the correct depth as the number
of peaks in the ranked list is searched. The best performance comes from p = 1 to p = 1.5,
finding around 70% of objects within the first three peak positions searched.

of Table 4.3, weighted by the objects which disappear into the clutter or are not detected

by the particular peak picking algorithm. Figure 4-26 plots the cumulative probability of

finding an object within the first n ranked peaks searched. For example, at p = 1.25, around

70% of the objects are located at depths corresponding to one of the first three peaks in

the MPFF response.

Determining why some objects fail to be detected within the first few ranked MPFF

peaks is particularly challenging. The object size, shape, depth, and edge frequency content

do not appear to have an influence. Similarly, the total number of objects in the hologram,

number of objects within the window used to compute the spectrum, and the hologram

noise cannot be statistically correlated to the peak number at which the object is located.

Another hypothesis was that substantial frequency content from objects just outside the

window was influencing the estimation. To check this, the MPFF was computed for four

windows centered to the side of the known objects (but containing the object), and the

responses averaged. The probability of finding the object at the first peak increased by about

2%, with the cumulative probabilities for later peaks increasing by 1-3%. This indicates

that fringes leaking into the window from nearby objects did not significantly affect the

estimation. Unfortunately, checking the statistical independence of the object spectra with
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Figure 4-27: Depth response of a local Laplacian and local standard deviation for a point
object. The left panel plots the intensity as a function of depth and one spatial coordinate
as the point comes into focus at zp = 100 mm (the dotted line). The local Laplacian (center
panel) and local standard deviation (right panel), both computed with 9-point windows,
have responses that extend into the depth direction. Note that the Laplacian has negative
values in its kernel, resulting in negative focus metric values far from the point object.

others in the hologram, including particles, is not possible. At this point, the question is

left for future research if there is pressing need for significant speed improvements and fewer

reconstructions.

Using the results from the MPFF is a simple matter of reconstructing an image and

applying a focus metric to determine whether there is an object in focus at a particular

depth. If not, an image is reconstructed at the depth of the next ranked peak until an

object is found. The MPFF has an expected depth prediction error of around 2 mm (Table

4.3), so that a focus metric with an extended depth response would limit the number of

reconstructions necessary to determine if an object is in focus at a peak location. Of the

six basic metrics introduced in Sections 4.1.1 and 4.1.2 (see specifically Table 4.1), the local

Laplacian and local standard deviation (square root of local variance) have the greatest

extent in depth for a point source (Figures 4-27 and 4-28). The extended depth response

of the Laplacian explains why the coarse-to-fine focusing method proposed by Domínguez-

Caballero works well [95].

4.2 Accelerated computations on graphics processing units

Digital holography has always been tied to computational power as a numerical technique.

Faster computers in the last decade have brought DH from the realm of academic curiosity

to an applicable tool, and with it a demand for larger volumes, finer depth resolution, and
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Figure 4-28: Plots of the local Laplacian and local standard deviation focus metric responses
as a point object passes through a focus at zp = 100 mm. The maximum response has been
normalized to unity, and the horizontal dotted line marks 50% of this maximum. Both
metrics decrease slowly with depth compared to the other individual metrics.

larger datasets.

Even with improved CPUs, reconstructions can be time consuming. Consider the ex-

ample of reconstructing one second of 500 fps video of tracer particles in a fluid flow. A 10

cm distance reconstructed at 0.2 mm depth intervals takes 250,000 reconstructions alone

—before applying any focus metrics or analysis to determine particle positions. A single

computer which can compute a 2D FFT of a 1024×1024 point array at 15 FFTs per second

would require more than 4.5 hours for the reconstruction task. Similarly, reconstructing

the entire field for a 16 MPx plankton hologram over a range of 200 mm at 0.2mm depth

intervals on a computer which can calculate a 4096 × 4096 point 2D FFT in 1.0 s would

require around 30 minutes. Tracer particles are just one example of dense object fields

which require brute-force reconstructions of every plane. Other practical examples include

bubble, oil, and other mixed phase flows [380], high plankton concentrations, and holograms

with high enough noise that the fast estimation methods fail.

Application of focus metrics also increases the number of calculations. For example, the

local Zernike metric of Section 4.1.3 filters the reconstructed image with five kernels. Each

filter takes the same amount of time as a reconstruction when the convolution is done using

Fourier transforms, so that filtering is actually the most demanding component of applying

that focus-detection method.
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The fast position and depth estimation methods can reduce the overall reconstruction

time by limiting the size of the field and the number of depths which need to be scanned.

Even so, reconstructing even a few frames for candidate objects or searching deep within

the candidate list (see, e.g., Figure 4-18 and the candidate TP rate versus sorted order for

real-world holograms) can still require a significant number of reconstructions.

Holography is well suited to parallel processing since each reconstruction is independent.

In cases where multiple holograms can be processed separately, distributing the data across

nodes in a supercomputer cluster is reasonable if the network latency is low compared to the

processing time [262],[131]. Clusters are a poor solution for a number of other cases. Real-

time applications, such as controlling flows based on observed mixed-phase characteristics,

require fast turnarounds for processing single holograms; the network latency in distributing

the same hologram to multiple processors is extremely high compared to the computation

time. Analyzing holograms during a cruise is virtually impossible unless portable clusters

become an affordable reality. For that matter, maintenance, hiring programmers, and

continued access to clusters can be expensive for labs.

The approach used throughout this work for both the holography of Chapters 3 and 4

and the image processing in Chapter 2 has been to use graphics processing units (GPUs) for

computationally expensive tasks9. NVIDIA introduced a common Compute Unified Device

Architecture (CUDA) for their GPU chips that allows programmers direct access to the

underlying parallel processing units for performing general purpose numerical computations.

A subset of the C programming language, along with GPU-specific commands, was made

available as a software development kit in early 2007. A large list of projects using CUDA

for general purpose scientific work has appeared since that time, including a number of

projects in optics [229],[331],[332].

The GPU is arranged around multiprocessing units (MPU) (Figure 4-29). Each MPU

includes a series of parallel processing cores (there are eight computation cores per MPU

in the NVIDIA 9800 GTX, for example, for a total of 128 cores; 112 are available for

computation in the 16 MPUs while the remainder are used for controlling execution), a

9 In fact, the only sections which did not use a GPU within the processing chain were the longline
monitoring of Section 2.3, one of the older projects in this thesis, and the fast depth estimation of 4.1.5,
which could see benefits from GPU implementation but has not been programmed yet.
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Figure 4-29: Layout of NVIDIA GPUs. Left: the host CPU transfers data between its
own memory and the GPU and issues commands. The GPU is a series of MPUs. Right:
Information flow in an MPU. C: processor core; µc: microcontroller; k: constant cache. The
cores have read access to each memory, but can only write to the MPU’s shared memory
and global memory. The shared memory is not exposed directly to the other memories and
must be loaded by the processor cores. Three cores and eight MPUs are depicted.

shared memory (16 KB for Compute Levels 1.2 and 1.3, 32 KB for Compute Level 2.0),

texture and constant caches (64 KB), and an instruction manager. Each core has its own

private memory. The shared memory is readable and writable by the code “threads”running

on the multiprocessor, but must be actively loaded with data. The texture and constant

caches are mapped by the GPU and are read-only. Reads from the texture cache include

special operations to interpolate data on-the-fly in 1D, 2D, or 4D. The instruction manager

handles cueing and memory requests for the MPU. A large global memory (512 MB standard

for the 9800 GTX, several GB for later cards) can be read and written by the MPUs. The

host CPU reads and writes to the GPU global memory and issues commands to the GPU

card.

CUDA is designed around single instruction multiple thread (SIMT10) operations. In

SIMT, a small code fragment known as a thread (a “shader”in computer graphics) is run

in parallel on the MPU cores. Threads are intended to operate simultaneously in smaller

groups known as “warps” (32 threads), running the same commands at the same time.

Threads have read-write access to the global memory, MPU shared memory, and the local

10SIMT is NVIDIA’s equivalent of single instruction multiple data (SIMD) parallelism. The difference is
that SIMD assumes a certain amount of independence between processors, while SIMT allows collaboration
between threads on the same processor. The threads in a single warp are expected to perform simultaneously
and are perhaps closer to the SIMD model.
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core memory. Interpolation from the texture cache is done by thread-based commands.

Math operations were originally designed for 32-bit registers (floats and integers) with fast

approximations for certain functions. Since the original release, 64-bit doubles have been

added to CUDA, though doubles are generally slower to compute than floats.

Libraries for performing specific operations have proliferated recently. Frigo and John-

son’s FFTW library for fast Fourier transforms (the same library used by Matlab), was one

of the early ports, and provides support for 1D, 2D, and 3D FFTs (available in the CUDA

SDK). Also of interest for optics are the various components of the BLAS (CUDA SDK)

and LAPACK (CULA) projects that have also been ported.

The quirks of CUDA determine which algorithms will be better suited for GPUs than

others. Memory transfers, access times for global and shared memories, thread ordering,

and thread branching can all have a significant impact.

Host-device memory transfers are one of the major bottlenecks. Reading and writing

between the host CPU and GPU can be one of the slowest procedures (around 1000 MB/s

for a 9800 GTX), so that transferring the data once and processing as much as possible

is highly preferable. (In contrast, memory copies within the GPU’s global memory can

be extremely fast: 42,000 MB/s on a 9800 GTX). For example, take the focus metrics of

Section 4.1. The best implementation is to directly reconstruct the slices and apply a focus

metric within the GPU so that only the original hologram, the resulting focus measure,

and depth map need to be transferred between the GPU and CPU. This can be especially

important for small arrays (512×512 pixels or smaller), where the transfer time and latency

can be longer than a pair of GPU-based FFTs. When used with the oil droplets of Section

4.3, this approach resulted in a 150× speedup on an NVIDIA GTX 285 compared to CPU

processing. (The high speed-up is a strong reason for using projected focus metrics in

Section 4.1.) Figure 4-30 plots just the reconstruction speedup alone, where the speedup is

compared between an NVIDIA 9800 GTX and a 3.2 GHz Pentium D CPU.

Shared and global device memories each have their own benefits and drawbacks. Ac-

cessing global memory is extremely slow, around 400 clock cycles, but can be hidden by

the MPU instruction manager: one warp can be set aside while waiting for data, allowing

another warp to run. A large number of executing threads helps the GPU hide this latency.
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Figure 4-30: Reconstruction component speedups on an NVIDIA 9800 GTX. Left: the total
time to compute the requested number of reconstructions (1, 2, 5, 10, 20, 50, and 100).
Even for a 2048 × 2048 pixel hologram, the time to reconstruct 100 slices is managable at
around 2.0 s. Right: the speedup for the same reconstruction operations, compared against
a 3.2 GHz Pentium D CPU. Transfer latency and initialization of the GPU FFT structures
reduces the effi ciency for small holograms. The speedup is especially significant as the
number of reconstructions grows and the computation dominates over memory transfers.
The speedup for even a single reconstruction ranges from 5 to 9 (256 to 2048 pixels). A ±1σ
uncertainty is plotted for the timing and speedup data. The data in the speedup plot have
been shifted laterally by a small fraction for visibility. Note that the timing and speedup
has been calculated for the reconstruction step, a single Fourier-domain filter. A series of m
additional Fourier-domain filters applied to the magnitude of the field would require 1 +m
FFTs, making the total time longer by approximately that factor. For example, applying
one filter to each of the 100 slices of a 2048 pixel field would take around 6 seconds on this
GPU; two filters would take around 8 seconds.
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Global memory access is also benefitted by a sequence of threads requesting a sequence of

memory, in the same order and without overlaps. This is known as “coalesced”memory

reads and writes. Coalescing is a major goal of a well-written thread and a driving reason

to design threads that operate on single pixels. Shared memory is much faster, on the order

of tens of cycles, but is limited in size and must be pre-loaded by using threads to transfer

data from global memory. Small tables whose data is used by multiple threads are ideal for

shared memory. Two examples are direct convolutions with small kernels (for example, the

local Zernike kernels of Section 4.1.3) or boosted classifiers. Some operations can also be

rewritten to effi ciently use shared memory instead of global memory. One example used in

the CUDA literature is of performing a matrix multiplication by blocks in shared memory

instead of columns and rows pulled from global memory.

Discussion of boosting on GPUs deserves some attention given the frequency of its use

in this work. The initial implementation of boosting first transferred classifier thresholds

and coeffi cients (Equation 4.20) to shared memory. The threads, one for each pixel, then

stepped through each round of the classifier, retrieving the appropriate feature for the

thread’s pixel from global memory and comparing its value to the classifier threshold [141].

Decision stumps are preferred in this implementation for limiting the number of global

memory fetches, though the approach is amenable to higher-dimensional linear classifiers.

Classifiers larger than the shared memory can be used by dividing the classifier into smaller

classifiers and combining the results.

An improved implementation for boosting with decision stumps uses texture memory.

The stump classifier of Equation 4.20 is first re-factored into a set of look-up tables,

Fx =
∑
i

bi +
∑
m

Am (fm) , (4.53)

where there are m features, fm is the value of the mth feature, and

Am (Θ) =
∑
i∈{M}

ai (Θ > θi) , (4.54)

is the cumulative function for the boosting rounds that use the mth feature in the threshold
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test. Specifically, Am (Θ) is a step-wise constant function whose value at Θ is the cumulative

sum of all ai corresponding to feature m for decision stumps whose threshold is less than

Θ. The Am functions are uploaded to the GPU and mapped to 1D texture memories. The

thread for each pixel steps through the features, retrieving Am (fm) using a nearest-neighbor

texture fetch. Alternately, the Am functions can be mapped to a 2D texture memory with

each Am as a column in the texture; the 2D texture fetch aligns with m in the first direction

and fm in the second. Texture caches reside on the MPUs and are managed by the GPU,

significantly faster than uploading a full classifier to the shared memory. A decision stump

classifier is preferred for texture mapping; higher-dimensional linear classifiers would require

an Am for each combination of features, and is limited to at most a 4D texture.

The SIMT architecture expects the threads in a warp to run the same operations si-

multaneously. Instructions which branch can cause a warp to diverge if the threads take

different paths. When that happens, the threads not on the executing branch are set aside

and run separately. Algorithms which limit conditional execution and branching have bet-

ter execution times. For example, tree classifiers with multiple nodes11 are bad choices for

boosted weak classifiers if the classifier is to be evaluated on a GPU. Computing the phase

or magnitude of a reconstruction, on the other hand, applies the same operation to every

pixel in the image without need for branching12.

A number of the other algorithms used in this work have recently been ported to GPUs.

Examples include SIFT/SURF and image alignments (Section 2.1.5) [77],[194], morpholog-

ical operations, geometric transforms and coordinate system transforms (Sections 2.1.5 and

4.1.5), histograms (Section 2.1 and pre-processing holograms in Chapter 4) (Section 2.1,

direct convolution (Sections 2.2 and 4.1) (CUDA SDK), k -nearest neighbors (Section 2.1)

[135], pyramids (Section 4.1.4) (fetches from texture memory), and connected components

(Sections 2.2, 2.3.1, and 4.3) (GpuCV). These ports make it feasible to implement the meth-

ods developed here on GPUs for significantly faster results and larger data sets, enabling

large-scale science at a fraction of the cost.

11A decision stump is technically a tree classifier with a single node and two leaves.
12 In practice, there is usually some minimal branching: the warps are quantized, so that if the number

of total threads exceeds the image size a conditional if-then keeps the threads outside the image from
reading erroneous memory. The conditional branches only for warps that cross the boundary, thus limiting
the number of total branches.
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4.3 Application: Oil droplet size distributions

The methods developed and examined in this work have applicability beyond plankton to

nearly any microscopic object in the ocean, provided that it has a unique enough visual

appearance. One example is low-concentration mixed-phase flows, such as oil droplets or

air bubbles in seawater. These have a nearly spherical appearance13 across a wide range of

diameters, making them a good target for automated methods.

In April 2010, an accident on the Deepwater Horizon drilling platform in the Gulf

of Mexico began releasing oil and natural gas from a drill site some 4500 feet below the

surface directly into the surrounding water at extremely high rates [261]. While some of

this oil reached the surface, an unknown fraction stayed in the water column as small

droplets —and even then, the question of whether these droplets would surface and where

was an unanswered question. Ecologists and modelers did not know the size, depth, or

concentration of the drops, all critical for determining the lasting effects of the spill.

Existing instrumentation at the time was extremely limited in its ability to retrieve

droplet parameters. Careful laboratory chemical analysis of water collected from depth can

determine concentration, but not the droplet size. The size, in particular, helps determine

the buoyancy and the rise rate, along with estimates of which ecosystems would be affected.

Devices for estimating the particle size distributions (see, e.g., [320]) could not distinguish

between oceanic particles and oil droplets and were, in general, limited to shallow depths

of only a few hundred meters. Visual inspection from cameras on remote operated vehicles

could only indicate the depths at which large droplets could be found. Other imaginative

techniques were suggested, such as examining sonar returns [322],[439], but had never been

tested against oil droplets.

Holography was an ideal solution to the in situ oil droplet measurement problem. Visual

measurements can distinguish between oil droplets and other biological objects while simul-

taneously providing size and shape measurements. A large sampling volume was necessary

13Exactly spherical biological shapes have been rare in the holograms examined thus far. Two notable ex-
amples are fish eggs and diatoms. Fish eggs, however, are nearly perfectly phase matched to the surrounding
water and appear transparent; the developing larva is nearly always visible. Laboratory experiments with
small spherical and pennate diatoms shows that they appear as point-like or indistinctly small particles in
holograms and cannot be distinctly identified as diatoms.
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Figure 4-31: Comparison between an air bubble in DI water and an oil droplet in seawater;
each quadrant is a different component. Phase is scaled to map over [0, 2π]. Both the
bubble and the droplet appear as round, dark objects, despite the fact that the bubble is
transparent and the oil is semi-transparent. The diameter of each is noted in parentheses.

to find and adequately sample the oil distributions. This section describes how those mea-

surements were made with the prototype digital holography unit, employing the techniques

developed for object detection and focus determination in holograms. New approaches for

estimating the size, concentration, and distributions of the droplets are also introduced.

4.3.1 Droplet models

Droplets and bubbles appear to our visual senses as round, transparent objects, usually

with little coloration. The same in holograms appear as dark, round objects (see, e.g.,

Figure 4-31). Understanding this difference gives a predictive mechanism for round objects

embedded in a medium with an unmatched refractive index.

Modeling a droplet can be done by combining a thick lens in the center of the drop

with an opaque annulus around the outside, Figure 4-32. The thick lens accounts for the

phase difference across the droplet and focusing effects. The annulus models two behaviors:

total internal refraction (TIR) and large angles, both of which restrict the ray angles and

the intensity transmitted through the drop and subsequently recorded by a detector. If the

refractive index of the droplet, nd, is less than the refractive index of the medium, nm, such

as for air in water (bubbles) or low index materials, the rays beyond r = and/nm fail to

enter the drop due to TIR (depicted in Figure 4-33); here a is the droplet radius and r is the
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radial distance from the optical axis. In the case where nd > nm, only a small fraction of

rays fail to exit the droplet due to TIR conditions for reasonable ranges of nd and nm. The

majority of the loss then comes from rays bent beyond the optical system’s entrance pupil.

The ABCD matrix helps determine exactly where this occurs. The thick lens relations [155]

give the matrix system

αoutnm
rout

 =

1− nd−nm
nd

−2(nd−nm)nm
and

2a
nd

1− nd−nm
nd

αinnm
rin

 , (4.55)

where αin and αout are the input and exit angles of the rays, and rin and rout are the

distances of the input and exit rays from the optical axis. For a plane wave, αin = 0 and

the relation for the output angle becomes simply

∣∣∣∣−2 (nd − nm)nm
and

rin

∣∣∣∣ ≤ (nmαout)cr , (4.56)

where the term (nmαout)cr denotes the maximum angle in the medium which can later be

recorded by the optical system. This angle may be a function of distance, the NA, and

whether the end user requires that the signal is not aliased or is prepared to use generalized

sampling [356] to process holograms. For oceanic in-line holography, (nmαout)cr is around 2
◦

to 4◦ for pixel sizes of 10 microns or less, distances of a few millimeters to centimeters, and

the assumption of no aliasing. Thus, rin is small. The fraction of light transmitted which

passes through the droplet and on to the detector is given by the ratio of the clear area to

the total area, r2
in/a

2, so that the transmitted intensity is much smaller. This explains why

both droplets and bubbles have a dark appearance: much of their intensity is lost due to

TIR or high angles.

Bubbles and droplets should also exhibit a focusing effect in their holographic recon-

struction. The thick lens system, 4.55, directly provides the equivalent focal length as

feq =
and

2 (nd − nm)nm
. (4.57)

Using nd = 1.49 for crude oil [358] and nm = 1.33 for water, feq = 3.5a. Similarly, for

nd = 1.0 and nm = 1.33, such as an air bubble in water, feq = −1.14a. Both cases have
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Figure 4-32: Model for an oil droplet as a thick lens (blue inner circle) and an opaque
annulus.
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Figure 4-33: Ray trajectories through a spherical volume with index nd embedded in a
medium with index nm. The red outline is the edge of the sphere, the blue lines are the rays
(entering from αin = 0), and black circles indicate where rays are lost due to TIR.
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focal points which are on the order of the droplet size —and for small drops, on the order

of the depth of focus. Even so, the focal effect should have extremely low contrast: for

(nmαout)cr = 3◦, nd = 1.49, and nm = 1.33, the ratio rin/a = 0.18 and the transmitted

fraction is r2
in/a

2 = 0.033.

4.3.2 Detection using focus metrics

A three-step scheme was adopted to locate oil droplets in hologram images using ideas from

prior holographic work and from circle fitting work in computer vision. The first step uses

a combination focus metric with dense reconstructions on a GPU to locate in-focus edges

of objects of unknown shape and size, with the added benefit of improving depth detection

in noisy holograms. The second step uses groups of strong edge detections to quickly

estimate the circle center and radius, and provides an initial method for discriminating

round objects from irregular particulate matter. The third step uses a decision tree with

more computationally expensive features to discriminate between oil and particles after the

detection has been performed.

Previous studies measured oil droplet sizes ranging from 5 to 500 microns depending

on the dispersant, type of oil, ocean turbulence, and depth below the surface [73],[358].

The droplet size distributions tended to follow similar distributions as oceanic particles

[330],[256]. Common models used include log-normal, beta, and gamma distributions, which

all have a common feature of estimating large numbers of small droplets (see, e.g., the

particle size distribution plots of Figure 3-30). Any detection method for oil droplets thus

needs to work over a large size range. The recall rate also needs to be high to obtain

accurate measurements of concentration and size distributions.

One of the hallmarks of most detection schemes in holography is that they either search

for point-like particles or search for unknown objects. Oil droplets provide a luxury of

knowing a priori the shape of the object. Novel methods of direct detection were first

tried on the dataset in an attempt to specifically locate round objects in the holographic

images. For each reconstruction plane, circle detection algorithms were applied to locate

droplets. Many of these methods were confounded by one of three problems. Hough and

Hough-like accumulator methods gave poor results due to the wide range of possible droplet
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diameters and center positions, resulting in large parameter spaces and slow computation

[438],[276],[307],[389],[237]. Methods which attempt arc fitting are more sensitive to an

overall circular shape in the image and lead to a high false positive rate due to twin images

and smooth curves from diffraction rings [18],[130],[431],[436]. Finally, methods which use

filter-based accumulators, and especially phase accumulators, were sensitive to noise (in-

cluding multiple nearby detections) and require a priori estimates for the minimum and

maximum circle size [14],[445]. The end result was that detecting circular shapes directly

on the hologram reconstructions was not reliable for oceanic data. However, for constrained

systems where the noise can be controlled and the majority of the objects will be circular,

such as for laboratory explorations of mixed-phase flows, filter-based accumulators such as

the phase-coded annulus are highly recommended [14],[445].

More traditional approaches, volumetric detection schemes using focus metrics, have

been reported both here and in previous literature. The most applicable comes from prior

work with Tian and Domínguez-Caballero, imaging bubbles of widely varying sizes [380].

Tian et al. elected to use a reconstruct the volume and record the minimum intensity

metric [103],[11]. (Note that particle metrics such as de Jong’s complex signature [89] or

Pan’s minimum imaginary component variance [274] are inappropriate for these cases since

the object cannot be considered to be point-like.) The assumption of minimum intensity is

valid when the particles go out of focus quickly and the noise level is low, so that noise does

not significantly impact the intensity and the object edges have a low value for only a few

reconstruction slices. Particulate matter and large sample volumes for ocean water tend

to break the assumptions, leading to gray halos around objects and poor localization—so

that the minimum intensity projection is not reliable for determining object size, let alone

whether an object is an oil droplet or any number of other marine particles.

Combinations of metrics, Section 4.1.2, where computed on sample oil droplet images.

The SIM metric, Equation 4.18, was found to be a good edge detector given the noise in

the holograms. Estimating the 3D position of an object is done in two steps. The first

step is to threshold the SIM metric, selecting pixels with a high degree of focus. Those

pixels are grouped using morphological dilation and erosion procedures, creating a mask of

pixels with a high probability of belonging to an edge. Secondly, the depth is determined by
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Figure 4-34: Minimum intensity metric applied to a hologram of oil droplets. Zoomed
regions of three oil droplets are shown to the right with the minimim intensity, depthmap
derived from the slice where the intensity was minimized, and a particle edge mask used
to estimate the object depth. The depth ranges from blue (minimum) to red (maximum)
following the Matlab jet color map.

analyzing the slice at which each pixel’s SIM value was maximized. In practice, the mean

of the depths of the masked pixels is suffi cient to estimate object depth. If more precision

is required, outliers can be removed by thresholding or by use of mixture models.

Comparisons of using the SIM metric and the minimum intensity metric with oceanic

oil droplet holograms are shown in Figures 4-34 and 4-35. The minimum intensity metric

tends to include noise pixels which can substantially alter the estimated depth, seen as the

noisier depth map around the droplet position. The SIM metric gives a good prediction of

the particle edges, so that direct thresholding or hysteresis thresholding [368],[54] produces

a clean edge map. The derived depth map is smooth around the particle edge due to the

spatial extent of the filter. The SIM results also have high contrast compared against

the background: extraneous diffraction rings are not present, unlike the minimum intensity

metric.

The SIM metric has better localization properties than a minimum intensity metric.

The inherent smoothing and intensity weighting remove many of the false positives stem-
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Figure 4-35: SIM metric applied to a hologram of oil droplets. Zoomed regions of three
oil droplets are shown to the right with the SIM value, depthmap derived from the slice
where the SIM metric was maximized, and a particle edge mask used to estimate the
object depth. Depth ranges from blue (minimum) to red (maximum) following the Matlab
jet color map.

ming from noise, so that the metric is more likely to maximize near a focused edge. Figure

4-36 illustrates the expected error using the SIM metric for the case of eighty simulated

oil droplets with Gaussian noise added to the hologram. Images were reconstructed every

0.5 mm from 20 to 250 mm. Even at high signal-to-noise ratios (SNR), the SIM metric

out-performed the minimum intensity metric significantly; for SNRs of 10−1 and higher, the

expected error was less than 0.9 mm using SIM . Depth estimation based on a minimum

intensity suffered from noise, leading to outliers and large deviations in the masked depth

estimate. Using a Gaussian mixture model (GMM) to remove some of the outlying compo-

nents improved the estimate by a factor of two for high SNR holograms to around 4 mm of

expected error. Note that masking the depths derived from the minimum intensity using

the SIM metric, the dashed green curve, leads to high errors as more background pixels

are selected.
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Figure 4-36: Expected depth localization error from SIM and minimum intensity metrics.
The SIM-based mask uses edge pixels which have a corresponding SIM value above a fixed
threshold. The intensity-based mask similarly uses edge pixels with intensities below a fixed
threshold; morphological operations are applied to limit the pixels to just the edge pixels.
The final curve includes a GMM to estimate coherent detection clusters, similar to [380].

4.3.3 Fast circle parameter estimation

The first stage located objects in holograms using a focus metric applied to multiple re-

construction slices. The objects detected are indiscriminant aside from having well-defined

edges and dark intensities, as predicted by the oil droplet model —but the same character-

istics are applicable to many other objects. The second stage seeks to separate out round

objects by fitting a circular model to the detected edges. Those objects which have poorly

defined centers, centers significantly far from the edges, or with poor fits to the radius pa-

rameter can be removed from the search. Objects with well-defined diameters proceed to

the next stage of classification. The diameter information is retained for calculating droplet

size distributions, volume, and buoyancy characteristics.

Previous methods developed for estimating parameters of circles (center point and ra-

dius) tend to fall, again, into three categories consistent with detection methods, as one

way of detecting a circle is to determine how well a circle model fits the given data:

Hough and Hough-like accumulators [438],[276],[307],[389],[237], direct parameter fitting

[130],[431],[436], and random algorithms [62],[67],[295]. As mentioned, the accumulators
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require a large parameter space and lack precision. Direct parameter fitting can have varied

performance, though it tends to be influenced by noise and deals poorly with small particle

sizes. The class of random algorithms tend to be much more robust to noise, especially

when the object is non-circular or the detected edge contains a high ratio of outliers to data

points.

The random algorithm adopted here makes use of the edge magnitudes and orientations

to vote for a center point, then the radius is fit to the edge data. An image of the droplet

is reconstructed at the depth detected by the SIM metric, and the edge magnitude and

orientation are computed using a steerable gradient filter (Figure 4-37). Morphological

operations are applied to link nearby detections into a single grouping. The N pixels in the

grouping with the highest edge magnitude are then used for estimating the center. First,

two random pixels are selected from the N candidate points. The edge normals passing

through the points are computed from the orientation information. The intersection point

(xi, yi) is recorded, along with a weight, wi. The weight is determined by both the edge

magnitudes and the cross product of unit vectors in the direction of each normal as

wi = (SM,1SM,2)1/2 |−→n 1 ×−→n 2|2 , (4.58)

where SM,1 and SM,2 are the edge magnitudes of the two points and
−→n 1 and

−→n 2 are the

normals. The cross product decreases the weight when the two lines are nearly collinear

and are thus more likely to have greater error in locating the intersection point. The circle

center, (Xc, Yc) is then calculated as a weighted average,

Xc =

∑
i xiwi∑
iwi

, (4.59)

Yc =

∑
i yiwi∑
iwi

. (4.60)

Once the center has been estimated, the radius is also fit using a weighted average, this

time using the edge strength as the weight,

R =

∑N
j=1 SM,j

[
(xj −Xc)

2 + (yj − Yc)2
]1/2

∑N
j=1 SM,j

=

∑N
j=1 SM,jrj∑N
j=1 SM,j

. (4.61)
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A final fit metric, FM, is computed by summing the weighted squared errors,

Xc,var =

∑
iwi (xi −Xc)

2∑
iwi

, (4.62)

Yc,var =

∑
iwi (yi − Yc)2∑

iwi
, (4.63)

Rvar =

∑N
j=1 SM,j (rj −R)2∑N

j=1 SM,j

, (4.64)

as

FM = [Xc,var + Yc,var +Rvar]
1/2 . (4.65)

The fit metric is admittedly ad hoc in nature as it attempts to combine biased variance

estimates for the center position and radius. In practice, the metric is responsive enough

to allow preliminary discrimination. The Xc,var and Yc,var estimates both grow large if the

object points do not agree on a common center, such as for elliptical or rectangular objects,

while the Rvar estimate grows large when the shape is non-circular or includes concentric

circles.

The circle parameter random accumulator (CPRA) described here differs from earlier

work in a number of ways. First, it does not strictly rely on an assumption of circularity,

using only two points with edge normals to vote for a center point of an arc; for example,

measuring quadratic curves with K-RANSAC[62] and Cheung’s triplet line method [67]

require three points to determine circular arcs, while the gradient vector pair method [295]

uses pairs of gradients from opposite sides of the circular edge. Secondly, the CPRA does

not require a complete arc like the gradient vector pair method [295] or Barwick’s chord

method [18]. A final note is that the CPRA is related to accumulator methods but with

a randomly selected subset of high-fidelity edge point pairs (as measured by the gradient

magnitude) and a continuous-valued accumulator.

The CPRA requires only a limited number of computations. The filtering operation to

generate candidate edge points is common to almost every parameter estimation method

and is O
(

2P 2n2
filt

)
when done with direct convolution, where P is the number of pixels per

edge of a droplet image and nfilt is the number of pixels per edge in the filter. The remainder

of the CPRA is O (niter) , where niter is the number of line intersections computed in the
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Figure 4-37: Overview of the CPRA method for estimating circle parameters. A, the
magnitude image of a reconstucted oil droplet. B, the steerable gradient; hue represents
the edge angle and the brightness is the magimum gradient magnitude, SM . C, the N = 40
pixels are used to estimate the center by finding the intersection point (green circle) of
lines passing through two randomly selected edge pixels (white circles). This process is
repeated niter times. The weighted distribution of candidate center points is shown in panel
D, forming a small cluster near the center. The distribution uses the Matlab jet colors,
where blue is a low value and red is a high value.
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Figure 4-38: Expected number of iterations, niter, in the CPRA method to achieve a de-
sired accuracy in locating the center point of an example reconstructed oil droplet image.
Contours are every integer from two to ten, twelve, sixteen, and twenty.

accumulation process. Note that if N candidate edge points are used, the number of unique

intersection points is N (N − 1) . This gives a natural maximum limit to niter. In practice,

both N and niter can be surprisingly small, with niter � N (N − 1). Figure 4-38 shows

the expected niter to achieve a desired subpixel accuracy in estimating the center point of

the circle for the sample oil droplet of Figure 4-37. The center is located to better than

0.4 pixels for niter = 10, on average, and is nearly independent of N. The slight decrease in

accuracy with higher N is due to the inclusion of pixels off the edge but with high steerable

gradient magnitudes.

A set of simulated droplets was used to estimate the performance of the CPRA and

compare it against filter-based phase-coded annulus methods [14],[445]. Holograms of 80

simulated oil droplets were computed and Gaussian noise added with varying SNR. Images

of droplets were reconstructed at a depth estimated using the SIM focal metric. The

magnitude of the field was used to compute the steerable gradient and gradient orientation.

The N = 20 pixels with the highest gradient magnitude were used with the CPRA to

compute the center positions and radii. Phase-coded filters were also applied to the gradient

magnitude image with a minimum radius of 1.5 pixels and a maximum radius of half the
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Figure 4-39: Expected absolute error in droplet radius estimation using the random al-
gorithm discussed and three phase-coded annulus schemes. The logarithmic and random
algorithms have similar performance over the range of SNR values tested.

largest image dimension (including an additional padding margin around the estimated

particle image of 11 pixels on each side). The mean error for each SNR was used to correct

the raw data against bias. Figure 4-39 summarizes the resulting expected absolute error in

computing the radii. The CPRA, linear-encoded, and log-encoded filters give good results

over a wide range of SNR values, while the chirp encoding is much more variable.

Varying the aspect ratio of the simulated droplet also affects the expected accuracy,

shown in Figure 4-40. A set of thirty simulated oil droplets were generated using a random

diameter distribution ranging from 2 to 52 pixels, then reshaped to aspect ratios between

1.0 (purely circular) to 2.0 (ellipse with major axis twice as long as the minor axis). The

deformed droplet models were used to generate holograms and Gaussian noise was added

at a fixed SNR of 1.0. The depth detection, reconstruction, and parameter estimation

proceeded as previously. The CPRA and linear phase-coded annulus filter have similar

expected errors, while the logarithmic encoding shows lower sensitivity, as expected [445].

The chirp encoding has poor results and will not shown or pursued further. The geometric

radius of the deformed droplet, (ab)1/2 , where a is the semi-major length and b is the

semi-minor length, is used as the equivalent radius for computing the radial error.

Practical use of the CPRA and phase-coded methods for diameter measurements show
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Figure 4-40: Expected absolute error in radius estimation as the aspect ratio of the droplet
changes from circular (aspect ratio of 1.0) to twice as long as wide (2.0).

that the CPRA actually performs better than expected (Figure 4-41). Noise, wider varieties

of shapes, variations in edge magnitudes, and small droplets seem to affect the phase-coded

method more —especially if a priori estimates for the diameter range are used (which can

be useful if only a portion of the droplet is detected and thus the detection size is a poor

initial guess for the object size). A set of 135 oil droplet images was used to calculate

linear correlation coeffi cients between the estimated diameter and diameters measured by

hand. The CPRA method resulted in a correlation coeffi cient of τ = 0.73, while a linear

phase-coded annulus had a correlation coeffi cient of only τ = 0.45. The difference is that

the phase-coded annulus overestimated the size of small droplets due to the a priori droplet

size guess, while under-estimating the size of large droplets. In the end, both estimation

methods were used as features in a classification algorithm, with the CPRA diameter used

for the final size statistics.

4.3.4 Droplet classification

The final step is to classify images as either droplet or non-drop and compute the distribution

statistics. A training set of droplets and non-droplets, as marked by a human oracle, was

used to train a classifier. The set included 118 drops with diameters larger than 30 µm, large

enough to be identified reliably as oil droplets by the observer, and 314 non-drop objects.

A series of metrics were computed on the images, including the CPRA and phase-coded
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Figure 4-41: Particle diameters as estimated by the CPRA and phase-coded annulus meth-
ods. Ground truth was provided by reconstructing and measuring particle diameters by
hand for one dive. The phase coding was linear and a priori diameter ranges were used due
to noise in detecting droplets. The phase-coded annulus tends to strongly over-estimate the
size of small droplets when strong noise and weak edges are present.

annulus diameters, average SIM value along the edge, measures of circularity computed

from the moments of the particle image (see, e.g., discussion in [403], in particular the

background on using Hu moments as circularity measures; this is related to the eigenvalue

ratio of the intensity Hessian), the strength of the phase-coded annulus maxima, the CPRA

fit metric, mean intensity and standard deviations inside the estimated circle area and

outside of it, and the magnification factor. Various classifiers were tested in Weka [152],[391]

with 10-fold cross-validation on each classifier. A naïve Bayes classifier [106] had an 83.6%

overall correct classification rate and provided a baseline. LogitBoosting [129] and J48 trees

(the non-commercial version of Quinlan’s C4.5 trees [292]) both resulted in around 87%

correct classification, while a J48-Graft tree [416] led to a slightly better 88.7% classification.

The J48-Graft confusion matrix is shown in Table 4.4. Interestingly, the J48-Graft can also

be used on droplets with diameters smaller than 30 µm. However, the error rate in this case

is unknown because the correct label was unknown even to the humans visually labelling

the detections.

The classification rates depend on the droplet size. Small objects have higher classifica-
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Est. Drop Est. non-drop Truth rate
Drop 91 27 77.1%

Non-drop 22 292 93.0%

Table 4.4: Confusion matrix using a J48-Graft tree for classifcation

10 20 30 50 100 200 500
0

0.2

0.4

0.6

0.8

1

estimated diameter, µm

pr
ob

ab
ili

ty
Droplet classification rate (TP)

10 20 30 50 100 200 500
0

0.2

0.4

0.6

0.8

1

estimated diameter, µm

pr
ob

ab
ili

ty

Non­drop classification rate (TN)

Figure 4-42: Truth rates for droplets and non-droplets as a function of diameter. The rates
are estimated from the J48-Graft tree classifier using a kernel density estimator. Dashed
lines denote the 2σ uncertainty, derived from the density estimation.

tion errors due to limited image sizes and edge points. Large objects also faced error due to

limited statistics, as most objects were 150 µm or smaller (equivalent circular diameter).

The truth rates as a function of diameter are shown in Figure 4-42. The rates were com-

puted using the training set with the J48-Graft tree and a kernel density estimator (KDE).

A logarithmic transform was used in the KDE since the diameter distribution is strictly

positive.

The observed number of objects for a particular size class can be modeled as a linear

mixture of correctly and incorrectly classified objects. The observed number of objects,

−→o = [odrop, onondrop]
T , is then

−→o = M−→n , (4.66)

where n = [ndrop, nnondrop]
T is the actual number of drops and non-drop objects and M

is the classification rate matrix computed directly from the confusion matrix. The least-

squares solution is found as −→n = M−1−→o [347],[165],[166],[423]. One of the issues is that

the direct solution can lead to negative results. Hu solves this problem by setting negative

counts to zero and distributing the errors to the other classes depending on their relative
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abundances. An improvement is to solve the constrained least-squares problem,

minimize
∥∥M−1−→o −−→n

∥∥
2

subject to ni ≥ 0 ∀i, (4.67)

which guarantees that the −→n will be physically feasible.

Sample results using the methods discussed in this section are shown in Figures 4-44

and 4-45. The data comes from the Gulf of Mexico during the British Petroleum (BP) oil

spill [261]. The site was located at 28◦ 44.91′ N, 88◦ 22.0′ W, about two kilometers from

the failed drill site. The displayed data is from the morning of June 14, 2010, taken during

the fifth dive on the Jack Fitz 1 cruise. The prototype holographic camera system with a

Hasselblad CFV-39 as the detector was attached to the front of a remotely operated vehicle

(ROV) and lowered vertically to nearly 4900 ft, crossing the undersea oil plume twice and

collecting 1235 useful holograms before filling the available recording memory. Figure 4-43

shows the depth profile of where data was collected. The detection and classification schemes

discussed in this section were used to count the number of droplets. Size statistics were

computed by grouping together detections at nearby depths so that each region (shown as a

different color in Figure 4-43) had the same number of droplets. Alternately, equally-sized

depth regions could be used, or regions with equal numbers of holograms. The method here

of dividing the regions based on droplet count has the benefit of providing good statistics

for each region while allowing adaptive region sizing around the depth of the oil plume, and

was selected for depiction here for better visualization.

The oil plume is visible between about 3500 and 3850 ft (1067 to 1173 m) as a sudden

increase in the number of small droplets. The narrow range is consistent with other plume

measurements [53],[182] and could be verified visually using a UV light which caused the oil

to fluoresce visibly in the ROV camera images. The resultant volume estimates, computed

from the diameter estimates, are shown in Figure 4-45. Both the size and volume distri-

butions include 2σ uncertainties, calculated by error propagation. This error includes the

uncertainties in the least-squares solution, the kernel density estimation using logarithmic

transforms, and the diameter estimation. Larger uncertainties appear for small droplets in
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Figure 4-43: Sampling profile of dive 5. Crosses denote depths and times that holograms
were captured. Color bands indicate depth regions with equal numbers of detected droplets
and correspond to the colors of Figures 4-44 and 4-45. The region size depended on the
actual abundance of droplets and the time spent sampling at each depth.

the size estimates of Figure 4-44 because of the lower classification rates for the droplets

smaller than 30 µm. The volume estimates include diameter cubed terms, so that errors in

the small droplets count little towards the total volume, but the low numbers of droplets

larger than 150 µm lead to higher errors due to limited statistics.

In the end, using the holographic camera for investigating the oil spill was successful.

Visual measurement was important because the holographic system could resolve droplets

much smaller than the ROV’s cameras, verifying that the presence of large droplets that

could be seen in the UV lights were positive indicators of oil activity. Size distributions

that could be strongly linked to oil droplet images were used to improve predictive models

for later sampling days, indicating that the modelers should include numerical simulation

runs for smaller droplets than previously considered. The distributions could also be used

to calibrate sensors which estimated oil content by derived quantities —or in the case of

the LISST [320] used on a few later dives, that its size measurements were not sensitive

enough to small droplets or discriminative to droplets versus other particulate matter. The

oil droplets were a case where visual measurements of small objects distributed through a

large volume were critical to the scientific goals.
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Figure 4-44: Oil droplet size distributions. The solid line is the maximum likelihood esti-
mate; the shaded areas mark the 2σ error as discussed in the text. Regions correspond to
those shown in Figure 4-43 and have equal numbers of detected oil droplets for compar-
ative statistics. The dashed vertical line denotes the 30 µm diameter limit below which
the classifier error is only roughly estimable. The plume is visible in a narrow depth band
between roughly 3500 and 3850 feet with greatly increased probabilities of small (<100 µm)
droplets.
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Figure 4-45: Estimated volumetric distributions as a function of the droplet diameter.
The solid line is the maximum likelihood estimate, while the filled region denotes a 2σ
uncertainty. The regions again match those of Figure 4-43. Extremely limited numbers of
large drops were seen in the data, limiting the accuracy at higher diameters.
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Chapter 5

Future Work and Conclusions

Tools for making sense of the vast imagery generated by computational imaging inspire a

number of further applications. This final chapter serves as a reminder of the contributions

that pave the way for future work, then suggests some interesting extensions.

5.1 Contributions

This thesis has applied ideas from machine learning, methods from computer vision, analysis

of optical systems, and engineering design to the tasks of optically retrieving information

about life in aquatic environments. Solutions have been provided for a number of problems

which, at the time, had not been approached or suffi ciently solved. Specific contributions

of note include the following:

• Chapter 2 developed methods for recognizing habitats and extracting images of fish

from images captured using traditional cameras. A bag of words model was shown to

be particularly effective with mixed benthic environments with significant improve-

ments achieved through a transform based on an independent component analysis.

A multi-stage detector was created for extracting images of rockfish from the same

habitat images with an overall 70.9% detection rate and precision of 0.69. Coupling

the habitat information with each detection allows the population counts to be cor-

rected from the known detection rates. The detector also provided evidence that the

SeaBED AUV is not leading to avoidance behaviors from rockfish. Finally, methods
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for extracting images of fish from videos of longline fishing operations are demon-

strated, paying particular attention to dealing with a non-ideal background, temporal

and spatial resolutions, and high compression rates. A max-flow model was created

to predict which extracted regions from nearby frames were of the same fish.

• Wigner transform methods were used to analyze holography with a spherical reference

wave, showing an equivalence between spherical and planar holography that simpli-

fies the reconstructions. A linear model was derived for space-bandwidth transfer in

holography that uses both a spherical reference and magnification optics, significantly

simplifying the relationships between the space and frequency limits of an imaged

object and the digital detector. The model is applicable for nearly all in-line digital

holography with planar or spherical references. Calculations of the field of view, depth

of field, sampling volume at a target resolution, magnification limits, and relationships

between the spherical reference parameters and imaging bandwidths are demonstrated

using the model. A spherical reference is used in a prototype as a direct result of the

predictability of the imaging.

• A prototype in situ digital holographic imaging device was engineered in Chapter

3. Theory to understand how motion affects the formation of holographic images

and computational experiments to determine how the number of recorded bits affects

image quality were used to inform the engineering choices. Filters to reconstruct

images recorded with Bayer filters were explored and software to work with high

space-bandwidth product holograms was created.

• Theory was developed to explain the noise observed in holograms from particles and

matched well with simulations. A ρ−a model for the power spectrum, with ρ as

the spatial frequency, was shown to fit experimental holograms, while coeffi cients of

a = 2 to a = 3 correspond well with all of the common particle models. The theory

was extended to spherical reference waves. Computations show that the a coeffi cient

remains essentially the same, independent of the type of reference. Simulations of

holograms with particle distributions provide a starting point for predicting image

degradation as a function of physical parameters.
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• A novel focus metric based on local Zernike moments and boosted classification was

created in Section 4.1.3, trained specifically to recognize edges in noisy, real-world

holographic reconstructions. The method is applicable to other types of recognition

problems, such as particles.

• Two methods for predicting the lateral locations of objects from raw holograms were

discussed and a practical approach to identifying peaks suggested. The first method

extended the summation kernel to spherical references. The second proposed the use

of local frequency estimates to detect areas consistent with a holographic signature.

Four approaches to calculating the local frequency were tested. Results for object

detection using the summation kernel and a Riesz-based frequency estimate were

presented on holograms captured by the prototype unit.

• A fast method for estimating the depth of objects in a hologram based on a normalized

spectral signature in the polar domain, the MPFF, was created and tested. Computer-

generated holograms showed excellent performance characteristics for the MPFF in its

ability to precisely and accurately estimate depth over a range of conditions (depth,

noise, shape, etc.). Performance with a particularly challenging set of real-world

holograms showed a maximum of around 70% of objects detected within the first

three peaks when a p-norm of 1.25 was used.

• The methods developed during the thesis work were applied toward quantitative mea-

surements of oil droplets in a deep water plume. Holograms were captured using the

prototype unit, then processing was done on a GPU with an appropriate power filter

(Chapter 3). Images of oil droplets were extracted using a novel focus metric, then the

size estimated using a new technique that is more robust to the noise observed in real-

world reconstructions (Chapter 4). Classifiers with corrections are used to estimate

the oil droplet size distributions (influenced by work in Chapter 2). Results of the

plume location are consistent with other researchers. The work was complementary

as it added size data and direct imaging of the oil as it interacts with the environment

that other instruments were not able to provide.
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5.2 Applications and extensions

The work in this thesis has focused on providing physical, software, and theoretical tools

for imaging life in aqueous environments. As with any set of tools, there are a myriad of

applications and uses. This section proposes future research that extends from the methods

developed in Chapters 2-4, along with a number of related projects that have shown promise

after initial experimentation. The list is, of course, not comprehensive, but gives a flavor

for some of the more immediately applicable extensions.

5.2.1 Automatic identification of plankton

The design of the prototype unit was engineering around imaging plankton in the ocean.

A large number of holograms have since been captured by the prototype. The methods

developed in Chapter 4, specifically localization, focus metrics, and GPU implementation,

were one of the final steps before plankton images could be reliably extracted from the

holograms automatically. The next step is to select the appropriate focus metrics, tune the

parameters, and optimize the code to provide a database of plankton images for training.

Feature extraction and selection for holographic images is not a trivial task. The twin

image and noise increase the variability of the background so that simple thresholding pro-

vides extremely poor shape outlines. Methods such as Chan-Vese segmentation (see Figure

5-1 and Section 2.2; GPU implementations have recently been made available) or graph

cuts [239],[238] have a better chance of correctly determining the plankton shape with fewer

priors, particularly important for recognition based on the morphology [334]. Past research

on recognition from digital holographic images is extremely limited, suggesting simplis-

tic correlation and statistical methods with limited classes [176],[178],[177],[257],[263]—but

does indicate that the imagery is useful for recognition. Fortunately, there is a good selec-

tion of more appropriate research showing that plankton identification is indeed possible

[29],[165],[166],[234],[81],[370],[147].
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Figure 5-1: Example of using Chan-Vese segmentation with a copepod that has a distinctly
different grayscale level than the background. The real part of the field, left, was used to
compute the segmentation, right. This segmentation used 100 iterations and took 160 ms
to compute for the 0.072 MPx image on a 2.2 GHz CPU.

5.2.2 Particle size distributions

Imaging particles is one of the older and better studied uses of digital holography. Holo-

graphic particle imaging velocity tracks particles through 3D volumes to produce estimates

of the flow field [160],[273],[290],[240],[328],[441], with a number of specific algorithms de-

veloped for dealing with particle localization [274],[89],[435],[83],[325],[348],[11],[13],[336]

and pairing between images [327],[432]. Early film holography sought to measure parti-

cle size distributions in the environment [377], a trend continued with digital holography

[272],[321],[253] (and Section 4.3).

Estimating the particle size distribution is interesting for biological, ecological, and

industrial applications. Nishihara et al. proposed a simple method for estimating the size

of a single particle by searching for the zeros of the spectrum [264], then Denis et al.

demonstrated that the mean particle size of a distribution could be found from examining

the central spectral peak [92]. However, Section 3.4 showed that estimating the full particle

size distribution from the spectrum is extremely challenging and may not be possible without

excellent a priori information and controls over the measurement. Obtaining a complete

particle size distribution is thus relegated to the spatial domain.

Many of the methods in Chapter 4 are applicable to searching for particles in the spatial
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domain. Extremely low particle densities could make use of the fast depth estimation

and localization methods of Sections 4.1.4 and 4.1.5. Reasonable particle densities, on

the other hand (such as those required for holographic particle imaging velocimetry or

concentrations seen in oceanic holograms) are better suited to a brute-force reconstruction

of the entire volume. Methods which utilize a graphics processing unit, Section 4.2, are

arguably necessary for large volumes. The various focus metrics and combinations, Section

4.1, are easily adapted for use on GPUs. An example of using focus metrics on GPUs to

locate oil droplets over a range of diameters was discussed in Section 4.3. Other applications

require testing and tuning to determine which metrics are best for the particular goal:

accurate sizing, lateral localization, or depth localization.

The Zernike method of Section 4.1.3 was specifically trained for edges and gives a weak

response for small particles. However, the same concept can be applied to train a classifier

for particle images. Initial tests show promise, with the specific caution that noise needs to

be controlled to avoid false positives.

The projection focus method is good for GPU implementation (Sections 4.1.1 and 4.2)

but removes depth information. This can be a problem when there is noise close to a parti-

cle laterally but far away in depth. Removing the noise during the filtering and projection

process improves size and position estimation. Initial experiments with non-linear bilateral

filters [277] significantly improved the contrast around tracer particles (Figure 5-2) [230].

Metrics which amplify noise, such as gradients and Laplacians, may be particularly good

candidates for combination with bilateral filtering. Recent work from Pantelic et al. specif-

ically merges bilateral filtering and edge detection [275], supporting the use of bilateral

filters for detection and localization.

5.2.3 Biological tracking

Digital holography has the unique ability to resolve positions of objects within 3D volumes

over longer working distances than standard imaging systems. It can thus be used for behav-

ioral studies of biological entities in their natural environments [326],[328],[432],[99]. Figure

5-3 shows an example of using the lateral and depth resolving capabilities of a benchtop

system (Section 3.3.2) to record the motion of a copepod over 2.5 minutes as it explores a
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Figure 5-2: Locating particles with a minimum intensity focus metric and bilateral filtering.
Left: the projected minimum intensity metric retains noise, both from random background
fluctuations and from particle focusing, decreasing the contrast of the particle images. Right:
applying a bilateral filter to each reconstructed slice during the projection removes random
fluctuations and a significant amount of the out-of-focus image, increasing particle contrast.

small enclosure (pictured as the black boundary box). Details about the orientation of the

copepod and its actions to protect its egg sacs are visible in the reconstructions.

Experiments to track other copepods as they reacted to changes in their environment

were performed with T. Konotchick during the Celebes Cruise in October 2007 (Section

3.3.2) and made preliminary use of work developed during this thesis. The animals were

located laterally using similar methods as Section 4.1.4. A 512 × 512 pixel region of the

hologram around the copepod was extracted and the PFF response computed (Section

4.1.5), made more practical by the limited depth range and number of expected objects

(one or two in all samples). The 3D path was estimated by combining the PFF responses

and lateral positions into an energy model that promoted smooth motion, high PFF peak

values, and consistent depth estimates [56]. The energy model was solved with simulated

annealing (SA) and error bars estimated by running the SA multiple times. Figure 5-4 plots

the estimated depth and the measured depth. For this example, the two depth estimates

are close, and the regularization imposed through the energy actually helps smooth out

the motion, though it does show sensitivity to the weights applied to each energy term.

Accuracy for other copepods was lower because the PFF has wider and more peaks for real

data, the sample tank partly obscured the view of the copepod when it was near the walls

or bottom, and the motion model used was not able to adequately capture sudden jumps.
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Figure 5-3: Example of tracking a female copepod along a 3D trail over time. The black line
marks the path over time, with the reconstructed image showing that particular moment
in time. The sample data was captured during the Celebes cruise (Section 3.3.2).

There are a number of improvements that can be made for future tracking experiments.

A detector with a faster frame rate (or effective frame rate; see the next section) would

reduce the uncertainty between time steps for how far the animal had moved. Switching to

the MPFF (Section 4.1.5) or a brute-force reconstruction with the GPU would both generate

better estimates of the depth. Finally, a motion model that allows for both slow drift and

sudden jumps would significantly improve the solution for copepods. (Other animals with

continuous motion have much simpler models.) Generating enough data to create the model

and estimate its parameters would certainly be helped by the fast methods of Chapter 4.

5.2.4 Digital multiplexing holography

Section 3.1.2 showed that only a few digital bits, on the order of 4-5, are required to record

a hologram with good reconstruction quality. Domínguez-Caballero and Loomis suggested

that a substantial number of digital holograms could be recorded simultaneously in a single

exposure, utilizing the excess bits in a sensor [99],[100]. Multiplexing holograms is a matter

of pulsing the illumination multiple times during the camera’s photosensitive period (Figure
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Figure 5-4: Using the PFF response to estimate a 3D motion path. Top: the PFF FcFs
is plotted vertically for each frame. Red indicates a peak while blue indicates a low value.
The solution of the energy minimization is plotted as the “×”symbols with a thick white
connector line, and includes both the PFF response, the lateral position, and a simple
motion model. A ±1σ error is plotted as the shaded area. Bottom: the estimated depth
compared to the measured depth. The measured depth was judged to the nearest millimeter
from reconstructed images. The copepod for this experiment was large, around 1200 µm,
and spent some time near the edge and bottom of the tank where a significant fraction of
the spatial frequencies were lost.
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Figure 5-5: Three techniques for multiplexing digital holograms into a single exposure of a
detector. Top: the camera is set to expose for an extended period, and the laser illumination
is pulsed multiple times. Middle: the pulse rate is varied, providing an indication of the
direction of motion if the objects have nearly constant velocity during the pulsing period.
Bottom: multiple wavelengths are pulsed multiple times, disambiguating the direction of
motion and providing higher temporal resolution. A camera with a color filter is required
to take advantage of the third approach.

5-5), producing an incoherent sum of holograms,

IM (x, y) =
∑
i

Ii =
∑
i

|ri|2 +
∑
i

|oi|2 +
∑
i

[r∗i o+ rio
∗] , (5.1)

where Ii is the hologram corresponding to the ith laser pulse and the ri, oi are the reference

and object waves during the ith period. The multiplexed hologram is reconstructed exactly

like a normal hologram. The reconstruction is then the sum of the object images and

may contain overlap if the objects have not shifted suffi ciently between illumination pulses.

Laboratory experiments were able to record 4-7 holograms within an exposure using a Kodak

KAF-16801E 12-bit sensor, or up to 12 exposures with reduced contrast and resolution. An

example of a copepod nauplii recorded with three pulses is shown in Figure 5-6.

Multiplexed digital holography has a number of potential applications. Domínguez-

Caballero et al. suggested that the images could be used for tracking micro-organisms over

space and time with high space-bandwidth product cameras. The high SBP allowed them

to track a large volume of organisms simultaneously [99]. Salah et al. later showed an
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Figure 5-6: Multiplexed image of a copepod nauplii as it tumbled from left to right. The
nauplii is estimated to be around 250 µm and the image was recorded with a spherical
reference.

example of tracking particles in a vortex street [310]. Other laboratory experiments have

used multiplexing for acquiring bursts of particle images at equivalent frame rates of 4,200

fps, tracking fast-changing fluid flows with comparatively slow cameras.

Oceanic holography could benefit from multiplexing several volumes of water into a single

hologram, effectively multiplying the total recorded volume per hologram. This assumes

that the holographic device is moving through the water fast enough to image a new volume

every few milliseconds. At a fast 12 knots, a 40 mm wide detector would require around 7

ms between pulses to completely separate each volume.

Another potentially interesting use might be for measuring marine microscale fluid flows.

Malkiel et al. used digital holography in a laboratory setup to image tracer particles ad-

vected by a copepod’s feeding flow [240], an experiment which may be more feasible to repeat

in situ with fast multiplexing. Similarly, microscale turbulence and shearing [343],[305],[364]

could be captured in a single snapshot if there are suitable tracers in the water. Alternately,

streak velocimetry [94] and multiplexing could be combined to provide several velocity es-

timates within a single frame.

A caveat of multiplexed holography is that the noise builds quickly compared to the

individual signals. This is a function of both the measurement noise [310] and the sheer

number of particles [98],[97]. A low-noise sensor, such as a CCD, is thus critical for achieving
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Figure 5-7: Example of combined time and spatial multiplexing. The red and green lasers
were pulsed in sequence twice (see Figure 5-5). The reconstructions of the red-filtered pixels
and green-filtered pixels are taken from the same area of the sensor, but are shown side-by-
side for visual clarity. The copepod is moving unambiguously downward in these images.
Note that without color multiplexing, the images would have overlapped due to the slow
drift speed of the copepod.

higher numbers of multiplexed images.

Finally, it is worth noting that a number of methods for multiplexing are possible, three

diagrammed in Figure 5-5. Time multiplexing is a good choice for a monochrome sensor.

Color-based multiplexing is ideal for a sensor with a Bayer color filter, where two or more

lasers record different images for each pulse. Figure 5-7 shows an example that utilizes

both time and color multiplexing. Reference [99] discusses the use of polarization optics for

recording multiple images. Both polarization and color multiplexing have the possibility of

recording two different holograms simultaneously. For example, multiple views of the same

object could be stored into one hologram. It should be noted that spatial multiplexing using

color has appeared in the literature for both digital holography [207],[308] and quantitative

phase retrieval [404],[405],[406],[229], so the concept is not necessarily novel but still useful.

Precise measurements of phase objects may in fact benefit from these multiwavelength

spatial multiplexing schemes, such as imaging in situ salt fingering.

5.2.5 Holography on gliders, drifters, and AUVs

The prototype unit has been deployed primarily on cabled platforms: CTD/rosettes, ROVs,

and VPR drops. These platforms have a relatively slow speed through the water (. 2
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m/s) and short deployments (1-3 hours). Three major challenges need to be examined in

more detail before migrating the holography unit to more mobile platforms with longer

deployments:

1. Functional control. The prototype is currently controlled via a programmable Micro

PIC and stores holograms to an internal compact flash card. Increasing the memory

card capacity and including an interface to trigger data capture would be the minimum

required for simple AUV operations. A more flexible option, especially for advanced

AUV missions, gliders, and drifters would be to replace the entire detector and control

system with a low-power single-board computer and camera that interfaces directly

with the computer.

2. Power consumption. The current prototype works from a single commercial battery

pack, capturing hundreds of holograms on a single charge. The camera and laser

are powered down when not in use, and the PIC uses a few milliwatts to monitor

and control the device status. However, gliders and drifters are at sea for extended

periods of time, and a certain amount of processing of the holograms would need to be

done on board for the sake of conserving data storage and for effi ciently transmitting

only the data of interest. The methods of Chapter 4, specifically depth and position

estimation (Sections 4.1.4 and 4.1.5), have the potential to vastly reduce the number

of computations required and thus the energy expenditure.

Computational devices which use single instruction multiple data architectures, such

as GPUs, are known to be particularly power-hungry in desktop applications. For-

tunately, there has been considerable interest in reducing the size and power usage

of GPUs for portable devices, and they are currently appearing in laptops and smart

phones with greater frequency. It may well be worth investigating these portable

GPUs for on-board processing: they are built purely for computation, so less overhead

is wasted on background tasks and keeping the device active after the computations

are finished1.

1Collange et al. note that desktop GPUs are around four times more effi cient in terms of flops/watt than
CPUs [70].
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Optimizing algorithms will also require some thought towards power consumption.

Collange et al. provide power consumption measurements of specific operations for

a few select desktop GPUs. For example, reading from an L1 texture cache requires

3-4 times less power than global memory fetches, multiply-add (MAD) operations are

7-15 times more effi cient than memory fetches, and reciprocals (RCP) require around

three times the power of a MAD [70]. Thus, algorithms which compute kernels on-

the-fly instead of reading them from memory might actually use less power. Similarly,

boosting by interpolating from texture memory would be preferred over loading a

classifier from global memory.

3. Hydrodynamics. Reducing drag is critical for gliders and drifters. A spherical reference

allows a much smaller housing for the laser illumination. A camera with large space-

bandwidth product and pixel size reduces the need for relay optics and similarly

reduces the housing length. Fairings for the housings and struts are recommended.

Handling fast motion

The majority of the prototype deployments have been on slow moving platforms. As long

as vτ . ∆/M, where v is the lateral velocity of an object, τ is the illumination pulse length,

M is the magnification, and ∆ is the effective pixel size (see Section 3.3.4), the motion

blur will be nearly undetectable in the reconstructed image. For typical values of M = 1.3,

τ = 5µs, and ∆ = 15µm, the velocity should satisfy v . 2.3 m/ s. This estimate is rough,

as some applications can withstand greater motion than others; for example, identification

may not need (or be able to use) as high of a resolution as accurate particle sizing requires.

A higher laser power and a more sensitive CCD can immediately increase the maximum

velocity.

But what of the case where a device is pushed beyond its limit, either accidentally or

intentionally? The effects of motion were previously discussed in Chapter 3 (see Section

3.1.1), with the assumption that most hologram motion was to be avoided. However, one of

the main conclusions was that if there is significant lateral motion, the resulting hologram

is nearly identical to the stationary hologram convolved with the motion PSF. This is

exactly the same model as used for incoherent imaging and various well-known deconvolution
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methods [31]—so that removing the motion blur is a matter of choosing a preferred method.

In many traditional deconvolution methods, an initial guess for the motion PSF is necessary.

Dixon et al. provide a way of estimating the direction and magnitude of short linear motion

PSFs by looking at the directional blurring around a point particle’s diffraction image [94].

Oceanic holography is nearly guaranteed to have a number of particles in each frame to

estimate the velocity.

One of the problems with linear motion blur is that the kernel includes zeros, destroying

some image information and making the inversion unstable [31]. Raskar et al. have proposed

modulating the illumination to create a kernel which has better inversion properties [2],[296].

Modulating the laser pulse is easy with a Micro PIC controller and a laser diode, both

already used on the prototype. Initial experiments show that standard deconvolution with

a modulated blur PSF improves visual image quality over deconvolution with a uniform

blur PSF. Selecting an optimal modulation depends on the expected velocity, total exposure

time, and the maximum modulation rate of the laser diode driver.

5.2.6 Riesz-based focus metric

Kovesi developed a measure of the phase alignment of Fourier components as a way of

detecting edges in images, termed the “phase congruency”. The phase congruency measure

has a number of benefits, including single peaks for bar-like shapes (such as antennae) and

a lower dependence on the total contrast [201],[200],[199]. Unfortunately, computing the

phase congruency directly is relatively slow. Venkatesh and Owens note that the peaks of

the phase congruency are at the same points as the peaks of the local energy [199], which

can be measured as the amplitude of the Riesz transform. In a sense, the Riesz amplitude is

a proxy for the phase congruency. Figure 5-8 shows an example of using the Riesz amplitude

as a focus metric. Given that the Riesz has intrinsic connections to local frequency and can

be computed for complex-valued fields, it is a particularly interesting candidate for future

research.
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Figure 5-8: The amplitude of the Riesz transform used as a focus measure, projected in the
same manner as in Section 4.1. This figure uses the same example hologram as Figure 4-8.
The copepod is in focus at z = 40.6 mm, which corresponds well to the teal outline of the
copepod visible in the depthmap.

5.3 Future outlook

Digital imaging devices have advanced significantly over the past decade. High space-

bandwidth product cameras, both CMOS and CCD, are becoming commonplace on the

market, and demand for faster frame rates makes generating enormous amounts of visual

data simple. Making sense of the information and managing massive data sets is becoming

the next need for science. Reliable, accurate, and fast automated methods for extraction

and analysis are a necessity.

The past decade has also seen an explosive increase in computational power. Desktop

CPUs are necessarily going to improve, but the biggest changes have been in mobile de-

vices and GPUs. Single computers built around general purpose GPU processing now boast

computational speeds that rival the top supercomputers of the late 1990’s and early 2000’s.

Mobile phones have faster processing with lower power consumption than laptops just a

few years previous. The potential for extremely fast laboratory processing, shipboard “su-

percomputers”, and effi cient deployable platforms is incredible. The computational ability

is approaching levels where it is also not a limiting factor.

Fortunately for biology and ecology, the ability to compute is leading computer scientists

to create incredibly potent new methods. It is a matter of deciding which of these can be

adapted for practical use in a challenging and noise-filled ocean environment. As demon-
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strated in this thesis, modifications and novel approaches are always possible, inspired by

previous work.

Digital holography is at an interesting junction between physics and computer science.

The foundational ideas have been well studied and reported in the literature. The basic

tools have been created and analyzed. New approaches will center around working with the

images generated by digital holography. Novel advances are decidedly possible by combin-

ing previous computer vision work with complex-valued three-dimensional optical fields, a

dataset that is itself decidedly different from the images most computer scientists are used

to considering.

At the end of a long day, the message is that biological imaging is at a fantastic cusp in

its development as an applicable tool for real-world science.
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Figure 5-9: Example of iterated local clustering based on color similarity. A 2D map of high-
dimensional color data is first divided into vertical strips. Within each strip, horizontal scan
lines are clustered and the statistics computed. The two clusters with the shortest distance
between their mean values are combined, then the statistics re-computed for the new cluster.
The process is iterated until the distance between all the centers are greater than a specified
threshold. For visualization, the size of the clusters has been jittered slightly.
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