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Abstract

We describe and validate an efficient method for simulating the Boltzmann transport
equation in regimes typically encountered in nanotechnology applications. These
transport regimes are characterized by nonvanishing Knudsen numbers, preventing
simple analyses based on the Navier-Stokes equations; and also by small departures
from equilibrium (low Mach number, small temperature gradients, etc.), which make
the traditional particle methods like the direct simulation Monte Carlo (DSMC) com-
putationally inefficient.

By considering only the deviation from equilibrium, the low-variance particle
method introduced herein, simulates molecular gas transport in near-equilibrium
regimes with drastically reduced statistical noise compared to the DSMC method.
Compared to previous variance reduction methods, the present approach is able to
simulate the more general variable-hard-sphere collision model, which more accu-
rately captures the viscosity dependence on the temperature of real gases, compared
to the hard sphere and Bhatnagar-Gross-Krook collision models developed previously.
The present formulation uses collision algorithms with no inherent time step error,
for improved accuracy. Finally, by using a mass-conservative formulation, accurate
simulations can be performed in the transition regime requiring as few as ten parti-
cles per cell, which is a drastic improvement over previous approaches and enables
efficient simulation of multidimensional problems at arbitrarily small deviation from
equilibrium.

The new methodology is validated and its capabilities are illustrated by solving a
number of benchmark problems. It is subsequently used to evaluate the second-order
temperature jump coefficient of a dilute hard sphere gas for the first time.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
Title: Associate Professor
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Chapter 1

Introduction

In gas flows in which the system length scale is on the order of or smaller than

the mean free path A (the average distance travelled by molecules between succes-

sive collisions), the conventional Navier-Stokes (NS) description of fluid dynamics

breaks down. Transport in this regime can be described by the Boltzmann Transport

Equation (BTE), an integro-differential equation which is difficult to solve in general.

Although a variety of techniques have been used to obtain solutions, the prevalent

numerical method for solving the BTE is a stochastic particle method known as direct

simulation Monte Carlo (DSMC) [14].

At the time of its development, applications for DSMC simulations were motivated

by the need to simulate high-altitude, hypersonic flows-a flow regime characterized

by large departures from equilibrium conditions. Departure from equilibrium can be

characterized by the fundamental inhomogeneity in the physical problem: typically,

this is appears as a Mach number (Ma, i.e. the ratio of the characteristic velocity

to the speed of sound) or a dimensionless temperature difference (AT/To, where

To is the temperature at reference conditions). The breakdown of NS under these

conditions arises from the fact that in the upper atmosphere, due to the low pressure,

the molecular mean free path can be large and approach (or exceed) the characteristic

length scale of the system of interest. The impressive efficiency of the DSMC approach

for this class of problems led to its widespread adoption as the standard method for

general rarefied gas flows.



However, more recent applications have focused on the simulation of gas flows in

small scale devices under conditions close to equilibrium (Ma < 1, AT/To < 1), such

as MEMS and NEMS (micro- and nanoelectromechanical) devices. In this case, NS

breakdown typically occurs because the system length scale L is small enough to be

on the order of or smaller than the mean free path A (- 50 nm for air at standard

conditions). In this regime, the standard stochastic particle methods like DSMC are

not so efficient because statistical noise dominates the hydrodynamic signal of interest.

For example, Gallis, et. al [25] who used DSMC to calculate the pressure and velocity

fields arising from a oscillating microbeam, report that, due to the low flow speeds

induced, "very long averaging times" (essentially requiring supercomputing facilities)

were required to get a sufficiently smooth solution. As a result, researchers have

encountered difficulty using DSMC in such situations, many choosing instead more

computationally efficient approximate methods.

For example, Frangi et al. [23] numerically analyzed the gas-phase damping effect

on the dynamics of a MEMS accelerometer. The low flow speeds involved would

result in a very noisy DSMC simulation, prompting the author to use a PDE-based

approach employing the Bhatnagar-Gross-Krook (BGK) collision model, which is only

an approximation to the full BTE which DSMC solves. In another study, Han et al.

[30] used the DSMC method to simulate flow through a Knudsen compressor, a small-

scale device with no moving parts that induces a gas flow as a result of an imposed

temperature gradient. In this study, an artificially large temperature gradient was

simulated in order to improve the signal-to-noise ratio due to the excessive levels of

statistical noise.1

This shift in focus-from highly non-equilibrium flows to near-equilibrium flows-

has led to significant research activity on low-noise methods for solving gas transport

problems. These studies can be roughly divided into three catagories: mathematical

analysis of the linearized Boltzmann equation, PDE-based methods, and variance-

reduced stochastic particle methods. Studies of the linearized Boltzmann equation,

'For comparison, a noise-free simulation of a Knudsen compressor using the method outlined in
this thesis, operating under an arbitrarily small temperature gradient, is presented in Section 7.1.



are typically mathematical in nature [18, 57], and have led to many high quality

numerical solutions of fundamental problems. Although they are relevant to many

important applications, they are inadequate to treat more general multidimensional

problems in complex geometries encountered in MEMS/NEMS devices. PDE-based

methods for solving the BTE have the advantage of avoiding the noise issues of

stochastic particle methods, but they require considerably more computational re-

sources. This added computational expense is due, primarily, to the high dimension-

ality of the velocity distribution function f(c, x, t)-the dependent variable appear-

ing in the BTE-which is in general a function of three spatial coordinates (x), three

molecular velocities (c), and time (t).

Variance-reduced stochastic particle methods have recently been developed in or-

der to efficiently simulate these near-equilibrium flows [9, 22, 33, 52, 29, 53]. Presented

in this thesis is an advanced variance-reduced stochastic particle method for solving

the BTE. This method features a more general collision algorithm with improved

convergence properties, as well as the ability to simulate more general gas interac-

tion models; moreover, we present new algorithms which provide sizable efficiency

improvement over acceptance rejection methods; finally, we present algorithms that

feature exact mass conservation which is essential for simulating multi-dimensional

problems.

In this chapter, introductory material on the BTE governing rarefied gas flows

and the standard DSMC particle simulation method is presented, followed by a re-

view of previous variance-reduced methods. Subsequent chapters introduce the com-

putational algorithms, validation and performance considerations, as well as some

applications of these algorithms to problems of current interest. Finally, a conclu-

sion is presented along with a discussion of open issues and suggested future research

directions.



1.1 Particle description of rarefied gas transport

In order to provide the proper context for the computational algorithms developed

in this thesis, in the present section we discuss the particle description of rarefied gas

transport.

When the molecular mean free path (A) is no longer negligible compared to the

system length scale (L), the continuum-based description (Navier-Stokes and thermal

diffusion equation) is no longer valid. This breakdown regime is typically referred to

as the rarefied regime due to the original application to flows in the upper atmosphere,

and is demarcated in terms of a Knudsen number, defined as the ratio of the mean free

path to the system characteristic length scale (Kn = A/L). For many problems, L may

be chosen as a relevant physical distance characterizing the simulation domain, but in

other cases, in particular for early time transients, L must be chosen according to the

local gradient(s) in the fundamental hydrodynamic variable(s) [14] (e.g. I= )

In this thesis, we focus on a single monatomic gas species with only three (transla-

tional) degrees of freedom. The required particle description is the Boltzmann trans-

port equation (BTE), a conservation equation for the velocity distribution function

f(c, x, t); the latter is proportional to a probability distribution of particle velocities

c at a particle point in physical space x and at a certain time t. For notational con-

venience, we will represent f(c, x, t) without its space and time dependence unless

necessary for clarity. The BTE can be written in general form as follows:

Of()+ C- + a -f =C Qlf, f](C).(1)
at ax ac

In the above, a is a body force per unit mass. In the regimes of interest here (small

departure from equilibrium), the gravitational body force is negligible, and thus it

will be neglected; relaxing this assumption requires only small modifications to the

algorithms presented in this thesis. The right hand side Q [f, f] (c) is the collision

operator; the two most commonly used collision models were considered in the course

of this research, and are discussed below.



1.1.1 The variable hard sphere collision model

The variable hard sphere (VHS) collision model was introduced by Bird [13] as an

alternative to the hard sphere model due to its ability to more realistically capture

the temperature dependence of transport coefficients on temperature.

In the VHS model, the dynamic viscosity is given by y = pref(T/Tref)w, where

pref is the dynamic viscosity at reference temperature Tref, and w is the temperature

exponent in the viscosity law. Typically w a 3/4, while the hard sphere result is

recovered for w = 1/2. The collision operator for the VHS model can be written as

Q[f, f](c) = C'6 d2n j d3c, Ic - cI[| -[f(c')f(c') - f(c)f(c.)]. (1.2)
JS2 473

In the above, primes denote post collision velocities {c', c'} = (c + c, t |c - c*||);

the solid angle n is integrated over the unit sphere S 2 . The relative velocity exponent

# is related to the temperature coefficient of viscosity via 3 = 2(1 - w). The constant

prefactor is given by C6 = d2efc , where m is the molecular mass, drf is the refer-

ence molecular diameter, and cr,ref = 4v/RTref/lr is the mean relative molecular speed

at reference temperature Trf. Here, R = kB/m denotes the gas constant,where kB is

the Boltzmann constant. In the VHS model, the mean free path has a temperature

dependence given by A-' = v/2r(po/m)d2 f(Trfe/To)w-1/ 2 , where po and To are the

reference density and temperature. The hard sphere (3 = 1) and Maxwell molecule

(# = 0) collision models are well-known special cases.

1.1.2 The Bhatnagar-Gross-Krook collision model

The Bhatnagar-Gross-Krook (BGK) collision model [12]

Q If, f](c) f -C O C (1.3)
IT

is a useful approximation to the collision dynamics of many systems which is reason-

ably accurate for many situations. This model is widely used, because it is far more

21



tractable mathematically, while still capturing much of the essential physics of more

general collision models. Here, floc is a local Maxwell-Boltzmann (equilibrium) dis-

tribution based on the local hydrodynamic properties: mass density p, mean velocity

u, and temperature T.

xc(c) ( exp i) - (1.4)
rs/ 2c3  c(

In the above, cIOC = N2RT is the most probable molecular velocity based on the local

temperature.

In a dilute gas, the relaxation time T is inversely proportional to the local density,

which can be represented as r = prerfrer/p, where ref is the relaxation time at a

reference state with density pref. The mean free path for this model is A = coro,

based on the relaxation time ro and most probable velocity co = V2RTo of the global

equilibrium state.

The key deficiency of the BGK model is that it predicts a Prandtl number Pr =

c~p/K of unity, in contrast to real gases for which Pr ~ 2. Here, K is the thermal

conductivity, pL is the dynamic viscosity, and c, is the specific heat at constant pres-

sure. An incorrect Prandtl number is especially problematic for non-isothermal flows,

because in these problems thermal and hydrodynamic fields are coupled. Because of

this, the ellipsoidal statistical BGK (ES-BGK) model [16] has been introduced, which

allows an arbitrary Pr to be prescribed.

1.1.3 Hydrodynamic properties

The connection between the molecular description (f), and the desired hydrodynamic

properties is made via moments (integrals weighted by polynomials in c) of the dis-

tribution function [59, 57]. These relationships are summarized below for the mass

density, mean velocity, pressure tensor P and heat flux q

p= dc 3Cf(c) (1.5)
JR?



u = J d3c c f(c) (1.6)
P Va

P d3c (c - u)(c - u)f (c) (1.7)

1T =3 R J dsc |c - ul j2f (c) (1.8)

1
q= - d3 c (c - u)IIc - u||2f(c). (1.9)

2 f3

The pressure tensor is related to the more familiar scalar pressure p and shear stress

(r) variables typically encountered in fluid dynamics via

p = 1(Pxx + Pyv + Pzz) = pRT (1.10)

r= pI - P. (1.11)

In the above, I is the (3 x 3) identity tensor.

1.1.4 Maxwell accommodation boundary interaction model

The Maxwell accommodation model is perhaps the most widely used boundary in-

teraction model in which no net mass flux through the wall is allowed. It uses a

single parameter (the accommodation coefficient, a) to represent the percentage of

boundary collisions undergoing diffuse reflection.

According to the usual convention, we will define the unit surface normal n to

point into the gas, and use the definition cn = c - n. The boundary distribution is

parameterized by the velocity uB and temperature TB as shown below

OB 1 ||c - UB1

<cB = c exp C2 CB =V2RTB (1.12)

This permits the boundary condition to be represented as

f(c) = apB0 (C)± (1- a)f(c- 2n), q, >0, (1.13)



where we have assumed that the walls are stationary in the normal direction: uB- n =

0 (i.e. the boundary does not move in the direction normal to its plane). The

"boundary density" pB is determined by enforcing mass conservation, which is derived

by setting the total mass flux at the boundary [f3, dsc cnf(c)] to zero.

>oo d3 c caf(c)
PIB fc<o d3cC (C) (1.14)

1.2 The direct simulation Monte Carlo method

The direct simulation Monte Carlo (DSMC) method [3, 26], is a stochastic particle

method developed by Bird [14], which has become the prevalent method for simu-

lating general kinetic gas flows. While it was originally proposed based on physical

considerations, it has subsequently been proven to provide solutions of the BTE in a

stochastic sense [60]. DSMC has enjoyed widespread use due to its natural treatment

of the advection operator, ability to capture traveling discontinuities in the velocity

distribution function, and straightforward application in complicated geometries.

Formally, DSMC approximates the distribution by computational particles, with

positions xi and velocities c,

N

f(X, c) = mNeff (x - xi) s(c - ci) (1.15)
i=1

Here, N is the instantaneous number of computational particles in the simulation, and

Neff is the number of physical particles represented by each computational particle.

The DSMC method discretizes time by splitting the BTE into an advection step,

which simulates the left hand side of Equation (1.1) for time step At, followed by a

collision step which simulates the right hand side of Equation (1.1) for the same time

step. During the advection step (assuming a = 0), the particles are simply moved

along their trajectories, i.e. x2 (t + At) = xz(t) + c,(t)At. When particles encounter

a boundary, they are reflected back into the simulation domain by sampling their

velocities from the fluxal boundary distribution:



2v (C - UB) - B(c), (c - UB) n > 0. (1-16)
CB

1.2.1 Collision step

During the collision step, the state of the gas is advanced in time under the influence

of the collision operator. The particles are sorted into spatial cells, and within each

cell, pairs of particles are chosen to undergo collisions. For example, in the VHS

model, the collision step satisfies

[If(c)] = C' f2 d2 f dac, ||c-cI|' - [f (c')f(c') - f(c)f (c.)]. (1.17)
. coil JS2 J1Z3

According to the above expression, particle pairs are chosen with a probability propor-

tional to Ic - c,||[4, and their original velocities {c, c,} are replaced by post collision

values {c', c',} = } (c + c, ± ||c - c, If), where fl is sampled uniformly from the

unit sphere. A very desirable feature of this approach is that the mass, momentum,

and energy conservation laws are satisfied for each collision, which eliminates random

walks in the hydrodynamic variables [14].

The DSMC method has also been implemented based on the BGK approximation

[43], where the collision step satisfies

[&f(c)1 _- f(c) -floc(c) (.8
t Icoll T

In this context, individual particles are sampled uniformly from each cell and the

velocity is resampled from the local equilibrium distribution: floc(c)/ploc. A key

difference between this approach and standard collision operators (such as VHS) is

that momentum and energy conservation are not enforced on a collision-pair basis.

However, as shown by Macrossan [43], conservation laws can be introduced by shifting

and scaling the particles in each cell at the end of each time step.



1.2.2 Hydrodynamic variables

Hydrodynamic variables are estimated on a cell-by-cell basis by summing the con-

tributions contained within each cell. Specifically, performing a spatial average of

Equations (1.5-1.9) and using Equation (1.15) yields

P + p

p (3RT +

2(q + P -u) + p (3RT + U2

mNeff
AV

m~eff

V i, cell
mNff

i, cell

m2f c2
i, cell

c) c2.

i, cell

In the above, the summations are performed over a single cell containing Nc particles

with physical volume AV.

1.2.3 Rate of convergence

DSMC is second-order accurate in cell size, and first-order convergence in the number

of particles per cell [51]. Second-order time convergence behavior has been shown for

symmetrized methods like Strang's method [47, 51], which splits the advection step

into two half steps (with time step !At) on either side of the collision step.

1.2.4 Statistical error

Monte Carlo methods in general exhibit statistical noise which is inversely propor-

tional to the square root of the number of independent samples (number of particles

times number of ensembles) used in the approximation. While this is ordinarily con-

sidered to be a very poor rate of convergence, it is also independent of the number

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)



of dimensions in the problem. Thus, as the number of dimensions in a problem in-

creases, Monte Carlo methods tend to become more attractive in general. This is a

fundamental reason why Monte Carlo based stochastic particle methods like DSMC

have become the standard computational approach for simulating kinetic gas flows.

For DSMC, in the limit of small departure from equilibrium, the statistical error

in the hydrodynamic variables has been characterized in detail [28]. For example, the

relative statistical error in the cell-based velocity estimate is

o-1 1
aU l, N e 1 1 (1.24)
U Ve,Nc ,/-yMa

In the above, og is the standard deviation of u., N0 is the number of particles in

the cell, Ne, is the number of statistically independent ensembles used to obtain

the estimate, -y is the ratio of specific heats (e.g. j for a monoatomic gas), and

Ma = U/c, is the Mach number based on the characteristic velocity scale U and the

speed of sound c, = (= ryfRT for a dilute gas).

Likewise, the relative statistical error in temperature for a problem with charac-

teristic temperature difference AT is

oT1 'kB/cv

AT /NenNc AT/To (1.25)

and the remaining hydrodynamic fields show similar behavior [28]. In the above

expression, cV is the specific heat at constant volume on a molecular basis (e.g.

cV = 1kB for a monoatomic gas).

Both estimates (1.24, 1.25) show the expected dependence on the number of sam-

ples for a Monte Carlo method (- i/7Ne.Nc), and also a dependence on the depar-

ture from equilibrium conditions. Thus, for small Mach numbers or for small temper-

ature perturbations, the statistical error in the hydrodynamic variables becomes very

large. Low-variance methods, like the one discussed in this thesis, are capable of es-

timating the hydrodynamic properties with small relative statistical error levels that

are also independent of the departure from equilibrium for near-equilibrium flows.

The resulting performance improvement can be enormous. As an initial demon-
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Figure 1-1: Temperature field (contours) and heat flux distribution (vectors) for the
response of argon to an impulsively changed temperature on a 2A wide section of its
boundary. The DSMC method and the method described in this thesis (denoted as
LVDSMC) are compared at a time t = 1OA/co, showing dramatically improved effi-
ciency for latter method. Both simulations required similar computational resources.

stration, consider the transient temperature response of an argon gas (VHS model) to

a small perturbation in the temperature of its boundary, shown in Figure 1-1. Here,

the lower boundary is diffusely reflecting and held at a temperature of To, except for

the small region in the center of the simulation (denoted as having a width of 2A),

for which the temperature is impulsively raised to To + AT, where AT = O.01To.

Shown are the temperature contours and corresponding heat flux vectors at a time

t = 1OA/co obtained using the DSMC and the low-variance method which is the sub-

ject of this thesis. While both simulations required similar computational expense,

the low-variance method shows dramatically reduced levels of statistical noise.

1.3 Previous work

Stochastic particle methods employing variance-reduction techniques have been de-

veloped only recently [9]; these methods have demonstrated considerable efficiency

improvements over the DSMC method. These approaches are generally based on an



established variance reduction technique known as the method of control variates [7],

in which low uncertainty evaluation of a certain moment is achieved by using informa-

tion related to the value of a related (correlated) variable (the control). This idea has

led to the development of two different types of variance-reduced particle methods:

deviational particle methods, and weight-based particle methods.

1.3.1 Deviational particle methods

The key principle behind the deviational particle approach [9] is the utilization of a

nearby equilibrium state f', which, in situations close to equilibrium, closely approx-

imates the actual distribution function f. Based on this equilibrium state, we define

the deviational distribution as fd f - f, which can be simulated with dramatically

lower variance for the same number of computational particles. However, simulating

fd with particles leads to additional complications; the most notable is that because

fd can now take both positive and negative values, signed particles are required for

its simulation.

The deviational particle approach was first discussed by Baker and Hadjiconstanti-

nou [9], and led to the development of a variance-reduced particle method [10, 11, 8].

As extensively discussed in [10, 11, 8], methods based on the original Boltzmann col-

lision integral suffer from stability limitations in the collision-dominated regime and

require a particle cancelation scheme for stability. This is a severe limitation since

it introduces an additional level of discretization (that is, a grid in velocity space)

which is not present in DSMC.

A new class of deviational particle methods, known as the low-variance devia-

tional simulation Monte Carlo (LVDSMC) method was introduced by Homolle and

Hadjiconstantinou [32, 33, 31]; this method did not require particle cancelation for

stability. This method was developed for the hard sphere collision operator, and

achieved stability by exploiting the a particular form of the hard-sphere collision op-

erator, originally obtained by Hilbert [17], in which the angular integration within the

Boltzmann collision integral is performed analytically. Unlike the method of Baker

and Hadjiconstantinou [10, 11] which used a fixed global equilibrium distribution,



the initial LVDSMC approach featured a spatially-variable equilibrium distribution,

which is updated every time step in order to minimize the number of particles in

the simulation. This approach is particularly advantageous for resolving the Navier-

Stokes limit (system length scale much larger than mean free path), as the true

distribution function naturally approaches local equilibrium conditions in this case.

This is further discussed in Section 2.4.

Subsequent methods were introduced to treat the BGK collision model, which

uses an approximation to the full Boltzmann collision integral. These include a rela-

tively straightforward, but easily implementable version based on a fixed equilibrium

distribution [29], and a highly-efficient linearized version [52], which is based on a

spatially-variable local equilibrium distribution. In the second method [52], a new

method for treating the advection part of the BTE based on the ratio-of-uniforms

sampling technique was introduced resulting in an improvement in computational ef-

ficiency. These studies were also useful for highlighting a key tradeoff governing the

choice between a fixed and local equilibrium distribution: namely, it was discovered

that using a spatially-variable equilibrium distribution resulted in inferior efficiency

when treating problems in multiple spatial dimensions. This is further discussed in

Chapters 2. For this reason, much of the research performed by the author and col-

leagues has focused on the fixed equilibrium distribution in order to produce a more

robust, and generally applicable method.

In recent work by Wagner [61], the LVDSMC method was put into a more precise

theoretical framework, where a collision algorithm treating the variable hard sphere

(VHS) collision model was also introduced. The VHS collision model is a more realis-

tic collision model used for engineering models; it simulates gas models with viscosity

which is proportional to the temperature raised to an arbitrary power 0.5 < W < 1

(in the hard sphere model, viscosity is proportional to the square root of tempera-

ture). The first successful implementation of a stochastic particle method employing

the VHS collision algorithm was reported in reference [54], which, like the present

approach, was implemented based on a fixed equilibrium distribution.

The resulting state-of-the-art VHS-LVDSMC method is described in this thesis,



and also in a recent publication [53]. One of the key improvements introduced is the

introduction of a mass conservation procedure, which leads to a drastic reduction in

the number of particles required in the simulation. This directly addressed a key

limitation to previous deviational methods which were susceptible to random walks

without a substantial number of particles (typically, requiring hundreds or thousands

of particles per cell). This issue is particularly important when simulating steady

state problems, as the required time for a simulation to reach steady state conditions

can be substantial for a large number of particles.

1.3.2 Weight based methods

Variance-reduced stochastic particle methods employing particle weights have also

appeared in the literature. The first such method was introduced by Chun and

Koch for the linearized hard sphere collision model [22] where weights, as well as

ghost particles, were used in order to simulate deviation from a fixed equilibrium

distribution. However, this approach suffered from the same key deficiency as the

original deviational particle method [10, 11]; namely, it required particle cancellation

(and associated velocity discretization) for stability. Subsequently, a linearized BGK

version [56] was introduced, which due to its similarity to the Hilbert form of the

collision integral [29, 53], was stable without the need for a particle cancellation

scheme.

A different approach was developed by Al Mohssen and Hadjiconstantinou [2, 1],

in which variance-reduction procedures are run in parallel with an essentially un-

modified DSMC simulation. This method is referred to as variance-reduced DSMC

(VRDSMC). The key to this simulation approach is to construct, via particle weights,

an equilibrium simulation that is correlated to the non-equilibrium simulation of inter-

est, which is then exploited to obtain variance-reduced versions of the hydrodynamic

properties. This approach was originally proposed by Ottinger [48] in the context of

Brownian dynamics simulations. The VRDSMC approach is an important develop-

ment because it allows variance-reduction to be performed by simple modifications

to existing DSMC code bases, with almost no modification to the original DSMC



algorithm. Unfortunately, for the hard sphere collision operator, the DSMC and

equilibrium simulations cannot maintain correlation indefinitely, leading to a loss of

variance reduction [2, 1]. All evidence suggests that this phenomena is a manifesta-

tion of the same limitation, namely loss of stability, originally observed in deviational

methods. This phenomena was also observed by Ottinger [48] in Brownian dynamics

simulations. In the VRDSMC approach, correlation can be maintained by recon-

structing the weights using kernel density estimation (KDE) [2, 1], which results in

a tradeoff between stability and the bias error introduced by as a result of KDE. Re-

solving the continuum limit is particularly problematic, as it requires a large number

of particles per cell for reasonable accuracy. In other words, the discovery of stable

variance reduction methods using the Hilbert form is of great importance: instabilities

seem to be a fundamental limitation of control variate variance reduction, yet appear

to be ways of completely alleviating them without introducing numerical artifacts or

approximations.

The VRDSMC methodology was also applied to the BGK collision operator [39,

37], resulting in a stable method without requiring a numerical procedure such as

KDE, and thus avoiding the bias error issue. While this is a successful method

for simulating rarefied gas flows, a more important aspect to this work (as well as

References [52, 29]) is the application to other forms of particle transport. The

BGK model is also used for phonon and electron transport, for example, where it

is referred to as the relaxation time approximation [34, 42, 20, 21]. In particular,

both the VRDSMC and deviational particle methods are currently being applied

to phonon heat transfer simulations through nanostructured materials, which is an

important research field for thermoelectric materials; the initial results [38, 49] are

quite promising.



Chapter 2

Simulating Deviation from

Equilibrium

In this chapter, we review and discuss two different strategies towards low-variance

deviational Monte Carlo (LVDSMC). In the interest of simplicity, we limit the discus-

sion to the BGK collision operator. In the first strategy, we simulate deviations from

a fixed global equilibrium; in the second, we simulate deviations from a (cell-based)

local equilibrium state. We show that, due to the algorithmic complexity associated

with the spatially-variable equilibrium approach, methods using a global equilibrium

as a control are more efficient for general multidimensional simulations, which is the

justification for using this approach for the mass-conservative LVDSMC presented

in later chapters. However, the local equilibrium approach in general provides more

variance reduction; this effect becomes large in the Kn -+ 0 limit, which has impor-

tant multiscale implications [55], especially if techniques are developed for dealing

with the increased complexity and associated algorithmic complexity.

2.1 Decomposition of the velocity distribution

In the LVDSMC method, the key to achieving variance reduction is the decomposition

of the velocity distribution



f = fe + fd (2.1)

into an equilibrium state feq, and the remainder fd, known as the deviational distri-

bution, which is represented in terms of signed particles. The fundamental efficiency

improvement for LVDSMC (and deviational particle methods in general) comes as a

result of representing only the deviation from equilibrium using particles, thus allow-

ing the majority of the velocity distribution to be represented by f e analytically and

without statistical error.

There are two basic approaches for constructing decomposition (2.1), leading to

simulation methods with contrasting features. In the first approach, feq is represented

by a global equilibrium

fP(c) = P exp -|c- U112 (2.2)fC)C37r 3/2 )0
with fixed hydrodynamic properties po, uo, To, and co = V2RTo. The other approach

involves choosing a spatially-variable equilibrium state

f MB(C) - /B exp - (2.3)
k ~ MIB

with cell-based properties PMB(X, C) uMB(X) c), TMB(X c), and cMB(X, C) = 2RTMB(X, c),

which are independently updated to track local equilibrium conditions. LVDSMC

methods based on both approaches are discussed in the sections below, in the context

of simulating the Boltzmann transport equation with the BGK collision model

Of(c) Of(c) f(c) - floc(c)
at+C c O- X - .- (2.4)

2.2 Deviation from a global equilibrium

Like the DSMC method, LVDSMC is discretized in time by splitting into advection

and collision steps. Using feq = f', and decomposition (2.1), the left hand side of

(2.4) becomes



__f_ O f d (cfl
Ift + c - = adv 0, (2.5)

recovering the same advection equation, now in terms of the deviational distribution.

As a consequence, deviational particles are updated during the advection step in the

same manner as in DSMC.

The collision step is obtained from the right hand side of (2.4)

[&fd(c)- Ai lAt - - [fl*c(c) - f0(c)] fd(c), (2.6)
CollAt-N.TO(26

generation deletion

which is represented by source and sink terms for deviational particles. These are

implemented by generating new particles from distribution Ifl"c - fI|, and adding

them to the simulation with sign sgn(floc - f), and by deleting particles uniformly

from the simulation.

This approach results in a simple method, first published in Reference [29]. A more

sophisticated version, which has more efficient particle sampling techniques, better

time convergence properties, as well as mass conservation, is presented in Chapters 3

and 5 of this thesis.

2.3 Deviation from a local equilibrium

Using a spatially-variable equilibrium results in a method which is considerably more

efficient in the Navier-Stokes (Kn -+ 0) limit, where local equilibrium conditions

prevail. Using f*4 = f
M

B(x) in the left hand side of Equation (2.4) results in the

following advection equation for deviational particles

+ c.- - c - f M B(C) (2.7)
_at Ox _d, OX

This expression is identical to (2.5), except that it includes an inhomogeneous term.

The procedures outlined for the global equilibrium form the homogenous part of

the solution, while the inhomogeneous part is implemented by generating additional



particles at the cell interfaces [33, 52]. This additional generation term becomes

expensive for a large number of cell interfaces, making it inappropriate for large

multidimensional problems.

The collision step for this method

fdc~At [fo CAt
[dcil At = [flo(c) - f M B 

M B fd(C) (28)
. .icoillT

generation deletion

has an additional term representing the shift in the equilibrium state Af M B, which

can be chosen in order to reduce the number of particles generated from the source

term.

In the limit of small departure from equilibrium (linearized conditions), it can be

shown [52] that the particle generation term in (2.8) goes to zero when the equilibrium

properties are updated according to

APMB - (P -PMB) (2.9)
-7

At
AuMB At (U UMB) (2.10)

ATMB -(T-TMB), (2.11)
T

resulting in a very simple and computationally efficient collision step. In this case,

the collision step is performed by shifting the f M
B properties for each cell toward the

local equilibrium conditions for each cell, and by deleting particles from fd. These

procedures mimic the physics inherent in the BGK model, by relaxing the state of

the gas toward the local equilibrium (for each cell).

As an example of the computational efficiency of the resulting method, Figure 2-1

shows a transient Couette flow solution at Kn = 0.2/v'7F; this essentially noise-free

solution required a CPU time of 70 seconds (on one core of a 3GHz Core2 Quad). For

comparison, a DSMC calculation at Mach number Ma = 0.02 (based on wall velocity

U) using the same CPU time is also shown (only the final time step is shown).
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Figure 2-1: Transient Couette flow of a BGK gas at Kn 0.2/V7F. The LVDSMC
result is based on deviation from a spatially-variable equilibrium; six snapshots are
shown in blue. A DSMC solution corresponding to the final snapshot and using the
same computational resources is shown in red.

2.4 Discussion

In the course of the research leading up to this thesis, several important tradeoffs were

discovered between the two methods. For simulations in a single spatial dimension,

a spatially-variable equilibrium is considerably more efficient in the Navier-Stokes

(Kn -+ 0) limit [52]. This is demonstrated in Figure 2-2, where the total number of

samples (the number of particles in simulation multiplied by the number of indepen-

dent statistical ensembles) required to resolve the flow velocity in the cell adjacent to

the wall for a steady Couette flow to a fixed level of statistical uncertainty is shown.

This verifies that deviational simulations based on a local equilibrium require increas-

ingly fewer samples (an indication of computational effort) than simulations based on

a global equilibrium as the Kn -± 0 limit is approached.

However, the added complication introduced by a spatially-variable equilibrium

distribution makes the resulting method less efficient for multiple spatial dimen-

sions, principally, because it requires particles to be generated at every cell interface
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Figure 2-2: Comparison of the total number of samples required (in arbitrary units)
to achieve a fixed level of statistical error in the cell near a wall for steady-state
Couette flow simulations of a BGK gas, for deviational approaches based on global
and local equilibrium distributions.

[32, 33, 31, 52]. Since the objective of this thesis was to develop a general and robust

method capable of efficient, large-scale simulations in two- and three-dimensional

geometries, we adopted the simpler fixed equilibrium approach. Moreover, the in-

troduction of mass conservation into the simulation approach, which led to drastic

efficiency improvements for steady state simulation of large problems, was much easier

to implement for a fixed equilibrium. For this reason, a fixed equilibrium is adopted

for the particle method discussed in Chapters 3-5, which forms the core of the thesis.

The local equilibrium approach is also used in this thesis, for extracting the second-

order temperature jump coefficients for the hard sphere model in Section 7.2, which

is a more specialized application requiring efficient resolution in lower Knudsen num-

ber ranges. For this reason, a specialized mass-conservative LVDSMC algorithm

which treats a spatially-variable equilibrium was developed, which (unlike previous

approaches) is not updated during the simulation. This approach is further discussed

in Appendix B. In contrast, for extracting the second-order temperature jump co-



efficients for the BGK collision model, the simulation method based on a spatially-

variable equilibrium was used, which is briefly described by Equations (2.7)-(2.11)

and by Reference [52] in more detail. As the LVDSMC method is considerably more

efficient for the BGK model (and thus large number of particles could be simulated),

it was not necessary to implement a mass-conservative approach in this case.
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Chapter 3

A Mass-conservative Low Variance

Simulation Method

In this chapter, the basic theory behind the mass-conservative low variance deviational

simulation Monte Carlo (LVDSMC) method is developed. This forms the framework

for subsequent chapters focusing on the more detailed treatment of mass conservative

forms of the variable hard sphere (VHS) and Bhatnagar-Gross-Krook (BGK) collision

operators. The discussion in this chapter includes features common to LVDSMC

methods such as treatment of the advection operator, evaluation of hydrodynamic

properties, and inclusion of "effective body forces," which allow the simulation of

streamwise pressure and temperature gradients without placing computational cells

in the streamwise direction. Specific algorithms for performing the collision step will

be treated in Chapters 4 and 5.

3.1 Computational method

Like the DSMC method, the LVDSMC method simulates the BTE using computa-

tional particles. However, unlike DSMC particles, which represent clusters of physical

particles, the LVDSMC uses particles to simulate the deviation from a suitably de-

fined equilibrium state. Based on the discussion in Chapter 2, it was concluded that

simulating deviation from fixed equilibrium state was the best approach for develop-



ing a general methodology for simulating multiple spatial dimensions. Thus, here the

velocity distribution is represented as

f = f" + fd, (3.1)

where fd, is represented in terms of particles using

N

fd(c) = mWe ff sis(X - Xz) Js(c - ci), (3.2)
i=1

which is analogous to (1.15) for DSMC. In the above expression, Weff is a constant

particle weight that relates the number of computational particles to simulation par-

ticles (like Neff for DSMC). However, the relationship between Weff and the number

of particles in the simulation is not linear (as in DSMC); this is further discussed

in Section 6. Additionally, since fd (unlike f) can take both positive and negative

values, a particle sign is introduced: si E {±1}. This extra complexity resulting from

the simulation of signed particles can be illustrated by considering a pair of particles

which have opposite signs, but are otherwise identical: clearly, this particle pair would

not have any influence the velocity distribution f. Thus, LVDSMC algorithms must

be carefully designed, both in order to avoid producing extraneous particle pairs, but

also to include a robust mechanism for removing these from the simulation when

they do occur. In fact, this was the key drawback of the original deviational particle

method [10, 11], which required a brute-force particle cancellation scheme for stabil-

ity by preventing an otherwise unbounded increase in the number of particles in the

simulation.

Like DSMC, the LVDSMC approach is simulated by splitting the time evolution

into advection and collision steps, which are shown below in terms of the deviational

distribution (3.1).

[fc+ c 0. fd - 0 (3.3)

[ t Co = Q[f, f](c) (3.4)
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Each of these are described in the sections below.

Prior to introducing the specific simulation procedures for each step, we define the

basic notation specifying the simulation domain. The entire simulation domain D in

physical space is partitioned into N&y spatial cells D2, each with spatial volume AVj,

j E 1, 2,. . ., NAy; the total volume is given by V = EZ v AVj. The set of particles

contained within cell j at the instantaneous state of the simulation is denoted by

NA1 , where UNAJVj = {1, 2,..., N}. Likewise, the boundary is discretized into NAA

surface elements, each with area AAk and inward-facing surface normal nk, where

k = {1,2,...,NAA}.

3.2 Advection step

According to Equation (3.3), the advection of deviational particles is governed by the

same equation as the advection of DSMC particles, and the particles are updated in

the same manner as in DSMC: e.g. x2(t + At) = xi(t) + c,(t)Atav, where Atadv is

the advective time step.

Whenever particles encounter a boundary surface, the particles must be reflected

according to the boundary condition (1.13, 1.14). Using (3.1), the deviational bound-

ary condition for the kth boundary surface (assuming UB,k * nk - 0) becomes

fd(C) + f 0 (c) = akpB,kOB,k(C)+ (1 -. a) [fd+fl (c-2(C flk)fk), c fk >0.

(3.5)

If the velocity of the global equilibrium state is also chosen to have a zero nor-

mal component for every boundary surface (u 0 - nk = 0, k = 1, ... , NA), then

f0 (c - 2(c - nk)nk) = fo(c). The "boundary density" is split into two terms: PB,k

pge + pf [52, 29], which gives the deviational boundary condition as



fd (C) = f aspB k fd [g B,k_f(c) kPkc'(C)±(1-Cek)f (c - 2(c. -fk)lk )±Cek [peBk -f'] (c), Cflnk > 0.

(3.6)

The three terms in Equation (3.6) correspond to three distinct procedures [52, 29].

The first term akp B,k (c) represents particles which strike the boundary and are

diffusely reflected, while the second term, (1 - ak)fd (c - 2(c - nk)fk), represents

those which are specularly reflected. Both of these represent ordinary DSMC proce-

dures, which are implemented by redrawing the velocity c of the interacting particle

i from the fluxal boundary distribution

2/-c - nkoB,k(C), c -nk>O (3.7)
CB,k

with probability ak, and otherwise, the particle velocity is updated according to

Cj -+ Ci -2 (cnk) nk; in either case the sign si is preserved and the particle is advected

away from the boundary with the remaining time step. Sampling particles from the

fluxal boundary distribution is a standard procedure, which is described briefly in

Section A.1.3 of Appendix A.

For the LVDSMC method, additional consideration is made to the case of diffuse

reflections, as it provides a mechanism for removing particles and thus providing

stability in the free-molecular (Kn > 1) limit, where the collision operator is not

dominant. If two particles with opposite sign undergo a diffuse reflection with the

same surface element in a time step, they are both removed from the simulation, since

these particles have velocities drawn from the same distribution, which are reflected at

the same time and from the same physical location within the ordinary discretization

parameters (Atadv, Ax). Therefore, if N ff,k positive and negative particles undergo

diffuse reflections with surface element k in a given time step, min{Ndif,k, N-k}

particles are removed from each population, chosen randomly and uniformly. This

step has negligible effect for low Knudsen numbers, but leads to improved efficiency

for Kn > 1 and is essential for stability in the Kn -+ oo limit.

It is important to note that the above procedure inherently conserves mass, which



in the LVDSMC context implies a conservation of the total sign (EiErefl,k si) of all

reflecting particles. Mass conservation for the remaining boundary condition term

ak [p g4B,k - f0] (c) therefore involves forcing the total mass flux of this term to be

zero, by requiring

gen fc.nfk>O d c (c - nk)f 0 (C) 3.8PB,k c'k< d3c (c - nk)BC,k)

This expression is easily evaluated to yield

Pg'" = POCO/CB,k (3.9)

3.2.1 Particle generation at the boundaries

With p "" evaluated, implementation of the final term in Equation (3.6) consists of

sampling particles from the fluxal form of this distribution [11], which represents the

flux of deviational particles being emitted from the boundary

YBIcg~ BA~c -k f[~f 0Bk f]( (3.10)-FB,k- ak (C - nk) [pBkB,k __

By multiplying the above expression by the boundary element area AAk, an infinites-

imal volume in velocity space d3 c, and a time step for advection Atad, the total rate

of emission of deviational particles from a surface element with velocities in d3c is

given by

3FB,kAAkAtadvdC ak(c fnk) [pe'B,k _ f 0] (c)AAkAtadvd 3 C. (3.11)

In previous implementations [11, 29], this distribution was sampled using an

acceptance-rejection approach (see Section A.2 of the Appendix). We have devel-

oped a new approach [52, 54, 53] which uses the ratio-of-uniforms sampling method

[62], which results in a higher computational efficiency, in particular for high Kn

problems where it can be - 3 times more efficient; this approach is described here.



While many of the key concepts of the ratio-of-uniforms method are introduced in

this section, a fuller discussion is presented in Section A.3.

For convenience, a dimensionless velocity ( (c - UBk)/cBk, and average prop-

erties are introduced using the definitions

= j (pBk + PO) (3.12)

UBk = (UB3k + Uo) (3.13)

S (cBk +O - *(314)

Equation (3.11) now becomes

.FB,kAAkAtdvdC - kPBk cFB,k (C)AAkAtadvd 3C, (3.15)

where

-- 2

FB k (C) B ± Cnk C. gen B,k 0 (3.16)
PB,k IBk o C

Without loss of generality, we consider a surface with a surface normal nk in the

+x direction; all the remaining boundary surfaces can be handled by the appropriate

vector transformations. The key step in the ratio-of-uniforms method is the variable

transformation [62, 52]:

= ry/v"I (3.17)

|FB,kI - H5 / 2 . (3.18)

For the ratio-of-uniforms method, the transformed variables are bounded by

0 < H < aB~k (3.19)



0 <

-b B,k <y -

r1 b B,k

rqz z bB,k
z, I

(3.20)

(3.21)

(3.22)

where the bounds can be evaluated from (see Reference [62] and Section A.3.1)

aB,k = sup

bB,k = sup

bzB,k = SUp
(ER3

IFBk (C) 12/5

|6j||FB 'k (C)|115

|&I, |FB k (C 1/5

Jz|IF B,k ()11/5

In order to determine estimates for these bounds the function FB,k s expanded to

first order in terms of the density, velocity, and most probable velocity differences

FBk (c) ~ FBOk (c)

FPBk - P BkCO + LBk o ±'k - CIO + 2 ' ~3/ (3.27)
L PB,k CB,k CB,k CB,k

In the limit of small departure from equilibrium, this expression is sufficient. It is

straightforward to show (Section A.3.1) that the bounds for this function (which is

a sum of simpler functions for which the bounds are known), can be obtained from

the known bounds of the constituent functions. For example, if F =- pFI

and the bounds for sampling each F are known (i.e. a' = suptE,3 iP2 /5 , b' =

sup E-g3 (jI|PI'/5, etc.), then the following overall bounds hold for the transformed

variables:

(3.23)

(3.24)

(3.25)

(3.26)



- 2/5

a = pilI(a' )/2 (3.28)

bx= [ pil(b) )5 (3.29)
1

by = pilI(by') (3.30)

- 1/5

bz = |piI(b) )5 (3.31)

Using the above approach, approximate bounds for sampling particles at the

boundaries are

PB,k - PO - CB,k - CO

PB,k CB,k

BO,k2 5/2 2UB,kx - UOx

(bBO,k) 5  CB,k 

(bBO,k) 5  M2 B,k (3.32)
|UB,k,2 - U0,2|

(bBO,k) 5  2 eB ,
L z CB,k

2 |CB,k - CO

CB,k

where MB is a constant matrix given by

I/v/2e 1/e 1/(2e) 1/(2e) [3/(2e)]3/2

1 (3/e)3  [7/(2e)]7/2  27e- 7/ 2 / \ 27e- 7/2 /V2Z (4/e)4
MB 3/2 55/ 2/(2e) 3 (5/2)/ 2e- 7/2 27e- 7/2/V 55/2/(2e) 7/ 2 205/ 2/(27e 4 )

55/2/ (2e) 3 (5/2)5/ 2 e-7/ 2 55/2/ (2e)7/2 27e-7/2 / 205/ 2 /(27e 4 )
(3.33)

with elements taken from the tabulated values in Section A.3.1.

While these bounds are adequate for small departures from equilibrium, for more

general conditions, they can be extended by introducing numerical factors (Y),



aB,k

b' k

b B,k

b,-Y

_ B BO,k
aa

= b,0' x

- B BO,k

,= b

- b,zbz

(3.34)

(3.35)

(3.36)

(3.37)

which are dynamically updated during the simulation. The update step for the Y

factors is discussed in this section, after the remainder of the boundary particle gen-

eration algorithm is discussed.

The appropriate number of trial particle generation steps for surface element k

per time step Nt1,l can be obtained using the ratio-of-uniforms bounds (3.34-3.37)

in order to find an upper bound on the absolute integral of Equation (3.15).

mWeff c >0
d3 c BkAAkAtadv

__ akPI,k ~AAkAtadv d3 FB k(C)
mWe >0

_ akPBk k~AAkAtadv d3  (FB, H()
mWeff i>0 (H,)

B Ik B,k B,k

krpB,kBkkadv = d Bd d- ,k<A dotdvdo, d77, j aBmWeff k _B,k 2

-10 akpB,k B,kAAkAtadv B,k B,k B k Ntrial
mWeff X y z Bk

In the expression above, mWeff appears in order to relate the number of trial particles

to the sampled distribution function (see Equation (3.2)). Note, that Nt' is generally

not integer valued. Thus, for each time step and surface element, LNrl±] + 1 trial

steps are performed with probability Nif - [N"1aj; otherwise [Ni] trial steps

are performed. This convention is used for all particle generation steps (involving a

non-integer number of trial samples) in the remainder of this thesis.

3.38)



For each trial step, a sample (H, q) is generated (uniformly) utilizing bounds

(3.34-3.37), and the corresponding trial particle velocity is determined via C = UB

CB ,k-/V'H_. The function FBk(c) is evaluated, and particles are accepted when H <

IFB,k (C) 2/5. Accepted particles are advected a random fraction of the advective time

step (performing ordinary DSMC reflection procedures for any subsequent boundary

interactions) from a uniformly distributed random position on the boundary surface

element AAk and added to the simulation with sign sgn[FB k(c)].

The ratio-of-uniforms sampling bounds (3.34-3.37) are dynamically updated using

the following procedure. At the start of the advection step, the bounds are fixed based

on current values. During the advection step, when accepted particles are added with

H or 1 values very close to one of the sampling bounds, the appropriate Y factor is

increased for the next advection step. For example, when a particle is accepted with

H > (1 - x)aBk, the Y factor is updated to

max { (1 - X)aBOk yB (3.39)

Here, the sampling margin X is a small, positive numerical parameter which controls

the responsiveness of the dynamic update; typically X is chosen to be about one

percent. The updated YB value does not take effect until subsequent time steps, when

sampling bounds are reevaluated via Equation (3.34), and the identical procedure is

followed for dynamically updating the remaining bounds. For typical simulations,

the bounds are well-charecterized by their approximate values (3.32, 3.33), and the

numerical factors represent only small corrections.

3.2.2 Mass conservation enforcement

Unlike particle reflections, particle generation at the boundary only conserves mass

on average. However, it is relatively straightforward to amend the above proce-

dure to strictly conserve mass using a stratified sampling approach [7]. Because

f. d3 c FBk(c) = 0, we know that on average the particle generation step must

sample the same number of particles with positive and negative signs. The mass-



conserving approach involves first sampling jNfk samples, keeping track of the

number of positive and negative particles NBk which are accepted and added to the

simulation. Finally, particle generation steps are repeated until precisely NBk POS-

itive and N'- negative particles are added to the simulation, rejecting all accepted

particles of unneeded sign.

3.3 Effective body force

An important feature of the LVDSMC approach is that it enables simulations of small

pressure and temperature gradients in ducts, without the added expense of simulating

the streamwise direction. Although the effect of streamwise pressure gradients can

be included into DSMC calculations by using the equivalence of a pressure gradient

and gravitational body force, this approach cannot be used to introduce temperature

gradients.

The technique of introducing streamwise gradients as an effective "body force"

term was pioneered by Cercignani [19] as a mathematical formulation of pressure-

driven flow in small capillaries; using this formulation, he was the first to theoretically

verify the existence of a Knudsen minimum in the scaled flow rate as a function of non-

dimensional channel height (see also Figure 6-5) originally observed experimentally

by Knudsen [36]. This approach has been used to numerically solve pressure and

temperature driven flows in standard configurations [40, 41, 24], and more recently,

introduced into LVDSMC simulations [5, 52, 53].

Assuming flow in the z direction, the scaled pressure and temperature gradients

are defined as:

1 dP, = - (3.40)
P dz

1 dT
K-= - (3.41)

T dz

As in Cercignani's formulation, pressure and temperature gradient effects can be



included into LVDSMC simulations by assuming that the streamwise dependence is

carried by the underlying equilibrium state. This leads to an additional term

=_ -f1 - 2+= c2 +r] f (c), (3.42)
at body OZ body L T

in the advection operator (see Equation (3.3)), which is introduced into the simulation

via a separate step.

Multiplying the above expression by the total simulation volume V, time step

Atbody, and differential element in velocity space dc gives the total change in devia-

tional particles due to this body force for velocities within d3 c per time step.

VAtbodyd3C =c2 P + ~ 1 IC U011 2) KT] f- (c)bVAtdyd 3C
.at _od (e,2

(3.43)

As with the boundary generation term, a dimensionless velocity ( = c/co and di-

mensionless sampling function FF are introduced. For simplicity, uo = 0 has been

assumed, and we have normalized the above quantities around the equilibrium state

properties (rather than average properties, as used in the advection step), since the

effective "body force" approach is only appropriate for small departures from equi-

librium. With these assumptions,

fd VAtbodyd c = FF (C)VAtbodydS3 (3.44)
O bodyL

c2LFF c ~ P - T] f 0 (c). (3.45)
Po

Here, a physical length scale L was introduced in order to make distribution FF

dimensionless.

Similar to the advection routine (Section 3.2), the ratio-of-uniforms variable trans-

formation is applied: |FF1 = H'/2 and i = q/v/7 I, where, the bounds are defined



0 < H < aF

-bF <m 77 b F

-b F < b

-b F <2 nZ bF

(3.46)

(3.47)

(3.48)

(3.49)

Using the results from Section A.3.1, the proper sampling bounds are determined to

be

5/ 2/(2e) 3 205/2/(27e4 )

55/ 2/(2e) 3 205/2/(27e 4 )

(3/e)3 (4 /e)4

|P +
VTI

As before, the number of trial steps is determined from the ratio-of-uniforms

bounds (3.46-3.49) via an upper bound on the absolute integral of Equation (3.44).

1

mWeff
[&f(c)~ ~ V t~(d 3C M VAtbody

J s 7Z3 ,,k

pocoVAtbod, f
mWeffL JRs

pocoVAtbody f
mWeff L J9Z3

pocoVAtbod ,
mWeffL _-

da (c 0 H(i7)
O( H, 77)

bF bF
diy, d 2 aF

_gF _2

20 poVAoay F FbF Ntrial (3.51)
mWeffL y z F

A sample (H, ij) is generated (uniformly) utilizing bounds (3.46-3.49) for each trial

step. Using c = co/V E, FF is evaluated from Eqn. (3.44), and the trial parti-

cle generation is accepted if H < 1FF (c) I2/5. Accepted particles are added to the

(aF)5/
2

(b ) 5

(Fb Y)5

(b F)5

1
7,3/2

(3.50)

d,



simulation with sign sgn[FF(c)] and with a position x sampled uniformly from V.

3.3.1 Mass conservation

Mass conservation is enforced by the stratified sampling approach used for the bound-

ary particle generation routine (see Section 3.2). Initially, Ntria/2 trial generation

steps are performed, which adds N,' positive and negative particles to the simula-

tion, and additional particle generation steps are performed to produce NF additional

positive and negative particles.

3.4 Property evaluation

Hydrodynamic properties are evaluated by simple extensions [31, 53] to the rules

developed for evaluating cell-based properties for DSMC properties (1.19-1.23), where

moments of the deviational particles now correspond to the difference between the

hydrodynamic properties and their equilibrium values. Specifically

mW
p = Po + zsi (3.52)

Pjus= PoUo + W c (3.53)
A> iExsj

mW

P7 + PUjUj = Po + PoUoo + sicci (3.54)

p3 (3RT +u) = po (3RTo + u ) E sici (3.55)

2(qj + Pj - u,) + p3 (3RT + uj) u =2Po - uo + po (3RTo ±u)uo
mW

+ ;K :sicici. (3.56)
VjiE~j

In Equation (3.54) above, the equilibrium pressure tensor is given by Po = poRToI =

poI where I is the identity tensor.



3.5 Time integration

The advection and collision step has no intrinsic time step error, while the collision

routine may or may not, depending on the implementation. However, as in the DSMC

method, time step error is introduced by the the time splitting procedure. Here, we

employ Strang's splitting method [47], which has been demonstrated to offer second-

order time convergence in the case of the DSMC method (see Section 1.2). A variant

of this algorithm has been implemented in a previous LVDSMC method [52], also

demonstrating second-order time convergence for the computationally simpler BGK

collision operator. Further convergence studies are needed, but are left to future

research efforts.

Strang's method for LVDSMC for an overall time step At consists of the following

algorithm:

Algorithm 3.1. Strang's method for LVDSMC

1. Half advection (Atadv = "At)

2. Half body force (Atbody =At)

3. Full collision (Atcon At)

4. Half body force (Atbody 2

5. Half advection (Atadv "At)

6. Sample properties

where collision routines with time step Atcon will be described in the following chap-

ters.
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Chapter 4

Simulation of the Variable Hard

Sphere Gas

The collision algorithm for the more general of the two collision models discussed in

this thesis is based on a method originally proposed by Wagner [61]. A key feature

of this algorithm is the absence of intrinsic time step error, unlike previous LVDSMC

methods [33, 52, 29]; this is achieved by simulating the collision process as a sequence

of Markov particle creation and deletion events.

In this thesis, we present a LVDSMC particle method [54, 53] based on Wag-

ner's VHS collision algorithm, which has been extended to feature mass conservation

[53]. This mass-conservative method is capable of accurately simulating typical gas

transport problems in the transition regime (0.1 < Kn < 10) with approximately

ten particles per cell, which is similar to the number of particles required for DSMC

simulations [14].

4.1 Alternative form of the VHS collision operator

In keeping with the general framework presented in Chapter 3, we use Equation (1.2)

in the collision step (3.4) to split the collision operator into linear C[fd] and nonlinear

Q[fd fd] parts.



-dc)1 ll, Qf ± fd, f + fd](c)

= C j d2 j dc*IIc - c|I
JS2 3v

[fO(c')fd cJ)-± f_(c )fd(C) - f d c*)fd(C)]

+ CI d2 d3c|c - c*||1. [fd (CIfd(Ci) - fd(C)fd(C)]
J S2 43

= E[fd](C) ± d fd] (c) (4.1)

For small departures from equilibrium, the nonlinear part has a negligible effect, and

so for the majority of applications of interest here (low speed flows, heat transfer due

to small temperature perturbations, etc.), the linear part of the collision operator is

dominant. In other words,

[ fd(c)] ~ [fd (C) (4.2)

E[fd](C) =C8 Ld2Qj d3c, ||c - c,I

[2f(c') _ fo(c)fd(C*) _ fO(C*)fd(C)] (4.3)

In fact, it is straightforward to include the nonlinear effects as a separate collision

process; this is further discussed in [10, 31]. However, this is of limited utility, since

in the non-linear regime signals are not small and DSMC approaches can be used.

However, we will note here, that this approach was implemented in a preliminary

study [54], which showed agreement with the DSMC method for moderate depar-

tures from equilibrium (for large departure from equilibrium, this term causes the

production of a large number of particles which interferes with the stabilizing effect

of the linear part). In the original hard sphere LVDSMC method [31], which used a

spatially-variable equilibrium distribution, stable accurate results were obtained for

Ma < 1; however for Ma - 1, DSMC is already more efficient than LVDSMC.



For hard sphere collisions, a special version of the collision operator was derived

by Hilbert [17], in which the angular integration (see Equation (1.2) with # = 1) was

performed analytically, yielding a convenient representation in terms of the following

kernel functions KP), K, ) and collision rate function vi

L[fd](c) = d3c, 2K ' - K2)] (c,c,) fd(C - (C)fd(C) (4.4)
1Ci po [( -[2o)l -Kc - .]

K( 1 (c, c.) = 4 0 po exp (c - uo). (c - c*)]I2  (4.5)
-frCoIIc - c, | c41 c - c*112

K (c, c,) = 47rC1Ic - cI|f 0(c) (4.6)

vi(c) = 4irCipocoV'( ). (4.7)

Here, (= (c - uo)/co, while (= ||1|1, and 0 (() is a pure numerical function given by

(w = + (+ -erf( (4.8)

This served as the mathematical framework for the original hard sphere LVDSMC

method [32, 33, 31], in which the -v1 (c)fd(c) term provides a mechanism for remov-

ing particles, while sampling particles directly from the 2K0) - K 2) term (rather

than from each term separately) prevents the generation of extraneous particles; both

of these features counter unbounded increases in the number of particles in the sim-

ulation, leading to a stable collision algorithm.

The VHS operator can be expressed in the same form as Equation (4.4); however,

an analytical form for the first kernel function Kf is not available [16, 17, 18], but is

instead expressed as a integration over the collision angle Q. More recently, Wagner

[61] has expressed this in alternative form, which is expressed as an integral over an

auxiliary velocity C.

L[fd](c) = dac, 2K) - K (c, c.) fd(c*) - v(C)d (4.9)



K(1 (c, c.) = 4C da3cg 0 c*)+dC (4.10)
18 Il|| - c,|| frj(c-c.) ||c - c, - (|| -_0

'a (4.10)

K(2)(c, c.) =4xC4|| c - c,||4f (c) (.1

v(c) 47rC4 J d3c, I Ic - c, l|f0(c*) (4.12)

In the above, Fl(c) is the plane perpendicular to c passing through the origin. An

additional relation, which is important for the derivations to follow, relates integrals

of the kernel functions to the collision rate function.

v(c.) = d3c K 1)(c, c*) d3c K 2)(c, c*) (4.13)

The collision rate function (4.12) is also not analytically available. However, a

tight upper bound can be formed by using the following inequality, which is valid for

0< # 1.

||ce- c,|.) || pe- c,||I + (1 -_#), VcC C ER3 (4.14)

Using the above inequality to replace ||c - c,. * in Equation (4.12), the desired bound

on the collision rate function is obtained

vi(c) VB,max(C)= 47rC,6cg d3c, [#||c-c* +(1 -) f (c.)
JRz3 CO If(*

47rCpoc [##( ) + (1 - #)], Vc E 23. (4.15)

The integral above can be obtained from a relation derived in Reference [61], or by

comparison with the hard sphere expression (4.7). Equality for Equations (4.14, 4.15)

is recovered for both the hard-sphere (3 = 1) and Maxwell-molecule (3 = 0) limits. In

the same manner, bounds on the collision kernels are obtained via Equations (4.10),

(4.11), and (4.14).



4C8c0 d 1 -
K (c c) < K (c, c,)=da -+f(c+)

c - c*ll Ic-. co ||c- c, - C11|| c

(4.16)

K(2 (c, c,) K 2 (c, c.) =4rCc [||c-c + (1 - p f0 (c) (4.17)

4.2 Stochastic collision time steps

In the particle generation routine for boundaries described in Section 3.2, the emis-

sion of a deviational particles from the boundary has no effect on the generation of

subsequent particles. For this reason, the total number of trial generation steps could

be determined a priori and processed without any need to continuously update the

state of the simulation in the intermediate steps. However, the collision processes gov-

erned by Equation (4.9) depends on the instantaneous state of the particles through

fd. Thus, in order to simulate the collision process without introducing an additional

time step error, the instantaneous state of the simulation must be taken into account

between particle collision events.

The approach used here, and introduced in Reference [61], models the collision

process as Markov creation and deletion events, each advancing the state of the

simulation in time by an exponentially distributed stochastic time step with parameter

A, such that

pA(t) = Ae-A 6 , ot E (0, 00). (4.18)

The time step parameter represents the rate at which trial particle creation and

deletion events are performed, and therefore must bound the absolute integral of the

overall collision process (4.2)

d3Xz d3c f (c)I < mWeffA, (4.19)

where mWeff appears in order to relate the time rate of change of fd directly to



deviational particles via Equation (3.2).

To derive a value for A, a bound for the overall collision process (4.2) is formed

from the absolute value of each particle generation and deletion process.

mWefflv D f. 
1/ jd3X j d3c dc, 2K - K (c, c) fd (c)fd(c)

< m ff d3Xj d3 c { d3c, 2K,-1) + K (c, c.) fd (c*) + vp6(c)fd(C)
m~e jv f na 1v JR L 6 6

(4.20)

Next, using the relation (4.13), and the bound on the collision rate function (4.15),

an expression for the time step parameter is obtained.

S d d3c fd(c)
mWeffJv JstJIZ Lf fV 1v t ]coil

< d3X d3c dac [2K) + K(2) (c,c) fd(C*) + V ,(C)fd(C)

dWeffj de u(c) fd

]daz d3C V,mx(C) fd(c) = 4 up,max(ci) A (4.21)

In the above derivation, each of the three (two repeated instances of and one

instance of K( 2)) collision terms, as well as the deletion term, contribute equally to

the overall rate A. Collision events are sampled by first selecting an existing particle

in the simulation according to the probability

part 4Up,max(ci) (4.22)
A

and sampling from the appropriate particle creation or deletion term, as described

below.



Distribution (4.18) is sampled directly (see Section A.1.1), and the state of the

simulation is advanced by the sampled time step 6t, until the simulation time exceeds

t + At 11; at this point, the collision step finishes, and control is passed back to the

overall time integration algorithm (Section 3.1). For each time step, a trial particle

generation or deletion step is performed, which is accepted or rejected according to

the proper probabilities. Following each stochastic time, A is updated via Equation

(4.21) prior to sampling the subsequent time step.

In the original LVDSMC VHS collision algorithm [61], particle creation and dele-

tion events were processed as a part of a single combined algorithm. However, in

the most recent implementation [53], the two processes were split into separate al-

gorithms in order to facilitate mass conservation procedures; this later approach is

followed here. As previously noted, each of the three particle creation terms and the

particle deletion terms contribute equally to the time step parameter. Thus, for every

time step, a trial particle creation step is performed with probability 3/4 and a trial

deletion step with the remaining probability, as described in the following sections.

Finally, the mass conservation procedure, which makes use of the creation procedure,

is discussed.

4.3 Particle creation

The particle creation process is formally represented as

[f, c) = dsc, 2Kl) K (c, c.) fd(c*) (4.23)
-t gen 3 6 C7C

The procedure of Wagner [61] is followed here, where an additional function relating

to K( is defined, namely

JM (c, c*, ) = 4C d3C* fO(c + C)c - c - c, - Jr(c-c)



4Cppo f [(c - uo) - (c - c.)]2

VcocIIc- c*|i He- c, - ( - C211 c - c, |2
(4.24)

It is proved in Reference [61], that the collision kernel K( 1) can be represented in

terms of an integral of J,(1) (c, c., C)

(4.25)
f dJ J ' ( , c , r ( )) f 0(c +

3 '8PO

where, the notation 7rc(() refers to the vector projection of C onto the plane passing

through the origin and normal to c, namely

7rc(() = C - c. 2cC (4.26)

Using Equation (4.14), the following bound on Jl (c, c., C) can be obtained.

JM (c, c., C) < JM.c c,(

4Cypocg

rcolIcI - c, Lco +|c -c, - (-II
exp {(C - no) - (C - c.)]2

co11c - c,||12

(4.27)

K( 1) .(c, c) = d3C J 1 (c, c., rc-c.(()) +
Jlm4 lmx('C 11 0 PO

(4.28)

Using the terminology developed above, the creation process (4.23) can be repre-

sented as

fd (C)] f
gen 3 J

d3C* [2J1
3 

3

= j d3c,
Z 

3

fo (C - K 2)(c, c.)
PO3 ,1 (c, 7- (C))

C [2J1 (c, c.*,7rc-c. (C))

The particle creation process proceeds by selecting a particle i from the particle index

fd(c)

-() (C c.) fd(c*).

4.P 2(4.29)



distribution (4.22), and determining the cell j in which the particle resides. Next, the

integral over c, can be evaluated in terms of the deviational particles in cell j.

gen j 33
L3

62J (c, c., wr-c.()) - K 2 (c, c.) f
0 (c + () fd

mWe s d3c 2J(1) (c, ce,7rc-c,(C)) - K(2)(c, ce)]
E"ff S fj3P

=mWef

-Tn f

.e
eEAe

-M Weff jv

s e [2J(1) (c, Ce, r-(C)) - K (c, ce)

tG( 2...(a (c, ce, rc-c,(C)) + K (c, Ce)]

( [Jax (c, Ce, irc-ce(C)) f 0(c + C) K(1) ax (c, Ce)
volmax(ce) 2 ''

KSm(c, ce) Po lmax(Ce)

f0 (c + () K (c2 ax, Ce)

Po VI,max(Ct)

dag cpc" Vf,max(ce) [2rd (C) (l) (c) + r2) (C) p(2) (C)

e(N0

(4.30)

In the above expression, notations were introduced for the probability densities: r ,

(2) (1)(2) oeal 11 pgene
rd, p1 , and, p;overall acceptance probability i , and accepted particle sign

gen
cC-'

(1) =

rd (C)-=

J(1) ci, (

Kmc,mc)

f"(c + )

f0 (C + C) (4.31)

(4.32)

(4.33)

(4.34)

Pi~ vp fimax(c)

p(2) (C) =K (c, c)

V,max (c;)

j,d
3X [ d

d13



Zeen se [V2J1) (c, ce, 7rc-ce(C)) - K (c, ce)(435)

Eg 3 [2 J,311a (c, ce, c(C)) + K8 2 ) ..a(c, ce)

s" =sgn se 2J1 (c, ce, 7rc-c,()) - K, (c, ce)] (4.36)

Particle creation events can be sampled according to representation (4.30) above

by a Monte Carlo sampling approach. First, it is noted that the prefactor within the

summation v,max(ce) is consistent with the rate at which particle i is sampled (see

Equations (4.21, 4.22)), which implies that we can use ce ci in order to produce a

trial creation event. Then, a sample (c, C) is constructed from the K(1 ) term with

probability 2/3, and from K term with the remaining probability. Individual

procedures for sampling from the relevant distributions are developed in the Sections

4.3.1 and 4.3.2 below. The trial creation event is accepted with probability P' " by

adding a particle with velocity c, sign s ", and a random position x E 'D sampled

uniformly from cell j; otherwise, the trial sample is rejected, and the simulation

remains unchanged.

The expression (4.35) for the overall acceptance probability implies that the cost

of the collision algorithm scales as N2 , in contrast to DSMC whose cost scales as

N. This unfavorable scaling is addressed in two ways. First, as we shall show in

the results section, typical simulations using the mass conservative version of this

algorithm only require - 10 particles per cell to achieve surprisingly well-resolved

output: this is the strategy employed for the majority of simulations reported in

this thesis. Secondly, even when simulations are performed with significantly more

particles per cell in simulation, an upper bound on the number of particles per cell

to be used for evaluating PG". For this purpose, we define a subset Mi c A of the

total number of particles in cell j, which contains max(Nc,j, Nsum), where Nc,j is the

number of particles in cell j and Nsum is a chosen parameter. Subset Mi consists

of particle i and the remainder chosen randomly with a uniform probability. Thus,

when there are fewer than Nsum particles in a cell, the summation is performed over

the entire set A; otherwise, over the subset Mi. This results in a simple modification



to the acceptance probability

EpgeS 2J() (CE,C, 7cc()) - K2) (c, ce)

c,c 2J~M~ ~nA (c, ce,irc,(C)) + K M(c, c)

(4.37)

and has the effect of limiting the N2 dependence to only the cells with a small number

of particles.

Further generalizations of this procedure are discussed in Reference [61], in which

the particle subsets Mi are chosen differently, for example, as clusters of particles

with similar velocities. This procedure was not explored in this work, but merits

future investigation.

4.3.1 Sampling particle trial particle velocities from the K(2),8,max

term

For 1/3 of trial particle generation events, the trial velocity is sampled from distribu-

tion (4.34) which, using Equation (4.17), can be represented in the form

pVm (C) = C 02Volmax(c") I co
+ (I - )] fO(c).

This distribution can be effectively sampled using the following algorithm [61]:

Algorithm 4.1. Algorithm for sampling pi (c)

1. With probability

produce a sample c from f0 (c) (see Section A.1.2) and exit.

2. With probability
2co

2co + VA||Ic; - uolIl

go to step 2.2.

2.1 Generate a trial sample c from distribution f0 (c) and go to step 3.

(4.38)



2.2 Generate a trial sample c from Ic - uollfO(c).

3. With probability
||Ic - cillI

||c - c-1ll + 1|c - Uoll'

exit the routine.

4. Go back to step 2.

Samples from the the distribution |c - uo II f (c) can sampled by exploiting the spher-

ical symmetry, resulting in

C - Uo = 
(4.39)

Co

where ( E [0, oo) is sampled from 23 e- 2 (algorithm A. 1) and Q is sampled from the

unit sphere (Section A. 1.4).

Next, based on c, a sample of the auxiliary variable C is produced from (4.32),

which is obtained simply C= c, - c, where c, is sampled from f0 (c.), which allows

the evaluation of the overall acceptance probability (4.35).

4.3.2 Sampling particle trial particle velocities from the K ,,8,max

term

For the other 2/3 of the trial particle generation events, trial velocities are sampled

from distribution (4.33), which is significantly more complex. The sampling procedure

developed by Wagner [61] uses algorithm 4.1 to produce a sample c, which is then

replaced by one of its post collision values c -+ c', where c' = j(c + c + Ic + ciIIn)

and fl is again sampled from the unit sphere.

Next, based on c, a sample of the auxiliary variable C is produced from (4.31),

which is obtained by a simple modification to algorithm 4.1 [61], which again allows

the evaluation of the overall acceptance probability (4.35).

Algorithm 4.2. Algorithm for sampling r' (C)



1. Produce a sample C from distribution (4.31) using algorithm 4.1.

2. With probability

#/co + (1 - #)Ic -c; -i -rc-c(C)I'
#/co + (1 - #)Ic - C-1-

exit the routine.

3. Go to step 1.

4.4 Particle deletion

Recall that for each stochastic time step (4.18), a trial deletion step is performed

with probability 1/4. For a particle with index i, chosen randomly according to the

particle index distribution (4.22), the deletion process is formally represented as

- v(c)fd(c). (4.40)
-t del ' C

By introducing Equation (4.12) and rearranging, the following expression is obtained:

[f - del =3-4-xCB j d __z
d 3 47tC,8co |1c.-(||.

-,max(C) da + q) ±(1 -)] f0 (C)3 Cluf,max(ci) c

(I ci - CI I/co) f d
#31 ci (|/co + (1 - #)

- -',max(ci) j da 3 2) (C) eiP fd(C,). (4.41)

The deletion algorithm is obtained from the above representation. First, it is noted

that the prefactor up,max(ci) is consistent with the rate at which particle i is sampled

(see Equations (4.21, 4.22)). For the trial deletion step, the deletion probability is



evaluated by sampling a velocity ( is from the probability density function pi().

With probability

(|Ic-i - /co ) ' (4.42)
0 #|c;i - (O + (1 - )'

the particle i is removed from the simulation. Otherwise, the trial deletion step

finishes without affecting the particle population.

4.5 Mass conservation

The LVDSMC collision algorithm conserves mass, momentum, and energy only on

average; this is a weaker sense of conservation compared to DSMC, which conserves

these quantities for individual collision events (c.f. Section 1.2). The approach out-

lined here enforces mass conservation for each collision time step Atcon] by appropriate

stochastic particle generation and deletion events. Before a full discussion of mass

conservation procedures can ensue, a few quantities must be defined.

In the mass conservation approach, a list of particles generated from the particle

creation routine must be continuously maintained during the entire collision routine.

At the beginning of the collision step, this list will be empty, but during the collision

step, each particle generated by the creation routine (Section 4.3) is added to the list

and stored unless it is subsequently removed from simulation by a deletion step. This

list of particles will be designated G, which contains Ng particles, and is partitioned

g g+ U G- into a set g+ of N+ positive, and a set G- of N- negative particles

at the current state. Also defined is a total mass residual for collisions, AS, which

is continually tracked throughout the entire simulation. First, it is initialized to be

zero, unless it is available from a restart file, and then, it is updated for each particle

creation event with sign s via AS -+ AS + s and for each particle deletion step with

sign s via AS -+ AS- s. At the end of each collision step, new particles are generated

from the creation (Section 4.3) routine and existing particles are deleted randomly

(and uniformly) from G in order to enforce the optimal level of mass conservation.

Typically, this optimum level of mass conservation results in AS = 0, but when



this is not possible, the remaining AS is carried over to be addressed in the sub-

sequent collision step. The overall mass conservation procedure consists of particle

resampling steps which consist of removing a single particle of an undesirable sign

s from g and generating a new particle ensuring that the result has the opposite

sign -s. Clearly, this approach cannot achieve AS = 0 if Ng = N+ + N- is an

odd number; thus, the initial step in the mass conservation process in to correct the

parity of mass residual. The parity correction step consists of repeating the parti-

cle generation routine until a single particle is accepted, with probability 1/2; or by

deleting a random particle (uniformly) from Q (by removing it from the simulation),

with probability 1/2. Clearly, this step can only be performed if Ng > 0; otherwise

AS cannot be changed in the current time step, and the parity correction step (as

well as the resampling step, below) will be skipped entirely.

Based on set g, the optimal mass residual ASpt is defined as the value of AS

with the lowest absolute value which can be attained by particle resampling events.

0 if NgT > IIASI and AS> 0
A sopt =_ (4.43)

AS ±2NgT if Nlg < IASI and AS 50.

For the trivial case, AS ASpt = 0 and no resampling is needed.

The resampling procedure consists of performing the following two steps in random

order: (i) delete a random particle (uniformly) from ggn(aS), and (ii) generate a

particle with sign - sgn(AS). In step (ii), we use the particle generation step used in

the collision routine, repeating the routine automatically rejecting all particles with

sign sgn(AS) until a single particle is generated with the correct sign, which is added

to the simulation. This procedure is repeated until AS = ASOpt, and control is passed

back to the overall LVDSMC simulation (algorithm 3.1).
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Chapter 5

Simulation of the

Bhatnagar-Gross-Krook Gas

In this chapter, a collision algorithm for the Bhatnagar-Gross-Krook (BGK) collision

operator is outlined. This algorithm is based on the formulation used in Chapter 4

(for the VHS model) and thus inherits the desirable properties of the former method,

like the lack of inherent time step error as well as mass conservation. These features

were not included in previous methods [52, 29]. As before, only the collision routine

is described here, which is designed to work with the overall LVDSMC simulation

method presented in Chapter 3.

Based on the global equilibrium distribution fq - f 0 , the BGK collision operator

in deviational form can be expressed as

_f__c f'l()- f 0 (c) _ fdac
ffo] TC) T (5.1)

Note that the same essential structure appears here as it did in the linear part of

the VHS operator (4.9): namely a source term 1[floc(c) - fo(c)] from which fresh

particles are generated, and a sink term - fd(c) which removes particles from the

simulation, resulting in an inherently stable method. Compared to the VHS version,

the BGK source term has a different structure, which is much simpler to generate

samples from. A key difference is that the source term depends on fd through the



local equilibrium properties p, u, T appearing in the local equilibrium distribution

(1.4), rather than appearing directly in the collision operator. However, it is relatively

straightforward to keep continuously updated hydrodynamic properties by tracking

the following moments in each cell: Eicv si, Eij -7 an i sicad. This is

performed by first initializing each value at the start of the collision step, and adding

(or subtracting) the appropriate value for each particle creation (or deletion) event.

Then, before each stochastic time step, the properties are evaluated directly using

Equations (3.52-3.55).

5.1 Stochastic collision time steps

Like the VHS collision algorithm, the BGK collision process is formulated in terms of

Markov creation and deletion events occuring with exponentially distributed (4.18)

stochastic time steps with parameter A, which is obtained from an upper bound on the

absolute integral of Equation (5.1) over all physical and velocity space (c.f. Equation

4.21).

W d d3c fd(c)oil

< 1 d3X dac foc(c)- f0 (c) _ fd(c)
mWe ff JJ3 T T

v 3 [f3oc(c)- f0(c)| fd(c)|]

< A d (5.2)

In the above, rj is the relaxation time based on the local properties defined for cell j

(see Section 1.1.2).

In order to proceed, an integral bound on the difference |floc(c) - f0 (c)| is re-

quired. For cell j, the source term involves sampling from the following distribution



lJd3 Ioc(c) - f=(c)] d3 c = AV [f"'(c) - f0 (c)] dsc

= AVj ~lo-, F* '(c) d 3

FlOci(c) = OCj [floc (C) - f (c)] .
pioc,j

(5.3)

(5.4)

Here, fjoc is based on the local properties for cell j, the dimensionless velocity is

(c - uo,)/i0 c j, and the average properties are

Pi;OCj } (Pioc,j + Po)

Uloc,5 = (uioc,3 + uo)

i;;;j= j (cio,j + co) .

(5.5)

(5.6)

(5.7)

Using the ratio-of-uniforms method (Section A.3.1) the variable transformation IFl*C'i =

H'/ 2 and (= i7/ 1 I is applied. Using the bounds in the transformed variable space

0 < H < a1O" (5.8)

(5.9)

(5.10)

(5.11)

-bl," 's r, b c

the following integral bound on Ifpc - fo| is obtained.

d3c Ifo c(c) - f0 (c) =pioc,j AV5

=pioc,3AV

da(| 1Fl* 'i(c)|I
JZ3

d3 7 (1FlOC' H(q)
jds0 (H, 'j)

/IDjd3X lRZ



6]c, boc,3 b_b b"'' _b O< pie,AV bo d g dag ,i d3r92 jalOi

- 20 pioc AVi c,jbl b'ibi b2Vc,j (5.12)

With the above bound determined, the expression (5.2) is complete, resulting in

the time step parameter

mWff j d jd 3 c f(c)
1 NAy 1 3X C

mdWffZs)] d 17Z3 d3 c [ f'c(c) - f(c)| +|fd

< 20a bl blbc+ Nc 3 )
=1 r mWeff

E (20a blxocj bbc,0lOi oc + Nc,1 )
= mWeff

NAv

E Bl**' + Nrc,5) = A,)5.3
j=(5.13)

where

Bo = 20a*'bl bl b mWff (5.14)

Using this value of A, stochastic time steps can be processed (see Equation 4.18, and

surrounding text) as before. But unlike the VHS version, which selects a particle

for which to produce trial creation and deletion events, the BGK version performs

procedures based on a cell j, which is selected according to

pcell B'1', + Nc,
A r ' (5.15)

For each stochastic time step occurring in cell j, trial particle creation steps are

processed with probability Bio,/(B's" + Nc,j), and random particles are removed

(uniformly) from cell j with the remaining probability. Mass conservation for the



BGK collision routine uses the same algorithm developed for the VHS collision oper-

ator (Section 4.5), which makes use of the BGK particle creation algorithm described

below.

5.2 Particle creation

Estimates for the bounds used for particle creation follow a similar procedure to those

for generating particles at the boundaries (see Section 3.2), namely, by expanding the

function FOc,j to first order in the perturbations of the local equilibrium properties

(pioc, uoc, cloc) with respect to the global equilibrium properties

Fl "'i(c) ~Fl** 'i(c)

Pocj - Po - 3 cioc,j - co 2 o'' - U0  + 2ciocj -- co 2 _0

Plocj ciocJ Clocj cloc7,j .73/2

(5.16)

Using the same ideas (Section A.3.1), the ratio-of-uniforms bounds for small depar-

tures from equilibrium is obtained as follows

Ploc,j - Po - 3 Cioc,j - co

Ploc,J CIoc,j

(alocOi) 5/2 2 oc,j,x ~ o,z

(b 1o i 5  
Clocj

=5 MIOC - 2 IUO, ', (5.17)
(boco 5 ciocJ

Y Uloc~j~z -- toyz
L(bzi co,j 35 j2 OC

2cIoc,j - Co

CIoc,j



1 1/v 1/(2e) l/(2e) 1/e

1 [5/(2e)]5 / 2  (3/e)3  55/2/(2e)3 55/ 2/(2e) 3 [7/(2e)]7/2
MVioc =.(.8

3/2 [5/(2e)]5 / 2 55/2/(2e) 3  (3/e)3  55/ 2 /(2e) 3 [7/(2e)]7 /2

[5/(2e)]5/2 55/ 2 /(2e) 3 55/2 /(2e) 3  (3/e) 3  [7/(2e)] 7 / 2

From these bounds developed for small departures from equilibrium, the actual bounds

are formed using Y factors, which are updated using the process described in a pre-

vious chapter (Section 3.2).

abC,1 
- YloCaOCO' (5.19)

bloci Y bOc OC (5.20)

b - yIOC OCO (5.21)

- Y lOCbloO~i (5.22)
07'j ,z z

For each trial creation step, a sample (H, rj) is generated (uniformly) utiliz-

ing bounds (5.19-5.22). The trial particle velocity is determined via c = Uioc, +

ci;c~~rI/vI, and Fioc-i(c) is evaluated; particles are accepted when H < IF1oj (c)12/5.

Accepted particles are advected a random fraction of the advective time step away

(performing ordinary DSMC reflection procedures for any boundary interactions)

from a uniformly distributed random position on the boundary surface element and

added to the simulation with sign sgn[F'c,i(c)].



Chapter 6

Validation and Performance

The computational procedures outlined in the previous chapters for simulating the

VHS and BGK collision models were implemented in FORTRAN 95. A number of

simulations were performed in order to verify that they correctly simulate the BTE for

the VHS and BGK collision models, to show that the mass-conservative LVDSMC ap-

proach dramatically outperforms the DSMC method in near-equilibrium flow regimes,

and to showcase the method's ability to produce exceptionally smooth results for a

wide variety of physical problems. In addition, a select number of applications are

presented in Chapter 7.

In all cases presented here, we simulate the deviation from a global equilibrium

distribution (with uo = 0). The normalized characteristic deviation from equilibrium

is quantified by c, which is typically related to the characteristic temperature differ-

ence (c = AT/To) or flow velocity (e.g. E = U/co, with characteristic velocity scale

U) of the problem. As previously observed [52, 29, 54], in contrast to DSMC, the

cost of LVDSMC calculations for a fixed statistical uncertainty does not increase as

e decreases, and for this reason, all results presented here are scaled by e.

6.1 Convergence

The accuracy of the LVDSMC method, like the DSMC method on which it is based,

depends on the spatial cell size Ax, the overall time step At and the average number



of computational particles per cell Nc. The LVDSMC simulation approach utilizes

Ax and At in similar ways to DSMC; however, the average number of computational

particles per cell NC has a dramatically different behavior in each method, and merits

further discussion.

In the DSMC method, the number of simulation particles is well defined in terms of

problem and discretization parameters. For example, the average number of particles

per cell for a simulation with zero-mass-flux boundary conditions is given by

_ POAV
Nc = mNff (6.1)

where AV = V/NAy is the average cell volume; here, we have taken po to be the

density of the initial state. However, for the LVDSMC method, the local number of

particles depends on the local deviation from equilibrium, and as a result, NC depends

on the "average" degree of deviation from equilibrium e, for which no established

measure exists.

For a suitably defined c, and for a large number of simulation cases considered in

the course of this research, it was observed that the number of particles per cell, at a

nontrivial steady state, can be approximately scaled using

:po AV
eoA (6.2)
mW '

in the sense that NC ~ B. In other words, instead of using No as a separate con-

vergence parameter (as in DSMC), the parameter E is used. This is illustrated in

Figure 6-1 which shows the actual number of particles for various values of Ax and

E for heat transfer between parallel plates at Kn = 0.1; the gas is argon (w = 0.81)

and the boundary conditions are diffusely-reflecting (a = 1) with temperatures

TB(0) = (1 + E)To and TB(L) = (1 - E)To, where E < 1. The figure shows that

for large E, there is a direct relationship between NC and =, while for small E, the

smaller number of particles makes the "particle cancellation effect" in Eq. (4.35) less

effective (see Section 4.1 and discussion in Reference [61]) leading to a larger number

of particles.
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Figure 6-1: Average number of deviational particles per cell for heat transfer through
a layer of argon gas confined between diffusely-reflecting parallel plates at Kn = 0.1.
The data (symbols) are shown in terms of the convergence parameters (Ax, E), while
the line indicates NC = E, for comparison.

For all simulation results presented in this chapter, excellent results were achieved

using = 10. This is significant because it demonstrates that simulations with ap-

proximately 10 particles per cell are achievable in mass-conservative LVDSMC simu-

lations without apparent random walks in any non-negligible hydrodynamic variables,

a substantial improvement over the previous implementation [54]. This dramatic im-

provement enables efficient simulation in multiple spatial dimensions, as is shown in

the results below.

Here, and in the remainder of the simulations reported in this thesis, the time step

was chosen as At = Ax/co, where Ax is the smallest cell dimension, which effectively

lumps the effect of Ax and At in a single discretization parameter (Ax).

A preliminary convergence study was performed for the relative error in heat flux

Eq " 4' (6.3)
qn,ref

for heat transfer through argon with Kn = 0.1 for a range of E and Ax. For this
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Figure 6-2: Absolute error in the steady state heat flux for argon gas confined between
diffusely reflecting parallel plates at Kn = 0.1 as a function of the parameter and
spatial cell size Ax. As discussed in the text Ax also controls the time step size
through At = Ax/co

case, the reference heat flux qn,rf was taken to be the computed value at E= 100 and

Ax/A = 0.05. The simulation results shown in Figure 6-2 demonstrate a decreased

relative error with increased E and decreased Ax as expected, although they are

too noisy to establish the rate of convergence (as has been done for DSMC [51], for

example). More rigorous convergence studies for the method are needed, but due to

the significant computational resources required, these are left to future work.

6.2 Variance reduction

In this section, we discuss the degree of variance reduction achieved by the method

outlined in this thesis for a simple problem. The variance was computed in the bound-

ary cells of a steady heat transfer problem in argon gas for various Knudsen numbers.

Recall from Section 1.2.4 that in non-variance reduced methods (e.g. DSMC) the

relative statistical error in the hydrodynamic fields scales inversely to the departure

from equilibrium (see Reference [28] and Equations (1.24) and (1.25)).



The form of Equation (1.25) suggests that the quantity Nc Nemo/(AT) 2 is a good

metric for the performance of the method for small departures from equilibrium, since

for DSMC this is given by

NensNco4 kB/cv kB/cv 6.4)
AT 2  (AT/To) 2  E2 >6-

which is a strong function of the departure from equilibrium. In comparison, the

LVDSMC results for this parameter do not depend on the departure from equilib-

rium as shown in Figure 6-3 which features simulation results for the average of two

boundary cells. This illustrates a dramatic variance reduction compared to DSMC.

Moreover, as NemNc is directly related to the degree of computational effort, Figure

6-3 can be used as a measure of computational savings provided by the LVDSMC

approach for problems with a small departure from equilibrium. A more direct mea-

sure needs to take into account the cost per sample for each method. Our experi-

ence indicates that, conservatively, LVDSMC computations are less than two times

more expensive than DSMC for Kn > 1 and less than ten times more expensive for

Kn = 0.1, for VHS simulations (assuming E ~ 10); this modest increase in compu-

tational expense is easily offset by the tremendous efficiency improvements indicated

in Figure 6-3 for E < 1. We recall that the cost per time step of BGK-LVDSMC

simulations is much smaller than comparable VHS-LVDSMC simulations.

6.3 Validation and demonstration cases

In this section, we present a variety of validation and demonstration cases treated

using the LVDSMC method discussed in this thesis. For all simulations with Kn > 1,

the boundary cancellation procedure (see discussion in Section 3.2) was used. While

the simulations performed in this work (up to Kn = 10) remained stable without

boundary cancellation, the number of simulated particles per cell for Kn > 1 tended

to scale with '.Kn (rather than E) and the overall computational efficiency of the

method was noticeably degraded. For Kn < 1, the boundary cancellation procedure

is unnecessary, and was not used.
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Figure 6-3: Variance in the cell-based temperature measurement for heat transfer be-
tween parallel plates, averaged between two cells adjacent to the wall. The LVDSMC
results (symbols) are obtained from simulations, compared to the DSMC values (solid
line) obtained from Equation (1.25).

6.3.1 Couette flow shear stress for the VHS collision model

In order to verify that the method correctly simulates the VHS collision operator,

we simulated a steady state shear flow with boundary conditions uB,y(0) = --U and

UB,y(L) = U with wall velocity U = 0.05co, and Knudsen number Kn = 0.05 based on

wall separation L. Simulations were performed for hard-sphere, helium, argon, and

Maxwell molecules (w = 0.5, 0.66, 0.81, and 1, respectively); excellent (better than

1%) agreement between LVDSMC and DSMC results for the shear stress is observed

(see Figure 6-4).

6.3.2 Poiseuille and thermal creep flow in rectangular mi-

crochannels

Poiseuille (pressure driven) and thermal creep (surface temperature gradient driven)

flows in microchannels are routinely analyzed in the context of Knudsen compressor
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Figure 6-4: Validation of the LVDSMC VHS simulation method using a steady shear
flow simulation at Kn = 0.05. Shear stress values for hard sphere, helium, argon, and
Maxwell molecular gases are considered.

design, an important application of the present work which is discussed in more detail

in Chapter 7. In this section, we use the high quality numerical results of Doi [24]

for flow of a hard sphere gas through rectangular microchannels in order to validate

the overall method in two-dimensional geometries, as well as to verify the correct

implementation of the "effective body force" term (Section 3.3).

Here Poiseuille (E = rL, < 1) and thermal creep (E = ,TL, < 1) flows are

simulated in the limit of small departure from equilibrium (E < 1), where the Knud-

sen number Kn, is based on the minimum channel dimension L2. Due to two-fold

symmetry, only a quarter of the channel cross-section was simulated. The results for

the dimensionless flow rates are shown in Figures 6-5 and 6-6 for a wide range of

Knudsen numbers and aspect ratios, where the overbar denotes a spatial average over

the entire cross section. For most cases, a cell size of Ax/Lw = Ay/L, = 0.02 was

used to obtain better than 1% agreement in the total mass flow rates compared to

the results of Doi [24]. For some cases with Kn = 0.1, further refinement was required

to obtain the same level of agreement; in those cases Ax/L, = Ay/L, = 0.01 was
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Figure 6-5: Flow rate for Poiseuille flow through a rectangular microchannel for
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compared with data from Doi [24] (lines).
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Also shown, in Figure 6-7, is the velocity field for Poiseuille flow through a square

microchannel (L = Lx = L,) for Kn = 0.1 using 50 x 50 spatial cells. By perform-

ing steady-state averaging over 106 time steps (At = Ax/co) after steady state was

reached, this simulation resulted in a velocity field with a relative statistical uncer-

tainty [28] of ~ 0.1%. In order to obtain a 0.1% statistical uncertainty in Th,, 5 x 105

times steps are required, using approximately 16 hours on a single core of an Intel 3.0

GHz Core 2 Quad processor. For square channels with Kn =1 and 10, with a 25 x 25

cell mesh, 1.1 and 0.2 hours of computational time (respectively) were required, to

achieve the same level of relative statistical uncertainty in rh,. Given that even

in variance-reduced guise, Monte Carlo approaches will always perform worse when

very low noise is required, this performance is very encouraging for highly resolved,

two-dimensional calculations.

'For thermal creep with Kn = 0.1 and L,/L, = 2, Doi [24] reports a value of r-r= 0.048
compared to 0.0473 for the LVDSMC method. Due to the small number of digits in the reported
value, it was not possible to determine if 1% agreement was attained for this specific case.



0.45-

0.4 LY L =o

0.35-
5

rhT 0.3

0.25 2

0.2-

0.15

0.1

0.05

10~1 100 101

Knx

Figure 6-6: Flow rate for thermal creep flow through a rectangular microchannel for
various Knudsen numbers and aspect ratios. The LVDSMC results (symbols) are
compared with data from Doi [24] (lines).

As an indication of the relative efficiency compared to DSMC, the simulation time

required to achieve 0.1% statistical uncertainty in the velocity field for Poiseuille flow

through a square channel was determined. Assuming a Mach number of Ma - 0.02,

DSMC simulations would require approximately 500, 100, and 100 hours for Kn =

0.1, 1, 10, respectively, compared to 30, 4, and 2 hours for the LVDSMC simulations.

For this problem (Poiseuille flow), DSMC simulates the pressure force as an equivalent

gravitation force, which is a valid approach for small deviations from equilibrium (3.3).

However, there is no obvious way to use DSMC to simulate thermal creep without

resorting to very expensive three-dimensional simulations.

6.3.3 Lid-driven flow of argon gas

Next, simulations of two-dimensional lid-driven flow of argon (w = 0.81) gas in a

square enclosure with side length L are presented. The boundary conditions are dif-

fusely reflecting walls, all of which are stationary except the top (y = L) which is

moving in the x-direction with velocity Eco, where E < 1. Simulations were per-
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Figure 6-7: Streamwise velocity for Poiseuille flow through a square microchannel
with Kn = 0.1.

formed for Kn = A/L = 0.1, 1, and 10; 1OOx100 cells were used for Kn = 0.1, while

50x50 cells were used for Kn = 1,10. Each simulation was repeated with a dou-

bling of the number of cells in each coordinate direction (to 200 x 200 and 100 x 100,

respectively), which showed less than 1% difference in p, u2, and u.; this was taken

as evidence of convergence. Shown in Figures 6-8-6-10 are the velocity and density

fields corresponding to the finer-meshed solutions.

6.3.4 Response of a gas to a spatially-variable boundary tem-

perature

The response of argon gas to a boundary temperature with a sinusoidal spatial varia-

tion was also simulated. Here, the lower boundary (y = 0) is diffusely-reflecting with

a temperature given by TB TO(1 - E cos 27rx/L); an identical boundary is located

at y = L, and the Knudsen number based on the separation between the two bound-

aries (L) is Kn = 1. Due to the underlying symmetries in the x and y directions, the



0.4 0.6 0.8 1
x/L

Figure 6-8: Lid-driven flow
density e-1(p/po - 1), while

of argon gas at Kn = 0.1.
the velocity field e-lu/co is

The contour lines show the
shown as a vector plot.

1

0.8

0.6

0.4

0.2

x/L

Figure 6-9: Lid-driven flow
density e-'(p/po - 1), while

of argon gas at Kn = 1. The contour lines show the
the velocity field c-lu/co is shown as a vector plot.

0.8

0.6

0.4

0.2

00 0.2



0.8

0.6

L
0.4 5

0.2

0 0.2 0.4 0.6 0.8 1
x/L

Figure 6-10: Lid-driven flow of argon gas at Kn = 10. The contour lines show the
density 6-'(p/po - 1), while the velocity field e-u/co is shown as a vector plot.

simulation domain was chosen as 0 < x, y < L/2. Unlike the previous examples, here

the results for several choices of 6 are shown. Figure 6-11 is a plot of the temperature

and velocity fields for the limit of small departure from equilibrium C < 1. In Fig-

ures 6-12-6-13, the isotherms for the LVDSMC and DSMC methods are compared

for c = 0.05 and 0.5 respectively. For c = 0.05, there is no noticeable difference

between the LVDSMC and DSMC temperature fields, even though the temperature

field is noticeably perturbed from the 6 - 0 solution. The velocity field in the Figure

6-12 corresponds to the LVDSMC solution for 6 = 0.05; the DSMC velocity field was

considerably noisier. For 6 = 0.5, which is no longer a near-equilibrium case, there

is only a slight discrepancy between the temperature fields obtained from LVDSMC

and DSMC, likely due to the LVDSMC method being based on a linearized version

of the collision operator (see Section 4.1).
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Figure 6-11: Response of argon gas to spatially-varying boundary temperature with
Kn = 1 and c < 1. The contour lines are isotherms (dimensionless temperature:
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Figure 6-12: Response of argon gas to spatially-varying boundary temperature with
Kn = 1 and e = 0.05. Contour plot of the dimensionless temperature (C 1(T/To - 1))
as obtained by LVDSMC (dashed) and DSMC (solid); the E -+ 0 limit (dash-dot) as
obtained by LVDSMC is also shown for comparison. The velocity field cu/co is the
LVDSMC solution for E = 0.05; the DSMC velocity field was noticeably noisier.
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6.3.5 BGK collision model simulations

As a test of the BGK collision algorithm developed in Chapter 5, two simple validation

cases were performed. First, a one-dimensional Couette flow was simulated for a range

of Knudsen numbers in the low Mach number limit. The resulting steady-state shear

stress plotted in Figure 6-14 which shows excellent agreement with the numerical

data reported by Loyalka [41]. Secondly, the transient response of a gas confined

between parallel plates with accommodation coefficients a = 0.7 is considered, where

the boundaries are impulsively heated from initial temperature To to 1.5To. In Figure

6-15, the transient temperature response is compared to a DSMC simulation, again

showing excellent results for all time steps.

00035- -
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Figure 6-14: Validation of the LVDSMC simulation method for steady Couette flow of
a BGK gas. The Knudsen numbers k = f Kn are based on the separation width, and
the shear stress is normalized by the free molecular flow limit (-PY)k,o = -cU,
where the bounding walls have (tangential) velocities ±U/2.
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Figure 6-15: Validation of the LVDSMC simulation method for the transient temper-
ature response of a BGK gas with Knudsen number k = =Kn = 0.2 and initial state
(po, To). Here, the LVDSMC (lines) and DSMC (symbols) results are shown for times
cot/L = {0.02, 0.04, 0.1, 0.2, 0.4, 1, 2}. The temperature is shown in dimensionless
form, scaled by the characteristic temperature rise AT = 0.5To.



Chapter 7

Selected Applications

In this chapter, two important applications of the LVDSMC methodology to problems

of practical/scientific interest are presented. In both cases, substantial computational

savings compared to DSMC are achieved. In the second case, namely the evaluation

of the second-order temperature jump coefficient, these calculations are only possible

using the LVDSMC (hence the absence of a rigorous calculation of the second-order

temperature jump coefficient until now). Additional applications of the LVDSMC

methodologies to phonon transport in the context of nanoscale solid-state heat trans-

fer can be found in [49].

7.1 Simulation of Knudsen compressors

Knudsen compressors are devices with no moving parts, which exploit thermal tran-

spiration effects in order to pump or pressurize a gas. These devices generally consist

of many stages, each with a capillary section with a positive streamwise temperature

gradient, followed by a connector section with a negative temperature gradient. The

number of open design and optimization issues [46] still open have reinforced the

need for computationally efficient simulation techniques. While actual Knudsen com-

pressors feature relatively small temperature gradients, previous DSMC simulations

[4, 58] have used artificially large temperature gradients in order to obtain a suffi-

ciently noise-free results. Some researchers [4] have also resorted to using PDE based



solution approaches based on the BGK model; this is problematic because the BGK

model has an incorrect Prandtl number (ratio of momentum diffusivity to thermal

diffusivity), introducing significant error due to the coupling between the temperature

and velocity fields.

In contrast, the present method is able to efficiently simulate arbitrarily small

temperature gradients without resorting to approximations. LVDSMC, as developed

in this thesis, is currently being used to investigate various design tradeoffs for Knud-

sen compressors [35], including the effect of various cross-sections for long channels

and various design configurations for Knudsen compressors. An example of the later

is shown in figure 7-1, where the thermal transpiration flow of a hard-sphere gas

through a single section of periodic configuration (T(x, y) = T(x + 2L, y), etc.) is

simulated. The lower boundary is diffusely-reflecting with a temperature given by

TB -TTO 2(x/L)- 1 for x<L
, (7.1)

AT 3-2(x/L) for x> L

while the upper boundary imposes a symmetry; the Knudsen number (based on L)

is Kn = 1. Another study [58] which simulated the same configuration used a dimen-

sionless temperature difference of AT/To = 1/2 in order to obtain reasonably smooth

results using DSMC. In contrast, the method developed here is able to efficiently

capture the AT/To -+ 0 limit with essentially zero statistical uncertainty.

7.2 Second order temperature jump

For gas flows with a characteristic length scale which is moderately larger than the

mean free path (typically with Kn of order 0.1 or less), the Navier-Stokes description

remains valid in the bulk of the flow field, but fails near the boundaries [57, 27]. This

flow regime can be analyzed by solving the NS equations in combination with bound-

ary conditions that allow for velocity slip and temperature jumps at the boundaries;

the resulting solution is valid everywhere except in a layer of thickness - A near the

boundaries (known as the Knudsen layer) containing the region where kinetic effects
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Figure 7-1: Simulation of a simple Knudsen compressor with Kn = 1 and arbitrarily
small temperature gradients. The arrows are velocity vectors and the contours are
isothermal lines.

are important. This is a very important result, because it allows the use of a signif-

icantly simpler NS description and postpones the need for solving the considerably

more expensive BTE.

Determination of slip coefficients requires high accuracy, which also implies low

statistical uncertainty. Moreover, slip and jump coefficients have to be extracted

from simulation data performed at low driving forces, in order to avoid non-linear

or cross effects. This makes temperature jump calculations particularly challenging

because the presence of temperature gradients (necessary for temperature jumps)

implies density gradients, and in unsteady problems, flow velocities. Furthermore, at

finite temperature differences, the temperature dependence of transport coefficients

may alter the result. LVDSMC simulations are naturally suited to these problems;

in fact, they make a solution of the specific problem considered here possible for the

first time.

7.2.1 Theory

Velocity slip/temperature jump boundary condition models are generally based on

an asymptotic solution [57] of the BTE. These solutions show that in the bulk, the



Navier-Stokes description is valid, while close to the boundary, kinetic effects become

important (the Chapman Enskog distribution [59] cannot satisfy boundary conditions

for the distribution function). These kinetic effects are accounted for using a kinetic

inner solution. Slip/jump relations are obtained from matching this inner solution to

the outer Navier-Stokes solution.

As an example, for a quiescent gas near a flat surface, the first-order temperature

jump condition [57] resulting from this matching procedure is given by

dT
T (^B) - TB = d1 k- (XB), (7.2)

dn

where k = (Kn, XB =X2B/L denotes the boundary location, n is the dimensionless

(inward) normal direction, L is the system length scale, and the numerical constant

di has non-adjustable values (reported in Reference [57]) of 2.4001 for a hard sphere

gas and 1.30272 for a BGK gas; both values here correspond to diffusely-reflecting

(a = 1) boundaries.

Although relation (7.2) is typically adequate for Kn < 0.1 or less1 the error be-

comes appreciable for Kn > 0.1. Asymptotic expansion to second order in k shows

that [57] the second-order temperature jump model takes the form

T x dT 2 d 2T(AB

i(B) -TB d -d B 2 d2(2 (iB) (7.3)

Calculation of slip coefficients is very challenging in general and becomes increasingly

more challenging as the order of the expansion increases. For this reason, d2 is, in

general, not known. It is only known in the special case of the BGK model for steady,

linear flows [57], which in the present context imply that the temperature equation

is of the form V 2T = 0 (no unsteady or source terms). In this section we use the

LVDSMC methodology to calculate d2 for the hard sphere gas for the first time and

thus enable the use of Fourier's Law at higher Kn than before for a realistic gas model.

'The usefulness of first-order slip/jump models primarily depends on the amount of error that can
be tolerated. However, temperature jump coefficients (both first-order and the second-order mea-
sured here) are larger than the velocity slip counterparts. As a result, the second-order temperature
jump correction becomes important at smaller Knudsen numbers.



We will achieve this objective using a problem for which the NS/Fourier solution

based on (7.3) can be analytically written down. By comparing this solution to

LVDSMC results, we can extract the value of d2. The problem we have chosen is that

of a gas layer subject to internal heat generation.

In dimensionless form, the one-dimensional heat equation with internal heat gen-

eration can be written as

4dT 
(7.4)

5 s2

where y2 is a dimensionless form of the thermal conductivity, which is equal to [57]

1.9228 for hard spheres and unity for BGK. The departure from equilibrium in this

case is the dimensionless version of the volumetric internal heat generation Q

LQ < 1. (7.5)
cOPO

For a gas in contact with two boundaries with temperatures TB (+L/2) = T0 , the

solution to Equation (7.5) subject to boundary conditions (7.3) gives the desired

second order temperature jump solution

A 1 4E ~ 2l2

T=-- - 2) +dik - 2dsk21. (7.6)
2572 . 4

7.2.2 Implementation

An essential step in simulating the kinetic version of the above problem is introducing

an internal heat generation term in the LVDSMC simulation methodology. As was

done for pressure and temperature gradient driven flows, this can be introduced using

the "effective body force" approach of section 3.3, by generating deviational particles

corresponding to an internal energy change of the equilibrium state, given by

=fE)~O~) co (2||1c-_U0||2 fo

[ t -H H L 3 4 C . (7.7)

The relation between specific internal energy 2RT and volumetric heat generation



Q=Pod (RT)

was used to produce the above result. As this application involves modeling heat

transfer through a quiescent gas, the choice of uo = 0 is appropriate.

Multiplying the above expression by the total simulation volume V, time step

Atbody, and differential element in velocity space dac gives the total change in devia-

tional particles due to heat generation for velocities within d3 c per time step

Ofd) H LAtbody3 c = E1) f 0 (C) VAtbodyd 3

- FH(C) VAtb odyd 3  (7.9)
L

where ( = c/co and

(7.10)FH( _. 2
PO3

This term was sampled using the ratio-of-uniforms method as was done for the

standard "body force" terms (see sections 3.2, 3.3, and A.3.1), resulting in sampling

bounds

0 < aH2 + 2/5
7rs/5 3e

V < V - 1 2 (7 )7/2 + 5 )5/2- 1/5

-b i92 yy,< H 7 3/10 3 2ee

(7.11)

(7.12)

and total number of trial samples

100

(7.8)



' j3 d3c a) VAtbody

POCOVAtbody j d3 IF H(c)
mWeffL J43

pocoVAtbody d3 17 (|FHOCH()
mWeffL 17s. O(H,,q)

< POcOVAtbody Jdy bH di7j 1 bH dyz aH
mWeffL J _gH j_bH j_bH

=20 POCOVAtbody aH (bF)3 =N . (7.13)
mWeffL

For the heat generation substep (which takes the place of the ordinary body force

substep), a sample (H, 17) is generated (uniformly) utilizing bounds (7.11-7.12) for

each trial step. Using c = cor/v I, FH is evaluated from Equation (7.10), and the

trial particle generation is accepted if H < IFH (C) 12/5. Accepted particles are added

to the simulation with sign sgn[FH(c)] and with a position x sampled uniformly from

D. As before, mass conservation is enforced using a stratified sampling approach (see

section 3.2.2).

The original implementation using f' = f 0 suffered from unusual variability,

which made the resolution of the temperature field to the desired accuracy difficult.

This is thought to be a result of the fact that the heat generation term (7.7) introduces

a net energy into the simulation (unlike the pressure- and temperature-gradient driven

body forces previously considered in Section 3.3) and the fact that calculations had

to be run for Kn < 0.1, for which particle methods are typically inefficient. For

this reason, algorithms using a spatially-variable equilibrium f MB, were used (see

Appendix B). As discussed in Chapter 2, these implementations take advantage of

the presence of a local description (f -* fl"c) as Kn -+ 0 to substantially reduce the

number of particles required in that limit (or achieve higher accuracy for the same

number of particles).

For the hard sphere operator, a specialized implementation based on a spatially-

101



variable equilibrium f MB, which remained unchanged through the simulation was used.

In other words, an initial run was performed in order to determine the approximate

density and temperature fields, which were then used to define the equilibrium state

of the subsequent calculation. The resulting temperature field from this approach was

found to give sufficiently repeatable data to produce a good fit to the model for the

second order jump coefficient. It is noted that this approach is not herein proposed

as a method for solving general problems. The method outlined in Chapters 3-5

is efficient and well-behaved in all simulations performed in this thesis except those

involving heat generation; the exact reason for the ill behavior of the heat generation

term remains an open issue (see discussion in Chapter 8).

For the BGK operator, an implementation of a previously published method [52]

described in Section 2.3 was modified to include the heat generation step. Because

this method simulates a local equilibrium f M
B that is updated in the course of the

simulation, the heat generation term can introduced directly (and analytically) into

f
M

B, using (see Equation (7.8))

Q = po d RTMB. (7.14)

Thus, implementing volumetric heating involves simply incrementing TMB,1 by a fixed

amount in each cell j

ATMB,j 2 cOT body- (7.15)
3 L

7.2.3 Results

Numerical simulations of the uniform heat generation problem were performed in

order to extract the second-order jump coefficients by comparing the calculated steady

centerline temperature T( = 0) with Equation (7.6). According to this relation, d2

can be extracted from the slope of

56 1 di
2'Z'( x = 0) Tk 2 (7.16)
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Figure 7-2: Fits used to extract the second-order jump coefficient d2 for the hard
sphere and BGK collision models.

as a function of k. Figure 7-2, shows our numerical data for -kd 2 and a linear

least squares fit passing through the origin based on the data for k < 0.06, and the

values di = 1.30272 for BGK and di = 2.4001 for the hard sphere gas [57]. Our

results are d2= -1.4 for BGK and -3.1 for the hard sphere model; the very good

fit proves that the leading order term is indeed k2 . To our knowledge, these are the

first measurements of d2 for the more general case that includes a source term in the

temperature equation and the first ever measurement of the hard sphere coefficient.

Figure 7-3 shows the temperature field for the hard sphere case with Kn = 0.05

(equivalent to k = 0.044311) using the value obtained above (namely d2 = -3.1)

demonstrating excellent agreement everywhere except in the Knudsen layer in the

boundary, as expected. By comparing the first- and second-order jump theories, it

is clear that the second-order jump theory provides a significant improvement over

the existing first-order theory, already at Kn = 0.05. For Kn = 0.1 (Figure 7-4), the

Knudsen layers are just beginning to merge in the center of the simulation, leading to

a slight error in the second-order fit at X = 0 and a large discrepancy in the first-order

fit.
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Figure 7-3: Second-order temperature jump solution (Equation (7.6)) to the uniform
heat generation problem with Knudsen number Kn = 0.05, where the simulation
results (symbols) are compared to the first- (dashed line) and second-order (solid
line) jump theories.
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Figure 7-4: Second-order temperature jump solution (Equation (7.6)) to the uniform
heat generation problem with Knudsen number Kn = 0.1, where the simulation results
(symbols) are compared to the first- (dashed line) and second-order (solid line) jump
theories.
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Chapter 8

Conclusion

In this thesis, an advanced stochastic particle simulation method has been devel-

oped for simulating kinetic gas flows in micro- and nanoscale devices. This method,

like previous variance-reduced simulation approaches, dramatically outperforms the

prevalent DSMC method in near-equilibirum flow regimes; it also offers several im-

portant extensions and improvements over previous variance-reduced methods.

In particular, the present method simulates the more general VHS collision op-

erator, which more accurately represents the viscosity law for real gases; previous

particle methods incorporating variance-reduction were limited to the hard-sphere

[22, 11, 33, 2] and BGK models [52, 56, 29, 39]. Efficient simulation of the VHS

collision operator within the LVDSMC framework required the implementation of

more complex algorithms for the collision step. By simulating collisions as a series of

Markov creation and deletion events [61], the resulting method avoids intrinsic time

step error within the collision step. A highly-efficient advection routine [52, 53] based

on the ratio-of-uniforms sampling approach was also developed. Moreover, by en-

forcing mass conservation within each step, the present method provides a significant

improvement, allowing accurate simulation with as few as ten particles or less per

cell [53], which is in stark contrast to the hundreds to thousands per cell required for

previous LVDSMC simulation methods. This result is important as it can drastically

reduce the amount of memory used for larger simulations as well as permitting much

more efficient computation for steady state problems.
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This research focused on simulating the deviation from a fixed equilibrium dis-

tribution because simulating deviation from a spatially-variable equilibrium distribu-

tions using the algorithms described in this thesis is less efficient in multiple spatial

dimensions for a wide range of Knudsen numbers. The primary reason for this is

the complexity associated with the generation of particles at cell boundaries due to

the discontinuities of the equilibrium distribution there and the rapid increase in the

number of cell interfaces with problem dimension. Moreover, the added complications

induced by the VHS Markov-based collision algorithms, as well as the mass conserva-

tion enforcement, made the full implementation of a simulation based on a variable

equilibrium unnecessarily complicated. However, as the later approach provides a

significant advantage for resolving the continuum limit [55], future development of

such a technique may be warranted; perhaps the optimal approach would involve a

continuously-distributed equilibrium where the additional particle generation in the

advection step would be performed volumetrically, rather than concentrated at the

cell interfaces.

Additional directions for future research include rigorous convergence studies, in

order to accurately quantify the convergence rate, as has been done for the DSMC

method [51], and the extension of LVDSMC to other gas models-most importantly,

polyatomic gas models, which would involve developing an analogue to the widely-

used Larsen-Borgnakke procedure [15]. As variance-reduced simulation of polyatomic

molecules is likely to be a difficult undertaking, perhaps an initial step would be sim-

ulate the recently-developed polyatomic versions of the ES-BGK collision model [6],

which is significantly less complex than VHS. Theoretically, it would be trivial to ex-

tend the LVDSMC methodology for multi-species transport; and this, combined with

successful implementation of polyatomic molecular models would provide a framework

for developing chemical reaction procedures.

In this thesis numerous validations were performed, demonstrating the overall ac-

curacy and efficiency of the method. Two useful applications from active research

areas in nanotechnology were presented. In both cases, the desired problem could

be accurately and efficiently simulated using the LVDSMC simulation approach, al-
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though for the second application which required simulation of a uniform heat gen-

eration term, the method required simulation of a spatially-variable equilibrium in

order to prevent random walks in the temperature field. As this issue only presented

with the simulation of internal heat generation, which was implemented via a spe-

cial "effective body force term," and was not noticed for the large number of other

simulation configurations including "body force" terms for pressure and temperature

gradient driven flows, it seems certain that the problem lies with the heat generation

term and not the method in general. However, further research may be necessary in

order to understand the cause of this apparent pathology.

As simulations performed using previous LVDSMC methods have already con-

tributed to published research [44, 45], this method is also expected to become a

useful computational tool for use in the wider scientific and engineering community.

Moreover, due to its robustness and wide generality, it is hoped that the method

will be used alongside DSMC simulations, fulfilling a complementary role by simu-

lating problems with small departures from equilibrium, where DSMC methods are

extraordinarily inefficient.

Another development based on the BGK collision model is the extension of the

LVDSMC methodology to treat phonon transport in nanoscale heat transfer applica-

tions [49]. The phonon distribution (density of states times the occupation number)

satisfies a similar BTE as molecular gas transport, only with a different equilibrium

distribution (the equilibrium phonon occupation number follows Bose-Einstien statis-

tics) [21]. Phonon collisions are treated using the BGK model, where it is known as

the relaxation-time approximation, only with frequency dependent relaxation times.

In phonon simulations, energy conservation is critical to avoid random walks in the

temperature and heat flux. In Reference [49], this was accomplished by solving the

Boltzmann equation in terms of the energy density rather than particle density, en-

abling efficient simulation of solid-state heat transfer for semiconductor devices with

small temperature gradients which drastically outperform traditional Monte Carlo

(DSMC-like) simulations.

The LVDSMC simulation approach for molecular gas, phonon, and other forms

109



of particle mediated transport, can be also thought of as a new class of multiscale

simulation approaches [53] which are based on a decomposition of the kinetic descrip-

tion into a equilibrium part which is described deterministically, and the remainder

which is described using a particle simulation method. Such a decomposition based

on global equilibrium f0 (the focus of this thesis) leads to substantial computational

gains in the limit of small departure from equilibrium, while decompositions based

on a local equilibrium fM B, leads to a dynamically and automatically adaptive multi-

scale method that seamlessly bridges the two descriptions (namely, equilibrium and

kinetic) without introducing any approximation.
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Appendix A

Particle Sampling Methods

This section outlines the basic particle sampling techniques used to sample the various

distributions used in the algorithms discussed in this thesis. Each of these sampling

techniques requires a high quality random number generator [50] which produces

samples 91 which are uniformly distributed on [0, 1).

A.1 Direct inversion of the cumulative distribu-

tion function

A random sample from any probability distribution p(s) can be generated by setting

the cumulative distribution function equal to a uniformly distributed random variable

-00

and solving for (. Note, that the above procedure is only valid when p(s) is a proba-

bility distribution, requiring that p(s) is nonnegative and properly normalized, i.e.

(A.1)

Idp() = 1.

Several examples follow in the subsections below.
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A.1.1 Sampling from an exponential distribution

For the exponential distribution p() = e- , ( E (0, oo), the above procedure is trivial,

resulting in the production of a sample (= - ln(9) from the random number 9.

A.1.2 Sampling from a Gaussian distribution

For a Gaussian distribution of the form p(s) = ( E ' R, direct inversion of

the cumulative distribution can be performed for a joint distribution of two indepen-

dent Gaussian variables p((1, 2) - le-+2), where the integration is performed by
7r

converting to polar coordinates-a technique known as the Box Muller method.

cos(27r1 1) v- ln(91 2) (A.3)

62 = sin(2,7r 91) - In (-%2) (A.4)

A faster version of the above procedure, which avoids the evaluation of the trigono-

metric functions is the more commonly used polar form of the Box Muller method

which can be found in Reference [50].

Samples from the equilibrium distribution f 0 (c) (equation (2.2)) are obtained as

c = uO + co , where each (independent) component of ( is obtained from the above

procedure.

A.1.3 Sampling from a biased Gaussian distribution

Sampling from an equilibrium fluxal distribution (e.g. distribution (3.7)) of the form

P(61,62, 63) = 2e-e+ 3 +7) where (1 E [0, oo) and 2, 3 E R can be obtained from

the Box Muller technique in the section above for 2 and 3, while the remaining

variable (1 is easily sampled by inverting the cumulative distribution, resulting in

(1= f- ln(91).
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A.1.4 Sampling uniformly from a unit sphere

Producing samples from a uniform unit sphere is another procedure which is based

on inversion of the cumulative distribution function. Straightforward analysis leads

to the following expressions for the components of a unit vector on the unit sphere

Q1 = X cos(6) (A.5)

Q2 = X sin(6) (A.6)

Q 3 = 1 -' _X 2 (A.7)

where x = 2911 - 1 and 0 = 2xr912 and 911 and 912 are uniformly distributed random

variables.

A.2 The acceptance-rejection method

The acceptance-rejection method is a basic technique for producing samples from

a distribution p(s) which has a known bound p(s) <; pmax. First, a trial sample (

uniformly distributed in the domain of p is generated, and accepted with probability

p(A)/pmax. If the trial sample is rejected, the procedure is simply repeated until

an accepted sample is obtained. This method can be extremely inefficient when

the probability is concentrated on a certain region because of the large number of

rejections.

A.3 The ratio-of-uniforms method

The ratio-of-uniforms method is an alternative sampling approach which is often dras-

tically more efficient for generating samples from a distribution than the acceptance-

rejection method. This method was used primarily to sample a deviational distri-

bution which is represented as a product of a polynomial and a Gaussian in three

dimensions; it was also used to develop a simple generation routine for a probability
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Table A.1: Ratio of uniforms bounds

i F'( )

1 7-3/2e- 2

2 r-3/2e- 2

3 r-3/2g2e-2

4 -3/2(1 e 2

5 7r-3/2g2e-42

6 7-3/2%ig2e- 2

7r3/2 (a i)5/2

1

1/e

1/(2e)

1/e

[3/(2e)]3/2

7 3/ 2 (bI)5

[5/(2e)]5/2

(3/e)3

[7/(2e)]7/2

27e -7/2/V/2

[7/(2e)]7/2

(4/e)4

W3/ 2 (bi) 5

[5/(2e)]5/2

55/ 2 /(2e) 3

(5/2)5/ 2 e- 7/ 2

27e-7/2 / V

[7/(2e)]7/2

205/ 2 /(27e 4 )

3/2 (bi) 5

[5/(2e)]5 / 2

55/ 2 /(2e) 3

(5/2)/ 2 e- 7/2

55/2/ (2e)7/2

[7/(2e)]7/2

205/ 2 /(27e 4 )

distribution in a single dimension: both are discussed below.

A.3.1 Ratio-of-uniforms sampling of a product of a polyno-

mial and a Gaussian

Here the multivariate approach of Wakefield [62] is reviewed and modified to sample

the deviational distribution

F(C) = EpF'(),
i=1

(A.8)

where the F are shown in table A.1 and E R 3 ; note, that these functions are not

true probability distributions because they are neither nonnegative nor normalized.

As a first step, the ratio-of-uniforms is applied to a single deviational distribution

F(() via the variable transformation [62]

(A.9)

(A.10)|Fi= H1+3r

where the parameter r can be chosen to maximize the acceptance probability. Since

r = 1/2 results in optimal efficiency for sampling a pure Gaussian [62], this value was
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adopted for all cases, yeilding:

(A.11)

(A.12)

F1 =- /I H.

|Fil = H /.

An important advantage of this formulation is that the transformed variables are all

bounded quantities; in this case (R E 13), ratio-of uniforms variables are bounded

quantities

0 <

52 5

(A.13)

(A.14)

(A.15)

(A.16)

H <

'q/2 <_

'q3 <

where the bounds are evaluated according to [62]

ai = sup Fi12/5

bi = sup |1||FI1 1/5
(E3

b2= sup |( 2||FIl/s
(ER3

b3 sup |6I||F11 /5,
(ER3

for which the calculated results are given in table A.1.

Next, the bounds for the overall deviational distribution (A.8)

0 < H < a
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(A.18)

(A.19)

(A.20)

(A.21)



- < bi < 71 < b1

- < b2 < 72 5 b2

- < b3 5 3 < b3

are calculated; shown below is the full calculation for the bound a.

(A.22)

(A.23)

(A.24)

- 2/5 6 2/5 -6
sup |F|215 = sup |F| I sup piF ( I Ip| sup
EJZ3 tERi3 [CGIz3 j= I LE~~R

S 6 5/2-

= IN sup |Il2'/5

2/5 ' 6
_ i 5/21= a (A.25)

Bounds b are derived in a similar manner to obtain

1/5

sup |1||IF|I/ 5 [6

(EIR -6
sup |(2||F|F/5 5 < |pil (b')2

(E R

pilI (b')5

[ 6
sup |'3|I|F|I' 5< pi (b')5]

(A.26)

(A.27)

(A.28)

- b1.

= b2

= b3.

Using bounds (A.25-A.28), the overall process of sampling particles to construct a

representation of the deviational distribution F in the form mWef Z _1 sk6 3  
-

proceeds by first drawing a trial number Ntriai of particles, which is determined by

the total integral bound on the distribution

mWe j d3 IFI

mWeff _1

mWegJins
d (IFl, ) HI

2 3 ja - 20abib2b3 _ N
- 2 -b 3 mWeff
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where extensions to distributions over different domains are obvious (for example,

if 0 < (1 R, then Ntriai is reduced by half, etc.). Note that the Jacobian of the

transformation was used in the derivation above.

Finally, the samples are generated by repeating the following steps Ntrial times:

(i) draw a set of independent random variables H, r uniformly distributed according

to bounds (A.25-A.28), (ii) determine trial sample independent variable ( =rv ,

(iii) if H < |F(() 2/5 then accept the particle with sign sgn(F).

A.3.2 Ratio of uniforms sampling of 2 3e- 2

In this section, a simple application of the ratio-of-uniforms method is presented

by developing an algorithm for producing samples ( E [0, oo) from the probability

distribution p(s) = 2(3,e- 2 . Using the one-dimensional formulation from Reference

[62] (with r = 1/2), the desired variable transformation is

= rq/v"HI (A.30)

p= H 3/ 2 , (A.31)

where the bounds on the transformed variables were calculated to be

a = sup p2/3 - 3 (A.32)
eE[o,oo) 21/ 3e

b = sup p1/3 = 3 (A.33)
eE[o,oo) e

This results in the following algorithm, used in Section 4.3.1 to produce a single

sample (.

Algorithm A.1. Algorithm for sampling 2(3,e- 2

1. Generate a uniform random variate 9%, E [0, 1), and calculate H = 39%1/(21/ 3e).
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2. Generate a uniform random variate 912 E [0, 1), and calculate ( = 21/339%2/e.

3. If H < (2(3e- 2)2/3 then exit routine with sample (.

4. Go back to step 1.
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Appendix B

Mass- conservative Simulation

Based on a Local Equilibrium

This section contains the modifications to the LVDSMC algorithm described in Chap-

ter 7 for simulating deviation from a spatially-variable equilibrium distribution fM
B

Unlike previous approaches [33, 52], the equilibrium is not updated during the col-

lision step. This simpler approach was chosen; as this procedure was only required

for a single application (uniform heat generation, presented in Section 7.2); a simu-

lation method for the VHS model with automatically updated equilibrium would be

considerably more complex and was not presented.

The spatially-variable equilibrium distribution is defined as

f MB~c PMB3 ( IICUMBII 2
fB 3/23 exp MC2  CMB 

2 RTMB, (B.1)
Mr B MB3

where the hydrodynamic properties (PMB, UMB TMB) are cell-based values. For sim-

plicity, the implemented method is based on a motionless equilibrium state: UMB =

uO - 0. The advection routine is an extension of the procedure developed in Ref-

erence [52] and discussed in Section 2.3, only extended to include mass conservation

and to treat moderate departures from equilibrium.
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B.1 Advection step

Using the spatially-variable equilibrium distribution, the advection step for devia-

tional particles (2.7) retains the term on the right hand side.

[c) O fda(c)~1~ OfMB~c B2
,- + C - = f -c - C (B.2)

1 J OX adv OX

The left hand side of the above equation corresponds precisely to the advection pro-

cedures for simulating deviation from a fixed equilibrium distribution (Section 3.2),

which forms the homogeneous solution. The homogenous part of the solution requires

generation of additional particles at every cell interface, in addition to the boundaries

of the simulation domain, in order to account for the discontinuities of the equilibrium

fMB across the cell interfaces; each is discussed in turn.

The procedure for generating particles at the boundaries is only slightly modified

from the the previously considered version to account for different equilibrium states

in the cells next to the boundary. Specifically, for Equations (3.9), (3.12-3.14), (3.32),

and (3.38), the properties (po, co) are replaced by (PMB,Iek, CMB,k, 7 where ek is the index

of cell touching surface element AAk. An additional step consists of sampling particles

from the distribution below for each cell interface k [33].

Fit,kAA' t Atadvd 3 c = c -n t [fMB _ f B advd 3 c (B.3)

In the above, we introduce additional notations for the kth cell interface; defined

between cell indices & with shared surface area AA " and surface normal n' t which

points from cell f- to fl.

Generating particles on the cell interfaces is performed by a similar approach to

generating particles on the boundary surface elements; a key difference being that

particles are emitted from the surface in all directions. The required procedure is

nearly identical with the one presented in Section 3.2.1; this is presented below, where

without loss of generality, the surface normal n i" is assumed to be in the positive x

direction.
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First, the ratio-of-uniforms sampling bound estimates are evaluated

1 (3/e)3

55/2 /(2e) 3

55/2/(2e')3

[3/ (2e )]3/2

(4/e )4

205/2/ (27e4)

205/2/ (27e4)

'k ---- _ __ _______

PMB,k CMB,k

2ICMB,e- ~ CMBe+

CMB,k

(B.4)

in terms of the average properties of the cells &k

2 B (PMB,f- + PMBe)

cMB,k (MB, MB,4).

(B.5)

(B.6)

These bounds (B.4) are corrected by numerical factors, which are dynamically up-

dated in the identical manner to Equations (3.34-3.37).

aMB,k MB aMBO,k
a

bMB,k - MB MB O,k
,x x

bMB k =bMB MBO,k

bMB.k = MB zMBO,k

(B.7)

(B.8)

(B.9)

(B.10)

The overall sampling procedure consists of

(B.11)Ntal = 10 'kpB,k ffB,k AAkAtadv B,k B,k B,k bB,k
mWef x Yj

trial steps, in which a uniform sample (H, rq) is generated using bounds
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(b MBO,k) 5

(bMB O,k 5



0 < H < aMB,k (B.12)

--bMB,k <77x < MB,k (B.13)

-bMB,k < 7 MB,k (B.14)

-bMB,k < nz < MB,k (B.15)

and the corresponding trial particle velocity is determined via c - CMB,kll vrH-. The

function FMBk(C) is evaluated, and particles are accepted when H < IFMBk (C) 2/5.

Accepted particles are advected a random fraction of the advective time step away

(performing ordinary DSMC reflection procedures for any subsequent boundary in-

teractions) from a uniformly distributed random position on the boundary interface

element AA" and added to the simulation with sign sgn[FMBk(c)].

Since (like the boundary sampling distribution) the cell interface sampling distri-

bution has zero mass

j d3c [& nt)] k= 0, (B.16)

mass conservation is again implemented by the stratified sampling approach as before

(Section 3.2.2).

B.2 Collision step

The modifications to the collision step due to a spatially-variable equilibrium are

minimal, and result from the fact that the collision kernels, as well as the collision

rate function are now defined in terms of the spatially-variable equilibrium, i.e.:
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4C ffdMB
K,) (c, c,) = ds

||C - C*II r(c-c.) lic - c,- (I|1-0

KO)(c, c.) = 47rC4||c- c*I,|f MB(c)

vp(c) = 47rCl j d3cIIc - c*I|f MB(c*).

(B.17)

(B.18)

(B.19)

The entire procedure in Chapter 4 can be implemented as before, by replacing f', as

well as its properties (po, uo, co) by the spatially-variable equilibrium f M
B,

3 and its

properties (PMBJ, UMB,j, cMB,j), where j is the appropriate cell index.
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