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Abstract

In general, vibration energy harvesting is the scavenging of ambient vibration by
transduction of mechanical kinetic energy into electrical energy. Many mechanical
or electro-mechanical systems produce mechanical vibrations. The kinetic energy
associated with these mechanical vibrations represents a potential source of energy for
sensors and other electronics. In fact, as the energy requirements for electronics and
wireless communications systems has reduced, harvested energy from vibrations has
been successfully used to power several wireless sensors. However, these sensors are
implemented on systems with harmonic vibration sources. Most ambient vibrations
are noisy, wide-band, and/or stochastic. As such, a resonant tuned-mass damper,
with a narrow band-width, filters and discards much of the energy in the vibration
spectrum, or worse, resonant harvesters will not resonate in stochastic environments.

Several solutions are commonly proposed for harvesting energy from wide-band ex-
citations; multiple resonators tuned to different frequencies (farm systems), non-linear
systems, input excitation rectification, and frequency tuning are the most common.
This thesis addresses some of the wide-band and/or stochastic challenges to vibra-
tion energy harvesting by investigating vibration energy harvesting as a power source
for sensors and communications in a down-hole environment. This thesis shows that
regardless of the transducer, a single resonant harvester tuned to the frequency with
the maximum displacement times frequency cubed produces more power than a farm
of resonant harvesters tuned to a range of frequencies. Additionally, this thesis shows
that an electromagnetic harvester can be passively tuned to increase the power in a
non-stationary system with a peak frequency that is a function of time. Finally, this
thesis presents a new resonant, rotational architecture, which has the advantage of
simultaneously maximizing the coupling inertia and displacement.

Thesis Supervisor: Alexander H. Slocum
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Many mechanical or electro-mechanical systems produce mechanical vibrations. The

kinetic energy associated with these mechanical vibrations represents a potential

source of energy for sensors and other electronics. In general, vibration energy har-

vesting is the process of scavenging the kinetic energy in these ambient vibrations

by converting the mechanical kinetic energy into electrical energy, which is easier to

store and transmit.

Many methods exist to transduce mechanical kinetic energy to electrical energy,

but regardless of the transduction method, the majority of devices described in the

literature rely on an inertial proof mass connected to the vibrating environment [18].

Common forms of transduction include active materials, such as piezoelectrics; and

various forms of electromagnetic transduction, such as induction[3, 21, 20]. Active

materials transduce the energy by using a inertial reference to convert the kinetic

energy into strain energy and then converting the strain energy into electric energy

[2, 26, 5, 28, 29]. Conversely, electromagnetic transducers utilize the relative motion

between the vibrating source and some form of inertial reference to convert the kinetic

energy into electric energy.

Usually, ambient vibrations are considered parasitic and thus great care is taken

to reduce their amplitude. To effectively harvest the energy of these vibrations, the

vibration amplitude should be amplified. Commonly, the amplitude is amplified by

coupling the inertial proof mass to the vibrations source with a conservative spring.



The inertial mass, coupling spring, and energy extraction by energy harvesting com-

prises a common spring-mass-damper system nearly identical to tuned-mass dampers

that are found in most vibration text books (and many buildings) [14, 13, 30]. In

fact, as was originally shown by Williams and Yates [30], especially for low frequency

sources, both of the common transduction methodologies mentioned above can be

reasonably modeled as equivalent viscous dampers resulting in a model for energy

harvesting that is identical to tuned-mass-dampers.

Assuming the input vibration to the harvester is harmonic and invariant, the

tuned-mass-damper model provides an analytical upper bound for the power that

can be harvested as a function of the vibration input characteristics and system

parameters. Additionally, if the vibration is a sum of harmonic functions, then sim-

ilarly, standard transfer function methods can be used to solve for the maximum

power that can be extracted by the equivalent viscous damper. However, when the

vibration amplitude is spread over many frequencies, the amplitude of vibration at

an one frequency is typically less since physical constraints usually limit the total vi-

bration. Thus, in a wide band input, the energy is spread across multiple frequencies

leaving less energy at the resonant frequency of the tuned-mass-damper. Also, the if

the input is stochastic, then the spring-mass system does not resonate. One of the

primary accomplishments of this thesis is the analysis of several methods to address

these problems, namely farms, inertial dampers (no spring), ratchet-type rectifying

systems, and frequency tracking. The thesis shows that a single resonator actually

harvests more energy than a farm of resonators, and that for the input parameters and

functional requirements of down-hole energy harvesting a frequency tuned resonant

harvester is the better than an inertial or ratchet harvester.

As with most real designs, the energy harvesting device must fit within a pre-

scribed volume. As such, the size and displacement of inertial proof mass are not

independent in linear energy harvesters. However, as proposed by [31], since the size

of the proof mass is independent of the proof mass's rotation in harvesting archi-

tectures based on a rotating proof masses, rotating architectures provide potential

advantages over linear architectures. Additionally, for energy density and tempera-



ture reasons, the rotational prototype energy harvester presented in this thesis uses

electro-magnetic induction as the damping element/transducer. As shown by [?] when

using electro-magnetic transduction as the method for energy harvesting a shearing

magnetic circuit is more magnetically efficient than an axial or plunging circuit. A

rotating proof mass naturally provides a shearing air gap taking advantage of the

higher efficiency shearing magnetic circuit, which further increases the advantages

of a rotational architecture. The second major accomplishment of this thesis is the

development of design tools to design resonant-rotational energy harvesting devices.

The contribution of this thesis to the field is the development of a design methodol-

ogy and a set of design tools to support that design methodology. Given a prescribed

form factor and vibration input, the design tools aid a designer to choose an appro-

priate architecture for energy harvesting.

The remainder of this chapter is devoted to explaining the motivation and func-

tional requirements for this research. Chapter 2 develops the general theory and

background of energy harvesting. Chapter 3 explains the analysis of wide-band en-

ergy harvesting strategies. Chapter 4 explains the use of the design tools by describing

the design of a resonant-rotational energy harvester.

1.1 Motivation

Oil, natural gas, and other similar natural resources are becoming harder to access.

Resources are now being utilized that are deeper and/or in more difficult formations

than ever before. Accessing these resources requires more sensors to measure the

drilling process. Additional sensors placed at the bottom of an oil well can poten-

tially be used to improve real time control of the drilling process and to improve

understanding of the drilling process (especially as it pertains to new rock strata).
Better control and understanding can improve the efficiency of drilling, allowing ac-

cess to even more difficult to reach resources. Just as important is communication.

Telemetry and real time control of the drilling process require reliable communication

back-and-forth between the bottom of the well and the surface.



Supplying power to the sensor, telemetry and communication systems and pro-

viding a reliable communication channel to the surface is challenging. Modern oil

wells are 30,000 ft or longer in approximately 30-90 ft sections. Thus, imbedding a

wire in the drill string has significant technological challenges. Even if the efficiency

and reliability of each joint is 99% a 30,000ft well will have a minimum of 300 joints

and thus the overall efficiency and reliability will only be about 4%. However, the

process of drilling an oil well produces a significant amount of vibration. If the kinetic

energy associated with these vibrations could be utilized to power downhole sensors,

the efficiency of drilling could be increased. The efficiency is increased directly by

reducing the power that must be sent down-hole to power sensors Cand communica-

tions. Also, adding additional sensors will allow researchers to better understand

drilling and increase efficiency. Even more importantly, vibration energy is available

along the length of the pipe. Harvesting this energy to power wireless communication

systems can drastically increase the communication band-width between the bottom-

hole-assembly and the surface. With increased communication comes the possibility

of faster telemetry data for better locational control, which will increase the utiliza-

tion of the resources within a well. Thus, harvesting ambient vibration energy in a

drill sting can increase the efficiency and accuracy of drilling allowing us to access

and utilize much needed but more complicated and difficult to reach resources.

1.2 Functional Requirements

Although this thesis addresses many general issues associated with energy harvest-

ing of wide-bandwidth vibrations, since the prototype device is intended as a first

prototype down-hole energy harvester, it is important to understand the functional

requirements associated with down-hole energy harvesting. Some of the decisions

made pertaining to the design are dependent on the prescribed form-factor and vi-

bration input. In fact, the design rules associated with realizing that "non-laboratory"

energy harvesters must fit within a prescribed volume is part of the advancement of

the thesis.



The functional requirements are arraigned in 3 general areas: Geometric Con-

straints, Environmental Constraints, and Expected Acceleration Inputs.

1.2.1 Form Factor/Geometric Constraints

In order to integrate into existing tools, the prototype device must fit into the provided

size allocation and is to be located in the center of the tool/pipe (Fig. 1-1). The device

Space and Size Allocation

N1 1.2511

3.2cm

5.5"
13.97cm

6

Maximum Harvester Expected harvester
size including all location in the center

circuitry and casings of the pipe/tool.

Figure 1-1: Space and size allocation for harvester device

is expected to be a 5.5in tall, 1.25in diameter cylinder. The entire device including

harvesting, casing (pressure compensation), and electronics is expected to fit in this

cylinder. The harvester device does not float in the center of the tool as Fig. 1-

1 might suggest. The figure is simply to show the location. The device fits within

other instrumentation and is rigidly attached to this instrumentation, which is rigidly

attached attached to the pipe.

1.2.2 Environmental Constraints

The bottom of an oil well is an extreme environment. As such some of the require-

ments to certify a tool guide the design. The two requirements that are of the most

interest in this thesis are 300'F external temperature and 250 g shock loads. Since



there is a not cold sink to provide cooling, the prototype device must be capable of

operating at a temperature of 300'F. This puts a restriction on the materials that

can be used in the design. In particular, active materials, which are commonly used

as a transduction method in energy harvesting devices, have a breakdown tempera-

ture that is less than 300'F. Thus, this thesis focuses primarily on electro-magnetic

induction as the transduction method. Neodymium Boron magnets are the pre-

ferred permanent magnets for high performance electric machines due there superior

magnetic remenance. However, Neodymium Boron magnets have magnetic relaxation

temperatures below 300'F. Thus, down-hole ready devices must use Sumarium Cobalt

magnets.

Although the harvester is not expected to regularly encounter 250 g accelerations,

the harvester must be able to survive and continue to operate after such shock loads.

Many harvester components must be designed with the shock requirements in mind,

but as detailed later, the prototype harvester uses a torsion rod as a spring element.

The torsion rod is most effected by the shock load requirement, and is made from

super-elastic material (NitinolTM) to withstand the load.

Environmental considerations also govern the materials that can be used down-

hole. In particular, stainless steel components are used throughout the- harvester.

Unfortunately, stainless steel has low magnetic permeability and saturates easily.

Low saturation requires the rotor and stator "back iron" to be thicker than magnetic

steels. Thicker back iron increases the thickness of the outer casing, which in turn

reduces the size of the rotor reducing the inertia.

1.2.3 Acceleration Inputs

Again, many lessons learned in this thesis can be applied broadly to the general

energy harvesting problem. However, like form factor, the expected accelerations in

a down-hole environment govern the design. The remainder of this section describes

a set of example vibration data measured with accelerometers and a set of example

vibration data measured with a gyroscope.



Accelerometer Data

Starting with the acceleration data, Fig. 1-2 is an illustration of the accelerometers

used to measure the vibration on two different down-hole tools: BAF and DBSEIS.

Four accelerometers were used to measure the vibration: two accelerometers are ar-

Not to Scale

Provided Data Channels
All channels sampled at 1kHz

" Acceleration [g] Acelerometers
e X1 - "tangential"
* X2 - "tangential" z
" Y - "radial"

Z - "axial" 1

" Downhole Pressure [psi]
* Weight on bit [klbf]

48.35mm
" Torque on bit [ft-lbf]

e Magnetometer Z

y

x

Figure 1-2: Illustration of provided data

ranged in the plus and minus x direction and located on radially opposed ends of the

pipe 48.35 mm from the centerline, an accelerometer in the center of the pipe directed

in the y direction, and an accelerometer in the center of the pipe directed in the z

direction. The accelerometers are digitally sampled at 1kHz and several data sets of

about 300 s are provided for each tools. The acceleration data is shown in Figs. 1-3

through 2-6. The harvester is expected to make the maximum power possible when

excited by acceleration inputs similar to those provided.

Gyroscopic Velocity Data

In addition to acceleration data, more direct rotational velocity data is also provided

by a set of two gyroscopes located in the center of the pipe. The provided velocity
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data is in the from of 8 arrays sampled at 1024 Hz for 1000 s. The raw data is plotted

in Fig. 1-7. Based on the naming scheme for the data arrays (gyrol, gyro12, gyro2,

gyrol, gyrol2

-60 s
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-100.
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Figure 1-7: Measured velocity data provided by the Stonehouse facility to be used as an
example expected input to the harvester. Similarly named data appears to be identical
with an approximately 60 s time shift.

gyro22,...) the data is plotted in 4 subplots with similarly named data plotted on

the same axes.

Although it is not exactly known how the velocity data was taken, it is clear from

visual inspection of the plotted data that the similarly named data sets are related.

Closer inspection of the upper-right axis shows a step from zero mean velocity to

approximately 50 rpm mean velocity in both gyro2 and gyro22 data sets. However,

the gyro22 data set shows this step approximately 60 s before the gyro2 data set. A

gyro3 gyro3 -

1000
-

--



similar time delay is seen in all the major steps and impulses. Cross-correlation of

the similar data sets by use of Matlab's xcorr(x,y) function shows a maximum cross-

correlation between sets of approximately 60 s in all 4 cases (Fig. 1-8). In Fig. 1-9 the

gyrol, gyrol2

60.510
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61.501s
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Lag time [s]

Figure 1-8: Cross-correlation of similar data sets using Matlab's xcorr(xy) function.

velocity data is replotted with each of the gyroi2 arrays time delayed by the values

in Fig. 1-8. The distinctive steps and impulses now align, however, as can bee seen

most clearly in the top right and bottom left subplots, the measured velocities are

not identical. Figure 1-10 is a plot of the shifted velocity data zoomed in to look at

a single second of time. Both signals capture the same general features, but contain

high frequency noise.

Assuming the sensors that took the two different velocity traces can be modeled

C)

0.5

0

-
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Figure 1-9: Measured velocity with the time shifts shown in Fig. 1-8 applied to the
gyroi2 data sets. All the distinctive features now match; however, some differences in
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da= V(t) + Wi (t)(1)
dt 1

da

dt=2 V(t) +w 2 (t) (1.2)

where d is the measured velocity of sensor i, V(t) is the actual velocity of the system,

and wi(t) is the noise for sensor i. Under this assumption, the difference in the time

shifted velocity signals results in a model for the difference of the noise in the signal.

Although both acceleration and velocity data are important to the general cases

that are examined. The gyro data is the most important for the prototype. Additional

example acceleration measured at the drill head was also provided an is given in

appendix C.



Chapter 2

Background and Modeling

Most energy harvesting devices can be described with a mass-spring-damper model as

originally proposed by Williams and Yeats [30]. This model needs some adjustment.

Specifically, the Williams and Yeats model extracts energy out of a single damper.

However, in actuality, internal energy losses are unavoidable and must be included

in the model. This chapter develops the two damper resonant harvester model that

can also be used as the basis for resonant, farm, non-linear, and optimal control

architectures.

Due to the temperature related functional requirements this thesis deals exclu-

sively with electro-magnetic energy harvesters, but electro-magnetics are not the only

way to transduce the kinetic energy into electric energy. A brief discussion of the other

conversion methods is provided at the end of this chapter.

2.1 Physical Model

Figure 2-1 is a lumped parameter model of energy harvesting as a tuned mass damper.

The model consists of an inertial proof mass connected to the vibrating source by

a spring and a pair of equivalent viscous dampers. The spring and mass can be

considered linear constant coefficient, making the system a simple resonator, or can

be some combination of non-linear components, making the system non-linear or

controllable. The dampers represent the energy lost to the environment and the



Figure 2-1: Physical model used to make the 1st order power predictions. The system
consists of a spring mass damper system excited by a known acceleration. The en-
ergy loss terms are lumped into internal mechanical losses, and electrical losses. The
extracted power is a portion of the electrical losses.

energy harvested from the vibration. For stationary inputs, the spring and damper

are tuned to the frequency component with the most energy. Under these assumptions

the model is solvable analytically, and the analytical solution to a harmonic input

represents the upper bound of power that can be harvested from a given vibration.

For non-stationary inputs or non-linear components, the equations must be solved

numerically.

2.2 Formulation of Governing Equation of Motion

Generating the governing differential equations for the model in Fig. 2-1 requires a

few assumptions:

* The force transducer is of infinite power. Thus, the input displacement (y),

velocity (y), and acceleration (#) are invariant. For down-hole drilling, this is a

perfectly reasonable assumption since the inertia of the pipe is many orders of

magnitude more than the inertia of the proof mass and thus, the reaction force

of the device on the vibrating device is small and does not appreciably change

the vibration parameters.



* The electrical damping can be modeled as and equivalent viscous damper (i.e.

Fe = bei). Based on the work done by Arnold [3], Anton et. al [2], Roundy

et. al [21, 20], and Meninger et. al [17], both active material and electrodynamic

methods for converting the energy can be modeled as equivalent viscous dampers

in many regimes. Thus, this is also not much of a limiting assumption.

Under these assumptions, the governing equations of motion are formulate by the

summing the dynamic forces on the proof mass (Fig. 2-2).

Mass (m)

FK Fm

Spring Inertial
Force Force

Interal
Mechanical

Losses

Fe

Electrical
Damping

Force

Figure 2-2: Force Body Diagram
equation of motion.

of the system mass used to formulate the governing

EF

Fk+Fm+F +Fe

Kx+mdt2 (x+y) +bit+be

m. + (bi + be).- + Kx

bi + be K
z + ()+ -- x

m m

- 0 (2.1)

- 0 (2.2)

0 (2.3)

= -my (2.4)

= - Q (2.5)



To simplify the numerical solution of the governing equation of motion, formulate the

system as a set of first order equations.

x = 2(2.6)
K bi+ be. (2.7)
m m

Or in matrix form,

i0 1 x0
{K} [ +]{} (2.8)

x Ax+B (2.9)

Where, as in the diagram x is the relative displacement between the proof mass

and the source, K is the spring constant and could be a function of x, m is the

mass of the inertial proof mass and is always assumed constant, bi is the equivalent

viscous damping coefficient of the system losses, be is the equivalent viscous damping

coefficient of the harvested energy, and y is the input displacement. The instantaneous

power extracted by the harvester is a the product of the force and velocity in the

damper, and the time average power is given as,

a T
P - be 2 dt (2.10)

Where, a is an electrical loss coefficient which is a function of the conversion efficiency,

internal electrical losses, and rectification efficiency.

In some specialized cases, the equations can be solved analytically (see Chap. 3).

However, most general cases must be solved numerically. The various specific analyt-

ical solutions are left to the special cases in in Chap. 3, and the simple euler method



is presented here for completeness [7].

un+1 xn + 1[Ax + Bn] (2.11)

1

2fs

= Xf + [A (xn + un+ 1) + (B, + Bn+ 1)] (2.13)

2.3 Frequency Analysis

Frequency analysis is important to identify the type of harvester that should be used

for given input. Two analyses are necessary to determine the frequency characteris-

tics. First it must be shown that the input vibration is stationary. If the system is

stationary, a Fourier analysis can be used to determine the frequency components.

If the vibration is not stationary, then a spectrogram, which is a Fourier analysis of

small subsets of the data shifted in time, can be used to determine if the vibration is

contains a sharp frequency peak wandering in time. This thesis will address to some

extent each of these cases.

If the input is stationary, then Fourier analysis is used to represent the amplitude of

acceleration as a function of frequency. Frequency domain representation of the data

allows the designer to identify the amplitude of vibration as a function of frequency

for first order power estimates, and to identify the frequency of vibration at which

the harvesting device should be tuned to maximize resonance (and power). Again for

completeness the general theory is given. What is of importance to the designer is

and understanding of the frequency resolution.

The acceleration is represented by a sum of harmonic functions, where ultimately,

the goal is to obtain the harmonic acceleration amplitude function as a function of

frequency (A(w)).

A(t) = ) A(w) sin (27wt + 6(w)) (2.14)

Matlab's Fast-Fourier Transform function (FFT) is utilized to facilitate the transfor-

mation, thus the harmonic representation of the acceleration is rearranged to better



match the discrete form used by Matlab. Start by applying the complex exponential

definition of sine, sin(9) = 1/2j (e0 - e-0) [?],

00

= EA(w)
w=O

00

= ZA(w)
W=O

ej(27wt+J(w)) - (27ot+Jo))

2j)
ej27rotejo(w) _ -j27rote-jo(w)

2j

= A (w )j ( ej6(w ej2 '' + e-j6(w e-j '7 ')

W=O

Defining C(w) = -e 3 w), and recalling that CONJUGATE [ez] - CONJUGATE[Z] [?], then,

- eAW) - 0(w)

e-3 w) = 0* (w)

where * is used to denote the complex conjugate. Then the limits of the summation

can be changed to simplify the harmonic expression of the acceleration.

00

A(t) = E
w=-00

A(w) jZ(w)e 2 wt

Z(w) = {
-C*(| w 1)

Now introducing Matlab's discreet definitions[?],

X(k)

x(n)

To equate these expressions, recognize that in the discrete domain time is represented

as,

(2.20)

A(t)

(2.15)

where,

(2.16)

C(w) W > 0

W < 0
(2.17)

= x(n)e-j27(k-1)( n")

n=1

= X e 27r(k-1)(" -)

k=1

(2.18)

(2.19)

n -1

t $



where fs is the sampling frequency. Thus the discrete acceleration is given as,

(2.21)A(c) A(w) Zwj27rwn

W=-00

Comparing the complex amplitude of equations 2.21 and 2.19 results in an expression

for the acceleration amplitude as a function of frequency.

ABS [X(k)]
AB N

ABS A(w)jZ(w)
= 2

Recalling the definition of Z(w) (equation 2.17) the complex amplitude can be eval-

uated as,

1
-ABS [X(k)]

N1
-ABS [X(k)]

N1
-ABS [X(k)]

A(w)

A(w)
= 2) ABS [sin (6(w)) -F j cos (6(w))]

2
A(w)

= 2 sin2 (3(w)) + cos2 (3(w))
A(w)

2
2

= ABS [X(k)]
N

Finally, comparison of equations 2.21 and 2.19 also yields the discrete definition of

the frequency vector (measured in Hz) associated with Matlab's FFT definition of

_ (k -1)f
(2.24)

The frequency resolution can then be defined as,

Aw =WkIl-Wk

- (k+1)1
N

fk k+1
= fsN

fS

N

- f (k) -1

N

(2.25)

Since the sampling frequency must often be very large to avoid aliasing, the length of

(2.22)

(2.23)



the measured data must also be very long to produce sufficient frequency resolution

to properly identify the frequency of maximum associated with the vibration.

Using Matlab, and the definition of acceleration amplitude as function of frequency

provided in equation 2.23, Figs. 2-3 through 2-6 are plots of the amplitude of acceler-

ation as a function of frequency of the raw data given in the previous section (Figs. ??

through ??). The Matlab script used to calculate the Discrete Fourier Transform and

create the following frequency based plots is provided in appendix A.3.
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Figure 2-3: Plot of the y acceleration as a function of time

Several important observations should be noted. First, although the amplitude

of acceleration in the time domain is relatively high, the component of acceleration

amplitude at any given frequency is at least an order of magnitude lower. Since the

power output of inertial based energy harvesters scales linearly with the harmonic

amplitude of acceleration [14, 31, 25], the expected power is at least an order of

magnitude less than the amplitude of acceleration in the time domain would suggest

[10].

Second, the acceleration is distributed over a relatively large bandwidth. Figure

2-7 is an enlarged plot of the average of the Fourier transforms of the tangential

acceleration data. The important features that a designer should be aware of are the
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Figure 2-6: Plot of the z acceleration as a function of time
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Figure 2-7: Tangential Acceleration as a function of frequency. The plot is produced by
Fourier transforming all five trials and then averaging the transforms. The frequency
based acceleration does show a significant acceleration peak of 0.22 G's at a frequency
of 85Hz; however, the acceleration amplitude is also relatively broad-band. The dotted
red line illustrates that the band-width of acceleration that is greater than 25% of the
maximum amplitude is approximately 60Hz.



maximum frequency and bandwidth.

If the input vibration is not stationary, then the frequency components obtained

from a Fourier transform of the entire data set are not accurate. In this instance

the input vibration might be entirely random, or it is possible the input is harmonic

but that the frequency of vibration wanders in time. In order to determine this, a

spectrogram is used. A spectrogram is a plot of the Fourier transform of a windowed

and zero padded section of the data where the widow is slid in time. Thus, the

spectrogram shows the change in frequency components as a function of time. A

non-stationary harmonic vibration will have a spectrogram like that shown in Fig.
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Figure 2-8: Spectrogram of the gyroscopic data show in Fig. 1-7

2.4 Transduction Types

Several methods exist to transduce kinetic energy into electric energy. The methodolo-

gies broadly fit into one of two categories, active materials or electro-dynamics. Active

materials convert the kinetic energy into strain energy, and the strain in the active

material produce an electric potential. Both piezo-electric materials and magneto-

strictive materials produce this effect and both have been used in energy harvesters

[2, 18, 5, 29]. In addition to the functional requirements on temperature, Arnold [3]



and Mitcheson et. al [19] have both shown that for active materials have higher energy

densities for small micro-scale devices, but for macro-scale devices electro-dynamic

harvesters have larger energy densities. Since the prototype harvester presented in

this thesis is macro scale, and the temperatures do not support active materials, this

thesis focuses on Electro-dynamic harvesters.

Electro-dynamic harvesters use the relative displacement between the inertial

proof mass to and the vibrating source to produce changes in either electric or mag-

netic fields. The harvesting methodologies can broadly be classified as either velocity-

damped (magnetic field), or coulomb-damped (electric field) [18]. Due to the relative

magnitude of electric and magnetic fields, electro-static [17] harvesters are better

suited to micro scale devices, and electromagnetic [3] harvesters are better suited to

macro devices. Again, since the functional requirements for form factor for this work

are macro scale, this thesis focuses on electro-magnetic conversion methods.



Chapter 3

Harvesting Architectures

The true challenge to wide scale success of vibration energy harvesting is harvesting

from wide-band vibrations. [11]. Most ambient vibrations are not harmonic and thus

the energy in the vibration is spread across many frequencies or is completely random

without frequency content [9]. Efficiently harvesting energy from these vibrations is

difficult [10, 11].

Several architectures are proposed as possible solutions to harvesting energy from

wide-band width vibration sources. First, a resonant harvester is explained and it

performance when excited by wide-band vibration inputs is analytically evaluated.

The wide-band harvester is used as a baseline for evaluating different architectures.

Second, "Farm" systems, which consist of an array of resonant harvester tuned to

a series of different resonant frequencies, is evaluated and compared against a reso-

nant harvester. Third, optimal control theory is used to evaluate the effectiveness

of adding a control loop to increase the harvesting efficiency of resonant harvesters.

Fourth, alternate non-resonant architectures designed to rectify the vibration input

are evaluated. In general, rectifiers are typically coupled with a resonant harvester

and are designed to condition the vibration input for the resonant harvester, which

can potentially increase resonant amplification of the vibration input and thus the

energy harvested.



3.1 Resonant Harvester

Extracting energy from a given vibration is the same as damping the vibration. One

well known method of damping a vibration is by attaching a spring-mass-damper

system to the vibrating surface. Some of the kinetic energy of the vibrating surface

is dissipated by the damper and is thus extracted from the vibrating surface. This

section presents a method for examining the maximum amount of power that can

be extracted from an input vibration. The estimate is independent of the method of

extracting energy, but does require the system elements to be estimable as linear.

3.1.1 Spring-Mass-Damper Solution

As a first order estimation of the extractable power in a given vibration, consider a

simple spring-mass-damper system, with linear elements, subjected to base excitation

(Fig. 3-1). The governing differential equation for this type of system is derived by

X(t)

z(t)

y(t)

Figure 3-1: Standard Base Excitation Model

equating forces acting on the vibrating mass (figure 3-15). Summation of forces in

the vertical direction results in equation 3.1.1,

Fa(t) + Fb(t) + Fk(t) = 0



m x(t)

Fa

z(t)
Fb Fk y(t)

Figure 3-2: Free Body Diagram of the vibrating mass associated with the simple spring-
mass-damper system. Where Fa = mz, Fb = b(c - p), and Fk = k(x - y)

To obtain a solvable differential equation that characterizes the motion of the moving

mass, each of the elements is assumed to be linear and proportional to either the

relative displacement or relative velocity of the moving mass,

Fk(t) = k(x(t)-y(t))

Fb(t) = b(.,(t)- p(t))

Substitution of the given force relationships into equation 3.1.1 results in the governing

differential equation for the spring-mass-damper system[?],

mz +b(2 - P) + k(x - y) = 0

By noticing that the relative displacement, z, can be represented as the difference

between absolute displacements of the mass and the vibrating surface, z = x - y,
equation 3.1.1 can be represented in terms of relative displacement as,

mz + bi- + kz = -mQ



Performing the Laplace transform on equation 3.1.1 (assuming z(t) and y(t) are both

0 for t < 0) yields,

(Ms 2 + bs + k)Z(s) = -mssY(s)

from which can be seen the transfer function H(s),

H~)-Z(s) -ins2H~s =(S = M (3.1)Y(s) ms 2 +bs+k

and substituting s = jw to return to the frequency domain yields,

mnw2
H(W) = MW2(3.2)(k - mw 2 ) + bwj

Dividing through by the mass, and substituting the common relationships,

2 = k/rn{ = b/2mnw,
The transfer function can be written as,

H (W) =W2(2 - w2 ) + 2wnwj

Finally, dividing through by the natural frequency and introducing the frequency

ratio, r = w/wn, the transfer function can be written as a function of two variables,

r and C,

H (r, ()=(3.3)
(1 - r2 ) + 2(rj

Thus, the steady state solution to the differential equation governing relative dis-

placement, z(t), as a function of base excitation, y(t), (equation 3.1.1) can be written

as,

z (t) = H (r, () y(t) (3.4)



Since H(r, () is time invariant, the same solution applies to time derivatives of z(t)

and y(t),

IY) (r,)Qt (3.5)

(t) =H(r, ()p(t) (3.6)

This solution method is only applicable if y(t) is a harmonic function. However, if an

arbitrary input is decomposed in the frequency domain and represented as a fourier

series of harmonic functions, then the solution can be extended to any arbitrary input.

3.1.2 Power

Inspection of figure 3-1 shows that the only dissipative element in the system is the

damper. Thus, the extractable power in the system is related to the power dissipated

by the damper. The instantaneous power dissipated by the damper can be represented

as,

P(t ) = F(t)V(t )

In the derivation of the governing differential equation (figure 3-15), the force exerted

by the damper was assumed to be linearly proportional to the relative velocity, F

bi. Thus the power can be represented as,

P(t) = bW2 (t) (3.7)

By combining the steady state solutions of the governing differential equation (equa-

tions 3.4 through 3.6) and the above expression for power (equation 3.7), the instan-

taneous expression for power can be represented as a function of a variety of inputs.

Since the input provided as a design parameter is the amplitude of acceleration as a

function of frequency, the power equation is represented in terms of the base accel-

eration, p(t) (transformation to different known inputs will simply involve powers of

s = jo). To represent the power as a function of p(t), perform the Inverse Laplace

transform on z(t), substitute the resulting expression for 2(t) into equation 3.6, and



substitute the subsequent equation into equation 3.7. The resulting expression for

power is,
P~) -bP(t) = 2b H 2(r, ()#2(t) (3.8)

To simplify algebraic manipulations, H(r, () can be represented in exponential form,

H(r,r c
(1 - r 2 )2 + (2(r)2

where # arctan 2r2 (3.9)
1 - r

Substituting this expression for H(r, () and the relation w w=or into equation 3.8,

the dissipated power can be written as,

P(t) = -br 2  e-24.2 (3.10)
W[(1 - r 2 )2 + (2(r)2]eY

Examination of equation 3.10 shows that the instantaneous power dissipated by

the damper can be represented by a transfer function relating the base acceleration

squared to power, Gp2 1p.

G21 - br2 e-j20
[(1 - r 2)2 + (2(r)2]

br2  -j2(4+r/2) (3.11)
o [(1 - r2)2 + (2(r)2]

The average power dissipated by the damper over a given time frame (0 -+ T) is

the time average of the instantaneous power over that same time frame,

1 (
Pavg = T P (t) dt

I G2|Py2(t)dt

Since Gp2 1p is time invariant, the average power can be simplified to,

Pavg = GP2P jT p2 (t)dt (3.12)



Recall that the use of a frequency-based transfer function solution requires the

input acceleration as a function of time be represented as a sum of harmonic functions

over the entire frequency range,

00

gA(t) ZAsin (wit - ai)
i=o

Performing an integration of the square of a series of sines is possible in discrete

numerical simulations, but difficult to reduce into a closed form. To further refine the

first order estimate of the maximum average output power, begin by examining the

transfer function G2 ip. Figure 3-3 is a plot of the magnitude and phase of w/bJG 21pl

as a function of r for various (. As can be seen, G 2|p acts like a narrow band-pass

Magnitude
10
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z=0.5

0-
0 0.5 1 1.5 2 2.5 3

r
Phase
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Figure 3-3: Magnitude and phase of G 21p

filter. Thus, only components of vibration that are within the narrow band-pass

frequency range contribute significantly to the power. A conservative estimate of the

maximum average output power is obtained by using this band-pass property. By

considering only the value of acceleration at the frequency which corresponds to the



maximum value of |G 21pj, j(t) can be simplified to,

p(t) = AG sin wat

where the subscript G represents the spectral values at the frequency corresponding

to the peak value of |Gj21pl. Given this simplification, the time average of the in-

put acceleration squared is simply the time average of a single harmonic function

squared, which is 1/2 the amplitude squared, thus a conservative average power can

be estimated as,
A2

Pavg max Gp2Ip 2 (3.13)
2

Assuming that the input base acceleration is known and unchangeable, equation

3.13 indicates that the maximum power is obtained by maximizing the transfer func-

tion |G 21pj. Figure 3-3 shows that |G2 1pl has a definite maximum in the vicinity of

r = 1. The exact location of the maximum is determined by differentiating |G2 1pl

with respect to r and setting the result equal to 0,

a G 21p_ -2br(r 4 - 1) 0
Br W (1- 2r2 + r4 +(2(r)2)2

Which has solutions, r = , ±1, ±j. Since r must be real and positive, r = 0 and

r =1 are the only valid solutions. Figure 3-3 shows that r = 0 is a minimum, thus

|G 21pjmax occurs at r=1 and can be simplified to,

Gp2|j_ m a (3.14)

Substituting in ( b/2mw, equation 3.14 can be further reduced to,

|G2 1p max - (3.15)
b

The maximum power dissipated can then be represented by,

m2 A2
Pmax = 2 b (3.16)

2b



Harmonic Excitation

As a sanity check, assume the base excitation is a pure harmonic input of the form,

y(t) yo sin wt

) yow cos wt

#(t) = -yow2 sin wt

Thus, substituting into equation 3.12 and integrating over one cycle, the maximum

power can be written as,

Pmax = G2 1p j (-yow2 sin (wt))2 dt

br 2 (yOW2) 2

2w2 (1 - r2)2 + (2(r)2]

Since equation 3.17 agrees with the expression for dissipated power of a harmonically

excited spring-mass-damper system presented by Kausel and Rosset[?], the solution

is collaborated to some extent. Additionally, if the input frequency is assumed to

equal the natural frequency of the spring and mass, r = 1, then equation 3.17 reduces

to,
M2 (yow2)

2 
_ 2 

2

Pmax - 2b 2b n (3.18)

which matches equation 3.16.

3.1.3 Damping

Figure 3-1 represents the damping in the system as a single dashpot. However, as

mentioned, the damping coefficient is a linear combination of the inherent mechanical

damping of the spring element and the external damping caused by extraction of

energy. Each damping element acts independently on the mass and thus the total

composite dashpot is modeled as two separate dashpots in parallel (figure 3-4). The



k
bi by (t)

Figure 3-4: Model of System Damping

total damping coefficient is therefore the sum of the component damping coefficients,

b binternal + bexternal

Thus the total power dissipated at resonance is,

m 2 A 2
P = " (3.19)

bi + be 2

However, only the power dissipated in the external damper be is harvested. To deter-

mine the power dissipated in the external damper, substitute ( (bi + be)/(2mwn)

into equation 3.14,
m 2be A2

Pe =n" (3.20)
(bi + be) 2

Figure 3-5 is a plot of the proportional power as a function of be/bi. Notice that the

power definitely peaks in the vicinity of be = bi. To determine the exact relationship

between external and internal damping that maximizes the useful extracted power,
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Figure 3-5: Proportional Power vs. be/bi

differentiate equation 3.20 with respect to be and set the result equal to 0.

dPe= m2A2 i e 0 (3.21)
dbe n (bi + be) 3

Neither the mass nor the time average of the acceleration is zero so the solution is

be = bi, and the maximum power is,

m2A2
Pe max- A (3.22)

4bi

Thus, the maximum amount of power that can be extracted out of a linear external

damping element given a fixed base acceleration input is proportional to the square

of the mass and inversely proportional to the internal damping in the system.



3.1.4 Conclusions

One simple method to characterize the internal damping in a spring-mass system is

through an amplification factor, Q, defined as Qj = 1/2(. The maximum power

estimate can be represented in terms of the internal amplification factor by replacing

bi with 2Ciwnm in equation 3.22.

mQiA2Pe max = n
4w,, (3.23)

Thus, the power will scale linearly with mass and amplification factor, and inversely

with natural frequency. Figure 3-13 is a plot of P - (w/mQi) vs. A,.

20 40 60 80
co [Hz]

100

Figure 3-6: P - (Wn/mQi) vs. A,.

The magnitude of acceleration is assumed known and the spectral representation

of the assumed acceleration values is shown in figure 3-7. Based on the assumed

values of A(w) and an assumed amplification factor of 100, figure 3-8 predicts the

maximum output power as a function of frequency. For the given assumptions, the

maximum extractable power is ~ 9W/kgof moving mass.

It seems counter intuitive for power to scale inversely with natural frequency.
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However, recall that the invariant input is assumed to be acceleration. Thus, for

the same acceleration, a lower natural frequency will equate to a larger displacement

input or equivalently a larger velocity in the damper and thus more power.

Additionally, the derivation assumes the base acceleration is invariant. As long

as the inertia of the base is significantly higher than the inertia of the mass, then

the forces transmitted to the base will not affect the accelerations of the base. If the

device is connected to a drill string, then any amount of mass that would fit in the

given size envelope will not significantly change the vibration of the pipe.

3.2 Farm Systems

An array of resonant harvester each tuned to a slightly different frequency and cov-

ering the frequency spectrum is often proposed as a solution to wide band excitation

[27, ?]. However, there are two problems with this approach. First, if the input is

stochastic then the signal actually does not contain pure frequency components and

none of the harvesters will resonant. Thus, none of the harvesters will produce energy.

Second, even if the input is stationary, a device must fit within a fixed volume. Thus,

the total amount of inertial mass is limited and must be distributed amongst the

harvesters. The following section shows that in a stationary input, limited mass case,

it is best to put all the mass at the frequency component with the greatest energy.

3.2.1 Baseline

Consider the standard 2nd-order spring-mass-damper base excitation model,

bi + be K
&+ + -X (3.24)m m

Starting with a single harmonic input,

# = A 1 cos (wit - #1) [A1 ei(wt01)] (3.25)



Focusing on the particular or steady-state solution x,, assume

x, (t)

X, (t)

Plugging into the differential equation

- Bwe(wt-01) + bi + be BwijeAwt-0)
1 m + KBe ~i-1Ka

And solving for B results in the particular solution,

xP (t) A 1  
ej(wlt-kl

K [) ±(1,+1e)

W) + (2) i
= 1 A11

-A 1

(:r 2)2 + (ib)~

cos (wit - #1 - 0) (3.30)

Where,

V= tan- K" rr

The power is then,

P (bei)

= be&Ti2

= be Ail sin (wit

be A 2W2= 2A- sin 2 (Wit - 01- )
W2) 2 + (bi~b)2W2

(3.31)

(3.32)

(3.26)

(3.27)

(3.28)

(3.29)

=R [Bjje("I~0]

=R[-BW2 eiA" -40]

=-Ajejh""*-0d

2



Averageing power over an infinite time horizon,

~T
-[1

P =lim-- I
T-*oo I TJ

. t=0

be A w

(K 1)2 +bA 2W

beA2

be!1

2 [(m K -i)

beA2 2b A1 sin 2 (wit - #1 - h) dt(K-22 + (bi±b)2

2b be 2

11
b, +be 2 W2 T2o

m 1.t=

2
'Wi

(bi b) 2 b2]

2 21

2+ (bi+b)j

Since all the terms in the denominator are squared and thus positive, the maximum

of P(k) occurs when,

--Wi 0 --4 - = W 2 (3.34)

Which is the same as saying the natural frequency of the system should be matched

to the forcing frequency. The maximum average power is then,

Pmax 12

2 (bi+be) 2
(3.35)

Differentiating with respect to be and setting equal to zero as done previously reveals

that to maximize P; be = bi. Thus,

b- A _ m 2 A2
Pmax 2 (2)2 - 8b

2 2) b

(3.36)

If we imagine a farm system where each device and input is completely independent,

but the total mass m must be split among the devices into a percentage p of the total

mass allocated to maximize power from the frequency wi, and the remaining mass

(1 - p) m allocated to optimize power from the frequency w2, then the maximum

t

(3.33)



average power is,

Pmaxid = ((pm) 2A i + ((1 - p)m)2 A')

To determine the best allocation, we maximize with respect to p

dPmax"id 2pm 2 A2 - 2(1 -
dp1

Thus the maximum is one of,

[Pmaxiid] maxp

8bi

p)m 2A2 = 0

p = 1

M2 A 2

8bi A +A

m2A
8bi

The maximum is one of the end points. Assuming A1 > A2 , clearly p = 1 is better

than p = 0, thus, under these simplifying assumptions it is better to provide all the

mass to the frequency with highest acceleration amplitude.

3.2.2 Two frequency input

In the first estimate, we ignored the fact that off resonance frequency signals would

affect the velocity and thus the power. If we now let Q be a harmonic input of 2

different frequencies,

# = A1 cos (wit - #1) + A 2 cos (w2t - #2) = R[Aiei(1t-01)] + R [A2ei(W2t-42)] (3.40)

Applying superpostion,

= -A 1 cos (wt - 1 - 1) - 2 cos(w 2t - #2 - 4 '2)

(3.37)

(3.38)

(3.39)A',+A2

x,(t) (3.41)



0 = tan- ' (
IP2 = tan _ ( ) 2

Once again calculating the power,

P = be (A1 1 sin (wit - #1 - $ 1) + A 2w 2 sin (W2 t

= be (A,2 w sin 2 (w1t - _ 4'j)

- #2 - v2))

+2Ai 1wA 2w2 sin (wit - #1 - 41) sin (w 2 t - #2 - $'2)

+A2 2 sin2 (w 2t - 02 - 7)2))

Again we average this over the infinite time horizon.

T

P = lim
T-- oo [T=

be (A2 W sin 2 (wit -- 1)

+2A 1 wiA 2W2 sin (Wit - #1- 1') sin (w 2 t - #2 - 4)2)

+A2
2 sin2 (w2 t - #2 - '2)) dt]

2- W2) + (biW)2

A2

A 2W2
+ 2+(2

K 2~)2 + (bi+be w)2

k 2(+m'bj~b22 2

Where,

- 2)2 + (biLbe)2

A2
2 2

(A -W2) + ( M W2)

-(b-+beM L

K 2
M-w 1

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

be

2

be

2
( (3.47)

--- L_
ML01

( KMW2



One Device

To determine the optimal set of parameters to optimize power output for one device,

assume that mass if fixed and start by optimizing over K,

dP
dK 0

be A -) 1

Wi - Wi) + (bi+be)2

This is not solvable analytically. For reasonable numerical values, graphically we see

that the natural frequency of the system should match one of the input frequencies

for some minimum spread between the frequencies and should be some intermediate

value for spreads lesser spreads (figure 3-9). Dealing first with the case where the

o0 =15.0Hz, Q=60,
m=0.50kg, A2=0.75A 1

1 1.01 1.02 1.03 1.04 1.05
0o /o

(a)

o01=15.0Hz, Q=60,
m=0.50kg, A2=1.00A1

1 1.01 1.02 1.03 1.04 1.05
Co /o

(b)

0),=15.0Hz, Q=60,
m=0.50kg, A2=1 .25A1
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Cn 1
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Figure 3-9: Maximum power vs natural frequency

spread in the frequencies is large enough that the maximum

input frequencies.

-~-W )2 ((i: + A~w
(W~~2+(b 

77)

Pmax =max

( A ) w + AW)2)

2 W22+( )

63

occurs at one of the

K 2

K 2
mW2

(3.49)



Solving the first for A' and the second for A2

2 bi+be 2P1
i m be

2 bi +be 2P2
2 be

A 2W2

(Pg _ W)2 + (bi+be w)2

A 2W2l~w 1
Pw 2- ) + (b,,+be,,)2J

Assuming A1 > A 2 ,

A 2

2P1  A2 2

be Pw 2 2)222 )

P1  2 A'bw 2

2 -2

-e (P1 - P2)

>_ A (3.52)

b [2P2  A2W2
>_ I ~2m [be (W2 -W 2) (,w)2

>2 P2  Al I~
-be ( 2 2)2 (+)2

A2w 2 Al 1
- (w 2 2)2 + ( 2)2 (W2 ~)

If the power harvested when the harvester is tuned to the first resonant frequency

is greater than the power harvested when tuned to the second resonant frequency,

which shows that all the mass should be placed on the peak with the most energy.

3.2.3 Both Move

A variant of the farm idea is to have both the magnets and the coils move; both

as independent tuned-mass dampers where the harvested energy is extracted with

respect to relative motion between the magnets (mass) and coils (Fig. 3-10). The

variables need to describe the motion and the power in this system are:

* COORDINATES

xm absolute displacement of the magnets

xc =absolute displacement of the coils

y absolute displacement of the ground input

(3.50)

(3.51)



Figure 3-10: Schematic semi-lumped parameter model of planar 2-dof induction har-
vester. This is meant to model an induction harvester where the magnets and coils
are allowed to move separately in plane but are constrained to move in a single plane.

Zm = xm - y = relative displacement of magnets with respect to ground

input

ze = xc - y = relative displacement of coils with respect to ground input

* PARAMETERS

Mm Mass of magnets (and "sprung" structure)

Mc =Mass of coils (and "sprung" structure)

Km = Spring constant of spring connecting magnets to ground

Kc = Spring constant of spring connecting coils to ground

bm = Internal mechanical damping (friction/material losses/etc.) in magnet

system

bc = Internal mechanical damping (friction/material losses/etc.) in coil

system

be = Electrical damping coefficient relating the electrical damping force to

the relative velocity between the magnets and coils.

The governing equation of the vibrating magnet system is found by equating the

forces on the magnets

Z F = - (Fs + Fm, + Fe) = Mmam = Mmx~n



Substituting in for the forces,

Mm.m + bmjm + be ('m - Mc) + KmZm

Mm ( m z+ 9) + bm,'m + be (zi -r ±c) KmZm

Mmm + (bmi + be) -m+ KmZm - be c - Mm y (3.54)

Similarly, the governing equation for the coil system is given by,

Meze + (bc, + be) se + Keze = bezm - McQ (3.55)

The useful power is given by,

P = be (i - c)2 be (zr - .e)2 = bes2 (3.56)

Thus, by setting the output variable to be z,, then the state space model of the system

is given as,

i = Az + B#

Zr = Cz + D#

-0
-0

(3.57)



where,

0 1

Km bm _

A =" M. u m um)
0 0
0 be

0

-1

0

C = (0 1 0 -1)

D (0)

0

0

0
Kc,
uc

0

be
Mm

1
(3.58)

(3.59)

(3.60)

(3.61)

To verify the model, the value of K, is set at least 6 orders of magnitude greater than

the value of Km. This should represent a system where the coils are mounted solidly

with respect to the magnets and be the same as the resonant system presented earlier

(Fig. 3-11). Figure 3-12 is a plot of the calculated response to a filtered white noise

input compared to the experimental data for a flexural prototype.

With the model verified in the limit as Kc - oo, the response of this system to a

wide-band input for different values of Kc is plotted in Fig. 3-13. As can be seen the

power amplitude is greater, but still falls off exponentially for increasing band-width

input, and the magnitude is greater for decreasing frequency difference between the

resonant systems. Thus, although the amplitude is slightly larger the exponential fall

off still exists and therefore this is not a viable solution for wide-band harvesting.

3.3 Active Control

In general, vibration energy harvesting involves extracting the maximum amount of

power possible from a vibrating environment. Typical a proof mass is connected to

the vibrating environment and power is extracted from the relative motion between
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Figure 3-11: Plot of the power as a function of harmonic input frequency for a very
large value of Kc. The plot is compared to experimental data collected from a flexural
prototype.
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the environment and proof mass[3, 9, 18, 31]. However, due to the typical random

nature of most vibrations, standard resonant based architectures fail to resonante

[8], so various forms of rectification are used from "magnetic plucking" to "elastic

storage" [15, 24, 23, 12]. Each new architecture is evaluated against previous designs,

but without a maximum estimate the question still remains whether the design is the

best. By using optimal control theory, an estimate of the maximum possible energy

that can be extracted from a vibrating environment through the use of a proof mass

can be determined independent of the extraction method, thus providing a benchmark

for evaluation of future designs.

3.3.1 Statement of the General Optimal Control Problem[4]

The classic formulation of the optimal control problem involves optimizing (minimiz-

ing or maximizing) a performance functional J(u) by controlling a trajectory x with

an optimized control input u. Given a system governed by the equation,

J = f(x, u, t) (3.62)

with performance functional,

J(u) = K [x(ti)] + L [x(t), u(t), t] dt (3.63)
to

and Hamiltonian,

H(x, p, u, t) - L(x, u, t) + (p, f(x, u, t)) (3.64)

where p is the costate vector of the governing state equation (equation 3.62). Then,
u*(t) is the control input that will maximize J(u) provided that,

1. The system of differential equations,

I aHk*(t) = (x*(t),p*(t),u*(t),t] (3.65)

O H
p*(t) = [x*(t), p*(t),U*t), t] (3.66)
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with boundary conditions,

x*(to) = (3.67)
9K

p*(ti) = [x*(ti)] (3.68)

is satisfied.

2.
8 H

u 0 (3.69)

3.
82H
Bu2 is negative definite (3.70)

The solution can be verified by Pontryagin's minimum principle[4],

H(v*, p*, F* t) > H(v*, p*, F, t) (3.71)

3.3.2 Formulation of General Vibration Energy Harvesting

Problem as an Optimal Control Problem

Figure 3-14 shows the lumped parameter model that is used to formulate the control

problem. A known, although typically random, acceleration is applied to a vibrating

reference frame. Comparing the motion to absolute ground, the measured acceleration

can be represented in terms of the absolute displacement, p. To extract energy, a

proof mass is attached to the reference frame by two forces. One force, F, represents

unavoidable losses in the system (e.g. bearing friction). The other force, F, represents

the force applied to the proof mass as a result of energy extraction from the system.

The sum of the forces acting on the proof mass is used to obtain the governing

equation of the system (figure 3-15).
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Figure 3-14: Lumped parameter model of a general energy harvesting system. A proof
mass is attached to the vibrating reference frame by two general forces. One force
represents unavoidable losses in the system F. The other force F is the control input
used to control the trajectory of the proof mass x.
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Figure 3-15: Force body diagram applied to the assumed proof mass used to determine
the system's governing equation.



0 = Finertial + Fnternai + F

d20 =mdt (x +y)+ F+ F

d2x 1 d2 y- =2 -- ( F + F ) -d2
dt 2  m dt2

1( 2) 1 (F + F) -#
m
1

i (F + F) - a (3.72)
m

Where, v _ i and a Q. Letting the relative velocity between the proof mass and

the reference frame be the state variable, then equation 3.72 is of the same form as

the governing equation in the general formulation (equation 3.62).

Note, some generality is lost at this point since the derived governing equation

assumes a zero impedance source and thus any applied force will not affect the motion

of the reference frame. For many applications of energy harvesting the device size is

relatively small compared to the vibrating reference frame and the zero impedance

assumption is valid. If the impedance is non-zero, the coupled state equations can be

substituted in as vectors and the analysis process is identical.

Power is extracted from the system by the applied force, F, and the average power

extracted over a fixed time 0 -+ T is given as,

Poweravg = - Fvdt = JTFvdt (3.73)
T 0 o T

To maximize the total power extracted by the force, we let Poweracv represent the

performance functional of the system, thus,

K [v(T)] =_ 0 (3.74)

and,
Fv

L [v(t), F(t), t] = - (3.75)T



The Hamiltonian is then given as,

H(v,p,F,t) Fv +p -I(F+F)-a (3.76)
Tm

= F - p + a) (3.77)T m mn

To maximize the power, we apply the 3 conditions presented earlier.

1. The first equation is satisfied by definition,

DH
i>* = D(v*, p*,F*,t)8p

1
(Fi + F*) - a (3.78)m

Which is identical to the governing differential equation (equation 3.72), and

thus must be satisfied by the physical system.

The second equation provides the physical definition of the costate for the sys-

tem,

aH
p* = (v*,p*,F*,t)

[F* p* 8F
T m 89v

p*8Fi F*
m * a T * (3 .79 )m 8v T

or,

1 i* F*
m* p * (3.80)M av T

Indicating that dimensionally, the costate is physically force.

2. Notice that for the chosen performance functional the Hamiltonian is linear

with respect to the control input F. Thus, the control input differential of the

Hamiltonian is independent of F,

DH v* p*
- = -- m -(3.81)
F T m
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Since the Hamiltonian is linear with respect to the control force, the maximum

of the performance functional must occur at a limit or boundary on F, and

conditions 2 and 3 cannot be satisfied by any control force.

Knowing that the maximum of the Hamiltonian occurs at a boundary value of F, we

can use Pontryagin's minimum principle (equation 3.71) to verify which boundary

value of F maximizes the Hamiltonian.

H(v*,p*, F*, t)

v* p* F*
T m

-p* (F+a)

m -

F*- *T m

Thus, the optimal control input, F*, is

direction defined by SIGNUM [- - Pj.

> H(v*,p*,F,t)

v* -p*)

-- TF

p*Q +a)

v* p*)F
-T m (3.82)

to apply the maximum possible force in a

To evaluate the SIGNUM term start by differentiating with respect to time,

1 v* 1 lp*
T a~t Tri at

T m1* 1.

= - (F+ F*)- aT m

1p*8F F*]
p* F F a
m 2 Dv mT T (3.83)

8 V* -p*



3.3.3 Application of the Solution to Analytically Solvable

Problem

To test the optimal control solution, we apply the solution strategy to an analytically

solvable problem for comparison. First, the mechanical losses are modeled as an

equivalent viscous damper (F -+ biv), and second, we assume in all cases a harmonic

reference acceleration, j = a = h(t)RE [Aejwt], where h is the Heavyside step function.

Figure 3-16: Lumped parameter model of system with viscous internal damping

Applying the previous optimal control

damping, equation 3.83 becomes,

8 v* -p*

at T m

For visual simplicity, define the SIGNUM

subtracting ±

oq bi v* p
at m (T m

bi 2biv*
m mT

89 bi
at m -

theory to the simple problem with internal

p*bi biv* a
m 2 mT T (3.84)

term as q = - P. Then, adding and

biv* biv* a

mT mT T

a
(3.85)

T

2biv* a
mT (3.86)



Multiplying this equation by an integration factor e-?n results in,

_-taq _ bi
e m -q

at m

S(e-'tq)

_- t 2biv*
e mT

_ bj 2biv*
e mT

(3.87)

Integrating both sides,

b 
t-nq~t e>%b8 ( 2biv*(s) ae m* -8 ds + qO

o mT T)

bit (ft e b (biv*(s) a(s)q(t)= e - -- ds + qO
o mT T

where s is a dummy integration variable.

Mechanically lossless (F -+ 0)

With no internal forces, equation ?? becomes,

v* p* it
m adt+C

T m o

Where,

v* (0) p*(0)
T m

Physically, equation 3.90 agrees with intuition. The control force direction is opposite

the direction of relative motion (proof mass velocity). Mathematical evaluating the

integration constant, the first term is the initial state of the system which is assumed

to be known (v*(0) = vo), and the second term is the initial costate which can be

evaluated from the costate equation (equation 3.80),

. F*
p = T

(3.92)

(3.88)

(3.89)

(3.90)

(3.91)

P* = 0 dt + p* (0)
T F



From the boundary conditions,

p*(T) 0 (3.93)

so,

p*(T ) = 0 =* dt + p* (0)
jO T

jF dt (3.94)

Since most energy harvesters are resonant based and low damping, the power

harvested falls off very rapidly as the input frequency differs from the system's natural

frequency. Thus, it seems reasonable that a tuning system which alters the system's

effective stiffness to match the system's natural frequency to the input frequency

would increase the power output of the harvester. According to [22], actively tuning

the natural frequency will never result in a net power gain. The analysis in [22]

is based on the sinusoidal amplitudes of power. However, a torque that is linearly

proportional to displacement is conservative and has a zero time av'erage. Thus, any

active torque that can be truly be modeled as an equivalent spring should have a net

zero activation power and thus should result in a net gain in harvested power.

3.3.4 Harvester Model

As originally suggested by [30] regardless of transducer type, energy harvesters can be

reasonably represented by a second order mechanical system as shown in Fig. (3-17).

From the free body diagram of the torques (or forces for a linear model) on the proof

mass, the governing equation of the relative motion of the proof mass can be written

as,

J4+ bip+K4+Te = -J
-- bi K 1

4+ -j+ 4+ Te = -d (3.95)



Schematic Model
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Free Body Diagram

T,=~pT,=J O+d) TT =b,

P K b Te
I:T =T, +T +T, +TK

J(+d)+bip+KV+T, = 0

Jp+bio+Kp+T = -d

Figure 3-17: Schematic representation of second-order lumped parameter model of a
typical vibration energy harvester

Where with reference to Fig. (3-17), <p is the relative displacement of the proof mass,

bi is the internal damping coefficient which represents the unavoidable (primarily

mechanical) losses in the system that can not be recovered or converted into electric

energy, J is the inertia of the proof mass (in linear system J=m in a rotational system

J is the polar moment of inertial about the center of rotation), K is the mechanical

spring constant, Te is the electrical torque associated with the transducer, and d is the

acceleration of the reference frame with respect to absolute ground. For this model,

the reference frame motion is considered to be a 0 impedance source.

3.3.5 Analysis of Roundy Model

As mention previously, according to [22] "active" tuning of the resonant frequency

will never result in a net power gain. In the model suggested by [22], the electrical

transducer torque is modeled as an equivalent viscous damper (which according to

both [22, 30] is a reasonable model for the "important aspects" of all three major

electrical transduction methods: electro-magnetic, electro-static, and piezoelectric) in

parallel with an "actuator" torque that is used to tune the effective natural frequency

of the system, Fig. (3-18). As explained by [22], tuning the effective natural frequency
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Figure 3-18: Schematic representation of equivalent second-order lumped parameter
energy harvesting model with electrical transducer modeled as an equivalent viscous
damper in parallel with an actuator torque used to tune the natural frequency of the
system

of the system is the equivalent of providing an actuation torque (Ta in Fig. (3-18))

that is linearly proportional to the relative displacement or relative acceleration of

the proof mass which will change the effective stiffness or effective mass of the system

respectively. In addition, [22] shows that, as expected, the result of providing an

effective stiffness or effective mass are identical. Thus, for simplicity, focusing only

on changing the effective stiffness, the actuator torque is, Ta = Ka#k, and the power

required by the actuator is then given by,

Pa(t) = Ta#(t) = Ka#(t)#(t) (3.96)

Which, following a similar procedure as outlined in the following section, for a har-

monic input acceleration of frequency w can be written as,

J (r2 - 1) A 2

Pa(t) = sin (2w) (3.97)
8( 2r2W

Where r = W/Wnm is a non-dimensional frequency ratio comparing the mechanical

natural frequency (Wnm) to the tuned natural frequency (w,), A is the amplitude of



the harmonic input acceleration, and ( = b/2mw, is the non-dimensional damping

ratio. According to [22] the amplitude of this power is always greater than the gain in

amplitude from tuning the frequency resulting in a net power loss from tuning. This

is true if the assumption is made that the actuator power must always be supplied (as

in [22] for the case of a piezoelectric actuator where the power supplied to the piezo-

electric material is supplied separately of the energy harvesting module). However,

this is a very limiting definition of "active" tuning. A tuning torque that is linearly

proportional to displacement is still actively changing the natural frequency, but is

nothing more than an equivalent spring which is conservative. This is verified mathe-

matically by noticing that the time average of the actuation torque in Eq. (3.97) over

n periods of oscillation is identically zero. Thus, an "active" torque that is propor-

tional to displacement and capable of utilizing the conservative nature of the torque

dependency should have a zero time average power and thus the net gain in harvested

time average power of the tuned system will be positive. Admittedly, some efficiency

losses may be associated with the actuation torque but as explored and verified later

in the current controlled electro-magnetic transducer section, these losses would not

be expected to be on the same order of magnitude as the actuation torque amplitude

presented and can be included in the model as additional internal losses.

3.3.6 Equivalent Mechanical Components Model

Assuming a tuning actuator can be built to take advantage of the conservative nature

of the tuning torque, then tuning the natural frequency to the input frequency will

result in an increase in harvested power. To evaluate this claim, the transducer

torque of Fig. (3-17) is assumed to be a linear combination of torques which are

linearly proportional to displacement and velocity and thus represent an equivalent

mechanical spring in parallel with an equivalent mechanical viscous damper.

Te = Ke4 + bed (3.98)



The instantaneous power required by the electrical transducer can then be written

as,

Pe(t) = Te(t)(t) ( Ke#(t) + bes(t)) 0 (3.99)

In order to evaluate the power, substitute Te into the general governing equation

(Eq. (3.95)) which results in the equivalent mechanical components model for energy

harvesting,
bi + be K + Ke

#+ i + = - a (3.100)J J

From this, the transfer function relating input acceleration to relative displacement

can be written as,

A -- 1
_ -~WI +) (KKW)(i1+W)j

he-j (3.101)

Where,

-1
h =((3.102)

/+K _ C2__ _ ,Lb)

0 = arctan (3.103)K+Ke ~2)313

Harmonic Input Acceleration

At this point, for simplicity some level of generality is lost by assuming the input

acceleration is purely harmonic. Rarely is a real world signal purely harmonic, but

for the class of input signals for which the spectral density exhibits a sharp frequency

peak and the surrounding noise is some small percentage of the total acceleration

amplitude, the analysis will be approximately correct. More importantly by assuming

a harmonic input an analytical solution can be found which can be used to understand

the governing aspects of the system. Thus, assuming,

d = R [Aej'] (3.104)



and using the transfer function of Eq. (3.101), the relative displacement and velocity

are,

= hA cos (wt - 0) (3.105)

-hAw sin (wt - 0) (3.106)

Plugging these relationships into the power equation (Eq. (3.99)), the instantaneous

power becomes,

Pe(t) = Keh 2 A 2W cos (wt - 0) sin (wt - 0) + beh 2 AW 2 sin 2 (wt - 0)

h2A2 2b{ - Ke sin [2 (wt - 0)] + sin 2 (wt - ) (3.107)
W 2bew 1

As a rudimentary check of Eq. (3.107) the units are examined in Table (3.3.6) and

found to be correctly units of power. The 1s' part is the power associated with the

Base Variables Combined Variables
Variable Units Variable Units Variable Units
K, Ke N - m w h(K, Ke, bi, be, J, w) 2

bi, be N m s A rad

J N m s 2  h 2A 2w 2be N m

Power
Pe =h 2 A2W2be= [N] [W]

Table 3.1: Unit analysis of instantaneous power equation (Eq. (3.107)) derived from
the equivalent mechanical model with harmonic base excitation

equivalent spring which is equally positive and negative thus requiring and providing

power with a zero time average. The 2,d part is the power associated with equivalent

damping and is always positive indicating that the damper always extracts energy

from the system. Figure (3-19) is a plot of the instantaneous power as a function

of time. As the ratio of equivalent spring constant to equivalent damping coefficient

increases it can be seen that the amplitude of the oscillations increases, but due to
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Figure 3-19: Plot of the normalized instantaneous power as a function of normalized
time for one period of oscillation. Notice that as expected, although larger values of
spring constant do produce larger power amplitudes, due to the conservative nature of
the tuning force the time average of the normalized output power is always 0.5.

the conservative nature of the equivalent spring the average is always 0.5. This can

be verify mathematically by taking the time average of Eq. (3.107),

h 2A 2W2 be sin2 (wt

h2 A2C2be
1
= h2A 2W 2 be2

-0)- Ke sin [2(wt -
2bew

- 0

(3.108)

To determine the maximum time average power, substitute for the definition of h,

(Pe) =
2 ((K+Ke

A 2 W be

_2- 2 (bi+beW 2]

....... . ...... .... .. ..... K /2b = 0 <IP J> = 0.50
*e e''e

.. .-- -K/2b = 1<IPI> = 0.50........... ... ...... e e 'e

........- . K /2b o= 2,<IP I> =0.50

- - - - - -- - - - - - -.-... . . ..-

- - . .. .- . . .-. . . . .-.-- - - - - -.-- - - - -.-.-.-

(Pe) 0)] dt

(3.109)

t=0



and differentiate with respect to the natural frequency (w= (K + Ke)/J),

8 P) 2A 2bew'w, (W 2)D9 (Pe) - = 0 (3.110)
awn [2w - W2) 2 + (bi bW)2]

2

Which indicates that the maximum power occurs at Wn = w or that the resonant

frequency should be tuned to the input frequency to maximize the output power

which is the same as originally suspected. Plugging this value into the time average

power equation,

(Pe)| =b=2 212 (3.111)2 (bi + be )2

and optimizing with respect to the electrical damping,

9 (Pe) ww - A2j2 2 - b = 0 (3.112)
abe 2 (bi + be) (bi + be )2

the optimal damping is be = bi as expected. Thus, by setting the force coefficients of

the transducer to,

Ke = J (w2 - W ) (3.113)

be b (3.114)

The power harvested is maximized and given by,

(Pe)| A2j 2  JA2Q (3.115)
Wn =w 8bi 8wnm

be bi

Examination of Eq. (3.115) shows that the maximum power is dependent on the input

acceleration amplitude, proof mass inertia, and internal mechanical losses. Notably,

the power is not dependent on the frequency, or amplitude of the equivalent spring

coefficient (Ke), since a torque linearly proportional to displacement is inherently

conservative, in the time average no power is lost by this force.

For comparison consider a case where the actuator spring constant is zero (Ke = 0



- no frequency tuning), but the actuator damping coefficient is allowed to be tuned

to the optimal value. Starting with Eq. (3.109) and setting Ke = 0, on. = K/J, and

r = w/ow, results in,

(Pe) Il( AQ) 2
(Pe)Ke=0 

Wm )

be

x 2 + 1 + Qi be
Where, x = Qi r

r

Optimizing this with respect to the electrical damping,

8 (Pe)IK=o

abe
+ Qibe ) 2)

=0

JW (3.117

(3.117)
For which the optimal electrical damping coefficient is,

be = bemax - " -1+x2 =bVI1 -+x 2

Qi
(3.118)

Notice that as the frequency coefficient (r) goes to one, the optimal electrical damping

coefficient goes to the mechanical damping coefficient. Substituting this result into

the power equation,

(Pe)| (3.119)
Ke = 0

be - bemax

(3.116)

1
2

AQ 2

Wn. )

2be + "")Q

JA2Q
4Wn. 1I + 1 + X2



For comparison, normalize the un-tuned power by the tuned power,

Peun-tuned

Where,

(Pe)|
Ke = 0

be = beax

(Pe)
w~n -C

be bi

2

1+ v/I--+x2

x = Qi
2 2

Wnm W
(3.120)

Equation (3.120) is plotted in Fig. (3-20) as a function x. As can be seen, the normal-
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Figure 3-20: Net time-average, un-tuned power dissipated by the electrical transducer
normalized by the net time-average, tuned power dissipated by the electrical transducer.
When the mechanical natural frequency matches the input frequency the un-tuned and
tuned powers are equal. For all other values of x, the normalized, un-tuned power is
less than one, indicating that the net time-average power for a tuned harvester will
always be greater than the net time-average power for an un-tuned harvester. Also
note that tuning is more advantageous for larger internal quality factors.

ized, net, time-average, un-tuned power is always less than or equal to one indicating

that an electrical transducer that includes an equivalent spring type tuning actuator
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will always produce the same or greater power than an un-tuned electrical transducer.

For example, when x = 2 the un-tuned transducer will harvest approximately 60% as

much energy as the tuned harvester where corresponds to a Thus, for the proposed

model, the electrical transducer should include a tuning component. value of As

should be expected, tuning is increasingly advantageous for larger values of internal

quality factor. This is seen in Fig. (3-20) by noticing that larger values of Qj result in

larger values of x. Intuitively, as the mechanical quality factor increases the response

spectra gets narrower and thus more advantage is gained by bringing the system back

to the peak of the spectra.

Equation (3.120) suggests that tuning the system is always advantageous regard-

less of frequency ratio; however, tuning does have limits. Although power is not

effected by increasing the spring coefficient, the total torque that must be provided

by the transducer is. The actuator torque is found for both the tuned and un-tuned

cases by substituting the respective optimal values for Ke and be into (Eq. (3.98)).

Te = Ke# + be#

= hA [Ke cos (at - 0) - bew sin (Wt - 0)] (3.121)

Un-Tuned Tuned

A 1+ x 2 sin (cut - +) (3.122)

JA V1 +x2 2 sin (Wt - 0)
VX2+ (1J+v'ig)X2

Where, # = arctan (x))

Similarly to the power, the un-tuned torque amplitude is normalized by the tuned

torque amplitude,

Teun-tuned 
Teuntuned

etuined

2 (3.123)
22 + (1 + v/+ X22



Normalized torque is plotted in Fig. (3-21). As expected, the tuning actuator will
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Figure 3-21: Un-tuned torque amplitude normnalized by tuned torquae amplitude

require more torque amplitude. It might be expected that some losses will occur for

large torque amplitudes.

3.3.7 Current Controlled Elect ro- magnetic Transducer

No losses

Assuming an elect ro-magnetic transducer whose torque can be modelled as linearly

proportional to current,

Te = Ki

then the governing equation becomes,

.bi K K
-- #+-ir= -

Again assuming d is harmonic,

d = R [Aeiw]

(3.124)

(3.125)

(3.126)



Additionally, assuming i is of the form,

Then the solution becomes,

r. (1+ x 2 )
[(x - j) I + A) ewt]

= - R [ ej"'']
roL (1 + X 2)

Where, 4 = (x - j) I + A)

The power used or dissipated by the actuator is give by,

Pe = Te rW ( = K R [Iew] R [jco.4e'']
ron (1 + X2)

In complex notation, the time average can be written as,

(Pe) 2$ [jw1+*]

2rwo ( + x 2 ) R (x ~j) (I* +

r = Ir + y j

where 1, and Ij are real valued, then,

I= Ir - 13j

Plugging into Eq. (3.130),

2rw (1 + x2) R (

2rw(I + x 2 ) JIr

j) (r2 + 132) + A (I, - Ij)

+ 1) + Al, + AxI,

i = R [Iej"'] (3.127)

(3.128)

(3.129)

Letting,

AI* )] (3.130)

(3.131)

(Pe)

(3.132)

(3.133)



Optimizing first with respect to the real and imaginary components of the current,

Imaginary (I)

--(P2) Qrnx 2rfI + A] = 0571r- I 2rW =(1+X2) [ A

rm -_JA

a(Pe)- Qin'x F2K A
=i ~2rWo1

2 ) [y I-+Ax] =0

imax -2 = rmaX

(3.134)

Substituting into the power equation, the maximum power becomes,

(Pe)| IJ
I 2= n p

JA 2Q,
8= nTT

(3.135)

Equation (3.115) and Eq. (3.135) are identical indicating that choosing the optimal

current provides the same power as a tuning the system. Evaluating the torque,

Te i

= R (Ies*w]

= xR ((Ir + Iij ) es*w ]
= R JA (1 + xj) ewt1

S 2 R [(1 + xj) eiwt] (3.136)

Comparing this to the equivalent mechanical components model, Eq. (3.98), and

applying the optimal current to Eq. (3.128) so the system displacement is,

row (1±+x2 )Qi AR
= - R [jewt]

2rW2

+ x 2) je jwtlI

(3.137)

Real (Ir)



The torque can also be written as,

Qi A
Te = - 2 R [(bew - Kej) ei"t] (3.138)

Comparing the real and imaginary parts of the torque equations,

Real Imaginary
____ J~lm _ ___(3.139)

be = 2"' r "'" = bi Ke = 2wwnmxt JW r _ 1)A~i QiAQi

It can be seen that these are the same relationships as in the equivalent mechanical

tuning model, which shows that the two models are equivalent.

Several things to notice brain dump: 1)The amplitude of the electrical torque

increases as x increases (as the frequency difference increases or as the internal damp-

ing increases). This makes sense. The larger the difference in frequency the large the

spring constant that is needed to bring the system's natural frequency to the driving

frequency (cause resonance). 2)Looking at the equivalent mechanical components co-

efficients, we see that the equivalent damping is always present (IR is never zero), but

the spring constant is zero when x = 0. This is not profound just consistent with the

model. If the mechanical system is already at resonance then from the mechanical

side the electrical torque simply looks like an equivalent viscous damper because the

spring constant is not needed for resonance. 3)An equivalent load resistance looks

like an equivalent damper since the current is in phase with the voltage (no dynamic

elements) and the voltage is in phase with the mechanical velocity. 4)The optimal

current model has embedded in it the equivalent resistor model (setting Ij = 0).

Thus since the current model is optimized, we should expect if the passive resistive

system is the best we would expect the optimization to pick that value. Thus, we

would expect the active system to always be the same or better than the passive

system. As can be seen, Ij is only 0 when the normalized frequency difference is zero

thus a passive system is only advantageous when the mechanical system is already at

resonance.



Resistive Losses

As mentioned previously, Fig. (3-20) indicates tuning is always advantageous regard-

less of the frequency ratio. However, as in Fig. (3-21) the torque that must be supplied

by the actuator increases significantly for large frequency differences. For very large

torques it is suspected that the proposed model breaks down, and that losses associ-

ated with large actuator torques in the form of additional electrical damping must be

included which will increase the overall internal damping in the system. To evaluate

this suspicion, as seen in the previous section, an electro-magnetic actuator that can

be modeled with torque proportional to current can be controlled to act exactly like

the equivalent mechanical components model. Figure (3-22) is a schematic circuit

Mechanical Domain Electrical Domain

TI

+ RI=94kjo"

T, = ci~

P, = T = Vi

V=A P =V
VL L

Figure 3-22: Model used to evaluated losses associated with higher electrical torques.
As the electrical current increases, a larger portion of power is lost in the internal
resistance.

representation of an electro-magnetic harvester. The model includes an electrical

transducer that is assumed to be represented by the previously proposed electro-

magnetic model with torque linearly proportional to current. On the electrical side,

a current source, used to control phase and amplitude, is in series with an internal

resistance (Ri) that consists of the unavoidable losses associated with the particular

type of transducer, which for electro-magnetic transduction would primarily be coil

resistance, and the losses associated with controlling the current.



Evaluating the power in the current source,

PL = iVL

- Vi - Rii2

= Pe - Rii 2  (3.140)

Therefore, the changes in the proposed model captures the missing component of

the previous tuning models. As can be seen, in Eq. (3.134) as the frequency differ-

ence increases, so does the current amplitude. The large current amplitude is needed

to produce the large tuning torque demonstrated in Fig. (3-21). However, as sus-

pected according to Eq. (3.140) larger currents associated with large actuator tuning

torques do produce proportionally larger losses related to the higher actuator torque.

Following the same procedure as outline previously, the time average of Eq. (3.140)

is,

(PL) Q1x [ If + I ) + AI, + AxIl - Ri (I2 + I) (3.141)2rw2,, (I + X2) j r 3 3

And the optimal current components are,

JA (1
JA =j(3.142)
2K 1 + aRj

S rX (3.143)

JWn (1 + X 2 ) bi
Where; a = = (1 + x 2 ) (3.144)

As the internal resistance increases, the scaling factor on the current reduces thus

reducing the magnitude of the optimal current as expected. In the limit as Ri -* 0 the

optimal current is identical to the previous value lending some amount of confidence

to the results. Substituting these values into the power equation,

(PL)I JA2Q, (3.145)
Irma 8Wnm 1 + aRj

Ii;ax



Which again, makes intuitive sense, as the internal resistance increases, the harvested

power decreases. And again, in the limit as Ri --+ 0 the power is the same as the

previous value. Care must be taken with more complicated intuitive explanations

of this result since the largest component of Ri is the coil resistance and the torque

constant K and the coil resistance are related.

For completeness, compare the actively controlled system with a passive system.

Mechanical Domain

T i

Electrical Domain

RL V
RL + R

v = /L = iVL

Figure 3-23: Passively controlled.

In this case the current control is is still proportional to current, but using the

relationships seen in Fig. (3-22) the torque can be written in terms of the velocity as,

2

Te =
RL + Ri (3.146)

Noticing that this is the same as Eq. (3.98) with,

Ke =0
K -2

be =
eRL + Ri

Which by combining Eqs. (3.119) and (3.140) results in a time average maximum



4V1 ±x2

x2 + (1 +1+x2) 2 ( RLRL+R

when,

be = RLK = bi 1+x 2

RL + Ri

Thus, the power can be written as,

412 x2 ( a
X2 + (1 + 1 + 2 2 ( R X2L)

4 (aRL )
(x2 + (1+ \,1 + X2)2

As before, normalize the passive system by the current controlled system,

4aRL (1 + aRi)

x 2 + (1 + 1 + x2) 2

4
1 + V1± +x2

R2 + R (1 + v1 +x2)

(1 + R) 2

This is not identically 1 at x = 0 thus it is suspected that something is wrong since

the passive solution is a subset of the active solution and when the passive solution is

optimal the active solution should reduce to the passive solution as was shown earlier.

3.3.8 Conversion of Electrical to Mechanical Components

To simplify the abstract current solution of the previous section, consider what the

electrical torque looks like for certain electrical components.

Starting with the simple voltage divider shown in Fig. (3-23), first notice that if

power of,

(PL) (passive)
JA 2Q,

8Wn.,
(3.147)

(PL) (passive)
JA 2Q,

SWnm

JA 2Q,

8Wn.
(3.148)

(3.149)
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Ri = 0, then from Eq. (3.146),
K2

Te = eRL (3.150)

Thus for one resistor the equivalent damping coefficient is be = I2/RL. For the

resistors in series, the torque can be written as,

11
Te = 1 i e= 1 ie

2/RL + K2 /Ri ti +

(3.151)

Adding an inductor in parallel with the damper is the same as adding a spring in

parallel with the harvesting damper, Fig. (3-25). On the mechanical side, summing

the torques around the mass-less connection (A) results in the governing equation,

Te - be ( -- beL $ + Ke#1 (3.152)

On the electrical side, summing the currents at the common node (B) results in the
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Mechanical Domain
+ TO

Electrical Domain

K2

Ri

Figure 3-25: Equivalent mechanical
(including internal losses)

model a load resister in parallel with an inductor

governing equation,

i

Te

1 1 1= (V - V1 )= V1 + -
Ri RL L

= 1

I
- x1 =- L +

2
Te - ( 1

V1dt

1fK0 b1 dt

(3.153)

Which when compared results in,

bei

beL

(3.154)



Equivalent Mechanical Model Solution

Using this model adds and additional degree of freedom to the system (#1) and thus

the governing differential equation becomes a system of equations,

J4+ (bi+be)#+K#-bei1=-Jd

bej# - (be, + beL) #1 - Ke#1 = 0 (3.155)

For which the transfer function from & to #1 is,

1 Jbeiwj
d [(K - Jw 2 ) + (bi + bei) wj] [Ke + (be, + beL) wj] + b2 w2

The harvested power is,

P = bel (3.157)

To optimize the spring constant, assume a harmonic input & = R [Aejwt], and differ-

entiate with respect to Ke.

b K2 2 (K - Jo 2 )
Kea = 2j (3.158)

(K - mw2) 2 + W2 (bi + bej) 2

As a sanity check, in the limit as the electrical resistance goes to zero, the internal

electrical damping goes to infinity (Ri + 0 = bei --+ oo) the solution should reduce

to the previous no-loss solution, which it does,

lim Ke_ = K - J 2  (3.159)
b,i-+oo

Substituting the maximum equivalent spring constant solution into the power equa-

tion and solving for the maximum harvesting damper again by differentiation results

in,

be, [(K - JW2) 2 + W 2 bi (bi + bei)] (3.160)
beL = 

(3.160)" (K - mw2) 2 + w 2 (bi + be.) 2



Again as a sanity check, check the limit,

lim beL
beo +00

(3.161)

Which is the same as the no-loss solution. Plugging this result into the power equa-

tion,

Pmax
1 W2be J 2A 2

8 (K - Jw2) 2 + W2 bi (bi + be)
rnA2Q(

8I 1+ aRj (3.162)

Which is the same as the previous optimal current solution lending some confidence

to the correctness of the mathematics.

Comparing Eqn. (3.154) to Eqn. (3.158) and (3.160) the values for L and RL can

be solve for in terms of the other fixed physical parameters.

2 (K - JW2)2 + w2 b +

Ke K2(K -Jw 2)

K2 Q,
Jo2 bon ,

JR2 1

K2 1- r2

1- 2r 2 
+

r2 2

+ +Qj Jo. Ri

This equation illustrates a practical problem with analog tuning. As seen in Fig. 3-

Parameter Value Unit Description

K 0.0691 V - s Elect ro-magnet ic torque constant
J 8X 10-6 kg - mn2 Mass moment of inertia of rotor
on 20 Hz Natural frequency of the mechanical system
Qi 40 Quality factor of the mechanical system

Table 3.2: Numerical values used for inductor and resistor calculations

26, as the frequency ratio approaches 1, the value of the inductance trends to +oo.

Additionally for frequency ratios less than 1, the inductor is negative valued which is

100
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Figure 3-26: Plot of the required parallel tuning inductance as a function of the fre-
quency ratio. The numerical values used in the calculation of L are summarized in
Table 3.3.8. As the frequency ratio approaches 1, the value of the inductance trends
to ±oo illustrating one of the practical problems with using analog components for
tuning. Additionally for frequency ratios less than 1, the inductor is negative valued
which is not possible with physical analog components. Also note that for the expected
resistance values, the value of the tuning inductance is approximately the same as the
zero resistance value (limiting case). Additionally, as is seen in section 3.3.10 the
value used for r, is based on a small angle approximation that will likely not be true
if the system is operating at resonance, thus the actual value of the inductor will be a
function of the displacement for a single phase coil.

not possible with physical analog components.

Closer inspection of Fig. 3-26 shows that for the expected resistance values, the

value of the tuning inductance is approximately the same as the zero resistance value

(limiting case b -+ oo). This can be seen in the inset; the inset shows that 0.5 Q coil

resistance curve is essentially identical to the limiting case.

It should also be noted, that as is seen in section 3.3.10 the value used for , is

based on a small angle approximation that will likely not be true if the system is

operating at resonance. Thus, the actual value of the inductor will be a function

of the displacement for a single phase coil. However, the figure does represent the

maximum inductance.

Similarly, the optimal load resistance is,

K2 2  (K - mw2) 2  W2 (bi + bc )2
RL~ beL 2 ( [(K - Jw2) 2 + W2bj (bi + bei)] (3.164)
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Figure 3-27: Optimal load resistance as a function of the frequency ratio. The nu-
merical values used for this calculation are given in Table 3.3.8.

3.3.9 Comparison

In comparison, four different possibilities exist. First, the simplest is a system with

no active tuning (all mechanical components fixed) and tuned to maximize the power

at the resonant frequency. This configuration is the lower limiting case. Second, the

mechanical spring is assumed to be tunable with no losses. This configuration is

the upper limiting case. Third, the damping associated with energy harvesting (be)

is assumed to tunable. Fourth, an equivalent electrical spring in parallel with the

harvesting damper is assumed tunable and the harvesting damper is assumed to be

tunable.

3.3.10 Torque Constant

From the electromagnetic equations, the voltage can be written as,

V = Aop cos (p#)# (3.165)

Thus, the torque constant can be written as,

K= Aop cos (p#) (3.166)
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For a constant velocity input (# =c), the torque constant can be written as,

r = Aop cos (pwet) (3.167)

Where p is the number of pole pairs on the rotor and AO is the magnetic flux, which

is dependent on the parameters of the magnetic circuit.

In order to experimentally determine the torque constant, the upper clamp is

removed from the torsion rod and the rotor is spun at constant velocity producing a

sinusoidal voltage (Fig. 3-30). Using Matlab's Curve Fitting Toolbox,

8!
+ voltage vs. time

Statistical Fit

> - - - -- - - - - - - -

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
Time [s]

Figure 3-30: Statistical curve fitting of constant velocity input. Using Matlab's Curve
Fitting Toolbox, V = 6.489 sin (749.6t + 0.4992)

pwc --749.6 Ao 8.66X10- 3 Wb (3.168)
Aopwc = 6.489

The theoretical solution to the magnetic equations results in Ao = 8.64X10-3Wb

a difference of 0.2%. According to Eqn. (3.166) n is a function of the relative dis-

placement. As an initial estimate, assume the small angle approximation applies,

and

~ AOp = (8.64X 10-3 [Wb]) (8) = 0.069 A (3.169)

As a sanity check, using the approximate values for magnet radius (r ~ 9.7mm) and

magnet length (h ~ 76.2mm) this results in a magnetic pressure of 0.2 [psi/A]. Thus,
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it would take a 5 [A] current to create a 1 [psi] electro-magnetic shear pressure on the

rotor.

3.3.11 Impedance matching

Series or Parallel

As seen in Fig. 3-25, the proposed tuning circuit places an inductor in parallel with the

load resistance. However, as seen in Fig. 3-26 for small tuning ratios the value of the

inductance is very large. For such large values of inductance the internal resistance

of the inductor is also very large (on the order of kQ) when compared to the expected

coil resistance (on the order of () and therefore cannot be neglected. However, a

possible solution is to provide an equivalent impedance with a series arrangement of

the inductor and load resistor as seen in Fig. 3-31. The total expected impedance in

General

1i W

Parallel Series

RL

R11

LI
-1

R11~
I

L I
_ I

Figure 3-31: The proposed tuning arrangement calls for an inductor in parallel with
the load resistor to emulate a spring in parallel with the load damping. For large
inductances, the internal resistance of the inductor can not be neglected. However,
the internal resistance of the inductor becomes important.
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the the parallel case when the inductor resistance can be neglected is,

Zparaniei (w)
(RL)(jwL)

(RL) + (jwL)
jwLRL

RL-+jwL
(3.170)

However, when the inductor resistance cannot be neglected the impedance becomes,

(RL)((jwL + R1 )
(RL) + (jwL + R1 )

RIRL +jwLRL

RL + R1 + jwL
(3.171)

The total impedance in the idealized series case is,

Zseries (w) = RL + jwL (3.172)

Denoting the series parameters by a prime, the impedance of each case can be equated

to determine the equivalent series components,

(3.173)

For which the equivalent series components can be found as,

RL' R 2 L 2

RLtc 2 L2 (3.174)

R2L
L =(3.175)R 2+ W2L2

Figure 3-32 shows that this arrangement will reduce the tuning inductance that is

needed by a significant margin thus reducing the series

Capacitor

For the case when the inductor must be negative, a capacitor can be used. Following

the same impedance argument, the equivalent capacitor for the parallel circuit is,

(3.176)C =W 2L
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Figure 3-32: Optimal tuning inductance for a series tuning circuit as a function of
the frequency ratio.
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Figure 3-33: Optimal load resistance for a series tuning circuit as a function of the
frequency ratio.
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Note, this should be the same as adding a mass, and as discussed earlier, the effect on

the system of adding a mass or spring should be identical. However, practically, since

the inductance goes to zero as the tuning ratio approaches 1, the capacitance should

go to zero further reducing the losses. Figure 3-34 However, experimental evidence

C[mF]
0

-0.2

-0.4
0.9 0.95 1 1.05 1.1

r=
Wn

Figure 3-34: Tuning capacitance as a function of frequency ratio.

using a capacitor still does not change the natural frequency.

3.3.12 Aside for general solution of Ke and be

Governing equation repeated,

(3.177)

(3.178)

# Ro = Z - a

d = Re (Aes"'w]

and,

i = Re [(Ir + Iij) e]wt] (3.179)

then,

# wn- R - (xIr + I) + Ax] + (xI - I,) - A] ewt] (3.180)
run, (1 + X2)
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Assuming a torque of the form,

Te = Ke# + be#b

Then using the solution for # the torque becomes,

Te - r (x{ [ Ir+Ij) + Ax]

(3.181)

+ be[ (Ir - xl,) + A]

(xI, - Ir) - A] + be 5(xIr + I) + Ax) i ej '(t.182)

In the electrical domain, the torque can be written as,

Te = ri = [(Jr + 1J) e'']

Comparing real and imaginary terms and solving for Ke and be results in,

JKW r 2x (I2 I) A -AJ (x1r - I)Ke = - "", 2 j2+1)+A 2~Qi ( r+ +AK2 3AJ

be = - Q . /2
+ AJ (Ir + xIj)

i AJ (2KIr + AJ)

Using the optimal tuning solution,

K

b

Then the current components are,

e = -Jrw fxm

Qi

Qi

Ir -
AJ

I - Irx
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+ Ke
( rwnm,

(3.183)

(3.184)

(3.185)

(3.186)

(3.187)

(3.188)

(3.189)

x I+ I3



Alternately, the passive solution is,

Ke =0 (3.190)
Wno J

be =1 + x 2  (3.191)

for which the current components are,

AJ
I, = (3.192)2s

I = Vr -X2 (3.193)

Notice that the real component of the current is the same in both the passive and

the active systems.

3.4 Inertial

In the extreme, a fully inertial damper has a flat frequency response. So although

an inertial damper does not attenuate any frequencies, it also does not amplify any

frequencies, and as is shown below, a resonant system that amplifies some frequencies

and attenuates the rest produces more power than a an inertial system.

3.4.1 Spring Mass Damper Model

Using the standard spring-mass-damper model shown in Figure 3-35, and summing

the forces on the inertial proof mass, the equation of motion is,

S F 0

J(4+d) +(bi+be)$+Kp 0

bi +be. K
4+ # 7 -& (3.194)
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Figure 3-35: Parameterized diagram of the spring-mass-damper model. The model
consists of an inertial proof mass connected to a vibrating reference frame by a spring,
an internal damping representing friction and other unavoidable losses, and an elec-
trical damping representing the energy dissipated by the electrical system.

Representing this equation as a linear system of first order differential equations,

=[0 1

K bi+be
J i

+ { (3.195)

The power dissipated electrically is,

P = be 2

and the useful harvested power is,

(3.196)PP = be 2

3.4.2 Inertial Model

Figure 3-36 is the parameterized diagram of the inertial model. Solving for the forces
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Figure 3-36: Parameterized diagram of the inertial model. The model consists of an
inertial proof mass connected to a vibrating reference frame by an internal damping
representing friction and other unavoidable losses, and an electrical damping repre-
senting the energy dissipated by the electrical system. Mathematically, this is a special
case of the spring-mass-damper system presented earlier with the spring constant set
to zero.

on the proof mass, the governing differential equation is,

( F 0

JQ/+) +(bi+be) 0
bi + be

4 e= (3.197)

Comparing Equations 3.194 and 3.197 we see that the inertial model is a special

case of the spring-mass-damper model where the spring constant is set to 0, K = 0.

Again, to facilitate numerical solution, the equation is split into a system of first order

differential equations,

0
0

1

bi+be
J

1+ { (3.198)
0

_6
Again, the useful harvested power is,

P = be 52
2

Schematic Model Free Body Diagram

b bb

IF= F,+F = 0

+d)+(b+b.) = 0
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3.4.3 Ratchet Model

Figure 3-37 is a parameterized diagram of the ratchet system. The ratchet model is

Figure 3-37: Parameterized diagram of the ratchet model. The model consists of an
inertial proof mass connected to a vibrating reference frame by an internal damping
representing friction and other unavoidable losses, and an electrical damping repre-
senting the energy dissipated by the electrical system, and a ratchet that only allows
the proof mass to move in one direction. The ratchet model is mathematically iden-
tical to the inertial model when the ratchet is not engaged, but when the ratchet is
engaged, the relative velocity of the proof mass is zero since the proof mass is rigidly
connected to the moving reference frame.

the same as the inertial model, but a one-way clutch or ratchet is connected between

the proof mass and the moving reference frame. If the reference frame is moving at

a velocity that is higher than the velocity of the inertial proof mass (relative velocity

less than 0) then the ratchet is engaged and the proof mass is rigidly connected to

the moving reference frame which will accelerate the proof mass to the same absolute

velocity as the reference frame. As the moving reference frame slows down and

reverses directions, the inertia of the proof mass, will allow the proof mass to continue

rotating at the highest velocity of the reference frame. However, losses in the bearings

and energy harvested from the system will slow the proof mass down. The proof mass

will continue to slow down until the relative velocity is less than zero at which time

the ratchet will re-engage and the process will repeat. Thus, the proof mass will

continue to rotate in one direction relative to the moving reference frame.
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Summing the forces on the proof mass, the governing differential equation is,

Z F -0

J(+d +)(b+be,)cy 0

.. bi + be - o#+ 5 =-dforqS>0
J_

0 for # < 0

Which in first order linear form is,

#0 1 #0.{ =} [e + b] }for #> 0 (3.200)
0 for < 0

Again, the useful harvested power is,

P = be 2 (3.201)
2

3.4.4 Results

Using Matlab's optimization tools, the power of each of the models is maximized.

For the simulations, the inertia of the system is assumed to be approximately equal

to the inertia estimated by ProEngineer and is given as, J = 1.496 x 10- 5kg m 2.

The internal losses are assumed to be primarily in the bearings and are estimated

based on an empirical coefficient of friction estimate provided in [16] and is given as,

be = 1.00 x 10-4N -m -s/rad.

REVISED ESTIMATE OF Be: In order to estimate the internal damping, the upper

torsion spring clamp is removed and a longer solid shaft is protruded out of the top

of the device. An optical rotary encoder is attached to the protruding shaft, and

measures the rotational velocity of the rotor (figure 3-38). Modeling the forces in the

rotor,
b5
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Thus, the rotational velocity is,

(3.202)

A least-squares method is then used to fit this model to the measured data. Figure

3-38 shows the comparison. Matlab's fminbnd function is used to optimize the fit,

Estimate of Internal Damping
80 -

Measured Velocity
Least Squares Fit c=% e-

60

E
2-40

20

0 2 4 6 8 10
Time [s]

Figure 3-38: To estimate the internal damping of the system, the rotor is given an
initial velocity and allowed to spin freely. Then according to equation 3.202 an expo-
nential curve is fitted to the data to determine an estimate for the damping coefficient.

and returns a value bi = 6.6 x 10~6.

The spring-mass-damper model requires a two dimensional search to optimize the

power as a function of the spring constant, K, and the electrical damping coefficient,

be. The optimization tool box function fmincon(func,initial, boundaries) is used where

the function to be optimized calculates the power by solving equations 3.195 and 3.196

numerically using a 4th order Runga-Kutta Method adapted from [6]; K initial is set

so the natural frequency corresponds to the frequency of maximum amplitude in the

input, and be initial equal bi; and the boundaries on K are from 0 to a value that

provides a natural frequency of 200Hz, and the constraints on be are arbitrary choosen

to bracket the internal damping by an order of magnitude in both directions.

The inertial and ratchet models are single parameter optimizations of power as a

function of be, and thus the simpler optimization tool box function fminbnd(func, boundaries)

is used where the function the numerical solution (same method as spring-mass-

damper) of equations 3.198 and 3.199 for the inertial model and 3.200 and 3.201 for
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the ratchet model, and the boundaries are again an order of magnitude bracketing of

bi.

Figure 3-39 displays the results of the optimization simulation for each of the

10 20 30
Data Set

4

0 -
* 0 7

0~~ 0
0--9,

40 46 50

Ratchet
70 ' Inertial

SpringMassDamper
60

50-

Q 40

930

< 20

10 -

0 5 10 15 20 25
Data Set

Figure 3-39: Simulated maximum average harvested power for a ratchet, an inertial,
and a spring-mass-damper model for each of the provided acceleration inputs. NOTE:
each input is optimized separately.

provided inputs. In most cases, the spring-mass-damper model is expected to harvest

more power than the inertial model, which is expected to harvest more power than

the ratchet model.

-- Ratchet
* Inertial
+ SpringMassDamper

-0.

*I

0.7
0. Ratchet

0.6- * Inertial
06* Spr ingMass Damper

0'.5 -

D0.4-

0.2-

0.1 -
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Figure 3-40: Simulated maximum average harvested power for a ratchet, an inertial,
and a spring-mass-damper model for each of the provided acceleration inputs. NOTE:
a single K and be are optimized for all inputs.

To further study the relationship, figure 3-41 plots the maximum output power of

the optimizations against each other. Each of the data points represents the power

in one model vs the power in the other model for a particular input. In figure 3-

41(a), the spring-mass-damper model is compared to the inertial model, and shows
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(a) Comparison of inertial and spring-mass- (b) Comparison of inertial and ratchet
damper

Figure 3-41: Comparison of the simulated maximum average power. (a) shows that
an optimized spring-mass-damper model will make more power than the inertial model
for all the provided inputs, and will typically make more than twice the power of the
inertial system. (b) shows that the inertial model produces more power for all of the
inputs than a rachet model since all the input data points are above the y = x line.

in general the spring-mass-damper model is expected to produce a little more than

twice the power as the inertial model. In 3-41(b) the inertial and ratchet models are

compared. Since the ratchet system is essentially the same as the inertial system but

only moves in one direction, the power of the inertial system might be expected to be

twice the power of the ratchet system; however, the comparison of power shows the

inertial system provides somewhat less than twice the power of the ratchet system

indicating that the ratchet is providing some rectification.

However, a key benefit of the ratchet system is the relative displace-

ment.

To illustrate the previous misconceptions of the various models, take a closer look

at the 4 6th input trace indicated in figure 3-39. As can be seen using the optimization

tools, the spring-mass-damper system provides more than double the power of the

inertial model. Thus, focusing on the 46th trace, figure 3-42 is a graph of the angular

acceleration amplitude as a function of time and frequency. As can be seen, this

particular trace exhibits a large resonant peak and the majority of the remaining

amplitude is less than 5% of the amplitude of the resonant peak which from previous

studies suggests that a resonant spring-mass-damper system will be able to resonate

and be the best choice. Originally, a graphical search method was used in which the
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Figure 3-42: Graph of the 46th input of the BAF tool as a function of time and

frequency.

spring-mass-damper equations were solved for a range of K and be values as in figure

3-45 However, in initial searches, a resonant frequency range of 100Hz was used to

define the limits on K and in 3-43(a). For this level of discritization, the maximum

power occurs at K = 0 and is equivalent to the maximum power solved in the inertial

model. Later, after comparison with the optimization results of figure 3-39 a finer

graphical search as in 3-43(b) does in fact find that a spring mass damper is optimal

with a 5Hz resonant frequency is optimal.

Describing the anthology of this error is useful for two reasons. First, to explain

why the inertial model (or ratchet system) was originally thought to be superior

to the spring-mass-damper model. Second, to illustrate the sensitivity of a spring-

mass-damper model to the value of K. In figure 3-43(c), the range of K has been

reduce to the equivalent of 7Hz search area to obtain the same numerical value as the

optimization. Thus, the output of the spring-mass-damper is sensitive to the value

of K. Figure 3-44 is a plot of the power as function of relative K and shows that a

60% error in the value of K can be allowed for a fixed damping coefficient before the

inertial system would create more power. It is of interest to note that for this one

particular input which is relatively narrow bandwidth, if the quality factor could be
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Power vs Electrical Damping Coefficient and
Spring Constant

(spring-mass-damper model)
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Spring Constant

(Spring-Mass-Damper Model)

x 10~3

max =6.2 mW
b = 0.00 N-n

& be= 4.73e-004 N-rn-s'

36Hz Peak

x 10~3 2

be [N-m-s/rad] 0 0 K [N-m/rad]

(a) K range 100Hz

0.015 P

0.01-

0.005

6 4
x 10 4

b [N-m-s/rad]

max= 12.9 mW
tK =0.02 N-rn
& b = 2.03e-004 N-m-s

-5Hz Peak

00

(b) K range 50Hz

Power vs Electrical Damping Coefficient and
Spring Constant

(Spring-Mass-Damper Model)

0.02-

0.015-

0.01

0.0054
0
6

4

be [N-m-s/rad]

=17.7 mW
max

@K = 0.02 N-m
& b = 1.03e-004 N-rn-s

U 0 K [N-m/rad]

(c) K range 7Hz, Note: the range on be has also been
reduced.

Figure 3-43: The predicted output power as a function of K and be. The power
is extremely dependent on the value of K as can be seen by the increasingly finer
search grids. In (a) the maximum power is for a resonant system; however, as the
grid is refined, in (b) the maximum power is now more accurately found at 5Hz. To
get an accurate prediction of the optimal K requires a very fine search grid (as in

(c)), which suggests that the power is sensitive to changes in K. Note, the optimal
damping coefficient is equivalent to the internal damping as predicted in previous
studies, be = bi
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Power vs relative spring constant
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Figure 3-44: Plot of the sensitivity of power to changes in spring constant

increased at 5Hz to 50, then the average power output would be 0.25 W, but only a

10% change in K would be required before a resonant system would be superior.

As noted in the modeling section, the inertial and ratchet models are mathemat-

ically identical except for the non-linear ratchet, so when the ratchet is not engaged

the models should predict similar power, however, when the ratchet is engaged and no

relative velocity exists and the harvested power is zero nearly half the time. This ex-

plains why the ratchet model produces half the power of the inertial model. However,

in earlier comparison studies, the inertial model was not explicitly studied and was

only used when the spring mass damper model predicted (usually incorrectly) that it

was optimal. In these cases, the simulations choose the ratchet model as the better

alternative for electromagnetic reasons. In the original models the electrical damping

was modeled as a torque created by the generator as in reality and not as a simplified

viscous damping coefficient. Thus, dimensional considerations are taken into account.

Figure ?? shows the displacement and velocity of the inertial and ratchet models for

the 4 6th trace. In 3-45(a) the relative displacement of the inertial system is limited

to approximately 10 deg, while the relative displacement of the ratchet system has

seen a full rotation within 2 seconds. The magnetic circuit for the inertial system

with such small displacements is difficult and prone to losses, and since the relative

velocity in both cases (3-45(b)) is similar, all be it one sided, the original simulations
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displacement and velocity for the inertial

predicted the ratchet system as superior.

As a first order check, using the inertial system as and example, the maximum

relative velocity is 4ma ~ 400deg/s, which results in a maximum electrical damping

torque of T - .7N - mm. In the prototype this torque is applied at a lever arm

of 13.3mm which results in a force of F - 0.5N applied of an area of 6 x 10- 3m 2

for a electrical shear stress of r = 0.001psi which should be obtainable. Thus, the

previous model of the electrical torque will need to be reviewed and either corrected

or used to verify the assertion that the continuous rotation in the ratchet system

provides sufficient benefit electro-magnetically to deem the ratchet system superior

to the inertial.
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Chapter 4

Rotational Prototype

INPUT PARAMETERS

The system is subject to some physical parameters. Figure 4-1 shows the constraints.

* 0< K< 5, 000 N

* 0 < be < 250 N-s
M

* rmag = 0.375 in

* 0.1 < h < 2 in

m = Pmag7rnag h

* Qi = 100

b- = rK_

The maximum extracted power is optimized using a brute force optimization tech-

nique where the power is plotted as a function of the spring constant and electrical

damping while independently varying h (and thus indirectly the mass).

PARAMETERS

* h = 0.53 in
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5.5"

Not to scale

Figure 4-1: Physical parameters of the system
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h = 0.53 in

0.8

076P =0.26W

0.56

250

K [N/m] 10 0 be [N-s/rn]

Figure 4-2: Expected power at a magnet mass width of 0.25in as a function of the
internal spring constant K and the total electrical damping factor including power
extraction and electrical losses. Note, the system is displacement limited and further
power improvements could be made by either a non-linear spring or active control of
the electrical damping.

" K = 28 Nm

" be = 78 N-s

Te = 1.6 psi

NOTE: The power is displacement limited as can be seen by in the plot. In the model

when any parameter exceeds its maximum value the power is set to 0 to indicate

inadmissible operation. The power would not actually be 0 at this location but

the magnets would be hitting the stops. The maximum power can be improved by

including control over the electrical damping (optimal control model) or including

a non-linear spring that will gradually stiffen when approaching the limits allowing

the device to operate in this range. These options are currently being modeled to

determine which is optimal.

Several wrist watches have been successfully powered (or wound) by rotating proof

masses[?], but in those instances, the frequency of vibration is very low (0.5-2 Hz),

and the amplitude of vibration is several orders of magnitude larger than the size

of the device. Thus, the majority of the work is done by the relative change in the

125



direction of the gravitational field associated with such large amplitude changes and

not the relative motion produced by inertial forces on the proof mass. To the au-

thors' knowledge, what is not available, is a macro scale device capable of harvesting

the higher frequency (5-100 Hz) but much lower amplitude vibrations of rotating

machinery in varying attitudes. As explained by [20], most proposed methods of

transduction have similar maximum potential power densities and thus the choice is

often application specific. Combining these results with the estimates of [?], elec-

tromagnetic induction is chosen as the best method of transduction for this device

based on expected mechanical vibrations and form factor restraints. Thus, presented

here are the design and performance of a rotational, macro-scale, energy harvester.

The harvester uses a rotating spring- "mass"-damper that can be directly connected

to a rotational system subjected to torsional vibration and through electromagnetic

induction, harvest the potential energy of those vibrations.

4.1 Spring Constant

4.2 Internal Damping

4.3 Electro-magnetics

Building on the calculation of the open circuit flux density, the next step is to calculate

the open circuit voltage, often referred to as the electromotive force (EMF).

4.3.1 Modeling

Conductors are arranged around the stator as shown in Figure 4-3. According to

Faraday's law of induction, as the rotor moves relative to the stator the changing

magnetic flux passing through the coils will induce a voltage,

dAB

dt
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Model of the current distribution
around the stator

yT

Close up showing the
separation of the coils

Current out of pageo Current into page

Figure 4-3: Schematic of the current distribution on the stator. The current travels
out-of (black) or into (red) the page and connects into an equivalent loop above and
below the page. Thus, a series of equivalent loops are created that are spaced 7/s
apart where s represents the number of loops. The current is carried in conductors
that are distributed on the stator as shown in the zoomed in schematic. a represents
the angular offset between turns.

where E is the induced voltage (or EMF) and AB is the total magnetic flux through

the coils. The flux through a single turn of the coil is defined as,

Aco = f h -di
h 0+}

j f -re, dO'd z
z=0 61=0

h 6+

S J rBr dO'dz
z=O 0'=0

2BRrm flk- nk] [(l e r sin (nk(' - @

z=09'=6 7r(2k - 1) [(r-)fk _ (r)nk]

+E-I7 (rmic )k _(riflk1 [(_)k + (r"c)nk~
e+ 2hBRrm m rc r

nhs in (nk(O' -
= ir(2k - 1) k j

-b sin (nk(0' - p)) dO'
0'=0

1 '
= b -cos (nk(O' - $ 127nk 0 o

nb LCos 1n(O + -- cos (nk (0

dO'dz

dO'

(4.1)



To account for multiple turns, a turns density function is included in the formulation,

AB J I,(O')A0 oil(0')
0'=O

(4.2)

where 7(0) is the solution of,

dO = N

where N is the total number of turns. Figure 4-3 shows that the turns distribution is

a square function, thus,
Ns

Thus,

A Ns [Cos (nk(O' +

0'=9

S
- 0)) - cos (nk(O' - #))

sin (nk (0'+-

[sin (nk(0
27r

+S7

- sin (nik(O' -

) - 2 sin (nk(6
I

9+

+ sin (nk(O -

Summing up all the coils,

AD SiNsb [EB 2 [sin
j=O Tk I

nk( 2
--8' -2 sin nk 2 + sin nk( 2jw

S

Up to this point it has been assumed that the magnet pitch (27r/p) and the coil pitch

(27/s) are different. However, if s # p then AB = 0 (Proof is in Appendix ??, Section

4.3.3). Thus, the current pitch and magnet pitch must be equal and setting s equal
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to p from now on,

p-i

ABZ
j=0

Npb
n2 { [ Cos (2jr + 27) + 2 cos

+ [sin (n (2j7r + 27r))

rk
8-(2j7 +

- 2 sin (k 2j7 + 7r))

r) - COS n (2j7r) sin(nk#)

+ sin (- (2j7r) cos(nik)

-2 r {[- cos ((2k - 1)(j + 1)27r) + 2 cos ((2k - 1)(2j + 1)r) - cos((2k - 1)j21r)]sin(nk#)
j=0

+ [sin ((2k - 1)(j + 1)27) - 2 sin ((2k - 1)(2j + 1)7r) + sin ((2k - 1)(j + 1)27)] cos(nkO/v

Npb
nW {[-(1) + 2(-1) - (1)] sin(nk#) + [(0) - 2(0) + (0)] c(T/os(nk#)}

Npb
-4 sin(nk#)

b-4 N b in(nk#)

-Ao sin(n 4#)

where,

8NhBRr f - + (roc)"k]

r2(2k - 1)3 [( ) ( )flk]

Applying the chain rule to Faraday's law of induction, the induced voltage (E) can be

solved for as,

dAB

dt
d AB d#3
d# dt

= Aonk cos (nk#)q#

If the current is separated into multiple phases that are assumed to be equally spaced,

the induced voltage is shifted in space in proportion to the number of phases. Thus,

the induced voltage in the h phase is,

E = Aonkcos nk4+
27w(a - 1))
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where A is the total number of phases.

Equation 4.5 is incorporated into Matlab for numerical calculations and the code

is provided in Appendix ??, Section A.0.10.

4.3.2 Results

Combined with the numerical values in table 4.2, Table 4.1 lists the numerical values

used to calculate the induced voltage,

Variable Value Unit Description
s 8 Number of coil pole pairs
N 32 Number of turns in the coil
r 0.525 in Radial dimension to the flux

13.3 mm surface (r = rc)
h 3.0 in Axial dimension

76.2 mm
a 1 Phase number
A 1 Total number of coil phases

Table 4.1: Values used in the calculation of the induced voltage

Initially, assume the rotor to be rotating at a constant rate,

Thus, the angular displacement is a linear function of time,

# = wt+C

(4.6)

For simplicity, assume # 1 = 0, thus, C = 0 and,

~b(t)

~(t)

Wt

W

Applying # and # to Equation 4.5, Figure 4-4 shows the induced voltage.
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Figure 4-4: Plot of the calculated induced voltage (EMF) for a constant angular veloc-
ity input to an 8 pole, single phase, 32 turn, electric machine with dimension defined
by Figure ?? and Table ??

An oscillatory input better matches the expected input. Thus, assuming an input

#(t) = <bsin(wt) + 4o

#(t =<b cos(ot)

the induced voltage is shown for two different initial positions and a three different

sinusoidal amplitudes in Figure 4-5. In each of the above cases, the radius at which

Estimated induced voltage Estimated induced voltage
($ 4 < sin((o t)

30
<b = 5 deg

20 = 10 deg

J10 = 15 deg

-10 
7

-20

-30
0 0.02 0.04 0.06

Time [s]

(= D sin(o t)+ir/2s)
-D = 5 deg
-D = 10 deg
4=15 deg

\ I \

-20
0 0.02 0.04 0.06

Time [s]

Figure 4-5: Plot of the calculated induced voltage (EMF) for a sinusoidal angular
displacement input.
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the flux is evaluated is assumed to be the same as the outer core. This provides a

conservative estimate of the induced voltage since some of the coils are closer to the

surface of the magnet and see a higher flux density.

4.3.3 Solution of AB = 0 for s 4 p

When the magnetic pitch (27r/s) and the current pitch (27r/p) are assumed to be

different, that is s / p, the total flux through the coils AR must be 0 (AB = 0 for s #
p). The following section shows the steps in the mathematical proof of this starting

with the general solution for the flux

s-1 2j 27 2j 72

A 0 [sin k( - - 2 sin (k( + +sin (nk(

s-1

E Ao
j=0

The next step in the analysis is to assume a load. Based on the load, the expected

current and power can be calculated.

4.3.4 Modeling

The simplest circuit that provides a reasonable approximation for the amount of

power that can be extracted from the system is to assume the load can be modeled

like an equivalent resistance (Figure 4-6). The harvested power is then equivalent to

the power dissipated in the load resistor.

P =inL VRL

yRL
RL 2RL

RL
RL 2

(RL+ Rc2
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R

EMFb
ge) (induced voltage)

R c

... ... ... EMFA
(induced voltage)

I I
Device Coils

Figure 4-6: Equivalent circuit diagram of the coil and equivalent load resistance.

Optimizing the harvested power as a function of the load resistance,

dP RL - Rc 3 o

dRL (RL + R) 3

RL R

Thus, to maximize the harvested power, the load resistance should be matched to the

coil resistance,

e2
P =

4Re

Extending this to multiple phases, the power is the sum of the power in each phase.

A

- 4f Ia (4.7)
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To determine the equivalent damping coefficient, combine Equations 4.5 and 4.7,

P 1 A AnCO k+27r(a - 1)> ]2

4Re [ok cos n A

on2 A 2ir(a - 1)

4Re Z os ( + A

cos 2 (n4) A = 1

= 4Re 2 cos2 (nk4) A = 2 (4.8)

4A>2

A A > 22

Thus, the equivalent damping coefficient is,

cos 2 (nkg) A = 1

be = = 2 cos2 (nkg) A = 2 (4.9)
4Rc

A A > 2

NOTE: THIS IS NOT EXACTLY CORRECT, be IN THE VIBRATION EQUATIONS IS ALL

THE ENERGY DISSIPATED BY THE ELECTRIC SYSTEM. I BELIEVE BASED ON THE

PREVIOUS ASSUMPTIONS THAT THE TOTAL ENERGY DISSIPATED ELECTRICALLY

IS TWICE THE ENERGY HARVESTED, BUT I WILL NEED TO DOUBLE CHECK. EI-

THER WAY, THE ACTUAL ELECTRIC DAMPING COEFFICIENT IS A LITTLE DIFFERENT

PROBABLY TWICE THE HARVESTED DAMPING COEFFICIENT.

To calculate the harvested power, a model of the coil resistance is needed. Ac-

cording to [?) the resistance in a conductor can be estimated by,

tp
A

where f is the length, p is the materials resistivity, and A is the cross sectional area.
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The total coil resistance consists of a sum of the active conductor resistance, consisting

of the conductor paths arranged axial around the stator in the region of magnetic flux;

and the end-turn conductor resistance, consisting of the conductor paths that connect

the active conductors at either end of the device. The resistance of one complete loop

is connected in series with the resistance Np loops. Since, multiple-phase are assumed

to be matched, the resistance in phase a is Ra = R 1 /A where R1 is the total resistance

of a single phase system, resulting in a total coil resistance of,

Ra Np (active + t)
a A Aactive +Aet

The conductor length of the active section is twice the active axial length of

the coil, factive = 2h. Assuming an approximately square profile wire with a given

insulation thickness (as in Figure 4-6), the active cross-section area is,

Aactive = tlayer (nt8 - k)

where tlayer is the flexible circuit printed copper thickness, and the active length is,

The length of the end-turns is shown in Figure 4-7, and one complete turn consists

of 4 lengths. The cross-sectional area of the end-turns can be estimated by scaling

the active area by the angle = arctan 2s(zh)

End turn

z h
I.

N --- r(rr/4s)

(2 + r~j

Figure 4-7: Estimation of the end-turn length for calculation of the coil resistance.
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Aend-turns-= sin (O)Aactive

Thus, the coil resistance is,

R=ANPp (2h + fet
AAactive sin (0)

Given this model,

cos 2 (nkg) A 1

=- 4c 2 cos 2 (nkg) A=2 (4.10)
4R 

C

A A > 22'

A Matlab function is provided in Appendix ??, Section A.0.9 to calculate the resis-

tance.

4.3.5 Results

The first step in the design of an electric generator is the open-circuit fields analysis.

The following documents the modeling and calculation of the magnetic field in a

multi-pole rotational permanent magnet electric machine.

4.3.6 Modeling

The device to be analyzed is a permanent magnet generator, and the schematic that

the model is based on is shown in Figure 4-8. The device is a relatively standard

magnetic-shear type permanent-magnet machine. The system consists of 2p perma-

nent magnets arranged radially around a rotor core. The magnets are permanently

magnetized in either the plus (north) or minus (south) radial direction (M cx e,).
To obtain a model of the machine a few simplifying assumptions are imposed.

First, the axial dimension is assumed to be at least 3 times larger than the diameter
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Permanent Magnets,
radially magnetized

alternately ±e.

!tion of the
or wrt the
stator

Infinitely Penieable Air Gap - permeability of
Boundaries free space

Figure 4-8: Representative axial cross-section of electric machine. The model consists
of 2p permanent magnets attached to an infinitely permeable rotor. The magnets are
magnetized radially and arranged in an alternating North-South arrangement (M o
±r). The rotor is surrounded by an infinitely permeable, stationary stator.

of the outer core, and several orders of magnitude larger than the width of the air

gap between the magnets face and outer core, a 2-dimensional model is sufficient.

Second, the fields are assumed to be small enough in the permeable materials that

the materials can be assumed infinitely permeable.

The solution of the magnetic flux density in the air gap (B field) starts with the

quasi-static version of the Ampere-Maxwell law in differential form[32].

VxH = Jr,ee

In an open-circuit fields analysis, no currents free currents exist in the model, and

the Ampere-Maxwell law reduces to,

Vx f 0

and thus, the magnetic field intensity (H) can be written as the gradient of a scalar
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potential 7P,

H = - V (4.11)

Equation 4.11 and the general accepted constitutive law, B = po (H + 1) are then

substituted into Gauss' law for magnetic fields [32],

m o H+M

V-H+IV-M

V.-(-V,)

V.-(V')

+2@

=V M= V-M

(4.12)

To further reduce the equation, the distribution

ically described by a fourier series,

of magnetization can be mathemat-

00 4 rm sin [p (2k - 1) (0 - V))]
EMo 6,k Ie ric < r < rm

2k-i k=1 r7 r

0 rm < r < roc

where in reference to Figure 4-8, rm is the radial distance to the outer surface of

the magnets, r is the radial coordinate, p is the number of pole pairs, 0 represents

the angular coordinate, and # represents the rotation of the rotor with respect to

the coordinate system. Treating the two regions defined by the magnetization vector

separately, in the region of free space between the magnets and the outer magnetic

core the magnetization vector is zero, and thus Equation 4.12 simplifies to Laplace's
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equation,

V 20, = 0 (4.13)

where the a subscript denotes the potential in the "air" region.

In the area filled by magnets, the divergence of the magnetization vector is,

V -M = (rMr)
r Dr

- 8 4 rm sin [p (2k - 1) ( -
r Br k1 7r r 2k - 1

=0

Substituting this into Equation 4.12 again results in Laplace's equation

V 2 m = 0 (4.14)

where the m subscript denotes the potential in the "magnet" region.

The solution of Laplace's equation in cylindrical coordinates can be obtain in most

electromagnetic texts, and is given in general as,

00

= rk [A1k sin (nk03 ) + A 2k cos (nk 3 )] + r-"k [A3 sin (nk/3 ) + A 4k cos (nk/3 )]
k=1

(4.15)

where 0 - # and p(2k - 1) =- nkare used to simplify and shorten the expressions.

Solve for the constants by using the boundary conditions imposed on the fields.

Start with the outer boundary at r rc. From the Ampere-Maxwell law, in the

absence of a free surface current (as assumed earlier), the tangential component of

the field intensity must be continuous. Additionally, since the outer core material is

assumed to be infinitely permeable, the field intensity inside the core material must
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be zero. Thus,

8, x -N a ~.

Ha r=r,,

1 8@'4 a

ro 9 r=r80

8@a

890 ro

-0

-0
=0

-0

Performing the integration and dropping the summation notation for simplicity,

(r"|Aa1 + rC kAa3 k) COS (nk, 3) - (r", Aa 2  + r-nk Aa 4 ) sin (nO3) = 0

Since this must hold true for all values of #, the result is two equations which can be

used to solve for the constants

r"0C
0

0 r-"k 0

rnk 0 rp " I0c 0c _j

Aaik

Aa2k

Aa3k

Aa4k

0
0

Similarly, at the inner core,

6r X (urn r=ric)

To r=ric

1 8@l/m

S8@9

DO

-0

-0

-0

= 0

Again performing the integration and also dropping the summation for visual sim-

plicity,

(rnk A1, + r7-kAsm) cos (nk/3) -- (r kA 2 + r-nk A 4m) sin (njj3) = 0 (4.16)
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Again, since this must hold for all values of 0, the result is two equations for the

constants.

rk
0

0 r nk 0
Ik 0 r,-7kX i J

Am1

Am2k

Am3k

Am4,

I 0
0

Applying the same boundary condition to the interface between the magnet and

the air,

6r X N fa Lr -Nm )
Hao |r=rm, - "me rrm

1

rm

fta

aor=rm

Dpa
Sr=r

Dhm _m

8 DO r-r.

After integration this becomes,

[r" (Aa1k - Am 1 ,) + - (Aask - Amsk)] cos (nk!)

- (r" (Aa 2k - Am 2 k) + r-nk (Aa 4 k - A 4k)] sin (nO!)

which again provides 2 equations for the constants,

r,"k 0 r -"k

0 r"k

0 -r" m

0 r-nm 0 -

0 -r- 0

r"nk 0 -r-"kmJ
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Aalk

Aa2k

Aa3k

Aa4k

AmIk

Am2k

Am3k

Am4k

0
0



The final boundary condition is determined by applying Gauss' law at the magnet-

air interface. From Gauss' law, the normal component of the magnetic flux density

must be continuous.

er (Ba r =Trm
- Bm rr)

Bar Ir=r - B r=r

YO Ha,\r,=r - Po (HM, + Mr)|rr

Ha,\ -r - Hm, r=rm

8@a
Dr Dr ,r=rm

- Mrrr

After integration and substitution,

[r" (Aa 2k - Am 2 k) + r;"k (Aa 4, + Am 4 j] cos(rn#/)

+ [r"r" (Aalk - Am1k) + r;nk (-Aa3k + Am 3 ,)] sin(n#)
4A=- m sin(n#)

7rnlk(2k - 1)

Which again yields 2 equations,

0 -r"kin

0 -r-n"

0 r

0 -r"k

7" 0

0 r- k

142

[nkr"|

0

0 -r;"i

Aaik

Aa2k

Aa3k

Aa4k

Am1k

Am2k

Am3k

Am4k

4MOr
r7k(2k-1)

0)



Combining all the equations,

r" 0 r--"k

0 ro"k 0

0 0 0 0 0

r-nk 0 0 0

0 0 0 0 r k 0 r-k

0 0 0 0 0 r n 0

r"| 0 rn"km

0 rnkm

0 -r,"km

0 r-" k

0 -rnk

0 -rnkm

rk 0 -r--"k 0 -r~k 0 r~-"k

0 rnkO m 0 -r-nk 0 -rnkm

Matlab is used to solve the system of equations (code provided in Appendix ??

Section A.0.13),

Aalk

Aa2k

Aa3k

Aa4k

Am1k

Am2k

Am3k

Am4k

nlkr(2k - 1)

2Morn((e ) n (- \)k\
roej

Thus, the potential solution for the two regions is,

Va}
2Morm .

nr(2k - 1)

E nk_ (roc ) rk r_ k r "k
cr k_ roc

( ric ) k roc 'k

roe (ric)/
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Aa2k

Aa3k

Aa4k

Am1k

Am2k

Am3k

Am4k

0 -r" nk

0

0

0

0

0

0

4Morm
nk7r(2k1)

00 r-nkm

(,_)fk)

k ( ) k
. r"oc rOC Tm i()k)

-(r_)k)

( k

~ ( (r ) nk
_ kc Toc

Toc

r7'k 
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The H field in the air gap is then,

Ha

( r 1 e~a N
+r DO0 /o

2Mor - )nk]

7rr(2k - 1) [()fk - oc k]
roc ric

r r)c + (r )fkl sin(n)

()flk _ (r ,)fnk] cos(rk )

and the B field in the air gap is,

Ba = pIHa

2,poMorm nk]

F/r(2c -1n) -
7rr(2k - 1) [\\roc}n roe)1k]

and in the magnetic region,

Dr er

[(_L_-k + (rc,)nk] sin (n)

nro -

2Morm - c f n ]

rr(2k - 1) [( -) _ ()fl/c]roc ric

r ± (r f sin (nk )

c r ()fnk] cos (nk!)
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= Po Hm+M

H,
= o +

IHO

Mr

0

nkn

2Morm roc rTm
- po

rr(2k - 1) [()fk _

4Morm
7rr (2k - 1)

2poMorm

7rr(2k - 1)

L (

/r nk

[(_n + (a) 71k sin(n!

ri I[ [ - ) lc)k cos (nO#)

sin (nk)

0

r- r2 sinien )rr nk ro J[ n 'k r -21 sin (nk/)
roe lk rc)e I '

4.20)

ric "k roc
rocI i c/ )

cos (nk/3) j
4.3.7 Results

Table 4.2 contains the numerical values used in the calculations of the results. The

Variable Value E Unit Description

po 4r x g10-7 Magnetic permeability of free space[32]
Yo_4__x____ A

2
S

2  Magnetic__permeabilityoffree__________
BR 1.29 T residual flux density[l]
roc 0.525 in Radial dimension to inner surface

13.3 mm of the outer permeable material
rm 0.440 in Radial dimension to outer surface

11.2 mm of magnets

ric 0.315 in Radial dimension to outer surface
8.00 mm of the inner permeable material

p 8 number of pole pairs

Table 4.2: Values used in the calculation of the results (NOTE for radial dimensions
see Figure 4-8)

strength of rare earth magnets is typically given in terms of the residual flux density

(BR), which is related to the remanence (MO) by, BR = p-oMO (note: notationally,

BR denotes residual flux density and B, denotes the radial component of the flux
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density).

The exact solution requires an infinite sum; however, for realistic numerical sim-

ulations an estimate of the number of terms need for reasonable convergence of the

series is determined numerical by comparing the change in the radial component of

the flux density at the outer core for successive summation terms. The radial compo-

nent at the outer core is used since this is the component and location most relevant

to the calculation of the open circuit voltage (EMF). Thus, the radial flux density

evaluated at the outer core is,

Brrr 4BRrm (fk nk

rroc(2k - 1) (_2n -rc

roc rie

Figure 4-9 is a plot of the radial flux density evaluated at the outer core (Brrr,,) for

increasing values of k. Also plotted is the root mean square of the relative error of the

radial flux for increasing values of k (RMs [B,(k) - Br(k - 1)]). As can be seen, for

the numerical values chosen, the series converges very quickly, with a relative error

on the order of 4 x 10-3 at the second term of the summation. For each successive

simulation, a section of the code used to produce these plots (provided in Appendix

?? Section A.0.14) is include to determine the number of summation terms necessary

for convergence by requiring a minimum relative rms error.

Finally, based on Equations 4.18 and 4.20, a vector plot of the flux density is

shown in Figure 4-10. The matlab code used to calculate the vector field is given in

Appendix ?? Section A.0.15.

As the number of coil turns reduces, the width of the copper bars increases and

the losses associated with eddy currents increases. According to Faraday's law

E adl- = ds (4.21)

As seen in figs. (4-11) and (4-12), ignoring fringing fields (which are small in the

bars and occur primarily in the end turns) and due to symmetry the electric field is
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Radial flux density

MI

X1-3

01
2 3 4 5 6 7 2 4 6

0 Summation term

Figure 4-9: Plot of the radial flux density evaluated at the outer core (Br Ir-r ) for
increasing values of k and the relative rms error between successive terms in the
summation. As can be seen, for the numerical values used, 4 terms should be sudficient
for convergence of the infinite summation.
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Vector plot of the flux density
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Zoomed in vector plot of flux
density for 1 magnet pair
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Figure 4-10: Vector plot of the flux density (B).

Eddy -
Currents B

................

Magnetic
Core

-I

Copper Bar
Coils

Figure 4-11: Radially directed magnetic fields passing through the copper bars create
circulating currents

constant around the closed loop thus,

E -di = 2E (L + w) ~ 2EL (4.22)

where the assumption L >> w has been used in the approximation. Again ignoring

fringing the magnetic field does not vary axially, however the field does vary angularly,
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Copper bar (Out of Page)

Figure 4-12: Faraday's law is used to calculate the electric field around a closed loop
through which a time varying magnetic field passes.

thus

Sf 0/2 aBr
at .d =L - at dx (4.23)

x=-0/2

Figure (4-13) is a plot of the magnetic field density evaluated at the the surface of

the outer core. However, only the time varying component contributes to the electric

field. Thus, the magnetic field density through the copper bar is approximately,

B, = B 0 cos o sin (wt) - x (4.24)

where, B0 is amplitude of the spacial field density, 0 is the vibration amplitude, W

is the frequency of vibration, and p is the number of pole pairs. Differentiating with

respect to time yields,

aBr = q0Bow cos (wt) sin -o sin (wt) (4.25)at p p
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Figure 4-13: Magnetic
patr.

w/2

field evaluated at the core back iron across one magnetic pole
The red indicates the worst possible expected oscillation of value of magnetic

field through a bar.

Integrating this,

0b0B~w
p

L Bo q5w= B b cos (wt)
p

2LBoqow sin
p

cos (wt) sin

2)

[cos

- o sin (wt)

(24 0 sin (wt)

dx

1'
- cos - (20o sin (wt) -

2p

Combining Eqs. (4.21), (4.22), and (4.26),

2LBoow sin
p S)cos (Wt) s

cos (wt) sin

in #o sin (wt)

(0 sin (Wt))

p

The loss density is then the product of the current density and electric field,

Peddy = J -E. Assuming the common constitutive relationship for copper (J = oE)
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L

x=--0|2

-
dx

at

6/2

=L

x=-012

1

k2p
+ OP) )

cos (wt) sin
(0 sin (Wt))

p

2EL

(4.26)

E Boqow sin (
p 20)

(4.27)



the power lost can be written as,

=7E 2

_Bj#8w
2 29\\

= a 2 sin 2

p 2
cos 2 (wt) sin 2

(0 sin (Wt)
p

(4.28)

Averaging this over one time cycle,

Peddy
__ oB#w2 2 (0)

= 2 si -0
27r p 2

t=0

= sin2
27rp2 (2)

t=O

Cos 2 (wt) sin2 (0 sin (Wt)
cos (t) si

C2cos2 (wt) sin

o-B0#OWo 2o'~~3 sin2  -
8007rp 2 s 2

Spatially averaging over the copper bar,

(Peddy)
2=2
0=0

uB #w 2

800irp
2 sin2 I(- dO/2\

16007rp 2

Now multiplying by the total number of bars,

(Peddy)totai = 8007p = 36pW

where the values used for the numerical calculation are found in tab. (4.3).

variable 1 value unit

-copper 6e10 7  S . m
Bo 0.4 T

#0 0.7 rad
W 20 Hz

p 8

Table 4.3: Values of the constants in the current prototype
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4.3.8 Coils

Winding a wire coil can be thought of as a material added process. The challenge

of this approach is adding the material in the correct geometry. Conversely, if the

coils are cut from stock material that already has the correct geometry, the assembly

process is simplified and straightness and parallelism is ensured.

Inner --- --------

Copper
Cylinder (

Outer
Copper

Cylinder

Eqiivalent current

loops

Figure 4-14: Illustration of the surface wound coil design.

Figure 4-14 is an illustration of the coil deign. The coil consists of an array of

rectangular conductors in two layers. Both the outer and inner layers of conductors

have a central straight section and oppositely directed angular portions at both ends.

The central straight section is the active section of the coil, and the angular sections

complete the end turns.

To manufacturing this type of geometry, the negative space in the design is cut

out of a set of concentric copper cylinders that are the correct thickness and diameter

of the final armature, but are longer than the finished length of the final armature

(Fig. 4-15). Since the cylinders are longer than the finished length of the final coil,

a ring of copper holds the individual conductors in their prospective positions main-

taining location, straightness, and parallelism. In some extreme applications where

the thickness of the copper cylinder or the width of the individual conductors is too

small to self support, a sacrificial cylinder can be inserted inside the copper cylinders
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Figure 4-15: Copper cylinders with geometry cut out of using Omax Micro Water Jet
(Patent Pending).

to provide structure.

The width of the cuts is very important to the performance of the coils. Wide

kerfs remove a large amount of conductor material and reduce the compaction factor

of the coil. Technically, the cuts could also be cut in a laser tube cutter, but due to

the index of refraction of copper, laser cutting copper is very difficult. Unfortunately,

the cuts cannot be cut straight through since the angular portions on opposite sides

of the cylinder are in opposite directions. This makes using wire EDM difficult.

However, it should be possible to develop a wire EDM with guide rollers in the center

of the cylinder to allow for cutting only one wall of cylinder. This would also add

addition difficulties related to rethreading the electrode wire in each slit. The slits

shown in Fig. 4-15 are cut with a new patent pending micro water jet technology

being developed by Omax. The micro water jet can self pierce (eliminating electrode

threading) and cut on one side, and the new micro jet technology has an as cut kerf

width of approximately 0.006". Rectangular voids are incorporated at both ends of

the slits. These voids are primarily to simplify soldering, but also provide a good

location for piercing.

Next, insulation must be applied to the cylinders to prevent electrical contact
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Figure 4-16: The top cylinders are oxidized in an attempt to create an insulaiton layer.
However, the oxide layer was flaky and unreliable as an insulation. The bottom picture
is a Paralyene coated cylinder.

between the inner and outer layers of conductor. Just as in the radial direction,
the larger the distance between layers of copper, the lower the compaction factor of

the coil. Thus, an oxide layer was tried as the insulation layer between cylinders.

However, the oxide layer was flaky and un reliable (Fig. 4-16). Ultimately a polymer

insulator such as Paralyene or Kapton is better suited and can be applied to similar

thicknesses as the oxide layer with vapor deposition processes. When the process is

scaled up to larger scale manufacturing, more refinement could be used in this area.

Oxidizing in oxygen rich environments, or dip/spay-on coatings might be more cost

effective than vapor deposition of Paralyene. Special attention should be taken to

de-burr the outer surface of the inner cylinder and the inner surface of the outer

cylinder before the insulation is applied. A burr on either or these surfaces could

scratch the insulation leading to unwanted electrical contact between the layers. The

outer cylinder requires additional attention since the water jetting process typically

leaves flashing on the inner surface. In the current prototype, a flexible hone is used

to de-burr the inner surface of the outer cylinder (Fig. 4-17). Emery cloth is used to

de-burr the inner cylinder.
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Figure 4-17: Flexible hone used to de-burr the interior surface or the outer cylinder

Figure 4-18: Ideally, the insulated inner cylinder can be inserted into the insulated
outer cylinder. However, if necessary the outer cylinder can be split along one of the
slits to create more clearance.

Once the insulation has been applied, the cylinders can be assembled. In the

simplest arraignment, inner cylinder is inserted inside the outer cylinder. However, if

necessary, the outer cylinder can be split to provide additional clearance (Fig. 4-18).

The assembled cylinders are placed in a mold and potted in epoxy to fix the cylinders

together and provide additional structure for the completed armature (Fig. 4-19).
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Figure 4-19: Assembled cylinders are placed in a mold and potted in epoxy to affix the
cylinders and provide additional structure.

Now that the coils are potted in epoxy, the support rings created by the extra

long cylinders can be cut off (Fig. 4-20), and the ends can be dip soldered to create

the end turn connections (Fig. 4-21). Finally, the connecting wires can be soldered

Figure 4-20: The support rings created 9y the extra long cylinders being cut off.

into place completing the coil (Fig. 4-22).

The prototype coil shown in Figs. 4-14-4-22 is 1" in diameter, 4 turns, single phase,
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Figure 4-21: The end turns are created by dip soldering.

Figure 4-22: Completed Coil

and 8 poles with a measured resistance of 0.5 Q.
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Appendix A

Matlab Codes

A.0.9 Calculation of EMF

% [R] = rtechetch(in) function used to calculate the restance of a

% tech-etch coil

XINPUTS

% ino - a vector containing the appropriate inputs

% in(1) - [m], roc radial distance to the outer core

X in(2) - [ml, tcop thickness of the copper

X in(3) - [] , nl number of layers

% in(4) - [] , nt number of traces per layer

% in(5) - [ml, kl thickness between layers

% in(6) - [m], kt thickness between traces

% in(7) - [m], h active axial coil length

X in(8) - [ml, z maximum coil length

X in(9) - [ohm-mI , resistivity

X in(10)- [I , s number of coil pairs

XOUTPUTS

X R - [ohm], total coil resistance

%/
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%A Zachary Trimble

%8.17.2009

function [R] = rtechetch(in)

%distribute input vector

roc = in(1);

tcop = in(2);

nl = in(3);

nt = in(4);

kl = in(5);

kt = in(6);

h = in(7);

z = in(8);

rho = in(9);

s = in(10);

r = roc-1*nl/1*(tcop+3/2*kl);

tcoil = r*pi/nt/s;

disp('Total coil thickness');

disp(tcoil/0.0254);

Aactive = tcoil*tcop;

lactive = 2*nl*nt*s*h;

Ractive = lactive*rho/Aactive;

theta = atan(2*s*(z-h)/r/pi);

Aet = sin(theta)*Aactive;

let = 4*nl*nt*s*sqrt(((z-h)/2)^2+(r*pi/4/s)^2);
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Ret = let*rho/Aet;

R = Ractive+Ret;

A.0.10 Calculation of EMF

% emf = inducedV(phi,dphi,in), calculates the induced voltage

XINPUTS

% phi - [rad], vector of the angular displacement

% dphi - [rad/s], vector of the angular velocity

X in - vector cont

X in(1) -

X in(2) -

% in(3) -

X in(4) -

X in(5) -

% in(6) -

% in(7) -

X in(8) -

X in(9) -

X in(10)-

XOUTPUTS

X emf -

[ml,

[ml,

[ml,

[TI,

[]I,

[m],

[hi,

[ml,

[]I,

[]I,

aining the relevant inputs to the system

ric radius to the outer surface of the inner core

rm radius to the outer surface of the magnets

roc radius to the inner surface of the outer core

BR residual flux density

p number of magnetic pole pairs

N number of coil turns

h axial dimension

r radial coordinate the current is located at

a phase number

A total number of phases

[VI, induced voltage

%A Zachary Trimble

%8.10.2009

function emf = inducedV(phi,dphi,in);
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%Initialize the emf vector

emf = zeros(size(phi));

%Extract the inputs from the in variable

ric = in(1);

rm = in(2);

roc = in(3);

BR = in(4);

p = in(5);

N = in(6);

h = in(7);

r = in(8);

a = in(9);

A = in(10);

XDef ine

%number

errmin

imax

a minimum relative rms error between summation terms and a maximum

of interations to all

= le-6;

= 100;

%Calculate the B vector for increasing summation terms until either the

%maximum iterations limit or the minimum relative error limit is reached.

i = 0;

err = 1;

while i<imax && err>errmin;

i = i+1;

emf0 = emf;

nk = p*(2*i-1);

lambda0 = 8*N*h*BR*rm*...

162



((rm/ric)^nk-(ric/rm)^nak)*...

((r/roc)*nk+(roc/r)^nk)/...

(pi^2*(2*i-1)^3*((ric/roc)^nk-(roc/ric)^nk));

emf = emf + lambdaO*nk*cos(nk*phi+2*pi*(a-1)/A).*dphi;

err = sqrt(mean((emf-emfO).^2));

end

A.0.11 Calculation of Induced Voltage for Constant Angular

Velocity Input

%The following script file use the inducedV.m function to calculate the

%induced voltage for continuous constant rotation

%%%%%%%%%%%%%%%%%%%%%%%%%

%%% PREPARE WORKSPACE %%%

%%%%%%%%%%%%%%%%%%%%%%%%%

clear all

close all

clc

%%%%%%%%%%%%%%

%%% INPUTS %%%

%%%%%%%%%%%%%%

%general dimensions

roc = 13.3;

rm = 11.2;

ric = 8.00;

h = 3*25.4;

%magnetic parameters

%[mm], radius to outer core

%[mm], radius to outer magnet face

%/[mml, radius to inner core

%[mm], axial dimension of device
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%[], number of magnetic pole pairs

%[T], Residual Flux density

%[], number of turns in the coil

%[], phase number

%[], total number of phases

input vector

A;

a;

roc/1000;

h/1000;

N;

P;

BR;

roc/1000;

rm/1000;

ric/1000;

%similation vectors

wrpm = [30 290];

w = wrpm*2*pi/60;

t = linspace(0,2*pi/w(1),1000);

phi(2,:) = w(2)*t;

phi(1,:) = w(1)*t;

dphi(2,:) = ones(1,length(t))*w(2);

dphi(1, :) = ones(1,length(t))*w(1);

%[rpm], constant revolution speed

%[s], time vector

%%%%%%%%%%%%%%%%%%%%

%%% CALCULATIONS %%%

%%%%%%%%%%%%%%%%%%%%
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p

BR

N

a

A

8;

= 1.29;

= 32;

= 1;

= 1;

%create

in(10)=

in(9) =

in(8) =

in(7) =

in(6) =

in(5) =

in(4) =

in(3) =

in(2) =

in(1) =



emf1 = inducedV(phi(1,:),dphi(1,:),in);

emf2 = inducedV(phi(2,:),dphi(2,:),in);

%%%%%%%%%%%%%%%%%%%%

%%% PLOT RESULTS %%%

%%%%%%%%%%%%%%%%%%%%

figure(1); cif;

set(gcf,'units','normalized',...

'position',[0.25,0.25,0.5,0.51);

plot(t,emfl,t,emf2);

grid on;

set(gca,'fontsize',18);

title(texlabel(sprintf('Estimated induced voltage\n(phi = omega t)')),.

'fontsize',30);

xlabel('Time [s]','fontsize',26);

ylabel('Voltage [V]','fontsize',26);

xlim([0,2*pi/w(1)]);

%ylim(O.3*[-1,11);

legend(texlabel(sprintf('omega = %2.Of RPM',wrpm(1))),...

texlabel(sprintf('omega = %2.Of RPM',wrpm(2))));

A.0.12 Calculation of Induced Voltage for Oscillating Angu-

lar Input

%The following script file use the inducedV.m function to calculate the

%induced voltage for an oscilating input phi = phiO*sin(w*t)

%%%%%%%%%%%%%%%%%%%%%%%%%

%%% PREPARE WORKSPACE %%%

%%%%%%%%%%%%%%%%%%%%%%%%%
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clear all

close all

clc

%%%%%%%%%%%%%%

%%% INPUTS %%%

%%%%%%%%%%%%%%

%general dimensions

roc = 13.3;

rm = 11.2;

ric = 8.00;

h = 3*25.4;

%magnetic parameters

p =8;

BR = 1.29;

N =32;

a =1;

A =1;

%create input vector

in(10)= A;

in(9) = a;

in(8) = roc/1000;

in(7) = h/1000;

in(6) = N;

in(5) = p;

in(4) = BR;

in(3) = roc/1000;

in(2) = rm/1000;

%[mm], radius to outer core

%[mm], radius to outer magnet face

%[mm], radius to inner core

%[mm], axial dimension of device

%[], number of magnetic pole pairs

%[T], Residual Flux density

%[], number of turns in the coil

%[], phase number

%[], total number of phases
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in(1) = ric/1000;

%similation vectors

whz = 30; %[Hz], oscilation frequency

w = 2*pi*30;

phiG = [5 10 151; %[deg], oscilation amplitude

C = pi/2/p;

t = linspace(0,4*pi/w,1000);

%%%%%%%%%%%%%%%%%%%%

%%% CALCULATIONS %%%

%%%%%%%%%%%%%%%%%%%%

emf = zeros(3,1000);

for i = 1:3

phi = phi0(i)*pi/180*sin(w*t);

dphi = phiO(i)*pi/180*w*cos(w*t);

emf(i,:) = inducedV(phi,dphi,in);

end

emfc = zeros(3,1000);

for i = 1:3

phi = phiO(i)*pi/180*sin(w*t)+C;

dphi = phiO(i)*pi/180*w*cos(w*t);

emfc(i,:) = inducedV(phi,dphi,in);

end

%%%%%%%%%%%%%%%%%%%%

%%% PLOT RESULTS %%%

%%%%%%%%%%%%%%%%%%%%

figure(1); clif;

set(gcf,'units','normalized',...
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'position',[0.05,0.25,0.9,0.51);

subplot(1,2,1);

plot(t,emf);

grid on;

set(gca,'fontsize',18);

title(texlabel(sprintf('Estimated induced voltage\n(phi = phiA sin(omega t))')),...

'fontsize',30);

xlabel('Time Es]','fontsize',26);

ylabel('Voltage [VI','fontsize',26);

xlim([0,4*pi/w]);

%ylim(0.3*[-1,11);

legend(texlabel(sprintf('phiA = %2.Of deg',phic(1))),...

texlabel(sprintf('phiA = %2.Of deg',phio(2))),...

texlabel(sprintf('phiA = %2.0f deg',phio(3))));

subplot(1,2,2);

plot(t,emfc);

grid on;

set(gca,'fontsize',18);

title(texlabel(sprintf('Estimated induced voltage\n(phi = phiA sin(omega t)+pi/2s)')

'fontsize',30);

xlabel('Time [s]','fontsize',26);

ylabel('Voltage [VI','fontsize',26);

xlim([0,4*pi/w]);

Xylim(0.3*[-1,11);

legend(texlabel(sprintf('phiA = %2.Of deg',phio(1))),...

texlabel(sprintf('phiA = %2.Of deg',phic(2))),...

texlabel(sprintf('phiA = %2.Of deg',phiO(3))));
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A.0.13 Symbolic Solution of Potential Constants

%This is a symbolic math script function used to solve for the scalar

%potential constants associated with the magnetic field.

XPREPARE WORKSPACE

clear all

clc

%INITIALIZE SYMOLIC SYMBOLS

syms n roc ric rm MO k real

XCREATE MATRICIES

A = [roc-n 0

O roc-n

0 0

0 0

rmn 0

O rm-n

rm-n 0

O rm-n

AND VECTOR

roc^(-n)

0

0

0

rm^(-n)

0

-rm^(-n)

0

0 0

roc^(-n) 0

0 ric-n

0 0

0 -rm-n

rm^(-n) 0

0 -rm-n

-rm^(-n) 0

0

0

0

ric-n

0

-rm n

0

-rm n

0 0;...

0 0;...

ric^(-n) 0;...

0 ric^(-n);...

-rm^(-n) 0;...

0 -rmO(-n);...

rm^(-n) 0;...

0 rm^(-n)];

B = [0;...

0; ...

0 ;...

0; ...

0; ...

0 ;...

-4*MO*rm/(pi*n*(2*k-1));...

01;
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XSOLVE THE EQUATIONS

x = inv(A)*B;

XDISPLAY THE RESULTS

pretty(x)

A.0.14 Numerical visualization of the convergence of the in-

finite series solutions

%The following script file is used to numerically visualize the number of

%terms required in the infinite series solutions of the B field

clear all

close all

clc

XINPUTS

BR = 1.29;

rm = 11.2e-3;

roc = 13.3e-3;

ric = 8.00e-3;

phi = 0;

p = 8;

%[T = kg/A-s^21, residual flux density

%[m], radius to outer magnet face

%[m], radius to outer core

%[m], radius to inner core

%[rad], relative rotation of rotor

%[1, number of pole pairs

XSIMULATION VARIABLES

theta = linspace(0,2*pi,1000);

Br = zeros(10,length(theta));

%[rad], angular coordinate

%[T], radial flux density
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XCALCULATIONS

beta = theta-phi; %[Erad], relative angular coordinate

Br(1,:) = ((rm/ric)^p-(ric/rm)^p)/((ric/roc)^p-(roc/ric)^p)*sin(p*beta);

for k = 2:10

nk = p*(2*k-1);

Br(k,:) = Br(k-1,:)+((rm/ric)^nk-...

(ric/rm)^nk)/((ric/roc)^nk-...

(roc/ric)^nk)/(2*k-1)*sin(nk*beta);

Brerr(k-1) = sqrt(mean(((Br(k,:)-Br(k-1,:))).^2));

end

Br = -4*BR*rm/pi/roc*Br;

XDISPLAY RESULTS

fsize = [14,16,201;

figure(1);clf;

set(gcf,'units','normalized',...

'position',[0.05,0.45,0.9,0.451);

subplot(1,2,1);

plot(theta,Br);

grid on;

set(gca,'fontsize',fsize(1));

title(texlabel('Radial flux density'),'fontsize',fsize(3));

xlabel(texlabel('theta'),'fontsize',fsize(2));

ylabel(texlabel('B-r'),'fontsize',fsize(2));

legend('k=1','k=2' ,'k=3', 'k=4', 'k=5' , 'k=6' ,'k=7','k=8','k=9','k=10');

subplot(1,2,2);
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plot(2:10,Brerr);

set(gca,'fontsize',fsize(1));

grid on;

title(texlabel('Relatve RMS error'),'fontsize',fsize(3));

xlabel(texlabel('Summation term (k)'),'fontsize',fsize(2));

ylabel(texlabel('RMS[B_{r-k}-B_{r_{k-1}]'),'fontsize',fsize(2));

A.0.15 Calculation and visualization of the vector flux den-

sity (3)

clear all

close all

clc

XINPUTS

BR = 1.29; Y[T = kg/A-s^2], residual flux density

rm = 11.2e-3; %[m], radius to outer magnet face

roc = 13.3e-3; %[m], radius to outer core

ric = 8.00e-3; %[lm], radius to inner core

phi = 0; Y[rad], relative rotation of rotor

p = 4; %[E], number of pole pairs

XSIMULATION VARIABLES

theta = linspace(0,2*pi,100); %Erad], angular coordinate

rmag = linspace(ric,rm,5); %[Em], radial coordinate in the magnet

rair = linspace(rm,roc,10); %[ml, radial coordinate in the air gap

[ERmag,Thetamag] = meshgrid(rmag,theta);
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Betamag = Thetamag-phi;

[Rair,Thetaair] = meshgrid(rair,theta);

Betaair = Thetaair-phi;

[m,n] = size(Rmag);

Bmag = zeros(m,n,2); X[T], radial flux density in magnet

[m,n,] = size(Rair);

Bair = zeros(m,n,2); X[T], radial flux density in air gap

XCALCULATIONS

for k = 1:4

nk = p*(2*k-1);

Bmag(:,:,1) = Bmag(:,:,1) +

1/(2*k-1)*((((rm/roc)^nk-(roc/rm)^nk)*...

((Rmag/ric).^nk+(ric./Rmag).^nk))/...

((ric/roc)^nk-(roc/ric)~nk)-2).*sin(nk*Betamag);

Bmag(:,:,2) = Bmag(:,:,2) + ...

1/(2*k-1)*((((rm/roc)^nk-(roc/rm)^nk) *...

((Rmag/ric).^nk-(ric./Rmag).^nk))/...

((ric/roc)^nk-(roc/ric)^nk)).*cos(nk*Betamag);

Bair(:,:,1) = Bair(:,:,1) + ...

1/(2*k-1)*((((rm/ric)^nk-(ric/rm)^nk)*...

((Rair/roc).^nk+(roc./Rair).^nk))/...

((ric/roc)^nk-(roc/ric)^nk)).*sin(nk*Betaair);

Bair(:,:,2) = Bair(:,:,2) + ...

1/(2*k-1)*((((rm/ric)^nk-(ric/rm)^nk)*...

((Rair/roc).^nk-(roc./Rair).^nk))/...

((ric/roc)^nk-(roc/ric)^nk)).*cos(nk*Betaair);

end

Bmag(:,:,1) = -2*BR*rm/pi./Rmag.*Bmag(:,:,1);
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Bmag(:,:,2) = -2*BR*rm/pi./Rmag.*Bmag(:,:,2);

Bair(:,:,1) = -2*BR*rm/pi./Rair.*Bair(:,:,1);

Bair(:,:,2) = -2*BR*rm/pi./Rair.*Bair(:,:,2);

XDISPLAY RESULTS

Xcreate reference circles for the visual simplicity

psi = linspace(0,2*pi,1000);

xcircic = ric*cos(psi)*1000;

ycircic = ric*sin(psi)*1000;

xcircm = rm*cos(psi)*1000;

ycircm = rm*sin(psi)*1000;

xcircoc = roc*cos(psi)*1000;

ycircoc = roc*sin(psi)*1000;

%plot the reference circles

fsize = [14,16,201;

figure(1) ;clf;

set(gcf,'units','normalized',...

'position',[0.01,0.35,0.98,0.551);

subplot(1,2,1)

plot(xcircic,ycircic,'k',...

xcircm,ycircm,'k',...

xcircoc,ycircoc,'k','linewidth',5);

grid on;

axis equal;

set(gca,'fontsize',fsize(1));

title(texlabel('Vector plot of the flux density'),'fontsize',fsize(3));

xlabel(texlabel('mm'),'fontsize',fsize(2));
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ylabel(texlabel('mm'),'fontsize',fsize(2));

hold on;

for i = 1:2*p

plot(Eric rml*1000*cos(i*pi/p),Eric rm]*1000*sin(i*pi/p),...

'k', 'linewidth',4);

end

%change the flux density calculation to cartesian coordinates for plotting

Xmag = Rmag.*cos(Thetamag)*1000;

Ymag = Rmag.*sin(Thetamag)*1000;

Umag = Bmag(:,:,1).*cos(Thetamag)-Bmag(:,:,2).*sin(Thetamag);

Vmag = Bmag(:,:,1).*sin(Thetamag)+Bmag(:,:,2).*cos(Thetamag);

Xair = Rair.*cos(Thetaair)*1000;

Yair = Rair.*sin(Thetaair)*1000;

Uair = Bair(:,,1) .*cos(Thetaair)-Bair(:,:,2).*sin(Thetaair);

Vair = Bair(:,:,1).*sin(Thetaair)+Bair(:,:,2).*cos(Thetaair);

%vector plot

quiver(Xmag,Ymag,Umag,Vmag,'b');

quiver(Xair,Yair,Uair,Vair,'b');

%plot zoom circle

plot(5*cos(psi)+10,5*sin(psi),'--r','linewidth',3);

XZOOMED IN PLOT

%recalculate for zoomed in area

theta = linspace(-pi/p,pi/p,25); %[rad], angular coordinate

rmag = linspace(ric,rm,7); %[ml, radial coordinate in the magnet

rair = linspace(rm,roc,5); %[m], radial coordinate in the air gap

[Rmag,Thetamag] = meshgrid(rmag,theta);
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Betamag = Thetamag-phi;

[Rair,Thetaair] = meshgrid(rair,theta);

Betaair = Thetaair-phi;

[m,n] = size(Rmag);

Bmag = zeros(m,n,2); %[T], radial flux density in magnet

[m,n,] = size(Rair);

Bair = zeros(m,n,2); %[TI, radial flux density in air gap

for k = 1:10

nk = p*(2*k-1);

Bmag(:,:,1) = Bmag(:,:,1) +

1/(2*k-1)*((((rm/roc)^nk-(roc/rm)^nk)*...

((Rmag/ric).^nk+(ric./Rmag).^nk))/...

((ric/roc)^nk-(roc/ric)^nk)-2).*sin(nk*Betamag);

Bmag(:,:,2) = Bmag(:,:,2) + ...

1/(2*k-1)*((((rm/roc)^nk-(roc/rm)^nk)*...

((Rmag/ric).^nk-(ric./Rmag).^nk))/...

((ric/roc)^nk-(roc/ric)^nk)).*cos(nk*Betanag);

Bair(:,:,1) = Bair(:,:,1) + ...

1/(2*k-1)*((((rm/ric)^nk-(ric/rm)^nk)* ...

((Rair/roc).^nk+(roc./Rair).^nk))/...

((ric/roc)^nk-(roc/ric)^nk)).*sin(nk*Betaair);

Bair(:,:,2) = Bair(:,:,2) + ...

1/(2*k-1)*((((rm/ric)^nk-(ric/rm)^nk)*...

((Rair/roc).^nk-(roc./Rair).^nk))/ ...

((ric/roc)^nk-(roc/ric)^nk)).*cos(nk*Betaair);

end

Bmag(:,:,1) = -2*BR*rm/pi./Rmag.*Bmag(:,:,1);

Bmag(:,:,2) = -2*BR*rm/pi./Rmag.*Bmag(:,:,2);

Bair(:,:,1) = -2*BR*rm/pi./Rair.*Bair(:,:,1);

176



Bair(:,:,2) = -2*BR*rm/pi./Rair.*Bair(:,:,2);

%create reference circles for the visual simplicity

psi = linspace(-1.5*pi/p,1.5*pi/p,1000);

xcircic = ric*cos(psi)*1000;

ycircic = ric*sin(psi)*1000;

xcircm = rm*cos(psi)*1000;

ycircm = rm*sin(psi)*1000;

xcircoc = roc*cos(psi)*1000;

ycircoc = roc*sin(psi)*1000;

subplot(1,2,2);

plot(xcircic,ycircic,'k',...

xcircm,ycircm,'k',...

xcircoc,ycircoc,'k','linewidth',5);

grid on;

axis equal;

set(gca,'fontsize',fsize(1));

title(sprintf(...

'Zoomed in vector plot of flux\ndensity for 1 magnet pair'),...

'fontsize',fsize(3));

xlabel(texlabel('mm'),'fontsize',fsize(2));

ylabel(texlabel('mm'),'fontsize',fsize(2));

hold on;

for i = 1:3

plot([ric rml*cos((i-2)*pi/p)*1000,[ric rml*sin((i-2)*pi/p)*1000,...

'k','linewidth',4);

end

%change the flux density calculation to cartesian coordinates for plotting
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Xmag = Rmag.*cos(Thetamag)*1000;

Ymag = Rmag.*sin(Thetamag)*1000;

Umag = Bmag(: ,: ,1) .*cos(Thetamag)-Bmag(:, :,2) .*sin(Thetamag);

Vmag = Bmag(: ,: ,1) .*sin(Thetamag)+Bmag(: , :,2) .*cos(Thetamag);

Xair = Rair.*cos(Thetaair)*1000;

Yair = Rair.*sin(Thetaair)*1000;

Uair = Bair(:,,1) .*cos(Thetaair)-Bair(:,:,2).*sin(Thetaair);

Vair = Bair(:,:,1).*sin(Thetaair)+Bair(:,:,2).*cos(Thetaair);

%vector plot

quiver(Xmag,Ymag,Umag,Vmag, 'b');

quiver(Xair,Yair,Uair,Vair,3,'b');

A.1 Matlab Data Reader Script

The following is a Matlab script that is used to read the provided data from the Excel

spreadsheets into the Matlab environment, and plot the raw data.

clear all

clc

XINPUT -- set plots to 1 to plot and any other number to not

plots = 0;

%Read-in, separate, and collate the data from the provided spreadsheets

data = xlsread('Timer 822_time domain.xls','a6:d2053');

time(:,1) = data(:,1);

yellow(:,1) = data(:,4);

green(:,1) = data(:,3);

red(:,1) = data(:,2);

data = xlsread('Timer 823_time domain.xls','a6:d2O53');
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time(:,2) = data(:,1);

yellow(:,2) = data(:,4);

green(:,2) = data(:,3);

red(:,2) = data(:,2);

data = xlsread('Timer 824_time domain.xls','a6:d2053');

time(:,3) = data(:,1);

yellow(:,3) = data(:,4);

green(:,3) = data(:,3);

red(:,3) = data(:,2);

data = xlsread('Timer 825_time domain.xls' ,'a6:d2O53');

time(:,4) = data(:,1);

yellow(:,4) = data(:,4);

green(:,4) = data(:,3);

red(:,4) = data(:,2);

data = xlsread('Timer 826_time domain.xls','a6:d2053');

time(:,5) = data(:,1);

yellow(:,5) = data(:,4);

green(:,5) = data(:,3);

red(:,5) = data(:,2);

if plots == 1

%Plot and save the data for visual reference

xmin = 0;

xmax = 2.05;

ymin = -5;

ymax = 5;
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figure(1); clf;

plot(time,yellow); xlim([xmin,xmax]); ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Yellow','fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [GI','fontsize',24);

saveas(gcf,'C:\Documentsand Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\yellowTime.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin

\WDPRepeater\Presentations\yellowTime.emf');

figure(2); clf;

plot(time,green); xlim([xmin,xmaxl); ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Green','fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [GI','fontsize',24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin

\WDPRepeater\Presentations\greenTime.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin

\WDPRepeater\Presentations\greenTime.emf');

figure(3); clf;

plot(time,red); xlim([xmin,xmaxl); ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Red', 'fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [GI','fontsize',24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin.
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\WDPRepeater\Presentations\redTime.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\redTime.emfl);

figure(4); clf;

subplot(1,3,1);

plot(timered); xlim([xminxmaxl); ylim([yminymaxl);

set(gcalfontsizel,20);

title('Redl,,Ifontsizel,30);

xlabel(ITime [slllfontsizel,24);

ylabel('Acceleration [G]','fontsize',24);

subplot(1,3,2);

plot(timegreen); xlim([xminxmaxl); ylim([yminymaxl);

set(gcalfontsizel,20);

title('Green',,Ifontsizel,30);

xlabel(ITime [slllfontsizel,24);

Ylabel( 'Acceleration EGIIIfontsizel,24);

subplot(1,3,3);

plot(timeyellow); xlim(Exminxmaxl); ylim(Eyminymaxl);

set(gcalfontsizel,20);

title('Yellowllfontsizel,30);

xlabel('Time [slllfontsizel,24);

ylabel('Acceleration [G]','fontsizel,24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\rawAccelerationData.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\rawAccelerationData.emfl);
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end
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A.2 Matlab Rotation Script

The following is a Matlab script that is used to rotate the previously read data from

the (green,yellow,red) coordinate system to the (r, 0, z) coordinate system.

%This script file rotates data provided by reader.m through a given

%angle theta to align the data with a more typical cylindrical coordinate

%system

XINPUT -- The script reader.m must be run first

XINPUT -- input the rotation angle

theta = -22*pi/180;

XINPUT -- set plots to 1 to plot and any other number to not

plots = 1;

%rotate the data to a more appropriate (r,theta) coordinate system

r = yellow*cos(theta)+green*sin(theta);

t = -yellow*sin(theta)+green*cos(theta);

z = red;

%Creates a continuous string of time data by colocating the 5 individual

%streams of data. The data is colocated visually by inspecting the begin

%and ending of each string and throwing away the first and/or last few

%points to eliminate jumps. This way the data appears smooth.

ts = zeros(10196,1);

ts(1:2040) = ts(1:2040)+t(2:2041,1);

ts(2041:4079) = ts(2041:4079)+t(6:2044,2);

ts(4080:6117) = ts(4080:6117)+t(8:2045,3);

ts(6118:8157) = ts(6118:8157)+t(2:2041,4);
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ts(8158:10196) = ts(8158:10196)+t(9:2047,5);

times = ((1:10196)-1)*0.001;

if plots == 1

%Plot and save the data for visual reference

xmin = 0;

xmax = 2.05;

ymin = -5;

ymax = 5;

figure(1); clif;

plot(time,r); xlim([xmin,xmax]);ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Radial','fontsize',30);

xlabel('Time Es]','fontsize',24);

ylabel('Acceleration [GI','fontsize',24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\radialTime.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\radialTime.emf');

figure(2); clf;

plot(time,t);xlim([xmin,xmax]);ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Tangential','fontsize',30);

xlabel('Time Es]','fontsize',24);

ylabel('Acceleration [GI','fontsize',24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\tangentialTime.eps');
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saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\tangentialTime.emf');

figure(3); cif;

plot(time,z); xlim([xmin,xmaxl);ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Axial', 'fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [G]','fontsize',24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\axialTime.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\axialTime.emf');

figure(4); cif;

subplot(1,3,1);

plot(time,r); xlim([xmin,xmaxl);ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Radial','fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [G]','fontsize',24);

subplot(1,3,2);

plot(time,t); xlim([xmin,xmax]);ylim([ymin,ymax]);

set(gca,'fontsize',20);

title('Tangential','fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [GI','fontsize',24);

subplot(1,3,3);
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plot(time,z); xlim([xmin,xmaxl);ylim([ymin,ymaxl);

set(gca,'fontsize',20);

title('Axial','fontsize',30);

xlabel('Time [s]','fontsize',24);

ylabel('Acceleration [G]','fontsize',24);

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\rawRotated.eps');

saveas(gcf,'C:\Documents and Settings\Zac\My Documents\Research\Shakeandspin...

\WDPRepeater\Presentations\rawRotated.emf');

end
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A.3 Matlab Fourier Transform Script

The following is a Matlab script that is used to calculate the Discrete Fourier Trans-

form of the previously rotated acceleration data.
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Appendix B

Test Setup

B.1 Actuator Torque Analysis

Actuator Torque
Ta

Rotary
Solenoid

Inertial Torque of
Base

TB

Reaction Torque
(from rotor)

TR

Base
Inertia

Figure B-1: Torque analysis of the test setup. The rotary solenoid provides an ac-
tuation torque that is resisted by the inertia of the coupling and harvester casing.
Additionally, the forces on the rotor inside the harvester apply a reaction torque to
the base.

The actuator torque can be found by summing the torques acting on the base of
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the device,

Ta = TB TR

= IZBd+IZ +

= (IzB+IzR)ih+IzR$

Where from an analysis of the rotor dynamics, in steady-state # can be written as,

(B.1)
(-r2) + L

Substituting this result into the actuator torque equation results in al expression for

the actuator torque as a function of the desired input acceleration.

Ta = (IZB + IZR) & + Iz( r .)
(1-r2) + r j

= z IzB R r -

(1R r2) + -Lj

2
Equivalent Inertia

From the perspective of the actuator, the test setup looks like an equivalent inertia

that must be accelerated by the desired amount d. The equivalent inertia consists of

two components, the first component is the fixed or rigid inertia of the system and

the second is the dynamic forces of the rotor.

Assume a harmonic acceleration input,

d= Acos (wt) = R[Aejwt]

In addition to analytic simplicity, a harmonic input is a good upper bound for the

actuator torque. The purely inertial component is only dependent on the acceleration

amplitude so a harmonic input of the same maximum amplitude of a random or

wide-band input. The rotor dynamics component is a maximum at resonance, so
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a harmonic input will require a larger torque than a random or wide-band input

that does not induce resonance. Since the components of the torques are at different

phases, is is possible that the torque required at by a random signal might require

more torque at an off resonance frequency than a harmonic input. However, the

harmonic input provides a reasonable upper bound. For the harmonic acceleration

input, the actuator torque becomes,

+ 2

Ta= R AIz,, ejwt + AIR 1 + ) 2 ej(wt+01)

(1-r2) 2 +

2

L 2

A IzB + IZ) (1-- r2 ) + IzRr] + (Iz + IZR) W ])2e

(1 - r2)
2 + )2

3

The first quantity is the amplitude of the torque caused by the rigid inertia of the test

set up. The second quantity is the amplitude of the torque caused by the dynamic

forces of the rotor, and the third quantity is the amplitude of the torque cause by both

simultaneously. Note because of the phase component, the total torque is not the sum

of the individual torques. The values of Iz, and I are calculated by ProEngineer

and listed in Tab. B.1. The acceleration amplitude is determined by assuming an

acceleration amplitude similar to that provided by the gyro data show in Fig. B-2.

Although the harmonic components are only 5 - 10 rad/s2, as mentioned previously

the inertial components are dependent only on the total amplitude of acceleration

which can be seen from the time plot to be approximately 100 rad/s2 . Since the goal

is to get a good upper bound, an amplitude of 100 rad/s2 is chosen.

Figure B-3 is a plot of the three torque components as a function of the frequency

ratio. When the harvester is at resonance the rotor torque dominates. To help reduce

the feed back of the harvester to the rotary solenoid the frequency invariant inertial
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Figure B-2: Plot of an example acceleration input. The data is measured with a
velocity gyro and numerically differentiated in Matlab to obtain the acceleration. The
data is collected over approximately 900s. The top plot is a small window of the
rotational acceleration & as a function of time. The bottom plot is a DFFT in Matlab
of the entire data run.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Frequency Ratio r

Figure B-3: Torque components
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torque should be at least an order of magnitude greater than the frequency dependent

rotor torque. To determine how much rigid inertia must be added to the base in order

to produce an order of magnitude more torque, start by defining the torque ratio x

as the ratio of inertial to rotor torques.

Iz, + Iadded

'ZR \1 + Q2

Where the rotor torque as been evaluated at the resonant frequency since this is the

critical point. Solving this for the added inertia results in,

'added xIz /1Q - Iz, = 3.86 X 10-3

The additional inertia is added in the from of an aluminum ring shown in Fig. B-4.

The inertia of the ring about the z-axis is,

Added inertial ring
(bolted to top face of

adapter)
d2=185mm

(7.3in)

d1=35.7mm
- (1 in)

Solenoid Adapter

h=12.7mm
(0.5 in)

Harvester

Figure B-4: Solid model of the test setup with the inertial ring.

Izadded = Irph 2
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The inner radius of the ring is fixed by the dimensions of the adapter, but the density,

thickness and outer radius can all be adjusted to get the needed inertia. A 12.7 mm

(0.5 in) thick aluminum ring of outer diameter 185 mm (5.6 in) will provide the

necessary inertia. Figure B-5 shows the smoothing effect the added inertia has on the

required torque input.

0.45 -

0.4-

0.35-

0.3-

0.25-

0.2-

0.15 -

0.1 -

0.05-

0
0.2 0.4 0.6 0.8 1 1.2 1.4

Frequency Ratio r
1.6 1.8

Figure B-5: Torque components with added inertia

B.2 Nomenclature
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Table B.1: Nomenclature

Variable Unit Value Description

'ZB kg mm 2  159 Mass moment of inertia of the base (coupling, inertial
ring, and harvester casing) about the longitudinal or z-
axis

ZR kg mm 2  13.4 Mass moment of inertia of the harvester rotor about the
longitudinal or z-axis

d rad/s2  Rotational acceleration of the base with respect to
ground

rad/s2  Rotational acceleration of the harvester rotor with re-
spect to the base

1Frequency ratio defined as the input acceleration fre-
quency divided by the natural frequency of the torsion
spring and rotor

Q 30 Quality factor of the torsional spring-rotor inertia-
damping system

Ta N m Actuator torque
TB N m Inertial resistance torque provided by the setup base
TR N m Dynamic rotor torque feed-back through the base as a

result of the rotor motion
A rad/s2  100 Harmonic amplitude of d
W Hz 5-50 Harmonic frequency of di
t s Time
Oi rad Phase angle of TR

02 rad Phase angle of Ta
x 10 Torque ratio TB/TR

h mm 12.7 Thickness of the inertial ring
di mm 35.7 Inner hole diameter of inertial ring
d2  mm 185 Outer diameter of inertial ring
p kg/m 3  2700 Density of inertial ring

added kg mmM2 3590 Inertia that must be added to require ar minimum torque
ratio of 10
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Appendix C

Additional Acceleration

Information

C.1 Raw Data

The raw data was recorded by the engineers at Schlumberger. As best as is understood

by the research group, the data was recorded as follows. The prototype repeater

housing was mounted to the drilling surface-sub, and the acceleration data in all three

axes was recorded using a SaverXware 3Xm 3-axis accelerometer. The accelerometer

was mounted in a prototype of the WPD Repeater housing as shown in figure C-

1. The acceleration data is then provided in an Excel spreadsheet file. (Reference

screen-shot shown in figure C-2) The spreadsheet provides a column of time data and

three columns of acceleration values (measured in G) for each of the accelerometer's

three channels. The data is recorded at a sampling frequency of 1000Hz for a total

of 2.05s. Five separate two second measurements are provided.

Matlab is used to plot the data in figure C-3. (Note: The data must first be read

into the Matlab environment, then plotted. The Matlab code used to do this is given

in appendix A.1). As can be seen, the average peak acceleration is visually on the

order of 1G for the red channel, 2G for the green channel, and 4G for the yellow

channel.

To have meaning, the directions of the accelerations must be related to the the
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Figure C-1: Cross-section of the WPD-repeater tool showing the location of the ac-
celerometer.

F11

1 6SaverXware Time Domain Export File
2 Generated From: C:\Documents and Settingsofbondar\DesktopWEH\CTF OCT2007 data\PostProcessing\CTF OCT2007 Test Shock Data SXd.SXe
3 Event: Timer 822
4 Active Channel Code: 7

Time (seec) G G
6 0 .E+00 -1 04E-01 1 .83E-02 -1 29E+00
7 1 00E-03 -6 10E-02 -2.62E-01 -8.48E-01
8 2 00E-03 -4.27E-02 -7.81 E-01 -2.03E+00
9 3.00E-03 5.oE-01 -2.81 E-01 -2.26E+W
10 4.00E-03 1.40E-01 -1.59E-01 1. 1E-01

5 00E-03 2.32E-01 -3. 11E-01 1 89E+00
12 6.00E-03 7.93E-02 -5.31E-01 9.09E-01
13 7.00E-03 3.66E-02 -8. 12E-01 -2.38E-01
14 8.00E-03 2.44E-02 7.39E-01 -9.83E-01
15 9 00E-03 3.42E-01 8 42E-01 -275E-01
16 1.00E-02 269E-01 -2.32E-01 9 16E-01

Figure C-2: Representative screen-shot of an example Excel spreadsheet file. The data
is provided in four columns: one column of time, and three columns of acceleration
corresponding to the three acceleration channels labeled by color.
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-51 2 -50 1 2 0 1 2
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Figure C-3: Plot of the measured acceleration as a function of time. Each of the plots
contains five separate traces corresponding to the five individual trials. Also note,
all of the plots are to the same scale so the relative magnitude of each acceleration
channel can be compared.

repeater housing. The directions are inferred from two resources: First, a plot of

the normalized power spectral density (PSD) provided with the acceleration data by

Schulumberger engineers where the relative directions of each channel are labeled on

the plot (figure C-4), and Second, a picture of the SaverXware accelerometer where

the channel directions are related to the physical dimension of the accelerometer

(figure C-5).
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Average PSD vs. Frequency for the drilling period

Figure C-4: Plot of the scaled Power Spectral Density (PSD) of the acceleration data
provided by Schlumberger engineers. The PSD is used to infer the directions of the
acceleration channels with respect to the surface sub.

Figure C-5: SaverXware accelerometer. Notice that the yellow channel is measured
Top to Bottom with respect to the accelerometer where positive is considered down-
ward, and the green and red channels are measured Front to Back and Left to Right
respectively. Also note that crossing the green coordinate into the yellow coordinate,
the red coordinate forms a right-handed coordinate system. (i.e. (green,yellow,red)
is right handed)
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As seen in figure C-4, the yellow direction is labeled as aligned with the radial

direction, the green direction is labeled as aligned with the tangential direction, and

the red direction is labeled as aligned with the axial direction. Since the actual sign of

the values does not effect the magnitude calculations, the yellow and green directions

can be assumed positive when compared to a typical cylindrical coordinate system,

(r, 0, z). Noticing in figure C-5 that the the (green,yellow,red) coordinate system is

right-handed, the red direction must then be positive into the page with respect to

the sub cross-section. The inferred coordinates are shown in figure C-6.

11 0)

Figure C-6: Cross-section of the WPD-repeater tool and accelerometer with the in-
ferred accelerometer coordinates, and imposed (x, y) coordinates shown. Note, the axes
of the accelerometer are not aligned with the standard cylindrical coordinate axes. The
accelerometer's axes are all assumed to pass through the center of the accelerometer
(assumption assumed valid based on figure C-5) then a line is drawn from the pipe
center through the center of the accelerometer, and the angle between the yellow axis
and the line is measured with a protractor.
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C.2 Rotation of raw data to standard cylindrical

coordinates

As can be seen in figure C-6 the axes for the accelerometers are not actually aligned

with typical cylindrical coordinates. To help standardize the analysis, the data is

transformed into typical (r, 0, z) coordinates. To transform the data, the origins of all

three accelerometer axes are assumed to be in the center of the accelerometer. This

assumption is assumed valid based on the given representation of the accelerometer

(figure C-5). Then, assuming the sub cross-section is drawn to scale, a reference line is

electronically drawn in power point from the marked pipe center through the center of

the accelerometer. The reference angle is then measured by hand with a protractor.

Under these assumptions, the reference angle from the yellow direction to the r

direction is measured as approximately 220. Thus, using the standard transformation

of coordinates formula,

' = x cos(#) + y sin(#) (C.1)

y = -x sin(#) + y cos(#) (C.2)

where in this case, X' is the radial coordinate r, x is the yellow coordinate, y' is the

tangential coordinate 0, y is the green coordinate, and the rotation angle # is the

negative of the reference angle -22'; the radial, tangential, and axial accelerations

are given by,

Ar =Ayeow( os(220 ) + Agreensin(220 ) (C.3)

Ao = -Ayeniowsin(-22 0 ) + Agreen cos(-22 0 ) (C.4)

Az = Ared (C.5)

The data is transformed and plotted using Matlab (appendix A.2), and the trains-

formed data is shown in figure C-7.

The visual average magnitude of acceleration is on the order of 3 - 4G for the ra-
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Figure C-7: Rotated accelerations. Each plot contains five trials and the plots are
scaled equally to allow easy comparison of magnitudes
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dial component, 2.5G for the tangential component, and 1G for the axial component.

Ideally, the the tangential acceleration would be the largest component of accelera-

tion since the existing prototype device is designed to harvest primarily tangential

accelerations. However, a fourier transform of data is needed to compare the two

components on a frequency basis.
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