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Abstract

The propagation of surface waves over a flat muddy seabed are studied. Mud is first

considered as a Newtonian fluid. W\ater and mud equations are derived in order to

obtain governing equation for surface and interface waves. By the nethod of multiple

scales. nonlinear evolution equations are derived for the harmonic amplitudes. These

equations are numerically solved for a finite number of harmonics to show the behavior

of surface and interface motions. A drift current in mud is found at the second order.,
meaning that surface waves induce mud motion. Equation governing the total wave

energy variation is derived and used to verify the accuracy of numerical solutions.

The model is extended to viscoelastic mud, using the results of four experiments

carried on different types of muds. These muds range from very elastic to rather

viscous, allowing us to compare hie differences in behavior. Surface and interface

variations. mud drift current and energy variations are plotted and compared to the

results with Newtonian muds.
A sloping muddy seabed is theni considered. Mud is modeled as viscoclastic to

avoid a constant static current thatt would happen with Newtonian mud. By the

method of multiple scales and by introducing a space-dependent wavenuniber, mud
drift current and energy variation e(iations are derived again, taking into account

the effect of the slope. An analytic stud v of the surface variations demonstrates that

surface and interface waves, as well as drift current, exponentially decay to reach a

zero value at the shore.

Thesis Supervisor: Chiang C. Mei
Title: Ford Professor of Engineering Emeritus
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Chapter 1

Introduction

1.1 Background and motivation

It is well known that fluid mud at the bottom of the oceans contribute, sometimes

considerably, to waves attenuation. MVoreover. its motion modifies the seabed, affects

the wave climate and shapes the coastline in the long run. This is why the problem

of wave-mud interaction has attract some attention in the last few decades.

The rheological properties of fluid mud is highly complex, depending on geological

origins, inieral composition and salinity in seawater. Various models have been used

in past theories.

Dalrymple and Liu used a simple Newtonian model in their linearized theory of

infinitesimal waves ([7]) which predicts the damping mechanism for a wide range wave

depth and mud depths. Sakakiyaia and Bijker also used this model ([19]) to examine

the mass transport phenomena in tHie mud layer. More recently, the Newtonian model

was also used by Liu and Chan in 2006 ([14]) for weakly nonlinear long waves over a

thin mud layer in a shallow sea, all for a horizontal seabed.

In steady motion mud is known to behave as a plastic material. In 1993, Jiang and

Leblond([13]) used the Bingham-plastic stress/strain relation to numerically model

inudslides and generated waves. T'his model has also been used by Mei & Liu in 1987

([4]) to study the slow motion of nmnd slide on mountain slopes, and the damping of

long waves. This particular case was extended by Liu and Chan in 2006 and 2008

([14] and [5]), who considered both periodic waves and solitary waves. again over

a horizontal seabed. Extension to the Herschel-Bulkel model was made in 1998 by

Huang and Garcia ([9]) to determinie a mud flow down a slope. Mainly for modeling

a seabed dominated by a mixture of mumd and sand, the poro-elastic ([20]) and the



visco-elastic-plastic models have also be applied ([18], [171. [1]).

More recent experiments have shown however that under oscillatory waves fluid

mud is better modeled as a viscoelastic material. The simplest model with just

two parameters were used by MacPherson ([3], and [2]). However experiments by

Jiang and Mehta ([11]) and Huang and Huhe ([10]) using field samples, shows that

the constitutive coefficients of these simple models depends on oscillation frequency.

hence they are not really material properties but are properties of the motion itself.

In 2009. Mci and al. ([15]) proposed that real mud under dynamical conditions must

be described by the generalized model of visco-elasticity. In particular the relation

between stress and strain is a high-order differential equation with coefficient that

depends only on mineral composition but not on frequency. The generalized model

was used by Mei et al to predict short and long waves damping over a muddy seabed.

In 1998, Weii & Liu ([21])have given an overview of fluid-mud models and the

ranges of their applicability based on soil properties.

Bottom mud effects become more important near the shore, when water depth

is considered to be shallow. In this case, the wave system is better described by

Boussincsq-type wave equations (e.g. [16]).

1.2 Thesis outline

The first part of this thesis focuses on a simplified case (chapter 2). We study surface

waves over a flat muddy seabed, and the mud is modeled as a Newtonian fluid. We

first consider that non-linearity is stronger than dispersion. in order to show the effect

of non-linearity without dispersion at the first order. We then derive water equations

by expanding the potential in power series as done in [6]. chapter 12. Kinematic

and dynamic boundary conditions are used to obtain differential equations for the

surface and interface. We then derive mud equations. such as momentum. continuity

and boundary condition. Mud and water results are written at the first and second

order for the harmonic amplitudes, by the method of multiple scales. Finally, results

are combined in order to obtain a governing differential equation for the surface and

interface at the first order. At the second order, a drift, current is calculated in mud,

meaning that surface waves induce mud horizontal motion. Finally. an equation

governing the total wave energy variation is derived.

The system for an infinite number of harmonics is truncated to a finite number

n of harmonics so that it can be solved numerically. Results are plotted for different



values of non-linearity and dispersion, in order to compare the effects of this param-

eters. Different mud layer depths are also compared. The analytic expression for the

evolution of the wave energy is then used to verify the numerical simulations run for

10 harmonics.

The model is then expanded to viscoelastic muds (chapter 3). We make use of

experimental results from Jiang & Mehta ([11]), Huhe & Huang ([10]. [12]). and from

Professor Dalrymnlpe and PhD candidate Khatoon Melick from the department of

civil engineering of Johns Hopkins University. The characteristics of those four muds

are studied and the complex viscosity is plotted. Some of these muds are more elastic

than the others, allowing us to study a panel of different behaviors. The harmonic

amplitudes, mud drift current and energy variation are derived in this new setting.

The attenuation rate is analytically found and its dependency on the water depth.

wavelength, mud depth and harmonic number is studied. As before, the system for

infinite number of harmonics is truncated to 10 harmonics in order to numerically

solve the equations. The results are plotted and compared between the different types

of muds and the Newtonian case from chapter 2.

The same process is then followed in a case where dispersion is comparable to non-

linearity - corresponding to Boussinesq class (chapter 4). The governing equations are

again derived at the first order, which is now the order at which both dispersion and

non-linearity come into play. Drift current is not studied because appearing at a low

order and thus negligible compared to other motions. Governing equations are found

for surface and interface harmonics. A new term in the differential equation - due to

dispersion - is highlighted. The system is truncated and the results are plotted for

a finite number of harmonics. The analytic expression for the evolution of the wave

energy is again used to verify the the numerical simulations run for 10 harmonics.

The model is then extended to viscoelastic mud again (chapter 5), and the differences

are once again compared.

The model is then extended from a flat to a sloping muddy seabed (chapter 6).

We first study the case where non-linearity is stronger than dispersion. The case of a

Newtonian mud is not studied. because pure real viscosity would involve a constant

flow down the slope even in the static case that would invalidate our hypotheses.

Thus. the calculations are directly carried for viscoelastic mud. The equations are

once again derived. An analytic study of the surface harmonics at the shore, where

the water depth is close to zero, show that surface and interface harmonics, as well as

mud drift current. exponentially decay to zero. The equations are again truncated,

and the results plotted and compared to the flat seabed case.



Finally, the same sloping viscoelastic muddy seabed is considered in a case where

dispersion is comparable to non-linearity (chapter 7). The surface and interface equa-

tions are once again derived in this case. The results are plotted and compared to

other chapters.



Chapter

Horizontal bottom, shallow

Newtonian mud

2.1 Introduction

In this chapter, we focus on the case of a thini layer of mud on a horizontal seabed,

as shown in figure 2-1.

2.1.1 Dimensional equations in water

In this thesis, all dimensional quaitities will be written with primes '.

The water is supposed to be ideal and irrot ational, so we introduce the potential /'

such as the velocity in water is b,' = V'. We define the x'-axis to be the propagation

direction and z'-axis vertical, such that ' 0 at the mean free surface. We call ('

the free surface and r' the interface between mud and water. (as shown on figure

2-1). We denote by h the water depth, and as a consequence the interface between

mud and water corresponds to z'

Laplace equation:

a2  a2 a2q
+ 0,

OxI2 Oz/ 2

-h - i'. The potential is thus governed by the

f or - h + r+'(x, t) < z' < ('(x, t) (2.1.1.1)

The potential #' obeys the kinematic and dynamic boundary conditions at the free

surface:
(' ax' OX/

at 8ax' ax'
(2.1.1.2)-, z' = (( 't)
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Figure 2-1: Definition sketch. d is the mud layer depth measured vertically.

+ g(' +

at' 2 [( #')
2 +(0, 21+ =~2 0,Jz - ('(x', t') (2.1.1.3)

and it also obeys the kinematic boundary condition at the interface:

dry' d z' t'
at'= + x & ' = -Ih + r'(x'. t') (2.1.1.4)

From Bernoulli equation, we also deduce the total pressure p' in water (sum of the

static and the dynamic pressures. respectively p' and p') as a function of the potential:

p -Pw
8 t'

1
2

( & ' 2
ax'

+ gz ) (2.1.1.5)

2.1.2 Dimensional equations in mud

In the mud, we use a different vertical axis measured from the rigid bed such that

Z z'-h-d. This way we get Z' = 0 at the bottom of the mud layer and Z' = d+q'

at the interface. The motion in the mud layer obeys the Navier-Stokes equation for an

incompressible fluid. We write U' and V' respectively the horizontal and the vertical

component of the mud velocity. P' the mid pressure and T is the viscoelastic stress

tensor. The momentum conservation equation projected on the horizontal axis is:

PALBU' ( t DTXI XOr'" )

dU' dU'+ U' + V'-
dx' / Z' ) OP' '- O- , + z +

OZ' (Z Oz
(2.1.2.1)



w' (rad/s) [T(s)]
K k h 1/3 [18] 1/2 [12] 1 [6]

1 in 0.106 0.159 0.31

2 rn 0.15 0.225 0.45
5 m 0.238 0.357 0.71
5 m 0.33 0.5 1

Table 2.1: Values of K for different w and water depths h

and on the vertical axis:

(V' UV' 5V' V OP' Or'I OT' z
PM +U' + V' - -+ z _ ) (2.1.2.2)

( t' ax' 89Z' OZ' (Z O 8 x'

The mud motion also obeys the conservation equation:

+ = 0 (2.1.2.3)

The kinematic boundary condition at the interface between imud and water also im-

plics:
=qI V' -01 U', Z = d + ( 2.1.2.4)

2.2 Scaling

We only consider long waves with small amplitude on the free surface. With k the

typical wavenumber and A the typical surface wave amplitude, let us define the

following ratios:
- A

kh. E -(2.2.0.5)

where K and E respectively represent dispersion and iion-linearity parameters.

Table 2.1 gives some sample values of K in the w' and h-ranges that we consider:

1/3 < ' < 1 and lim < h < 10mi. From this table, we deduce that K can vary

between 0.1 and 1. However, as the aim of this study is to focus on long waves, we

will always choose values of h and w' such as K is sialler than 0.4. Thus, the -range

that we will consider in this thesis is: 0.1 < K < 0.4.

Table 2.2 gives values of E with respect to the water depth h and the wave aipli-

tude A. We deduce from this table the following range for E: 0.01 < E < 0.6. Since we

only aim at studying small non-linearity, we will always choose values of d and h such



A A (cm)
h 10 20 40 60

1 m 0.1 0.2 0.4 0.6
h 2 i 0.05 0.1 0.2 0.3

5 m 0.02 0.04 0.08 0.12
10 m 0.01 0.02 0.04 0.06

Table 2.2: Values of c for different A and water depths h

as c < 0.4. Thus. the c-range that we will consider in this thesis is: 0.01 < E < 0.4.

We deduced from tables 2.1 and 2.2 the ranges we want to consider for K and 6:

0.1 < K < 0.4 and 0.01 < c < 0.4. As a consequence, there are two cases to take into

account:

e The cases where c = 0(-z), that is to say where non-linearity is more important

than dispersion

* The cases where e = O(K2), i.e., dispersion is comparable to nonlinearity

(Boussinesq class).

Chapters 4 and 5 are devoted to the case C = O( 2).

In this chapter and the following., we limit our study to the case c = 0(h):

0(K) - 0(E) (2.2.0.6)

We also assume the mud layer thickness d to be very small compared to the water

depth h. We choose the ratio hd to be between the values 0.05 and 0.2, and thus to

be of order K:

d
Kd - d (r)h (h (2.2.0.7)

2.2.1 Non-dimensional variables in water

Based on the basic equations derived in section 2.1, we decide to introduce the fol-

lowing dimensionless variables in water:

h

U gh

6- =o' [A .qh )1/2]11

t - k(gh) 1 / 2 t/
K I

V gh

x x

P pWgA (2.2.1.1)



2.2.2 Estimation of 0

Let us deduce from the previous statements how large the ratio between the surface

and the interface variations can be. For that, let us use the governing equation in

water and in mud.

In water, the mass conservation principle for long waves becomes at the leading

order: au' av' -o
ax' Oz' (2.2.2.1)

0('-
at'

Using the non-dimensional variables we just defined, we find:

O(v') = KO(u')

= k hO((') 
(2.2.2.2)

In mud, we logically adopt the following non-dimensional variables:

x = kx' Z= t = k(gh)1/2t' (2.2.2.3)

As a consequence. the kinematic boundary condition at the interface at the leading

order
=r V' 

(2.2.2.4)at'
gives in non-dimensional variables:

k ghO(q) = O(V') (2.2.2.5)

Still in mud, mass conservation gives:

aU' aV'
ax' + az' = 0 (2.2.2.6)

From this equation we deduce a relationship betweenl O(U') and O(V'):

O(V') = kdO( T')

-d
=-khO(U')

h (2.2.2.7)d
= - K'O(U')

h



Combining equations 2.2.2.5 and 2.2.2.7, we have the relationship:

k gI0(r/')
d
=KO(U')h

(2.2.2.8)

and everything we need is a relation between u' and U'. From the horizontal niomen-

tun equation we find:
DUl'
Ot

Since the mud layer is thin.,

and

It follows that:

which means:

1 DP' 02U'

pM Dx' DZ'2

DP'

OR' Dp' _('

-- / - Pwg -VV O/Dx' Dx' 8'

k gU' = O(gk(')

U' = 0 ( (' (

Combining this result with equation 2.2.2.2. we find:

0(U') = O(u')

We conclude by combining equations 2.2.2.2, 2.2.2.8 and 2.2.2.14 and we obtain:

-() 0') (2.2.2.15)
h

that is to say:

(2.2.2.16)

2.2.3 Non-dimensional variables in mud

From the relation 2.2.2.16, we introduce the dimensionless variables in mud:

Z = L' t = k(gh)1/ 2t'

E gh ~j V-d gh

UV k V1

F d ___d

gh (II gh

(2.2.2.9)

(2.2.2.10)

(2.2.2.11)

(2.2.2.12)

(2.2.2.13)

(2.2.2.14)

x -x

P p/

Tj=pjvgA

(2.2.3.1)

O = Kd = O(K)



where t' and V' are respectively the horizontal and the vertical displacements, U'

and V' are respectively the horizontal and the vertical velocity and E. the rate of

strain tensor. T' is the total stress tensor. such as T' = -P'6ij + r'gy. p is the mud

viscosity.

2.3 Equations in water to order O(r 2)

In this section. we shall derive the approximate equations to high order because this

may be useful for later studies. However, we will only make use of the first and

the second order (0(1) and O(K)) in the rest of this thesis. These orders will be

highlighted at the end of the calculations for clarity.

Let us express the velocity potential in the water as a power series:

We then obtain

and:

(2.3.0.2)#(x. Z t) + (n)(X. t)
nIo

_2 (z + 1)" 020(n)

Ox2 n! Ox 2 (x*t)n o

c +1)"
$z ni ((n+2) (X, t)

n o

(2.3.0.3)

(2.3.0.4)

2.3.1 Laplace equation

From the Laplace equation in dimensionless variables, we know:

2 u Y + "
ax2 0z2

= 0

and from 2.3.0.3 and 2.3.0.4 we deduce:

Vn, (n) 02 (n-2)
_V-x2

(2.3.1.1)

(2.3.1.2)

From the kinematic boundary conditions at the interface 2.1.1.4, we know that:

zKdK = + ehdK , X = -1 + eKdT(X.t) (2.3.1.3)
at Oxax



We use a Taylor series expansion of this equation to obtain:

Oz + (Kdengzz + (6Kd 2
1 zz + EN2d 2 5

x x ft

As a consequence, fromn the series of equation 2.3.0.2 we obtain:

,+ eIr&(2) + (esd) 2 , 2 0(3) 2

ax ax

z =-1 (2.3.1.4)

2 )+ (r, )at

From the result of equation 2.3.1.2, we can express 6(2) in terms of #(0):

2 #(0)
0(2) 

_ - 2 2 (0

and #(3) in termis of (I):

and () from equation 2.3.1.5:

(2.3.1.5)

(2.3.1.6)

(2.3.1.7)ax2

at

Then equation 2.3.1.2 allows us to deduce 0(3) as:

6(3) 2r2 a2
Ox2

a (92 2 O;
= -K2 -e K

= O(K5)

+ 'Ed2 + O(K )

and 60):

0(4) -
2

04#(0)
=_8 + O(K5)ax4

We also deduce:

Vn > 4, #(n) = O(K5)

As a consequence, we can truncate the series 2.3.0.2:

(0) + (z + ) + (z + 1)2 (2) +9+~Z+}y2!
(Z + 1)4 6(4) + O(K )4!

Esad2 ax Ox+ O( 5) (2.3.1.8)

(2.3.1.9)

(2.3.1.10)

(2.3.1.11)

(2.3.1.12)



and combining equations 2.3.1.5, 2.3.1.6, 2.3.1.9 and 2.3.1.10 in equation 2.3.1.12, we

obtain the highly useful representation of # to order O( 5 ):

=0) + t ad1 I2(z + 1) O {(x)+I r (o 2 (z + 1)2 020(0)
2! Dx2

4(z + 1)40 40(0) ( 5)
4! Dx 4

2.3.2 Depth-averaged law of mass conservation

The kinematic boundary condition at the surface can be written as:

K2 (t + D = Oz,Ox Ox z = EC

Since from the equation 2.3.1.13,

070(D) - (z±
Ox _I

20(0) 4(z + 1)30 4 0(0)
1) +K

Ox2 6 Dx 4

(2.3.2.2)

we obtain:

+ cT (8(0))
2 0(0)

- 1+ ((C) g 2 +

s2 D4q$~0 )

K t 4 +

Let us now introduce the horizontal velocity at the bottom u(() = so that

+ Cu O =-a[
Ix 9t

+ C a ]Ox
Du0) K2 D3u(o)

-(1+ C() + X3
Ox 68x

+ O(K 3) (2.3.2.4)

Let the depth-averaged velocity be U. which is related to uo by the following relation:

H 8+chd41 Ox

1

H

=u(O

(1) 
- K

K 2 (1+ C()3

2(z 1)2 2u (0 )

2 Dx2 + O(K3)) dz

02 U

6 1 + C( - CedA Dx 2

K~2 D2 U

(2.3.1.13)

+
Ox

(2.3.2.1)

Khd[ By O

(2.3.2.3)

(i-nU= -- + CO )
6 Ox2

(2.3.2.5)

+ O K3



Turning this last result around, we obtain the relation:

K2 @2 u
S- -+ + O(K 3 )

6 Ox2 (2.3.2.6)

Using this relationship, we obtain the equation 2.3.2.4 with respect to a instead of

B Or ± (Kd n) an K2 B03U a

Ox Atx3 x

K2 a3

6 Ox3

and so:

B7 8A -(u
(t - Kd + + 6_ +

at Ax Ox
(xn)

-K x
62 3
K x3

K2 3

6 8x3 + O(K3)

(2.3.2.8)

From equation 2.3.2.8, we finally obtain the simplified form of the kinematic boundary

condition:

(t - Kda/t + a [(1 + E( - KdEe7)U] = 0(K 3 )Ox
(2.3.2.9)

Note the effect of the interface displacement.

Even though we carried the calculations up to order 0(K 3). we will only use the

orders 0(1) and 0(K) later on in this thesis:

a
(t - ca7lt + + [(1 + O(K 2 )

Ox'

2.3.3 Depth-averaged horizontal momentum

From the dynamic boundary condition at the surface we know:

1
2(gt + () + - 2e2 + (Q] = 0. z = e((x, t)

2

From the expansion of # of the equation 2.3.1.13, we deducc:

0(0)- 2 t + A+x
2 Ox2

00(0) 2
Ox

0(K3)

(2.3.2.10)

(2.3.3.1)

(2.3.3.2)

which can be written:

(2.3.2.71)

o(0)
Ox)

K2 A34(0)3
+ 0(K 3 )

2 Ax2At
(2.3.3.3)0#(o)



We now introduce the horizontal velocity at the bottom u(0) - :o_
ax

Ou( 0) 0( (0) &Ut ) h 2 a3U(U0)
+ + EU ax + (K3)

8t Ox Ox 2 Ox28at
(2.3.3.4)

As was done for the kinematic boundary condition, we write this equation in terms of

the depth-averaged velocity u, using the relation between u(0) and U given by equation

2.3.2.6:

+ - 7  + ax+ a-
8t 6 8x7281 OX Ox

= - + O(K3)2 x20t

This last equation can be finally reduced to the simplified form of the dynamic bound-

ary condition at the sea surface:

86 n 0( 62 03-
+ i+- -- + 0(/3)at Ox ax 3 ax2at (2.3.3.6)

This equation is the same as that for a rigid seabed.

Even though we carried the calculations up to order 0(h 3 ). we will only use the

orders 0(1) and 0(K) later on in this thesis:

(2.3.3.7)+ Cu- + = O(h 2 )
0t Ox 8x

2.3.4 Equation of the total pressure in water

From the Bernoulli equation, we can deduce the total pressure (sum of the static and

the dynamic pressure) in the vater as a function of the potential:

P P' + Pd

S-Pw
1

+ 2
2

(2.3.4.1)
+ gz')

In dimensionless form, this last equation becomes:

P 2 2
1

(2.3.4.2)
z

In particular, we can easily deduce the pressure at the interface between mud and

water:

1
p -

- dq, Z = -1 + ed(x, t)

(2.3.3.5)

c O
2

(2.3.4.3)( )2 + I (#2) 2
K2



This equation will be needed to get the mud pressure P in the horizontal momentum

equation for niud. Please remember the final objective is to get 2 on the interface

in terms of ( and r/.

2.4 Equations in mud to order O()

2.4.1 Kinematic boundary condition at the interface in mud

In dimensional form, we know that:

r/ = V' - ' U', Z = 1 + eT (2.4.1.1)

So in dimensionless form:

Tt = V -E Tx U, Z = 1 + Cr (2.4.1.2)

2.4.2 Conservation of mass in the mud

In dimensional form, we know from conservation of mass:

u'+ v 0 (2.4.2.1)
ax' OZ'

in the entire laver of mud.

This equat ion becomes in dimensionless form:

U, + V7  0 , 0 < Z < 1 + ) (2.4.2.2)

This will be used later to deduce vertical velocity from horizontal velocity in mud.

Let us note that this equation is exact. contrary to most other mud equations.

2.4.3 Horizontal momentum in mud

Let us first write the Newtonian relation between the stress r' and the strain E' in a

dimensional form.

Exz = tz (2.4.3.1)

Witi tie scaling we chose, we obtain that:

TXZ = 'r (2.4.3.2)
at



Introducing the horizontal velocity in mud, equation 2.4.3.2 becoles:

BU
Tf = + O(n t

The equation of momentum inl mud, projected onl the x-axis, gives:

U U U
at ( x

DU)
+zV

OP A (OTxz
-- + R8x Re *d dZ + ud Tx

Ox

where -' is the ratio of densities:

and Re is the Reynolds number defined as:

Re = piAdk v'gh
p

From this equation we simplify:

OU 1 ATxzX

dt Re d OZ

OP BU
-7 +E U

dx 8x

where U is the horizontal velocity of Imud. P the pressure. A the amplitude of the

free surface and d the mud depth.

Let us evaluate the order of the Reynolds number. We can first rewrite it as a

function of C, K, Kcd, h and the type of mud:

Re = h 7 6,Kd (2.4.3.8)

Indeed. p1 . and y depend on the type of mud we consider.

It will be shown in the last section of this chapter that the range of Reynolds

number is no greater than 0(1). Because we want our study to be applicable to any

type of mud, we decide to adopt the limiting case in this thesis. As a consequence.

the Reynolds number will be regarded as:

Re = 0(1)

(2.4.3.3)

(2.4.3.4)

(2.4.3.5)

(2.4.3.6)

+ O(2) (2.4.3.7)Bz1U)

(2.4.3.9)



Differentiating equation 2.4.3.3 with respect to Z. we get:

DT7z

Oz Z2U

Equation 2.4.3.7 can be rewritten:

87xZ
az

=qd ~OU-Re A at
aP

+ 7ax
ax

aUUa + V O)O8Z (2.4.3.11)

By combining equation 2.4.3.10 and 2.4.3.11 we obtain an equation between the hor-

izontal velocity and the pressure gradient:

a2U d ~aU
= Re daZ 2 A &t

± a
Ox

aU
Ox+ V O + O(K2)

O8Z
0 < Z < 1+eT (2.4.3.12)

Let us now find an equation of the mud pressure P as a function of ( and q in

order to eliminate the mud pressure from equation 2.4.3.12.

2.4.4 Vertical momentum in mud

The dimensional equation of vertical monientum is:

PV'
pux a/

aV'+ U/ax' az' + OzIz
(0Z'/

aT'xz
+ x' (2.4.4.1)

and becomes. in dimensionless variables:

av U av
at + ax +V)OZ

OP e OTzz(
2 +

I~hdOZ Re2 K2 OZ
aTxz

+ K~d aTx

So, in the cud,
aP- = O(en)
az 0 < Z < I + eq

In other words, we find that the vertical pressure gradient in mud is of order O(,2).

This equation will be used to evaluate the pressure in the entire mud layer.

(2.4.3.10)

(2.4.4.2)

(2.4.4.3)

V' +V'



2.4.5 Dynamic boundary condition at the interface

Let us call n = (n. nz) the vector normal to the interface. In dimensional notations,

we know that the components of n are:

,nx =OTx

1 - (a) (2.4.5.1)
1

niz -= _____

In dimensionless variables, we obtain:

1 +n1X = CKKda

1 ,(2.4.5.2)
nz =

1 + E2KC 2 (02

Finally, nx and nz can be approximated as:

lx EIcd Ox + 0(E K Kd)(2.4.5.3)

nz 1 + O(c 2h 2I

Continuity of total (hydrodynamic and dynamic) stress on the mud-water interface

then requires:

Txxnx + Txznz = -pn. Z = 1 + c7

Txznx + Tzznz = -puz, Z = 1 + Ce

Total stress in rmud is the sum of hydrostatic and dynamic pressure:

T, = -Poij + Ki.
, Re

Introducing this sun in equation 2.4.5.4, we obtain:

(2.4.5.4)

(2.4.5.5)

CK
n + -Txznz

Re
E K

+ -RTzZ nz = -Pnz

-pnx. Z =1 + E
(2.4.5.6)

Z = 1 + en7

(K
+ -TR

Re x(-P
CK

ReTznx



From the approximations of n, and nz that we demonstrated in 2.4.5.3, equations

2.4.5.6 become:

-P + C Tex)X
-yRe Ox

TxZCKKd + -+ P +
-Re Ox

+- Txz
yRe

TZZ z
7Re

=-pEKKd + O~2 2 )
Ox + O(CrYir)

-p + O(C 2K2K)., Z = 1+ Cr7

These last equations can easily be simplified to:

6K Dr
RTXZ = (P - P)6hda + O(62 K 2Kd),
YRe Ox

Z= 1+ Cen
(2.4.5.8)

P - p = O(h), Z = 1+ r/

Dividing the first equation of 2.4.5.8 by 'g, these equations become:

Txz = - Rehd(P - p) + O(Ced),
Ox (2.4.5.9)

P - p = O(es), Z = 1+ Cr

Let us now make use of the second equation (corresponding to normal stress condition)

to simplify the first one (corresponding to tangential stress condition). Since P - p

O(e,), we obtain:

(2.4.5.10)

We now focus on the first part of equation 2.4.5.10. Through a Taylor expansion, we

can approximate this equations around Z = 1:

Tz(Z= 1+ er) = Tz(Z = 1) + #0( z +O(62)OZZ1
(2.4.5.11)

and as a consequence:

Tz(Z = 1) = Txz(Z = 1 + Er) - erI K1 + 0(E2)
(2.4.5.12)

- -6 r7j K-XZI = + 0(62)

(2.4.5.7)

Trz = O(Cesd) = O(KQ). Z = 1 + Er

P - p = 0(cEK)= O(2), Z = 1 + CT

Z = 1 + Er/



We finally obtain a boundary condition at the interface in term of the horizontal

velocity U:

OU 0 2 U
0Z 1z=1 a8Z 2 z 0(e 2) (2.4.5.13)

This boundary condition will later be used to determine the drift in mud.

Let us now focus on the second part of equation 2.4.5.10. From 2.4.4.3, we know

that the vertical gradient of mud pressure is of order O(h 2). As a consequence, we

have:

P = p(Z= 1 + e) + O(K2), (2.4.5.14)

Differentiating this last equation. we know that:

-- = -(Z = 1 + IE) + 0(K 2 ),
Ox Ox

0 < Z < 1 + CeI

Water pressure p is known in any point of the water layer thanks to the Bernouilli

equation 2.3.4.3. In particular, we know the water pressure at the interface (z =

-1 + edAl):

P = (#(0))t - hdT/ + O(K2) (2.4.5.16)

By differentiating this equation, we obtain:

Op 026(0)
Ox axat

ByI C a 00(0) )2

- 2d O ( OOx 2xY Ox]
+ O(2). - = -1 + Ehdan

From equation 2.3.3.3, we also know:

06(0) _00_()2

at 2 Ox
-( + O(K2 )

which is valid for all z since #(0) and ( do not depend on the vertical coordinate.

Combining equations 2.4.5.17 and 2.4.5.18, we get the water pressure gradient at the

interface:

- 0(- K + O( 2 ).Ox 0x Ox
-1 + CdAT (2.4.5.19)

Combining equation 2.4.5.19 with 2.4.5.15. we finally obtain the mud pressure hori-

zontal gradient in the entire mud layer:

OP OC 017O- =0 - d- + O(h 2 ),
Ox Ox Ox

0 < Z < 1 + .52

(2.4.5.15)

(2.4.5.17)

(2.4.5.18)

2 8

(2.4.5.20)



As a consequence, we can now substitute the mud pressure P from the horizontal

momentum equation 2.4.3.12, for 0 < Z < 1+ e :

82 Re + 7 -( [ + E (U + V + O(2)Z2 A Ot Ox Ox Ox OZ
(2.4.5.21)

2.4.6 Bottom kinematic boundary conditions

At the bottom, we impose the no-slip boundary condition:

U = V = 0, Z = 0 (2.4.6.1)

2.5 Asymptotic equations in water and Newtonian

mud

2.5.1 Equations at dominant orders

Water equations

Let, us derive the asymptotic equations of ( and rj in water. We derive here these

eqiations up to order O(2) because this may be helpful for further studies. However.

later in this thesis, we will only make use of orders 0(1) and order O(K).

By combining equations 2.3.2.9 (for mass) and 2.3.3.6 (for momentum) obtained

in water. we obtain the following approximate equation between ( g and U:

a2 (x 0t 2  &x
at x2 O~'t xat ax va) 3 - a + Elida +

Ox 3 Ox38t axat

To simplify this equation we use the leading order approximations of 2.3.2.9 and

2.3.3.6:

ax+ Kd- + 0(K2 )at (2.5.1.2)
+ O(2)

at

O (K3) (2.5.1.1)

0(
8t



As a consequence,

a OU
at Ox
a (
at

2 Ot2

( +(at
O+2

+ at - Ea + O(at)

and: K2 a4u K2 a4 (

3 X3at 3 Ox4

Thus. equation 2.5.1.1 can be written:

a2 1 ( a2u2
Rat2 + ( X

+ 2 2

+at 2
2 2)

+ gs 2

K 2 a04
3 ax4

+ a +dO(Ka)
8xat

Now let us expand the functions ( and i as power series:

( = (j() + KC1) + K2((
2 ) +

ft=i()+ Ktj1 ) + K 2LL(2) +

Because we expect the typical distance of the mud induced damping to be Kx 0(1),

let us also introduce the slow coordinate X:

X = X

Applying the technique of multiple scales, we have:

a + a
ax Ox aX
a4  94 a4

- + 4 - + 0(r~)
Ox4  a4  OX30X

So the equation 2.5.1.5 becomes, with the multiple scale:

(2.5.1.7)

(2.5.1.8)

2 02(
- a2 -2K Oa2 d2 2

K 2 04( a(-q 02( Uq) 3
+ a - EKd a+ EKda -1+0(K)

3 x4 81 xat

82(gu)
-E axat

OxOt
U /

OX)
- an

Utaty
at

+0 (K2)) (2.5.1.3)

a2  02(
at2 ax2

(2.5.1.4)

(2.5.1.5)
- at8t

(2.5.1.6)

a2

at2

2 u
2( X-9

a2 -22hax
+ at2 ( 2 2

(2.5.1.9)



which can be written:

02( C2( g92( (92 TI C( 2 

t2 X + Kdat 2 + 19at2 aX2 OO Ot 2 OX2
a2u2  i2g 2

at2 at2
K 2 a4  acqt

3aX 4 atud+(K xat + O( 3)

(2.5.1.10)

From this equation, we deduce for dominant orders:

9 at order 0(1)

2((0) 0 2  -0Ot2= 0

& at order 0(r,)

a2( (1)  a2 (1) 02(o) +
at2 - a =9 2 ax+

72 (o 3a 02(a(o))2
f, 8t 2x Ot2

where equation 2.5.1.12 is obtained after using the following relation valid to

leading order:

92( (O))2
Bx2

92( -(0))2
+ t2 + 9t2

* at order O(K2)

02((2) 02((2) a2((1) Kd 021(1)

x x (

+ ( 2 ( ) a (1)

(2.5.1.13)

+ 2 ( )((1))
+ t2

2((0)i(1)
Ot2

02() C 02( u(0))2  10( ) ' Erd 0 ) 'IO)
+ aX 2 + KxX +3 ax 4  K2  at

eKd 02 (0) (0)
+ 

(

2 

2x.t
(2.5. 1.14)

We carried the calculations up to order O(K2 ) because it may be useful for later

studies., but we won't use these equations in the rest of this thesis.

From now on. we will only carry calculations further for the orders 0(1) and O(K)

(2.5.1.11 and 2.5.1.12).

8X2
+ E OxXa

(2.5.1.11)

(2.5.1.12)

3 2 ())2
3 2



Mud equations

Let us find another coupling equations between the surface and the interface, ( and

, derived from the mud equations. The momentum equation 2.4.5.21 in mud gives:

02 _BC 80 8au BU2
a-- U=7 -K +( U +V +~2OZ2 at 8x 0x / 8x0Z (2.5.1.15)

where:
Ea (2.5.1.16)

KdRe

which is at least of order O(1).

As in water, we introduce the multiple scale coordinates x and X = hx. so that

equation 2.5.1.15 becomes:

82 Kdx-X 8

O Z 2 a O x x O x(2 .5 .1.17)

+e U U +V 2 ) Q(3)
( x OZ

The contintuity equation 2.4.2.2 becomes:

0(U) 0(U) 0(V)
-+ K + =0 (2.5.1.18)Ox O +08x X 0Z

and the interface kinematic boundary condition 2.4.1.2:

at = V - C U (2.5.1.19)
81 Ox

By expanding U and V in ascending powers of K, we write:

U = U(O) + KU(') + O(h 2)

V - ( 0 ) V~1 + 0h 2 )(2.5.1.20)V = now) + dV + O( 2)

We can now deduce tHie dominanit orders of eqjuations 2.5.1.17, 2.5.1.18 and 2.5.1.19:
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(o0 )

- a U= -0
Ox OZ

=97 V (0), Z = 1

* at 0(h):

(a 02 ~ 1-a )U-
8t OZ2

OU(I) 0(U(0)

Ox OX

Br/(1)

=(-')
ax

+ =0az

0((O)
Ox

+ d Br )

K Ox
U _) _U(_)

U O + V0O BUCO)
+V

0<Z<1

(2.5.1.22)

2.5.2 Equation and solution at O(r)

Water equations

Because equation 2.5.1.14 clearly involves non-linear terms, we consider the evolution

of a train of harnonic waves a the leading order:

(CD Amn(X)em*
m= Dc

/(0) - Bm (X )e O1

m=-c)

(2.5.2.1)

where 0 m = m(x - t). We shall assume that Ao = Bo = 0.

Mud equations

We adopt for the horizontal and vertical velocities in mud at the zeroth ordler the

form we use(l in 2.5.2.1:

2

2

m =- -
(2.5.2.2)

ft
m- ~c

e at 0K 0):

(2.5.1.21)

_ V(I)

UTMO (Z)eCi"

v ",) (Z) eiO.



Then from the equation 2.5.1.21 we deduce an equation for U$ (Z):

d2U")
- o-2U ") =4o y m

d Z

where

(2.5.2.3)

(2.5.2.4)2 Mr
mm

We can solve exactly this second order differential equation by using the boundary

conditions:
U 3) = 0,

' (U)(o)0
aZ '

z = 0
(2.5.2.5)

In the end we get:

U(0) = yA m[ - cosh(-mZ) + tanh(om) sinh(o-mZ)) (2.5.2.6)

From the continuity equation and the boundary conditions of 2.5.1.21 we can extract

the following equations for the vertical velocity:

dVZ")
dZ

-imULT() m (2.5.2.7)

Vs (0) = 0, Z = 0

As a consequence, we can casily deduce the explicit expression of the V(")-

-imA,. [amZ - sinh(o-mZ) + tanlh(o m)((c)shl(omZ) - 1)1 (2.5.2.8)

From the kinematic houndary condition at the interface in mud, we can now deduce

the interface motion:

Bm= In0)(z

- AmG(o-)

with

G(om) - 1

1) (2.5.2.9)

tanh(-m)

am

(2.5.2.10)

As a conclusion we have:

Bm - 7Am I - tanh(ur)

V"(O)
m

(2.5.2.11)



where o _ m a- and -y =- .

This term

1 - tanh(orm )

will later be studied as a function of o- and m.

2.5.3 Equation and solution at O(r)

Water equations

At order O(r). we have from 2.5.1.12:

02(1) (2 (1) 2 2((0) + Kd 2 _ () +

-t2 gx 2 axaX K 8t2
36 02( (0))2

2K Ot2

By following the same procedure as in "Theory and Applications of Ocean Surface
Waves" by Mei, Stiassnie and Yue. we know that:

3C 02($(0))2
2K Ot2

DC 3 9 eo7n [m /2]

Km e [(ri 2A*Am+ui + ( A irniJ + c.c.
m=1 = =

where [rn/2] is the integer part of m/2 and al is a coefficient e(ual to 1 for I = [m/21
and equal to 2 otherwise. Use has been made of the assumption that Ao = BO = 0.

We also have

02 ((0) 0o . dAm io2 Zimd e '" + c.c.
8x8X dX

2 2  m (0) 1+ .C

8t12 2 EM2 Bme*",, + c.c.
m=1

combining all these results, we can rewrite equation 2.5.3.1:

(2.5.3.3)

a(i1) 2 (i)
812 8x2

E dA
= im dX

m=1 K = 8ml1
[ici2A*A m+1 +

[m/2]

S aiAiAm-i
i=1

- E M f2 Bme "M + c.c.
2 /-

m=1

(2.5.3.4)
To ensure solvability of this last equation, we must remove the secular terms propor-

(2.5.2.12)

(2.5.3.1)

(2.5.3.2)



tional to em, yieldiiig the differential equations:

oo C
--m 2Ai*Amti +

8

[mn/2)

S Ai Am ij. m - 1,2, 3....

(2.5.3.5)

Combining this result with 2.5.2.11. we finally obtain the differential equation for the

Am., for all m = 1. 2,3. ... :

Mud equations

We study the order 0(/) of the mud equations because a very interesting drift phe-

nomenon appears due to inon-iicarity.

We had from equation 2.5.1.22:

S 
2 )

at OZ2

aj'i) d (() (0) d8e OU(6)
a Ox + Kx + Ox7

+ V(O)2.53)

(2.5.3.7)

In this thesis we shall not pursue the higher harmonics of (1 and r/ and focus only

on the zeroth harmonic of U)T( ) which corresponds to the drift current, governed by

2
OZ2

=1
+ V()""t a

U(O)(-iTn)U(O) + U(O) (,.M)U(O)
m - Tri m m

OU(O)
m

+ Oum, Oz

The preceding equation caii be simplified:

81U Reld 00%

0Z2  2K
rn=1

Kiowing that V0 0

- OZ

r n and U(O) - U2"1 . we obtain:

OZ2
R~~ V_ :c )PK O 1

Z "' aZJ

dAm
dX

Im Kd= -Bm -
2 K

+ Vm aOZ- (2.5.3.9)

(2.5.3.10)



Equation 2.5.3.10 will be integrated later to give U(1) We note that this drift only

appears at the order O(K), and is as a consequence small.

2.6 Further details

2.6.1 Surface and the interface

We truncate the series in 2.5.3.6 . in order to obtain a differential equation for the

Am. for all m:

This truncated differential system is true for 0 < m < n.

2.6.2 Drift current in mud

We also truncate the series iii 2.5.3.10 for the drift velocity:

2U') Red

0Z2 x
m=1

On the right-hand side we get from (2.5.2.6):

-yAmn[- , sinli(omZ) + am t anh(om) cosh(omZ)]a z

and from (2.5.2.8)

V m [o-* Z - sinh(o*Z) + tanh(o*)(cosh(o-*Z) - 1)]

Combining 2.6.2.2, 2.6.2.3 and 2.6.2.1, we obtain:

Rcr~d 
1  [o * Z - sinh(o-*Z) + tanh(o-

Km1 1m

-yAm [- U, sinh (r 7 , Z) + Om tanh (07m) (osh(amZ)lJ

*)(cosh(o*Z) - 1)]

(2.6.2.4)

(2.6.2.1)

(2.6.2.2)

(2.6.2.3)

0
OZ 2



which can be simplified:

Ren R-rm
~2 E Am2 [n [o*uZ - sinh(o-*Z)

m=1 rn

+ tanh(u*)(cosh(o-*Z) - 1)]

[-o m Silnhl(omZ) + oam t anh(om) cosh(o mZ)]

and expanded

2 RCKdZ

K
Am 2! .mo-* Z sinh(o-mZ) + o-* Z tanh(o-,) cosh(omZ)

m

+ orm sinih(o* Z) sinh(umZ) - or tanh(or) sinh(o-*Z) cosh(o mZ)

- (tanh(orm))*-m cosh(o*Z) sinh(omZ)

+ m tanh(om) (tanh(um ))* cosh(o nZ) cosh(o*Z) + (tanh (um))*am sinh(omZ)

- o-m t anh(om) (tanh(U))* cosh(o- Z)
(2.6.2.6)

We write o-m oR +io-, o R and o7 reals.Urn + , i m ~ M,

Let us first integrate once. We use the fact that om + o-* =

2ioft:

2a-R alld orn - or*

Re n
-Y REKd

K
m|A4 m|12D - m-*(Z COsI(o-mZ) -

sinhl(unZ))

+ * tanh (o) Z smil(omZ) cosh(,Z)
m

sinh(2o Z)
4orn o m m(1 + tanh(om) (tanh(om))*)

sinh (2ioa Z)
4i -mUr(t anhl(om)(tanhl(oUm))* - 1)

cosh(2o Z)

- uR o m(tauih(or) + (tanh(o m))*)

cosh(2ioI Z)
+ rn 07 " -(tanh(om) - (tanh(o-m))*) +

- tanh(om)(tanh(u-m))* sinh(-mz) + C I

(tanh(o-m))* cosh(uZ)

(2.6.2.7)

2 ()

OZ2

02

(2.6.2.5)

O T
)o



Integrating again, we get the expression of U('):

2Read

- K r

- Z sinh(u-Z)

o-m

-2 CoSh(omZ))

2 2
oM

+ o>* tanhum) (Z cosh(amZ)
+-m tn(o~m)

o1-

sinh(o-mZ)
- 2 2~

cosh (2ou Z)
+ 8(u) 2 __m(1 + tanh(oum)(tanh(um))*)

Cosh(2io, Z)
+ 8 (ufi) 2  orm(tanh(om)(tanh(om))* - 1)

sinh(2o RZ)

-m(tanh(o-m) + (tanh(o-m))*)
8(o-R)-

sinh(2io01Z)
+ - o 9m(tanh(om) - (tanlh(om))*)

8(o-,)- 2
+ (tanhl(o-m))* si-h(umZ)

- tanh(um)(tanh(um))*cosh(umZ) + CMZ
om

(2.6.2.8)

The integration constants C,2 and C,(,) will now be determined from the boundary

conditions.

From equation 2.4.6.1, we know that:

U(Z = 0) = 0

As a consequence, we deduce the value of C,:

(2.6.2.9)

)_ -2u*

o-2 9

om2 (1 + tanh(orm)(tanh(om))*)

8(o)2

0-m(1 - tanh(om)(t anh(om))*)

+ tanh(om)(tanh(om))*
um

(2.6.2.10)

We now make use of the interface boundary condition 2.4.5.13. From this equation,

we know that: BUM
OZz IZ

-
2 ( fl (0)

-- '7IZ= (2.6.2.11)

+ C m2

2 - m -
|Am| n -

* -



As a consequence, we know that:

BUM
8 Z1(9 Z 1

C1

K4

21
m=1

B" Z2 Iz=1+

2U"(O)*
Bm -F

82U( *
&zn

82UNo
-' OZ2 z=1I

82U )

(Bm)* 0Z zI
Knowing that:

Bm =rAmG(om)

and:

equation 2.6.2.12 becomes:

OZ -

-yAm-,sech(om)

S2 > R 7 4mG(o-m)yA*,(o-*n) 2 seh(o* n)]

;4 2R [G(om)(o*)2sech(a*)]
rn=

c) [

4 29 [iG(om)(0-*n)2 sech(o-*)]
1T 1 [ I1m a

Let us truncate this last equalion:

OZ I (Z=1)
- - E A 'm| 2 [iG(o-m) (o-*) 2sech(o-*,)]

2.n

From equation 2.6.2.7. we deduce the condition that CQ needs to meet in order to

(2.6.2.12)

(2.6.2.13)

(2.6.2.14)

(2.6.2.15)

(2.6.2.16)

m=1



respect this boundary condition:

72Re, d ( om C(osh(om) - S-nh(7m) - omtanh(oM) sinh(o-m) - COSI1(7M)

m -* o mocrm

sinh(2o- )
4o7R (Tm(1 + tanih((T (tanh(am)*)

Tn

- sinh(2io-(n Mo, (tanh(o- )(t anh (o*- 1
m

cosh(2o )(+ o oR , m(t anh(om,) +

m/

(tanh(um))*)

cosh(2io-I )
- omio) m(tanh(om) - (tanh(am))*)

- (tanh(o-m))* cosh(om) + tanh(om)(tanh(om))* sinh(o-m) - C())

2
= 7 & [iG(om,)(o-* )2 sech(o-*)]

We finally obtain the value of CMM:

Cf - - '" iG(om)(o-*) 2 sech(c*)
2ReKam

(2.6.2. 17)

cosh(o-m)-
F )

+ o7m cosh(orm) - si-mh( ))
n

4Rrsinh(2o-'
- a o-mn(1 + tanh(om)(tanh(o m,))*

sinh(2io-' )4 "r o(tanh(o m)(t anh(om))* - 1)

cosh(2o- )
+ amT(tanh(om) + (taih(o-m,))*)

cosh(2io-'c)
- om(tanh(o-m) - (tanh(om,))*)

- (tanh(om.))* cosh(o-m) + tani(or,)(taih(om))* sinh(om)

(2.6.2.18)

The drift current is now found. We notice that it is a sum of the IAm| 2 multiplied

by coefficients depending on 7, /', Kd 6 alld the r., we deduce that the result of the

Am will depend oin the values:

g, pwI p' , A, h. d. w/. p (2.6.2.19)

where g and pw are fixed, pA1 and the y-t depend on the Newtonian mud, and A, h,

tanh (o-7m) (smh(o-m)



W' and d depend on the geometry and the surface wave. .

2.6.3 Energy variation in water

We recall the differential system:

3i e
+ -- M

8 K
2A*Am+i +

(m/2]

Z aiAiAm-i)
1=1

na(-m 1l
k

tanh(um) Am 0
-6 Am.1)

(2.6.3.1)

which governs the free surface motion.

In [8], G. Grataloup and C.C. Mei demonstrated that if the differential equation

describing the free surface is:

dAm + Om Am -
dX

3  3 .cim 31 e. Am + ---m 2 A*Am+i +
6 8m+

[m/2]

Sai AiAm

then the general relation on the first-order wave-energy is:

d n

dX [S1
m=1i

Am 2 -2 ER(m)I4Am
m=1

(2.6.3.3)

Indeed, in equation 2.6.3.2, 3m represents a dissipation source. That is why the total

wave energy at the leading order decreases with relation to 3,,.

In our case of a flat bottom with a thick layer of Newtonian mud. we deduce that

the general relation on the first-order wave energy is:

d - . 12- Kd n tanh(om ) 12

dX - J .m K arZ rn(m=1 m=n-i -J

(2.6.3.4)

Clearly wave energy is attenuated in X. One can define the attenuation distance for

the m-th harmonic by
1 K G (2.6.3.5)

2.6.4 Study of G(om.)

Let us now study the terim:

G(7m) = 1 -
tanhb(Jm)

0777

dAm

dX

1) =0, (2.6.3.2)

+ i--
2

(2.6.4.1)
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(a) Real1 part of G(om)

(b) Imaginary part of G(o-rr,)

Figure 2-2: Variation of G(om) as a function of a and i

as a function of m.

We know that:

(2.6.4.2)rz

so G is in the end a function of m and a.

In figure 2-2, we plot G as a function of a. for different values of m. Since we

previously stated that a is of order 1. we plot G for 0 < a < 1.

We can see that the real part of G(o-m) strictly increases with mn. However, we see

that the variation of a(G) is not monotonous in n.



2.7 Numerical results by using the first ten har-

monics

We now represent the numerical results in order to analyze the effect of the different

parameters.

We will first study the effect of the wave amplitude A, knowing that a big wave

amplitude implies high non-linearity c for cases la, lb and 1c listed in table 2.3.

We will then look at the effects of different wavenunbers k, and thus of different

dispersion coefficient r, for cases 2a. 2b and 2c listed in Table 2.4.

Finally, we will look at the effects of different mud layer deplths d, and thus different

values of the parameter 'd for cases 3a, 3b and 3c listed in Table 2.5.

For all of these representations, we arbitrarily choose the viscosity to be the mod-

ulus of the Gulf of Mexico mud complex viscosity at w' = 0.5rad/s. This value

corresponds to a viscosity: p = 400Pa.s. We also choose the density to be the density

of this same mud: pM = 1140kg/nm3 , and as a consequence y - 0.88

We also set the water depth h = 2m.

2.7.1 Influence of non-linearity

We set the wave period to be T = 12s (which means L' = 1/2rad/s), the mud layer

depth to be d = 20cm and the water depth h = 2m. We then consider 3 possible

wave amplitudes A = 20cm, A = 40cm and A = 60cm, corresponding to cases la. lb

and le. From here we can deduce the value of K and Rc by:

= k = h - (2.7.1.1)
Vgh

and:

Re A dk gh pAAdw (2.7.1.2)
P p

Table 2.3 sums up the corresponding values of the parameters E, K, Re, Kd and a. E

and Re both increase with A and K does not depend on A. Case la corresponds to

the smallest A (and thus smallest ion-linearity) value and case ic to the biggest one.

We assume the initial comdition Ai(0) = 1



Case E K Re ni a -- ,jR

la 0.1 0.22 0.06 0.1 17
lb 0.2 0.22 0.11 0.1 18
ic 0.3 0.22 0.17 0.1 18

Table 2.3: Values of Re. .. E and a corresponding to different values of A. Case 1e

corresponds to the biggest A, that is to say the biggest non-linearity.

Surface and interface

Figures 2-3 and 2-4 show the evolution of the first three harmonies of the surface and

the interface. Even though we carried the resolution with 10 harmonics in order to

take into account all the significant ones, we only display the three most significant

harmonics for clarity.

In figure 2-3, we observe that the harmonics are smoother in the less non-linear

case (la). Variations are more significant in the most non-linear case (1c). This effect

of non-linearity corresponds to what we were expecting. Even though non-linearity

is very important in every case, it is even more obvious in case 1c.

Drift current in mud

Figure 2-5 represents the drift we calculated in equation 2.6.2.8.

Let us recall the equations:

U =U- ) + KU + O(K2)

U( = U + -Z ( 2 e "" + cc.) (27.1.3)

This is why we plot the value 1rU(, which is the value that appears in the total

sum of U.

The drift is represented in the mud layer for 0 < X < 5 for Z = 1. It is interesting

to note how the drift naturally vanishes as X increases.

The biggest drift occurs in case 1c, in which non-linearity is the most important.

This result corresponds to what we expected since the drift appears at the second

order because of non-linearity.

We also note that the drift current show s strong oscillations in the most non-linear

case. and moderate oscillations in the nediumn case (1b). As we already emphasized.

the drift current is a sum of the JA, imultiplied by coefficients. Since these coeffi-
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Figure 2-3: Effects of wave amplitude on the evolution of the first 3 harmonics of the
free surface over a thick muddv seabed. Comparison between the cases la. lb and
1 .
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Figure 2-4: Effects of wave am-yplituLde on the evolution of the first 3 harmionics of the
interface between mud and water over a thick mnuddy seabed. Comparison between
the cases la, 1b and 1e.
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Figure 2-5: Drift velocity KU('. Comparison between the cases la, lb and 1c.

cients do not depend on X, it is logical that the oscillations in IAm, directly result in

oscillations in the drift. As a consequence, based on the comments we made on the

|Aml in the previous section, it is logical for the. drift current to have more oscillations

in the most non-linear case.

Energy variation

We display the total first-order energies for cases la. lb and ic in figures 2-6. This

figure shows that the total energy logically decreases to reach a zero-value in every

case, because it is dissipated in the viscous mud.

In figure 2-7, we represented the variation of total energy. The dashed line repre-

sents the right-hand side tern of equation 2.6.3.4:

d 12 a tanh(<7m)
dAm = -y ( j i [ - n IAm|2 (2.7.1.4)

m=1 mn=1

It is so close to the solid line that it is very hard to distinguish. As a consequence,
this figure shows that our numerical results are right.

2.7.2 Influence of dispersion K

We now study the influence of dispersion.

Wve set the wave amplitude to be A = 40cm, the mud layer depth to be d =

20cm and the water depth h 2mn. We then consider 3 possible periods T = 18s,
T = 12s and T = 6s (which mean = 1/3rad/s, w' = 1/2rad/s and w' = 1rad/s),
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Figure 2-6: Wave energy over a

cases la, lb and 1c.
flat thick muddy seabed. Comparison between the

Case e K Re ad = Re

2a 0.2 0.15 0.08 0.1 25
2b 0.2 0.225 0.11 0.1 18
2c 0.2 0.45 0.23 0.1 8.7

Table 2.4: Values of Re, r. c. Kd and a corresponding to different values of dispersion

corresponding respectively to cases 2a. 21) and 2c. We still have h = 2m.

Table 2.4 sunis up the corresponding values of the parameters c. K. Re, n'd and a.

Free surface and interface

Figures 2-8 and 2-9 show the evolution of the first three harmonics of the surface

and the interface for different dispersion parameters K. Even though we carried the

resolution with 10 harmonics in order to take into account all the significant ones, we

chose to only display the three most significant harmonics for clarity.

In figure 2-8, we observe that the hiannonics are smoother in the most dispersive

case (2c). Variations are more significant in the less dispersive case (2a).

Drift

Figure 2-10 represents the drift we calculated in equation 2.6.2.8. It is interesting to

note once again how the drift naturally vanishes as X increases.

As before, we choose to represent the value !KU( 1) because it is the value that
2 0

appears ini the total sumn of U.
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(a) Smallest non-linearity (la)

(b) Medium non-Ilinearity (lb)

(c) Highest non-linearity (lc)

Figure 2-7: Variation of the wave energy over a flat thick muddy seabed. RHS is the
value of the right-hand side term in equation 2.6.3.4. Comparison between the cases
la, lb and le.
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Figure 2-8: Effects of dispersion on the evolution of the first 3 harmonics of the free
surface over a thick muddy seabed. Comparison between the cases 2a, 2b and 2c.
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Figure 2-9: Effects of dispersion on the evolution of the first 3 harmonics of the
interface between mud and water over a thick muddy seabed. Comparison between
the cases 2a, 2b and 2c.
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Figure 2-10: Drift velocity U(1). Comparison between the cases 2a, 2b and 2c.

The biggest drift occurs in case 2c, in which dispersion is the most important.

Oscillations in the drift current are more significant in the small dispersion cases.

As before, this is due to the fact that the |Am| themselves are less smooth in when

dispersion is small (2a or 2b).

Energy variation

We show the total first-order energies for cases 2a, 25 and 2c in figure 2-11. This

figure shows that the total energy expectedly decreases to reach a zero-value, because

it is dissipated in the viscous mud.

In figure 2-12, we represented the variation of total energy. The dashed line

represents the right-hand side term of equation 2.6.3.4, and the figure shows that our

numerical results obey the law we demonstrated. Indeed. the two lines are so close

that they are very hard to distinguish.

2.7.3 Influence of mud layer depth d

We now aim at studying the influence of the mud layer depth.

We set the wave period to be T = 12s (which means w' = 1/2rad/s), and the wave

amplitude to be A = 40cm. We then consider 3 possible mud layer depth d = 10cm,

d = 20cm and d = 40cm, corresponding respectively to cases 3a, 3b and 3c. We still

have h = 2m.

Table 2.5 sums up the corresponding values of the parameters e. r,7 Re, t d and a.



10E
m=1

|Am 12

Figure 2-11: Wave energy over a flat thick
cases 2a, 2b and 2c.

muddy seabed. Comparison between the

Case C K Re d a =

3a 0.2 0.22 0.06 0.05 67
3b 0.2 0.22 0.11 0.1 18
3c 0.2 0.22 0.23 0.2 4

Table 2.5: Values of Re. i, e, Ia and a corresponding to different values of the mud
depth d



(a) Smallest dispersion (2a)

(b) Mediurn dispersion (2b)
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Figure 2-12: Variation of the wave energy over a flat thick muddy seabed. RHS is
the value of the right-hand side term in equation 2.6.3.4. Comparison between the
cases 2a, 2b and 2c.



Free surface and interface

Figures 2-13 and 2-14 show the evolution of the first three harmonics of the surface

and the interface for different mud layer thickness d. Even though we carried the

resolution with 10 harmonics in order to take into account all the significant ones, we

chose to only display the three most significant harmonics for clarity.

As expected, we observe in figure 2-13 that damping is more significant in the case

of the highest mud thickness (3c) than in the case of a very thin mud layer (3a). This

is due to the fact that dissipation happens in mud. As a consequence, the thicker the

mud layer and the more wave damping.

We also observe in figure 2-14 that the interface variations reach a higher aipli-

tude in the case of the thicker mud (3c).

Drift

Figure 2-15 represents the drift we calculated in equation 2.6.2.8. It is interesting to

note once again how the drift naturally vanishes as X increases.

As before. we choose to represent the value KU('), because it is the value that

appears in the total sum of U.

We observe in figure 2-15 that the biggest drift corresponds to the thicker mud

(3c).

Energy variation

We nunierically represented the total first-order energies for cases 3a. 3b and 3c in

figure 2-16. This figure shows that the total energy logically decreases to reach a

zero-value, because it is dissipated in the viscous mud. We can see that energy is

dissipated faster in the case of the thicker mud (3c). This result seens logical since,

as we said when we studied the surface amplitude, the thicker the mud and the faster

the wave damping.

In figure 2-17, we represented the variation of total energy. The dashed line still

represents the right-hand side term of equation 2.6.3.4, and the figure shows that our

numerical results obey the law we demonstrated. Indeed. the two lines are so close

that they are very hard to distinguish.
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Figure 2-13: Effects of mud layer thickness on the evolution of the first 3 harmonics

of the free surface over a thick muddy seabed. Comparison between the cases 3a, 3b
and 3c.
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Figure 2-14: Effects of mud layer thickness on the evolution of the first 3 harmonics
of the interface between mud and water over a thick muddy seabed. Comparison
between the cases 3a, 3b and 3c.
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Figure 2-16: Wave energy over a flat thick muddy seabed. Comparison between the

cases 3a, 3b and 3c.

1 (1)
2 0



-0.1
10

d ( I Am 2

dX
-0.3

-0.4

-0.5

(a) Smallest mud layer thickness (3a)

10
d ( |Ar, 2

dX
-0

-0

d E | Am 12
m=1  -

d X

(b) Medium mmud laver thickness (3b)

(c) Highest nmud layer thickness (3c)

Figure 2-17: Variation of the wave energy over a flat thick muddy seabed. RHS is
the value of the right-hand side term in equation 2.6.3.4. Comparison between the
cases 3a, 3b and 3c.
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2.8 Estimation of Re

We give here a range of possible Reynolds number values for different field samples

of fluid-mud in tables 2.6, 2.7 and 2.8. We repeat the values of e and K in every one

of these tables, even though they clearly don't depend on the mud type.

Using the rheological data for a mud sample from Gulf of Mexico, provided by

Professor R. A. Dalrymple and Mr K. Melick of Johns Hopkins University, we have

the following typical characteristic values: pM = 1140kg/r and pf(w' 1/3)

461Pa.s, lu(w' = 1/2) = 400Pa.s and lj(w' = 1) = 267Pa.s. More information about

this mud and its viscosity will be given in the following chapter, about viscoelasticity.

Table 2.6 gives the calculated values of c, i and the Reynolds number Re for three

sets of h, A and o'. The ratio of mud depth to water depth is fixed at Kd = 0.1. Note

that in some cases e = O(K). In other cases (shaded gray) in table 2.6, e = 0(K 2 ).

Cases with E > 0.4 or / > 0.4 are outside the realm of this study. For all cases within

the realm of this study, the Reynolds numbers are small.

For mud samples from Mobile Bay, Jiang & Mehta in [11]. have shown that the

following properties are representative : p -= 1281kg/m 3, and lpI(w' = 1/3) =

16, 900 Pa.s, |pl(w' = 1/2) = 11,600 Pa.s and |pl(w' = 1) = 6,270 Pa.s. Table 2.7

gives the values of c, K and the Reynolds number Re for several sets of h, A and w'

with Kd = 0.1. Again, the Reynolds numbers are very small.

For mud samples from Lianyungang, China, studied by Mci & Krotov in [15]. the

characteristic properties are : pM = 1590kg/mi. and 1pu(w' = 1/3) = 2. 509 Pa.s.

|pl(L' = 1/2) = 1,629 Pa.s and |pl(w' = 1) = 760 Pa.s. Table 2.8 gives the values

of c, / and the Reynolds number Re for several sets of : h, A and o' with Kd - 0.1.

Again, the Reynolds numbers are all small.

Finally for mud samples from Hangzhou Bay . China [10]. Professor ZH. Huang of

Nanyang Technological University of Singapore has provided the following properties:

p = 1561kg/m 3 , and lp|(w' - 1/3) = 39 Pa.s. Ip|(w' = 1/2) = 24 Pa.s and

|pI(w' = 1) - 11 Pa.s. Table 2.9 gives the values of c, K and the Reynolds number Re

for several sets of h, A and w' with Kd = 0.1. This mud has been studied by Huhe &

Huang in [10]. Note that the Reynolds numbers are not small, Re = 0(1).

In all of these tables 2.6, 2.7, 2.8 and 2.9, the gray cells represent the cases where

non-linearity is weak, that is to say E = 0( 2 ). This chapter is limited to e = O(K).

We shall treat the case of E = O(K 2) in separate chapters.

We deduce from tables 2.6, 2.7, 2.8 and 2.9 that the Reynolds number goes from

3 * 10-4 to 10.



E 102 A (cm)
_,__Re 10 20 40 60

= 0.1

1/3 K=0.106
Re = 0.008

C = 0.1

K = 0.159
Re = 0.014

E 0.1

K 0.31

Re 0.04
6 0.05
K 0.15

Re 0.017
e 0.05

= 0.225
Re 0.029

6 = 0.2

K = 0.106

Re = 0.017
c = 0.2

K = 0.159
Re = 0.029

6 = 0.4

K = 0.106
Re = 0.033

6 = 0.4

K = 0.159
Re = 0.06

6 > 0.4

6 > 0.4

e=0.2 e=0.4
K=0.31 K=0.31 > 0.4

Re 0.09 Re =0.17
6 0.1 c 0.2 c 0.3

K= 0.15 K= 0.15 /, =0.15
Re =0.03 Re 0.07 Re = 0.1

e = 0.1

K = 0.225
Re = 0.06

e = 0.2

K = 0.225
Re = 0.11

e = 0.3

K = 0.225
Re = 0.17

1 > 0.4 > 0.4 > 0.4 > 0.4

= 0.02 = 0.04 = 0.08 = 0.12
1/3 K - 0.238 i = 0.238 K = 0.238 K = 0.238

Re 0.04 Re = 0.08 Re = 0.16 Re = 0.24
6-0.02 e=0.04 =0.08 6= 0.12

1/2 K=0.357 K = 0.357 K = 0.357 K = 0.357
Re = 0.07 Re = 0.14 Re = 0.29 Re = 0.43

1 K > 0.4 K > 0.4 , > 0.4 K > 0.4

e = 0.01 e = 0.02 c = 0.04 e=0.06
1/3 K= 0.33 r,= 0.33 tz= 0.33 r = 0.33

Re = 0.08 Re = 0.16 Re = 0.33 Re = 0.5

1/2 K > 0.4 K > 0.4 K > 0.4 v, > 0. 4

> 0.4 0.4 K > 0.4 K > 0.4

Table 2.6: Values of Re for different A, frequency a' and
of Mexico mud. We set Kd = 0.1.

water depths h, for the Gulf

1/2

1/3

1/2

h (in)

W /

(rad/s)

W /

(rad/s)

/
(rad/s)

W /

(rad/s)

I



A (cm)

10 | 20 40 [ 60
E = 0.1

i = 0.106

Re = 0.0003
= 0.1

i - 0.159

Re - 0.0006

= 0.2
I - 0.106

Re - 0.0005
E = 0.2

i = 0.159

Re = 0.0011

E= 0.4
i 0.106

Re = 0.001
= 0.4

i = 0.159

Re = 0.0022

e > 0.4

6 > 0.4

c=0.2 e=0.4
0.31 0.31 E> 0. 4

Re = 0.004 Re = 0.008
e 0.1 0.2 6 0.3

n 0.15 =0.15 r,= 0.15
Re - 0.001 Re = 0.002 Re 0.003

0.1 E 0.2 c 0.3

t - 0.225 t 0.225 Kt 0.225

Re - 0.0022 Re - 0.0044 Re 0.007

I > 0.4

I > 0.4

K > 0.4

, > 0.4 , > 0.4

t> 0.4  t> 0. 4

E = 0.04 e 0.06

( = .3 3 () = .3

Re = 0.01 Re 0.02

0.4

v > 0.4

n > 0.4

K > 0.4

frequency o' and water depths h, for the

1 , > 0.4

1 , > 0.4

Table 2.7: Values of Re for different A,
Mobile Bay mud. We settd = 0.1

6, K, Re

1/2

1/3

1/2

h (m)

W /

(rad/s)

W I

(rad/s)

(rad/s)

(rad/s)

1/3

1/2

1

1/3

1/210 I > 0.4

S> 0.4 > 0.4

I i



e, ,, Re A (cm)10 20 40 60
c = 0.1

K = 0.106
Re = 0.0021

6 = 0.1

K = 0.159
Re = 0.0049

K> 0.4

6 = 0.02

K = 0.238
Re = 0.011

6 = 0.02

K = 0.357
Re 0.024

K> 0.4

e = 0.01
K = 0.33

Re = 0.02

r > 0.4

0.2
0.106
0.0042

6 = 0.2

K = 0.159
Re = 0.01

E = 0.4
K = 0.106

Re - 0.0084
6 = 0.4

K = 0.159
Re = 0.02

6 > 0.4

-i

e > 0.4

=0.2 E 0.4
i =0.31 K=0.31 > 0.4

Re = 0.042 Re = 0.08
= 0.1 =0.2 = 0.3

0.15 = 0.15 K =0.15
Re = 0.0084 Re = 0.017 Re = 0.025

e=0.1 e=0.2 e= 0.3
- 0.225 K = 0.225 , = 0.225

Re = 0.02 Re = 0.04 Re = 0.06

K> 0.4

e=0.04
=0.238

Re = 0.021
c=0.04

K = 0.357

Re = 0.049

0.4

0.02
0.33
0.042

K > 0.4

K> 0.4

6 = 0.08

K = 0.238

Re = 0.042
e = 0.08

K = 0.357
Re = 0.1

K > 0.4

Re

0.04
0.33
0.085

K > 0.4

K > 0.4

6 = 0.12

K = 0.238
Re = 0.063

e = 0.12

K = 0.357

Re = 0.15

K > 0.4

0.06
K=0.33

Re - 0.13

K > 0.4

Table 2.8: Values of Re for different A, frequency ' and water depths h., for the
Lianyungang mud. We set. Kd 0. 1.

Re=

h(m)

W /

(rad/s)

O'

(rad/s)

' /

(rad/s)

( i

(rad/S)

1/3

1/2

1/3
Re

'

|

1/2 > 0.4 > 0. 4 > 0. 4 > 0.4



6. .Re 10 20A (cm)
E. 1_ _e 10 20 ' 40 60

e - 0.1

K - 0.106

Re - 0.13
- 0.1

I = 0.159

Re = 0.33

= - 0.2

K = 0.106
Re - 0.27

6 = 0.2

n = 0.159
Re - 0.65

= = 0.4

K = 0.106

Re - 0.53
e 0.4

K = 0.159

Re = 1.3

E> 0.4

C> 0.4

e=0.2 E=0.4
S=0.31 =0.31 e> 0.4

Re = 2.8 Re - 5.7
e 0.1 E- 0.2 c 0.3

r,= 0. 15 K 0.15 V = 0.-15
Re=0.53 Re=-1 Re=1.6

0.1 E = 0.2 E=0.3
K 0.225 n = 0.225 K= 0.225
Re=1.3 Re =2.6 Re=3.9

K> 0.4

K > 0.4

K > 0.4

K,> 0.4

K > 0.4

K > 0.4

K> 0.4

K> 0.4

C = 0.04

0.33
Re= 5.3

K> 0.4

n > 0.4

K.> 0.4

K> 0.4

0.06
-= 0.33

Re 8

r > 0.4

K > 0.4

water depths h, for the

1/3

1/2

1/3

1/2

1

h (m)

(rad/s)

W/

(rad/s)

(rad/s)

(rad/s)

1/3

1/2

1 K> 0.4 K >0.4

1/3

1/210

Table 2.9: Values of Re for different A, frequency w' and
Hangzhou Bay mud. We set Kd = 0.1.



Chapter 3

Horizontal bottom, shallow

viscoelastic mud

The previous chapter is limited to Newtonian mud. However, inany experimental

studies have demonstrated that mud behavior is non-Newtonian. Experiments carried

by Jiang & Mehta, Huhe & Huang and by Dalrymple and Melick show that the

viscosity of mmud is a complex function of j', implyiing viscoelasticity.

As shown by Mei et al ([15]), relation 2.4.3.1 will be replaced in this section by a

complex relation:

LT-Z DEz (3.0.0.1)

where L and D are two differential operators of high degrees:

L = a1 tt a,_ -I + + ao
mn m- 1 (3-0.0.2)

D =bina + bm_1 +bo0m m -1
rn~trnOtm

In the special case of sinusoidal motion:

?/z = T/z c

E X EZ T c (3.0.0.3)
E ' rz wtz

and equation 3.0.0.1 reduces to:

l- = G(b')Exz = P '(W')Kz (3.0.0.4)

We first discuss the experimental data from mmud samples taken from different

sites.



3.1 Complex viscosities from field mud

Let us determine p' as a function of w' from laboratory analysis of mud samples from

different field sites. These different samples have very different rheological properties,

some are rather viscous and some others arc rather elastic.

3.1.1 Gulf of Mexico mud

Professor DaIrymipe and PhD candidate Klhatoon Melick from the department of

civil engineering of Johns Hopkins University have carried out experiments for a mud

sample of density 1.14 g/mL taken from the Gulf of Mexico.

More precisely, they imposed an oscillatory stress of a given amplitude on this mud

sample. They then varied the frequency of this oscillatory stress, for W' from 0.628

to 12.56 rad/s, and measured the resulting strain. They carried out this experiment

several times, and the mean of their results are used here. From these experiments,

we are able to deduce the complex viscosity as a function of the frequency ou'.

Indeed, the measured relation between strain and stress is expressed as:

r' = G*E' (3.1.1.1)

where G* = G'+ iG" is the complex elasticity modulus., G' the storage modulus and

G" the loss modulus. From this we can easily deduce the complex viscosity t' since:

G=f'p (3.1.1.2)

and finally:

(pI )R 
_

G'l (3.1.1.3)

Using the values G' and G" given from Johns Hopkins. we represent the experi-

mental values of the complex viscosity as a function of bc' (figure 3-1). We can easily

interpolate these values to find the real and imaginary parts of the complex viscosity

for any value of w' shown in figures 3-2. In figure 3-3, we represent the modulus and

phase of p. In all figures dots represent the experimental data and curves the values

by numerical interpolation.

The most important thing to note is that the phase of p' is very close to i for'i 2

W/' > 0.6. This means that this imud is very elastic. However, the phase gets closer
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Figure 3-1: Real and Imaginary part of the dimensional complex viscosity for Gulf of
Mexico mud.

to 1 for 0.2 < w' < 0.6. Hence the mud becomes less elastic for smaller frequencies4

(longer waves).

3.1.2 Mobile Bay mud

Jiang & Mehta ([11]) have tested mud sample from Mobile Bay, Kerala (India) and

Lake Okeechobee. Based on experiments at eight different frequencies in the range

0.12 < w' < 24 rad/s, they expressed the rheology of these muds by a three-parameter

viscoelastic model:

rF + airFt = #0E + 1Et(312)

The parameters a1 , So and 31 are in turn fitted as functions of two parameters E and

A which depend on frequency., mud type and solid fraction. From the values of oa.

#o and #1 at the eight frequencies we can deduce the complex viscosity p' at these

frequencies. In this way Krotov [12] found the relation between the complex viscosity

and those parameters:
IR 01 - 1O

1+I+ '2a2
- 1wa (3.1.2.2)

S 1+' 2a2

These equations correspond to equations 1.3.5 and 1.3.6 in Krotov's thesis ([12]), and

the way to obtain them is further explained in the entire section 1.3 of [12].
Table 3.1 gives the real and imaginary parts of the complex viscosities for all

the muds studied by Jiang &, Mehta where KI stands for Kerala, in India. OK for

Okeechobee, MB for Mobile Bay. and AK for a mud made with 50 % of attapulgite
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Figure 3-2: Interpolation of the real and imaginary part of the dimensional complex

viscosity for Gulf of Mexico mud (line). The crosses represent the experimental values

of the complex viscosity.
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W' [rad/s] 0.13 0.25 0.57 1.26 2.51 5.65 12.6 25.1
KI P'I 2.21 1.16 5.16 0.23 0.11 0.046 0.020 0.0094

# 0.12 p'I 4.31 2.81 1.64 0.95 0.58 0.32 0.18 0.11
OK PIR 0.086 0.044 0.019 0.0086 0.0042 0.0018 0.0008 0.0004

0-=0.11 p'I 0.21 0.12 0.06 0.031 0.017 0.0086 0.0043 0.0024
MB PIR 0.019 0.0094 0.004 0.0017 0.0008 0.0003 0.0001 0.0001

# = 0.07 p'I 0.06 0.03 0.014 0.006 0.003 0.0013 0.0057 0.0003
MB p ' 0.14 0.068 0.029 0.12 0.0056 0.0023 0.001 0.0662
= 0.11 pu'1  0.64 0.34 0.16 0.079 0.041 0.020 0.0095 0.005
MB p'R 1.16 0.56 0.23 0.10 0.047 0.020 0.0083 0.0004

#=0.17 p', 3.73 2.05 1.02 0.50 0.27 0.13 0.07 0.036
AK p'R 1.40 0.66 0.26 0.099 0.042 0.015 0.0054 0.0022

0.12 i 2.27 1.40 0.75 0.39 0.22 0.11 0.053 0.029

Table 3.1: Real and imaginary part of the complex viscosity for all muds studied by
Jiang & Mehta (in N.s/cm2 )

and 50 % of kaolinite. The mud density is pM, - #p(S) + (1 - #)p(W), where p(s) is the

grain density and p(w) the water density and # the solid fraction. In the rest of this

thesis. we shall only use the data of Mobile Bay (MB), with a solid fraction # 0.17,
corresponding to a density of 1280 g/mnL.

Figure 3-4 shows the real and imaginary parts of the complex viscosity. Figure

3-5 shows the phase and modulus of the complex viscosity of Mobile Bay mud The

viscosity phase is around i as well, so this mud is also rather elastic.
2

3.1.3 Lianyungang mud

The third mud comes from Lianyungang, China and has been experimentally analyzed

by Huhe & Huang. The corresponding complex viscosity has been used by [15].

Professor Huang also provided us the data of pm and G, for fourteen frequencies

in the range 0.12 < w' < 69rad/s. where pM and GAI are the parameters of a simple

Kelvin-Voigt nodel:

F' =mp + iG E'

Fromn these parameters we deduce:

(3.1.3.1)

,r Guf
y =

(3.1.3.2)
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mud (line). The crosses represent the experimental values.
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#=0.5 #= 0.26 # = 0.17

W' [rad/s] p' P ' [rad/s] p't P wrad/s] p'1 '
0.12 6790 7578 0.12 9.57 18.46 0.12 70.7 67
0.18 3517 4328 0.19 4.38 10.31 0.18 37.4 43
0.28 1944 2435 0.30 2.61 6.13 0.26 23.8 21
0.44 1127 1497 0.48 1.23 3.24 0.56 9 6.08
0.70 666 920 0.77 0.74 1.77 0.82 6.2 4.63
1.11 397 558 1.22 0.44 1.14 1.21 4.74 3.07
1.78 234 336 2.13 0.29 0.46 1.79 3.3 1.84
2.85 140 185 3.94 0.17 0.22 2.64 2.8 1.35
4.55 86 112 7.06 0.118 0.12 3.9 2.5 1.05
7.16 54 65 12.5 0.090 0.073 5.8 2.1 0.739
11.4 38 40 22.7 0.072 0.051 8.5 1.9 0.735
18.2 27 26 39.1 0.061 0.036 12.5 1.46 0.56
29.2 19 17 69.5 0.062 0.033 18.2 1.16 0.46
45.3 15 12 26.22 0.89 0.367
71.7 11 8.1 38.98 0.654 0.29

56.73 0.49 0.25
83.74 0.34 0.22

Table 3.2: Real and
Lyanyungang studied

imaginary part of the complex viscosity
by Huhe & Huang (in N.s/m 2 )

for all muds from

Table 3.2 gives the real and imaginary parts of the complex viscosities for the three

different solid fractions that Huhe & Huang studied: # 0.5, = 0.26 and # - 0.17.

For the density of the solid part of this mud is p(s) = 2750kg.rn-. In this thesis, we

will only use the sample with the solid fraction # = 0.5, corresponding to the density

1590 kg.m- 3 . In figure 3-6, we plot the complex viscosity of this particular saniple.

Figure 3-9 shows the phase and modulus of the complex viscosity of Lianyungang

mud . The viscosity phase is around 2, so this nmd is as much viscous as elastic.
4,

3.1.4 Hangzhou Bay

The last mud comes from Hanghzou Bay which has been analyzed in [10], and later

used by Krotov in [12]. In table 3.3, we tabulate the complex viscosity for different

solid fractions 0. Here, p(s) = 2650kg.m- 3 .

Once again, we shall use only one sample, corresponding to the solid fraction

# 0.34, and thus a density 1561 kg.m-3

The complex viscosity is shown in figure 3-8. Figure 3-9 shows the phase and

modulus of the complex viscosity of Hangzhou Bay mud. Note that the phase is closer
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Figure 3-6: Interpolation of the real and imaginary part of the complex viscosity of
Lianyungang mud (line). The crosses represent the experimental values.
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Figure 3-7: Phase and modulus of the complex viscosity interpolation of Lianyungang
mud (line). The crosses represent the experimental values.
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W' [rad/s] 0.11 0.19 [0.30 0.46 [0.74 (1.10 12.00 13.00 4.80 J7.50 11.0 119.0

04 pIR 190 75.0 40.0 21.0 12.0 9.00 6.00 4.00 3.30 3.10 2.80 2.60
= 0.34 -V, 81.8 26.3 12.7 7.61 4.73 3.27 1.85 1.23 0.89 0.87 1.09 1.11

pIR 17.0 7.00 4.00 2.50 2.00 1.70 1.80 1.50 1.10 0.80 0.50 0.33
0.24 p' 5.91 2.89 1.40 0.89 0.65 0.68 0.70 0.60 0.48 0.39 0.29 0.19

pIR 7.00 2.50 1.50 0.80 0.60 0.40 0.28 0.29 0.23 0.23 0.23 0.15
- 0.2 'l 3.64 1.94 0.36 0.33 0.23 0.17 0.09 0.06 0.06 0.06 0.10 0.09

pIR 5.00 2.10 1.10 0.70 0.55 0.40 0.35 0.30 0.25 0.25 0.25 0.09
=0.17 p' 2.82 1.16 0.83 0.63 0.31 0.16 0.10 0.10 0.08 0.11 0.09 0.07

0 . p ',R 5.00 2.50 1.50 0.90 0.70 0.50 0.40 0.22 0.17 0.11 0.08 0.05
- 0.14 p'd 3.55 1.58 1.07 0.61 0.41 0.28 0.19 0.13 0.08 0.06 0.04 0.03

p' R 0.40 0.30 0.12 0.21 0.11 0.11 0.08 0.06 0.04 0.03 0.02 0.01
= 0.07 p'" 0.42 0.24 0.03 0.08 0.04 0.01 0.03 0.02 0.03 0.02 0.02 0.01

Table 3.3: Real anl imaginary part of the complex viscosity for all muds from
Hangzhou Bay studied by Huhe & Huang (in N.s/m 2)
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Figure 3-8: Interpolation of the real and imaginary part of the complex viscosity of
Hangzhou Bay mud (line). The crosses represent the experimental values.
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Figure 3-9: Phase and modulus of the complex viscosity interpolation of Hangzhou
Bay mud (line). The crosses represent the experimental values.

Mud Gulf of Mexico Mobile Bay Lianyungang Hangzhou Bay

Density (kg.m- 3) 1140 1281 1590 1561
|p'l-range (Pa.s) 100 - 102 2.102 - 104 30 - 104 100 - 3.102

Table 3.4: Viscosities of muds 3a,3b, 3c and 3d

to zero than to !. Hence this mud is rather viscous. We sum up the viscosities of

the different muds in table 3.4.

3.1.5 Determination of the zero-frequency viscosity p()

It will be seen shortly that for calculating the drift velocity in mud we need the value

of pt'. namely the 0-frequency viscosity of the mud (equation 3.6.2.5). This value

corresponds to the viscosity at steady shear.

As the experiments are done under conditions of oscillations at finite frequencies,

we have to get s', by extrapolating the measured data.

From equation 3.6.2.5, we see that the needed value is !(1/p4). In order to find

this value, we write the inverse of the complex viscosity 1/1 ' as a rational function of

the frequency w'. We used the method extrapolation described in the first chapter of

Krotov's thesis ([12]). The principle of this method is to determine 8 coefficients a,

and b,. based on 4 experimental values of 1/p' corresponding to 4 frequencies. These

coefficients are such as:

1 _i bo + Zf_ bs(--iw')"2 (151
-- = - (3.1.5.1)

p' 1 +E,= an(--i')



Mud Reference frequencies [Hz] R(1/p4) = b1 - boai [Pa.s]

Gulf of Mexico 0.2 0.63 ; 1.58 ; 3.96 0.0012
Mobile Bay 0.13 0.57 5.65 ; 25.1 6.39.10-6

Lianyungang 0.12 0.44 ; 2.85 ; 18.2 3.4.10-5

Hangzhou Bay 0.12 0.73 ; 2.9 7.3 0.0016

Table 3.5: Real value of the 0-frequency viscosity and frequencies used as references
for each mud.

Once these coefficients known, R(1/p') can easily be calculated. Indeed, when w' - 0,

R(1/p') -+ b1 - boai, and thus:

R(1/p') - bi - boa 1 (3.1.5.2)

We have used this method for the four types of mud to be considered in this study.

Table 3.5 sums up the 4 frequencies used and the values of R(1/p4) deduced for each

mud.

These values will be used later in this study to represent the drift velocities in

mud.

3.2 Scaling

The equations we previously obtained in water are not changed in the viscoelastic

case. However, we need a new scaling for stress in mud.

We use the new scaling :
d

'r Is r'
Cps /gX h

where y, is the characteristic value of the viscosity |pl.
We define the dimensionless complex viscosity:

p =
ps--

(3.2.0.3)

(3.2.0.4)

Because of calculation simplifications, we will see that the value p, is not needed

to solve the last equations numerically. Indeed, we will see that neither p, neither

any non-dimensional viscosity y appear in the final results, but only the dimensional

viscosity [L'.



To sum up. the new scaling for this section are:

x kx'

PpwgA

A

x kx'

p= P'
pjwgA

T- T
T"

y3 pwgA

A'

t = k(gh)1/ 2t'

V V o

Z

z= bU
Ev gh

Z = -Z'z
U= 1 U'

EA = d F'
Egg,,= y Eij,tI/

For simple harmonic waves, equation 3.0.0.4 becomes, in a non-dimensional forim:

TXZ - iwWw)E~xz (3.2.0.7)

3.3 Equations in water

Since only the mud behavior is modified, the equations in water are not changed.

They remain exactly the same than in the Newtonian case.

The reader could thus refer to section 2.3 to follow the details of the calculations in

water. In particular. the important results in water are gathered in equations 2.3.2.9.

2.3.3.6 and 2.3.4.3.

3.4 Equations in mud

Most of the equations in mud are also unchanged compared to the previous chapter.

Namely equations 2.4.1.2, 2.4.2.2, 2.4.5.13, 2.4.5.20 and 2.4.6.1 remain the same:

The kinematic interface boundary condition:

77 = V - eT/XU, Z = 1 + Ei (3.4.0.8)

The conservation of mass:

Ux + Vz = 0, 0 < Z < I + E4)

and:
t =k(ght)1/2t'

V= EKdV1 V'

V = k V'

E d

(3.2.0.5)

(3.2.0.6)

(e3.4.0.9)



The tangential stress boundary condition at the interface:

7rz(Z = 1) -Er Z-1 + 0( 2)

The normal stress boundary condition at the interface combined with the vertical

momentum equation:

P- = - - n + O(&i2),
Ox Ox Ox

0 < Z < 1 + 7

The bottom kinematic boundary condition:

U = V = 0, Z = 0 (3.4.0.12)

However, we neced to find the new horizontal momentum equation, which is modified

by the mud behavior.

In this case where the depth of mmud d is small compared to the depth of water,
we can approximate the strain as a function of the horizontal displacement U:

-U , 28V BUE aZ = + t 9 i- = -- U + O(r 4 ) (3.4.0.13)OZ dx aX Z

From 3.2.0.7 we deduce again for simple harmonic waves:

aUTZ p + ( 4 )0Z
(3.4.0.14)

The equation of momentum in the mud, projected on the x-axis. gives:

aU U au
at (O +vU)

+ E Uau ( au

OP A (Txz-- - + I
' Ox Re(2 ) * d aZ

-- + R *h azOx Re () * Kd 8 Z

+ Knd TX)
aOx

+ Ksd TXX
0Ox

where U is the horizontal velocity of mud, P the mind pressure, A the amplitude of

the free surface, 7y the ratio of densities 7 - Pw/P,. d the mud depth and Re(2 ) the

new Reynolds number:

p1 1 Adk Vgh
ps

(3.4.0.17)

(3.4.0.10)

(3.4.0.11)

(3.4.0.15)

(3.4.0.16)OU)



Equation 3.4.0.16 can be rewritten:

C OTXZ

KdRe(2) OZ
au Ox

at x
U aUUx DUN

+V) +O(K2).
OZ1,'

0 < Z < 1+e (3.4.0.18)

From equation 3.4.0.11, we know the mud pressure gradient [.ex

equation 3.4.0.18 becomes:

As a consequence.

6 8Tz aB
KdRe( 2) az a

U
t

-(
±(Ox

+ VU) + O(K2) (3.4.0.19)

which is true for 0 < Z < 1 + 6q.

3.5 Asymptotic equations in water and viscoelas-

tic mud

3.5.1 Equations at dominant orders

Water equations

Since the equations in water are the same with a viscoelastic mud than with a New-

tonian mud, the asyniptotic equations are also exactly the same. We then simply use

the results obtained in the Newtonian case (equations 2.5.1.11, 2.5.1.12, 2.5.1.14):

o at order 0(1)

02((o) 02 (o2  - 2  0
at2 - _2

(3.5.1.1)

* at order 0(K)

02((1)
at2

02(l
Ox2 2axax

2 t(0)
K at2

+ 2((( 0))2

2K at 2 (3.5.1.2)

where equation 2.5.1.12 is obtained after using the following relation valid to

leading ordcr:

( 2(u(0)) 2  a2(o(0))2  02(( 0))2
+ 2 + at2 =3 at2 (3.5.1.3)02 ((0))2

__ T 8
a x )



e at order 0(K 2 )

02 (( 2) 02((2) 02((1) Kd 2 ___()

at 2  Ox2  aXax K 8t 2

+ C (+(O~~)
+ a 2 (0) )

02((0) E 2 (0)) 2
OX2 + OxXX

at2 (t 2  ;
1 4C(0 ) ( )d (0)

+3 OX K2 at
EKd2 xt

Even though we carried the calculations in water up to order O(2), we will not
use these results later in this thesis.

Indeed, we will only use the results at the order 0(K0 ) and 0(K) in order to find

a differeitial equation for the surface (.

Mud equations

From equation 3.4.0.19. we know:

KRc(2 ) aZ
aU
at - Kd

Ox
+E (U aU

Ox
+0(K2),

(3.5.1.5)
0 < Z < 1+ er/

To simplify this equation we introduce a(2):

(3.5.1.6)(2)- - 0(1)
{d Re(2)

and equation 3.5.1.5 becomes:

aTZ
aU
at

O(x
8 x Kd 

)
+ u 

+
Ox OU)

(3.5.1.7)

0<Z<1I+e

As in the preceding section we write:

U =U)+VKU(') + 0(K 2)

v = V ) + KV(1 ) + O(K2 )

r (z=0) + Kr + O(K2)

(3.5.1.8)

(3.5.1.4)

Ox 8U)



and we introduce the multiple scale coordinates x and X =x, to finally obtain the

dominant orders:

e at 0(K"):

a xZaz
au(0) 0((0)

at IOx
BU(0) BV(0)

Ox aZ = 0

0<Z<1

(3.5.1.9)

Z = 1

e at 0(K):

Oz

Ux) aUCO
ax+ a

at
aC(') 0(o
ax

( )U( 0)
+- UCO)

K ax
0 < Z < 1

Kd 0_(0)

ax
Bv0 U(0))

(3.5.1.10)

av(')
+ az 0

=V). Z = I

The equations in mud at order O(K0 ) will be used later to determine a differential

equation for the surface (. The order O(K) will be used to determine the drift in mud.

3.5.2 Equation and solution at order O(s")

Water equations

Like in the Newtonian mud. we consider the evolution of a train of simple harmonic

waves:

(0) = Am(X)eom 7(0) Bm(X)eiom
2~cx

and we deduce: 0 m = r(x - t)

at

(3.5.2.1)

= y(O)



Mud equations

Once again, we write:

U2) U O(Z)e"'"-
mn=-oc

V = V( (Z~ e" (3.5.2.2)
2 m

m=-c

(r o)m(Z)ei'

m=-oc)

From equation 3.5.1.9, we deduce:

a2 m, + im m (3.5.2.3)

For the term (r 09)m(Z) correspon(ing to harmonic waves. we have from equation

3.4.0.14 that:

(T)m(Z) = ym dU + 0(h 4 ) (3.5.2.4)
dZ

where tm is the dimensionless viscosity corresponding to frequency m.

As a consequence, by equations 3.5.2.3 and 3.5.2.4, we obtain:

d2U l _

dZ 2  o " m (3.5.2.5)

where:
m

&2 - (3.5.2.6)
m aC(2)p/m

meanmg:

&2 -. mnapjjAdky/glih
o-;l - , g (3.5.2.7)

Let us note that the value of &, does not depend on put, since pSpm =Apm is the

dimensional viscosity. Since &m and ' are the only parameters that appear in equation

3.5.2.5, we will not need the value of it to solve this equation.

Equation 3.5.2.5 is equivalent to equation 2.5.2.3, but in the viscoelastic case.

Since these equations only differ by the value of o- and all the others mud equations

are the same than in the Newtonian case, we can straightforwardly deduce that the

mud relation between the Am,(X) and BmY(X) is the same than equation 2.5.2.11, but



with a different coefficient o:

B tanh(&m)Bm(X) = -yAm(X) 1 - ~ )
(3.5.2.8)

where 2 _ a and -y .Note that UO= 0.
m EPM PMI

3.5.3 Equation and solution at order O(r)

Water equations

The water equations are the same than in the viscous case, so equation 2.5.3.5 is still

true:

Vm | 0, dAm
dX

im IaBd -
2 K

[m/21
38 m LL 2A*Am+iil2l Jm 8A~ ai AjAm-j (3.5.3.1)

which can be combined to equation 3.5.2.8 to give a partial differential equation on

the Am, for all m.:

2 '
tanh 07m)

om )

3

8

oo [m/2]

2A*Am+1 +Z ajAj Am-I

(3.5.3.2)

Mud equations

Once again, we study the order 0(K) of the mud equations because non-linearity

creates a very interesting drift phenomenon at this order.

We had from equation 3.5.1.10:

a(2)(rZ) _ BU
az at

6(11)0 (8(")

ax + y
Kd 870
r, Ox + ( UCO) U("

K ( x

As a consequence, the zeroth harmonic of U(1) is not zero:

Si [(-im)U )U () + (im)U?42U (

+V" BZ~

+ Vl" U

(3.5.3.4)

dAm

dX

+ (V)O 00UOZ)

a() (1)
Oz

(3.5.3.3)



and thus:
d 2U(l) 1( DU 00)

() 0 
_ _)a po dZ 2  2K I~rd 88Z

m=1

+V2 (3.5.3.5)

By the same token as in the previous chapter, we easily deduce the following equation

for the drift velocity:

d2U(I) Re 2 d x___U

dZ2 =10 K E R V zM=1
(3.5.3.6)

3.6 Further details

3.6.1 Surface and the interface

We truncate the series 3.5.3.2 , in order to obtain a finite system of differential

equations for the Am, for all 0 < m < n:

Let us note that this equation is the same as equation 2.6.1.1 in the case of

Newtonian nud. except for the parameter om that became 6m because of complex

viscosity.

Since this equation depends on -y, f 1a, 6 and the &m. we deduce that the result

of the Am will depend on the values:

9 Pw, PM, A, h. d, itM (3-6. .2)

where g and pw are fixed, pM and the p'm depend on the mud we consider, and A. h,

L' and d depend on the geometry and the surface wave.

3.6.2 Drift current in mud

We also truncate the result we got in 3.5.3.6 for the drift in velocity:

82U Re( 2 v nU
az-E R V [p m=1

(3.6.2.1)

Since equation 3.5.1.9 is the same as equation 2.5.1.21 except that, am is replaced



by a py, we can easily deduce a and 00) from 2.6.2.2 and 2.6.2.3:

In the end we get:

um = -yAmO[-on

Oz

V0 - imA [&*Z z
m

sinh(oUmZ) + o, tanh(&m) coshi(&mZ)]

- sinh(&* Z) + tanh(&*) (cosi(&*Z) - 1)]

Integrating as done in the Newtonian case, we get the expression of al

JA ,12  [ 2R e(2 -m -[
|A m| 7" --

.,O po3-om .
- &* (Z cosh (&mZ) -

sinh(cmZ)

-1-e~~ an( rn ( 5i11(mZ -cosh(UmZ))+ * tainh(m) Z si+ nh(&mZ) -(tanh(&m)

+s CIh262Z rn r T(ltah(&) (taii(jm))*-)msinh(211'&IZ)

+ &m(1tanh()(tanh(m))*)

coshi(2CTRZ)
- oatnh&m + (ah&)*

cosh(21i Z)
+om(tanh(m) - (tanh(&m))*) +

- tanh((om)(taih(Jm))* sinh(&mZ) + C,

(taih(am))* cosh(&mZ)

(3.6.2.4)

100

(3.6.2.2)

(3.6.2.3)

)Z

n



JAm 12 Re(2)s 4 m 6
rn-i bto m= = - A |2a-

+ o-m tanh(o m)
Z cosh(&mZ)

~7M

Z sinh(&mZ) 2 cosh(j-mZ)

om o&m

sinh (&mZ)
- 2 ~2

cosh ( 2 a- R Z)
+ (-m(1 + tanh(om)(tanh(om))*)

4(&R)2

cosh(2i'I Z)
+ 2a &m(tanh(&m)(tanh(&m))* - 1)

8(6-,1)
sinh(2&RZ)

- a om(taiili(om) + (tanh(om) )*)
8(j&T)-

sinh(2i&' Z)

8(&1 )2 &-(tanh(&,)

with &M =

- (tanlh(o m))) +

- tanh(m) (&m))* ~h ( )]

8f +Iir-a, and &I, are reals.

sinh(&mZ)
(tanh(o-m)) ~

+ CZ + C)
(3.6.2.5)

We know that:

U () (Z- )

As a consequence, we deduce the value of Ca:

(2) 2 Re(2 [m 2*
m - t a & 2

m ma

&m (I - tanli(8) (taiih(6

&m(1 + tanh(07m)(tanh(-&m))*)

8((3-)2

t anhIl(&mrr) (t anh(om))*

8-m

We now make use of the interface boundary condition 3.4.0.10 in order to obtain the

value of C(<. From this equation, we know that:

r ( 1) -r(0)

( z)

OZ z=1

dQ7z- + B'9 i = n+ B-

(3.6.2.8)

O(TXz) $z1
,rn O = (3.6.2.9)

r Bm
m=1

101

and then U :

(3.6.2.6)

(3.6.2.7)

and so:

8(&1 )2

(1)UO



From equation 6.2.0.14. which only applies to simple harmonic waves, we know:

(3.6.2.10)
dU(P + (4VP, (Txz)) = Pm m+O )MdZ +O~i

and we can replace Txz in the last equation:

po OZ z=1
1 2U(O)

-4 E Bmp mZ2 =1
m=1.

0C 1- 92 U2 *

4 m(p =2 z1

ci 00 Bm 82 U M)

m= .Z 2

m=1

82UO
8Z2 z=1

+ (Bm)*pm BZ2 1z=11 (3.6.2.11)

z)*]

Knowing that:

Bm = 7 AmG(&m)

and:
(2 U(o)

Z=1 Ammsech(&m)

equation 3.6.2.11 becomes:

JAI
2 00

E- A
2Kpo 1

724m (&m~*,7A,(&*)2sech(&*,)

m|2R [G(&m)p*m(&* )2sech(j *)]

m [iG;(&m)p* (er* )2'sech(&5*,)

(3.6.2.14)

Let us truncate this last equation:

1)n

e7 E Am,
2Fp

(3.6.2.15)

From equation 3.6.2.4, we deduce the condition that CQ needs to meet in order to

102

(3.6.2.12)

(3.6.2.13)

BZ (z=1)

1 (1



respect this boundary condition:

Re M sinh((&) *)
-72  

[ *n cosh(&m) - -0* tanh()sinh()
/pos ,n om m 07m

sinh(2(R)
-Mm(1 + tanh(m)(t anh(&m))*)

m

sinh(2i&)-

41&1 &m(tanh(&n)(tanh(m))*-
m

cosh(2a )+ 4&R m(ta(&) + (tanh(&m))*)
m

cosh(2io&i).
4 cosh m &m(tanh(a&m) - (tanh(&m))*)

m

- (tanh(&m))* cosh(5+m) + tanh(&m)(tanh(&m))* sinh(&m) -

61Y [iG (&m)p* (6* )2 sech(a*n)

(3.6.2.16)

We finally obtain the value of CTl):

2

C2) = - Q [IG( m0p7 (*)soch(&*n)
2r po 7n?

+ 2 Re(2 Vid [ n *( oh() - sinh(&m)

cosh(U-m)Lm m
- o-m tanhi(om) (s5 inh(om) - C~Q~)

sinh (2&f )
- & oR m(1 + tanh(&m)(tanh(&am))*)

4 MR (3.6.2.17)

sinh(2i )
- & 7-n a7 mc(tanh(m)(tanh(&m))* - 1)

+ cosh(2am) urr(tanhi(Cm) + (tanll(&m))*)

cosh(2ia )- ,m(taiih(6m) - (tanh(&m))*)

- (tanh(6m))* cosh(Jm) + tanh(&m)(tanh(m))* sindh(Jrm)

The drift current is now found.

Let us precise again that, the drift current we found does not depend on the

characteristic value of viscosity pu8. Indeed, even though Re(2
), pto and pm appear,
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they always do as a ratio, either Re(2 )/Mo or p*m/po.As:

Re(2) PIlAdk rg-h
I'o /I

p*' (p'm)*

pto PO

(3.6.2.18)

the value p,1 is not needed.

We find that the drift current depends on the same parameters as |Amr namely:

g, pw, Pu, A, h. d, ', pm (3.6.2.19)

where g and pw are fixed, pM and the p' depend on the mud we consider, and A, h,

W' and d depend on the geometry and the surface wave.

3.6.3 Energy variation in water

We obtained the differential equation:

in dA (
- 2 Am(X) 12 K

tanh(o-m))
-m

3i
2A*Am+ui +oo1

[m/2]

ajAjAmij

(3.6.3.1)

to describe the free surface motion.

In [8], G. Grataloup and C.C. Mei demonstrated that if the differential equation

describing the free surface is:

dA + im 3i C
+ #m,m - -Am + -- m

dX 6 8K
2A*Ar+i +

[m/2]

S aiAiAm
1

- 0, (3.6.3.2)

then the general relation on the first-order wave-energy is:

dX[1m=-i
Am 2]

n

-2E R(m)|Am| 2

m=1
(3.6.3.3)

Indeed, in equation 3.6.3.2, Om represents a dissipation source. That is why the total

wave energy at the leading order decreases with relation to 0m.

In our case of a, flat bottom with a moderately thin layer of visco-elastic mud, we
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deduce that the general relation on the first-order wave energy is:

d A =2 -. ( tanh(Jm | 2

dX ,/sm rn-i K Er z l ) AmI (3.6.3.4)

3.7 Attenuation rate

3.7.1 Attenuation rate as a function of r,

From the energy variation equation we obtained (3.6.3.4). we know that the attenu-

ation rate fot the m-th harmonic is :

1 a

Lm K

Kd

= -73m

-tanh(a-m))

tanh(&m)
I1 -

(3.7.1.1)

After the distance O(Lm) the m-th harmonic will be damped out.

Let us first study the function:

G(a-) =1 - t anh () (3.7.1.2)

For that we write a- |&le- 10 and we plot G as a function of I&I for different phase

angles 0,, where 0 < 0, < !. The results are shown in figure 3-10. The function G(&)

has been studied analytically by Mei et al. ([12]).

Following the same reasoning, we write

& = a + i/3 (3.7.1.3)

with a and 3 real numbers. Then we obtain that:

-1 sinh(a) cosh(a) + i sin(,3) cos(#)
a- cos 2 () cosh 2(a) + sin 2 (/) sinh 2 (a)

and in particular,

[R (4) sin(3) cos(#3) + 9 (4) sinh(a) cosh(a)]

cos2 (#) cosh 2(a) + sin 2 (#) sinh 2 (a)
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3(G)

Figure 3-10: Variation of the real and imaginary parts of
modulus |1&, for different values of -1. We see that 9(G)
for .10 0.9.

As a consequence, the denominator of Q(G) vanishes if

cos(#) sinli(a) = 0

i.e. when

0 =| =
4 ' (2

+ n) 7r

8 10

G(&) as a function of the
reaches the biggest values

(3.7.1.6)

(3.7.1.7)

where n is an integer.

Thus large !(G) may occur if the mud is highly elastic 0 and if the modulus

54| has the special value given by 3.7.1.7. In particular the first peaks of G(G) are at

&I = 1.57. 4.71, 7.85 for n - 0, 1, 2.

3.7.2 Attenuation of the first harmonic

Let us first consider just the first harmonic m - 1.

We know the dimensional complex viscosity p' as a function of the dimensional

w' for all the different types of muds from the previous section.

We also know that we used the scaling w' = k(gh) 1 ./2
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Let us first write & as a function of pL':

~2 .dpMAdky gh
CI

= I V gh- (3.7.2.1)

p/'d .rpAh gh

The dimensional complex viscosity p' is a function of the dimensional W'. Since we

chose the scaling of w':

(3.7.2.2)

' is a function of K when h is given. As a consequence, i' is a function of K when h

is given: p'(K).

We deduce that for given values of h and Vd and for a given mud (that is to say

given p' and pMyr), & is a function Of K:

-() = I p r q, (3.7.2.3)

As a consequence,

I~I d /i/(K)I (3.7.2.4)
arg(pI')

2

As a consequence, the peaks in 9(G) occur when arg(p') ~ i. that is to say when the

imud is rather elastic, and if the modulus I&I has the special value given by 3.7.1.7.

Equation 3.7.2.4 can be rewritten:

, 2 Kpuks /2 q1/2
IKp -= ( 3 1 2  (3.7.2.5)

From 3.7.1.7 and 3.7.2.5, we deduce that these peaks occur for:

(K)|= 4 p 9 1/22(3.7.2.6)
(1 + 2 nr 2)2w2d
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From now on we will write:

Y(K) - 4 p22 (3.7.2.7)
(1 + 2n)24r2 d

As a consequence, our study means that elastic muds have attenuation rate peaks for

= Yn(K), with n an integer.

In a nutshell., we have obtained that the damping rate is proportional to Q(G(U)).

We have demonstrated and checked in figure 3-10 that Q(G(a)) had peaks when

arg(p') ~ n, that is to say for rather elastic muds like the Gulf of Mexico or the Mobile

Bay ones. And we have demonstrated that these peaks occurred for |p'(1)|= YI(K),
with n an integer.

Figure 3-11 and 3-12 represent It'I as a function of K for the different mud cases,
given the values h = Im and Kd = 0.1 and using equation 3.7.2.5.

Figure 3-11 corresponds to the elastic muds (Gulf of Mexico and Mobile Bay).

These muds have arg(p') ~ L (from figures 3-3 and 3-5). We plotted the functions

Ya, for n - 1 and n = 2 with dashed lines. The intersection of these dashed lines

with jp'l naturally show the values , at which 9(G(a)) has a peak. That is to say,

the values of K at which the attenuation rate is the biggest. From these graphs, we

expect the attenuation rate to have no peak for the Gulf of Mexico and the Mobile

Bay muds when h = Im.

Figure 3-12 corresponds to the rather viscous muds (Lianyungang and Hangzhou

Bay). These muds have arg(p') < 0.6z (from figures 3-7 and 3-9). As a consequence,

as can he seen on figure 3-10, Q(G(a)) only has peaks for pI'| = Y1 . The following

peaks (corresponding to n > 1) are either extremely small either iion-existent. We

still plotted the functions Y, for n = 1 and n = 2, even though Y is more important.

The intersection of this dashed lines with I'I show the values K at which 3(G(a))

has a peak. That is to say, the values of K at which the attenuation rate is the

biggest. From these graphs, we expect the attenuation rate to have no peak for the

Lianyungang mud nor for the Hangzhou Bay mud.

Figure 3-13 and 3-14 also represent ILy'I as a function of K for the different mud

cases, but this time in the case h - 4m.

Figure 3-13 corresponds to the elastic muds. From these graphs, we expect the

attenuation rate to have no peak for the Gulf of Mexico and the Mobile Bay muds

when h = 4m.

Figure 3-14 corresponds to the rather viscous muds. From these graphs, we expect

the attenuation rate to have no peak for the Lianyungang mud and one peak for the
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0.1 0.15
K

(a) Gulf of Mexico mud

0.15

0.2 0.25

0.2 0.25

(b) Mobile Bay nmd

Figure 3-11: Representation of the complex viscosity modulus as a function of K for
the elastic muds, in the case h = 1 and Kd = 0.1. The dashed lines allow us to expect
the t-values of the peaks.
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0.1 0.15 0.2 0.25

(a) Lianyngang mud

10 -.

102

1001
0 0.05 0.1 0.15 0.25

(b) Hangzhou Bay imud

Figure 3-12: Representation of the complex viscosity modulus as a function of K for

the different rather viscous muds, in the case h = 1 and sd = 0.1. The dashed line

allows us to expect the /-value of the peak.

110

102

10 2

10 01
0(

In=1 I
.................- - - - ----- -.---.-

0.05

In=1 I
......................................



0.1 0.15
0.1 0.15

K

(a) Gulf of lexico mud

0.15

0.2 0.25

0.2 0.25

(b) Mobile Bay mud

Figure 3-13: Representation of the complex viscosity modulus as a function of K for
the elastic muds, in the case h = 4 and Kd= 0.1. The dashed lines allow us to expect
the /,-values of the peaks.

Hangzhou Bay mud (K = 0.22). As we said before. only the first peak is sensible for

the viscous muds.

In figures 3-15 and 3-16, we represent the attenuation rate of the first harmonic:

1d satanh(&i)
- - ~1

as a function of , for each mud, and for different values of h.

Let us first look at the Gulf of Iexico mud (A). We can see on these graphs that

its peaks in the attenuation rate corresponds to what we were expecting: it does not

have any peak for h = 1mn or h 4m1.
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(a) Lianyungang imud

0.1 0.15 0.2 0.25

(b) Hangzhou Bay iud

Figure 3-14: Representation of the complex viscosity modulus as a function of r, for

the different rather viscous muds, in the case h = 4 and 1 d = 0.1. The dashed line

allows us to expect the ,i-value of the peak.
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0.1 0.15
0.1 0.15

K

(a) h = 1

0.1 0.15
K

(b) h = 2mn

0.2 0.25

0.2 0.25

Figure 3-15: Attenuation rate of the first harmonic as a function of r, for different
water depths h and ad = 0.1. Mud A is Gulf of Mexico mud, mud B is Mobile Bay
mud, mud C is Lianyinigang mud and mud D is Hangzhou Bay mud.

The attenuation rate of the Mobile Bay mud (B) does not have any attenuation

rate peak for h = im or h = 4mit either, as expected.

We get the same result for the Lianyungang mud (C). which were also expected.

Finally, the Hangzhou Bay mud (D) has no peak for h = li and one peak

around K = 0.22, as expected from 3-14. Thus, this result is consistent with what we

predicted.

As a conclusion, the resonance peaks appear for high values of K (i > 0.4).
corresponding to short waves, for the Gulf of Mexico, Mobile Bay and Lianyungang

muds. In other words, there is no resonance for long waves, even though there is

attenuation.
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1/Li 0.2 D

0.15

0.1
A

0.05 - B

0.05 0.1 0.15 0.2 0.25
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(a) h 4rn

0.25

1/L 0.2-

0.15

0.1A A

0.05 - B

0 0.05 0.1 0.15 0.2 0.25
K

(b) h =10mr

Figure 3-16: Attenuation rate of the first harmonic as a function of K for different

water depths h and d .=. Mud A is Gulf of Mexico mud, mud B is Mobile Bay

mud, mud C is Lianyungang mid and mud D is Hangzhou Bay mud.
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However, there is resonance for , = 0.2, corresponding to long waves, for h = 4i

in the case of the Hangzhou Bay niud. As a consequence, there is resonance for long

waves with this mud.

3.7.3 Attenuation rate for the different harmonics

Up to now, we have only studied the variations of the attenuation rate for one har-

monic. We now want, to study the variation of the attenuation rate for the different

harmonics. to see for instance if the attenuation rate of the first harmonic is bigger

than the attenuation rate for the fourth harmonic.

Let us now study 1/Lm as a function of m:

Kd Kd
1 = m-[G(&m)] = -ym- 1

K K I

tan(Jm)
-M I (3.7.3.1)

We know that:

a-2 Sm/dpA Adk gh

MK 2Kp hdm KAICh Vgh

dm~K~ Vgh
= -i ,

where

P' = 1p'I(w'= mk gh) Ift'I(w'- mK h) (3.7.3.3)

As a consequence. at given water depth h and for a given mud. L'm is a function

of m, , andhd.

That is why, for given values of the water depth h and of Kd, we can plot the

different 1/L, as a function of K for different values of m.

Figure 3-17 shows the variation of the attenuation rate 1/Lm as a function of K for

different values of m in the case of the Hangzhou Bay mud and for the water depths

h = 2m and h = 4m, with Kd = 0.1.

We deduce from 3-17 that the attenuation rate peaks shift to small values of K as

m grows. In other words, the resonance of the high harmonics appear for smaller K

than the resonance of the first harmonics. Moreover, the peak value of the attenuation

rate is bigger for the higher harmonics.
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(a) h = 2m
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(b) h = 4m

Figure 3-17: Variation of 1/Lm as a function of , and in for the Hangzhou Bay mud.
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3.7.4 Attenuation rate for high viscosities

As we saw in tables 2.6, 2.7, 2.8 and 2.9 the Reynolds number Re can become very

small compared to 1 in the case of a highly viscous mud or very low frequency mio-

tion. In this case, the modulus of o naturally becomes very small as well., since o is

proportional to Re.

Let us study the attenuation rate 1/L - - _& (i - t" in the case of 0 -+ 0.

Writing & the way we did in equation 3.7.1.3 (J = a + 3), we know that:

1 sinh(a) cosh(a) + i sin (3) cos(,8)
& cos 2(3) cosh 2 (a) + sin 2(o) sinh2 (a)

Knowing that 1&1 - 0, we necessarily have a -4 0 and # -+ 0. As a consequence

we can write:

sinh(#) = 3 + 3!
3!

cosh(#) = 1 + 2

3 (3.7.4.2)

sin(O) = B - -
3!
#32

cos#) = 1 -2
2!

and the same equalities for a.

So equation 3.7.4.1 becomes:

1a2 + + 02+ O(a) + i (3 + 0(4))
G (a) =! ! -! 

3

(5 1 - a2 + #2 + O(a 4)

- 1 a- - a + i # - (1 + a2 742)S_ 3 3

-1 - 1 [a+ i# + O(a2) + O(32) (3.7.4.3)
a + if3

1 1 + O(a 2)+ O(2)
a + i#

O(a2)+ 0(02)
a + i#

as a consequence, we get that G(&) -+ 0 when 1& 1 0. and thus the attenuation

rate goes to 0 when the Reynolds number is small.

We deduce that for muds that are very viscous, such as Re is small compared to

1. the attenuation is insignificant.
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3.8 Numerical results by using the first ten har-

monics

We are now going to plot these results for the viscoelastic muds we previously studied.

Let us sum up the different muds we are considering:

" Case A: Gulf of Mexico mud. This mud is rather elastic.

* Case B: Mobile Bay mud. This mud is rather elastic as well

" Case C: Lianyungang mud. This mud complex viscosity's phase is around E so

it is as elastic as viscous.

* Case D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity's

phase being close to zero.

We choose to plot the different results for those muds in the case h = 2m, A

0.4m, W' = 0.5rad/s and d = 20cm (corresponding to the case lb of the previous

chapter). In this case, we know that:

K = 0.22. c = 0.2, d = 0.1 (3.8.0.4)

3.8.1 Surface and interface

In figures 3-18 and 3-19. we represent the variation of the first harmonics of the surface

and the interface. Even though we carried the resolution with 10 harmonics in order

to take into account all the significant ones, we chose to only display the three most

significant harmonics for clarity.

In figure 3-18, we observe that the damping is more important in cases A, C and

D (respectively Gulf of Mexico, Lianyungang and Hangzhou Bay mud) than for the

Mobile Bay mud (B). This is what we expected from figure 3-15, that showed that

the attenuation rate was insignificant for small , for mud B (Mobile Bay mud).

In cases A, C and D, the harmonics are significantly damped for X = 10, that is

to say x ~ 45 since , = 0.22 in the case we consider, or x' = = 402m. As A= 2,

A ~ 56m, we conclude that the wave is nearly damped after around 8 wavelengths.

The damping is not that significant in the case of the Mobile Bay mud (B).

We also observe that for the Hangzhou Bay mud, the |Ar| have more oscilla-

tions than for the Gulf of Mexico and Lianyungang imuds. even though the damping

lengthscale is comparable for these three imuds.
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Figure 3-19 shows the variation of the interfaces. The results confirm what we

previously saw: in the cases of muds A, C and D., where the damping is significant,

the interface motion is strong. However, the interface motion of mud B is extremely

small.

Drift current in mud

Figure 3-20 represents the drift we calculated in equation 3.6.2.5. As in chapter 2,
the drift current is a sum of the IAm| 2 multiplied by coefficients. As a consequence,

the shape of the |AmI directly influences the drift current shape.

Let us remind the equations:

U = U(0) + KU + Q( 2)

(U) 1 =I U() + U > (um) eut +cc.) (3.8.1.1)
m=1

This is why we represent the value 1(U)(), which is the value that appears in

the total sum of U.

The drift is represented in the mud layer for 0 < X < 5 for Z = 1. It is interesting

to note how the drift naturally vanishes as X increases.

Once again, the results preseuted in this figure confirm the effect we previously

described: the damping is strong for the Gulf of Mexico, Lianyungang and Hangzhou

Bay muds. As a consequence, their mud's motion is stronger. and in particular the

mud's drift current is stronger.

We note the presence of oscillations in the drift current for the Hangzhou Bay

mud (D). We already noticed these oscillations for the same mud in the |Aml in the

previous section. As we said, the drift current is a sum of the |Am|2 multiplied by

coefficients. As a consequence, if the lAmi show oscillations, it is logical for the drift

current to also show oscillations.

Let us recall that we already noticed oscillations in the drift current in the viscous

case. and these oscillations were also correlated to oscillations in the |Am|-

Finally, we note that the drift current initial value (X = 0) is much higher in the

case of the Hangzhou Bay mud compared to all the other muds. At X = 0, the value
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(a) Gulf of Mexico mud
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2 -''II 3'
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(b) Mobile Bay mud
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(c) Lianyungang mud
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(d) Hangzhou Bay mud

Figure 3-18: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds.
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Figure 3-19: Effects of wave amplitude on the evolution of the first 3 harmonics of
the interface over different types of viscoelastic muddy seabeds. Warning, the scale
is not the same for mud D!
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Figure 3-20: Drift velocity (U)(O0 .

of the drift current is:

1 (1)
- rU () (X=0, Z =1)=-
2 0

+ 6* tanh( 1 ) (cosh(1)
Ji

~ sinh(&i)

2 sinlh(1)
-r 2

cosh(&1)
-2 2

1

cosh(2Jf0)
+ ( 1 51(1 + tanh(Ji)(tanh(6i))*)

4(&R)-

cosh(2id )
+ 8(Jf)2  &1i(tanh(&i)(tanh(1))* - 1)

8(GF1)2

sinh(20f?)
- 2 &1 (tanh(CI) + (tanh(&1))*)

sinlh(2i-f )
+ 2 .i 1(tanh(ai) - (tanh(ai))*)

+ (tanh(Cdi))*sinh(U1)

- tanh(j1)(t anh(Ji))* cosh(51)]
&1 1

+ C ( + C(2)

(3.8.1.2)

since A 1=1 and all the other Am are 0.

By calculating this value for the different muds, we indeed find that the initial

value of the current drift is at least 50 times higher for the Hangzhou Bay mud than

for any other mud. This explains why the drift current has such a high value for the

Hangzhou Bay mud at X = 0.

Figure 3-21 allows us to check the boundary condition at the interface correspond-

ing to equation 3.6.2.15. Indeed, in this figure, the solid line corresponds to the actual
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derivative of the drift current at the interface, numerically obtained. The dashed line

corresponds to the actual value of this derivative based on the boundary condition

3.6.2.15:

ou"(- U 2  
n

(z=1) = Am| 2 [iG(&m)i*(6,* )2 sech(&*)] (3.8.1.3)

The two lines are so close that they are difficult to distinguish on the figure. This

verifies the numerical resolution of the drift current.

We only plotted these figures for the Gulf of Mexico, Lianyungang and Hangzhou

Bay muds because the values were extremely small for the Mobile Bay mud (B)

(around 10- and thus not representative).

Energy variation

We numerically represented the total first-order energies in figure 2-6. This figure

shows that the total energy logically decreases, because it is dissipated in the viscous

mud.

In the case of muds A, C and D, the energy reaches a nearly zero-value for X = 10,

meaning that the dissipation is fast. However, we observe once again that dissipation

is slower to occur for the Mobile Bay mud (B). Indeed, energy only decreases by 10%

between X = 0 and X = 10.

In figure 3-23., we represented the variation of total energy. The dashed line

represents the right-hand side term of equation 3.6.3.4:

SE Am = im 1 - tan&M) 2Am (3.8.1.4)

m=1 M=1-

As in the Newtonian case of chapter 2, the dashed line is so close to the solid line

that it is very hard to distinguish. meaning that our numerical results are right.

3.9 Horizontal bottom without mud

3.9.1 Governing equations

From the study we just led in the particular case of viscoelastic mud, it is very easy

to deduce the surface waves behavior in the absence of mud. Indeed. the absence of

mud simply means that Bm = 0 in equation 3.5.3.1.
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(a) Gulf of Mexico mud
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(c) Hangzhou Bay mud

Figure 3-21: Drift velocity derivative boundary condition Z =1. The dashed line

"BC" corresponds to the boundary condition, the right hand side term of equation

3.6.2.15
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Figure 3-22: Wave energy over a flat thick muddy seabed.

As a consequence. the governing equation 3.6.1.1 for the surface waves become:

.A 3 n-mn [mn/2]

VmC, d + ( 2A*Am+ + [ aiAiAmA - 0 (3.9.1.1)

The same way. the energy variation can be deduced from equation 3.6.3.4, that

becomes:

[ Aml =0 (3.9.1.2)
m=1

This result looks very logical, since it means that in the absence of mud, there is

no energy dissipation in Water.

3.9.2 Numerical results by using the first ten harmonics

Since we don't consider imud anymore, there are only tree parameters remaining: h.,
A, and w'. These parameters are only present in equation 3.9.1.1 in the ratio /,
which is around 1.

In figure 3-24. we compare the surface displacement for three different cases: E K

0.5 (A), c/i = 1 (B) and c/K = 1.5(C). These cases correspond to different non-

linearity/dispersion ratios. The first case c/h = 0.5 means that non-linearity is less

important than dispersion., whereas the case c/i = 1.5 means that non-linearity is

predominant. Once again, even though we carried the numerical resolution with ten

harmonics, we choose to only display the first three harmonics.
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(a) Gulf of Mexico mud
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Figure 3-23: Variation of the wave energy over a flat thick muddy seabed. RHS is
the value of the right-hand side tern in equation 3.6.3.4.
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Figure 3-24: Effects of wave amplitude on the evolution of the first 3 harmonics of
the free surface on a solid seabed. Comparison between different values of E1K.
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Chapter 4

Horizontal bottom, very shallow

Newtonian mud

As we pointed in chapter 2, non-linearity c is sometimes small compared to dispersion,
that is to say E small compared to r, for some values of the water depth h, the

frequency o' and the wave amplitude A. Some of these cases are for instance listed

in the gray cells of tables 2.6, 2.7, 2.8 and 2.9.

That is why we carry in this chapter the same calculations made in chapter 2, but

in the case:

O(C) =(s2) (4.0.2.1)

In other words, we consider weak non-linearity of Boussinesq class.

In order to see the effect of non-linearity on mud-induced damping, we now con-

sider the mud layer to be thiner than in the previous chapters:

d
-=Od ) (4.0.2.2)

so that non-linearity and mud-induced damping act at the same order.

4.1 Scaling

The scaling in water is logically kept the same as in the previous case, that is to say:

x = kx' z - t =k(gh)/ 2 t'
P= a- U= I hL! (4.1.0.3)

pwgA E gh -V gh
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The scaling in mud is also conserved:

x kx'

P= P'/
pvgA

tKdA

T--.) pwgA

U= 1 U'

- d ij,t

t k(gh)1/ 2 t'

V= 1 V'

V~ k V,

E3 p 13

but we now have: ( = Nd - O(K2
h

4.2 Equations in water

Let us first study the water layer in order to determine the equation equivalent to

equation 2.5.1.5 in this new case. Because this may be useful for later studies, we

carried the calculations up to order O(K'). However, we will only use the results at

O(x0) and 0(K2 ) in the rest of this thesis.

We still consider p to be the series 2.3.0.2:

(4.2.0.5)
(z 1)"n

#(x, z, t) = n! )(n)()
n=0

4.2.1 Laplace equation

The Laplace equation still gives the result given by equation 2.3.1.2:

V, #(n) = _ 2 020(n 2)

4.2.2 Kinematic boundary condition at the interface

Equation 2.3.1.3 becomes:

Ot 
x Exd z -- -1 + erId77(X, t)

(4.2.1.1)

(4.2.2.1)

and the Taylor series expansion gives:

P, + EKd'qr|zz - EIdK
Ox Ox

+ E( K gr O ) + a- + 0( ).
+ tI z = -1 (4.2.2.2)
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Using the same reasoning than in the previous case, we obtain that:

$ Exa](2) _ 2 0r 2 0(0
1 + EKd7O - K - xOhK x ax

And finally:

0(l) = a 
at

+ KK2 Ot + 0(h)
at

a (a2)
+ EKdK 7Iax Ox

This last equation is true because we know from the result of the equation 4.2.1.1

that:

#2) = -2 (4.2.2.5)

We finally deduce an explicit expression of # at the order /-.

.0(o) + Kdh 2 (Z + 1) +E r / 2 (z + 1)2 a20(0)
2 ax2

4(Z + 1)3 8 2 r/t
-dK 3! ax

S4(Z + 1)404 0) K 6 (z + 1)6 60(") 0
a x4 6! x6 +O(h)

(4.2.2.6)

4.2.3 Kinematic Boundary condition at the free surface

The expression of the kinenatic boundary condition at the free surface is naturally

unchanged:

2 + aE ax Z. z CC (4.2.3. 1)

From equation 4.2.2.6, we know that:

2 OT/ + C T
at Ox

4(z + 1)30 40(0)
6 ax4

K 2 (Z +1) aX2 KdK4 (Z + 1)2 2,
2! Ox

(4.2.3.2)
6 (z + 1)5 a60(0)

5! Ox6

Plugging this result in equation 4.2.3.1. we obtain:

C(+E a ax
Ox Ox 2 ax3 ax

KdK 2 a27,
2! ax

+ Kd OT

8 t

+ 
(

6 Ox4

T-(1ax J
+ 2 x4 +O()

+ E0COX+4.23 x2

(4.2.3.3)
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We introduce the horizontal velocity at the bottom uM = 0 and the depth-ax

averaged velocity U. We have the following relation between these two quantities:

1

1 +t c( - eInan

1

1 + ( -- A

I dz
-1+<EKax

- +ErdT

4(z + 1)4 4n (K6) dz
4! Ox4  0

= - 2 (1 + E()3  a2U(O)
=+3 E - rd)(X

= u(O) (1+ 2c0() +
6 ax2
2 2 0) 2 (2

= -O 6 ax 2 - x2 a2

K2 + (2 (t /4 a

+2 1 + cc;-Idrax 5!
2 1+ (-eago 5!2 (1 + E()2 4 4l (04()

2 1+Cc(-edx Ox 5! ax4

± 2 ± 7 4  0( )
+ -+ 5 - +8xr,6

rBxa + O(K6)

Turning this last result around, we obtain the relation:

K2a2 u 6 4 a4 U EK2- KdKa 11
Un u = + -+ 2+ V2 -6 ax2 36 3 2 Ox (4.2.3.5)5! ax4

We first express equation 4.2.3.3 as a function of the water velocity u0 instead of the

potential:

+ a (Ox
() (-K2 02U(0) a0;(t + 2Ux -ax

Ox 2 OX2 OX
qUn(O )) ax

(4.2.3.6)

d t 2 a - I- ±0Q 6)2! Ox + 6 ax3 + 2 ax3

Using 4.2.3.5. we obtain the equation 4.2.3.6 with respect to fL instead of 71(o). Many

terms cancel and we finally obtain the simplified form of the kinematic boundary

condition, that does not contain any additional term compared to equation 2.3.2.9:

a9
(t - dT/t + -[(1 + IE( - EKd/)n] = OOx" (4.2.3.7)

In the rest of this thesis, we will only use this equation up to order 0(v 2 ):

a
(- 1dat + [-(1 +- E()u] - 0(8~4)
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K2 (z + 1)2 a2U30 d2 (Z+1)
2 ax2

+ O( )

(4.2.3.4)

(4.2.3.8)

+ Ka - J

Ot

2 A2 2 ,3,(0) 2 -13 ,(0)



4.2.4 Dynamic boundary condition at the free surface

The same way, the dynamic boundary condition at the free surface is unchanged

compared to equation 2.3.3.1:

r + () + 19 z =C((x t)

From the development of # given by equation 4.2.2.6, we deduce the following equal-

ities:

0~t =(~ 0 0) t 2 (1 + 2E) 2 t

2 Ox2

2 0(o + O<0()
- 9X a x & 3 +0 K4

$Z2 K4 ( 2 0() ()2 + (K6

And as a consequence:

(0(0))t- 20 2(0i()) )
2 x Ox2

1 F #0ao) 2
+ - a x

2 Ox

+ Kd 2-0

Ox ax2

3 ~2 4! ax 4

+ r 2 03 0) 2

O 3

This equation is rewritten:

((0))t + CS2 ( ae )2 2 02 0(0) t
+( 2 8x2

2 2 (o(0) )t
ax2

# a60 030(0)
ax ax3

(020))

Ox2

(4.2.4.4)

As done for the kinematic boundary condition case, we write this equation as a

function of the velocity u(0):

2 0( O(u( t))
- ax ax + EWK 2 2O__ __ __

1 2 0 ((O) 2u(O)
2C x u ax 2

1

- Kd2 ax
2 0 (O (

Ox a..x
(4.2.4.
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(4.2.4.1)

+-K - h I tt + K4.0 00) (6
4!T aO Q4

(4.2.4.2)

= (K6)
(4.2.4.3)

19
+ 26K

(2
at2

4 4 0(0)
4! OX4

+ O(.6)

at
+ EU aax

( a
ax

K2 a2( i( t
2 Ox2

1!4 ax4(U")
At! Ox4

2

5)

#x2 = Ox

+ O(K6)



And from equation 4.2.3.5 we deduce the relation on the depth-averaged velocity Ua:

Ont K2 02 u
Dt 6 8x2

+ 6 +

x 02 rtt
Ox

Ott
A- 
ax

4 04iit

36 Ox 4

K2 02f,

6 7x 2

0 4
4! 0

8(
Ox

(K
2 02

+3 8
K2 2

+6--
6 0x 2

'Ut 1 2

x4A-2 Ox

K2 O934
6 OtOx2

+ d2 093

K 4 05 u
A - -4 +12 xO

t 6K 2 g g2 _

23 at OX2
0~ ft 0 K2 92 it

x Ox 2 X2

4 2K 4O(5 U EKI 2

36 Ox40t 3 8
K4 (95n EK 2

5! 7x9t 6L

2Ox 02 U
Ox Oxat

KdK 2 0qtt_

2 Ox

120X4

O, 2

33 

r2OL
93
Ox3

Ox2

K4 g4 ii

5! Ox 4

A EK o
gO O

+ O(K6)

(4.2.4.6)

K2 03 u
2 0x 20t

K 4 (x5 t
1 2 4 O4t

1 2

2 Ox (t O2
8a~2 J 2

2
2a a U 2

Ox (Ox)
0(K6)

(4.2.4.7)

Combining terms on the right hand side, we obtain:

K 2 O3f
Ox 6 OtOx 2

K4 O f

368x4 t A
EK2 O3 ft

3 Ox2Ot
eK2 a( 02ft

3 (9t x2
SKdK 2 (37/

2 OxOt 2

+ x OxOt
EK2 (93

6 Ox 3

K2 ga0

2 Ox2 OL
K4 (O5t K4 O U

5! Ox 48t 4! Ox4Ot
3

2 6K Ox
-vl OXOt2

K2 t 2 u o-I
6 -
6 Ox 2 OX

1240 5U
12 OX4DLt

(4.2.4.8)

1 2x 82

2 x 0x2J

(92

+O(K6)

K2 03

- 3OX+
K4 a

120x 401
26K 2  03d

+ ( OX2OL

6K2 0 0 2U 2d0 d 2

3 t 0x2 -+ Ox OxOt

1 2
3 Ox

1 280
2K x
2 Ox

KdK 2 0x872
2 OXOL2
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2 %9 -
+ 6K 20 Ox

aX2

6K 2 0( 02 j

3 t 0x2
K2 (2f O

6 (9x2 Ox

2 7

8t OxOt

Ott
+ eu-

Ox

+ Efn
Ox

2 Ox

+ 9-Ox
(4.2.4.9)
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Because of the relation:

CK 2 a3 u K 2 2 au--- - --- =
6 8x3 6 8 x

we finally obtain the equation equivalent to equation 2.3.3.6:

Kd 2 a3xt 1 x4t5 2 2 3
2 aXat2 12 ax4at 3 ax 2at

a2
ax 2)

1 2 a
2 ax ax

1 2 aa2
36 ataOX2

+ O( 6)

(4.2.4. 11)

Many new terms of order 0(K4) appear on the right hand side.

In the rest of this thesis, we will once again only consider the terms up to order

0(Kg):
DU On BC K2 03,U O(4+ Ox +x -=+ O(,4)at ax ax 3 atax2 (4.2.4.12)

4.2.5 Equation of the total pressure in water

From the Bernoulli equation, we know the pressure in water at any depth z:

= - - ( 2 ± (#2 z (4.2.5.1)

Thus, we deduce a relation between the pressure in water and the potential at =

-1 + EKdqr:

1 e #
p = - -t - KAn -E 2 ax

+ O(K4). (4.2.5.2)z = -1 + A/

By Taylor expansion. we know that:

-1 + _sdr/) = #(z -- 1) + O(K4 ) = 0 + 0(K 4)

As a consequence, 4.2.5.2 becomes:

p = (<p,())t - Zdr - 0-22 Ox
+ O(_4), Z = -1 + eKdr

This equation will be later used to estimate the pressure in the mud layer.

(4.2.5.4)

Since we

will only carry the calculation at, the first order in mud, we will only use the first
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28( 82 U+K e2 + -C
axaxat 3 ax
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order of equation 4.2.5.4 in the rest of this thesis:

p - - (O) + O(K 2)
E

z = -1 + en]

4.3 Equations in mud

Let us now find the governing equations in mud. We only go to the first order O(O) in

this thesis. Indeed, the drift current induced by non-linearity of order O(c) - O( 2)
will not be considered.

4.3.1 Kinematic boundary condition at the interface in the

mud

In dimensional form, we know that. exactly:

' = V' - ' U, (4.3.1.1)

In dimensionless form, and keeping only the first order. we obtain:

Iit = V + O(2) (4.3.1.2)

4.3.2 Conservation of mass in the mud

From the conservation of mass in nud in dimensionless form. we know:

Ux + Vz< = 0 (4.3.2.1)

This equation will be used later to deduce the vertical velocity in mud from the

horizontal velocity.

4.3.3 Horizontal momentum in mud

Let us first write the Newtonian relation between the stress r and the strain E in a

dimensional form.

So we have:

OBEZ
at,

BU
Tz =u + O(K 4)

8Z
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The equation of momentum in the mud, projected on the x-axis. gives:

aU+ U + V = - P + aTZ+ aT T (4.3.3.3)Ot Ox OZ Ox Re*d OZ Ox

where -y is the ratio of densities:

'7 = Pw/PM (4.3.3.4)

From this equation we simplify:

5BU _1 Arz &TZ 435O- = -- -F - 7YO +0O(6) (4.3.3.5)at Re d OZ Ox

where U is the horizontal velocity of mud, P the pressure. A the amplitude of the

free surface and d the mud depth. In equation 4.3.3.5. the convective inertia term

has been neglected. Re is the Reynolds number defined as:

Re = (4.3.3.6)

As a consequence, the Reynolds number in this chapter is the same as in chapter 2

(equation 2.4.3.6). The values of Re are thus functions of h7. w', A and the type of

mud. As a consequence, the values we tabulated in tables 2.6 to 2.9 are still valid.

Table 4.1 recalls the results presented in table 2.9. Let us remind the reader that

the gray cells in this table correspond to the case O(u2) = O(c) that we are currently

studying. We chose to repeat the table corresponding to the Hangzhou Bay mud

because it corresponds to the highest Reynolds number values that we found.

We see in this table that Re can be as big as 10. As a consequence, and because we

want our study to be applicable to any type of imud, we decide to adopt the limiting

case. This is why the Reynolds number will be regarded as:

Re = O(1) (4.3.3.7)

Differentiating equation 4.3.3.2 with respect to Z, we get:

aT +Z a 0(4 (4.3.3.8)
az aZ2
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W I

(rad/s)

W I

(rad/s)

' /

(rad/s

W /

(rad/

1/3

1/3

A (cm)

10 20 40 60
6 = 0.1

K 0.106
Re= 0.13

C = 0.1

K - 0.159

Re= 0.33

K - 0.31
Re= 1.4
E= 0.05
K = 0.15

Re = 0.27
E 0.05

K 0.225
Re - 0.65

= 0.2

K = 0.106

Re = 0.27
= 0.2

K - 0.159

Re = 0.65

= 0.4

K = 0.106

Re = 0.53
= 0.4

K - 0.159

Re = 1.3

E > 0.4

c > 0.4

=0.2 =0.4
K =0.31 K 0.31 E > 0.4

Re = 2.8 Re = 5.7

e = 0.1 c = 0.2 e=0.3
K =0.15 K= 0.15 K= 0.15

Re = 0.53 Re= I Re = 1.6
= 0.1

K 0.225

Re = 1.3

= 0.2

K 0.225
Re = 2.6

6 0.3
K = 0.225

Re = 3.9

1 ri> 0.4 K> 0.4 r > 0.4 K> 0.4

= 0.02 e =0.04 e=O0.08 e=0.12

1/3 =0.2 3 8 ra=0.238 K =0.238 =0.2 3 8

Re = 0.67 Re = 1.33 Re = 2.67 Re = 4
c=0.02 c = 0.04 e=0.08 6 = 0.12

) 1/2 =0.357 K = 0.357 K= 0.357 K = 0.357
Re = 1.6 Re = 3.2 Re = 6.5 Re = 9.8

1 , > 0.4 K> 0.4 K > 0.4 K > 0.4

e= 0.01 e=0.02 e = 0.04 e=0.06

1/3 = 0.33 =0.33 r, = 0.33 =0.33
Re = 1 .3 Re = 2.7 iRe = 5.3 Re = 8

s)1/2 r, > 0.4 K > 0.4 r, > 0.4 K > 0-4

1 K > 0.4 r, > 0.4 r, > 0.4 K > 0.4

Table 4.1: Values of Re for different A,
Hangzhou Bay mud. We set rd - 0.1.

frequency w' and water depths h, for the
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Equation 4.3.3.5 can be rewritten:

aToz d (aU
OZ A at (4.3.3.9)

By combining equation 4.3.3.8 and 4.3.3.9 we obtain an equation between the hori-

zontal velocity and the pressure gradient:

a2U
aZ2

Red OU
Re- -

A at

where

(4.3.3.10)
P

+x ) + O(E0

d dRe- = Re- = 0(1)
A

(4.3.3.11)

Let us now find an equation of the mud pressure P as a function of ( and ry in order

to eliminate the mud pressure from equation 4.3.3.10.

4.3.4 Vertical momentum in mud

The dimensional equation of vertical m1omnentum is:

(av'
P at'

+ U av'Ox' + V
dZ' )

OP'
aZ'

+
Ox'/

(4.3.4.1)

and becomes. in dimensionless variables:

av a
at ax

So, in the end,

+ (OTZZ
0 aZ Renda 2 az

az 0 < Z < 1 + CeJ (4.3.4.3)

In other words, we find that the vertical pressure gradient in mud is of order O(,2).

This equation will be used to evaliate the pressure in the entire mud layer.
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4.3.5 Dynamic boundary condition at the interface

Let us call n = (n,. nz) the vector normal to the interface. In dimensional notations,

we know that the components of n are:

(97'

S+ ' (4.3.5.1)
1

nz

1n+ (a)2

In dimensionless variables, we obtain:

19Tnx= C dax
1+6 2 a9 2

dax (4.3.5.2)

1 + E + , 6 2 I 2 ( a ) 2

Finally, nx and nz can be approximated as:

n =O(esd)

nz 1 +O(e 2
(4.3.5.3)

Continuity of total (hydrodynamic and dynaimic) stress on

then requires:
Txrfn + Txzz = -pnx.

the mud-water interface

Z = 1 +6z

Txzn + Tzznz = -pnz, Z = 1 + en

Total stress in mud is the sun of hydrostatic and dynaimic pressure:

Ty = -P -i + T?,
yRC

Introducing this sum in equation 4.3.5.4, we obtain:

(4.3.5.4)

(4.3.5.5)

--P + ) nx
EI{ CK'-Txznx + -P
-Re

6IK
+ TrZhZ

~YRe

E K

+ Tzz nz = -puz,yRe )

Z =1 + C

Z =1±+ CE

140

(4.3.5.6)



From the approximations of n, and nz that we demonstrated in 4.3.5.3, equations

4.3.5.6 become:

O(6KKd) + TReTz(1 + O(d2 2K 2))

6K
-P+ TzzR

-YRe

_ -pO(Crd). Z-= 1+CE

(1 + 0(C2K22))

(4.3.5.7)

These last equations can easily be simplified to:

-yRe Txz = O(KKA), Z = 1 + en
(4.3.5.8)

P-p=O(K2), Z=1+q

Dividing the first equation of 4.3.5.8 by , these equations become:

rxZ O(d),

P -p = O(K2),

Z 1+ C7

Z =1 +

We now focus on the first part of equation 4.3.5.9. Through a Taylor expansion.

we can approximate this equations around Z = 1:

0z = (K2 ). Z - 1 (4.3.5.10)

since O(K2 ) = O(C) =O(d). Making use of the relation 4.3.3.2, we finally obtain a

boundary condition at the interface in tern of the horizontal velocity U:

(4.3.5.11)
LZ z=1 = O(K 2 )

Let us now focus on the second part of equation 4.3.5.9. From 4.3.4.3, we know

that the vertical gradient of mud pressure is of order O(K2 ). As a consequence, by a

Taylor expansion of the mud pressure P. we obtain:

P = p(Z = 1 + e)) + O(K2), (4.3.5.12)

Differentiating this last equation. we know that:

p - P(Z 1 + CrI) + O(r2),
Ox Ox

0<Z< 1+ er
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6K

TX
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(4.3.5.13)

- -p + O 2/_2 2))



Water pressure p is known in any point of the water layer thanks to the Bernouilli

equation. In particular, we know from equation 4.2.5.5 the water pressure at the

interface (z = -1 + eadr):

p -O ( + O(r2).

By differentiating this equation, we obtain:

-= + 
2),

ax axat

z = -1 + C7

Z = -1 + EKd?

From equation 4.2.4.4, we also know:

0#(0)
=t -+ O(K2) (4.3.5.16)

which is valid for all z since #(0) and C do not depend on the vertical coordinate.

Combining equations 4.3.5.15 and 4.3.5.16, we get the water pressure gradient at

the interface:
=P- 0+ 0(t 2 ),ax ax z = -1 + eCdr/

Combining equation 4.3.5.17 with 4.3.5.13. we finally obtain the mud pressure hori-

zontal gradient in the entire mud layer:

-P - (+ O(K2),
Ox ax 0 < Z < 1 + Ce/

As a consequence, we can now substitute the mud pressure P from the horizontal

momentum equation 4.3.3.10, for 0 < Z < 1 + c77:

_2U d (&U Y0 +\- Re- ± +(r 2 )
0Z 2 A at Ox 0 < Z < 1 + e

4.3.6 Bottom kinematic boundary conditions

At the bottom, we impose the no-slip boundary condition:

U = V =-0], Z - 0
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4.4 Asymptotic equations in water and Newtonian

mud

4.4.1 Equations at dominant orders

Water equations

By combining equations 4.2.3.8 and 4.2.4.12 at order 0(c2), we obtain:

02( 02( _2(ii

at2 Ox2 OtOx 0t2
O x O
Ox~ nO

K2 84
+ 0(62)3 8tox3

To simplify this equation we use the leading order approximations of 4.2.3.8 and

a-+ O(E)
OX
On
t+ O()at

(4.4.1.2)

As a consequence,

02 ((iu)

axot at Ox
O
Ot \

0 82(2

2 t2

32 841, t
3 Braj3t

at
Oa
at + 0(c) )

+ t2) +0(62)

(4.4.1.3)

(4.4.1.4)
K2 O4
- 4 + O(C2)3 Ox4

Thus, equation 4.4.1.1 can be written:

d/ 2 + i 02 n

+ at2
02 (2

0t2 )
32 Og
+3Ox4 O 0(2)

In equation 4.4.1.5, the interface 71(x) appears at order O(-d) = O(K 2).

(4.4.1.5)

Since we

expect this term to be responsible for the attenuation in (. we expect the typical

distance of the mud induced damping to be / 2X.

Now let us expand the functions ( and u as power series:

( = ) + /2 (i) + V
4

s(2) +
) +(4.4.1.6)

= = 0" + K2fl) + K4 (2 ) +.

4.2.4.12:

(4.4.1.1)

and:

02( 02(

at 2 Ox2

Ox



Let us also introduce the slow coordinate X:

X = K2 X

Applying the technique of multiple scales, we have:

0 8 9 2 a

8x Ox OX
+4 4 2 4 0(K 2)-- = -- + 4r2 +Ox2

Ox4  8x4

So the equation 4.4.1.1 becomes, with the multiple scale:

02( 2( 12(
8t 2

- x2 axaX
Kd-

+C (02 Zt2
+(9t 2 0 2)

SK2+4 0(e2)3 OX4

which can be written:

8t2 X2 2 xox + Kd at2 (262

+ O X2

O2u2 02$\

+ at 2 t2 /
__204 2

+ --- +O(3 Ox4

From this equation, we deduce for dominant orders:

9 at order 0(1)

02 (0) a2((0)

Ot2 Ox2

(4.4.1.10)

(4.4.1.11)

. at order 0(K 2 )

02((1) 02(1) 02(0) 02 (0) & 2((0))2 1 04((0)
- ++ Ox + - (4.4.1.12)

Ot2 9X2 ixOX K2 Ot2  2K2  Ot2  3 Ox4

where equation 4.4.1.12 is obtained after using the following relation valid to

leading order:

82(U(O)) 2  O2(u(O)) 2 +2(((0))2
+ +Ox2 0t 2 82

302(((0))2
Ot2 (4.4.1.13)

Let us compare these results with the ones we obtained in the case where non-

linearity was more important than dispersion (chapter 2). We first note that the
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equations at order O(K0) are the same in both cases: equations 2.5.1.11 and 4.4.1.11

are the same.

However, the first order. that is to say equations 2.5.1.12 and 4.4.1.12 differ. A
a4 0)

new term appears in equation 4.4.1.12, namely a which is due to dispersion.

This term did not appear before because dispersion was less important compared to

non-linearity.

Mud equations

Let us find the descriptive equations of the mud at order O(0o).

From equation 4.3.5.19, we obtain:

ya Z2 U = 0( +O(e),1Ox 0 < 1 + 67 (4.4.1.14)

where:

a =0(1)
KdRe

As in water, we introduce the multiple scale coordinates x

equation 4.4.1.14 becomes:

( 2
a

OZ2
U = (

Ox

(4.4.1.15)

and X = r, 2 x. so that

+ 0(c) (4.4.1.16)

The continuity equation 4.3.2.1 becomes:

au+ = O()
ax az (4.4.1.17)

and the interface kinematic boundary condition 4.3.1.2:

- V + O(C)
at (4.4.1.18)

We can now deduce the dominant order of equations 4.4.1.16, 4.4.1.17 and 4.4.1.18

at 0(0"):
a2

Ot (9Z2
- 0 (o)

UC)=-7O,
0<Z<1

BUCO) V()
Ox OZ

r/(0)
Ot

(4.4.1.19)

z I
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4.4.2 Equation and solution at O(rO)

Water equations

Because equation 4.4.1.12 clearly involves non-linear terms, we consider the evolution

of a train of harmonic waves:

(0) = 1 Am(X)em
g(0) = Bm(X)erm

where Om = m(x - t). We shall assume that Ao = Bo = 0.

Mud equations

We adopt for the horizontal and vertical velocities in mud at the zeroth order the

form we used in 4.4.2.1:

UCU(O)(Z)ed"..i

(4.4.2.2)

V 0  V 0)(Z)e'
2 S

Then from the equation 4.4.1.19 we deduce an equation for Un)(Z):

d2fn) - Om2 U]) - -27Am

where:
2

mI
om2 = -- i-

(4.4.2.3)

(4.4.2.4)

We can solve exactly this second order differential equation by using the boundary

conditions:

LU-) 0

OZ

Z 0

Z=1
(4.4.2.5)

In the end we get:

) = -yAm[1 - cosh(omZ) + tanh(oum) sinh( mZ)] (4.4.2.6)
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From the continuity equation and the boundary conditions of 4.4.1.19 we can extract

the following equations for the vertical velocity:

dV2O

dZ m (4.4.2.7)

V -0. z = 0

As a consequence, we can casily deduce the explicit expression of the V,}O):

V - - mYAm (o-mZ - sinh(o-mZ) + tanh(om)(cosh(o mZ) - 1)] (4.4.2.8)

Froimn the kinematic boundary condition at the interface in mud, we can now deduce

the interface motion:

As a conclusion we have:

Bm V)(Z=1)
imG

= -yAmG(o-m)
(4.4.2.9)

G(o1m) 1 - tanh(um)

Bm A,-, (I -tanh(om))

Bm = 7 m 17-

(4.4.2.10)

(4.4.2.11)

where o- 2 = and = .
aIG KdRe Id P41

4.4.3 Equation and solution at O(c)

At this order, we will only study water equations.

At order O(e), we have from 4.4.1.12:

02((1) 02(( 1) 02((0) h 927(0)
2- = 2 +

8t2 OX2 OxOX K2 Ot2

3c 02(((0))2

2c 2 9t2

By following the same procedure as in [6], we know that:

3c 02(((0))2

2r2 Ot 2 2
m=1

3 2 Z6r
-- m e

8

oo [m/2]

i- * Am,,+1-1 alA-l + C.C. (4.4.3.2)

where [m/2) is the integer part of m/2 and a, is a, coefficient equal to 1 for 1 = [m/2]
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and equal to 2 otherwise. We also have

82 (o) oo dAm o2a = Zim e e + c.c.
Ox8X dmX

m-a

a2 I(O)
=9t 2 m2 Bme "" + c.c.

m=1

combining all this results, we can rewrite the equation 4.4.3.1:

a2((1) 82((1) im dAm 3 2 i

Ots aX2 dX e" + 2 8m=1 M=1

- S m2 Bmeio"l + 1 m4 Ar
m=1 m=1

[ 00[m/2]

2A*Am,, +1+ aj AjAm-I

ein" + c.c.

(4.4.3.4)

To ensure solvability of this last equation, we know that secular terms proportional

to eiorn must be removed. This is how we get the differential equations:

dAm im d B
ImdX 2 K2

r Am -
6

3i oC [m/ 21

-- m 2A* Am+ui + aL.-mI
8 V

(4.4.3.5)

Combining this result with 4.4.2.11, we finally obtain the differential equation for the

Am: Vm,
dA m
dX

imntM K
-- 2 .K2 (

tanh(-m) im 3

- A,+ Am

(4.4.3.6)
3oc [m/21

- K2-m [Z2A*Ami + E a5AjAm-
L 1=1 1=1

Let us compare this equation to what we found in the case where non-linearitv was

more important than dispersion (chapter 2). We observe that equations 2.5.3.6 and

4.4.3.6 only differ by one term. which is due to dispersion, namely 3Am.6

As we already pointed out. this term (lid not appear before because dispersion

was less important compared to non-linearity.
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4.5 Further details

4.5.1 Surface and the interface

We truncate the series 4.4.3.6 , in order to obtain a differential equation for the Am:

dAm 7 1' Kd
+--m 1i

dX 2 K 2

+ 3
8: K

tanh(o-m))

- m

7 2A Am+, +

Am - Am

[m/21

i=1

(4.5.1.1)

aAiAm_)

This truncated differential system is true for 0 < m < n.

4.5.2 Energy variation in water

We obtained the differential equation:

2A*Am+i +
[rn/2]

S a1 AiAm_)
11

i7 Kd
+ - m

2 r2

tanh(o-m) Am 0

o-m

to describe the free surface motion.

The last term of this e(uation represents the damping due to dissipation in the

Newtonian mud.

In [8], G. Grataloup and C.C. Mei demonstrated that if the differential equation

describing the free surface is:

dA m+ 3mAmn--47
dX 6 8 K2m ( 2A* Am+ + [m( aAm_)

2 =1i=1
(4.5.2.2)

then the general relation on the first-order wave-energy is:

dX [Zlm2] 12
Aml=, -2 R(m)|Am2

m=1 m=1

(4.5.2.3)

Indeed, in equation 4.5.2.2, 3 m represents a dissipation source. That is why the total

wave energy at the leading order decreases with relation to #m.
In our case of a flat bottom with a thin layer of Newtonian mud, we deduce that
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the general relation on the first-order wave energy is:

__Am = - Re [ (1 - tanh(om) ) Am|2 (4.5.2.4)
dXm=1 Km=1 7r

4.6 Numerical results by using the first ten har-

monics

We now represent the numerical results in order to analyze the effect of the different

parameters.
We will first study the effect of the wave amplitude A, knowing that a big wave

amplitude implies high non-linearity c (cases la. lb and 1).

We will then look at the effects of different wavenumbers k, and thus of different

dispersion coefficient i (cases 2a, 2b and 2c).

Finally, we will look at the effects of different mud layer depths d, and thus different

values of the parameter Kd (cases 3a., 3b and 3c).

From the experiments on mud that we already cited in the previous chapter, we

know that viscosity in mud varies with the frequency. However, since we are here

considering the mud as Newtonian, we need to choose one value of viscosity for all

frequencies.

The waves that we study in this thesis have a frequency of around W' = 0.5rad/s.
which correspond to a period T = 12s. This is why we choose to adopt the modulus

of the Gulf of Mexico mud complex viscosity at w' = 0.5rad/s as the viscosity. This

value is: p = 400Pa.s, as can be read in figure 3-3. We naturally choose the density

to be the density of this same mud: pAl 1140kg/m 3. and as a consequence -' = 0.88

For all of the following computations, we set the water depth to be h = 5m.

4.6.1 Influence of non-linearity

We set the wave period to be T = 18s (which means w' = 1/3rad/s). and the mud

layer depth to be d = 25cm. We then consider 3 possible wave amplitudes A = 20cm,

A - 40cm and A = 60cm, corresponding to cases la, lb and 1e. From here we can

deduce the value of K and Re by:

gh - h
S=khz= h = L' (4.6.1.1)

/3 9
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Case , Re Kd a -Re

la 0.04 0.24 0.05 0.05 17
lb 0.08 0.24 0.09 0.05 17
Ic 0.12 0.24 0.14 0.05 17

Table 4.2: Values of Re, h;. e, hd and a corresponding to different values of A. Case
10 corresponds to the biggest A, that is to say the biggest non-linearity.

and:

Re pNIAdk gh pMAdw' (4.6.1.2)
y P

Table 4.2 sums up the corresponding values of the parameters c. r, Re, rid and a.

c and Re both increase with A and K does not depend on A. Case la corresponds

to the smallest A (and thus smallest non-linearity) value and case le to the biggest

one.

We assume the initial condition:

t = 0, A 1(0) = 1 (4.6.1.3)

Surface and interface

Figures 4-1 and 4-2 show the evolution of the first three harmonics of the surface and

the interface. Even though we carried the resolution with 10 harmonics in order to

take into account all the significant ones, we chose to only display the three most

significant harmonics for clarity.

In figure 4-1, we observe that the harmonics are smoother in the less non-linear

case (1a). Variations are more significant in the most non-linear case. This effect is

due to non-linearity, and is logical. Even though non-linearity is very important in

every case, it is even more obvious in case ic.

Figure 4-1 also shows that the first harmonic |A1 | is more quickly damped out in

the most non-linear case (1c). This is because non-linearity results in a transfer fron

the first harmonics to the second harmonics.

From figure 4-2 we observe that the interface follows the same tendency as the

free surface: non-linearity results in more oscillations and a fastest damping of the

first harmonic.
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IB' 10.1

(a) Smallest non-linearity (la)

(b) Medium non-1inearity (l b)

Bm 10.02 -

0.0 - -B -

(c) Highest non-linearity (1c)

Figure 4-2: Effects of wave amplitude on the evolution of the first 3 harmonics of the

interface b)etweenl mud and water over a thick mddy seabed. Comp~arison between
the cases la, lb and ic.
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10 0 .6 - .....- ..

2

m=1 04
1 C

0 5 10 15 20 25 30 35 40

Figure 4-3: Wave energy over a flat thick nuiddy seabed. Comparison between the
cases la, lb and ic.

Energy variation

We numerically represented the total first-order energies for cases la. lb and ic in

figures 2-6. This figure shows that the total energy logically decreases. because it is

dissipated in the viscous -mud.

However, contrary to what we saw in chapter 2, the decrease in energy is very

slow. For cases la. lb and ic, energy only decreases by around 50% between X = 0

and X = 40.This is simply due to the fact that we are considering a very thin layer

of mud, since O(d) = O(2) in this chapter. It is as a consequence logical for the

mud-induced damping to be less important than in the case O(Kd) = O().

In figure 4-4, we represented the variation of total energy. The dashed line repre-

sents the right-hand side term of equation 4-4. It is so close to the solid line that it

is very hard to distinguish. As a consequence, this figure shows that our numerical

results obey the law we demonstrated

4.6.2 Influence of dispersion r

We now aim to study the influence of dispersion.

We set the wave amplitude to be A = 40cm and the mud layer depth to be

d 25cm. We then consider 2 possible periods T = 18s and T = 12s (which mean

' 1/3rad/s, cc' = 1/2rad/s), corresponding respectively to cases 2a and 2b. We

still have h = 5m.

Table 4.3 sums up the corresponding values of the parameters E, K. Re, nd and a.
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-0 .0 2 -........ ..

d 0 -d (Am 2Am 2)/dx

m=1 .. H

d X -0 .0 6 -..... .. ...1 - -.1 1 - -.... ... ... ... .. . ..... ......... . .....

-0 .0 8 -... - --.... -..... - - - - - -....... -......

-0 . 1 - -...... - - - -.. - -. .... ... ....

0 5 10 15 20
X

(a) Smallest non-linearity (la)

-0.C
10

d E |Am12

dX -O.C

-0.c

-0.

-0.0
10

d E |Am| 2 1
T'1 /,

dX -0.0

-0.0

(b) M\edium non-linearity (1b)

0 5 10 15 20 25 30 35 40X
(c) Highest non-linearity (1c)

Figure 4-4: Variation of the wave energy over a flat thick muddy seabed. RHS is the
value of the right-hand side term in equation . Comparison between the cases la. lb
and le.
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Case E K Re rd a Re

2a 0.08 0.24 0.09 0.05 17
2b 0.08 0.36 0.14 0.05 11.4

Table 4.3: Values of Re, ,'i, E, rsd and a corresponding to different values of dispersion

K

Free surface and interface

Figures 4-5 and 4-6 show the evolution of the first three harmonics of the surface and

the interface. Even though we carried the resolution with 10 harmonics in order to

take into account all the significant ones, we chose to only display the three most

significant harmonics for clarity.

In figure 4-5, we observe mud-induced damping is faster in the less dispersive case

(2a).

From figure 4-6 we observe one again that the interface follows the same tendency

as the free surface.

Energy variation

We numerically represented the total first-order energies for cases 2a and 2b in figure

2-11. This figure shows that the total energy logically decreases, because it is dissi-

pated in the viscous mud. As for surface harmonics, we observe that damping is very

slow compared to chapter 2. Damping is even slower in the most dispersive case.

In figure 4-8, we represented the variation of total energy. The dashed line repre-

sents the right-hand side term of equation 4-4. and the figure shows that our numerical

results obey the law we demonstrated. Indeed. the two lines are so close that they

are very hard to distinguish.

4.6.3 Influence of mud layer depth d

We now aim at srudying the influence of the mud layer depth.

We set the wave period to be T = 18s (which means w' = 1/3rad/s), and the wave

amplitude to be A = 40cm. We then consider 3 possible mud layer depth d = 12cm,

d = 25cm and d = 50cm, corresponding respectively to cases 3a, 3b and 3c. We still

have h = 5m.

Table 4.4 sums up the corresponding values of t lie parameters e. K. Re, 'd and a.
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(a) Smallest dispersion (2a)

(b) Medium dispersion (2b)

Figure 4-5: Effects of wave amplitude on the evolution of the first 3 harmonies of the
free surface over a thick muddY seabed. Comparison between the cases 2a and 2h.

Case 6 K Re Kd dRe

3a 0.08 0.24 0.045 0.025 71
3b 0.08 0.24 0.09 0.05 17
3c 0.08 0.24 0.19 0.1 4.2

Table 4.4: Values of Re. s, , d and c corresponding to different values of the mud
depth d
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(a) Smallest dispersion (2a)

~0 5 10 15 20 25 30 35 40x
(b) Medium dispersion (2b)

Figure 4-6: Effects of wave amplitude on the evolution of the first 3 harmonics of the
interface between mud and water over a thick muddy seabed. Comparison between
the cases 2a and 2b.
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Figure 4-7: Wave energy over a flat thick muddy seabed. Comparison between the
cases 2a and 2b.

Free surface and interface

Figures 4-9 and 4-10 show the evolution of the first three harmonics of the surface

and the interface for different mud layer thickness d. Even though we carried the

resolution with 10 harmonics in order to take into account all the significant ones, we

chose to only display the three most significant harmonics for clarity.

As expected, we observe in figure 4-9 that damping is more significant in the case

of the highest mud thickness (3c) than in the case of a very thin mud layer (3a). This

is due to the fact that dissipation happens in mud. As a consequence, the thicker the

mud layer and the more wave damping.

We also observe in figure 4-10 that the interface variations reach a higher ampli-

tude in the case of the thicker mud (3c).

As the consequence, the influence of d on the interface and free surface is the same

as in the case O(sd) = 0() described in chapter 2.

Energy variation

We numerically represented the total first-order energies for cases 3a. 3b and 3c in

figure 4-11. This figure shows that the total energy logically decreases, because it is

dissipated in the viscous nud. We can see that energy is dissipated faster in the case

of the thicker mud (3c). This result seems logical since, as we said when we studied

the surface amplitude., the thicker the mmud and the faster the wave damping.

In figure 4-12, we represented the variation of total energy. The dashed line still

represents the right-hand side term of equation 2.6.3.4, and the figure shows that our
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10 0d E |Am| 2  -

dX -0.

-0.

-0.

(a) Smallest dispersion (2a)

(10

d E Am
rn=1

dX -0.04

-006 -

-0 (~I
5 10 15 20 25 30 35

(b) Medium dispersion (2b)

Figure 4-8: Variation of the wave energy over a flat thick muddy seabed. RHS is the
value of the right-hand side term in equation . Comparison between the cases 2a and
2b.
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0.08

0.06

JBmn

1B
0.02

0 2- - - -

0 5 10 15 20 25 30 35 4X
(a) Smallest mud layer thickness (3a)

0 .08[-.-. -.

0.06

0 0 4

0.02

0 5 10 15 __ 20 25 30 35 4

(b) Medium mud layer thickness (3b)

IBM

(c) Highest mud layer thickness (3c)

Figure 4-10: Effects of mud layer thickness on the evolution of the first 3 harmonics
of the interface between mud and water over a thick muddy seabed. Comparison
between the cases 3a, 3b and 3c.
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3a

- 3c -3

1 ----- ---------

I 5 10 15 20 25 30 35 40

Figure 4-11: Wave energy over a flat thick muddy seabed. Comparison between the
cases 3a, 3b and 3c.

numerical results obey the law we demonstrated. Indeed, and as always before, the

two lines are so close that they are very hard to distinguish.
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(a) Smallest mud layer thickness (3a)

0

10 -0.1
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Figure 4-12: Variation of the wave energy over a flat thick muddy seabed. RHS is
the value of the right-hand side term in equation 2.6.3.4. Comparison between the
cases 3a, 3b and 3c.
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Chapter 5

Horizontal bottom, very shallow

viscoelastic mud

As in the previous chapter, we assume that non-linearity effects are less important

than dispersion (0(E) =O(h2 )). However, mud is not modeled as a Newtonian fluid

anymore, but as viscoelastic.

As we did in chapter 3, we need to change the horizontal momentum equation in

mud. We will demonstrate again that this modification only affects the o- coefficient

in the equations.

5.1 Scaling

The equations we previously obtained in water are clearly not changed in the vis-

coelastic case, that is why we keep the scaling in water:

x kx'
P p/

P wg -4

z = b

= h

t =- k(gh )1/2t'

v = v' g (5.1.0.1)

cho

However, we need to nodify the scaling for stress in mud.

ose
d

Tpszjg

As in chapter 3, we

(5.1.0.2)

with p-t defined as:

p = -- (5.1.0.3)

Because of calculation simplifications, we will see that the value y, is not needed
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to solve the last equations numerically. Indeed, we will see that neither ps neither

non-dimensional viscosity p will be needed to carry the final calculations, but only

the dimensional viscosity s'.
As a consequence. the scaling in mud for this chapter is:

x kx'

p 
P'

pwgA

KdA
ThAi

Z = Ld
U = U'/

U=lu'

Ejt d - ljt

t - k(gh)1/ 2 t'

V = V'

V~ k VI

d I
Ti V9hT Z3

5.2 Equations in water

Since only the mud behavior is modified, the equations in water are the same as with

a Newtonian type of mud: they remain exactly the same as in the previous chapter.

5.3 Equations in mud

Most of the equations in mud are also unchanged compared to the previous chapter.

Namely equations 4.3.1.2, 4.3.2.1, 4.3.5.11, 4.3.5.18 and 4.3.6.1 remain the same:

The kinematic interface boundary condition:

7) = V + O(x2), Z = 1 + eU] (5.3.0.5)

The conservation of mass:

U + Vz = 0, 0 < Z < 1 + e6, (5.3.0.6)

The tangential stress boundary condition at the interface:

(5.3.0.7)OZ O(K 2 )(9Z z1 Z

The normal stress boundary condition at the interface combined with the vertical

monentum equation:

OP 0(
OX OX

+ O( 2), 0 < Z < 1 + Er, (5.3.0.8)
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The bottom kinematic boundary condition:

U = V = 0,Z = 0 (5.3.0.9)

However, we need to find the new horizontal moientun equation, which is modified

by the mud behavior.

In this case where the depth of mud d is small compared to the depth of water,

we can approximate the strain as a function of the horizontal displacement U:

aU 28 20Exz = +K rd- =- + O(K 4)az

We know for simple harmonic waves:

aU
rxZz = p- O + O(r, )

OZ

The equation of momentum in the mud, projected on the x-axis. gives:

U
at

au+ V U
Ox OZ

OP A (C0Tz

ax Re(2) * d OZ

aU (U 
at ax RT Z+

Rem (2 * d OZ

odxx
Kad-

Ox)
(5.3.0.13)

where U is the horizontal velocity of mud. P the pressure. A the amplitude of the

free surface, -y the ratio of densities y = pw/puj and d the mud depth, and Re(2 the

new Reynolds number:

Re = _p Adk
pAS

(5.3.0.14)

Equation 5.3.0.13 can be rewrittento O(KO) accuracy only:

Re (2) (aU
e 81 a

OP)
+ 7 =Ox

a2U
aZ2 + O(E) 0 < Z < 1 + r/

From equation 5.3.0.8, we know the mud pressure gradient O.

equation 3.4.0.18 becomes:

As a consequence,

(2)d (auRe- at
2 T

0 < Z < 1 + er;
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(5.3.0.11)

or:

+ a 7xx (5.3.0.12)

(5.3.0.15)

(5.3.0.16)
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which is true for 0 < Z < 1 + E9.

5.4 Asymptotic equations in water and viscoelas-

tic mud

5.4.1 Water equations

Since mud-induced damping should appear at the same order as with Newtonian mud.

we define the same slow coordinate X as in the previous chapter:

(5.4.1.1)

and we expand the functions ( and u as power series:

C =(O) + n2((1) + M4((2) +

'i, - aj0 + r2-() + K4-(2) +

We then consider the evolution of a train of harmonic waves:

(5.4.1.2)

Am(X)eon 77(0)
M =-o

Bm7 (X)eiom (5.4.1.3)

where 0
m = m(x - t)

As a consequence. and since we got the same water equations as in the Newtonian

case. the asymptotic equation in water is the same as equation 4.4.3.6:

VmL

.1.4)
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5.4.2 Mud equations

We adopt for the horizontal and vertical velocities in mud at the zeroth order the

forn we used in 4.4.2.2:

U(O) =U,0)(Z)eiO"n2 M

m=-oc

2 Z0 V(O)(Z)i,,m
2n so

(5.4.2.1)

Since only the horizontal momentum has changed compared to the Newtonian case,
we obtain the same results as before except for o that becomes &:

cT - -- _""

a( 2 )ptm
(5.4.2.2)

which means:

&-
2  T-dmpAdky/gi

(pm
(5.4.2.3)

Let us note that the value of a, does not depend on ps, since PPm = P'm is the

dimensional viscosity.

In the end, the asymptotic equation in mud at the first order is derived from

equation 4.4.2.11 with am instead of om,:

B~n ?Am I -tanh(am)
B.a = 7A - ~

(5.4.2.4)

5.5 Further details

5.5.1 Surface and the interface

We now combine equation 5.4.1.4 and 5.4.2.4 and truncate the series to obtain the

differential equation:

dAm +YKd (a+ -m 1
dX 2ti 2

tanhl(am) \ im 3AS A Am
~rn / - 6

3 c n-n [m/2] (5.5.1.1)
+ T f 2 A*Am+i + Z aAiAm-i = 0

This truncated differential system is true for 0 < m < n.

We observe that equation 5.5.1.1 is the same as equation 4.5.1.1 except for Urn
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that became am.

Since this equation depends on -y, K, rd, e and the am. we deduce that the result

of the Am will depend on the values:

g, Pw,. PM, A, h. d, w'. p'm (5.5.1.2)

where g and pw are fixed, puj and the y' depend on the mud we consider, and A. h,

W' and d depend on the geometry and the surface wave.

5.5.2 Energy variation in water

Following the same demonstration as in the Newtonian nud case, we naturally come

to the energy variation law:

d X -2 R i 1 tranh(&m) m2

m=1m=-

(5.5.2.1)

Equation 5.5.2.1 is actually the same equation as 4.5.2.4, except for 0-m which has

again been replaced by &m

5.6 Numerical results by using the first ten har-

monics

As we did in chapter 3, we are now going to plot these results for the viscoelastic

muds we previously studied.

Let us sum up the different muds we are considering:

" Case A: Gulf of Mexico mud. This mud is rather elastic.

" Case B: Mobile Bay mud. This mud is rather elastic as well

* Case C: Lianyungang mud. This mud complex viscosity's phase is around j so

it is as elastic as viscous.

" Case D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity's

phase being close to zero.

We choose to plot the different results for those imuds in the case h = 5m, A -

0.4m, w' = 0.33rad/s and d = 25cm (corresponding to the case 1b of the previous
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chapter). In this case, we know:

K = 0.24, E = 0.08, "id 0.05 (5.6.0.2)

Surface and interface

In figures 5-1 and 5-2, we represent the variation of the first harmonics of the surface

and the interface. As usual. and even though we carried the resolution with 10

harmonics in order to take into account all the significant ones, we only display the

three most significant harmonics for clarity.

In figure 5-1. we observe that the damping is more important in cases A. C and

D than in case B. This is what we expected from chapter 3, that showed that the

attenuation rate was insignificant for mud B (Mobile Bay mud). We also observe

that the Hangzhou Bay mud has a faster damping than the Gulf of Mexico and

Lianyungang muds.

Damping is way slower to occur than in chapter 3. This is due to the fact that we

are considering a very thin layer of mud (since O(Kd) O(K 2))

Figure 5-2 show the variation of the interfaces. The results confirm what we

previously stated: the interface motion is strongest for the muds with the highest

damping. As a consequence, the Hangzhou Bay mud, which is the one with the

fastest damping. has the strongest interface motion. The Mobile Bay mud has the

smallest interface miotion.

Energy variation

We numerically represented the total first-order energies in figure 4-3. This figure

shows that the total energy logically decreases, because it is dissipated in the viscous

mud.

In the case of the Hangzhou Bay mud (D), the energy reaches a nearly 0-value

for X = 20 that is to say x ~ 83 since K = 0.24 in the case we consider, or x' - =
1670m. As A - y A ~ 126n. we conclude that the wave is nearly damped after

around 13 wavelengths.

However, damping is slower for the Gulf of Mexico and the Lianyungang muds.

Their total energy only decreases by around 50% after around 25 wavelengths.

Damping is even slower for the Mobile Bay mud, where it nearly becomes insignif-

icant. Indeed, energy has not evenu decreased by 5% after 25 wavelengths.

In figure 5-4, we represented the variation of total energy. The dashed line repre-
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15 X 20 25

(a) Gulf of Mexico mu(d

1B1
1. . ..

90 5 10 15 X 20  25 30 35 41

(b) Mobile Bay 1mu1d

5 10 15 X 20 25

(c) Lianyungang mud

30 35 40

IB Ij
3 B0.1

0 5 10 5 X20 25 30 35 40

(d) Hangzhou Bay mud

Figure 5-2: Effects of wave amplitude on the evolution of the first 3 harmonics of the
interface over different types of viscoelastic muddy seabeds. Warning, the scale is not
the same for mud D!
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|Am|12
10

x 20

Figure 5-3: Wave energy over a flat thick muddy seabed.

sents the right-hand side term of the following equation:

n n ) Am2

dX[Z1:IA.I 12 d [imn (I_ tanh(m) )I~ JAm 12
_X M= 2 =

(5.6.0.3)

As in the Newtonian case. the dashed line is so close to the solid line that it is

very hard to distinguish, meaning that our numerical results are right.

5.7 Flat bottom without mud, Boussinesq class

5.7.1 Governing equations

From the governing equation we found in the case of a thin layer of mud at the

bottom, it is easy to deduce the governing equation in the absence of mud. Indeed,

the absence of mud corresponds to B = 0 in equation 4.4.3.6, which leads to:

dAm

Vm. dX 6m

3i e

8 r-2
[ [mn/2]

Z2A*Amiu + Z ajAi Am-ul
I=1 I=1

(5.7.1.1)

A a consequence, we obtain the following differential equation:

(5.7.1.2)
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10
d E |Am|12 0.

dX -0.4

-0.4

U.

10
d (E JAm 12 00

m=1 /
dX -0.02-

-0.03

-0.01

_0

0
d E IAm1 2 01

dX -0.02-

-0.03 -

-0.0 -1

0

100

d E |Amt 12 .05 -

(m=1 -0.1-1

dX _015-

-0.2--

-0.25-

5 X H
(a) Gulf of Mexico mud

5 X
(b) Mobile Bay mud

- -- - --...... -. -- - - - - d (E Am )/dX
.RHS

5 X 10

(c) Lianyungang 1mud

0 5 X 10 15

(d) Hangzhou Bay mud

Figure 5-4: Variation of the wave energy over a flat thick muddy seabed. RHS is the
value of the right-hand side term in equation 5.5.2.1. Warning. the scale is not the
same for mud D!
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The same way, the energy variation becomes:

d [ZJ 1l= 0 (5.7.1.3)dXr.m=1-

This result looks very logical, since it means that in the absence of mud, there is

no energy dissipation in water.

5.7.2 Numerical results by using the first ten harmonics

Since we don't consider mud anymore, there are only tree parameters remaining: h,

A, and w. These parameters are only present in equation 5.7.1.2 in the ratio C/K2

which is around 1.

In figure 5-5, we compare the surface displacement for three different cases: e/r2

0.5 (A). e/i 2 =1 (B) and c/,2 1.5 (C). These cases correspond to different non-

linearity/dispersion ratios. The first case C/,2 = 0.5 means that non-linearity is less

important than dispersion, whereas the case C/K2 = 1.5 means that non-linearity is

predominant. Once again, even though we carried the numerical resolution with ten

harmonics. we choose to only display the first three harmonics.
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Figure 5-5: Effects of wave amplitude on the evolution of the first 3 harmonics of the
free surface over a thick muddy scabed. Comparison between different values of (/2.
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Chapter 6

Sloping bottom, with shallow

viscoelastic mud

We now consider the bottom of the ocean to have a gentle slope, as shown on figure

6-1. We decide this slope to be of order O(K), so that it is comparable to the rate of

damping previously found in the flat bottom case. This means that in this chapter,

we will consider:
dh' d 2h' _~2

=h O( h), = 0(r) (6.0.2.1)
dx' dx'2

If the mud was Newtonian, it would naturally flow clown the slope, even in a static case

(without any wave at the surface). This mud flow would disqualify the assumptions

we made up to now in this thesis, and this is why we decide not to study the case of

Newtonian mud.

As a consequence, we consider in this chapter that the mud is a viscoelastic fluid,
as done in chapters 3 and 5. We will show that viscoelastic mud does not flow down

the slope, but is only subject to a, displacement in a static case. Thus, viscoelastic

mud does not disqualify the assumptions we made up to now.

6.1 Static case of viscoelastic mud on a sloping

bottom

In this section, we want to determine what happens in the mud layer in the static

case, ie in the absence of surface waves. For that, we won't use any scaling and

dimensionless coordinates in this section. All the terms in this section are dimensional.

This is why in this section, and this section only, dimensional quantities are written

without primes.
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Figure 6-1: Sketch of the axis used in the static case.

Also, we will not use in this section the fact that the slope is gentle. We only use

the approximation that the mud layer is thin.

6.1.1 Coordinates

In order to study the static behavior of a mud layer on a sloping bottom, we choose

to use the axis x and Z. respectively parallel and normal to the slope, as shown in

figure 6-1.

As shown on the figure. h(x) is the water depth and a is the angle between the

bottom slope and a horizontal line.

layer.

0 corresponds to the bottom of the mud

Since the problem we are considering is uniform by translation along x. we natu-

rally have:

(6.1.1.1)- 0

Because we are considering a static problem, we also naturally have:

(6.1.1.2)

As a consequence. all quantities only depend on one variable: Z, which is normal to

the slope.

6.1.2 Mud equations in the static case

In the static case. all the forces acting in the mud are the gravity g and the shear

stress 7z. Since we are considering the static case. the sum of these forces is zero.
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Let us project this equality on the x-axis, tangent to the slope. We obtain:

aTxZ
-pwgh(x) sin(a) + ____= 0 (6.1.2.1)aZ

Viscoelasticity can be represented with a Kelvin-Voigt model, where stress Tij is a

function of the strain Eij and the strain rate :

rmj = GEy + p Et (6.1.2.2)at

where E is the elastic modulus and y the viscosity of the material. Since we already

stated that all differentiation with respect to time was zero, equation 6.1.2.2 becomes:

r = GEgy (6.1.2.3)

In other words, viscosity does not appear in the static case. only elasticity does.

From equation 6.1.2.3, we know in particular:

Tz = GExz (6.1.2.4)

Introducing the displacement U tangent to the slope, equation 6.1.2.4 becomes:

Txz = G (6.1.2.5)
OZ

Combining equation 6.1.2.1 and 6.1.2.5. we obtain a differential equation for the

displacement U:
d2b1

-pwgh(x) sin(a)+Gd2 = 0 (6.1.2.6)
dZ2

By integrating this equation twice, we obtain U1():

U (Z) =pgh(x) sin(a) z2 + CN Z + C(2) (6.1.2.7)
2G

with C(1) and C(2) two real numbers. From the boundary condition at the bottom.

we deduce:

U(Z = 0) = 0 (6.1.2.8)

and thus C(2) = 0. The same way, we deduce from the shear stress at the interface:

du
TxZ dZ = 0. Z d (6.1.2.9)

181



IC, (xJ)

() I.1*

hL x7d

Figure 6-2: Sketch of the studied case. d is the mud layer depth measured vertically.

and thus:
0(1) - pwgh(x) sin(a) (6.1.2.10)

G

In the end. equation 6.1.2.7 becomes:

U(Z) = pwgh~x)sm(e)Z(Z - 2d) (6.1.2.11)
2G

We obtain that the displacement in mud is a parabola, with a 0-value at the bottom

of the layer and its highest absolute value at the interface with water (Z = d). Let

us note that if sin(a) > 0 - meaning that the water depth decreases with x - U < 0

for all 0 < Z < d. This is what we expected since the displacement should be down

the slope.

This closes the study of the static case. We obtain that. with a viscoelastic mud,

there is only a displacement of the mud down the slope. We do not have a steady flow

as we would have with a viscous mud. As a consequence, we can definitely study the

influence of water waves at the surface without the static case having any influence

on the motion.

6.2 Scaling

Now that we already studied the static case, we focus on the effect of ocean waves at

the water surface, as (lone in the previous chapters.
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As before, we define a diIensionless complex viscosity:

pA (6.2.0.12)
ps

We will use the same sealing in water as in the flat bottom ease (chapter 3):

d
Tij = -T/-

CePS/g9T
(6.2.0.13)

where p, is the characteristic viscosity deduced from the different sets of experiments.
Because of calculation simplifications, we will see that we still do not need to assign
a particular value to y, for the different muds. Indeed. we will see that neither P,
neither any non-dimensional viscosity p will be appear in the final results, but only
the dimensional viscosity p'.

For simple harmonic waves:

T xZ = -iw'p(w)E.z (6.2.0.14)

To sum up, the new scaling for this section are:

L-'b
h

_ 1 i

[ ' (gh)i/2

t = k(gh)1/2t'

V = K
(Vgh

We decide to use a new axis Z' in mud:

Z' = z' - h'(x') - d

as shown in figure 6-2. This way, Z' = 0 is the bottom of the

x kx'

Pw gA

dA

T p - gA,.
3 p gC

Z- Z/
d

C Vgh

-i~ d-

Vgh

t -~ h /t

6 K Kd lg-h

V k V1

d
'Ijj T!.

V' gh 

Let us compare our new coordinates in mud with the ones we had in the fiat bottom

case. Now, the axes follow the slope. This fact brings a correction in the differentia-
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pwgA (6.2.0.15)

(6.2.0.16)

mud layer.
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tions, that become:
a a
az 8Z
a9 a9

(6.2.0.18)1 dh a
r, ddx OZ

In order to emphasize the fact that is small, let us introduce the slow coordinate:

X =- x.

Thus:

(6.2.0.19)

dh dh
- -2 ih-
dx dX
d2 li 2 d 2h
dx 2 dX 2

(6.2.0.20)

We can now rewrite relation 6.2.0.18:

a a dh 0aX aX Kdh& O

6.3 Equations in water to order O(r 2)

Let us express the velocity potential in water as a power series:

(, + h(X)) (

n!o

where z = -h(x)+ E{r/ corresponds to the mud-water interface. We then obtain

8#(Z + h (x))" 0#(n)
+Ox n ! n ax +

2dh a0(n~l)2
dx ax + (dh 2

dx
0(n+2) + d2 h(n+l

dx2

(z + h)< (n+2)(X. t)
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(6.2.0.21)

(6.3.0.22)

And thus:

dh
6(n+)

dx'

a2
ax2

(z + h)"

n!

(6.3.0.23)

2 0(n)
ax2

and

n=o

0.24)(6.3.

(6.3.0.25)



6.3.1 Laplace equation

From the Laplace equation in dimensionless variables, we know:

K ~ + = 0

aX2 fd 2

and from 6.3.0.24 and 6.3.0.25 we deduce:

Vn, #(n) = -K 2
(20(n-2)

ax2

dh 0#("-1)

dX Ox
9d2 h

+ '2 h n-i)
dX2

+ K2 ( h 2(n)
6dX2

(6.3.1.2)

6.3.2 Kinematic Boundary condition at the interface

In dimensional form, the interface kinematic boundary condition is:

#' [h'(x') - q'(x. t)] I [h'(x') - r'(x, t)] 0#'

az' 8t' Ox' ax'
z = -h(x) + EhdTj(X, t)

(6.3.2.1)

In dimensionless form we obtain:

Dq# 2 _ 0 2D 84 ~dh 2 86 8y=g D a -N d 2dX + EKdK - -.P z-=-h(x)+ EKd(-( t)
Oz t Ox dX o x Ox o

We use a Taylor series expansion of this equation to obtain:

= x2 Kda + K 2 _K d
at (cdX

+ Kd + )
Ox ) x

z - -h (6.3.2.3)

As a consequence, from the series of equation 6.3.0.22 we obtain:

0(l) + 66d -(2) 2d 2
at

3 dh 0#(0) + O(,
dX Ox

From the relationship 6.3.1.2 and knowing that #(z = -h) - 0(0), (z - -h)

#(n). we deduce:

#(1) = Kdn2 - 3dh + O 4)at dX Ox
(6.3.2.5)

and as a consequence:

# () = ')s OT
P(1) Kdh at

- dh 06(0 )- ' + O4)dX Ox
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# +
Oz

z20

(6.3.2.2)

z = -h (6.3.2.4)

(6.3.2.6)



As a consequence, from equation 6.3.2.6, we can deduce an explicit expression of all

the #("):

6(2) K2 020(o)( X2
+ Kdh 00M(1 +___2ddh O# d'2
+dX Ox dX2

2 (dh )2
+2dX)

(6.3.2.7)

-K2 02100 + O (K4)

= K
2

= K2(KK 30

dh 04(2)

+ 2 ndX ax
± K2d

2 h (2)
dX2

2 (dh )2

+2dX

4dh 8#5(0)
4dX00() + 0 ( 4 )

= 0(K4)

Combining all these equations together, the final expression of # becomes:

# = 4(0) + K2 (., + h) OKd
dh a#(0)
dX ax I

- 2 (z + h)2 a24(0)
2 8X 2 + 0(K)

6.3.3 Kinematic Boundary condition at the free surface

The kinematic boundary condition at the surface can be written as:

K 2 (t + 000( ) = #O.Ox Ox) (6.3.3.1)

Knowing from equation 6.3.2.9 that:

# -K 2 __
dh 0#(0)1

dX OxJ
_ (z + h) a2 + O(K4 )

(t + e
Ox OX

Or a
- da-

dh 0#(0)
dX Ox

824(0>-(hE~0a2o ±0(K2)-(h + EC) + Ox)
Ox2

Let us now introduce the horizontal velocity at the bottom:

u(0) = ,(0)

ax

(t + a [(h + e(u 0 )] = Kdrt + O(K2)
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(6.3.2.8)

(6.3.2.9)

we obtain:

(6.3.3.2)

(6.3.3.3)

z +- h(x) = 0 (6.3.3.4)

(6.3.3.5)



Let us now introduce the depth-averaged velocity U. It is related to u(0) by the

following relation:

1 84

h + C - Exar7 J-h+ex7 ax
U(- ) + O(K2 )

Turning this last result around, we obtain the relation:

U (0) - + O( 2 )

(6.3.3.6)

(6.3.3.7)

Using this relationship, we obtain equation 6.3.3.5 in terms of f instead of uo:

a
(t + a[(h + E()ni

Ox Kdr/t + O(K 2 ) (6.3.3.8)

We can rewrite this equation:

a
(t - Kd/t + [(h + 0)()] = O(r )

Ox
(6.3.3.9)

This result agrees with the equation we obtained in the flat bottom case (chapters

2 or 3 since the mud model does not change the calculations in water). Indeed,

equation 6.3.3.9 reduces to equation 2.3.2.9 in the case h(x, t) = 1, and this allows us

to check the calculations.

6.3.4 Dynamic boundary condition at the free surface

From the dynamic boundary condition at the surface we know:

1 +
2 ± -

z = C(X' t)

From the development of 4 of the equation 6.3.2.9, we know that:

de a0(0)
at at

+ [h I t 2 r/ d h a 2'o r 1
± KuL8t 2 -KdX atax J 2 (h 2 + 2<(jh) (9 a02 O.x20t

+ O(K 4 ) (6.3.4.2)

- x
- a2h20 a3" 0 0 + 0 (K4)ax ax3
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(6.3.4.3)



0a 2

= O(4) (6.3.4.4)

So we can deduce:
0 (O) + +0(o) 2

Ot 2 OX
O( 2) (6.3.4.5)

Let us differentiate this expression with respect to x:

a20(0) ac I a (90( 0)2
a+ + 2-8tOx Ox 2 Ox Ox

(6.3.4.6)

and we can now introduce the horizontal velocity at the bottom u(0 ) = _
ax

u(0) 0( 1 a-(U o))2 = Q(r2)-+ -+ -c-uD)2g,)
at 89x 2 Ox

(6.3.4.7)

As done for the kinematic boundary condition, we write this equation as a function of

the depth-averaged velocity u, using the relation between u(0) and U of the equation

6.3.3.7:

(6.3.4.8)N+ - + = O(2)at OX Ox

This result agrees with the equation we obtained in the flat bottom case (equation

2.3.3.6). This equality confirms the calculations.

6.3.5 Equation of the total pressure in water

From the Bernoulli equation, we can deduce the total pressure (sum of the static and

the dynamic pressure) in the water as a function of the potential:

p = p +

- PW f #' 1
+ 2 +

(6.3.5.1)
Tz)

In dimensionless form, this last equation becomes:

P = -dt - '(#)2 +2
2] Z

-h(x) + eKdT < z < ( (6.3.5.2)

And since we know from 6.3.4.4 that:

(6.3.5.3)
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and:

= O(K 2)

1(#2)



equation 6.3.5.2 can be reduced to:

p -t (X) 2  + O(K2).
2

-h(x) + Edr/ < z < ( (6.3.5.4)

In particular, we obtain the pressure in water at the interface z = -h + eIar:

(6.3.5.5)

By Taylor expansion. we know that:

$(z = -h + EIdrl) = &(z = -h) + O(,2) =o + O( 2 ) (6.3.5.6)

As a consequence, 6.3.5.5 becomes:

P = - (#io)t - Vdr - ( +O(2)
6 2 z = -h + -I r 6 1

6.4 Equations in mud to order O(,2)

We now want to study the mud layer in the dynamnic case.

(6.3.5.7)

Since the static case

has already been studied, we only focus on the wave-induced phenomenon. In other

words, we only consider the effects of the dynamic pressure, since the static pressure

has already been taken into account. The way we did in the flat bottom case (chapter

3), we go to order O(- 2) in order to study the drift current which appears because of

non-linearity at order 0(e) = (K2).

6.4.1 Interface kinematic boundary condition in mud

Let us write this boundary condition at the first order. We don't need to go to second

order since this boundary condition will not be needed to calculate the drift.

The instantaneous equation of the interface is:

F'(x', Z', t') = Z' - (d+ rq') = 0 (6.4.1.1)

The assumption of tangential mnotion then requires that:

dh' F'
dx' 8Z'

OF'+V' =-0,aZ' Z' = d + r'
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h(x) .
p = - Gt - Kar/ - -(2)2 + O(,2)e 2

OF'
Ot' + U1 I+U OX (6.4.1.2)



which means. using equation 6.4.1.1:

Or] - U1 ?' - U/ di' + V' = 0,
at! 0 X' dx'

Z' =d + '

or in dimensionless form:

I - DrU dh
-C- ( - -U- + V =O

ot OX Kd dX

As a consequence we obtain the following equation:

K dh
=V - -U- + O(K).

at Kd dX

By Taylor expansion around Z = 1, we obtain:

OD Ki dh
=V - -U + O().

t 'd (IX

6.4.2 Conservation of mass in mud

( dh 0 DV
(T U + = 0,

Dx iddXDZ / Z 'Z

By keeping only the first order, this eICans:

Z = 1 + Er

Z =1

0 < Z < 1+ e2

DU r dh DU DV
Dx naddX Z OZ '

0 < Z < 1I + e

This equation will be used later to deduce vertical velocity from horizontal velocity

in mud. Let us note that this equation is exact, contrary to most other mud equations.

6.4.3 Horizontal momentum in mud

The equation of nionientun in mud, projected on the x-axis, gives:

OX
- dh )

dadX OZ)

+ FKhd

(x O

U v2U

dh
-d dX

K dh 8
) Pd

KddX OZ

9%a) TXX]
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(6.4.1.3)

Z=1+677 (6.4.1.4)

(6.4.1.5)

(6.4.1.6)

(6.4.2.1)

(6.4.2.2)

aU U
at I

A [OTxz

Re(2) * d [Z

(6.4.3.1)



where the coordonates (x.Z) are defined in 6.2.0.18. From this equation we simplify:

aU 1 AOzz
at Re(2) d OZ

P + dh8P U u
OX Kd dX OZ Ox

- dh U
U

IaddX aZ +V ) +O(E2)

(6.4.3.2)

where U is the horizontal velocity of mud, Pd the hydrodynamic pressure, A the

amplitude of the free surface. -y the ratio of densities 2'

depth, and Re(2 ) the Reynolds number for this chapter:

PW/pu and d the mud

Re(2)= PM Adk gh
Ps

(6.4.3.3)

6.4.4 Vertical momentum in mud

The dimensional equation of vertical momentum is:

dh' a ,1
dx'Z' J± -- Z' +

[ aOZ+aZ' + ax'
dh' a ,
dx' aZ'

(6.4.4.1)

and becomes. in dimensionless variables:

+e U
at [

+ R

Ox
, dh aZ
KdadX Z)

eK2d [rzz
-+- h~

(Ox

So, in the end,
aPd
a= O(EId)

-OZ
0 < Z < 1 + er

In other words, we find that the vertical pressure gradient in mud is of order O(,2).

This equation will be used to evaluate the pressure in the entire mud layer.

We can then simplify the horizontal momentum equation 6.4.3.2:

1 A 7xz
Re(2) d aZ

a Pd
-O E( U

aU
ax

K dh aUU
hd dX aZ

aU
+ V " + 0(6 2) (6.4.4.4)aZ
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PV'
pI' -

I8t' - (ax'

2' dy2~ a

dh a
KadX OZ) TxzI (6.4.4.2)

(6.4.4.3)

aU
at

V +V- OaZ



6.4.5 Interface dynamic boundary condition

Let us call n = (n,. nz) the vector normal to the interface. In dimensional notations,

we know that the components of n are:

d(-h'+r')

nx dx'

1+

(6.4.5.1)
1

nz=
1 + d( )

since h'(x') and r/' do not depend on Z. In dimensionless variables, we obtain:

2dh 7
,y X

= -K2 dh + O(+s)
d X (6.4.5.2)

1
nz =

1+ K2 (- _d + Erld a7)2'dX axI~~

= 1 + O(r' )

Continuity of total (hydrodynamic and dynamic) stress on the mud-water interface

then requires:

Txxnx + Txznz = -pnx. Z 1 + u (6.4.53)

Trznx + Tzzrz = -pnz, Z - 1 A- r

Total stress in mud is the sum of hydrostatic and dynamic pressure:

EK

TR = -Poij + 7Re(2 ) Ti (6.4.5.4)

Introducing this sun in equation 6.4.5.3, we obtain:

6K E K
-P + R(2jxx nx + Rx) xznz --pnx, Z = 1 + er

E K E K
E) 

(6.4.5.5)

7 xRe(2znx + P + nRe(2)rzz)z = -pnz, Z = 1 + E7/

From the approximations of nx and nz that we demonstrated in 6.4.5.1, equations
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6.4.5.5 become:

yRe( 2)

yendh (
~Re(2) zx dX +

2 dh e_ 9 dh
dX +Re(2) Txz = Px" dX + O(/,),

+yRe(2) Tzz)
-p + O(K4). z

Z = 1 + (I

1 + ET

(6.4.5.6)

These last equations can easily be simplified to:

(2)~~ _dh Z01,4u
xz=-,yRe )(P - p) +Ox),

E dX
p-_p=O(K2), Z=1 +.Eq

(6.4.5.7)

Let us now make use of the second equation (corresponding to normal stress condition)
to simplify the first one (corresponding to tangential stress condition). Since P -p 

0( 2 ), we obtain:

Tz = O(K2 ), Z = 1 + Cq

P - p = O(K 2), Z = 1 + en

(6.4.5.8)

We now focus on the first part of equation 6.4.5.8. Through a Taylor expansion.

we can approximate this equations around Z = 1:

Txz(Z = 1 + E) = TX(Z = 1) + (I Oz +0(e 2 ) (6.4.5.9)

and as a consequence:

Tz(Z = 1) =rxz(Z - 1 + c7) - E 1  I
- -E?7+0(Oz

1 0(6 2)

=-01~g UZIZ= + O(62)aoz

Hence, we obtained an interface boundary condit ion that we will use later to find the

drift in mud:

Txz(Z = 1) -E + o(2 (6.4.5.11)

Let us now focus on the second part of equation 6.4.5.8. From this equation we

know that:

SP + O(2), Z 1 + Ei (6.4.5.12)

From 6.4.4.3. we know that the vertical gradient of mud dynamic pressure is of order
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- (-P +

Z = 1 +Ce7



O(Q2) As a consequence, we have:

(6.4.5.13)

Water pressure p is known in any point of the water layer thanks to the Bernouilli

equation. In particular, we know from 6.3.5.7 the water pressure at the interface

(z = -h+ Ehdl7):

h(x) - (#0) - r)
- t - VIP7 - (Qo)sr)- +0(r2)

So we conclude from 6.4.5.13:

P = h(x) ('OO)t - Id,, __ Oo)2 + O(K2).
2

0 < Z < 1 + r1

and we obtain in particular the dynamic pressure in mud:

Pd -(p'o)t - Kdr 0 - 2 + O(K 2),2
0 < Z < 1 + er (6.4.5.16)

From equation 6.3.4.5, we also know:

(6.4.5.17)
at 2 Ox

which is valid for all z since 6(o) and ( do not depend on the vertical coordinate.

Combining equations 6.4.5.16 and 6.4.5.17. we get the dynainc pressure in mud:

Pd - rdT1 - O( 2 ) (6.4.5.18)

and the dynamic pressure gradient in mud:

- =d - da + 0(K 2 ),Ox Ox Ox 0 < Z < 1 + C'q

As a consequence, we can now substitute the dynamic inud pressure Pd from the

horizontal momentum equation 6.4.4.4. for 0 < Z < 1 + r/:

0U 1 A 0Txz 0rKC( OU K dh aU U 2

at Re(2) d &Z Ox Ox OX )K dX z Z OZ)
(6.4.5.20)
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(6.4.5.14)

(6.4.5.15)

(6.4.5.19)

P = p(Z = 1 + Er/) + O(K 2), 0 < Z < 1 + er/

= -( + O( 2)

O<Z< I+cq



6.4.6 Bottom kinematic boundary conditions

At the bottom, we impose the no-slip boundary condition:

U = V = 01, z = 0 (6.4.6.1)

6.5 Asymptotic equations in water and viscoelas-

tic mud

6.5.1 Surface and interface

Water equations

We consider that the dependence of the wavenumber on x. because of the bottom

slope. As a consequence, we introduce new variables:

1 X

K
h-1 /2dX - t

so that the derivatives become:

a a
at 8
a - 1 0a

Ox ax +1h'0

With the new variables defined in 6.5.1.1, equations 6.3.3.9 and 6.3.4.8 become:

-C + KA + ,hxfi + Khux + c(h- 1/2 + Ech- 1/2nj + h1/ 2 94 = O(K 2 ) (6.5

-g + Eh- 1/2n- + (x + h- 1/2 ( 2) (6.5

From equation 6.5.1.3 at the first order. we deduce:

=- C2 + O(K 2)

a - h , + O(K 2) (6.5

Ux = h ' 2 x 2h/ 2 C+0(
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.1.3)

.1.4)

.1.5)

. .



We now consider (equation 6.5.1.3 +h 1/ 2* equation 6.5.1.4) at the second order and

we obtain:
Kd?)+Khxu + Kh X + - 1 2 a- E(h- 1/2{j

+ h1 /2 (Eh 1/2 a- +sx) = 0(h 2)

Using the relations 6.5.1.5, equation 6.5.1.6 becomes:

(6.5.1.6)

d r/+hxh-1/2( + h h- 1/2
K

and finally:

+ -(,h-'( + -(h
K K (6.5.1.7)

+ h1/ 2 (h-1/2h-1/2(h-1/2( + (X) O(K)

2h'1/2(X + hx (+3 E (() d r/g + O(s)
2hI/ 2h Kd

(6.5.1.8)

Now let us expand the functions ( and 7 as power series:

=(0) + r( -+ r2(( 2) +
- (0) a- S( 1 ) a- 62 712) a- (6.5.1.9)

Because equation 6.5.1.8 is non-linear, we decide to adopt the following form for ((0)

and q(0):

7(0) 
= 1

2i -2 M =x:
m=-o

Bm(X)eim

where we set AO to be A() = 0. Then we know that:

8((0) 1: I O d,4 M Cz c

(X 2  dX
m=1

3 0(((0))2
2h (9

3 3

m=1

m [n/2]

S2A*Am+ + (iAi Am-I + cc.
L=1 m i =1

(6.5.1.10)

(6.5.1.11)

Then, following the procedure in section 2.5.3. we deduce from equation 6.5.1.8:

dA
Vm, v/h +

dX

hxA 3 1 m
-[Am + 2m 2AAm+i

4V/& x 8h

[m/2]

+ - aiAIAm-I
l=1

Kd Zm+ - B 1 = 02

(6.5.1.12)
where [m/2] is the integer part of m/2 and a, is a coefficient equal to 1 for I = [m/2)
and equal to 2 otherwise.
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Let us observe that equation 6.5.1.12 becomes equation 2.5.3.5 in the particular

case h(X) = 1. This result confirms our calculations.

Mud equations

Let us find other coupling equations between the surface and the interface. ( and 77,

derived from the mud equations.

Equation 6.4.5.20 gives at the first order:

aU (Oxz
-t a 9z =- 0(+ O(K)09x (6.5.1.13)

with:

a (2) 0(1) (6.5.1.14)
KdRc(2)

From the change of variables 6.5.1.1. we convert equations 6.5.1.13. 6.4.2.2 and

6.4.1.6 at the first order in:

BU(0 y
+ = -yh- 1/2 0(+ 0(().

og
0 < Z < 1 + ('(X)

< di /U(o) m'(()
+ -= O(E),0 KddX aZ +z

0 < Z < 1 + C;(X)

8 - , dh aU(())
d=V -a + O().

og naddX OZ
z =1

(6.5.1.15)

Since the water equations are not linear, we consider all harnionies and write:

U)- 1
2 US)(Z)em

(6.5.1.16)

(rZ)() = ( (rxz) )(Z)emiT

Let us find an equation between Am and Bm from the mud equations. From the

first equation of 6.5.1.15, we know:

(2) d(xz)

dZ
+ imUfj - h-1/ 2imyAm

From equation 6.2.0.14. which only applies to simple harmonic waves. we deduce:

dU M)
( z = -m md + O(") (6.5.1.18)

dZ
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a(2) az4
aZ

/2

(6.5. 1.17)

8UT(O)

oo
V(O)(Z)Cimm



As a consequence, equation 6.5.1.17 becomes:

d2U()
dZm + UC -= h- 1/2 A

dZ2 (2) Pm a 2L
(6.5.1.19)

which can be simplified as:

d2U(4)
- &2U() = h 1/2-2 y m

dZ 2  -h a-A

where &2 is as in the flat bottom case (chapter 3):

m
a&m =-i a2 pm a( )pm

Knowing the value of a(2), we deduce:

(6.5.1.20)

(6.5.1.21)

~2 .mrdpAlAdk ylgh
Eo=m

(6.5.1.22)

Let us note that the value of am does not depend on p,. since pIym - P'm is

the dimensional viscosity. As a(2 ) and Re(2 ) do not appear in equation 6.5.1.19. we

deduce that we will not need the value of ps to solve it.

We also know the boundary conditions:

U(4) =0, Z = 0

dU(o) C(6.5.1.23)
=Z 0(E). Z =-1dZ

and thus, Vm:

UQ-o= , Z-=o

dU(o) (6.5.1.24)
=- 0, Z = 1

dZ
We obtain the value of the horizontal velocity:

U23 =yAm I - [1 + tanh(Jm)] cosh(&m Z)
(6.5.1.25)

+ [tanih(&m)] sinhli(&mrZ)1
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From 6.5.1.15, we also know:

Vm, dXV) im )
IdZ v h "7'

Using the boundary condition:

V) (z = 0) = 0

imr 'yAm ~&mZ - [1 + tanh(&m)] sinh(&mZ)
omh.

+ [tanh(&m)) cosh(&mZ) - tanh(&m)]

K dh
+ mU()

Kd dX "

It is interesting to note that there is a new term in the expression of V ()) compared to

the flat bottom case (chapter 3). This is due to the fact that we are not considering

the sane axes anymore. As a consequence., the vertical velocity niust be corrected

with a term proportional to the horizontal velocity and the slope -. Now, still from

equation 6.5.1.15, we have:

Vn, Bm(X)
im
SV 0)(Z- 1) U dh (Z

KddX m
=1))

After using equations 6.5.1.25 and 6.5.1.28. we obtain:

Vm, Bm(X) =ArM 1 - tanh &
h o.. M

Combining equations 6.5.1.12 and 6.5.1.30, we naturally obtain:

Vm v hdA hx AmdX 49 vr

tanh &,1- =
o-m

where [m/2) is the integer part of r/2 and a, is a coefficient equal to 1 for = [n/2)
and equal to 2 otherwise.
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+ dh aUnP
rd dX OZ (6.5.1.26)

we obtain:

(6.5.1.27)

(6.5.1.28)

(6.5.1.29)

(6.5.1.30)

+3 2A*Am+i +
r, 8h

+ Zmd 'A,
2 K h I

[m/21

E cijAj Am-l
(6.5.1.31)



This equation will be solved numerically for Am.

6.5.2 Drift current

Let us study the drift current in mud by going to order O(i,).

At this order. we had for 0 < Z < 1 + E from equation 6.4.5.20:

au (2)=(TXZ)

at aZ axOx rd?7) - C (U
au
ax

K dh U
ddX U az + O(2)

(6.5.2.1)

With the variables defined in 6.5.1.1, this equation becomes:

(2) a(rzz)
aZ S8x aXd7)v_ Ox O hx

At order O(K). this equation is:

_ a(2
) Z

az
-d (o)) _ 0(0)

N T/ ax

E [ 1 U _(0)_

[ VH' a
K dh UCO)
nd dX J

BU(O)

Z52

(6.5.2.3)

We won't study in this thesis the harmonics of (() and qj1) the way we did for ((')

and T(). The most interesting part of this equatioii is that a drifting term appears.

Indeed. the zeroth harmonic of UM) is not zero:

a(rz z)(W
OZ

_ sdRe(2

2 r

K dh

IddX m

(U((-in)(U) + U(l(im)U2))

K dhU o
IddX -- )aZ

We can once again use the relation 6.2.0.14 applying for simple harmonic waves., and

we obtain:
()dU

(TxZ) = /m "' + O(K4)
' d Z

(6.5.2.5)
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au

K dh U
hddX aZ +V )

8Z

(6.5.2.2)

+ 0(E2)

+ V
OZ)

1 C I U
-e h- U

7Y 0 ( 10)
-\f x

r() (6.5.2.4)
8Uno

aZ(V()



as a consequence, equation 6.5.2.4 becomes:

d RC(2)

rn-I

[1 U (0)(-im)U (0 + U ( (im)U())

ix dh
i ArU0)

K, ddX "'~ )

x dh

a ddX

which can be simplified:

K dh

KddX

nRe (2)o.
2p-or ."'

U( )) aU
9Z

+ (v0+ -" Sdh (o) aU2

dX --" Oz
(6.5.2.7)

Knowing that UL -- (of(")y and:

(0)Vm

&2U)
O2

dh

d dX
Wo)Um

KdRe(2 0)
/10K i4(v

Sdh
hU )

KddX

K dh

hd dX

Equation 6.5.2.9 will be integrated later to give U . We notice that this drift

only appears at the order O(/t), and is as a consequence small.

This equation is the same as the one we obtained in the flat case (equation 3.5.3.6),
except that the vertical velocity V") is corrected by a term that accounts for the

sloping bed.

6.6 Further details

6.6.1 Surface and the interface

Let us recall equation 6.5.1.31:

hl/4 dAm h/ Ah + m 23A
dX 4h3/4 K W/ .M

+d 1'y

h- 2h'/4
1 -

[mn/2]

A711+i + 0z A,
1

tanh(m)A

a Am
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we obtain:

(6.5.2.8)

(6.5.2.9)

AmI
(6.6.1.1)

-0' +
aZ

" + 3 (V()

(V(O)m



Knowing that:

equation 6.6.1.1 becomes:

2A*
_[i=1

+ Kd Z'Y F
+ m 1

k 2h5/4 [

[m/2]

Am+i + aiAiAm-]

1 _ (6.6.1.3)
tanh(Jm) Am 0

- r Am=

By truncating the infinite series we get:

d(h 1 / 4 Am) 3i [A A [m/21

dX , 8 h5/4m 2 (aAiA,.

+ 2h 5/4 M

(6.6.1.4)

tanh(arn) 0
&m

The truncated differential system is true for 0 < m < n.

Once again, we note that equation 6.6.1.4 becomes equation 3.6.1.1 in the flat

bottom particular case h = 1.

6.6.2 Drift current in mud

We also truncate the result we got in 6.5.2.9 for the drifting in velocity:

82U) (2Re() " F( )
OZ2 po0 "K n

K dh

IaddX -m

In the end we get:

ON -YAm [-om sinh(omZ) + am tanh(om) cosh(o-mZ)]
OZ -Ah

- dh UO)\

ra ddX ')

rryA*
U*h [o-Z

-*
- sinh(o-*Z) + tanh(o-*)(cosh(o* Z) - 1)]

(6.6.2.3)
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d(h/ 4 Am)+ 3 Z
dX ,8h 1/4
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(6.6.2.1)
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Combining 6.6.2.2, 6.6.2.3 and 6.6.2.1, we obtain:

fKdRe (

POhs/2 E

-y A
{ n Z - sinh(&* Z) + tanh(&* )(cosh(&*Z) - 1)]

7n

-yAm[-Jm siiih(&mZ) + jrm tanh(&m) cosh(&mZ)]

(6.6.2.4)

which can be simplified to:

2 KdRe (

[ ponh3/2
m=1

Am| 2 9 K! [a*Z - sinh(a* Z)
m

+ tanh(&* )(cosh(&* Z) - 1)]

[-6rm sinh(&nZ) + am tanh(&m) cosh(&mZ)]

Let us solve this equation to get the drift velocity.

02U() n )Re0 2 2 po'h2/2

9Z2 Z~ I -V K/2 [m - Jm*Z sinh( mZ) + m&*Z tanh(&m) cosh(&mZ)

+ rm sinh(&* Z) sinh((mZ) - (rm tanh(&m) sinh(&* Z) cosh(6mZ)

- (tanh(&m))*Jm cosh(&* Z) sirrnh(&mZ)

+ &m tanh(&m)(tanh(Jim))* cosh(&,Z) cosh(&* Z) + (tanh(C7m,))*&m sinh(a mZ)

- m tanh (m) (tanh(m6))2* cosh(&m)Z)
(6.6.2.6)
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We write m =R + i where &R and &' are real. Let us first integrate once. We

use the fact that &m + &* = 2&R and a, - * = 2i&:

n

JAm 12 2

m=1

dRe(2) - -F _
3/29 -&#0 K -om

- &* Z cosh(&m Z) -
sinh(JrmZ)

am

ZH sh (&n (5(Z) - COSh(&mZ)&*, tanh(&m) Zain(mZm

sinh(2&RZ)
+ siuh(2 M)&m(1 + tanh(&m)(tanh(&m))*)

sinh(2id Z)
+ am(tanh(&m)(tanh(&m))* - 1)

rn
cosh(2& Z)

4aRm &(tanh(& m) + (tanh(&m))*)

cosh(2i&, Z)
+ -401 am(tanh(&m) - (tanh(&m))*) +

m

- tanh(Jn) (tanh(&m))* sin1h(c&mZ)]1 + C()

(tanh(Jm))* cosh(&mZ)

(6.6.2.7)
with C? to be determined from to the boundary conditions. Integrating again, we

get the expression of U(,):

=--E
rn-I

2 [ 2 dR ()

l7m pha/2

+ &* taulh( 3 n)(Zcosh(&mZ)
+om tah&m ~-

- cosh(JmZ)
2 -2rn

sinh(&m Z)
2 ~&2om

cosh(23RZ)
+ 4() &,m(1 + t anh (o-m)(t anh(o-m)))

cosh(2idjirZ)
+ 8os(i) &m(tanh(&m)(tanlh(&m))* - 1)

sinh(2&RZ)

a m(tanli(&m) + (tanh(&m))*)

sinh(2iJ Z)
+ 2 ami(tanh(&m) - (tanh(&m))*) +

8(&1)+

- tanh1(&m)(tanh(&m))* cosh (&mZ)- TZ
o-m II+ /M)z

(tanh(Jn))* Sinh(&mZ)

(t an(r m)) *
oim

+ C

(6.6.2.8)
From equation 6.4.6.1, we know that:

U (Z -0) - 0 (6.6.2.9)
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As a consequence, we deduce the value of CX:

h 3/2C(2= 2dRe 3 m
SpoN ,

am1 -+ tanh(&m)(tanh(jm))*)2*

&?,

&m(1 - tanh(&m)(tanh(Jm))*)

8(&R)2
tanh(&m)(tanh(&m))*

+ &M

We now make use of the interface boundary condition 6.4.5.11. From this equation,
we know that:

(Tz)(1)(Z - ) a= z-i

z-1-- B mn

M= 1

From equation 6.2.0.14, which only applies to simple harmonic waves, we know:

Vp, (roz)
dU (

AM i + O(K4)

can replace T xz in this last equation:

Po OZ z1 -1r 8UE +
4 B p 2 z1

E 1

K4Z

e 1"0

S2 E
M=1

Knowing that:

and:

0Z2 Z

B 82U, , ts"I) * +
Bm (pm Z2 z i

82U(Bm I-m UZ z=1

Brn G(m)

1 - 2 sech(om)
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and so:

(6.6.2.11)

+ B-m (Tx ZOz (6.6.2.12)

(6.6.2.13)

(Bm)*pIm
82U)

-i ~ (6.6.2.14)

(6.6.2.15)

(6.6.2.16)

(Txz)((),)(z = 1) -

B 8PIMa2 U M(
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equation 2.6.2.12 becomes:

z = -p ~1 h/ 2 2

E-Y 2  1

2K/Jo h 3 /2

6cY2  1

2K/Jo h 3 /2

Let us truncate this last equation:

_U) E 2  1

&Z (z=1) - 2Kpo h3 / 2

R[-yAmG(O-m)p* -7A* (&* )2sech(&*,)S M M
rn=i

(6.6.2.17)Am| 2R
A=m 

5~,12

|Am |29 [iG(&rn)p*(&*) 2 sech(&*)] (6.6.2.18)

From equation 6.6.2.7, we deduce the condition that C.7) needs to meet in order to

respect this boundary condition:

y *2 Re 2 [ (d cosh(om)
ponh3/2 ,

- om tanh(om) (smh(om) -

sinh(23r) &m(1 + tanh(&rn)(tanh(jm))*)

sinh(2i&d )- siomi~) r(tanh(m)(tanh(o-m))* - 1)

cosh(2CT,)
+ co46mRr) &r(tanli(orm) + (tanh(jm))*)

cosh(2idm(tho) 
- (tanh(om))*)

(tanh(Crm))* cosh(&m) + tanh(&m)(tanh(&m))* sinh(&m) - c4)
67 2 1

2K/po h3/2

sinh(m))
- ~

cosh(an)

omn

(6.6.2.19)
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We finally obtain the value of CMQ:

2
43/2C - [iG(m)(*) 2 sech(&*)]

2mpo

+ __ _ m *e [)cosh(m)
[ton -o-*

sinh(&m)
-M

cosh(&m)
-o tanh(o m) m h(m)( m

4ummsinh(2&R)
- &m(l + tanh(um)(tanh(am))*)

msinh(2id&')

- 1&) &m(tanh(&m)(tanh(&m))* - 1)

cosh(2&i)
+ - & m(tanh(&m) + (tanhi(&m))*)

(6.6.2.20)

- 4 *&J &m(tanh(&m) - (tanlh(&m))*)

(tanh(&m))* cosh(&m) + tanh(&m) (t anh(&m))* sinh(Um)

The drift current is now found.

We observe once again that U(1) reduces to what we found in the flat bottom case

(equation 3.6.2.5) in the special case h(x) = 1. Actually, the drift is the same as the

one we found in the flat bottom case, except for the h- 3/2 coefficient.

6.6.3 Energy variation

We found the differenltial equation 6.6.1.4:

d(h 1 / 4Am)

dX +
3i 1

8 h5/ 4

+ h -/4 d
K 2

[m/21

2A*Am+i + ajAiAm-)

tanh('m) Am - 0

We introduce A, = h1 / 4Am, and modify equation 6.6.3.1 as:

3i 1 =1
+8 Onh7/4

-3/2 m 2
x2

[m/2]

2A*Am-i + a1AA 7 n
11

tanh(6m) AM = 0
o-m m
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Using the same demonstration as in the flat case, we easily deduce the variation law:

[ [S 1A.12] =-2h-3/2 ZR Km (1 - tanm))I A|m2 (66.33)
dXm=1 Km=12 -& -

and we then obtain the energy variation relation:

dXK' EIAml =dj Re [im (I - tanh(Jm) IAm|2 (6.6.3.4)
dA m=1 hKm=1 -M

6.6.4 Behavior at the shore

Let us study the evolution of |AmI towards the shore, that is to say towards h = 0. In

this study, we will consider that the water depth decreases as X increases. In other

words hx < 0.

Let us first study the attenuation rate of the different harmonics |Am 1 We already

showed in chapter 3 that the attenuation rate for each harmonic is:

1 Kd! [T/ tanh(Jm)
=m -- [m K1 - -(6.6.4.1)

and we plotted some examples. Let us recall our results and give more details. Figures

6-3 and 6-4 show the attenuation rates of the eight first harmonics |AmI for the 4 types

of muds and for 2 different, values of h. We deduce from these figures that, in the ,

and h-ranges in which we are interested, the attenuation rate of the first harmonic is

most of the time the smallest. The only case in which 1/L 1 is not the smallest, then

1/L 5 is the smallest.

As a consequence., one harmonic always decays last. Let us prove that this har-

monic decays to zero, and we will have proven that all harmonics decay to zero at

the shore. Let us call Adom this harmonic.

Let us consider X0 such as VX > Xo, all the Am are negligible compared to Ador.

Such an Xo exists because the attenuation rate of Ador is the smallest.

Ignoring all modes m. $ dom., let us rewrite equation 6.6.3.4 for |Adorm only:

d v|AdOm| 2 h dor1 (6.6.4.2)
dX h Ldom

Let us write Adom such as:

Ado_ - h17
/

4 Ad0 1m (6.6.4.3 )

208



8 -

m=4

m=3 m=2
4- 4 . ...... .

......--- 1

0 0.05 0.1 0.15 0.2
K

(a) Gulf of Mexico mud

x 10

0.05 0.15

(b) Mobile Bay mud

0.0251

IL 0

0.01

0.0

0) 00

0.05 0.15 0.25

(c) Lianyungang mud

(d) Hangzhou Bay mud

Figure 6-3: Attenuation rates of the first ten harmoiinics. h
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Then equation 6.6.4.2 becomes:

d|Adom| 2 _ 1 |Adon |2

dX h3/ 2 Ldom
(6.6.4.4)

Since the aim of this study is to consider the behavior very close to the shore, the

beach can be approximated as a plane beach. We choose s such as h(X) = 1 - sX,
and thus hx = -s. The solution of this equation is:

(6.6.4.5)|Adom| = a1om expE - 2 h
Ldom s

With adom a real constant. And thus:

| 1sm2 = cx pj 9o - -dom I
I Adrn ~ hI/2

CXI

2 h- 1/2

Ldom s
(6.6.4.6)

Since Ldom > 0 and h- 1/2 is a growing function of X, we deduce that |Adom 12 -+ 0

exponentially as h -+ 0.

Since Adom is the dominant harmonic, and all the others are negligible, we deduce

that: all harmonics IAm|12 -+ 0 exponentially as h -> 0

Let us now study the interface harmonics Bm. From equation 6.5.1.30. we know

that:

Vm, Bm(X)
tanh(&m)]

o-
(6.6.4.7)

I

As a consequence, by multiplying 6.6.4.7 to its complex conjugate:

tanh(&m) 2

~M I (6.6.4.8)Vm, I|Bm12 = I 1 2h1,2

And we deduce from the previous result on the |Am| 2 that |BmI2 -+ 0 exponentially

as h -+ 0.

Let us now study the drift current U('). From equation 6.6.2.8. we can write UP)

U0 (X, Z) = h(X) 3/ 2 | Am| 2 (X)fm(Z)
mn=1

(6.6.4.9)

where fm(Z) is a complex function of Z with finite values. Knowing that |Am12 -+ 0

exponentially when h -+ 0, we deduce that |A 1
2/h 3 /2 also goes to zero exponentially

as h -+ 0. In the end, we deduce that UP) --+ 0 exponentially when h -+ 0.
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6.7 Numerical results by using the first ten har-

monics

We now solve this equation in the particular case:

h(X) = 1, 0 < X

h(X) =1 - sX.

h(X) = 0,

0 < X < 1/s

X > 1/s

corresponding to:

hx=0, 0<X

hx =-s, 0 <X < 1/s (6.7.0.11)

hx=0, X>1/s

We are going to plot these results for the viscoelastic muds we previously studied.

Let us sum up the different muds we have:

" Case A: Gulf of Mexico mud. This mud is rather elastic.

" Case B: Mobile Bay mud. This mud is rather elastic as well

Case C: Lianyungang mud. This mud complex viscosity's phase is around ! so

it is as elastic as viscous.

" Case D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity's

phase being close to zero.

6.7.1 Comparison of the different types of mud

We first look at the results for four types of mud in the case h = 2m. A = 0.4m,

d = 0.2m and ' = 0.5rad/s. (corresponding to the case lb of the previous chapter).

These values correspond to c = 0.2, K = 0.22 and Kd = 0.1. The slope is s' = 0.01,

corresponding to s = s'/h 2 = 1/5. So for all this section:

(6.7.1.1)

Surface and interface

Computations have been carried out for 10 harmonics. In figures 6-5 and 6-7, we

present the variation of the first three harmonics of the surface and the interface.
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Warning: the scales are not the same for every mud.

In figure 6-5, it can be observed that damiping is stronger for the Gulf of Mexico.

Lianyungang and Hangzhou Bay (A, C, D) than for the Mobile Bay mud (B). This

result is consistent with the previous chapter for horizontal sea bed.

We also observe that for the Hangzhou Bay mud, the |Aml have more oscilla-

tions than for the Gulf of Mexico and Lianyungang muds, even though the damping

lengthscale is comparable for these three muds.

We only plot the surface motion up to X = 4.6 for the Mobile Bay mud, because

numerical accuracy does not allow us to go to higher values of X without strong

oscillations appearing. However, we show in figure 6-6 a zoom-in of the interface

variation for this mud at the shore. This figure allows us to see that the surface

motion eventually reaches a zero-value at the shore.

Figure 6-7 shows the variation of the interfaces. The results confirm what we

previously saw. In the cases of muds A, C and D, where the damping is significant,
the interface motion is stronger than for the Mobile Bay mud (B). The variation of

the interface is the most pronounced for the Hangzhou Bay mud. This is due to the

fact that, as seen in chapter 3, the value of r corresponds to resonance.

Figure 6-8 gives a zoom of the interface motion for the Gulf of Mexico, Mobile

Bay and the Lianyungang muds. These zoomed figures allow us to see that the |Bml
always go to zero at the shore, which is what we demonstrated in the previous section.

Drift

Figure 6-9 represents the drift we calculated in equation 6.6.2.8. As in chapters 2 and

3, the drift current is a sum of the Am 2 multiplied by coefficients. As a consequence,
the shape of the IAml directly influences the drift current shape.

Let us reimind the equations:

U -UN + I{U(1 ) + O( 2)

- () 1 -v ( 1) (UI DC M + CC') (6.7.1.2)

m=1

This is why we represent the value iU (1) because it is the value that appears in

the total sum of U.

Once again, the results presented in this figure confirn the effect we previously

described: the damping is strong for muds A and D. As a consequence, there mud

motion is stronger, and in particular the drift current is stronger. The drift current
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Figure 6-5: Evolution of the first 3 harmonics of the free surface over different types of
viscoelastic iuddy seabeds. Warning: the horizontal and vertical scales are different
for mud B.
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Figure 6-6: Zoom-in of the surface motion for the Mobile Bay mud.

is smaller for the Lianyungang mud, and very small for the Mobile Bay mud.

We note the presence of oscillations in the drift current for the Hangzhou Bay

mud (D). We already noticed these oscillations for the same mud in the lAm| in the

previous section. As we said, the drift current is a sum of the lAm| 2 multiplied by

coefficients. As a consequence, if the |AmI show oscillations, it is logical for the drift

current to also show oscillations.

Let us compare this figure 6-9 to what we obtained in the flat case with the

same values of E. r, and Kd. that is to say figure 3-20. The initial values of the drift

current at X = 0 are the same for all muds in the flat and sloping seabed cases.

Indeed, the initial values of the harmonics are the same: |A1 (X = 0)| 1 and

Vrm > 1, IAm(X = 0) = 0. and h(X = 0) = 1, so the drift values should be the same.

We also observe that the drift current for the Gulf of Mexico mud (A) has the

same pattern. However., its peak value is twice bigger in the sloping bottom case.

This is due to the fact that the drift in the sloping case is the drift in the flat case

divided by h(X) 3/ 2 , and h(X) < 1.

The Mobile Bay mud (B) has a very small drift in both flat and sloping seabed

cases.

The Lianyungang mud (C) also has the same pattern in the flat and the sloping

bottom cases. It has a peak occurring at the same rough value of X: X = 1.5, but

this peak value is around 50 times smaller than the Gulf of Mexico mud peak. This

confirms the fact that damping is stronger for the Gulf of Mexico mud, and hence the

drift current also stronger.

Finally, the Hangzhou Bay mud (D) has small oscillations in both cases, because

the |Am| have small oscillations as well. Inl the flat case, the drift current for D is the

one that is damped the most slowly. In the sloping case, because the drift includes

this h(X)-3/2 term, the drift current reaches higher values than in the flat case. It
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Figure 6-7: Evolution of the first 3 harmonics of the interface over different types of

viscoelastic muddy seabeds. Warning: the vertical scale is different for mud D and
the horizontal scale is different for mud B.
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Figure 6-8: Evolution of the first 3 harmonics of the interface near the shore for the
Gulf of Mexico. Mobile Bay and the Lianyungang muds.
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Figure 6-9: Drift velocity 1KU . Mud A is Gulf of Mexico mud, mud B is Mobile
Bay mud, mud C is Lianyungang mud and mud D is Hangzhou Bay mud. r, = 0.22.

increases until X = 4.6.

We only show the plot up to X = 4.6 because strong oscillations appear after

that in the Mobile Bay drift current. However, figure 6-10 offers a zoom-in of the

drift currents near the shore for each mud. This important figure shows that all drift

current eventually reach a zero-value. Since this is what we analytically predicted in

section 6.6.4, we obtain that numerical and analytical results agree.

Energy variation

W/e numerically represented the total first-order energies in figure 6-11. This figure

shows that the total energy logically decreases, to reach a zero-value at the shore

(X = 5). However, we observe once again that dissipation is slower to occur in the

Mobile Bay mud (B).
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K = 0.22.

Zoom-in of the drift velocity IKUP next to the shore for all muds.
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Figure 6-11: Wave energy over a flat thick muddy seabed. Mud A is Gulf of Mexico
mud, mud B is Mobile Bay mud, mud C is Lianyungang mud and mud D is Hangzhou
Bay mud.

6.7.2 Influence of the slope s'

We now focus on the influence of the slope. We look at the slope values s' = 0.048, s' =

0.024, s' = 0.012, s' = 0.008, s' = 0.0048 and s' 0.0024, respectively corresponding

the non dimensional slope values:

s = 1, s = 1/2, s = 1/4, s - 1/6, s - 1/10. s = 1/20 (6.7.2.1)

We still have h 2m, A 0.4m. d = 0.2m and w = 0.5rad/s. These values still

correspond to:

E = 0.2, = 0.22, a= 0.1 (6.7.2.2)

We particularly focus on the Gulf of Mexico mud (A) and the Hangzhou Bay mud

(D), because they respectively correspond to the most elastic and the most Newtonian

nmuds we have data for.

Surface and interface

Figures 6-12, 6-13 and 6-14 show the variation of the surface for different slopes for

the Gulf of Mexico and the Hangzhou Bay muds.

We note that when the slope becomes less steep (like s = 1/20), the harmonics

have time to be damped out before reaching the shore. On the contrary, when the

slope is very steep (like s = 1), the harmonics are danped very quickly right before

the shore.
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Figure 6-12: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds. in the cases s = 1 and s = 1/2. Warning: we use a
different scale for the Gulf of Mexico mud. s 1 case.
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Figure 6-13: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds. in the cases s = 1/4 and s - 1/6.
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Figure 6-14: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds, in the cases s = 1/10 and s = 1/20.
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Figure 6-15: Evolution of the first 3 harionics of the interface between mud and

water over different types of viscoelastic muddy scabeds, in the cases s = 1 and

s = 1/2. Warning: we use different scales.
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Figure 6-16: Evolution of the first 3 harmonics of the interface between mud and
water over different types of viscoelastic muddy scabeds. in the cases s = 1/4 and
s = 1/6. Warning: we use different scales.
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Figure 6-17: Evolution of the first 3 harmonics of the interface between mud and

water over different types of viscoelastic muddy seabeds, in the cases s = 1/10 and

s = 1/20. Warning: we use different scales.
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Figure 6-18: Evolution of the first 3 harmonics of the interface near the shore with
the Gulf of Mexico mud. The X-scale is from 0.999992 to 1 for s = 1.
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Figure 6-19: Evolution of the first 3 harmonics of the interface bnear the shore with
the Gulf of Mexico mud. s = 1/10 and s = 1/20.

Figures 6-15, 6-16 and 6-17 show the variation of the surface for different slopes

for the same muds. As before. the variation of the interface are more important for

the Hangzhou Bay mud than for the Gulf of Mexico mud, by a factor of 10.

Figures 6-18 and 6-19 show a zoom-in of the interface motion near the shore for

the Gulf of Mexico mud. We can see on these figures that the harmonics ultimately

go to zero, which agrees with the analytical predictions.

Drift

We now focus on the drift current at Z = 1 and for the different slope steepnesses.

The shoreline corresponds to X = 1 for s = 1, to X = 2 in the case s = 1/2, to

X = 4 in the case s = 1/4 and so on.

Figures 6-20 and 6-21 show the drift current variation from X = 0 to the shore for

the different values of slope that we are considering in the case of the Gulf of Mexico

mud (A).

Because the behavior at the shore is not easy to see in figure 6-20. figure 6-22 offers

a zoom of the drift current at the shore. This figure ashows that the drift current

ultimately reaches a zero-value. which is what we were expecting from our analytical

study of the behavior at the shore.
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Figure 6-20: Drift velocity ±rU() at Z - 1 for the Gulf of Mexico mud.
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Figure 6-21: Drift velocity jrU at Z =1 for the Gulf of Mexico mud.

Figures 6-23 and 6-24 show the drift current variation from X = 0 to the shore

for the different values of slope that we are considering in the case of the Hangzhou

Bay mud (D). The drift reaches higher values for the Hangzhou Bay mud than for

the Gulf of Mexico mud. This is once again due to the resonance effect happening in

the Hangzhou Bay mud.

In particular, we observe that the drift current reaches high values in the case of

a very steep slope. s = 1. This is because, near the shore, the harmonics are not

damped yet (see figure 6-12), but h(X) already is very small. As a consequence, the

drift, which is a sun of (Z, m)-dependent coefficients times the JAm 2, divided by

h(X)3 /2 reaches high values before decreasing exponentially at the shore.

In figure 6-25. we also plot the drift current with the Mobile Bay and the Lianvun-

gang muds. This figure allows us to compare the drift current for very steep and non-

steep slopes (respectively s - 1 and s = 1/20). As before, the graphs corresponding

to the Mobile Bay mud are cut before the shore because of oscillations appearing.

For the steep slope (s = 1), we observe that the drift current is smaller for the

Mobile Bay and Lianyngang muds than for the Gulf of Mexico and Hangzhou Bay

muds. Especially, the drift current is 10-- times smaller with the Mobile Bay mud

than with the Hangzhou Bay mud.
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Figure 6-22: Zoom-in at the shore of the drift velocity !IU at Z 1 for the Gulf
of Mexico mud.
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Figure 6-24: Drift velocity rKUK at Z = 1 for the Hangzhou Bay mud.

For the non-steep slope (s = 1/20), these muds have very different behaviors. The

result for the Lianyungang mud is like the results we obtained with the Gulf of Mexico

and the Hangzhou Bay muds: since the harmonics jAml are damped by the mud long

before the shore, the exponential decay of these harmonics appear long before the

shore as well, and there is no increase of the drift current near the shore due to

the shallow water (ie small value of h(X)). On the contrary, since the mud-induced

damping is very slow to happen with the Mobile Bay mud, the exponential decay

of the harmonics lAmi does not occur long before X = 20. As a consequence, the

harmonics are not damped and the effect of the h-3/2 in the drift current is visible:

the drift current increases with X.

As always, we show in figure 6-26 a zoom of figure 6-25 at the shore, in order to

show that the the drift current decays to zero at the shore.

Energy variation

We nunierically represented the total first-order energies in figure 6-27 for the different

slopes. This figure shows that the total energy logically decreases. to reach a zero-

value at the shore (X = 5). However, we observe once again that dissipation is slower
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to occur in the Gulf of Mexico mud (A). The shore is reached for X = 1 for s = 1.

for X = 2 for s = 1/2 and so on.
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6.8 Horizontal bottom without mud

6.8.1 Governing equations

From the study we just led in the particular case of viscoelastic mud, it is very easy

to deduce the surface waves behavior in the absence of mud. Indeed. the absence of

mud simply mean that Bm = 0 in equation 6.5.1.12.

As a consequence, the governing equation 6.6.1.4 for the surface waves become:

d(h 1 / 4AM)

dX
cF 3z m I ' 2 Amij[n-r [m/21 l l rn l
K 8h5

1
4 

Tn 2AALl+a.dM-
ei3i

(6.8.1.1)

The same way, the energy variation can be deduced from equation 6.6.3.4, that

becomes:

d h2]Am|] 0
m=1

(6.8.1.2)

This result looks very logical, since it means that in the absence of mud, there is no

energy dissipation in water.

6.8.2 Numerical results by using the first ten harmonics

Since we don't consider mud anymore, there are only four parameters remaining: h,

A, ' and s'. We already studied the influence of dispersion and non-linearity in

chapter 3, by playing on the ratio e/K.

Let us now study the influence of different slopes. We look at the slope values

= 0.048, s' = 0.012 and s' = 0.0024. respectively corresponding the non dimensional

slope values:

s = 1, s = 1/4, s = 1/20 (6.8.2.1)

We still have h = 2m, A 0.4Mn, and w 0.5rad/s. These values still correspond to:

E = 0.2, K= 0.221 (6.8.2.2)

The results are shown in figure 6-28 for the three different slopes. Once again,

even though we carried the numerical resolution with ten harmonics, we choose to

only display the first three harmonics.

The main result is that, in the absence of mud. the harmonics keep growing toward

an infinite value at the shore. This result, is a very well known phenomenon: wave



height increases as water depth decreases toward the shore.
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Figure 6-28: Effects of the slope on the evolution of the first 3 harmonics of the free
surface on a solid seabed.
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Chapter 7

Sloping bottom, with very shallow

viscoelastic mud

In this chapter, we still consider the bottom of the ocean to have a gentle slope, as

shown on figure 7-1.

However, we now consider that non-linearity c is small compared to dispersion,

that is to say e small compared to K:

O(I ) = 2 ) (7.0.2.1)

In order to see the effect of non-linearity on inud-induced damping. we consider

the mud layer to be thiner than in the previous chapters:

d
H d = Q(,K2) (7.0.2.2)h

so that non-linearity and mud-induced damping act at the same order.

The same way, we now consider the slope to be of order O(h 2 ), so that it is

comparable to the damping order we previously found in a flat bottom case. This

means that in this entire study, we will consider:

dh' d2 h
=dx 0(K2 ) dX2  0(/ 4 ) (7.0.2.3)

For the same reason as in the previous chapter. we will not study the more simple

case of a Newtonian mud because this type of mud would result in a flow down the

slope in the static case.

This is why we consider the mud to be viscoelastic. We already demonstrated that
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Figure 7-1: Sketch of the studied case. d is the mud layer depth measured vertically.

viscoelastic mud was not flowing down the slope in the static case, and that there is

only a displacement of the mud down the slope.

7.1 Scaling

As before, we define a dimensionless complex viscosity:

IlAl
(7.1.0.4)

We will use the same scaling in water as in the flat bottoni case (chapter 5) :

d
EI= r'hepik

(7.1.0.5)

where pL, is the characteristic viscosity deduced from the different sets of experiments.

Because of calculation siniplifications, I still do not need to assign a particular for p,

for the different muds. Indeed, every tine the viscosity appears in the final results. it

appears as pp , and I could thus use the (iiensional value of the viscosity: p' = pps.
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To sum up the scaling in water and mud are:

x = kx'

P pjwgA

x - kx'

p P'
pwgA

T- '

~dA
T pwgA

Z = fb

h

U=1 U'

E - L'

Ejt d B' zt'

t = k(gh)1/ 2t'

v = v'

t - k(gh) 1/2 t'

V= I V'

V k ',

- tK~~'i

with Z' in mud as shown in figure 7-1:

Z= z' - h(x') - d (7.1.0.8)

Let us compare our new coordinates in mud with the ones we had in the flat

bottom case. Now, the axes follow the slope. This fact brings a correction in the

differentiations, that become:

a a
Oz aZ
S a 1 dh 8

aX a9X ld dxOZ
(7.1.0.9)

In order to emphasize the fact that d is small. let, us introducedxI

X = 2X (7.1.0.10)

This way. let us write:

We can now rewrite relation 7.1.0.9:

a a
z B

a a 2 dh a
OX OX rld X OZ
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and:

(7.1.0.6)

(7.1.0.7)

dh 9 dh
dx dX
d2h 4 d2h
dx 2 dX 2

(7.1.0.11)

(7.1.0.12)



7.2 Equations in water to order O(r4 )

We want to obtain the governing equation of the surface and interface in water to

order 0(K 2 ). which is the order we will need later in this thesis. However, since this

may be useful for later studies. we will carry the calculation up to order O(K4).

We will show the parts of the results that will be used in the rest of this thesis by

highlighting them.

Let us express the velocity potential in the water as a power series:

(7.2.0.13)0 (z + h(x))#(x,7 zt n! #"(,t)
n=O

where z = -h(x) + EN/ corresponds to the mud-water interface. We then obtain

8#(z + h(x) )n

Ox I!
n-O

+2 dh 0#(n+l)

dX Ox
4 dh) 2

(dX)
0(n+2) + d2 h )

dX2

(7.2.0.15)

~Pz+ ( h) n
(5(n+2)(X t)

n=o

7.2.1 Laplace equation

From the Laplace equation in dinensionless variables, we know:

K x2 +z2

and from 7.2.0.15 and 7.2.0.16 we deduce:

82 (n-2) dhaopt" )

a9X2  + 2 2 Dx
ox2 dX Ox

d2h (n

dX2
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And thus:

[#(n)
_Ox

dh (n+1)
dx I

0N> (z + h)"n
x2 n!

(7.2.0.14)

20(n)
Ox2 (X

and

(7.2.0.16)

Vn, #(n) = -n2

(7.2.1.1)

1) dh
(dX

#(n))

(7.2.1.2)



7.2.2 Kinematic Boundary condition at the interface

In dimensional form, the interface kinematic boundary condition is:

8[h'(x') 1- '(x,t)] 0p'

ax' x' r7'(x ,t /)
(7.2.2.1)

In dimensionless form we obtain:

ap ax
-F ha x'x

We use a Taylor series expansion of this equation:

a+ ea2 =
a Z8 z2

72 + 2
at

_ dh
(-dX

+ 00 + O( ),+ 8~ x ) ox
z = -h (7.2.2.3)

As a consequence, from the series of equation 7.2.0.13 we obtain:

-(2) 2K + 2 _ +at dX z = -h (7.2.2.4)ax+ O(K7)

From the relationship 7.2.1.2 and knowing that #(z = -h) = 0(0). a(z = -h)

#(). we deduce:

&1) = 2 7
at

4 dh 06(a )
dX 8x

+ Or, 00(0)
Ox Ox ax2 + o(KJ)

and as a consequence:

p(1) = -2 a--
dat

dh 00(0) + a
dX Ox ax

&(0)
r_) + O( x7

Ox

As a consequence, from equation 7.2.2.6, we can deduce an explicit expression of all

the #():

--- 4 d2 h
XK 2

dX20(l

4 dh )
(dX

a - x2 + O(K7)
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ap / 0[h'(x') - r'(x. t)|

8t'

2 a

z = -h(xl) +

4a@ dh
Ox dX

(7.2.2.2)

(7.2.2.5)

0(2) =

(7.2.2.6)

2 (0202
dh 060)
dX Ox

2

0#2)

(7.2.2.7)

, - -h(x)+ CrdT)(X, t)

EKd (977)Ox



-K2

ar/
=K 2 (K2 Kd

2 dh 002) 1
dX Ox

4 dh 0#(o)
dX ax)

4 d2 h o(2) +V 4 dh 1 2
dX2 + (dX

dh 030(o) + 0(K 7 )+2rdX ax 3

= -K 4Kd ( -3dX x +O(K')

Combining all these equations together. the final expression of # becomes:

[r _p =$() + K2(Z + h) dat

4 (Z +h)3
3 ! Kd atax 2

2 dh 0#(0)-- dX Ox
a

+ EKd-aX
2 dh 030(0)~3 dX 8x3 _

( a00(0)a7 x 2 (z +h) 2 020(0)
2 aX2

4 (Z + h)4 a4#(0)
4! ax4

6 (z + h)6 a 6#(0)
6! ax6

(7.2.2.9)

7.2.3 Kinematic Boundary condition at the free surface

The kinematic boundary condition at the surface can be written as:

ap 8 bOZ

OX OX=d),K2 (t + z = < (7.2.3.1)

Knowing from equation 7.2.2.9 that:

c K 2 [KrP0- =K [I U

4 (z +

2

12 dh 0#(o)
dX ax

h)[2 3 7

1 UaOtOX2

+ EVdy (a() )]

-3 K2 dh 0a3 (0)
dX ax3

2 (z h) a2

(7.2.3.2)

(z + h)3 a40(0) 6 (z + h)5 a60(0)
+ 6 ax4 5 ! x6 +
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(7.2.2.8)

0(K7)

#(3)



we obtain:

(t+6 0(o 2 h2 D30(0)
it 2 Ox3

Dt/
odt

2 dh 00(0)_
dX Ox

gd c(20(0)

K2 h2 K3 3K 2 dh 3 @(0)~
2 ["' OtOX2 - X o9x3

2 3 C 40(o)
+ 6 (h3 + 3h2 )

=d7t + K2 h 30D4030)

- 2 haKd4 (a3! Ox4

2 h2  0a 71
2 2D x2 

2 0(03(0)
+ CK 28x Ox3

4h 060( 0)
5! (x6

3K2 dh 030(0)~
dX Dx3 J

+ K2 h2 ( 04 0(0)
2 DX4

4h 16 0(0)
5!D6 +O(Kd)

Let us now introduce the horizontal velocity at the bottom:

00(0)
no = , z + h(x) = 0

Ox

ct + a [(h + 6 - EKdT7)'u
9 h3 Dguo)

=Kdl7t + K2 3 3
3! Dr3

- K d DtOr 2 - 3K 2 dh 20 ) 1
dX Dx2 I

2 h2 D( D(2U0)
2 Dx Dx2

2 h2 D3 (o)
2 Dx3

4 h5 95'u(O) 0(K5)

5! DrX5

(7.2.3.6)

Let us now introduce the depth-averaged velocity U. It is related to u(0) by the
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( 00()77 # ( x )
a

+ 6 1 d-
Ox

and thus:

-- 
D ] ()

Ox 8 x 1

(7.2.3.3)

(7.2.3.4)

(7.2.3.5)



following relation:

h + < - ead fhea dz

1

h + <- EKdAr -h+ean
2 (z+ h) 2 2U(o)

-2 OX2

uo + K2(z + h) (Kd i2
I (8tOx

4dh
dX(z+

Bu(_) 4 (z + h) 4 84 u(0)
h) Ox+ 4! 4 O(I dz

h + c( - eKdr/l

( 82r/
+K 2(z+h) ,at x 

= (0) + H 6 3h o

+ x mOx + O(rs

i2 9

5! D 2+

6

-h+e ~

2 (Z + h )2 '2 "(
2 Ox 2

-2K 2 dh Du(0) (z + h)4 D4U(0)
dX Ox 4! Dx4

82) (2z0) 2 2 ( 2K
+ 3(h 2 h2 a -tX 2

]2

Di'(O
+2 ghr( Dt

+ 2 h I nato

+0(/5) dz

2 dh Bu(0)
dX Dx 2

dh Ou()
dX 2x /

4 h4 D4u( 0)
5! Dx4

(7.2.3.7)

h3 + 3ch 2

h + ( - CexdT

h3 + 3c(h 2

h(1 + 6 + O(c 2))
h2 + 3E(h

1 + + O(2)

= (h 2 + 3c(h)(1 - + (627)

= h2 + 2e(h + O(e2)

h + ( - CKdr/ h(1 + f +O((2))

= h(1 - ( + O((2))h
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and:
h5  h5

h + c( - Edr h(1+ L+O(e2 ))

h4(1 - + O(62))h
h4 + ()

Turning this last result around, we obtain the relation:

t 2 h2 a2fL
3! 8x 2

I h4  &4u
+F h (3!)2 Ox4

-2 h
2 ( a2ratax - 2r,2 dh on

dX ax

4 h 4  4 +
a !(X4 r5

2 h( 02f
+ -c 3 OX2

(7.2.3.11)

Using this relationship, we obtain equation 7.2.3.6 in terms of a instead of u(0):

a
( + O, [(h+e( - edT)U1 Ox .h(?3! Ox2

K 2 0 2

- h -t2i~ ata -

2h( 82ii 4+ (K 3 Ox2 K
9haa 3

+ K -- +i{
3! Ox 3 +

2 h 2 ( 3r
2 ["atx2

+ ( 2h 2 a x a2 2 +
2 OX aqX2

4h 4 a4 u

(3!)2 aX4

2 dh On
dX ax

5! 8x4 )
h5 a3  

_2

3!)2 aX3 aX2

2 dh a2

-32 dX Ox

S2 8x3

'2

4 h5 0a5

5! Ox5
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h282)

+ O(r3)
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We can rewrite this equation:

[(h + E< - EKdT)U 2h 3
3  

4h2 dh a
2u

-h x 2dxax2 -
3! 8x3 2 dX8X2

4 2 dh a2U

dX Ox
2

3!h 2a3 U
--

3! (X3

43h
2 dh a2 i

2 dX Ox
+ ax x2

-4h 5 5 + O )-+ 0(K)5! a9X 5

4 h 5 0 5
K - -

(3!)2 8x5

22 _h2 2 i aC
3 ax2 OX

{2Kd 2 03,h
2 atax2

4h 5 O5f
5! (X5

2 h a2 33
2 19X3

(7.2.3.13)

And finally:

a
(t + [(h+C -

Ox
2h3a 3;U

+
- 3! OX3

4 h
2 dh a 2

2 dX ax
4 h 5 a5i

(3!)2 9aX
5

4h 5 85f
5! (x 5

,h3 03u
3! Ox3

I 43h 2dh a2uj
2 2 dX Ox2

+ K O'it
(3!)2 Ox5

K,4 hV Ovu
5! Ox5

4 h2 dh a 2u
dX Ox

2

K2 Kd 2 O3,t
2 -h
2 hat(gan

(K E+
3 Ox3 +

(K3x28x

+ KadTlt + O(K 5)

2 O 3rj

- 2 - U 2 h 2 (9
, h2(836 2h 2Ogat

K 2 Ox3 3! Ox3
0( hO282U h22 _2

Ox 3! Ox2 2 Ox Ox2

(7.2.3.14)
Since most of the right hand terms disappear, we obtain the simplified form of the

kinematic boundary condition:

Ct - Kant + Ox [(h + c(- eKdr)U1 =0(K) (7.2.3.15)

In the rest of this thesis, we will only make use of this equation up to order O(K 2):

&
(t - Kdt + - [(h + ()l =O( 3 )Ox

(7.2.3.16)
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This result agrees with the equation we obtained in the flat bottom case. Indeed.

equation 7.2.3.16 reduces to equation 4.2.3.8 in the case h(x, t) = 1, and this allows

us to check the long calculations.

7.2.4 Dynamic boundary condition at the free surface

From the dynamic boundary condition at the surface we know:

2 (#t + () + 1E [K22 + -=
2

C((x, t) (7.2.4.1)

From the development of # of the equation 7.2.2.9, we know that:

at at + 2 h r 2 7

2
Og)

dh 02 1(o)
dX tOx

0(o) )2
Ox

220 (0) 030(0)
rh+ O(r)ax ax3

and:

4 fh 2 o)) 2

= ()hX2

So we can deduce:

a(o)
8t

+K2h rKd 

1
+

a(0) )2
Ox

2 dh 0 20(0)

K dX atax 2(h2

I C 2 20 (o) 03 (0) +

22 3X aX3

03#(0) 4 h4a050(0)+ 2e(h)a2at + a4 x +(

K2 h2 (20()) 2  O(K6
2 2 6

(7.2.4.5)

Let us derive this expression with respect to x:

a3r - 4 dh a30( 0) K2  a40(0)
+ rVat20X - h dX at8x 2  2 h ax3at

2 a 0 a30(0) 4 h4 460(0) a( 1 a
- - H -O 2 Kt 4 x xax x2 at 4! ax5&t ax 2 ax

4h dh a30(0)
dX ax2at

(a0)2
Ox

a49~o)
2 s(h4hax0

2er h 2
ax ax OX~ ) 2 [ a020(0)J+ E-h - -1X

(7.2.4.6)
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02 3#(0) h4085#(0) 6- 2 (h2+2<h) +x 4 h4 aOt0 +O(2 4!~a liT 4Xa
(7.2.4.2)

(7.2.4.3)

a 2
+ O(r6) (7.2.4.4)

atax

= 0(r )



and we can now introduce the horizontal velocity at the bottom u(0) - _9(
Ox

2u0 31 41dh 820 r 0 28(O) 4dh 2%0 %0
+ K2 Kh a32 - hah -h- (9X2 h - h eK2Chat at2ax d atax 2 ax28t dX axOt ax2at

20( 4h48() 8 I a 0)2 _1 2 a( 02 U (0)
-e h  + ha 0 + - a+ (U2 _) 1r 2h Hi

ax Oxat 4! ax4at 8x 2 Ox 2 ax ax2

1 8 a+ -Ci2 h2
2 Ox

E U(0) )2]
-( x -0(/-o)

(7.2.4.7)

As done for the kinematic boundary condition case, we write this equation as a

function of the depth-averaged velocity f, using the relation between u(0) and i of

the equation 7.2.3.11:

S2 h2f 2h 4 a46 /,4
at 3! Ox2 (3!)2 ax4 2 (atox
2 93 4 dh 82 r 2 a 3

+ K2Kdh t h d t 2h - 28at2aX d atax 2 ax2at \\

dh a86 2 h( a2 n 4h4 a4ii
2dX -x 3 Ox2 5! aX1

2 h2 02i 4 dh a26
aKx2 - K hda3! X Oa

2 a3 n 2A a2 U 4h4 a5u a( 1 a h2(92
- (h 28t Ox h t + 4! a4xat ax 2 Ox 2 3! 8x2

1 8 a8a2
-EK h u-
2 OX aX2J

+ E1 h  ( af = O
2E 1 Oxy (OX) -Q,

(7.2.4.8)
that can be rewritten:

an h2 a3  4 h4 a K 2K'd a3  4 dh a 2n 2 hC a3n
ot 3! ax2 at (3)2 -x40t 2 hOt2a dX x t 3 Ox2at

+ h a( aa2  4 h4 a5U 2 a39 - dh a2ii K 3
CK.K_- + K Kdh O2XKh- - -h 2 ~3 Ot Ox2  5! x 4 Ot at2a dX atOx 2 ax2 at

K4 h4 a5  dh a 2U a3u 2a h4 5
~~~x~a dX axa EK Ch- - __ a- n 4hK a2 3! OX4t dX xxt rt ax axat 4! a4Xat

0( 1 a -) 2h2 a 82ij
+ a + !C (U + -2Ox 2 ax 3! x jx2

1 a (a 2f 1 9  O 2(a6
aE h2 u + -eKh2 - O(K6

2 O x Ox 2  2 ax 'ax'
(7.2.4.9)
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Let us rewrite this equation:

2h2 03 U
-K

3! Ox 2O t

_K 2h( O3 fL

3 Ox 2 0j

dh 82u
+ h

dX 8tox

2h 03 u
+ EK"(h

OX28gt

4! 84x~t

+-EK2 h 2 (
2 Ox

4 h 4 a 5 U

(3!)2 ax 40t

2 h a( 02f,

3 1t Ox2

2 X3 Ot

+ -h 2

Ox Oxat

2 h2 0 L
-K3! Ox 8

Oil
Ox )

+ h-
2 Ot2Ox

4 h 4 85ii
g4 h4 On

K 4 h4 05u
2 3 -Ox4Ot +

4 h A(2U

dX OxOt

2 oldh 03 Ox
( aht2aX

4 dh 02u
hd

dX Ox~t

+ 0(K6)

(7.2.4.10)

By grouping the right hand side terms that look the same together, we obtain:

2h2  03uL
=n +

3 Ox28t

4 dh 02i
dX OtO

1 9 h 0

3 + x

4 h 4 O%5 2nd O3rx h
12 0x 4 at 2 Ot 2OX

S2 2h( 83z 2 h 0( 92

x 3 8x2Ot 30t ax 2

K
1

a02t
8x2

E 2 
22 Ox Ox

(7.2.4.11)

And we finally get the simplified form of the dynamic boundary condition at the

surface:

au-
+ en-

Ox

s2

3 Ox20t

1 2 6 0( 2fL

3 '6k 2h 0'

1 212 (c i
- -eh- -

2 8xJ 0

h +
2 Ot2 0x 12

+ (h h-x
ax OxOt

Oan 2 83Ot
h 4 +5 -22h( 0

&x 48t +3 8 x2gg

1 22 a O2ft

3 h U0

4hdh 02U +OQ )
dX OtOx

(7.2.4.12)

Once again, we will only need this result up to order O( 2) for the rest of this

thesis:
u 8 8u ( a 2  0au

at+ + - 3 OX2 OtOt x Ox 3 xt
(7.2.4.13)

This result agrees with the equation we obtained in the flat bottom case. In-

deed, by replacing the varying depth h(x) by 1, equation 7.2.4.13 reduces to equation

4.2.4.12. This equality confirms the long calculations.
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7.2.5 Equation of the total pressure in water

From the Bernoulli equation, we can deduce the total pressure (sum of the static and

the dynamic pressure) in the water as a function of the potential:

p = P

-PW { 8 4 't
1

+
2

+ gz'
(7.2.5.1)

In dimensionless form, this last equation becomes:

p= # #[()2 + (#)2] -h(x) + CedOr < z < (

In particular, we obtain the pressure in water at the interface z = -h + Eldr/:

h =- x)2 + -1 2ar. z = -h(x) + EIKrA

And since we know from 7.2.3.2 that:

(#2)(z = -h(x) + (edr) =(K4)

we deduce:

(# )2 (z - -h(x) + erC/) =O({)

and equation 7.2.5.3 can be reduced to:

p= - #t - $(#X)2 -- I'arT + O (K6.
2

By Taylor expansion. we know that:

-h + EIdr7) #(z = -h) + O(K4) = 0 + O(K4)

As a consequence, 7.2.5.6 becomes:

(7.2.5.2)

(7.2.5.3)

(7.2.5.4)

(7.2.5.5)

z = -h(x) + EKdr| (7.2.5.6)

(7.2.5.7)

h(x) e(O)t - VdT1 + Q(K)
C 2

z = -h(x)+ er
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7.3 Equations in mud at the first order

We now want to study the mud layer in the dynamic case. Since the static case

has already been studied, we only focus on the wave-induced phenomenon. In other

words, we only consider the effects of the dynamic pressure, since the static pressure

has already been taken into account.

As in the flat bottom case (chapter 5), we only need the terms of the first order

(0(1)) in order to solve the surface and interface governing equations. We will not

go to higher order in this thesis.

7.3.1 Interface kinematic boundary condition in mud

The instantaneous equation of the interface is:

F'(x', Z', t') = Z' - (d + r1') = 0 (7.3.1.1)

The assumption of tangential motion then requires that:

a + U'T F'V' = 0, Z =d+r
Ot' (Ox' dx' OZ') OZ'

which means. using equation 7.3.1.1:

89' orfdh'
- U' - U' + V'= 0, Z' d+at' ax' dx'

or in dimensionless form:

r/ Br/ a 2 dh
at Ox Kd dX

As a consequence we obtain the following equation:

(7.3.1.2)

(7.3.1.3)

(7.3.1.4)

Br/ 2  dh
=v - U +O(r2,at Kd dX

By Taylor expansion around Z = 1, we obtain:

Z = 1 + ET1

r/ xK2  dh 1  Z +
- V--U + OLk2), Z = 1+

at V, d (X

255

(7.3.1.5)

(7.3.1.6)



7.3.2 Conservation of mass in the mud
K2 dh a9
rd dX 8Z

By keeping only the first order, this means:

au K2 dh &U OV+ d z = 0z
8x rld dX (9Z 89Z '

0 < Z < 1 + C?7 (7.3.2.2)

7.3.3 Horizontal momentum in mud

The equation of momentum in mud, projected on the x-axis, gives:

K2 dh 0

r- dX OZ)

+ KKd
(Ox

U+V 2
OZ

K 2 dh a
) Pd

taddX OZ
K2 dh a T 1
SddX OZ) I

From this equation we simplify:

aU 1 A aTZz
at Re(2) d aZ

aPd r2dh OPd
-- + d
OX r, ddX OZ

where U is the horizontal velocity of mud, Pd the hydrodynamic pressure, A the

amplitude of the free surface. -y the ratio of densities

and Re(2 ) the Reynolds number that is still:

pw/pm., d the mud depth

Re(2 = pMAdk gh
ps

7.3.4 Vertical momentum in mud

The dimensional equation of vertical momentum is:

PV'
ply' I8t' +U ' a I

dhI'
dx' aZ'

-apd +
8PjV /VI '

V'V 
Z'

and becomes. in dimensionless variables:

K 2 dh a
OZ) V

Kd dX 8Z

+ Rrzz2
RexKx KdIZ

+H KKd

+ V- = - -
OZ x

d K2 dh d

)x KddX Z)
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aVU+ O 0,
OZ (7.3.2.1)

au U
at

Ox
dx

+ A xz

Re * d _OZ

(7.3.3.1)

+ O(K2) (7.3.3.2)

(7.3.3.3)

L dTIZ
az'

dh' a ,
dx' aZ' j Z

(7.3.4.1)

aPd

x Z
(7.3.4.2)

0 < Z < 1 +Ce77

ax

OV [ 8 (
at Ox



So, in the end,

a 
-= O(EK)

OZ
O < Z < 1 + T1/ (7.3.4.3)

We can then simplify the horizontal momentum equation 7.3.3.2:

&U 1 A Txz

at Re2) d aZ
&Pd
a- + O(2)Ox

7.3.5 Interface dynamic boundary condition

Let us call n = (nz, nz) the vector normal to the interface. In dimensional notations,

we know that the components of n are:

d(-h'-+')

nx =dx'

1+ d(-h'+77') 
2

1 I d(7.3.5.1)
1

n=

1 + d

since h'(x') and r' do not depend on Z. In dimensionless variables, we obtain:

-K 3 ±h CKKd '97

nl =

1 + K2(_ 2$ + 07a)2

. dh
dX

1

1+ 2 -r2 d+ Ed&X 2

(7.3.5.2)

= 1 + O(K )

Continuity of total (hydrodynanic and dynamic) stress on the mud-water interface

then requires:
T,nx + Txznz = -px. Z = 1+ j

Trzrnx + Tzznz = -pnz, Z = 1 + cr/

Total stress in mud is the sum of hydrostatic and dynamic pressure:

Ts = -Poij + 7Re( 2) 'ji,
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Introducing this sui in equation 6.4.5.3, we obtain:

(-P + + YRe(2)Tz = -pn,

TR(3zz) nz = -Puz,

(7.3.5.5)

Re(2) Txznx + -P +

Z =1+ Er

Z =I + Er/

From the approximations of nx and nz that we demonstrated in 7.3.5.1, equations

7.3.5.5 become:

RK

yRe-(2) TX

eK 3 dh
yRe( 2) rz dX

3 dh e__

dX +yRe( 2) T xZ

- Re( 2) Tzz)

PK3 dh +oQK
dX

=P -+ 0(/-,).

)), Z=1+ en

Z =1+ r

(7.3.5.6)

These last equations can easily be simplified to:

Txz = -7Re (2)(P

P -p = O(K 3), Z

K2 dh
-p + O(2)
E dX (7.3.5.7)

Let us now make use of the second equation (corresponding to normal stress condition)
to simplify the first one (corresponding to tangential stress condition). Since P - p

0(K3 ), we obtain:

rxz 0(K 2), Z= 1 + ET

P - p = 0( 3 ), Z = 1+ er
(7...)

We now focus on the first part of equation 7.3.5.8. Through a Taylor expansion,
we can approximate this equation around Z = 1:

Txz(Z = 1 + ET) = rxZ(Z = 1) + O(e) (7.3.5.9)

Hence, we obtain an interface boundary condition that we will use later to find the

drift in mud:

(7.3.5.10)

Let us now focus on the second part of equation 7.3.5.8. From this equation we

know that:

P = p + O( 3), Z = 1 + er

From 6.4.4.3. we know that the vertical gradient of mud dynamic pressure is of order
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(7.3.5.11)

I xz(Z -= 1) = O(2)

eK

3Re(2) TXX) nx

- (- P+



O(K2 ). As a consequence, we have:

P = p(Z = 1 + C) + 0(0s), 0 < Z < 1 + E?

Water pressure p is known in any point of the water layer thanks to the Bernouilli

equation. In particular, we know from 7.2.5.8 the water pressure at the interface

(z = -h + exdTI):

p- = ) - (# 0)t + O(K2) (7.3.5.13)

So we conclude from 7.3.5.12:

ph(x) - (#o)t + O(K2), 0 < Z < 1 +EnI (7.3.5.14)

and we obtain in particular the dynamic pressure in mud:

Pd - -- (o)t + O(K 2 ), 0<Z<1I+(rj

From equation 7.2.4.5, we also know:

=t . - -( + O(K 2 ) (7.3.5.16)
at

which is valid for all z since o()) and ( do not depend on the vertical coordinate.

Combining equations 7.3.5.15 and 7.3.5.16. we get the dynamic pressure in mud:

Pd ( K 2), (7.3.5.17)

and the dynamic pressure gradient in mud:

Pd + O(K2),
Ox Ox

0 < Z < 1 + Eq (7.3.5.18)

As a consequence, we can now substitute the dynamic mud pressure Pd from the

horizontal momentum equation 7.3.4.4., for 0 < Z < 1 + cI:

aU 1_A&'z-8z
at ReI( AO)= -& + O(K 2 )at Re(2) d OZ Ox

(7.3.5.19)
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7.3.6 Bottom kinematic boundary conditions

At the bottom of the mud layer. we impose the no-slip boundary condition:

U = V = 01, Z = 0 (7.3.6.1)

7.4 Asymptotic equations in water and viscoelas-

tic mud

7.4.1 Surface and interface

Water equations

We decide to consider that the wavenumber changes with s, because of the bottom

slope. As a consequence, we introduce the variables:

X = K 2x, I1= h 1/2dX - t

and the derivatives are:
a a

a 2__ 1 8
Ox OX V/h O

With these new variables., equations 7.2.3.16 and 7.2.4.13 become:

(g + KdYg + K2hx + K2h-x + e(gh- 1/2 u + <h-1/2ng + h -/2 4)

2

-nu + Eh'/2ug'u + K2(x + h- 1/2 ( + - hu = 0(K 4)

From equation 7.4.1.3 at the first order, we deduce:

se = h-1/2(g + O(K2)

u h 1/2( + O(h 2)

Ux - h- (x 2h3( + 0(K
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We now consider (equation 7.4.1.3 +h1/ 2 * equation 7.4.1.4) at the second order and

we obtain:

Idr/+/2 hXU - K 2h-x + c h- 1/2- + Eh-1/2

/2 2
+ h1/ 2 (ch-1 /uu + 2(x + - hng = O(K2 )

(7.4.1.6)

Using the relations 7.4.1.5. equation 7.4.1.6 becomes:

Kd hx 1/2( +
K2~~~~ IL+xh h(

1/2(X h /2

2h3/2~
+ (h '( +

+ h1 / 2 (Eh-1/2h-1/2(h-1/2 ( + (x + 1hh-1/2

d e o3

and equation 7.4.1.7 finally becomes:

(7.4.1.7)
= (,2)

2h1 kh+x_ 3 E~ h1" 2
h/2 2hK'2 3 K (7.4.1.8)

Let us compare this result with what we obtained in the case where non-linearity was

more important than dispersion (chapter 6). Indeed, equations 6.5.1.8 and 7.4.1.8

differ. A new term appears in equation 7.4.1.8, namely h'!(
2  , which is due to3

dispersion. This term did not appear before because dispersion was less important

compared to non-linearity.

Now let us expand the functions (, r/ and u- as power series:

~(0) + ~2 (1) + ~4 ( (2) +

r7 77= () + K 2, I) + K4rl(2) + ... (7.4.1.9)

-= SC) - 2 (1) + 4-(2)- + KU + KU +

Because we expect the typical distance of the mud induced damping to be r, 2X let us

also introduce the slow coordinate X:

(7.4.1.10)

Because this last equation is non-linear, we decide to adopt the following form for

((0) and r("):

(0 =

m=-oo

Am(X) eim
Im=Of

2 ~
Bm(X) em
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Then we know that:

0((0)
9X

3 0((( 0))2
2h' a9 2A*Am+i

03((0)

S 2 (-Zm3)Ames"4 + cc.
m=1

Then, fromn equation 7.4.1.8, we deduce Vm:

C 3i

x2 8h ( 2A*Am+ul +

[m/2]1

(aiAiAm j
1J

Kd fm
+ - Bm = 0

K2 2
(7.4.1.13)

where [m/2] is the integer part of m/2 and a, is a coefficient equal to 1 for 1 = [m/2]

and equal to 2 otherwise.

Compared to equation 6.5.1.12 where dispersion was less important than non-

linearity. we have one more term in equation 7.4.1.13, namely -L mhAm. that repre-" 1 6

sents the effects of wave dispersion.

Mud equations

Let us find a new relationship between A, and Bm in order to solve equation 7.4.1.13

Equation 7.3.5.19 gives:

_- (2) 0 Z

8t Oz
CC

Ox

(2) =2)

KdRe(2

0 < Z < 1 + ET/(x)

0(1)

From the change of variables defined in 7.4.1.1, we convert equations 7.4.1.14, 7.3.2.2
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1 dA ez"X + cc.
2 dXm=1

- 8hmei
m=1

[m/2]

+ ( aAiAm-J + cc.
1=1

(7.4.1.12)

vrdA
dX

+ hx Am +
44 

hAm
6

with:

(7.4.1.14)

(7.4.1.15)



and 7.3.1.6 in:

0 j 2 ) 9Tz(0+
Oz) +

'=yh-1/2 
+O(). 0 < Z < 1 + E7(X)

i2 dh aU(0) 0V(0)
+ = 0, 0 < Z < 1 + KE(x)

/ddX OZ OZ
-_ (0) _2 dh aU(0)

V - ,7
og na dX OZ

0 < Z < 1 + Ecr(x)

(7.4.1.16)

Since the water equations are not linear, we consider several harmonics and write:

UC ) = U (Z) e""m

(Txz)(0) 
=

2

2

(TXz
m=-oc~

00
mz (-O ) Z

(7.4.1.17)

Let us find an equation between A, and Bm from the mud equations. From the

first equation of 7.4.1.16, we know:

2)d ( )

dZ
+'ImU ) = h-1/2imyAm (7.4.1.18)

From equation 6.2.0.14, which mly applies to simple harmonic waves, we deduce:

(ZZ) = m ") + O(r 4) (7.4.1.19)dZ

As a consequence, equation 7.4.1.18 becomes:

d2U "

dZ 2

IM
+ -) =T

a(2)p m
im'yOm

a(2) PM
(7.4.1.20)

which can be simplified as:

d2U(")) 2 U = 1/2&2
dZ 2

- Urn h U~~
(7.4.1.21)

where (2 is as in the flat bottom case (chapter 5):

- C(2 /I (7.4.1.22)
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Knowing the value of a(2), we deduce:

.m1 pu Adk gh
Em

(7.4.1.23)

Let us note that the value of &m does not depend on /s, since psy1m = P' is

the dimensional viscosity. As a(2) and Re(2) do not appear in equation 7.4.1.21, we

deduce that we will not need the value of p, to solve it.

We also know the boundary conditions:

U(O) 0 , Z z 0

dU(o)
d = 0(E).dZ

(7.4.1.24)
Z = 1

and thus, Vm:

dUZo)
dZ

z 0

Z 1

We obtain the value of the horizontal velocity:

U( ' =Jm I - [1 + tanh(&m)] cosh(&mZ)

+ [tanh(&m)] sinh(&mZ)J

From 7.4.1.16, we also know:

(7.4.1.25)

(7.4.1.26)

dV(0)
Vm, d

dZ

i2 dh &Uk")
"U(O + dX8Z~jm (7.4.1.27)

Using the boundary condition:

(7.4.1.28)

we obtain:

V - im .yAm [ZM Tomh .aa [1 + tanli(&m)] siili(&mZ)

+ [tanh(Jm)] cosh(amZ) - t anh(um)]
,2 dh

+ UCd 0
haddX

(7.4.1.29)

VI -)(Z =0) =0



It is interesting to note that there is a new term in the expression of V2 compared to

the flat botton case (chapter 5). This is due to the fact that we are not considering

the sane axes anymore. as a consequence, the vertical velocity must be corrected

with a term proportional to the horizontal velocity and the slope d. Now, still from

equation 7.4.1.16, we have:

Vm, Bm(X)
1

im
V0)(Z = 1)

- 2 dh
r ddX

= 1))

After calculation. we obtain:

Vm, Bm(X) == m mtanhm

h I o-m I

Combining equations 7.4.1.13 and 7.4.1.31, we naturally obtain:

hx e
+ Am+

+ Vdz ym
K2 2 h

3i
m

2 8h

taih 0
1 -

where [m/2] is the integer part of m/2 and al is a coefficient equal to 1 for I = [m/2]

and equal to 2 otherwise.

Let us compare this equation to what we found in the case where non-linearity

was more important than dispersion (chapter 6). We observe that equations 6.5.1.31

and 7.4.1.32 only differ by one term, which is due to dispersion. niamely <Am.

As we already pointed out. this term did not appear before because dispersion

was less important compared to non-linearity.
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(7.4.1.30)

(7.4.1.31)

dA
dX

2A*Am+11
il=1

[m/21

+ ( aiAiA,_i
14J

.3
hAm

6

(7.4.1.32)



7.5 Further details

7.5.1 Surface and the interface

By truncating the infinite series, equation 7.4.1.32 becomes:

Vm, v/' dAm
dX

+hx Am+
4v Vh

c3m 2A3*Amiu
K2 8h

[m/21

+ ( a AiAm.
-. 3

- 6 hAm6

tanh am
&M I

The truncated differential system is true for 0 < m < n.

7.5.2 Energy variation

We found the partial differential equation 7.5.1.1:

.3

r6 h Am
3i I
-OM h/ ( 2 A*Am+ui

l=1

[m/2]

+ ± aiAiAmi)
i=1i

+ h~5/4 lm
K2 2

tanh(&m) 
A

oim

'e introduce Am = h1 / 4Am, and modify equation 7.5.2.1 as:

- h1/2 + 3 m 32 I (1

+ Kh-3/ m 1
K2 2

[rn/2]

2A*Am+ui + ajA1Ai .
1

-tanh( m) A
)oAm

Using the same demonstration than in the flat case, we easily deduce the variation

law:

dX[ E AmI2]
M=1

-2h-/2 Nd>

rn-i
Re [ 5'im (I - tan h(&m) )] 1m12

and we then obtain the energy variation relation:
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(7.5.1.1)

d(h1/4 Am)
dX

(7.5.2.1)

dAm

(7.5.2.2)

(7.5.2.3)

rn-i (7.5.2.4)

+ KdI
ru2 2 h



7.5.3 Behavior at the shore

Let us study the evolution of |Am| towards the shore, that is to say towards h = 0.

Since this study is based on the energy variation equation 7.5.2.4, which is very

similar to the result we previously obtained (equation 6.6.3.4), this demonstration

will be similar to the one made in the previous chapter.

We will here consider that the water depth decreases as X increases. In other

words hx < 0.

As demonstrated before, we know that there is always one harmonic 1Am1 that

decays last. Let us prove that this harmonic decays to zero, and we will have proven

that all harmonics decay to zero at the shore. Let us call Ador this harmonic.

Let us consider X0 such as VX > Xo, all the Am are negligible compared to Adorn.

Such an X0 exists because the attenuation rate of Ador is the smallest.

Ignoring all modes m = dom. let us rewrite equation 7.5.2.4 for |Adom| 2 only:

d |vhjAdom = 1| Adomr2 (7.5.3.1)
dX h Ldom

Let us write Adom such as:

Adomn - h1 / 4 A omn (7.5.3.2)

Then equation 7.5.3.1 becomes:

djAdo 1
2 

_ 1 Adorn 12 (7.5.3.3)
dX h3 / 2 Ldom

Since the aim of this study is to consider the behavior very close to the shore, the

beach can be approximated as a, plane beach. We choose s such as h(X) = 1 - sX,
and thus hx = -s. The solution of this equation is:

[ 2 h- 1/2

Adom I =dor exp - Ldorn (7.5.3.4)

With adom a real constant. And thus:

Adorn 12 adorn 2 h 1 /2 1 (7.5.3.5)
hi/ 2  Ldorn S (

Since Ldorn > 0 and h-'/ 2 is a growing function of X. we deduce that |Ao 12 -+ 0

exponentially as h - 0.

Since Adorn is the doninait liarionic, and all the others are negligible, we deduce
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that: all harmonics |AmI2 -+ 0 exponentially as h -+ 0

Let us now study the interface harmonics Bm. From equation 7.4.1.31, we know

that:

Vm, Bm(X)
- Am tanh(&m)

h o- I
(7.5.3.6)

As a consequence, by multiplying 7.5.3.6 to its complex conjugate:

Vm, IBm h2 2
tanh(&m) 2

am

And we deduce from the previous result on the IAm| 2 that |Bm| 2 -+ 0 exponentially

as h -+ 0.

7.6 Numerical results by

monics

We now solve this equation in the particular

h'(x') = h., 0 < X
h'(x') = h - s'X'.

h' (x') = 0,

0 < X < 1/s

X > 1/s

In dimensionless form. writingy

equation 7.6.0.8 becomes:

h(X) 1, 0 < X

h(X) = - sX. 0 < X < 1/s

h(X) = 0,

(7.6.0.10)

X > 1/s

corresponding to:

hx=0, 0<X

hx -s, 0 < X < 1/s (7.6.0.11)

hx 0, X > 1/s

We are going to plot these results for the viscoelastic muds we previously studied.
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(7.5.3.7)

using the first ten har-

(7.6.0.8)

s'/ = K 3s, (7.6.0.9)



Let us sum up the different muds we have:

" Case A: Gulf of Mexico mud. This mud is rather elastic.

" Case B: Mobile Bay mud. This mud is rather elastic as well

e Case C: Lianyungang mud. This mud complex viscosity's phase is around i so4

it is as elastic as viscous.

" Case D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity's

phase being close to zero.

7.6.1 Comparison of the different types of mud

We first look at the results for four types of mud in the case h = 5m, T = 18s (which

means o' = 1/3rad/s), A = 40cm and d = 25cm. As in the previous chapter, we first

decide to set the slope such as s = 1/5. So in the end, and for this entire section, the

parameters are:

r = 0.24. E = 0.08. hd= 0.05, s = 1/5 (7.6.1.1)

Surface and interface

Computations have been carried out for 10 harmonics. In figures 7-2 and 7-4, we

present the variation of the first three harmonics of the surface and the interface.

Warning: the scales are not the same for every mud.

In figure 7-2, it can be observed that damping is stronger for the Gulf of Mexico,
Lianyungang and Hangzhou Bay (A, C, D) than for the Mobile Bay mud (B). This

result is consistent with the previous chapter for horizontal sea bed.

We only plot the surface notion up to X = 4.6 for the Mobile Bay mud, because

strong oscillations appear for X higher. However, we show in figure 7-3 a zoom-in of

the interface variation for this mmud at the shore. This figure allows us to see that the

surface motion eventually reaches a zero-value at the shore.

The fastest damping occurs with the Hangzhou Bay mud, as we already noted

over a flat bottom (chapter 5).

Figure 7-4 shows the variation of the interface. For the Mobile Bay mud, the

interface displacement is very small compared to the other muds. We already observed

before that the interface displacemlent was small for this mud, because the mud-

induced damping is less significant thian with the other muds.
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For the Gulf of Mexico. Mobile Bay and Lianyungang muds (A, B, C), the har-

monics increase next to the shore. Figure 7-5 gives a zoom of the interface motion for

these muds. These zoomed figures allow us to see that the |Bml go to zero extremely

quickly right before the shore. which is what we expected from the analytic study we

carried in section 7.5.3.

Energy variation

We numerically represented the total first-order energies in figure 7-6. This figure

shows that the total energy logically decreases, to reach a zero-value at the shore

(X = 5). However, we observe once again that dissipation is slower to occur in the

Mobile Bay mud (B).

On the contrary, we note that energy decays more quickly with the Hangzhou Bay

mud, where mud-induced damping leads to energy losses before the shore.

270



1

0.4-

0.2I
0

1A ,

0.5 1 1.5 2 x2.s 3 3.5 4 4.5

(a) Gulf of Mexico mud

(b) Mobile Bay mud

(c) Lianyungang mud
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IA1~~~1 -J 08/A 21.........0.6-

0.4

0.2 .

0 0.5 1 1.5 2 X2.s 3 3.5 4 4.5

(d) Hangzhou Bay mud

Figure 7-2: Evolution of the first 3 harmonics of the free surface over different, types of
viscoelastic muddy seabeds. Warning: the horizontal and vertical scales are different
for mud B.
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Figure 7-3: Zoom-in of the surface motion for the Mobile Bay mud.

7.6.2 Influence of the slope s'

We now focus on the influence of the slope. We look at the slope values s' 0.014.

s' = 0.0069. s' = 0.0035, s' = 0.0023, s' = 0.0014 and s' = 0.00069, respectively

corresponding the non-dimensional slope values:

s = 1, s = 1/2, s = 1/4, s = 1/6, s = 1/10, s 1/20 (7.6.2.1)

We still have h = 5m, T = 18s (which means w' 1/3rad/s), A = 40cm and

d = 25cm, corresponding to the parameters values:

= 0.24, c = 0.08, 'd= 0.05 (7.6.2.2)

We only focus on the Gulf of Mexico mud (A) and the Hangzhou Bay mud (D).

because they respectively correspond to the most elastic and the most Newtonian

iuds we have data for.

Surface and interface

Figures 7-7, 7-8 and 7-9 show the variation of the surface for different slopes for the

Gulf of Mexico and the Hangzhou Bay muds.

We obtained in the flat bottom case of chapter 5 (figure 5-1), that the harmonics

|Arl were not even damped at X = 40 with the Gulf of Mexico mud and are damped

after X = 20 with the Hangzhou Bay mud.

Now, with a sloping bottom, we observe that the harmonics are always damped

before the shore, to reach a zero value at X - 5. In particular, when the slope is

steep with s = 1, the harmonics are all damped at X = 1. This result agrees to what

we analytically demonstrated in section 7.5.3.
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(a) Gulf of Mexico mud
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0 0.5 1 1.5X 2 2.5 3.

(b) Mobile Bay mud
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(c) Lianyungang mud

(d) Hangzhou Bay mud

Figure 7-4: Evolution of the first 3 harmonics of the interface over different types of
viscoelastic muddy seabeds. Warning: the scale is different for mud D.
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(a) Gulf of Mexico mud

4.999999 X 5
(b) Mobile Bay mud

4'99 4.9992 4.9994 x 4.9996 4.9998 5

(c) Lianyungang mud

Figure 7-5: Evolution of the first 3 harmonics of the interface near the shore for the
Gulf of Mexico. Mobile Bay and the Lianyungang muds.
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m=1 D
0.2- - -

0 1 2 3 4 5

Figure 7-6: Wave energy over a flat thick muddy seabed. Mud A is Gulf of Mexico
mud, imud B is Mobile Bay mud. mud C is Lianyungang mud and mud D is Hangzhou
Bay mud.

However, when the slope becomes less steep (s = 1/20). the harmonics have time

to be damped out before reaching the shore for the Hangzhou Bay mud. In this case,
the damping is also due to the presence of mud.

Figures 7-10, 7-11 and 7-12 show the variation of the surface for different slopes

for the same muds. We observe that the interface displacement is always stronger

with the Hangzhou Bay mud, where the damping is the most significant.

Figures 7-13 and 7-14 show a zoom-in of the interface motion near the shore for

the Gulf of Mexico imud. We see on these figures that the harmonics |Bml ultimately

go to zero, which agrees with the analytical predictions.

Energy variation

We numerically represent the total first-order energies in figure 7-15 for the different

slopes. This figure shows that the total energy logically decreases. to reach a zero-

value at the shore (X = 5). The shore is reached for X = 1 for s = 1, for X = 2 for

s = 1/2 and so on ...

We observe once again that dissipation is slower to occur in the Gulf of Mexico

mud (A). For instance., for s = 1/20 and at at X = 10 the total energy is already

nearly zero with the Hangzhou Bay mud, when it still represents more than 30% of

its initial value with the Gulf of Mexico mud.
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(a) Gulf of Mexico mud, s = 1
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(c) Gulf of Mexico mud s 1/2
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(d) Hangzhou Bay mud, s = 1/2

Figure 7-7: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic rnuddy seabeds., in the cases s = 1 and s = 1/2. Warning: we use a

different scale for the Gulf of Mexico mud. s = 1 case.
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Figure 7-8: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds. in the cases s = 1/4 and s = 1/6.
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(b) Hangzhou Bay mud. s = 1/10
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(d) Hangzhou Bay mud. s = 1/20

Figure 7-9: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seaheds. in the cases s = 1/10 and s = 1/20.
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Figure 7-10: Evolution of
water over different types
s = 1/2.
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(d) Hangzhou Bay mud, s = 1/2

the first 3 harmonics of the interface between mud and
of viscoelastic muddy seabeds, in the cases s = 1 and
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Figure 7-11: Evolution of the first 3 harmonics of the interface between mud and
water over different types of viscoelastic muddy seabeds, in the cases s = 1/4 and
s = 1/6.
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Figure 7-12: Evolution of the first 3 harmonics of the interface between mud and

water over different types of viscoelastic muddy seabeds, in the cases s = 1/10 and

s = 1/20.
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Figure 7-13: Zoom-in of the first 3 harmonics of the interface near the shore with the
Gulf of Mexico mud.
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Figure 7-14: Zoom-in of the first 3 harmonics of the interface near the shore with the
Gulf of Mexico mud. s = 1/10 and s = 1/20.

7.7 Sloping bottom without mud

7.7.1 Governing equations

From the study we just led in the particular case of viscoelastic mud, it is very easy

to deduce the surface waves behavior in the absence of mud. Indeed, the absence of

mud simply means that Bm = 0 in equation 7.4.1.13.

As a consequence, the governing equation 7.5.1.1 for the surface waves become

Vm:

dA. n-m [m/2] 1 . 3
/'dX + hAm+ e3m [Z 2A*Amii + ( asAiAmi hAm=0

dX 4v/ r2 8h aArn6
11 1J

(7.7.1.1)

Once again, the difference between this equation and the result we obtained in

the previous chapter (equation 6.8.1.1), where non-linearity was more important than

dispersion is the dispersion term proportional to m3 that appears here. As we already

pointed out, this term did not appear before because dispersion was less important

compared to non-linearity.

The same way, the energy variation can be deduced from equation 7.5.2.4, that
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becomes:

dX[h Aml =0 (7.7.1.2)
M=1

This result looks very logical: in the absence of mud, there is no energy dissipation

in water.

7.7.2 Numerical results by using the first ten harmonics

Since we don't consider mud anymore, there are only four parameters remaining: h,
A, W' and s'. We already studied the influence of dispersion and non-linearity in

chapter 5, by playing on the ratio E/r,.

Let us now study the influence of different slopes. We look at the slope values s'
0.014, s' = 0.0035 and s' = 0.00069, respectively corresponding the non-dimensional

slope values:

s = 1, s = 1/4, s 1/20 (7.7.2.1)

We still have h = 5m, T = 18s (which means w' = 1/3rad/s) and A = 40cm,
corresponding to the parameters values:

- 0.24, = 0.08 (7.7.2.2)

The results are shown in figure 7-16 for the three different slopes. Once again, even

though we carried the numerical resolution with ten harmonics, we choose to only

display the first three harmonics. As always, even though we carried the numerical

resolution with ten harmonics, we only display the first three harmonics.

We observe that these results are significantly different from the results of the

previous chapter. This means that the dispersion term in equation 7.7.1.1 actually

has an important influence. The harmonics oscillates more widely towards the shore

than in figure 6-28.

The main result is that, in the absence of mud, the harmonics keep growing toward

an infinite value at the shore. This result is a very well known phenomenon: wave

height increases as water depth decreases toward the shore.
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Figure 7-16: Effects of the slope on the evolution of the first 3 harmonics of the free
surface on a solid seabed.
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Chapter 8

Conclusion

We have first studied the propagation of surface and interface waves in the case of a
flat muddy seabed, considering the mud as a Newtonian fluid. Considering that non-

linearity is more important than dispersion, and by the method of multiple scales,
we have proved the existence of a drift current in mud at the second order. Through

numerical simulations, we found that the drift current in mud was the most significant

in the case of high non-linearity, high dispersion or thick mud layer. The analytic

expression for the evolution of the wave energy allowed us to verify the numerical

simulations run for 10 harmonics.

We then studied the same setting with viscoelastic mud instead of Newtonian

mud. Governing equations have once again been found for the surface, interface and

drift current variations. Four different muds have been studied, some rather elastic
and others more viscous. The attenuation rates were plotted as a function of the
dispersion for the different muds. We found that the attenuation rates did not have

any peak for long waves in the muds where the viscosity modulus was high (Gulf

of Mexico, Mobile Bay and Lianyungang). On the other hand, we found that, for

given values of the water depth, the attenuation rate had a peak for long waves in the
Hangzhou Bay mud, whose viscosity modulus is smaller. We then plotted the surface,
interface and drift current variations. We showed that the mud-induced damping was

very slow with the Mobile Bay mud, and faster with the three other muds. We showed

that the Hangzhou mud had the strongest interface displacement because of its small

viscosity modulus and that the drift current was the strongest in the Gulf of Mexico

and the Hangzhou Bay muds.

The same pattern has then be followed with a Boussinesq class case (where dis-

persion is comparable to nonlinearity). We showed that dispersion and non-linearity

were now appearing at the same order, allowing to compare both influences. We
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observed that mud-induced damping was the most significant in the case of high non-

linearity, small dispersion or thick mud layer. We then compared the results between

the viscoelastic muds and showed that, with the chosen parameters, the mud-induced

damping was the strongest for the Hangzhou Bay mud.

Finally, we studied the effect of a sloping muddy seabed. We demonstrated that,
with viscoelastic mud, the static problem only induced a displacement in the mud

layer. We demonstrated analytically that all harmonics of the surface, interface and

the drift current were decaying exponentially to a zero-value at the shore. Different

slope steepnesses were studied. We showed that, if the slope was to steep to allow

mud-induced damping before the shore, harmonics were decaying sharply to zero

at the end. However, we showed that in the case of gentle slopes and for muds

with sufficient attenuation rates, mud-induced damping appeared before the wave

could reach the shore. The drift current was plotted for different slope steepnesses,
emphasizing the fact that the highest currents are obtained at the shore with steep

slopes.
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