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Abstract

The propagation of surface waves over a flat muddy scabed arc studied. Mud is first
considered as a Newtonian fluid. Water and mud cquations arc derived in order to
obtain governing cquation for surface and interface waves. By the method of multiple
scales, nonlinear evolution equations are derived for the harmonic amplitudes. These
equations are numerically solved for a finite number of harmonics to show the behavior
of surface and interface motions. A drift current in mud is found at the second order,
meaning that surface waves induce mud motion. Equation governing the total wave
energy variation is derived and uscd to verify the accuracy of mumerical solutions.

The model is extended to viscoclastic mud, using the results of four experiments
carried on different types of muds. These muds range from very elastic to rather
viscous, allowing us to compare the differences in behavior. Surface and interface
variations. mud drift current and cnergy variations are plotted and compared to the
results with Newtonian muds.

A sloping muddy scabed is then considered. Mud is modeled as viscoclastic to
avoid a constant static current that would happen with Newtonian mud. DBy the
method of multiple scales and by introducing a space-dependent wavenumber, mud
drift current and energy variation cquations are derived again, taking into account
the effect of the slope. An analvtic study of the surface variations demonstrates that
surface and interface waves, as well as drift current, exponentially decay to reach a
zero value at the shore.
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Chapter 1

Introduction

1.1 Background and motivation

It is well known that fluid mud at the bottom of the oceans contribute, sometimes
considerably, to waves attenuation. Moreover, its motion modifies the seabed, affects
the wave climate and shapes the coastline in the long run. This is why the problem

of wave-mud interaction has attract some attention in the last few decades.

The rheological properties of fluid mud is highly complex, depending on geological
origins, mineral composition and salinity in seawater. Various models have been used
in past theories.

Dalrymple and Liu used a simple Newtonian model in their linearized theory of
infinitesimal waves ([7]) which predicts the damping mechanism for a wide range wave
depth and mud depths. Sakakiyama and Bijker also used this model ([19]) to examine
the mass transport phenomena in the mud layer. More recently, the Newtonian model
was also used by Liu and Chan in 2006 ([14]) for weakly nonlinear long waves over a
thin mud layer in a shallow sea, all for a horizontal seabed.

In steady motion mud is known to behave as a plastic material. In 1993, Jiang and
Leblond([13]) used the Bingham-plastic stress/strain relation to numerically model
mudslides and generated waves. This model has also been used by Mei & Liu in 1987
([4]) to study the slow motion of mud slide on mountain slopes. and the damping of
long waves. This particular case was extended by Liu and Chan in 2006 and 2008
([14] and [5}), who considered both periodic waves and solitary waves, again over
a horizontal seabed. Extension to the Herschel-Bulkel model was made in 1998 by
Huang and Garcia ([9]) to determine a mud flow down a slope. Mainly for modeling

a seabed dominated by a mixture of mud and sand, the poro-elastic ([20]) and the
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visco-elastic-plastic models have also be applied ([18}, [17], [1]).

More recent experiments have shown however that under oscillatory waves fluid
mud is better modeled as a viscoelastic material. The simplest model with just
two parameters were used by MacPherson ([3], and [2]). However experiments by
Jiang and Mehta ([11]) and Huang and Huhe ([10]) using field samples, shows that
the constitutive coefficients of these simple models depends on oscillation frequency,
hence they are not really material propertics but arc properties of the motion itsclf.
In 2009, Mci and al. ([15]) proposed that rcal mud under dynamical conditions must
be described by the generalized model of visco-elasticity. In particular the relation
between stress and strain is a high-order differential equation with coefficient that
depends only on mineral composition but not on frequency. The generalized model
was used by Mei et al to predict short and long waves damping over a muddy seabed.

In 1998, Wen & Liu ([21])have given an overview of fluid-mud models and the

ranges of their applicability based on soil properties.

Bottom mud cffects become more important near the shore, when water depth

is considered to be shallow. In this case, the wave system is better described by

Boussinesg-type wave equations (e.g. [16]).

1.2 Thesis outline

The first part of this thesis focuses on a simplified case (chapter 2). We study surface
waves over a flat muddy scabed, and the mud is modeled as a Newtonian fluid. We
first consider that non-linearity is stronger than dispersion, in order to show the effect
of non-linearity without dispersion at the first order. We then derive water equations
by expanding the potential in power series as done in [6], chapter 12. Kinematic
and dynamic boundary conditions are used to obtain differential equations for the
surface and interface. We then derive mud equations. such as momentum, continuity
and boundary condition. Mud and water results are written at the first and second
order for the harmonic amplitudes, by the method of multiple scales. Finally, results
arc combined in order to obtain a governing differential equation for the surface and
interface at the first order. At the second order, a drift current is calculated in mud,
meaning that surface waves induce mud horizontal motion. Finally, an equation
governing the total wave energy variation is derived.

The system for an infinite number of harmonics is truncated to a finite number

n of harmonics so that it can be solved munerically. Results are plotted for different
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values of non-linearity and dispersion, in order to compare the effects of this param-
eters. Different mud layer depths are also compared. The analytic expression for the
evolution of the wave energy is then used to verify the numerical simulations run for

10 harmonics.

The model is then expanded to viscoelastic muds (chapter 3). We make use of
experimental results from Jiang & Mehta ([11]), Huhe & Huang ([10], [12]), and fromn
Professor Dalrymlpe and PhD candidate Khatoon Melick from the department of
civil engineering of Johns Hopkins University. The characteristics of those four muds
are studied and the complex viscosity is plotted. Some of these muds are more elastic
than the others, allowing us to study a panel of different behaviors. The harmonic
amplitudes, mud drift current and encrgy variation arc derived in this new sctting.
The attenuation rate is analytically found and its dependency on the water depth,
wavelength, mud depth and harmonic number is studied. As before, the system for
infinite number of harmonics is truncated to 10 harmonics in order to nuwmerically
solve the equations. The results are plotted and compared between the different types

of muds and the Newtonian case from chapter 2.

The same process is then followed in a case where dispersion is comparable to non-
lincarity - corresponding to Boussinesq class (chapter 4). The governing equations are
again derived at the first order, which is now the order at which both dispersion and
non-linearity come into play. Drift current is not studied because appearing at a low
order and thus negligible compared to other motions. Governing equations are found
for surface and interface harmonics. A new term in the differential equation - due to
dispersion - is highlighted. The system is truncated and the results are plotted for
a finite number of harmonics. The analytic expression for the evolution of the wave
cnergy is again used to verify the the numerical simulations run for 10 harmonics.
The model is then extended to viscoclastic mud again (chapter 5), and the differences
are once again compared.

The model is then extended from a flat to a sloping muddy seabed (chapter 6).
We first study the case where non-linearity is stronger than dispersion. The case of a
Newtonian mud is not studied, because pure real viscosity would involve a constant
flow down the slope even in the static case that would invalidate our hypotheses.
Thus, the calculations are directly carried for viscoclastic mud. The cquations are
once again derived. An analytic study of the surface harmonics at the shore, where
the water depth is close to zero, show that surface and interface harmonics, as well as
mud drift current, exponentially decay to zero. The equations are again truncated,

and the results plotted and compared to the flat seabed case.



Finally, the same sloping viscoelastic muddy seabed is considered in a case where
dispersion is comparable to non-linearity (chapter 7). The surface and interface equa-
tions are once again derived in this case. The results are plotted and compared to

other chapters.
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Chapter 2

Horizontal bottom, shallow

Newtonian mud

2.1 Introduction

In this chapter, we focus on the case of a thin layer of mud on a horizontal seabed,

as shown in figure 2-1.

2.1.1 Dimensional equations in water

In this thesis, all dimensional quantities will he written with primes .

The water is supposed to be ideal and irrotational, so we introduce the potential ¢
such as the velocity in water is v = V.¢'. We define the z'-axis to be the propagation
direction and z’-axis vertical, such that ' = 0 at the mean free surface. We call '
the free surface and 1’ the interface between mud and water. (as shown on figure
2-1). We denote by h the water depth. and as a consequence the interface between
mud and water corresponds to 2’ = —h + 7. The potential is thus governed by the
Laplace equation:

82 (25/ 82 (b/

i | 02"

=0, for—h+n(zt) <2 < (z,0) (2.1.1.1)

The potential ¢’ obeys the kinematic and dynamic boundary conditions at the free

surface: ]
o, 0o _ 0o
ot Ox'dx' 9z

o =) (2.1.1.2)
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Figure 2-1: Definition sketch. d is the mud layer depth measured vertically.

y N 2 N 2
00 it [(%) v (§o> } —0, & =t (2.1.1.3)

ot/ 2 [\ 0z

and it also obeys the kinematic boundary condition at the interface:

oy omoe o,
=97 tapay ° = htnlt) (2.1.1.4)

(b,z’

From Bernoulli equation, we also deduce the total pressure p’ in water (sum of the

static and the dynamic pressures, respectively ), and p};) as a function of the potential:

. o¢ 1[0\ | ‘
P =—pw <8t’ + 5 <81"> +gz> (2.1.1.5)

2.1.2 Dimensional equations in mud

In the mud, we use a different vertical axis measured from the rigid bed such that
7' = 2'—h—d. This way we get Z' = 0 at the bottom of the mud layer and Z/ = d+7/
at the interface. The motion in the mud layer obeys the Navier-Stokes equation for an
incompressible fluid. We write U" and V' respectively the horizontal and the vertical
component. of the mud velocity, P’ the mnd pressure and 7;; is the viscoelastic stress

tensor. The momentum conservation equation projected on the horizontal axis is:

out aut oU 0P [or,  or
. i ez OTos 1.2
M < o "Vt 82’) a7+ (aZ' * ay) (2.12.1)
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o I ad 6]
1/3 [18] | 1/2 [12] | 1 [6]
1m | 0.106 0.159 0.31
3 2 m 0.15 (0.225 | 0.45
bm | 0.238 0.357 | 0.71
5m 0.33 0.5 1

Table 2.1: Values of & for different w and water depths h

and on the vertical axis:

pu (%Z/ + U"Z‘;’ + V’Z?) — —gg + @Tgé + aa;é) (2.1.2.2)
The mud motion also obeys the conservation equation:
r Ay
ZZ/ + ggl =0 (2.1.2.3)
The kinematic boundary condition at the interface between mud and water also im-
plics: , /
%Z?ZV/—%%U/’ Z=d+n (2.1.2.4)

2.2 Scaling

We only consider long waves with small amplitude on the free surface. With k the

typical wavenumber and A the typical surface wave amplitude, let us define the

where x and € respectively represent dispersion and non-linearity parameters.

following ratios:

(2.2.0.5)

Table 2.1 gives some sample values of & in the w’ and h-ranges that we consider:
1/3 < w' < 1and Im < h < 10m. From this table, we deduce that s can vary
between 0.1 and 1. However, as the aim of this study is to focus on long waves, we
will always choose values of h and w’ such as & is simaller than 0.4. Thus, the k-range
that we will consider in this thesis is: 0.1 < x < 0.4.

Table 2.2 gives values of ¢ with respect to the water depth A and the wave ampli-
tude A. We deduce from this table the following range for e: 0.01 < ¢ < 0.6. Since we

only aim at studying small non-linearity, we will alwayvs choose values of d and A such

29



A (cm)

6 f— —é
h 10 | 20 | 40 | 60
Im | 0.1 | 02104 | 0.6
Al 2m [005] 01 1] 027103

5m | 0.02]0.04]0.08]0.12
10m | 0.01 | 0.02 | 0.04 | 0.06

Table 2.2: Values of € for different A and water depths A

as € < 0.4. Thus, the e-range that we will consider in this thesis is: 0.01 < e < 0.4.
We deduced from tables 2.1 and 2.2 the ranges we want to consider for £ and e:
0.1 <k < 0.4 and 0.01 < e < 0.4. As a consequence, there are two cases to take into

account:

e The cases where € = O(k), that is to say where non-lincarity is more important

than dispersion ;

9 . . - . - -
e The cases where ¢ = O(k°). i.e., dispersion is comparable to nonlinearity

(Boussinesq class).

Chapters 4 and 5 are devoted to the case € = O(k?).

In this chapter and the following, we limit our study to the case ¢ = O(k):

O(r) = O(e) (2.2.0.6)

We also assume the mud layer thickness d to be very small compared to the water
depth h. We choose the ratio kg to be between the values 0.05 and 0.2, and thus to

be of order k:

= O(k) (2.2.0.7)

Kqg =

Il ESE

2.2.1 Non-dimensional variables in water

Based on the basic equations derived in section 2.1, we decide to introduce the fol-

lowing dimensionless variables in water:

z = ko' z = % t = k(gh)'/*t
v — 1 PO K N
P= bwoA U= s U= = (2.2.1.1)
- 4 7 2 —1
(=5 6= (Al



2.2.2 Estimation of O (g—j)

Let us deduce from the previous statements how large the ratio between the surface
and the interface variations can be. For that, let us use the governing equation in
water and in mud.

In water, the mass conservation principle for long waves becomes at the leading

order:
o o
Oz’ 0z (2.2.2.1)
o= o)
at' ’

Using the non-dimensional variables we just defined, we find:

oW = kO

_ (2.2.2.2)
= ky/ghO({')
In mud, we logically adopt the following non-dimensional variables:
z=ki Z=% t=k(gh)V* (2.2.2.3)

As a consequence, the kinematic boundary condition at the interface at the leading
order e
n /
— =V 2.2.24
ot ( )

gives in non-dimensional variables:

kyJghOGr) = O(V') (2.2.2.5)

Still in mud, mass conservation gives:

o’ oV’ .
e (2.2.2.6)
From this equation we deduce a relationship between O(U’) and O(V"):
OV = kdO(U")
d -
= =khO(U")
Z (2.2.2.7)
= —rO(U")
h
= rgrO(U")

31



Combining equations 2.2.2.5 and 2.2.2.7, we have the relationship:

i faRow

| I

;~|| =y

o)

(2.2.2.8)

and everything we need is a relation between v’ and U’. From the horizontal momen-

tum equation we find:

o 1 0P'+V82U’ (2929
ot pa O’ 0z"” 2.2.9)
Since the mud layer is thin,
or ~ 0 2.2.2.10
o (2.2.2.10)
and P oy o
op
o or nga ; (2.2.2.11)
It follows that:
ky/ghU' = O(gk¢') (2.2.2.12)

which means:

9. .
~0 (\/%g> (2.2.2.13)

Combining this result with cquation 2.2.2.2, we find:
oU") =0 (2.2.2.14)
We conclude by combining cquations 2.2.2.2, 2.2.2.8 and 2.2.2.14 and we obtain:

o) (2.2.2.15)

> e,

o) =

that is to say:

O (—’> = kg = O(K) (2.2.2.16)

2.2.3 Non-dimensional variables in mud

From the relation 2.2.2.16, we introduce the dimensionless variables in mud:

x = ka' Z =% t = k(gh)'/?t

o P’ o 1 /
P = pwgA U= E\/g_fl[j V= 6nn1\/—V/ (2 2.3 1)
=2 U= ky Y=k
Tij =15 Eiye= fiﬁE’ij,t’ Tij = ﬁT i
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where U’ and V' are respectively the horizontal and the vertical displacements, U’

nl4

and V'’ are respectively the horizontal and the vertical velocity and E;; the rate of

strain tensor. 17,

1, is the total stress tensor, such as T]; = —P'd;; + 7', p 1s the mud

viscosity.

2.3 Equations in water to order O(x?)

In this section. we shall derive the approximate equations to high order because this
“may be uscful for later studies. However, we will only make usc of the first and
the second order (O(1) and O(k)) in the rest of this thesis. These orders will be

highlighted at the end of the calculations for clarity.

Let us express the velocity potential in the water as a power series:

plz.z.t) = ﬂcr‘)(")(:c, t) (2.3.0.2)

We then obtain

n=0 ’
and:
“ (z4+1)"
6= 3 EED e (2300
n=0 ’

2.3.1 Laplace equation

From the Laplace equation in dimensionless variables, we know:

Fo 9% |
K 7z T e T 0 (2.3.1.1)
and from 2.3.0.3 and 2.3.0.4 we deduce:
, 982 1 (n—2)
Y, o™ = —m% (2.3.1.2)

From the kinematic boundary conditions at the interface 2.1.1.4, we know that:

50 > ON O¢
0. = md&‘—n -+ GHdliz—n—f, z

ot OJx Ox

I

—1+ ergn(x.t) (2.3.1.3)
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We use a Taylor series expansion of this equation to obtain:

‘ on 0¢ 877
— 2.__.__. _= — :
Gz + KNGz + (€50)* N Brsz = €Rgk 52 5 HR RS+ O(x°), = 1 (2.3.1.4)

As a consequence, from the series of equation 2.3.0.2 we obtain:

on 0o 2, 877
5(1) @) 4 - 22077 2 315
oD + exgnd® + (erg)* PP = ergr 9 P + K LN + O(k°) (2.3.1.5)

From the result of equation 2.3.1.2, we can express ¢ in terms of ¢(¥:

(9”(/)(0)
(2) .
0] N (2.3.1.6)
and ¢® in terms of ¢
, M)
P 2 5.3 (2.3.1.7)
and ¢V from equation 2.3.1.5:
877 on 0o
(1) _ 2 20700 5 .
1) Kk = + €RgK o B + O(K”) (2.3.1.8)
Then equation 2.3.1.2 allows us to deduce o) as
2 1(1)
0¥ = —&28 ¢
’ ox?
82 2877 (97] 150, 7 (2 3.1 9)
i ( T erar axax) +O(=)
= O(k")
and o
¢(4) e R
ox? .
160 t (2.3.1.10)
=K 5 + O(K”)
We also deduce:
V>4, ¢ =0 (2.3.1.11)
As a conscquence, we can truncate the series 2.3.0.2:
o 2+ 1)? 2+ 1) -
=09+ (z+ 1)V + (—2,—>¢(2) + <—4‘*)@<4> + O(K") (2.3.1.12)
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and combining equations 2.3.1.5, 2.3.1.6, 2.3.1.9 and 2.3.1.10 in equation 2.3.1.12, we

obtain the highly useful representation of ¢ to order O(x°):

on 06 (z+1)292¢©)
b0 | o2 AL — K2
&=+ Kar(z 1) [(’)t Tz ( ox S TR P>

(2 + 1) Big0) (2.3.1.13)
4\Z 5
+K m e + O(K?)
2.3.2 Depth-averaged law of mass conservation
The kinematic boundary condition at the surface can be written as:
. 0¢ 0C ,

)

o — | =¢, z= 2.3.2.

K (4t+eaxax) o € (2.3.2.1)

Since from the equation 2.3.1.13,

(0) 2 :(0) Y 3 94 1(0)
¢, = Kak’ [?17_+ ——( 99 )}—HQ(ZnLl)a?i,) +I‘£4(~+1) ¢ + O(x)

ot oz Ox Ox? 6 Ox4
(2.3.2.2)
we obtain:
9 o¢c  [on 9 [ 9 L0 k29O ‘
Kq . — (1 - .3
G+ g = Ra |G g (1) |~ U+ G T g +O0)
(2.3.2.3)
Let us now introduce the horizontal velocity at the hottom u(®) = a( ! 50 that
oC on 0 8u(0) r2 Py . ‘
- 07 (0) 1 rowo 3 PPN
G+ eu o = [at +egs (nu')| — (L + EC) t e as T O(r”) (2.3.2.4)

Let the depth-averaged velocity be 4, which is related to ug by the following relation:

1S 99
u = — ‘—dZ
H —14enyn (91‘
1 eC Az 1 2 92 (O) )
_ 1 (u(o)—st( +1) 8uO +O<RJ)) dz
H J i 2 0 (2.3.2.5)
O B G N A T

6 1+ e —engnox
2 8

0 _ K Ou 3
6 Oz (%)




Turning this last result around, we obtain the relation:

k2 0%

T oz T OW)

B!

IS

+

(2.3.2.6)
Using this relationship, we obtain the equation 2.3.2.4 with respect to @ instead of
u©);
¢ on Onu) Ou K u ou  k20% 5 ‘
Y5 L T e = < 2.3.2.7
CH_EH(% v ot T K oz or 6 0x3 6C(‘):c + 6 dz? +O() ( )
and so:
. On  0u 0 ou  Omqu)  K*OPu  KPOPu 2
- S + or + euaz * €C8x ] +E—5}—3_ +O(x)

(2.3.2.8)
From equation 2.3.2.8, we finally obtain the simplified form of the kinematic boundary
condition:

G — Kame + 5—@;[(1 +eC — rgen)u} = O(kK”) (2.3.2.9)
Note the effect of the interface displacement.

Even though we carried the calculations up to order O(x%), we will only use the
orders O(1) and O(k) later on in this thesis:

G — Kqm + Z’%[(l +eQ)u) = O(k?)

(2.3.2.10)
2.3.3 Depth-averaged horizontal momentum
From the dynamic boundary condition at the surface we know:
2( L o9 2 o -
K (¢ + C) + -Q-E[H oo+ o7 =0, z=¢€C(z,t) (2.3.3.1)
From the expansion of ¢ of the equation 2.3.1.13, we deduce:
2070 1 (067 ‘
o _EIC % oy [ 3 3
o, T B2 ¢+ 2€< e ) O(k?) (2.3.3.2)
which can be written:
3¢(0) 1 (06 2 42 83¢(0> ‘
g + — —_— = — 3 2 ..
o ¢ 26<81) > oz O (2:3.33)
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(5(0) .

We now introduce the horizontal velocity at the bottom u(® = =5

oul ¢ ou® k2 3O r
o or eu® o 2 oo O(x%) (2.3.3.4)

As was done for the kinematic boundary condition, we write this cquation in terms of
the depth-averaged velocity @, using the relation between 1 and @ given by equation
2.3.2.6:
ou  r* 0'u 8 k* 0%
=t T o ¢ +¢ = ———— + O(K%) (2.3.3.5)
ot 6 dz20t 8:1: 826 2 0x20t
This last cquation can be finally reduced to the simplified form of the dynamic bound-

ary condition at the sea surface:

ou  _Ou 3( K2 0% 5
ot 9 T s = 3 aaza T o)

(2.3.3.6)

This cquation is the same as that for a rigid scabed.
Even though we carried the calculations up to order O(xk*). we will only use the
orders O(1) and O(k) later on in this thesis:

Q}Z _0u 6C

2
cuax pp = O(k") (2.3.3.7)

2.3.4 Equation of the total pressure in water

From the Bernoulli equation. we can deduce the total pressure (sum of the static and

the dynamic pressure) in the water as a function of the potential:
/ / /
P =P+ DPg

2.3.4.1)
= —pw <(?;f, (V ¢> + gz') (

In dimensionless form, this last equation becomes:
p= 0= 5 |(6)7 + =(6.)?] - 2 (2:34.2)
p_ t 2 x /{2 (/:)z p O

In particular, we can casily deduce the pressure at the interface between mud and

water:
, , 1 o 4
p=<- Ot — 5 {(%)2 + _2(@)2] — Kgn, 2= —1+exgn(z, i) (2.3.4.3)
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This equation will be needed to get the mud pressure P in the horizontal momentum
equation for mud. Please remember the final objective is to get g—i on the interface

in terms of ¢ and 7.

2.4 Equations in mud to order O(k)

2.4.1 Kinematic boundary condition at the interface in mud

In dimensional form, we know that:
ny=V —-nl,U, Z=1+en (2.4.1.1)

So in dimensionless form:

m=V-—eU] Z=1+e (2.4.1.2)

2.4.2 Conservation of mass in the mud

In dimensional form, we know from conservation of mass:

ou’ N oV’
oz 07

=0 (2.4.2.1)

in the entire layver of mud.

This equation becomes in dimensionless form:

U +V,=0L0<Z<1+ep (2.4.2.2)

This will be used later to deduce vertical velocity from horizontal velocity in mud.

Let us note that this equation is exact. contrary to most other mud equations.

2.4.3 Horizontal momentum in mud

Let us first write the Newtonian relation between the stress 77 and the strain B’ in a

dimensional form. SE!
Tez = Bt (2.4.3.1)

With the scaling we chose, we obtain that:

OF,»
Tz = o (2.4.3.2)
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Introducing the horizontal velocity in mud, equation 2.4.3.2 becomes:

U
Tz = 5ot O(rk") (2.4.3.3)

The equation of momentum in mud, projected on the x-axis, gives:

ou ou ou oP A O0Tyz 0Tz
— U—+V—=|=—-7= 5 2.4.3.4
8t+6( oz az) Wax+Re*d<aZ +“’€dax> (24.3.4)
where 7y is the ratio of densitics:
and Re is the Reynolds number defined as:
v Adk~/gh
Re = PMZCPEVIR (2.4.3.6)
i
From this equation we simplify:
ou 1 A07z oP ou ou 9
— = == -y U—+V— O(k~ 2.4.3.
9 Red 07 7&5“( ar az>+ (+7) (24.3.7)

where U is the horizontal velocity of mud, P the pressure, A the amplitude of the

frec surface and d the mud depth.

Let us cvaluate the order of the Reynolds number. We can first rewrite it as a

function of €, k, g, h and the type of mud:

Py \/5713/2%/%
7

Re

(2.4.3.8)

Indeed, pp; and p depend on the type of mud we consider.

It will be shown in the last section of this chapter that the range of Reynolds
number is no greater than O(1). Because we want our study to be applicable to any
tvpe of mud, we decide to adopt the limiting case in this thesis. As a consequence,

the Revnolds number will be regarded as:

Re = O(1) (2.4.3.9)




Differentiating equation 2.4.3.3 with respect to Z, we get:

Orez O
57 = 37 (2.4.3.10)
Equation 2.4.3.7 can be rewritten:
OTez d [oU oP ou oU 9

By combining cquation 2.4.3.10 and 2.4.3.11 we obtain an cquation between the hor-

izontal velocity and the pressure gradient:

92U d |oU opP ou oU 5 ~ )
977 Rez [—b—t— +”ya—x +e (Ua_x + V%)] +0(Kk%) 0<Z <1+en (2.4.3.12)

Let us now find an equation of the mud pressure P as a function of ¢ and 7 in

order to eliminate the mud pressure from equation 2.4.3.12.

2.4.4 Vertical momentum in mud

The dimensional equation of vertical momentum is:

vl eV v\ aP [0, Ot
N T VI _ A T 4.4,
p”(atf Ut az) 07 ( 0z " or ) (24.4.1)

and becomes, in dimensionless variables:

ov ov ov v OP ¢ 0742 or.,
ot Dz V— - o7 e P 3N
ot o (U Oz i 82) KJQ/{?I oz Re/{'-’&d ( 07 + KKq o (244 2)
So, in the end,
57 O] <z <1t 2443
oz _ " <l+en (2.4.4.3)

In other words, we find that the vertical pressure gradient in mud is of order O(x?).

This equation will be used to evaluate the pressure in the entire mud layer.
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2.4.5 Dynamic boundary condition at the interface

Let us call n = (ng, nz) the vector normal to the interface. In dimensional notations,

we know that the components of n are:

In dimensionless variables, we obtain:

e ON
_ Chhd g,
Ng = =
2,.2,.2(01n
\/l—l—e K /id(ax)
1

n

Z -
o 2
2,.2,.2(9n
\/ 14 €K%K d( 8:[:)
Finally, n, and nz can be approximated as:

0 :
Ny = efmd(a—n + O(*K*K3) (2.45.3)
T 2.4.5.

nz =1+ O(€?r*K3)

Continuity of total (hydrodynamic and dynamic) stress on the mud-water interface
then requires:
Tezng +Tozng = —pn,, Z =1+ €n

(2.4.5.4)
Tozng +Toynyg = —pny, Z=1+en
Total stress in mud is the sum of hydrostatic and dynamic pressure:
. €R
Tij — —P()Z'j + TRETU? (2455)
Introducing this sum in cquation 2.4.5.4, we obtain:
€K €K
—P A —Tpy | Ny + —=Tuzny = —pn,, Z =1-+en

vRe vRe . ,
(2.4.5.6)

< +(=P+ = Z=1+
— Tz Ny — —Tyzz | Ny = —PNzy, =
~Re *Z ~Re 77 )17 T T i
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From the approximations of n, and nz that we demonstrated in 2.4.5.3, equations
2.4.5.6 become:

o 0
(—P + ifm> ERRg e+~ = —pem@da—n +O(€k*k2), Z=1+en
¥ i X

— 0 2
’YE_’R;GTIZGRKd% + <—‘P + %7—22) = —p + O(E*/i2/{3>_, 7 -1 n en
(2.4.5.7)
These last equations can easily be simplified to:
— (P — p)ekk il + O(€2K%kq), Z =14 en
5 Tzz = € d——— : — p
s o (2.4.5.8)

P—p=20(er), Z=1+en

Dividing the first equation of 2.4.5.8 by , these equations become:

d
Toz :7Re&d(P—p)a—Z+O(m/{d), Z=1+en (245.9)

P—p=0(er), Z=1+en

Let us now make usc of the second equation (corresponding to normal stress condition)
to simplify the first one (corresponding to tangential stress condition). Since P —p =

O(ex), we obtain:

7oz = Olerkyg) = O(K*), Z=1+¢
z = Olerka) £> " (2.1.5.10)

P—p=0(r)=0(k"), Z=1+en

We now focus on the first part of equation 2.4.5.10. Through a Taylor expansion, we

can approximate this cquations around Z = 1:

({)Tul

Toz(Z =14 €n) =12(Z = 1)+ €n 27

+ O(€?) (2.4.5.11)

and as a consequence:

a xZ
rez(Z = 1) = 12(Z = L+ en) = en—=22| ,_, +O()
o (2.4.5.12)
TZ
= —677—6—2—1221 + 0(62)
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We finally obtain a boundary condition at the interface in term of the horizontal

velocity U:

o*U
|Z:1::._en2i2512214%<9<62) (2.4.5.13)

This boundary condition will later be used to determine the drift in mud.

ou
97

Let us now focus on the sccond part of equation 2.4.5.10. From 2.4.4.3, we know
that the vertical gradient of mud pressure is of order O(k?). As a consequence, we
have:

P=p(Z=1+en)+0(x%), 0<Z<1+en (2.4.5.14)

Differentiating this last equation, we know that:

or 0, i
5;:532:1+gn+0m% 0< Z<1+en (2.4.5.15)

Water pressure p is known in any point of the water layer thanks to the Bernouilli
cquation 2.3.4.3. In particular, we know the water pressure at the interface (z =
—1+ €rgn):

1

v - 960N
p= = (6w - 5 (%) + 06 (24516)

By differentiating this equation, we obtain:

QZZ B _82¢(()) . QTZ
or  Ozot  or

€ 0 3¢(0) ) 2 -~
~ 55 ( > +O(Kk7). z=—1+¢€ryn (2.4.5.17)

From equation 2.3.3.3, we also know:

26© ¢ (9p™\? ,
4= = —C+O(r? 2.4.5.18
a2\ ox ¢+ OW) (24.5.18)
which is valid for all z since ¢® and ¢ do not depend on the vertical coordinate.
Combining equations 2.4.5.17 and 2.4.5.18, we get the water pressure gradient at the
interface: g o 9
P Ui 2
— == —Kg— +O(Kk"). z=-1 < 2.4.5.19
o or oz (%) +eRdn ( )

Combining equation 2.4.5.19 with 2.4.5.15, we finally obtain the mud pressure hori-

zontal gradient in the entire mud layer:

or o
dr  Ox Hd@a:

+O(KY, 0<Z<1+en (2.4.5.20)
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As a consequence, we can now substitute the mud pressure P from the horizontal

momentum equation 2.4.3.12, for 0 < Z < 1 + en:

217 oU .
U _ ped [3_(] o (% _ Kd@) +e (U* + v@—ﬂ O] (24.5.21)

0z Aot Oz oz oz 0z

2.4.6 Bottom kinematic boundary conditions

At the bottom, we impose the no-slip boundary condition:

U=V =0 z=0 (2.4.6.1)

2.5 Asymptotic equations in water and Newtonian

mud

2.5.1 Equations at dominant orders
Water equations

Let us derive the asymptotic equations of ¢ and 7 in water. We derive here these
cquations up to order O(k?) because this may be helpful for further studies. However,
later in this thesis, we will only make use of orders O(1) and order O(k).

By combining equations 2.3.2.9 (for mass) and 2.3.3.6 (for momentum) obtained

i water, we obtain the following approximate equation between ¢, n and u:

O(x*) (2.5.1.1)

FC P _682((a)+€g aa_a A e ont N
o oz T et or \“az ) T 3 omsar |~ Farar

To simplify this equation we use the leading order approximations of 2.3.2.9 and
2.3.3.6:
¢ ou 0 5
c_ v + gl 4 O(k7)

ot Ox ot -
o o o (2.5.1.2)
or Ot <)



As a consequence,

89 (Cu) B Q
&vat N é?
8 8 0u 9
e [(0? 0
=3 ( i 8t2> — €kyq g? + O(K*)

and;

_&2 ot B k2 01C
3 030t 3 Ort

Thus. equation 2.5.1.1 can be written:

aQC aQC 8277 _E_ (92,&2 N (f)QﬁQ N aQCQ K2 04(: 8C7lt
x> ot? ot?

42 2 2 G

ot o2 ot - 3 Ox ot (2.5.1.5)

nu 3

: + O(k
+ €Ky Eey (k)
Now let us expand the functions ¢ and @ as power scries:
C — C(O) + hc(l) + /i2€(2) 4

(2.5.1.6)

7 ="+ ke + 7@ + ...

Because we expect the typical distance of the mud induced damping to be kz = O(1),

let us also introduce the slow coordinate X:
X = kz (2.5.1.7)

Applving the technique of multiple scales, we have:

9_9 .90
gf %‘i 0X " (2.5.1.8)

Bat = 31 T ¥ gmax TOK)

So the equation 2.5.1.5 becomes, with the multiple scale:

82(; (92@ 9 82C . aQC (9277 N E (a‘zu2 a‘zﬂz 82ﬂ2 aQCQ)

50 T o amax  Max: o Mg a2z azax T ar o
&20'C OCn | 0%(un) .
g gy i O




which can be written:

82C 82(: 5 82C ok (9277 N ¢ 82712 N 02ﬂ2 N aZCQ
b N S Y4 -
o> 9x? prdX | oz 2\ a2 | o o
0*C 0*u? k2O oCn, 0% (unm) ,
2 AO6 3
TR T max T3 Mo T Mg T O
(2.5.1.10)
From this cquation, we deduce for dominant orders:
e at order O(1)
62 (0) 82 (0)
a; ~ ai:‘l =0 (2.5.1.11)
e at order O(k)
2.~(1) 2 (1) 2¢O o 20 3¢ §2((0)2
RS AL S L M L (S (25.1.12)

ot2 Ox2 0z0X 'k 02 | 2 o2

where equation 2.5.1.12 is obtained after using the following relation valid to

leading order:

PO | P o) ()

e at order O(x?)

92 (@) - 52¢® » 8¢ @8217(”
ot? Ox? 0X0x KO

€ (9'—"(@,(0)5(1)) (‘)2(11(0)@(1)) @Q(C(U)C(l))

" < e ae o )
62C(()) ¢ @Q(U(U))Q 184C(0) €Ky ag(())(n(o))t
oXT TR owX T30 TR w
ekig 02Ty

k2 Oxol

_.|...

(2.5.1.14)

We carried the calculations up to order O(k?) because it may be useful for later
studies, but we won’t use these equations in the rest of this thesis.

From now on, we will only carry calculations further for the orders O(1) and O(k)
(2.5.1.11 and 2.5.1.12).
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Mud equations

Let us find another coupling cquations between the surface and the interface, ¢ and

7, derived from the mud cquations. The momentum cquation 2.4.5.21 in mud gives:

o  a\, (o  n oU AU S
Q@Zf“m)U_V(&n “m) OQ9+W52) o (2.5.1.15)

0<Z<1l4en

where:

(2.5.1.16)

which is at least of order O(1).

As in water, we introduce the multiple scale coordinates x and X = rz. so that

equation 2.5.1.15 becomes:

0? 5} _[0¢ ¢ on
Qﬁwz m)U V(a*ax en)

2.5.1.17
U8U+V8U + O(x?) .
— K
ox 0z '
The continuity cquation 2.4.2.2 becomes:
o) , o) o)
= 2.5.1.
G s =0 (2.5.1.18)
and the interface kinematic boundary condition 2.4.1.2:
dn On
AL VA i) 2.5.1.
o ¢ 82:U (2.5.1.19)
By expanding U and V' in ascending powers of k, we write:
U=U9+cUY 4+ 0(x?
(2.5.1.20)

V=V kv 4 O(k?)
We can now deduce the dominant orders of equations 2.5.1.17, 2.5.1.18 and 2.5.1.19:
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e at O(k%):

2 )
(Q_Q__ﬁ >U(0):-7——a§ , 0<Z <1
€T

ot 922
57 () (0) | ‘
ag + 8;/2 =0, 0<Z<1 (2.5.1.21)
T
—%’10 VO, Z=1

o at O(K):

((9 ai) U — _78C(1) ¢ N Kd (977(0)_ —f; <U(0) oU® o 8U(O))

o Yoz oz T ox 'R oz ox o7
oUW U Hy
—0 Z
e " ax oz T O<z<1
877(1) _ V(l) P
ot ’
(2.5.1.22)

2.5.2 Equation and solution at O(x")

Water equations

Because cquation 2.5.1.14 clearly involves non-lincar terms, we consider the evolution

of a train of harmonic waves a the leading order:

» 1 +o¢ ; 1 +oc .
(V=5 3 A 70 =2 3 Bu(X)e (25.2.1)

where 6, = m(xr — t). We shall assume that A, = By = 0.

Mud equations

We adopt for the horizontal and vertical velocities in mud at the zeroth order the

form we used in 2.5.2.1:

U(O) — % Z Lfr(r?) (Z)eiem

K. (2.5.2.2)
v 1 S VO(Z)e
2 m
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Then from the equation 2.5.1.21 we deduce an equation for Ul )(Z E

2UY )
i o 2UYW = —02 4 A, A (2.5.2.3)
where
9 .m
O = _ZE (2.5.2.4)

We can solve exactly this second order differential equation by using the boundary

conditions:
U9 =0, Z=0
5(1N© (2.5.2.5)
W _ 714
0z
In the end we get:
UY = ~yA,[1 — cosh(0,,2) + tanh(c,,) sinh(c,,Z)] (2.5.2.6)

From the continuity equation and the boundary conditions of 2.5.1.21 we can extract

the following equations for the vertical velocity:

dv;y
dz
VO@©)=0, Z=0

= —’éng’)

. .. . . 0
As a conscquence, we can casily deduce the explicit expression of the AR

myA,

VO — [0nZ — sinh(0,,Z) + tanh(o,, ) (cosh(o, Z) — 1)] (2.5.2.8)

Om
From the kinematic boundary condition at the interface in mud, we can now deduce

the interface motion: )
By =——V(Z = 1)

im (2.5.2.9)
= 7A1nG(O'm)
with -
Glop) =1 — %‘7’”) (2.5.2.10)
As a conclusion we have:
te
B = A <1 - w> (2.5.2.11)
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2 .
where 0,,° = —12 o = ,,df

This term

Glop) =1~ tﬂi—:(ﬁll (2.5.2.12)

will later be studied as a function of ¢ and m.

2.5.3 Equation and solution at O(k)

Water equations

At order O(k), we have from 2.5.1.12:

82C(1) aQC(l) 5'2(:(0) Ky 5.217(0) e 32@(0))2
o2 92 _anéX Kk 02 | 2% o2

(2.5.3.1)

By following the same procedure as in “Theory and Applications of Ocean Surface

Waves” by Mei, Stiassnie and Yue, we know that:

3¢ 0°(§( ))2 [m/2]
9% o2 s Z - muezam ZQA Amiu + Z aAtAp_| + e (2.53.2)
I=1

where [m/2] is the integer part of m/2 and oy is a coefficient equal to 1 for [ = [m/ 2]

and equal to 2 otherwise. Use has been made of the assumption that Ay = By = 0.

We also have
0%¢0 N dA

2—— = m—— g0 .C.
920X lem X e’ +cc
m= (2.5.3.3)
8277(0) B 2 0,
pYD = —sz::lm Be + c.c.

combining all these results, we can rewrite equation 2.5.3.1:

) [e e} [ed] el [m/2]
o*¢H ¢ dAn 5 € 3 5
— T wWm I Win QA*Am A Am_
a0z oz mzzll dx © +f~imz:1 g ¢ ZH (Amet Zl_l W
l . oo
— 5% E m2B,,e?’" + c.c

(2.5.3.4)

To ensure solvability of this last equation, we must remove the secular terms propor-

=
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tional to e, yielding the differential equations:

[m/2]

dAn, m K 3t e ‘ 4
_(5(_:_7: g ZzA m+1l+ZalAAm, . om=1,23, ..

(2.5.3.5)
Combining this result with 2.5.2.11, we finally obtain the differential equation for the
A, forallm=1,2,3, .

[m /2]

dA,, ym Kq tanh(o,,) i€
—(K:—————Q———; (I—T —_'—m 22141 m+l+ZQlAl m—1

Mud equations

We study the order O(x) of the mud equations because a very interesting drift phe-

nomenon appears duc to non-lincarity.

We had from equation 2.5.1.22:

o a a0 g m® e (AU oU©

1y 5 - o= o=

( )U "o 7ax Tk oa H(U or TV g
(25.37)

In this thesis we shall not pursue the higher harmonics of ; and 7; and focus only

on the zeroth harmonic of ") which corresponds to the drift current, governed by

a°l'(“ _ Rerg
0Z% 92k

i[U,(,?( im)U) + U (im)U©

1(0) (2.5.3.8)
Ar7(0)
+Vmi&i+v@gﬁ]
0z "0z

The preceding equation can be simplified:

82(/(51) Retig — (?U_ Ul
_ (0) m V(O) m ] 9.53¢
572 o mzz:l [ R (2.5.3.9)
Knowing that V_((,),)1 = V,S” and Son)l U,(,?)*7 we obtain:
Ut R 0 UL
o = i ZER = (2.5.3.10)




Equation 2.5.3.10 will be integrated later to give Uél). We note that this drift only

appears at the order O(k), and is as a consequence small.

2.6 Further details

2.6.1 Surface and the interface

We truncate the series in 2.5.3.6 , in order to obtain a differential cquation for the
A,,, for all m:

. [m/2]
dA,, iYm Kq tanh(o,) 3t € 4
—d‘)z“:“—g—z‘(l“—gr:— m =g ZQA m+l+zalAl m—1
(2.6.1.1)
This truncated differential systemn is true for 0 <m < n.
2.6.2 Drift current in mud
We also truncate the series in 2.5.3.10 for the drift velocity:
n (0)
6 (](l) Relid (0) 8U(m)
V. .6.2.
On the right-hand side we get from (2.5.2.6):
ou,,)
é).TZn = YA |—0m sith(0,,2) + o tanh(o,,) cosh(o,, 2 )] (2.6.2.2)
and from (2.5.2.8)
(0) nmA . .
V2 —— (o} Z —sinh(o), Z) + tanh(o7}, ) (cosh(o7,Z) — 1)) (2.6.2.3)

Combining 2.6.2.2, 2.6.2.3 and 2.6.2.1, we obtain:

Uy Rehd Z §R[ il [a* Z —sinh(o? Z) + tanh(o},)(cosh(e), Z) — 1)]

2 m m
0z g

YA |—0m sinh(o0, 2) + 0y, tanh (o, ) (;osh(omZ)]]
(2.6.2.4)



which can be simplified:

PU __ aRera g~y P[22 07,2 — sinh(07, 2) + tanh (07, (cosh(3,.2) — 1)
575 =~ - mzzlf I el G sinh(o7, anh(o?)(cosh(or, ]

m

—0,, sinh(0,,2Z) + 0., tanh(o,,) (:osh(amZ)]]

(2.6.2.5)
and expandec
0°U;" 2 eky i |A Fg{ n ( om0, Z sinh(0,Z) + oo, Z tanh(o,,) cosh(o,, Z)
Z 0 m — —om S m oo 8 Om ) COS m
072 TR — T " "

+ oy sinh(o}, Z)sinh(o,,2) — o,, tanh(o,,) sinh(o}, Z) cosh(o,, Z)

— (tanh(o,)) o cosh(o, Z) sinh(o,, 2)

m

+ o, tanh(o,,) (tanh(o,, )" cosh(o,,2) cosh(o), Z) + (tanh(o,,))" 0, sinh(o,,2)

— oy, tanh(oy,) (tanh(o,,))" cosh(amZ))]
(2.6.2.6)

R

m

» write g, = o a reals.
We write o, = 02 +i0l | of and ol reals

NN TR o W o f o R _
Let us first integrate once. We use the fact that o, + o7, = 20, and o,, — o}, =
I.

2to

aUél) 5 Rekg = s [T . sinh(o,,2)
57 = 7 . ;IAM \S{E_—i[—am(ZQObll(UmZ) - T)

osh(o,Z
+ o) tanh(o,,) (Z sinh(o,,7) — iﬁ—(a—))
Om

sinh(202 2
EBELEC"Z—”Om(l + t‘dllh<am)(tanh(0m))*)
sinh(2i0l 7) m))" —
S o (o) (tanh(o.))” ~ 1)
cosh(202 2
- %ﬁam(tz\,llll(gm) + (tanh(om))")
osh(2io;, Z +
- ﬂ/.[</L'0L'#20'7n(t'(Lllh(O'm) - (tanh(om))*) (tanh(o—m))* COSh(Om )

— tanh(o,,)(tanh(o,,)) sinh(o,, Z) + C’r(nl)H
(2.6.2.7)



Integrating again, we get the expression of Uél):

U = — 725_6,? f: lAm|2%[Jﬂ* [ B 0*<Zsinh(omZ) B 2cosh(amZ))
m=1 m

Om o2,

Z cosh(omZ sinh(o, 2
+a:‘ntanh(0m)( cosh(a )_2q1n1(a ))

T T
R
ik (971
%@tﬂn (tanh(op ) (tanh (o))" — 1)
. R
- %ﬁé%@mh(am) + (tanh(om))")

s T o
Mﬁa—’fﬁdm(tanh(tfm) — (tanh(om))*) + (tanh(am))*w
(o) Um

Lcosh(o,2)

— tanh(o,,)(tanh(oy,)) +CcWz 4+ C)(;’)”

Om
(2.6.2.8)

The integration constants O and € will now be determined from the boundary

conditions.

From cquation 2.4.6.1, we know that:
UD(Z=0)=0 (2.6.2.9)

- (2
As a conscquence, we deduce the value of ).

207 0,(1 +tanh(o,,)(tanh(0,,))*)  on(1 — tanh(o,,)(tanh(c,,))*)
m o2 8(adk)? 8(cf,)?
N tanh(o,,)(tanh(o,,))*

Om

(2.6.2.10)
We now make use of the interface boundary condition 2.4.5.13. From this equation,

we know that:

UM € (0)62U<0>
EYA |Z:1:_;77 W’Zﬂ

(2.6.2.11)
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As a consequence, we know that:

€1 [
~i2|B

U
m a Z

|71

277(0)
B,ma—gg—‘
972 1z=1

1 & 82U . LorUlY
ZZ BW(W'Z:I) + (Bm) D72

B (88(;20 IZ 1)*}

m=1
Knowing that:
B, = vALG(om)
and: g2
__(# sy = —YAmomsech(o,,)

equation 2.6.2.12 becomes:

3 2 ROAG (o)A (o]

=
l\DI}-—-A

m

ZQLZHM R [C

:“ Zml

m=1

[

Om)(05) sech(a7,)]

zG (om) (o )QSech(a;)]

Let us truncate this last equation:

aU(l) ’;2 n . i
g 7=y = L : > 1AnlS [iG (o) (07, sech(07,)]

m=]1

From cquation 2.6.2.7, we deduce the condition that oty

[
(@3]

[ 277(0)
Z=1
m=1 L

(2.6.2.12)

(2.6.2.13)

(2.6.2.14)

(2.6.2.15)

(2.6.2.16)

neceds to mecet in order to



respect this boundary condition:

253@%[21— (0;(C08h(0—m) — .bllh_(a_m)> -, tanh(om)(Sinh("m) - M)
K Tm om "
sinh(20%
_ Sihi2om) | banh(on)(tanh(om))°)
40k
!
B b—ngi_%—)am(tanh(ffm)(mnh(am))* -1
s R
LO—billg_i}i;—m)Cfm(’f/anh(am) + (tanh(om))")
) o ) I
— L_(%%MUm(tanh(Um) — (tanh(0,))")
— (tanh(oy,))" cosh(a,,) + tanh(o,,)(tanh(s,,))* sinh(o,,) — C’(’P)]
2
= L3 [iG(om) (73, sech(a3,)]
K
(2.6.2.17)

We finally obtain the value of o,

€o’

c = — miG(am)(a:‘n)QseCh(O;)
+ U,"n(cosh(am) - SE{—;(U—WL)) — o7, tanh(o,,) ( sinh(o,,) — %a—m))
- Silil—g%ﬁ—)am(l -+ tanh(o,,)(tanh(o,,))*)
_ —Smigj}:’g)Um(t-anh(am)(tanh(am))* —1)
S9%(%@%11(%) + (tanh(o,,))")
- Ef%am(Launh(o;n) — (tanh(0,,))")

— (tanh(o,,))" cosh(o,,) + tanh(o,,)(tanh(c,,))* sinh(o,,)
(2.6.2.18)

The drift current is now found. We notice that it is a sum of the | A,,|* multiplied

by coefficients depending on v, x, kg, € and the o,,, we deduce that the result of the

A,, will depend on the values:

g, pPw. Pary A, h d. w', H (26219)

where g and py are fixed, pyr and the g depend on the Newtonian mud, and A, h,
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w' and d depend on the geometry and the surface wave. .

2.6.3 Energy variation in water
We recall the differential system:

[m/2]

dA,, 3@ € 1Y Ky tanh(o,,
—tEm ZZAI mal + Z WA Ay | + 5 =5m (1——;%—)> An =0

(2.6.3.1)
which governs the free surface motion.
In [8], G. Grataloup and C.C. Mei demonstrated that if the differential equation

describing the free surface is:

L [m/2]
dA,, zm“‘ 32 €
—d—f + /37n - T __m ZQA Am+l + Z alAI m—I - 07 (2632}

then the general relation on the first-order wave-energy is:

_d).(_ [ 140P] = 2 3 R(61AL L (2.6.3.3)

Indeed, in equation 2.6.3.2, 3, represents a dissipation source. That is why the total
wave energy at the leading order decreases with relation to f,,.
In our casc of a flat bottom with a thick layer of Newtonian mud, we deduce that

the general relation on the first-order wave energy is:

_di [Z ]Am'2] - “7‘ ZQR [lm ( tdn(};:jm )} |Am]? (2.6.3.4)

m=1

Clearly wave energy is attenuated in X. One can define the attenuation distance for

the m-th harmonic by

1
— - _V“dm\; [G(Ul)} (2.6.3.5)
2.6.4 Study of G(o,,)
Let us now study the term:
tanh(o,,
Glon) =1 — W_‘m;(” ) (2.6.4.1)

(@51
~J



0.8

RIG(o,)]
0.4
0.2
0 1 ' 1 H H 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
o

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
(b) Tmaginary part of G(a,,)

Figure 2-2: Variation of G(0,,) as a function of @ and m

as a function of m.

We know that:
o, =—— (2.6.4.2)
so G is in the end a function of m and a. -

In figure 2-2, we plot G as a function of a, for different values of m. Since we

previously stated that « is of order 1, we plot G for 0 < o < 1.

We can see that the real part of G(o,,) strictly increases with m. However, we see

that the variation of ¥(G) is not monotonous in m.

~
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2.7 Numerical results by using the first ten har-

monics

We now represent the numerical results in order to analyze the effect of the different

pa,rameters .

We will first study the cffect of the wave amplitude A, knowing that a big wave
amplitude implies high non-lincarity € for cases la, 1b and lc¢ listed in table 2.3.
We will then look at the effects of different wavenumbers k&, and thus of different

dispersion coefficient, x for cases 2a, 2b and 2c listed in Table 2.4.

Finally, we will look at the effects of different mud layer depths d, and thus different
values of the parameter x4 for cases 3a, 3b and 3c¢ listed in Table 2.5.

For all of these representations, we arbitrarily choose the viscosity to be the mod-
ulus of the Gulf of Mexico mud complex viscosity at w’ = 0.5rad/s. This value
corresponds to a viscosity: g = 400Pa.s. We also choose the density to be the density

of this same mud: py; = 1140kg/m?, and as a consequence v = (.88

We also set the water depth b = 2m.

2.7.1 Influence of non-linearity

We set the wave period to be T' = 12s (which means w' = 1/2rad/s). the mud layer
depth to be d = 20cm and the water depth 2 = 2m. We then consider 3 possible
wave amplitudes A = 20em, A = 40cm and A = 60cm, corresponding to cases la. 1b

and lc. From here we can deduce the value of £ and Re by:

h=wHl— (2.7.1.1)

and:

v Adkn/ gh Adw'
Re:m[ ; gn _ puAay (2.7.1.2)

1
Table 2.3 sums up the corresponding values of the parameters €, x, Re, kg and a. €
and Re both increase with A and & does not depend on A. Case la corresponds to

the smallest A (and thus smallest non-linearity) value and case 1c to the biggest onc.

We assume the initial condition A;(0) =1
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— €
Casc | € K Re | kg | o= T

la 0.110.22|0.06 | 0.1 17
1b 0.2 102201101 18
le 0.310.22017]0.1 18

Table 2.3: Values of Re. s, € and « corresponding to different values of A. Case lc
corresponds to the biggest A, that is to say the biggest non-linearity.

Surface and interface

Figures 2-3 and 2-4 show the evolution of the first three harmonics of the surface and
the interface. Even though we carried the resolution with 10 harmonics in order to
take into account all the significant ones, we only display the three most significant
harmonics for clarity.

In figure 2-3, we observe that the harmonics are smoother in the less non-linear
casc (1a). Variations arc more significant in the most non-linear case (1c). This cffect
of non-lincarity corresponds to what we were expecting. Even though non-lincarity

is very important in every case, it is even more obvious in case lc.

Drift current in mud

Figure 2-5 represents the drift we calculated in equation 2.6.2.8.

Let us recall the equations:

U=U9+4xUY + O(x?)

1

= _ 2.7.1.3
UL = éUél) + 5 Z (U,(nl)eng + cc.) ( )
m=1

This is whyv we plot the value %/@U(gl), which is the value that appears in the total
sum of U.

The drift is represented in the mud layer for 0 < X < 5 for Z = 1. It is interesting
to note how the drift naturally vanishes as X increases.

The biggest drift occurs in casc lc, in which non-lincarity is the most important.
This result corresponds to what we expected since the drift appears at the sccond
order because of non-linearity.

We also note that the drift current shows strong oscillations in the most non-linear
case, and moderate oscillations in the medium case (1b). As we already enphasized,

the drift current is a sum of the |A,,|*> multiplied by coefficients. Since these coeffi-
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(c) Highest non-linearity (1c)

Figure 2-3: Effects of wave amplitude on the evolution of the first 3 harmonics of the
free surface over a thick muddy seabed. Comparison hetween the cases la. 1b and
le.
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Figure 2-4: Effects of wave amplitude on the evolution of the first 3 harmonics of the
interface between mud and water over a thick muddy seabed. Comparison between
the cases 1a, 1b and lc.
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Figure 2-5: Drift velocity %HUSU. Comparison between the cases 1a, 1b and 1c.

cients do not depend on X, it is logical that the oscillations in |A,,| directly result in
oscillations in the drift. As a consequence, based on the comments we made on the
|A,,| in the previous section, it is logical for the drift current to have more oscillations

in the most non-linear case.

Energy variation

We display the total first-order energies for cases la, 1b and 1lc in figures 2-6. This
figure shows that the total energy logically decreases to reach a zero-value in every
case, because it is dissipated in the viscous mud.

In figure 2-7, we represented the variation of total energy. The dashed line repre-

sents the right-hand side term of equation 2.6.3.4:
d 1y 2 Kd : . tanh(oy,,) )
ax [mz;l [Anm| } B —7;;% [”" <1 B | Am| (2.7.1.4)

It is so close to the solid line that it is very hard to distinguish. As a consequence,

this figure shows that our numerical results are right.

2.7.2 Influence of dispersion «

We now study the influence of dispersion.

We set the wave amplitude to be 4 = 40c¢m, the mud layer depth to be d =
20cm and the water depth 2 = 2m. We then consider 3 possible periods T" = 18s,
T = 12s and T = 6s (which mean w’ = 1/3rad/s, w' = 1/2rad/s and w' = 1rad/s),
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Figure 2-6: Wave encrgy over a flat thick muddy seabed. Comparison between the
cases la, 1b and lec.

] —_ €
Case | € K Re | ky o= =

2a 0.2 ] 0.15 {0.08 } 0.1 25
2b 0.2 10225]0.11 | 0.1 18
2¢ 0.2 045 1023 ]0.1 8.7

Table 2.4: Values of Re, &, €. kg and a corresponding to different values of dispersion
K

corresponding respectively to cases 2a. 2b and 2c. We still have h = 2m.

Table 2.4 sums up the corresponding values of the parameters €, k, Re, k4 and a.

Free surface and interface

Figures 2-8 and 2-9 show the evolution of the first three harmonics of the surface
and the interface for different dispersion parameters k. Even though we carried the
resolution with 10 harmonics in order to take into account all the significant ones, we
chose to only display the three most significant harmonics for clarity.

In figure 2-8, we observe that the harmonics are smoother in the most dispersive

case (2¢). Variations arc morc significant in the less dispersive case (2a).

Drift
Figure 2-10 represents the drift we calculated in equation 2.6.2.8. It is interesting to
note once again how the drift naturally vanishes as X increases.

As before, we choose to represent the value %n‘Uél)7 because it is the value that

appears in the total sum of U.

64



0 T
-0.05 5
10 —d ( |Am[*)dX
dl 3 |Am|? ~RHS
—— 0.1 —_—
dX
-0.15F e
-0.2F
2% 5 X 10 15
(a) Smallest non-lincarity (la)
0 T v
-0.05
10 9
dl > |Am|
m=1 0.1 — 20l
: d (Z |Am|)/dX]
dX : |=RHS

-0.15}F
-0.2b-
02% 5 X 10 15

(b) Medium non-linearity (1b)

w
—d (S |[Am[*)/dX
-~RHS
023 5 X 10 15

(¢) Highest non-linearity (1c)

Figure 2-7: Variation of the wave energy over a flat thick muddy seabed. RHS is the
value of the right-hand side term in equation 2.6.3.4. Comparison between the cases
la, 1b and lc.
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Figure 2-8: Effects of dispersion on the evolution of the first 3 harmonics of the free
surface over a thick muddy seabed. Comparison between the cases 2a, 2b and 2c.
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Figure 2-9: Effects of dispersion on the evolution of the first 3 harmonics of the
interface between mud and water over a thick muddy seabed. Comparison between
the cases 2a, 2b and 2c.
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/{U(gl)

Figure 2-10: Drift velocity %&Uél). Comparison between the cases 2a, 2b and 2c.

The biggest drift occurs in case 2¢, in which dispersion is the most important.
Oscillations in the drift current are more significant in the small dispersion cases.
As before, this is due to the fact that the |A,,| themselves are less smooth in when

dispersion is small (2a or 2b).

Energy variation

We show the total first-order cnergics for cases 2a, 2b and 2¢ in figure 2-11. This
figure shows that the total energy expectedly decreases to reach a zero-value, because
it is dissipated in the viscous mud.

In figure 2-12, we represented the variation of total energy. The dashed line
represents the right-hand side term of equation 2.6.3.4, and the figurc shows that our
numecrical results obey the law we demonstrated. Indeed, the two lines are so close

that they are very hard to distinguish.

2.7.3 Influence of mud layer depth d

We now aim at studying the influence of the mud layer depth.

We set the wave period to be T = 12s (which means w' = 1/2rad/s), and the wave
amplitude to be A = 40cm. We then consider 3 possible mud layer depth d = 10cm,
d = 20em and d = 40cm, corresponding respectively to cases 3a, 3b and 3c. We still
have h = 2m.

Table 2.5 sums up the corresponding values of the parameters €, k, Re, kg and .
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Figure 2-11: Wave energy over a flat thick muddy seabed. Comparison between the
cases 2a, 2b and 2c.

Casc | € K Re Ky | @ = H;Re
3a 0.2 10221 0.06 | 0.05 67
3b 0.21022]0.11 ] 0.1 18
3¢ 0.21022]023] 0.2 4

Table 2.5: Values of Re, K, €, kg and a corresponding to different values of the mud

depth d
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Figure 2-12: Variation of the wave energy over a flat thick muddy seabed. RHS is
the value of the right-hand side term in equation 2.6.3.4. Comparison between the
cases 2a, 2b and 2c.
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Free surface and interface

Figures 2-13 and 2-14 show the evolution of the first three harmonics of the surface
and the interface for different mud layer thickness d. Even though we carried the
resolittion with 10 harmonics in order to take into account all the significant ones, we

chose to only display the threc most significant harmonics for clarity.

As expected, we observe in figure 2-13 that damping is more significant in the case
of the highest mud thickness (3c¢) than in the case of a very thin mud layer (3a). This
is due to the fact that dissipation happens in mud. As a consequence, the thicker the

mud layer and the more wave damping.

We also observe in figure 2-14 that the interface variations reach a higher ampli-

tude in the case of the thicker mud (3c).

Drift

Figurc 2-15 represents the drift we calculated in equation 2.6.2.8. It is intercsting to
note once again how the drift naturally vanishes as X increases.
As before, we choose to represent the value /‘CUél), because it is the value that

appears in the total sum of U.

We observe in figure 2-15 that the biggest drift corresponds to the thicker mud
(3¢).

Energy variation

We numerically represented the total first-order energics for cases 3a, 3b and 3c¢ in
figure 2-16. This figure shows that the total cnergy logically decrcases to reach a
zero-value, because it is dissipated in the viscous mud. We can sce that energy is
dissipated faster in the case of the thicker mud (3c). This result seems logical since,
as we said when we studied the surface amplitude, the thicker the mud and the faster
the wave damping.

In figure 2-17, we represented the variation of total energy. The dashed line still
represents the right-hand side term of equation 2.6.3.4, and the figure shows that our
numerical results obey the law we demonstrated. Indeed, the two lines are so close

that they are very hard to distinguish.
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(b) Medium mud layer thickness (3b)
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Figure 2-13: Effects of mud layer thickness on the evolution of the first 3 harmonics
of the free surface over a thick muddy seabed. Comparison between the cases 3a, 3b
and 3c.
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Figure 2-14: Effects of mud layer thickness on the evolution of the first 3 harmonics
of the interface between mud and water over a thick muddy seabed. Comparison
between the cases 3a, 3b and 3c.
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Figurc 2-16: Wave energy over a flat thick muddy scabed. Comparison between the
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2.8 Estimation of Re

We give here a range of possible Reynolds number values for different field samples
of fluid-mud in tables 2.6, 2.7 and 2.8. We repeat the values of € and  in every onc
of these tables, cven though they clearly don’t depend on the mud type.

Using the rheological data for a mud sample from Gulf of Mexico, provided by
Professor R. A. Dalrymple and Mr K. Melick of Johns Hopkins University, we have
the following typical characteristic values: ppr = 1140kg/m?, and |p|(w’ = 1/3) =
461Pa.s, |u|(w' = 1/2) = 400Pa.s and |u|(w’ = 1) = 267Pa.s. More information about
this mud and its viscosity will be given in the following chapter, about viscoelasticity.
Table 2.6 gives the calculated values of ¢, k£ and the Reynolds number Re for three
sots of h, A and «w’. The ratio of mud depth to water depth is fixed at k4 = 0.1. Note
that in some cases € = O(k). In other cases (shaded gray) in table 2.6, ¢ = O(k?).
Cases with € > 0.4 or £ > 0.4 are outside the realmm of this study. For all cases within
the realm of this study, the Reynolds numbers are small.

For mud samples from Mobile Bay, Jiang & Mehta in [11]. have shown that the
following properties are representative : py = 1281kg/m?, and |p|(w’ = 1/3) =
16,900 Pa.s, |p|(w’ = 1/2) = 11,600 Pa.s and |u|(w' = 1) = 6,270 Pa.s. Table 2.7
gives the values of €, x and the Reynolds number Re for several sets of h, A and o’
with kg = 0.1. Again, the Reynolds numbers are very small.

For mud samples from Lianyungang, China, studied by Mei & Krotov in [15]. the
characteristic properties are : py = 1590kg/m?. and |p|(w’ = 1/3) = 2,509 Pa.s,
lpl(w' = 1/2) = 1,629 Pa.s and |p|(w’ = 1) = 760 Pa.s. Table 2.8 gives the values
of €, k and the Reynolds number Re for several sets of : h, 4 and ' with k4 = 0.1.
Again, the Reynolds numbers are all small.

Finally for mud samples from Hangzhou Bay , China [10]. Professor ZH. Huang of
Nanyang Technological University of Singapore has provided the following properties:
par = 1561kg/m?, and |p|(w' = 1/3) = 39 Pas. |u|(w = 1/2) = 24 Pas and
|u|(w' = 1) = 11 Pa.s. Table 2.9 gives the valucs of ¢. £ and the Reynolds number Re
for several scts of h, A and w’ with kg = 0.1. This mud has been studied by Huhe &
Huang in [10]. Note that the Reynolds numbers are not small, Re = O(1).

In all of these tables 2.6, 2.7, 2.8 and 2.9, the gray cells represent the cases where
non-linearity is weak, that is to say € = O(x?). This chapter is limited to € = O(k).
We shall treat the case of € = O(k?) in separate chapters.

We deduce from tables 2.6, 2.7, 2.8 and 2.9 that the Reynolds number goes from
3% 1074 to 10.
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_ A (cm)
bl Ao 0 50 10 60
e=10.1 c=10.2 e=104
1/3 | k=0.106 | £=0.106 | x=0.106 c> 04
Re =0.008 | Re = 0.017 | Re = 0.033
W' e=10.1 e=0.2 €e=04
1 | (rad/s) | 1/2 | £=0.159 | k=0.159 | k=0.159 e > 04
Re = 0.014 | Re = 0.029 | Re = 0.06
e 0 e=10.2 e= 04
1 K= 0.31 k= 0.31 k= 0.31 e > 04
Re=0.04 | Re=0.09 Re = 0.17
e = (:0p e=0.1 e=10.2 €=1.3
1/3 k=05 k= 0.15 k=0.15H K =0.15
Re=0.017T | Re=0.03 | Re=0.07 | Re=0.1
w' € = 0105 c=0.1 e=0.2 e=10.3
2 | (radfs) | 1/2 [[ie=0188 ~=0.225 | «=0225 | x=0.225
Re=0.029| Re=006 | Re=0.11 | Re =0.17
1 k> 04 K> 0.4 k>04 r > 0.4
& (m) e =002 [TEEERET e g S
1/3 k=0238 | &#— 0238 | k=0238 £ —0238
Re=004 | Ke=0408 | Re=0.16 | Re =024
w' e =0.02 e =0.04 e = 0.08 e=1{12
5 |(rad/s) | 1/2 | ‘K =0357 | i esi{idnne | o — 0. 058 1 4 — (IHF
Re=007 | Re=0.14 | Re=029 | Re =0.43
1 ko> 0.4 k> 0.4 w> 04 k> 04
e =001 e= 002 e = 0.04 e = 0.06
1/3 |Fik=0:33 k=153 k=033 =033
Re=0.08 | ‘Re=00168 | Re =083 L Ho=-05
wﬁ’
10 | (rad/s) | 1/2 | k> 04 k> 0.4 K> 04 k> 0.4
1 k> 0.4 k> 04 k> 04 K> 0.4

Table 2.6: Values of Re for different A, frequency w’ and water depths A, for the Gulf
of Mexico mud. We set kg = 0.1.



A (cm)

€, & he 0 20 0 50
e=10.1 e=102 e=04
1/3 | &=0.106 k= 0.106 x = 0.106 e>04
Re = 0.0003 | Re = 0.0005 | Re = 0.001
w' e=0.1 e=102 e=04
1 | (rad/s) | 1/2| &=0.159 k= 0.159 x = 0.159 e > 0.4
Re = 0.0011 | Re = 0.0022
e=10.2 e=04
1 k= 0.31 s =0.31 e>04
Re =10.004 | Re=0.008
e=10.1 e=0.2 e=10.3
1/3 r= 0.15 k= 0.15 k=0.15
Re=0.001 | Re=0.002 | Re=0.003
w' e e=0.1 e=0.2 e=0.3
9 | (radfs) | 1/2 | & k=022 | £=0225 | x=0225
11 | Re = 0.0022 | Re = 0.0044 | Re = 0.007
1 k>04 k> 04 k> 04 k> 04
h (m) . e EggaRE
1/3 [0 Kk =0.238
- Re = 0.005
o 1 e el
5 | (rad/s) | 1/2 | K
1
s
Re =—
wn’
10 | (rad/s) | 1/2 k> 04 k>04 k> 0.4 k> 04
1 k>04 k> 04 k> 04 k> 04

Table 2.7: Values of Re for different A, frequency w’ and water depths h, for the
Mobile Bay mud. We setkg = 0.1
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A (cm)

Ey By i 10 20 10 60
e = 0.1 e =10.2 e=0.4
1/3 k= 0.106 k= 0.106 k= 0.106 e > 0.4
Re =0.0021 | Re = 0.0042 | Re = 0.0084
w' e=0.1 € =0.2 e=04
(rad/s) | 1/2 | &k =0.159 & = 0.159 k = 0.159 e>04
Re =0.0049 | Re = 0.01 Re = 0.02
e =1 e =10.2 e=104
1 & U3l r=0.31 k =0.31 € > 04
Re =021 Re = 0.042 Re = 0.08
e= 085 e=0.1 e=02 =03
1/3 k=015 k=10.15 & =015 r=0.15
Re =0.0042 | Re = 0.0084 | Re = 0.017 | Re = 0.025
w' c—045 e=0.1 € — 0.2 e = 0.3
2 | (rad/s) | 1/2 | &=10225 %.=10.225 rr= 0.225 Kk = 0.225
Re =0.01 Re =0.02 Re = 0.04 Re = 0.06
1 K> 0.4 k> 0.4 k> 0.4 k> 0.4
i) e = 0.02 e=0.04 e =0.08 e =0.12
1/31 k=0238 | £=0238 | xk=0238 Kk = 0.238
Re=0.011 | Re=0.021 | Re=0.042 | Re = 0.063
w' e =10.02 e = 0.04 e =0.08 e =10:12
5 | (rad/s) | 1/2 | w=10.35% Kk = 0.357 k= 0.357 %= 0357
Re=0.024 | Re=0.049 Re =Dt Je =105
1 k>04 K> 0.4 k> 0.4 k> 04
e =10l e — .02 e = 0.04 e = (106
1/3 k=058 B =033 =003 o ios
Re =0.02 Re=0.042 | Re=0.085 | Re=10.13
10 | (rad/s) | 1/2 k> 0.4 k> 0.4 k> 0.4 k> 0.4
1 k> 0.4 k> 04 k> 04 k> 04

Table 2.8: Values of Re for different A, frequency w’ and water depths k. for the
Lianyungang mud. We set kg = 0.1.
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A (cm)

£, iy e 20 40 60
e=0.2 e=04
1/3 k=0106 | K =0.106 | e>04
Re=0.27 | RBe=0.53
w' ¢ = 0.2 e=04

k=0.159 | &k =0.159 e> 0.4
Re=065| Re=1.3
e=10.2 e=04

1 | (rad/s) | 1/2

1 o= 0.31 = 0.31 e>04
Re=28 | Re=5.7
e=10.1 e=10.2 e=0.3
1/3 k=0.15 k= 0.15 Kk =0.15

Re=053| Re=1 Re=16
- e=0.1 e =12 e=0.3

| k=0.225 | k=0.225 | K =0.225
Re=13 | Re=26 | Re=3.9

2 | (rad/s) | 1/2

il k> 04 k> 04 k> 0.4 k>04

h(m) g
1/3 |

5 | (rad/s) | 1/2 | &

1/3

10 | (rad/s) | 1/2

1 k> 0.4 k> 04 k> 04 k> 0.4

Table 2.9: Values of Re for different A, frequency o’ and water depths h, for the
Hangzhou Bay mud. We set kg = 0.1.
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Chapter 3

Horizontal bottom, shallow

viscoelastic mud

The previous chapter is limited to Newtonian mud. However, many experimental
studies have demonstrated that mud behavior is non-Newtonian. Experiments carried
by Jiang & Mehta, Huhe & Huang and by Dalrymple and Melick show that the
viscosity of mud is a complex function of &', implying viscoelasticity.
As shown by Mei et al ([15]), relation 2.4.3.1 will be replaced in this section by a
complex relation:
Lr'.; =DE., (3.0.0.1)

where £ and D are two differential operators of high degrees:

an 071—1
L=0a,— +a,_,—— + ... + ap
ot otn—1 (3 0.0 2)
Db 8m+b am—l+ i
- matm m—1 8tm_1 0
In the special case of sinusoidal motion:
7, =7 e
v (3.0.0.3)
Eiy = Eyze
and cquation 3.0.0.1 reduces to:
Toy = G, = p/ (W)l , (3.0.0.4)

We first discuss the experimental data from mud samples taken from different

sites.
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3.1 Complex viscosities from field mud

Let us determine g as a function of w’ from laboratory analysis of mud samples from
different field sites. These different samples have very different rheological properties,

some arc rather viscous and some others arc rather elastic.

3.1.1 Gulf of Mexico mud

Professor Dalrymlpe and PhD candidate Khatoon Melick from the department of
civil engineering of Johns Hopkins University have carried out experiments for a mud
sample of density 1.14 g/mL taken from the Gulf of Mexico.

More precisely, they imposed an oscillatory stress of a given amplitude on this mud
sample. They then varied the frequency of this oscillatory stress, for w’ from 0.628
to 12.56 rad/s, and measured the resulting strain. They carried out this experiment
several times, and the mean of their results are used here. From these experiments,
we are able to deduce the complex viscosity as a function of the frequency w’.

Indeed, the measured relation between strain and stress is expressed as:
T =G"F (3.1.1.1)

where G* = G' +1G” is the complex elasticity modulus, 7 the storage modulus and

7" the loss modulus. From this we can easily deduce the complex viscosity p’ since:

G* =w'y (3.1.1.2)
and finally:
G//
(W)= o
e (3.1.1.3)
(W) = o

Using the values G' and G” given from Johns Hopkins, we represent the experi-
mental values of the complex viscosity as a function of o’ (figure 3-1). We can easily
interpolate these values to find the real and imaginary parts of the complex viscosity
for any value of w’ shown in figures 3-2. In figure 3-3, we represent the modulus and
phase of p. In all figures dots represent the experimental data and curves the values
by numerical interpolation.

The most important thing to note is that the phase of ¢’ is very close to 7 for

w' > 0.6. This means that this mud is very elastic. However, the phase gets closer
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Figure 3-1: Real and Imaginary part of the dimensional complex viscosity for Gulf of
Mexico mud.

to I for 0.2 < w' < 0.6. Hence the mud becomes less elastic for smaller frequencies

(longer waves).

3.1.2 Mobile Bay mud

Jiang & Mehta ([11]) have tested mud sample from Mobile Bay, Kerala (India) and
Lake Okeechobee. Based on experiments at eight different frequencies in the range
0.12 < W’ < 24 rad/s, they expressed the rheology of these muds by a three-parameter
viscoelastic model:

T+ai = Bk + B Ey (3.1.2.1)

The parameters ay, By and 3 are in turn fitted as functions of two parameters e and
A which depend on frequency, mud type and solid fraction. From the values of a.
Bo and B at the eight frequencies we can deduce the complex viscosity p' at these
frequencies. In this way Krotov [12] found the relation between the complex viscosity

and those paramcters:

m_ Bz b
14wl
3.1.2.2
v Bofu + aif (31.2.2)
= 1 + w?a?
1

These equations correspond to equations 1.3.5 and 1.3.6 in Krotov’s thesis ([12]), and
the way to obtain them is further explained in the entire section 1.3 of [12].

Table 3.1 gives the real and imaginary parts of the complex viscosities for all
the muds studied by Jiang & Mehta where KI stands for Kerala, in India, OK for
Okeechobee, MB for Mobile Bay, and AK for a mud made with 50 % of attapulgite
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R(w) [Pa.s]
3(w) [Pa.s]

02 1 0.2 T 10
o' [s-1] o'[s-1]

Figure 3-2: Interpolation of the real and imaginary part of the dimensional complex
viscosity for Gulf of Mexico mud (line). The crosses represent the experimental values
of the complex viscosity.
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Figure 3-3: Phase and modulus of the dimensional complex viscosity interpolation
for Gulf of Mexico mud (line). The crosses represent the experimental values.
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| [rad/s] | ] 013 ] 025 | 057 | 1.26 | 251 [ 565 [ 126 [ 25.1 |

KI wt ol 2.21 1.16 | 5.16 | 0.23 0.11 0.046 | 0.020 | 0.0094
o=012 || 7| 431 2.81 1.64 | 0.95 0.58 0.32 0.18 0.11
OK Wt ]0.086 | 0.044 | 0.019 | 0.0086 | 0.0042 | 0.0018 | 0.0008 | 0.0004
¢=011 || g7 ] 021 0.12 | 0.06 | 0.031 | 0.017 | 0.0086 | 0.0043 | 0.0024
MB w1 0.019 | 0.0094 | 0.004 | 0.0017 | 0.0008 | 0.0003 | 0.0001 | 0.0001
¢=0.07 || 7] 0.06 | 003 |0.014] 0.006 | 0.003 | 0.0013 | 0.0057 | 0.0003
MB w1 0.14 | 0.068 | 0.029 | 0.12 | 0.0056 | 0.0023 | 0.001 | 0.0662
¢=011 | 7| 064 | 034 | 0.16 | 0.079 | 0.041 | 0.020 | 0.0095 | 0.005
MB w116 | 056 | 0.23 | 0.10 0.047 | 0.020 | 0.0083 | 0.0004
¢=017 || p" | 373 | 2.05 1.02 | 0.50 0.27 0.13 0.07 | 0.036
AK w1140 | 0.66 | 0.26 | 0.099 | 0.042 | 0.015 | 0.0054 | 0.0022
¢=0.12 | pT | 2.27 1.40 | 0.75 | 0.39 0.22 0.11 0.053 | 0.029

Table 3.1: Real and imaginary part of the complex viscosity for all muds studied by
Jiang & Mehta (in N.s/cm?)

and 50 % of kaolinite. The mud density is pp; = ¢p® + (1 — ¢)p™), where p() is the
grain density and p() the water density and ¢ the solid fraction. In the rest of this
thesis, we shall only use the data of Mobile Bay (MB), with a solid fraction ¢ = (.17,
corresponding to a density of 1280 g/mL.

Figure 3-4 shows the real and imaginary parts of the complex viscosity. Figure
3-5 shows the phasce and modulus of the complex viscosity of Mobile Bay mud The

viscosity phasc is around 7 as well, so this mud is also rather clastic.

3.1.3 Lianyungang mud

The third mud comes from Lianyungang, China and has been experimentally analyzed

by Huhe & Huang. The corresponding complex viscosity has been used by [15].
Professor Huang also provided us the data of pyy and Gy, for fourteen frequencies

in the range 0.12 < w' < 69rad/s. where py, and Gy are the parameters of a simple

Kelvin-Voigt model:

, G
;- (uM + wa”) E! (3.1.3.1)

From these parameters we deduce:

'R
W= fam
¢ 2}
g Gy (3.1.3.2)
==
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Figure 3-4: Interpolation of the real and imaginary part of the complex viscosity of
Mobile Bay mud (line). The crosses represent the experimental valucs.

) <
© % 1
o, »
— (4]
= T 0.5

T 0 1

10 10" 10° 10'

100 10
o'[s-1] o' [s-1]

Figure 3-5: Phase and modulus of the complex viscosity interpolation of Mobile Bay
mud (line). The crosses represent the experimental values.
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| =05 T $ =026 I ¢ =017 |

' [rad/s] /,L/R #’] NG [T‘CLd/S] IL/R ul] o' [T(Ld/s] /.L’R ,u/]
0.12 6790 | 7578 0.12 9.57 | 18.46 0.12 70.7 67
0.18 3517 | 4328 0.19 4.38 | 10.31 0.18 37.4 43
0.28 1944 | 2435 0.30 261 | 6.13 0.26 23.8 21
0.44 1127 | 1497 0.48 1.23 | 3.24 0.56 9 6.08
0.70 666 | 920 0.77 0.74 | 1.77 0.82 6.2 | 4.63
1.11 397 | 558 1.22 0.44 | 1.14 1.21 4.74 | 3.07
1.78 234 | 336 2.13 0.29 | 0.46 1.79 3.3 1.84
2.85 140 | 185 3.94 0.17 | 0.22 2.64 2.8 1.35
4.55 86 112 7.06 0.118 | 0.12 3.9 2.5 1.05
7.16 54 65 12.5 0.090 | 0.073 5.8 2.1 10.739
11.4 38 40) 22.7 0.072 | 0.051 8.5 1.9 | 0.735
18.2 27 26 39.1 0.061 | 0.036 12.5 1.46 | 0.56
29.2 19 17 69.5 0.062 | 0.033 18.2 1.16 | 0.46
45.3 15 12 26.22 0.89 | 0.367
71.7 11 8.1 38.98 0.654 | 0.29

56.73 0.49 | 0.25
83.74 0.34 | 0.22

Table 3.2: Real and imaginary part of the complex viscosity for all muds from
Lyanyungang studied by Huhe & Huang (in N.s/m?)

Table 3.2 gives the real and imaginary parts of the complex viscosities for the three
different solid fractions that Huhe & Huang studied: ¢ = 0.5, ¢ = 0.26 and ¢ = 0.17.
For the density of the solid part of this mud is p® = 2750kg.m 3. In this thesis, we
will only use the sample with the solid fraction ¢ = 0.5, corresponding to the density
1590 kg.m™3. In figure 3-G, we plot the complex viscosity of this particular sample.
Figure 3-9 shows the phase and modulus of the complex viscosity of Lianyungang

mud . The viscosity phase is around Z, so this mud is as much viscous as elastic.
4 b

3.1.4 Hangzhou Bay

The last mud comes from Hanghzou Bay which has been analyzed in [10], and later
used by Krotov in [12]. In table 3.3, we tabulate the complex viscosity for different
solid fractions ¢. Here, p®) = 2650kg.m™3.

Once again, we shall use only one sample, corresponding to the solid fraction
¢ = 0.34, and thus a density 1561 kg.m ™3 ‘

The complex viscosity is shown in figure 3-8. Figure 3-9 shows the phase and

modulus of the complex viscosity of Hangzhou Bay mud. Note that the phase is closer
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Figure 3-6: Interpolation of the real and imaginary part of the complex viscosity of
Lianyungang mud (linc). The crosses represent the experimental values.
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Figure 3-7: Phasc and modulus of the complex viscosity interpolation of Lianyungang
mud (line). The crosses represent the experimental values.
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[ [rad/s] ] [011]019]0.30]0.46]0.74 ] 1.10 | 2.00 | 3.00 | 4.80 [ 7.50 | 11.0 | 19.0 |
BT190 [ 75.0 [40.0 [ 21.0 | 12.0 [ 9.00 | 6.00 [ 4.00 | 3.30 | 3.10 [ 2.80 | 2.60

o=034 |,
T 818 [ 263 | 127 | 7.61 | 4.73 | 3.27 | 1.85 | 1.23 | 0.80 | 0.87 | 1.09 | 1.11
5 .24 |7 [0 [T00 [ 400 [2:50 [2.00 | 170180 [ 150 [ 1.10 [0.80 | 0.50 | 0.3
' T 501 | 2.80 | 1.40 | 0.89 | 0.65 | 0.68 | 0.70 | 0.60 | 0.48 | 0.39 | 0.29 | 0.19
b= 02 R 7.00 | 2.50 | 1.50 | 0.80 | 0.60 | 0.40 | 0.28 | 0.29 [ 0.23 | 0.23 | 0.23 | 0.15
T 364 | 1.4 036 ]| 0.33 | 0.23 | 0.17 | 0.09 | 0.06 | 0.06 | 0.06 | 0.10 | 0.09
b= 0.17 R 5.00 | 2.10 | 1.10 | 070 | 0.55 | 0.40 | 0.35 | 0.30 | 0.25 | 0.25 | 0.25 | 0.09
’ T 2.82 [ 1.06 | 0.83 | 0.63 | 0.31 | 0.16 | 0.10 | 0.10 | 0.08 | 0.11 [ 0.09 | 0.07
b o1t R 5.00 | 2.50 | 1.50 | 0.90 | 0.70 | 0.50 | 0.40 | 0.22 | 0.17 | 0.11 | 0.08 | 0.05
' /T (355 1.58 | 1.07 | 0.61 | 0.41 | 0.28 | 0.10 | 0.13 | 0.08 | 0.06 | 0.04 | 0.03
4= 0.07 R 1040 [ 030 ] 0.12 | 0.21 | 0.11 | 0.11 | 0.08 | 0.06 | 0.04 | 0.03 | 0.02 | 0.01
' T 0.42 | 0.24 | 0.03 | 0.08 | 0.04 | 0.01 | 0.03 [ 0.02 [ 0.03 | 0.02 | 0.02 | 0.01

Table 3.3: Real and imaginary part of the complex viscosity for all muds from
Hangzhou Bay studied by Huhe & Huang (in N.s/m?)

10° = 10°
) TN
© 10 < 107}
Q. o
=10 =10't
= =5 |
10" 10 10 10" 10° 10!

" [s-1] '[s-1]

Figure 3-8: Interpolation of the real and imaginary part of the complex viscosity of
Hangzhou Bay mud (line). The crosses represent the experimental values.
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Figure 3-9: Phase and modulus of the complex viscosity interpolation of Hangzhou
Bay mud (line). The crosses represent the experimental values.

Mud Gulf of Mexico | Mobile Bay | Lianyungang | Hangzhou Bay
Density (kg.m™3) 1140 1281 1590 1561
|1/|-range (Pa.s) 10° — 107 2.10% — 10* 30 — 10* 10° — 3.10°

Table 3.4: Viscosities of muds 3a,3b, 3¢ and 3d

to zcro than to Z. Hence , this mud is rather viscous. We sum up the viscosities of

the different muds in table 3.4.

3.1.5 Determination of the zero-frequency viscosity

It will be seen shortly that for calculating the drift velocity in mud we need the value
of pfy, namely the O-frequency viscosity of the mud (equation 3.6.2.5). This value
corresponds to the viscosity at steady shear.

As the experiments are done under conditions of oscillations at finite frequencies,
we have to get py by extrapolating the measured data.

From cquation 3.6.2.5, we sce that the necded value is R(1/py). In order to find
this value, we write the inverse of the complex viscosity 1/4/ as a rational function of
the frequency w’. We used the method extrapolation described in the first chapter of
Krotov’s thesis ([12]). The principle of this method is to determine 8 coefficients a,
and b,. based on 4 experimental values of 1/u’ corresponding to 4 frequencies. These
coefficients are such as:

1 i b+ E 0 (i)

n=1 .
= 3.1.5.1
[T e fo:l an(—iw')n ( )
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Mud Reference frequencics [Hz] | R(1/p,) = by — boay [Pa.s)
Gulf of Mexico 0.2:0.63; 1.58 ; 3.96 0.0012
Mobile Bay 0.13; 0.57 ; 5.65 ; 25.1 6.39.107°
Lianyungang 0.12;0.44 ; 2.85; 18.2 3.4.107°
Hangzhou Bay 0.12;0.73;29;7.3 0.0016

Table 3.5: Real value of the O-frequency viscosity and frequencies used as references
for each mud.

Once these coefficients known, R(1/py) can easily be calculated. Indeed, when w’ — 0,
R(1/p") — by — boar, and thus:

We have used this method for the four types of mud to be considered in this study.
Table 3.5 sums up the 4 frequencies used and the values of ®(1/uy) deduced for each

mud.

These values will be used later in this study to represent the drift velocities in

mud.

3.2 Scaling

The cquations we previously obtained in water are not changed in the viscoclastic
casc. However, we need a new scaling for stress in mud.
We use the new scaling :

= (3.2.0.3)

where p is the characteristic value of the viscosity |ul.

We define the dimensionless complex viscosity:
U= = (3.2.0.4)

Because of calculation simplifications, we will sce that the value py is not needed
to solve the last equations numerically. Indeed, we will see that neither g, neither
any non-dimensional viscosity p appear in the final results, but only the dimensional

viscosity .
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To sum up, the new scaling for this section are:

r = k' z=%b t = k(gh)'/?t
I 1 _ '
P= oA U= V= (3.2.0.5)

and: , _
r = ka' Z=2% t = k(gh)'/*t
p=-L U=—=U V=—1=V
pw gA er/gh exkg/ gh
=1 U=ty V= m’;d V! (3.2.0.6)
' d d
Tz] = m E’L],t \/g—}-L'E/ij,t’ Tij = s gBT1IJ
o
Hs

For simplc harmonic waves, equation 3.0.0.4 becomes, in a non-dimensional form:

Toz = —wWp(w) Bz (3.2.0.7)

3.3 Equations in water

Since only the mud behavior is modified, the equations in water are not changed.
They remain exactly the same than in the Newtonian case.

The reader could thus refer to section 2.3 to follow the details of the calculations in
water. In particular, the important results in water arc gathered in cquations 2.3.2.9,
2.3.3.6 and 2.3.4.3.

3.4 Equations in mud

Most of the equations in mud are also unchanged compared to the previous chapter.
Namely equations 2.4.1.2, 2.4.2.2, 2.4.5.13, 2.4.5.20 and 2.4.6.1 remain the same:

The kinematic interface boundary condition:
m=V -, Z=1+en (3.4.0.8)
The conservation of mass:

U:+Vz=0, 0<Z <1+en - (3.4.0.9)
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The tangential stress boundary condition at the interface:

87‘12

Tzz(Z ke 1) = —67']—52‘—

|, +O() (3.4.0.10)

The normal stress boundary condition at the interface combined with the vertical

momentum equation:

ap ¢ oy

I .2 : ‘ .
el i +0(k"), 0<Z<1l+en (3.4.0.11)

The bottom kinematic boundary condition:
U=V =0, Z=0 (3.4.0.12)

However, we need to find the new horizontal momentum cquation, which is modified

by the mud behavior.

In this case where the depth of mud d is small compared to the depth of water,
we can approximate the strain as a function of the horizontal displacement U:
au s 20V 0U

EF,; = —+KK)— = —
z2= g7 T, = 5y

+ O(xY) (3.4.0.13)

From 3.2.0.7 we deduce again for simple harmonic waves:

ou
0z

+ O(x%) (3.4.0.14)

Trz — M

The equation of momentum in the mud. projected on the x-axis, gives:

ER (U o V?ﬁ) =T " Re®ad ( 57 + “"”d”a?> (3.4.0.15)
or:

oU oU ou oPr € aTxZ aT{LL . .

R (U " Va—z) T T T R g ( 97 g, ) (3:4.0.16)

where U is the horizontal velocity of mud, P the mud pressure, A the amplitude of
the free surface, v the ratio of densities v = py/par, d the mud depth and Re® the

new Reynolds number:

parAdk~/gh
s

Re'? = (3.4.0.17)
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Equation 3.4.0.16 can be rewritten:

€  Oryy OU opP oU ou
kqRe® 07 ot

1o te(Uge + Vé‘z’) +O(KY), 0< Z<l+en (3.4.0.18)

From equation 3.4.0.11, we know the mud pressure gradient g—};. As a consequence,

equation 3.4.0.18 becomes:

€ O0Trz oU _ QC_ 5‘77 % U )
kaRe® 97 ot —’Y(ax Rag ) T € Uax +Vaz + O(x%)| (3.4.0.19)

which is true for 0 < Z < 1+ en.

3.5 Asymptotic equations in water and viscoelas-

tic mud

3.5.1 Equations at dominant orders

Water equations

Since the equations in water are the same with a viscoelastic mud than with a New-
tonian mud. the asymptotic equations are also exactly the same. We then simply use

the results obtained in the Newtonian casc (cquations 2.5.1.11, 2.5.1.12, 2.5.1.14):
e at order O(1)

e
ot? oz?

o at order O(r)

92 52 52¢(0) 920 3¢ §2(c(0)2
00 _ 00l 3 TC) (35.1.2)
ot? oz 0rxdX Kk Ot 2k Ot?

where equation 2.5.1.12 is obtained after using the following relation valid to

leading order:

32@(0))2 82(11(0))2 82((:(0))2 ‘82(C(0))2
Jz? + ot? * P or2
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e at order O(k?)

a2<(2) aQC(Q) _ 9 aQC(l) @ 8277(1)
ot? or?  T0Xdr K Ot
* (a0 ) 0 (aOaM) 9?(¢O ¢
i ( T T T o )
82C(0) € al-‘)(ﬂ(o))z 1 84C(0) €Rq aC(O) (n(o))t

(3.5.1.4)

tooxr YhiToarox T304 2 o
kg 0%uOn®)
+ K2 Oz0t

Even though we carried the calculations in water up to order O(x?), we will not

use these results later in this thesis.

Indeed, we will only use the results at the order O(x") and O(x) in order to find

a differential cquation for the surtace ¢.

Mud equations

From equation 3.4.0.19, we know:

¢ Oy OU (0 on ou ou 9
kR 0Z Ot _7< ~ Ry Uge TVaz) 1O,

dr 9 N (3.5.1.5)
0<Z<14+en
To simplify this equation we introduce a?:
@ ¢
'\t = I Re® o(1) (3.5.1.6)
and cquation 3.5.1.5 becomes:
or. 8U ¢ on oU ou
OZZ T = U +V +0

oz o (ar aa:) ( 9z 8Z> &) 51

0<Z<1l+en
As in the preceding section we write:

U=U9 4+ xu® 4+ O(rK?)
V= VO 4 kv 1 O(s?) (3.5.1.8)
TI/:TCEZ)“*-/‘CTA + O(K?)
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and we introduce the multiple scale coordinates  and X = sz, to finally obtain the

dominant orders:

e at O(k"):
or'y  oUu©® O
2z _ 7
7 R F
%g”+2gnzo (3.5.1.9)
ag(to) _ V(O)T g1
e at O(k):

- or) oUW _ acw N 9 ka0
oz "ot oz 'ox 'k oz
+“S<U@ngi+yﬁwaU@)’

K ox 07
0<Z<1 (3.5.1.10)
oUw  agu©® Yy
o " ax T ez
agiﬂ —VvO, z=1

The equations in mud at order O(k%) will be used later to determine a differential

equation for the surface . The order O(k) will be used to determine the drift in mud.

3.5.2 Equation and solution at order O(x")
Water equations

~ Like in the Newtonian mud, we consider the evolution of a train of simple harmonic

waves:
+oc +o0
_1 6| [0 1 0m .
(0= > An(X)e =3 Y Bu(X)e (3.5.2.1)

and we deduce: 0, = m(z —t)
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Mud equations

Once again, we write:

1 oc
0 _ = 0) (7 c10m
U > Z U (2)
1 o
V(O) — Z Vrglo)(Z)elem (3 5 2 2)
0 1 0 N i
w2 =g 2 (@)™
From equation 3.5.1.9, we deduce:
o (0) .
a<2>(75—§,) +imUQ = imy A, (3.5.2.3)

0 : . :
For the term (TQEZ) Jm(Z) corresponding to harmonic waves, we have from equation

3.4.0.14 that:

(0) AUy 4
(Taz)m(Z) = pim—7— + O(r%) (3.5.2.4)

where g, is the dimensionless viscosity corresponding to frequency m.

«

As a consequence, by equations 3.5.2.3 and 3.5.2.4, we obtain:

d2UW
7~ Ol = =677 A (3.5.2.5)
where:
52 = —za@% (3.5.2.6)
meaning:
O = —imdpfjdkm (3.5.2.7)

Let us note that the value of 7, does not depend on g, since pgp, = pl, is the
dimensional viscosity. Since 7, and «y are the only parameters that appear in equation

3.5.2.5, we will not need the value of u; to solve this equation.
Equation 3.5.2.5 is equivalent to equation 2.5.2.3, but in the viscoelastic case.

Since these equations only differ by the value of o and all the others mud equations
are the same than in the Newtonian case, we can straightforwardly deduce that the

mud relation between the A,,(X) and B,,(X) is the same than equation 2.5.2.11, but
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with a different coefficient o

tanh(a,,
Bo(X) = A (X) (1 - ——O(—l> (3.5.2.8)
where 62, = —im%i@ and v = 2% Note that Uéo) = 0.

3.5.3 Equation and solution at order O(x)

Water equations

The water equations are the same than in the viscous case, so equation 2.5.3.5 is still
true:

[m/2]

dA,, m Kd i€
m 7& 0, -5(— = _—é_ - m - ——m ZZA Am+1l + Z OllAl m—l (3531)

which can be combined to equation 3.5.2.8 to give a partial differential cquation on

the A,,, for all m:

[m/2]

dA,, Ym Kq tanh(é,, 3i¢€
ix ~ 2 wmom) (1__5—_> TRR Zmz m+1 ZO‘IAI me-t

Mud equations

Once again, we study the order O(k) of the mud equations because non-lincarity
creates a very interesting drift phenomenon at this order.
We had from cquation 3.5.1.10:

Nraz)V oUW o¢cH 8¢ kg | € ou©® ou©®
(2) 'z _ - oy (0)
“ 0z ot v 7 0X K Bm K v ox (Vo 0% )
0<Z <1
(3.5.3.3)
As a consequence, the zeroth harmonic of U (1) ig not zero:
) ey, . o
Y\ 'x4/0 - i\ O O (0) (0) ©9Y-m
a 57 5 Z [( im)Uy UL 4+ (im) U UL + Vg, 57 (
m=1 (3.5.3.4)
(0) 0U
V)
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and thus:

LU > aU oU™
(2) 0 0) —m (0) . .
oy E: [ i + Vo — 57 ] (3.5.3.5)

By the same token as in the previous chapter, we easily deduce the following equation
for the drift velocity:

2U Re°)/<;d
dz2 Z%

o)
v = } (3.5.3.6)

3.6 Further details

3.6.1 Surface and the interface

We truncate the series 3.5.3.2 , in order to obtain a finite system of differential

equations for the A4,,. for all 0 <m < n:

dA,, iym kg tanh(&,,) 32 € ”
dX_ + ___2 : (1 — ———5771 A ———m Z 214 m4l + Z (1[14[ m—l =0

(3.6.1.1)

Let us note that this cquation is the same as cquation 2.6.1.1 in the case of

Newtonian mud. except for the parameter o, that became 6, because of complex
viscosity.

Since this equation depends on 7y, Kk, K4, € and the 7,,, we deduce that the result

of the A,, will depend on the values:
g, Pw, PM, Av ilt d7 wla /'L;n (3()12)

where g and py are fixed, ppr and the p;, depend on the mud we consider, and A. h,

w’ and d depend on the geometry and the surface wave.

3.6.2 Drift current in mud

We also truncate the result we got in 3.5.3.6 for the drift in velocity:

82Ut _ Re@ky i -
N or -m 84

02> Hok

v O } (3.6.2.1)

Since equation 3.5.1.9 is the same as equation 2.5.1.21 except that «,, is replaced
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)/«L we can easily deduce M and V—<[r)1)1 from 2.6.2.2 and 2.6.2.3:

(2
by a; 52

In the end we get:

0)
a(;]Z = vyA,,|—0,, sinh(0,,Z) + o, tanh(5,,) cosh(5,,2)] (3.6.2.2)
v — z—%[c}mZ —sinh(6),Z) + tanh(a) ) (cosh(a) Z7) — 1)] (3.6.2.3)
Om

. . . . ) (")U(l)
Integrating as donce in the Newtonian case, we get the expression of —2-:

8(] (1) . i AL [ /‘bd(\,[ m [ 57 (2 cosh(5.,.2) — sinhE&mZ))

Hok or, Om

~osh(G,,2
+ &, tanh(o,,) (Z sinh(é,,2) — ﬁ(—;—g———))

sinh(2687) _ ~ o
%am(l + tanh(d,, ) (tanh(d,,))")
Mam(tdnh(am)(tdnh(am))* —1)
dick,
h(262 2
%(—U%——) m(tanh(d,,) + (tanh(6,,))")
h(2ic! 7
Eg%wl(lf—) m(tanh(6,,) — (tanh(d,,))*) + (tanh(d,,))" cosh(6,,2)

— tanh(a,,)(tanh(d,,))* sinh((}mZ)H + Cr(é)]
(3.6.2.4)
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and then Uél):

Vg [ m _, (Zsinh(6,,2) cosh(d,,2)
Z|A i [ 0[0,* [‘Um( F -2 52 )
~0sl m si ~m
e tanh(ém)(z cogc;(a Z) 2%1nhg Z))
m Om
cosh(QJRZ)
W m(1 + tanh(d,,)(tanh(6,,))")
h(2i6L Z
228}%%—) m(tanh(a,, ) (tanh(oy,))" — 1)
q1nh(20RZ)

— ———" 5, (tanh(G,,) + (tanh(é,,))")

8(ay)
h(2i6L 7 sinh(é,,2
%J)—Tg—l m(tanh(a,,) — (tanh(é,,))") + (tanh(&m))*21-1%2
osh(om 2
— tallh((}m)<tanll(5'm))*ﬁz~(i-—)]] +CWZ + Cg)]
O?n
(3.6.2.5)
with &, = 6% +i5!  6F and !, are reals.
We know that:
Uz =0)=0 (3.6.2.6)
As a consequence, we deduce the value of o,
CO 2 Re(z)fcdg[ m [_ 20, Om(l + tanh(d,,)(tanh(m))")
m * 52 ~R\2
Hol o "0 = 8(7) (3.6.2.7)

G (1 — tanh(d,,)(tanh(é,,))*)  tanh(d,,)(tanh(d,,))*
B 8(1)2 N Gom H

We now make usc of the interface boundary condition 3.4.0.10 in order to obtain the

value of CY). From this cquation, we know that:

(1) 0,079
(2 =1) = == ) (3.6.2.8)
and so:
< (0) (0)
(1) €l E : 8(TIZ)—m d(frZ)m
(T’LZ) (A'* 1) *—;Z Bm dZ |Z:1+B“m aZ |Z 1 (3629)



From equation 6.2.0.14, which only applies to simple harmonic waves, we know:

AUy
Vp, (sz)%) = um—dZ—— + O(fi4) (3.6.2.10)

and we can replace 7,z in the last cquation:

g el 22U, PUY
Ho——F=-— aZ 'Z:l - _;ZTnZ:l Bm,u&m 3Z2 lZ:1+B_7n/Lm——aZ—2IZ 1
el | 2UY ©)
z_;zmzz:l B ('U“m 072 ‘z 1) + (Bm )ﬂm 972 'Z .| (3.6.2.11)
€1 2O |-
_—;szz:l% Brn (ﬂm 972 ]4 1)
Knowing that:
B = 7AnG(0m) (3.6.2.12)
and:
2U7(r?) i ) ‘
972 IZ:I = =y A sech(dy) (3.6.2.13)
equation 3.6.2.11 becomes:
U )
aZ |Z=1 - "(”)U'O Z% 74 G(o’m)lum,YAm( zn) %e(h( )]
— 672 C 2 ~ AN B o .
= QIi,uo T; | AR [G(Um)um(am) b(Lh(O'm)] (3.6.2.14)
_ 2 .
= QW mzlmmu S [iG(Gm) i (57, Ps0ch(57,)]

Let us truncate this last cquation:

Uy |
82 (Z:l) 2&#0

Z | A S [iG (6 ), (67, ) Psech(67,)] (3.6.2.15)

From equation 3.6.2.4, we deduce the condition that C,(,}) needs to meet in order to
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respect this boundary condition:

A2 %g [:@ (&jn ( cosh(6,,) — sinl}im)
Hok O om
sinh(257)
AR
sinh (25!
- Ell-l-zll(.&lj—ni%)ﬁm(tanh(&m)(tanh((}m))* -1
cosh(25 %)
AR
-osh(2i57]
— %-gi”—)&m(tanh(&m) — (tanh(5,,))")
— (tanh(d,,))" cosh(a,,) + tanl(d,,) (tanh(G,,))* silﬂl(&m))] - Y
2
— 2103 [iG (G )15 (7,) *sech(55,)]

) —o tanh(am)(sinh(ém) —

Tm

Fm(1 + tanh(d,,)(tanh(G,,))")

Tm(tanh(a,,) + (tanh(6,,))")

(3.6.2.16)
We finally obtain the value of C,(,} ).

2

W — -2%&89; [iG(G )y, (07,) scch(a7,)]

o Re(2)5d% [—72 [5:” < cosh(3,,) — sinlz(&,n))
ok O Tm
20sh(Gm
— g, tanh(a,,) ( sinh(é,,) — M)
Um
sinh(257)
461

sinh(2i51 )

(1 + tanh(G,,)(tanh(da,,))")
(3.6.2.17)
ol 0, (tanh(a,, ) (tanh(a,,))" — 1)
cosh(257)
46K
cosh(2i51 ) _ s ~ yys
- T%—Um(tanh(am) — (tanh(d,,))")

— (tanh(d,,))" cosh(G,,) + tanh(d,,)(tanh(a,,))” Sinh((}m)H

O (tanh(G,y,) + (tanh(é,,))")

The drift current is now found.

Let us precise again that the drift current we found does not depend on the

characteristic value of viscosity . Indeed, even though Re®, pg and p,, appear,
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they always do as a ratio, either Re'® /g or p% /1o As:

Re® _ puAdk/gh

Ho M6 (; .

N ’ 3.6.2.18)
Ho ()

Ho Ho

the valuc p, is not needed.

We find that the drift current depends on the same parameters as |A,,|, namely:
g, pw, pars Ak, d) W ol (3.6.2.19)

where g and py are fixed, pps and the p, depend on the mud we consider, and A, h,

w" and d depend on the geometry and the surface wave.

3.6.3 Energy variation in water

We obtained the differential equation:

- [m/2]
dAn, _iymk tanh(G,,) 3ie
< = 5 dA (X) ( #) ZQA Amsy + Z g Ay Ay

(3.6.3.1)

to describe the free surface motion.

In 8], G. Grataloup and C.C. Mei demonstrated that if the differential equation

describing the free surface is:

dA,, im3 ol € /2]

T T BnAn = = A+ T m Z2Al it + Z qAAm_ | =0, (3.6.3.2)

then the general relation on the first-order wave-energy is:

IS 1AP] = 2 3 R AP (3.6.33)
m=1 m=1

Indeed. in equation 3.6.3.2, 5, represents a dissipation source. That is why the total

wave energy at the leading order decreases with relation to 5.

In our case of a flat bottom with a moderately thin layer of visco-elastic mud, we
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deduce that the general relation on the first-order wave energy is:

d [y Kd : tanh(d,,) ‘
ax [ Z::I |Am12] = _7;;% [lm (1 - T)] | Am)? (3.6.3.4)

3.7 Attenuation rate

3.7.1 Attenuation rate as a function of s

From the energy variation equation we obtained (3.6.3.4), we know that the attenu-

ation rate fot the m—th harmonic is :

1 7%% [im (1 B tanh(ém))]

Om

h

" 3.7.1.1
g [ (1 )] o
K Om
After the distance O(L,,) the m—th harmonic will be damped out.
Let us first study the function:
tanh(o
GE)=1- an6(g) (3.7.1.2)

For that we writc & = |5|e™"T =% and we plot G as a function of |5| for different phase
angles 6, where 0 < 0, < 5. The results arc shown in figure 3-10. The function G(&)
has been studied analytically by Mei et al. ([12]).

Following the same reasoning, we write
o=a+13 (3.7.1.3)

with « and 8 real numbers. Then we obtain that:

-, 1 sinh(a)cosh(a) +isin(B) cos(5)
¢lo) =1 & cos?(B) cosh?(a) + sin?(3) sinh?(a) (37.14)
and in particular,
S(G(5)) = — [R (1) sin(B) cos(B) + S (1) sinh(c) cosh(a)] (3.7.15)

cos?(3) cosh?(a) + sin?(B) sinh?(a)
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||
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Figure 3-10: Variation of the real and imaginary parts of G(5) as a function of the
modulus ||, for different values of 26,. We see that $(G) reaches the biggest values
for 26, = 0.9.

As a consequence, the denominator of (@) vanishes if
cos(f) = sinh(a) =0 (3.7.1.6)

i.e. when

T 1
0= —, ol = | = 3.7.1.
T 15| (2+n>7r (3.7.1.7)
where n is an integer.

Thus large S(G) may occur if the mud is highly elastic § >~ % and if the modulus

=3
|| has the special value given by 3.7.1.7. In particular the first peaks of (G) are at
o] = 1.57, 4.71, 7.85 for n =0, 1, 2.

3.7.2 Attenuation of the first harmonic

Let us first consider just the first harmonic m = 1.

We know the dimensional complex viscosity g’ as a function of the dimensional

w' for all the different types of muds from the previous section.

We also know that we used the scaling w’ = k(gh)'/2.
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Let us first write ¢ as a function of y':

_ Kapar Adk/gh
ep’
) R —
_ _;atprch v/ gh (3.7.2.1)
e
—i KZI{/O]W;L\/ giL

L

[

The dimensional complex viscosity g/ is a function of the dimensional «’. Since we

chose the scaling of w':

(3.7.2.2)
w’ is a function of k when h is given. As a consequence, i’ is a function of x when h
is given: p/(k).

We deduce that for given values of h and k4 and for a given mud (that is to say

given i’ and py), ¢ is a function of &:

(k) = \/ —ir2r! ‘:f(\/; (3.7.2.3)

As a consequence,

Ka PMh \/—

G (3.7.2.4)
_arg(y)
0, = :

As a consequence, the peaks in 3(G) occur when arg(p') ~ Z, that is to say when the

mud is rather elastic, and if the modulus || has the special value given by 3.7.1.7.

Equation 3.7.2.4 can be rewritten:

K2Kkparh32gl/? )
W' (K)] = =2 PE (3.7.2.5)
From 3.7.1.7 and 3.7.2.5, we deduce that these peaks oceur for:
ﬂzuh”w 1/2 ‘
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From now on we will write:

R g1 2
Yu(k) = 4 Punt™"g

mﬁf{dﬁ (3727)

As a consequence, our study means that elastic muds have attenuation rate peaks for
|1/ (k)] = Ya(k), with n an integer.

In a nutshell, we have obtained that the damping rate is proportional to I(G(0)).
We have demonstrated and checked in figure 3-10 that $(G(0)) had peaks when
arg(p') ~ %, that is to say for rather elastic muds like the Gulf of Mexico or the Mobile
Bay oncs. And we have demonstrated that these peaks occurred for |/ (k)| = Yo (k),
with n an integer.

Figurc 3-11 and 3-12 represent |u/| as a function of  for the different mud cases,
given the values b = 1m and k4 = 0.1 and using cquation 3.7.2.5.

Figure 3-11 corresponds to the clastic muds (Gulf of Mexico and Mobile Bay).
These muds have arg(p') ~ § (from figures 3-3 and 3-5). We plotted the functions
Y, for n = 1 and n = 2 with dashed lines. The intersection of these dashed lines
with |¢/| naturally show the values x at which $(G(c)) has a peak. That is to say,
the values of k at which the attenuation rate is the biggest. From these graphs, we
expect the attenuation rate to have no peak for the Gulf of Mexico and the Mobile
Bay muds when A = Im.

Figure 3-12 corresponds to the rather viscous muds (Lianyungang and Hangzhou
Bay). These muds have arg(p') < 0.6% (from figures 3-7 and 3-9). As a consequence,
as can be seen on figure 3-10, (G(0)) only has peaks for |¢/| = Y;. The following
peaks (corresponding to n > 1) arc cither extremely small either non-cxistent. We
still plotted the functions Y, for n = 1 and n = 2, even though Y] is more important.

The intersection of this dashed lines with |¢/| show the values & at which (G (0))
has a peak. That is to say, the values of x at which the attenuation rate is the
biggest. From these graphs, we expect the attenuation rate to have no peak for the
Lianyungang mud nor for the Hangzhou Bay mud.

Figure 3-13 and 3-14 also represent || as a function of x for the different mud
cases, but this time in the case h = 4m.

Figure 3-13 corresponds to the elastic muds. From these graphs, we expect the
attenuation rate to have no peak for the Gulf of Mexico and the Mobile Bay muds
when h = 4m.

Figure 3-14 corresponds to the rather viscous muds. From these graphs, we expect

the attenuation rate to have no peak for the Lianyungang mud and one peak for the
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(b) Mobile Bay mud

Figure 3-11: Representation of the complex viscosity modulus as a function of & for
the clastic muds, in the case h = 1 and x; = 0.1. The dashed lines allow us to expect
the k-values of the peaks.
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(a) Lianyungang mud

0 0.05 01 0.15 02 0.25

(b) Hangzhou Bay mud
Figure 3-12: Representation of the complex viscosity modulus as a function of k for

the different rather viscous muds, in the case b = 1 and x4 = 0.1. The dashed lince
allows us to cxpect the x-value of the peak.
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(a) Gulf of Mexico mud
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(b) Mobile Bay mud

Figurc 3-13: Representation of the complex viscosity modulus as a function of « for
the clastic muds, in the case h = 4 and x4 = 0.1. The dashed lines allow us to expect
the x-values of the peaks.

Hangzhou Bay mud (k = 0.22). As we said before, only the first peak is sensible for

the viscous muds.

In figurcs 3-15 and 3-16, we represcnt the attenuation rate of the first harmonic:

1 _W%g [(1 _ @_(“_1))] (3.7.2.8)

L1 5-1

as a function of k for cach mud, and for different values of h.
Let us first look at the Gulf of Mexico mud (A). We can see on these graphs that
its peaks in the attenuation rate corresponds to what we were expecting: it does not

have any peak for A = 1m or A = 4m.
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Figure 3-15: Attenuation rate of the first harmonic as a function of # for different
water depths A and kg = 0.1. Mud A is Gulf of Mexico mud, mud B is Mobile Bay
mud, mud C is Lianyungang mud and mud D is Hangzhou Bay mud.

The attenuation rate of the Mobile Bay mud (B) does not have any attenuation
rate peak for A = Im or A = 4m either, as expected.

We get the same result for the Lianyungang mud (C), which were also expected.

Finally, the Hangzhou Bay mud (D) has no peak for A = 1m and one peak
around x = 0.22, as expected from 3-14. Thus, this result is consistent with what we
predicted.

As a conclusion, the resonance peaks appear for high values of k (k > 0.4),
corresponding to short waves, for the Gulf of Mexico, Mobile Bay and Lianyungang

muds. In other words, there is no resonance for long waves, even though there is

attenuation.
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However, there is resonance for & = 0.2, corresponding to long waves, for h = 4m

in the case of the Hangzhou Bay mud. As a consequence, there is resonance for long

waves with this mud.

3.7.3 Attenuation rate for the different harmonics

Up to now, we have only studied the variations of the attenuation rate for one har-
monic. We now want to study the variation of the attenuation rate for the different
harmonics, to see for instance if the attenuation rate of the first harmonic is bigger

than the attenuation rate for the fourth harmoniec.

Let us now study 1/L,, as a function of m:

Y tanlk ~m
1/ Ly = —vm2S[G(6,)] = _7mf§-3 [1 - L{;((’——)] (3.7.3.1)
K v m

We know that:

i mekapn Adk/ gh
€l
2rorehr/ah :
_’imhdhp]\[,f 9 (3.7.3.2)
€l
~imti§f$,0Mﬁ\/ﬁ
Hon

i = || = mky/gh) = || (w’ = mn\/%) (3.7.3.3)

As a consequence. at given water depth A and for a given mud, p! is a function

Qe

where

of m, k and Ky.

That is why, for given values of the water depth A and of x4, we can plot the
different 1/L,, as a function of & for different values of m.

Figure 3-17 shows the variation of the attcnuation rate 1/L,, as a function of x for
different values of m in the case of the Hangzhou Bay mud and for the water depths
h = 2m and h = 4m, with kg = 0.1.

We deduce from 3-17 that the attenuation rate peaks shift to small values of £ as
m grows. In other words, the resonance of the high harmonics appear for smaller &
than the resonance of the first harmonics. Moreover, the peak value of the attenuation

rate is bigger for the higher harmonics.



Figure 3-17: Variation of 1/Ly, as a function of £ and m for the Hangzhou Bay mud.
Rqg = 0.1.
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3.7.4 Attenuation rate for high viscosities

As we saw in tables 2.6, 2.7, 2.8 and 2.9 the Reynolds number Re can become very
small compared to 1 in the case of a highly viscous mud or very low frequency mo-
tion. In this case, the modulus of ¢ naturally becomes very small as well, since o is
proportional to v/Re.

Let us study the attenuation rate 1/L = —y24$ (1 — %

) in the case of & — 0.

Writing ¢ the way we did in equation 3.7.1.3 (6 = a +i3), we know that:

_ 1 sinh(a) cosh(a) + isin(8) cos(B)

G(o) =1 & cos?(3) cos]12(a) 4 31112(,8) sinhg(a)

(3.7.4.1)

Knowing that |6] — 0, we necessarily have o — 0 and 8 — 0. As a consequence

we can write:

5
sinh(8) = 8+ 37
2
cosh(f8) =1+ %
3 (3.7.4.2)
sin(8) = 8 — ?
os(B) =12
cos(8) =1-— oT
and the same equalities for a.
So equation 3.7.4.1 becomes:
o la+ S+ +0a)+i (8- -5 +0(sY)
@)=1-3 1 —a?+ 3% + O(a?)
1 208 233 o o
o1 : 2 2 (3.7.4.3)
=1 Py [a+i8+ O(a®) + O(5%)]
2 2
Ly, O o)
a+1if8
_ 00 +0(5?)
N a+1p

as a consequence, we get that G(6) — 0 when || — 0, and thus the attenuation

rate goes to () when the Revnolds number is small.

We deduce that for muds that are very viscous, such as Re is small compared to

1, the attenuation is insignificant.
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3.8 Numerical results by using the first ten har-
monics

We are now going to plot these results for the viscoelastic muds we previously studied.

Let us sum up the different muds we are considering:

o Case A: Gulf of Mexico mud. This mud is rather elastic.

e Casc B: Mobile Bay mud. This mud is rather elastic as well

e Casc C: Lianyungang mud. This mud complex viscosity’s phasc is around 7 so

it is as elastic as viscous.

e Case D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity’s

phase being close to zero.

We choose to plot the different results for those muds in the case h = 2m, A =
0.4m, w’ = 0.5rad/s and d = 20cm (corresponding to the case 1b of the previous

chapter). In this case, we know that:

|=022, €=02, rg=01 (3.8.0.4)

3.8.1 Surface and interface

In figures 3-18 and 3-19, we represent the variation of the first harmonics of the surface
and the interface. Even though we carried the resolution with 10 harmonics in order
to take into account all the significant oncs, we chose to only display the three most
significant harmounics for clarity.

In figure 3-18, we observe that the damping is more important in cases A, C and
D (respectively Gulf of Mexico, Lianyungang and Hangzhou Bay mud) than for the
Mobile Bay mud (B). This is what we expected from figure 3-15, that showed that
the attenuation rate was insignificant for small £ for mud B (Mobile Bay mud).

In cases A, C and D, the harmonics are significantly damped for X = 10, that is
to say z o~ 45 since x = 0.22 in the case we consider, or #’ = £ = 402m. As X = 27",
A =~ 56m, we conclude that the wave is nearly damped after around 8 wavclengths.

The damping is not that significant in the casc of the Mobile Bay mud (B).

We also observe that for the Hangzhou Bay mud, the |A,,| have more oscilla-
tions than for the Gulf of Mexico and Lianyungang muds, even though the damping

lengthscale is comparable for these three muds.

118



Figure 3-19 shows the variation of the interfaces. The results confirm what we
previously saw: in the cases of muds A, C and D, where the damping is significant,
the interface motion is strong. However, the interface motion of mud B is extremely

small.

Drift current in mud

Figure 3-20 represents the drift we calculated in equation 3.6.2.5. As in chapter 2,
the drift current is a sum of the |A,,|?> multiplied by coefficients. As a consequence,

the shape of the |A,,| directly influences the drift current. shape.

Let us remind the equations:
U=U9+ kUM + O(r?

1 1 & . 3.8.1.1
U) = 5 1(0) + 5 E (Ul(m)ele’” + CC.) ( )
m=1

This is why we represent the value 1x(U (0), which is the value that appears in
y 1 3 1 pp

the total sum of U.
The drift is represented in the mud layer for 0 < X < 5 for Z = 1. It is interesting

to note how the drift naturally vanishes as X increases.

Once again, the results presented in this figure confirm the effect we previously
described: the damping is strong for the Gulf of Mexico, Lianyungang and Hangzhou
Bay muds. As a conscquence, their mud’s motion is stronger, and in particular the
mud’s drift current is stronger.

We note the presence of oscillations in the drift current for the Hangzhou Bay
mud (D). We already noticed these oscillations for the same mud in the |A,,| in the
previous section. As we said, the drift current is a sum of the |A,,|* multiplied by
cocfficients. As a conscquence, if the |A,,| show oscillations, it is logical for the drift
current to also show oscillations.

Let us recall that we already noticed oscillations in the drift current in the viscous
case, and these oscillations were also correlated to oscillations in the |A,,]|.

Finally, we note that the drift current initial value (X = 0) is much higher in the

case of the Hangzhou Bay mud compared to all the other muds. At X = 0, the value
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Figure 3-18: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds.
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Figure 3-19: Effccts of wave amplitude on the evolution of the first 3 harmonics of
the interface over different types of viscoclastic muddy scabeds. Warning, the scale
is not the same for mud D!
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of the drift current is:

L - 1 [ s RePky [ 1 [ _, (sinh(a1) cosh(ay)
—_ — ,d - 1 - — — K = S — | = * J— 2 )
5o (X =0 1 R - ( Py 52
pr tanh(&l)(cosﬁl(al) B 251111}&01))
g1 o)
cosh(261) . ~ \\*
T(&(R—ﬁl—)al(l + tanh(éd;)(tanh(d,))")
1
cosh(2i67) - - \\*
—8(—;]—)51—)01(tan11(01)(tanh(01)) -1)
1
sinh(267") _ - v
— —&;T;—}q)é—)al(tanh(al) + (tanh(a1))")
1
sinh(2i67) - ~
+ —~8(%]—)2—1—)01(tanh(01) — (tanh(a1))")
1
+ (tanh(&l))*ﬁl—}}—(@
01
- tanil(&l)(ranh(frl))*g(—)s—?—(—@l” + Cil) + CEZ)]
1

(3.8.1.2)
since A;=1 and all the other A,, are 0.

By calculating this value for the different muds, we indeed find that the initial
valuc of the current drift is at least 50 times higher for the Hangzhou Bay mud than
for any other mud. This explains why the drift current has such a high value for the
Hangzhou Bay mud at X = 0.

Figure 3-21 allows us to check the boundary condition at the interface correspond-

ing to equation 3.6.2.15. Indeed, in this figure, the solid line corresponds to the actual
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derivative of the drift current at the interface, numerically obtained. The dashed line
corresponds to the actual value of this derivative based on the boundary condition
3.6.2.15:

Q—U—O(l—)| _ Z | A *S [iG (G ), (67, *sech (67,)] (3.8.1.3)
57 (Zzl)—Qlwom:l m m ) (07 )“sech (G,
The two lines are so close that they are difficult to distinguish on the figure. This
verifies the numerical resolution of the drift current.

We only plotted these figures for the Gulf of Mexico, Lianyungang and Hangzhou
Bay muds because the values were extremely small for the Mobile Bay mud (B)

(around 1077 and thus not representative).

Energy variation

We numerically represented the total first-order energies in figure 2-6. This figure
shows that the total energy logically decreases, because it is dissipated in the viscous
mud.

In the case of muds A, C and D, the energy reaches a nearly zero-value for X = 10,
meaning that the dissipation is fast. However, we observe once again that dissipation
is slower to occur for the Mobile Bay mud (B). Indeed, energy only decreases by 10%
between X =0 and X = 10.

In figure 3-23, we represented the variation of total energy. The dashed line

represents the right-hand side term of equation 3.6.3.4:

d [y 2 K . ) tanh(d,,) ) ‘
dx [m; [Ar] ] B ’7;;8‘% [Zm (1 - T—)] | Al (3.8.1.4)

m

As in the Newtonian case of chapter 2, the dashed line is so close to the solid line

that it is very hard to distinguish, meaning that our numerical results are right.

3.9 Horizontal bottom without mud

3.9.1 Governing equations

From the study we just led in the particular case of viscoelastic mud, it is very easy
to deduce the surface waves behavior in the absence of mud. Indeed, the absence of

mud simply means that B,, = 0 in equation 3.5.3.1.
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Figure 3-21: Drift velocity derivative boundary condition Z = 1. The dashed line
“B(C” corresponds to the boundary condition, the right hand side term of equation

3.6.2.15
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Figure 3-22: Wave energy over a flat thick muddy seabed.

As a consequence, the governing equation 3.6.1.1 for the surface waves become:

dA, | 3ic /2l
Vm, | T om Z2A* m+l+ZaZAz mot | =0 (3.9.1.1)

The same way, the cnergy variation can be deduced from cquation 3.6.3.4, that

becomes:
d n
e [ 3 |Am|2:| -0 (3.9.1.2)
m=1

This result looks very logical, since it means that in the absence of mud, there is

no energy dissipation in waler.

3.9.2 Numerical results by using the first ten harmonics

Since we don’t consider mud anymore, there are only tree parameters remaining: h,
A, and w'. These parameters are only present in equation 3.9.1.1 in the ratio ¢/x,
which is around 1.
In figure 3-24, we compare the surface displacement for three different cases: ¢/x =
5 (A), ¢/k =1 (B) and ¢/x = 1.5(C). These cases correspond to different non-
lincarity /dispersion ratios. The first case €/k = 0.5 mecans that non-linearity is less
important than dispersion, whereas the case ¢/k = 1.5 means that non-linearity is
predominant. Once again. even though we carried the numerical resolution with ten

harmonics, we choose to only display the first three harmonics.



d @ amPyax]
|--RrHS

0 5 10 15
X
(a) Gulf of Mexico mud

“I—d (& |1Am)dx] ]
J-RHS

0 B 10 s
X
(b) Mobile Bay mud

—

- fd @ jAmPyaxt
‘ " ---RHS

10 15

; —

(c¢) Lianyungang mud

——

"4 = |amPyax]]
~-RHS 4

10 15

0 5 X

(d) Hangzhou Bay mud

Figure 3-23: Variation of the wave energy over a flat thick muddy seabed. RHS is

the value of the right-hand side term in equation 3.6.3.4.
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Chapter 4

Horizontal bottom, very shallow

Newtonian mud

As we pointed in chapter 2, non-linearity ¢ is sometimes small compared to dispersion,
that is to say e small compared to s, for some values of the water depth A, the
frequency w’ and the wave amplitude A. Some of these cases are for instance listed
in the gray cells of tables 2.6, 2.7, 2.8 and 2.9.

That is why we carry in this chapter the same calculations made in chapter 2, but

in the case:

é(e) = O(r?) (4.0.2.1)

In other words, we consider weak non-lincarity of Boussinesq class.
In order to scc the cffect of non-linearity on mud-induced damping, we now con-

sider the mud layer to be thiner than in the previous chapters:

% — kg = O(K2) (4.0.2.2)

so that non-linearity and mud-induced damping act at the same order.

4.1 Scaling

The scaling in water is logically kept the same as in the previous case, that is to say:

x = k2’ z= %b t = k(gh)'/*t
__r _ 1 s Ko .
P= bwea = \/E“ U= (4.1.0.3)

=% o=o Al



The scaling in mud is also conserved:

x = kx' z=% t = k(gh)'/?t'
_ P — _1 ! — 1 /
P T opweA U € g}_zU V eﬂﬂd\/g—}_lv (4 1 0 4)
n=1 U=~ ==V '
I T pwgA gt T \/ﬁ .t U \/g-iz i

but we now have: 4 = kg = O(k?).

4.2 Equations in water

Let us first study the water layer in order to determine the equation equivalent to
cquation 2.5.1.5 in this new case. Because this may be useful for later studics, we
carricd the calculations up to order O(k%). However, we will only use the results at
O(£%) and O(x?) in the rest of this thesis.

We still consider ¢ to be the series 2.3.0.2:

= (z+ 1) :
Sz, z,1) =Y qu( Nz, t) (4.2.0.5)
n=0
4.2.1 Laplace equation
The Laplace cquation still gives the result given by cquation 2.3.1.2:
82¢(n—2)
n 2 ;
4.2.2 Kinematic boundary condition at the interface
Equation 2.3.1.3 becomes:
, In on 0¢
b, = I{dKQE + emdﬂza—x%, z=—1+ ergn(z,t) (4.2.2.1)
and the Taylor series expansion gives:
, on (0 00,
O: + RN, = EfidHQa—Z (’5% + €RgM ai ) + /idIiQ% +O(K"), z=—-1 (4.222)
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Using the same reasoning than in the previous case, we obtain that:

0 0
oY + ergno'? = ergr? BZ (gx fidliz-a—? + O(x®) (4.2.2.3)
And finally:
e, ol
P = kg’ _0? + €I<&d/i2-é~ ( gz ) (4.2.2.4)

This last equation is true because we know from the result of the equation 4.2.1.1

that:
¢(2) o 82¢(0)
Ox?

We finally deduce an explicit expression of ¢ at the order x8:

© ©) >
¢ =0 + kar(z +1) [_aﬂJr _( ¢ )} _52(2+1)282¢0 —nmﬂd 0

(4.2.2.5)

ot o oz 2 ox2 d 31 O
2+ D200 (24 1)5 9% 8
e T A

(4.2.2.6)

4.2.3 Kinematic Boundary condition at the free surface

The expression of the kinematic boundary condition at the free surface is naturally

unchanged:
00 ¢\ B ;
(Qr + 555;) - (,bz, zZ = EC (4.2.5.1)

From equation 4.2.2.6, we know that:

(0) (0) 2 2
¢, =Kqk® (@ +62 < ¢ )) —Kk(z+1 )8 o _ fs:d/<c4———<z+ 1)” 8%,

ot Ox ox 0x? 2! or (4.2.3.2)
2+ 1)2 9oV 24+ 1) 9% o
! 6 ) ot ! 5T age T O)

Plugging this result in equation 4.2.3.1, we obtain:

a¢(0) ¢ _6/12 83c’D(0) o¢ on o 8(;5(0) 82¢(0)
e B 2 0a G T (at 8:5( BE ))“(1“0 022

Kak? O, K200 k2eC 04O ~
20 9r 6 ox 2 Ozt +O(x)

(4.2.3.3)
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We introduce the horizontal velocity at the bottom u(® = 8%2)—) and the depth-

averaged velocity u. We have the following relation between these two quantities:

) ! /64 09
U= —dz
1+ GQ — ERAT] J —14ergn Ox

1 « (z +1)26%u® on
- - 0y _ 2 4 2 nan
1+ eC —ergn /-1+en(m (u " 2 Ox? Far™(z + 1) ox
NER RIS 6
R Epe + O(k ))dz
o K (0+e)’ Pu®  kgk? (14+€0)? On,  k* OO 0@
- 6 1+ e —ergn O0x? 2 1+e—e€ergnox 5! Ozt "
_ O Hz(l +2 ‘)82u(0) rar? (L eQ)? Om w1 OWD O(x)
- 6 € ox? 2 1+4+€e —ergnOx B! Oxt "
2 52,.(0) 2 52,0 25 1 54,0
L0 O O a0 KO :
e 3% T2 oa A aar O
(4.2.3.4)
Turning this last result around, we obtain the relation:
2 924 4 945 2 2 4 545
O =gy 0N RO R gy KaROM KO ey (4935
it e e T3 T T o siam O (4239)

We first express cquation 4.2.3.3 as a function of the water velocity v instead of the

potential:
IC e Pu o¢ on 0 ou®
o> 7 it N i) — (O ) _
R S o SR (T ULl B S (4236)
- rgk? 0%y /{_283u(0) . K26 Pu® 4 0 2.3,
2! O 6 Oz 2 QOx3 "

Using 4.2.3.5, we obtain the equation 4.2.3.6 with respect to @ instead of u(”). Many
terms cancel and we finally obtain the simplificd form of the kinematic boundary

condition, that does not contain any additional term compared to equation 2.3.2.9:
9 - 6
Cr — Katp + —8;[(1 +eC —exgn)u) = O(K") (4.2.3.7)

In the rest of this thesis, we will only use this equation up to order O(x?):

G — Kamy + %[(1 +€Q)i] = O(x*) (4.2.3.8)
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4.2.4 Dynamic boundary condition at the free surface

The same way, the dynamic boundary condition at the free surface is unchanged

compared to equation 2.3.3.1:
1
K% (¢ + C) + §€[f{2¢i + @2 =0, z=e((z,1) (4.2.4.1)

From the development of ¢ given by equation 4.2.2.6, we deduce the following equal-

ities:
14 2¢0) 92 (6© 4 g4($(0)
¢ = (6@), — 52( . €¢) E)@rg )t + gk + %_(;;T)j_ + O(x)
DA\ ? B §3H(0)
s :( o ) — K= + O(x") (4.2.4.2)
2 pO\ 2 ,‘
¢22 = /{4 (—5—52—) -+ O(f{b)
And as a consequence:
2 027 4(0) Y (0) 52 484¢(0)
(0) ’fa((b)t_”z (0') L 20 K
O =g =g ~ N Ca TR g T e (4.2.4.3)
, 2 N 2 2.4
+ 1e il - fczdiwzaz(ﬁm) + K? il = O(x")
2 Ox Jr Ox? ox3
This equation is rewritten:
L (06ON w00, (6), n KGO
0) _ M YA\Y 2 _ 2 . t
(¢ )t+26< 83:) +¢ SR + €r*C 522 Rk o~ T g
1 9©® 5340 26O\
+§6H2! dr 9z3  \ 022 ) +O()
(4.2.4.4)

As done for the kinematic boundary condition case, we write this cquation as a

function of the velocity u(:

ou® oul® ¢ K20 (ul) ¢ O(u) 0% (u(®) o
% " % K tyoe2ds o2l e 20T
ot e Ox * Oxr 2 Ox? Ten Or O Ton Ox? " he
P Mu®), 1,0 Pu®\ 1,8 [u®\? |
_E o)y Lo 29 o _ 120 6
4 Ot * 2" Bz (u Ox? ) T ( Oz ) O
(4.2.4.5)
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And from equation 4.2.3.5 we deduce the relation on the depth-averaged velocity u:

ou N 5—282% _/f@‘lut €K’ Cé??ut 6/-@2% 0% B Kak> Oy 3 i484at
T 62 36020 T 302 T 3 ot 2 0x 5 Ozt
~a +/€_é()_—_ +€i§2~2£?_u+8é 282 46'1—1,15 2_8_C8ﬂt+ 2 GQEt
L R 602207 9z 2 o 1284 N oror o
Pne k0, 1 ,0 [ 0 1 , 0 (Ot
. 2 _ it 2 7 g - el e 6
Kk T aet 2 ar \"az2 ) T 2% 9z \ Gz +O(“’)
(4.2.4.6)
ou 0w 8¢ &P Ou K Ou e’ 0%u ek’ 9( 0%
o T e T T G 36000t 3 C9m20l | 3 9t oa?
ket O K Pu e Pu RPROL K 9
2 0o | 519zt 6 028 6 0201 | 2 Oziot
SR L0 0 ., O K &
12 9z40t O 0z0t or20t &catz 4! dz4ot
1,0 (8w 1 ,0 (ou ]
5% o ( 8x2> ~ (a) +O()
(4.2.4.7)
Combining terms on the right hand side, we obtain:
8ﬂ+ 8u+0C _k? & +feja3ﬂ
ot "% T ax 6 0oz | 2 0r20t
_m_4 0°u +n_4 o%u _h_4 o*u +l'i4 o%u
36 8:1:46% 51 0z40t 4! 9xz%0t 12 Oxtot
0% Rt
T3 Ca 3 T
i
3 Ot 0x2
,{th 6377 ) 837] (4248)
2 Oxot? d Jxot?
,0¢ 0*u
s dzor
_efz_ Qf@ k2 0% Ou
6 Ox3 6 0x20x
1,0 [ &\ 1 ,0 (ou) 6
MR (“a) "% ar (‘a‘) (=)
du .0u 8¢ Al N Kt Pu N 26%26 0
ot Vor T or 3002 1204%0 3 020l
ek? 0C 9% (9@ O?u  ker® On
TS atee T aronat 2 0z (42.4.9)
1,0 (&) 1 ,0 (ou p
+ 3" Bz (u(‘?xi’) 2% Br (55) +O()
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Because of the relation:

ex? _OPu 6/@2 d0*u ou 652 d (_0u (4.2.4.10)
—— U — € = —€—— | U 4.2.4.
6 Ox3 6 0x? Ox 6 dr \ Oz
we finally obtain the equation equivalent to equation 2.3.3.6:
ou  ou O0C kK 0®u  wg® Pn kP Ou .. 0%u 1 L,0Cd*
€U = K¢ — —€eK" —
ox20t 3 Ot 0x?

2
o T Tar T3 e 2 dzoe T 120a40 T 3°

16

2

N a2 — 2 — N\ 2
+EI{2‘8_Q6U Jrl 28 (_8 u)_ /{2£ (8_’&) —}—O(/‘Eﬁ)

oz ozot 3" oz \“or2 oz \ oz
(4.2.4.11)

Many new terms of order O(x*) appear on the right hand side.

In the rest of this thesis, we will once again only consider the terms up to order

O(K*):

ou  _du I K Ou

- il s 2 4 ¢ ¢
o it 2 = o+ O(k) (4.2.4.12)

4.2.5 Equation of the total pressure in water

From the Bernoulli equation, we know the pressure in water at any depth z:

€ 5 1 5 z
b=ty — < (02 4 =(6.)%| = 2 4.2.5.1
p= o= 5[0 + 5 0.7] - (125.1)
Thus, we deduce a relation between the pressure in water and the potential at = =
—1 + ergm:

L_, € (99 2+o( 4 1+ (4.25.2)

— _— — KN — — —_— K. Z = — €ER .40,

p e ! =5\ bz / <7 ’

By Taylor expansion, we know that:
O(z = =1+ eign) = ¢z = —1) + O(k*) = ¢ + O(k") (4.2.5.3)

As a consequence, 4.2.5.2 becomes:

1 e (000
oy €
D (&) — Kan ( 7

2
- 5 ) + O(KY), z=—1+¢ergn (4.2.5.4)

This equation will be later used to estimate the pressure in the mud layer. Since we

will only carry the calculation at the first order in mud, we will only use the first
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order of equation 4.2.5.4 in the rest of this thesis:

1
p= QL)(O)t 4 O(KP) A z = ~1 -+ €n (4.2.55)

€

4.3 Equations in mud

Let us now find the governing equations in mud. We only go to the first order O(x°) in
this thesis. Indeed, the drift current induced by non-lincarity of order O(e) = O(k?)

will not be considered.

4.3.1 Kinematic boundary condition at the interface in the

mud

In dimensional form, we know that, exactly:
Ny =V —qgU, Z=1+en (4.3.1.1)

In dimensionless form, and keeping only the first order, we obtain:

=V +O(k*) (4.3.1.2)

4.3.2 Conservation of mass in the mud

From the conservation of mass in mud in dimensionless form. we know:
U +Vz =0 (4.3.2.1)

This cquation will be used later to deduce the vertical velocity in mud from the

horizontal velocity.

4.3.3 Horizontal momentum in mud

Let us first write the Newtonian relation between the stress 7 and the strain F in a

dimensional form.

’ aE;Z

Tez = M B (4.3.3.1)
So we have: U
_ 9y 4
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The equation of momentum in the mud, projected on the x-axis, gives:

ou ou ou oP A OTrz 0Tz
ot (U o T Va—z) = % " Rerd ( gz g, ) (4.3.3.3)
where 7 is the ratio of densities:
Y = pw/pu (4.3.3.4)
From this cquation we simplify:
ou 1 A0tz oP

where U is the horizontal velocity of mud, P the pressure, A the amplitude of the
free surface and d the mud depth. In equation 4.3.3.5, the convective inertia term

has been neglected. Re is the Reynolds number defined as:

_ paAdkVgh
7

Re (4.3.3.6)

As a consequence, the Reynolds number in this chapter is the same as in chapter 2
(equation 2.4.3.6). The values of Re are thus functions of h. ', A and the type of

mud. As a consequence, the values we tabulated in tables 2.6 to 2.9 are still valid.

Table 4.1 recalls the results presented in table 2.9. Let us remind the reader that
the gray cells in this table correspond to the case O(k?) = O(e) that we are currently
studying. We chose to repeat the table corresponding to the Hangzhou Bay mud

because it corresponds to the highest Reynolds number values that we found.

We see in this table that Re can be as big as 10. As a consequence, and because we
want our study to be applicable to any type of mud, we decide to adopt the limiting

case. This is why the Reynolds number will be regarded as:

Re = 0(1) (4.3.3.7)

Differentiating equation 4.3.3.2 with respect to Z, we get:

aTzZ o aQU 4 .
57 = 570 + O (4.3.3.8)
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A (cm)

& e 0 50 10 60
e=0.1 ¢ =102 e=04
1/3 | k= 0.106 k=0.106 | kK = 0.106 e > 0.4
Re=0.13 | Re=0.27 | Re=0.53
W' e=0.1 g =1(,2 e=04
1 | (rad/s) | 1/2 | k=10.159 | £=0.159 | £ =0.159 | €> 04
Re=033| Re=065| Re=1.3
e (11 e=0.2 e=0.4
1 ai= 031 k= 0.31 k=0.31 e > 0.4
Be=14 | Re=28 | Re=5.7
‘e =0.05 e=0.1 e=0.2 ¢ =10.3
1/3| k=015 | k=015 | k=015 | K=0.15
Re=027| Re=053| Re=1 Re=1.6
W' e =005 e=0.1 e =102 e=0.3
2 | (rad/s) | 1/2| K=0225 | k =0.225 | £ =0.225 | K =0.225
Re=065| Re=13 | Re=26 | Re=3.9
1 k> 04 k> 0.4 k> 0.4 k> 04
h{m) co 002 | e snEiEERT e =012
1/3 | k=0.238 | £=0238 | k=0.238 | k= 0.238
Re=0.67| Re=1.33 | Re=267| Re=4
&l =002 | e=0Dldl =008 | =012
5 | (rad/s) | 1/2 | kK =0.357 | k=0.357 | k=0.357 | k= 0.357
Re=16 | Re=32 | Re—=65 | He=98
1 k> 0.4 k> 04 k> 04 k> 0.4
e=001 | e=002 | e=004 | e=006
1/3| k=033 | k=033 | k=033 | &=033
Re=13 | Re=21 | Ke—=9805 He= 8§
wﬁ’
10 | (rad/s) | 1/2| x> 04 k> 04 k> 0.4 k> 0.4
1 k> 0.4 k> 0.4 k> 0.4 k>04

Table 4.1: Values of Re for different A, frequency w' and water depths h, for the

Hangzhou Bay mud. We set £y = 0.1.
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Equation 4.3.3.5 can be rewritten:

aT:rZ . d aU 8P
- RQZ <

By combining equation 4.3.3.8 and 4.3.3.9 we obtain an equation between the hori-

zontal velocity and the pressure gradient:

o°U d [(oU oP o
377 Rez (5{ + va—x> +0(e) 0<Z<1+en (4.3.3.10)
where p
Res = Re%—j- = 0(1) (4.3.3.11)

Let us now find an equation of the mud pressure P as a function of ¢ and 7 in order

to eliminate the mud pressure from equation 4.3.3.10.

4.3.4 Vertical momentum in mud

The dimensional equation of vertical momentum is:

VIOV v\ 0P (01, Ors
par (W TV TV é)Z’) oz T ( 97" " ox (4.3.4.1)

and becomes, in dimensionless variables:

ov oV oV v OP € 0T 0Tz
Al iy} =Ll iz 3.4
T +€(U8x+ 8Z) 57 Rew&( 57 tF s (4.3.4.2)
So, in the end,
oP 5 -
7= O™ 0<Z<14en (4.3.4.3)

In other words, we find that the vertical pressure gradient in mud is of order O(x?).

This equation will be used to evalnate the pressure in the entire mud layer.
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4.3.5 Dynamic boundary condition at the interface

Let us call n = (n,, nz) the vector normal to the interface. In dimensional notations,

we know that the components of n are:
(4.3.5.1)

In dimensionless variables, we obtain:

em@d—gg

r — o2
Y1+ eney(3) (4.3.5.2)

n

1
Ny =
2,22 (902
\/ 1+ e2k262(52)
Finally, n, and nz can be approximated as:

ne. = O(erky)
(4.3.5.3)
ny = 1+ O(€?K*k3)

Continuity of total (hydrodynamic and dynaiic) stress on the mud-water interface

then requires:
Loy + sznz = —pPng, Z =1+ €n

(4.3.5.4)
Ta’anz + TZZnZ = —pnz, Z =1 + €n
Total stress in mud is the sum of hydrostatic and dynamic pressure:
€K
Tij = —-P(Sij —+ ;—y—é;’l'ij, (4555)
Introducing this sum in cquation 4.3.5.4, we obtain:
P+ A + S Z=1+
- Tex | Nx TezNz = —PNg, =
vRe vRe vz Pz, < )
(4.3.5.6)

= (Pt = Z=1
——— Tz Ny — T - — , —
~Re xZ ~Re zz | Nz pnz, + €7
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From the approximations of n, and nz that we demonstrated in 4.3.5.3, equations

4.3.5.6 become:

€K €K
(-—P + —,}—/—1—%—6—7':5_%) O(ekkq) + W?E 72(1+ O(€K%K2)) = —pO(erky), Z=1+en

,;ge_TIZO(de) + (—P + —ER ) (1 4+ O(2x%K2)) = —p(1 + O(2K3K2)), Z =1+ en
(4.3.5.7)
These last equations can easily be simplified to:
€x
TRe L T Olerky), Z =1+en
i (4.3.5.8)
P-p=0("), Z=1+ey
ations become:
Toz = O(kq), Z=1+c¢
’ e ! (4.3.5.9)

P—p=0(K*, Z=1+en

We now focus on the first part of equation 4.3.5.9. Through a Taylor expansion,
we can approximate this equations around Z = 1:

Tz = O(K?), Z=1 (4.3.5.10)

since O(k?) = O(€) = O(ry). Making usc of the relation 4.3.3.2, we finally obtain a

boundary condition at the interface in term of the horizontal velocity U:

_ = O(x?) (4.3.5.11)

Let us now focus on the second part of equation 4.3.5.9. From 4.3.4.3, we know
that the vertical gradient of mud pressure is of order O(x?). As a consequence, by a

Taylor expansion of the mud pressure P, we obtain:
P=p(Z=1+en)+0(K*), 0<Z<1l+en (4.3.5.12)

Differentiating this last equation. we know that:

P
% — %(Z =14+ +0(K), 0<Z<1l+en (4.3.5.13)
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Water pressure p is known in any point of the water layer thanks to the Bernouilli
equation. In particular, we know from equation 4.2.5.5 the water pressure at the

interface (z = —1 + mdn):
1 (0) 2
p= ; ) t+O(/~e ), z=—1+4e¢en (4.3.5.14)

By differentiating this equation, we obtain:

0 9?9
8—5 = - 8:?815 +O(K?), z=—14¢eryn (4.3.5.15)
From cquation 4.2.4.4, we also know:
o) .
—— = —(+ O(r?) (4.3.5.16)

ot

which is valid for all z since ¢(© and ¢ do not depend on the vertical coordinate.

Combining equations 4.3.5.15 and 4.3.5.16, we get the water pressure gradient at
the interface: 9 o
P 2

— = —=+4+0(K"), z=—-1+¢r 4.3.5.1
5% Oz (%) €Kqn) (4.3.5.17)
Combining equation 4.3.5.17 with 4.3.5.13, we finally obtain the mud pressure hori-

zontal gradient in the entire mud layer:

aP  o¢ 9
5 = P +O0(Kk™), 0<Z<l+en (4.3.5.18)

As a consequence, we can now substitute the mud pressure P from the horizontal

momentum cquation 4.3.3.10, for 0 < Z < 1 + en:

o°U d (0U 9 ) f
a7 = Req (5{ +75£> FORD| 0<Z<1+ep (4.3.5.19)

4.3.6 Bottom kinematic boundary conditions

At the bottom, we impose the no-slip boundary condition:
U=V =0, Z=0 (4.3.6.1)
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4.4 Asymptotic equations in water and Newtonian

mud

4.4.1 Equations at dominant orders
Water equations

By combining equations 4.2.3.8 and 4.2.4.12 at order O(e?), we obtain:

9%¢  9°¢C  9%u 0n 0 (_ou k2 0% .
5 0= mior e T o (“a—) ~ o 1O (4Ll

To simplify this equation we use the leading order approximations of 4.2.3.8 and
4.2.4.12:

QE = _u + O(e)
o¢ ou 0 B
il (e)
As a consequence,
w9 (0w ¢
orot 681& T uc’)x
0 L0C  _0Ou :
€ 9%¢c? ou? 9
“3\ 7 “LW) +0(€)
and:
/172 d—lu /‘52 84<
3905 - 394 O(e?) (4.4.1.4)

Thus, equation 4.4.1.1 can be written:

*¢  0°¢C e (OPud  o0*uP 9% k2 9% ) _
2 " oaz TS (ar,? T ) T PO (A1)

In cquation 4.4.1.5, the interface 5(z) appears at order O(kg) = O(K?). Since we

expect this term to be responsible for the attenuation in ¢. we expect the typical
distance of the mud induced damping to be x%z.

Now let us expand the functions ¢ and 4 as power series:

¢ = C(O) + ,ii)c(l) + ’f4C(2) + ..

(4.4.1.6)
i = a4+ g2 4 gta®
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Let us also introduce the slow coordinate X:

X =r’z (4.4.1.7)
Applying the technique of multiple scales, we have:
_a__ - 2 + K2 0
or Oz 0X 441
84 34 ) 84 ) ( e 8)
= 4
5et = 5t ¥ gmax O
So the equation 4.4.1.1 becomes, with the multiple scale:
2 2 92 52 22 222 22
Q—Q—?—C——zﬁ C:Hd n_ < 8u+8u+8g
otz 0z? 0x0X otz 2\ 0z? ot? ot? (4.4.1.9)
-+ _HZQL_L_Q + O( 2) o
3 Ort ‘
which can be written:
82 22 82 82 2552 272 2 -2
g_ag‘:%rz C+Hd U 8u+8u+6§
otz 0x? 0x0X otz 2\ 0z? ot? ot?
2 9 (4.4.1.10)
KOG 2
+ 5 5k + O(€?)
From this equation, we deduce for dominant orders:
e at order O(1)
9200 200
A Sy (4.4.1.11)

ot? Oz?

e at order O(k?)
3¢ PCO2 1 54O
€ o) 10Ty ata2)

ot? 3 Ozt

Kd 827](0)
2 2 942

52(;(1) 52C(1) 282C(0)
52 " a2 Cor0X =2 ot

where equation 4.4.1.12 is obtained after using the following relation valid to

leading order:

82(ﬂ(0))2 32(”&(0))2
52 T or Bl

Let us compare these results with the ones we obtained in the case where non-

92(¢ ()2 2((0))2
“):8&) (4.4.1.13)

linearity was more important than dispersion (chapter 2). We first note that the
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equations at order O(k") are the same in both cases: equations 2.5.1.11 and 4.4.1.11
are the same.

However, the first order, that is to say cquations 2.5.1.12 and 4.4.1.12 differ. A
new term appears in cquation 4.4.1.12, namecly %%, which is due to dispersion.
This term did not appear before because dispersion was less important compared to

non-linearity.

Mud equations

Let us find the descriptive equations of the mud at order O(x°).

From equation 4.3.5.19, we obtain:

0? 0 ¢ .
where:
€
a= e =0(1) (4.4.1.15)

As in water, we introduce the multiple scale coordinates z and X = k®z, so that

equation 4.4.1.14 becomes:

02 0 ¢
The continuity cquation 4.3.2.1 becomes:
ou oV

and the interface kinematic boundary condition 4.3.1.2:

0
Ty 4+ 0(e) (4.4.1.18)
ot
We can now deduce the dominant order of equations 4.4.1.16, 4.4.1.17 and 4.4.1.18
at O(/io):
o 2 ac(())
— —a— | UY = — . Z <1
<6t "‘522) Tor V<4
ou© N v 0 (4.4.1.19)
Ox 0z
on'®)
— =V, Z=1
ot ’



4.4.2 Equation and solution at O(x")

Water equations

Because equation 4.4.1.12 clearly involves non-linear terms, we consider the evolution

of a train of harmonic waves:

1 +oc i 1 +o0 )
C(°)=§ D An(X)etn 7,<0>:5 > Bu(X)e®n (4.4.2.1)

where 6,, = m(x —t). We shall assume that Ag = By = 0.

Mud equations

We adopt for the horizontal and vertical velocities in mud at the zeroth order the

form we used in 4.4.2.1:

7 :% Z U7(T?)(Z)6i0m

T (4.4.2.2)
V(O) — _1_ Z V(O)(z)eiem
2 m

Then from the cquation 4.4.1.19 we deduce an equation for Ul )(Z ):

LU
a7z 02U = —g,, 2y A, (4.4.2.3)

where:

Ot = —ie (4.4.2.4)
(6]

We can solve exactly this second order differential equation by using the boundary

conditions:
U9 =0, Z2=0
oULY) (4.4.2.5)
=0, Z=1
07
In the end we get:
UY = yA,,[1 — cosh(0,,2) + tanh(o,,)sinh(0,,2)) (4.4.2.6)
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From the continuity equation and the boundary conditions of 4.4.1.19 we can extract

the following equations for the vertical velocity:

PATAS
m_o_ U(O)
iz Y m (4.4.2.7)
VO =0, z=0
As a conscquence, we can casily deduce the explicit expression of the A8
A ,
VO = il (02 — sinh(0,,Z) + tanh(o,,)(cosh(o,,Z) — 1)] (4.4.2.8)

Om

From the kinematic boundary condition at the interface in mud, we can now deduce
the interface motion: )
Bp=—-——V9(z=1)

m

im (4.4.2.9)
= ’YAmG(Um)
with
tanh(o,,
Glow) =1— %‘(U—) (4.4.2.10)
As a conclusion we have:
tanh(o,,
B = ¥Am (1 - ——-——an;(a )> (4.4.2.11)
where 0, = i, a = & and y = o,
4.4.3 Equation and solution at O(¢)
At this order, we will only study water equations.
At order O(e), we have from 4.4.1.12:
92c()  §2¢Ww 2¢O 92n© 3¢ 2OV 1§
(00T 06 malm 7 3¢ OACT)T 1O (4.4.3.1)

o2 Oz T0z0X K2 02 22 Of? 3 Ozt
By following the same procedure as in [6], we know that:

m/2

e 0*(¢™)? _ %Z_gmzezem ZQAZ‘Am_H_;_ ZO"A‘AW‘Z tce (4.4.3.2)
=1 =1

22 Ot?

m=1
where [m /2] is the integer part of m/2 and o is a coefficient equal to 1 for [ = [m/2]
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and equal to 2 otherwise. We also have

L0 SN dA,,
groX ~ ~=""dX

1 & .
=-3 Z m?B,,e" + c.c.
m=1

efm 4 c.c.

(4.4.3.3)

combining all this results, we can rewrite the equation 4.4.3.1:

o0 ocC [m/')]
82C(1) 82C(l) sz € 3
8t2 E m ;2' E —-gm € E 2A7 Am+l + E CYlA Am 1
m=1 =1

(4.4.3.4)
To ensure solvability of this last equation, we know that secular terms proportional

to e must be removed. This is how we get the differential equations:

[m/2]

dA,, imk im?3 3i €
Vm, -d—)(——_——-—Q—Z‘;Bm'f—-E* ———m ZZA Am+1l+ ZO[[AZ m—1

(4.4.3.5)
Combining this result with 4.4.2.11, we finally obtain the differential equation for the
A VY,

dAm _ iyMEKq tanh(o,,) im?
= 1——— A, +—
dX 2 K2 ( Om 6 Am
[m/2) (4.4.3.6)

Let us compare this equation to what we found in the case where non-linecarity was
more important than dispersion (chapter 2). We observe that equations 2.5.3.6 and

4.4.3.6 only differ by one term, which is due to dispersion, namely L”(;—Am

As we already pointed out, this term did not appear before because dispersion

was less important compared to non-linearity.
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4.5 Further details

4.5.1 Swurface and the interface

We truncate the series 4.4.3.6 , in order to obtain a differential equation for the A,,:

dA,, Lo iy Kq (1 B tanh (o)

o
m
X 2R )Am"—A’”

31 ) (m/2] (4.5.1.1)
+ g Zﬁ4mm+§j%&ml =0

Om

This truncated differential systemn is true for 0 < m < n.

4.5.2 Energy variation in water

We obtained the differential equation:

o [m/2]
dA,, im? 3 e
W—TA ——m ZZA Am+l+zaz/41 m—1
(1.5.2.1)
+ﬁ@m(biﬂ%h»Am:0 |
2 % Jm

to describe the free surface motion.

The last term of this equation represents the damping due to dissipation in the
Newtonian mud.

In [8], G. Grat:al(mp and C.C. Mei demonstrated that if the differential equation

describing the free surface is:

dA,, im? m/2] _
'ﬁ‘ + B A — —6—14771 ZQA Am+l + Z aAiAn_ | =0, (4.().2.2)

then the general relation on the first-order wave-energy is:

%[Z IAm|2] _ _QZRe(ﬁm),Amp (4.5.2.3)
m=1 m=1

Indeed, in equation 4.5.2.2, 3, represents a dissipation source. That is why the total
wave energy at the leading order decreases with relation to 5,,.

In our case of a flat bottom with a thin layer of Newtonian mud, we deduce that
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the general relation on the first-order wave energy is:

_%5 [mi:l Anf] = "7“ Z fte [Zm ( t&n(};f:m))] | Al (4.5.2.4)

4.6 Numerical results by using the first ten har-

monics

We now represent the numerical results in order to analyze the effect of the different
paramcters.

We will first study the effect of the wave amplitude A, knowing that a big wave
amplitude implies high non-lincarity € (cases la, 1b and lc).

We will then look at the effects of different wavenumbers k, and thus of different
dispersion coefficient £ (cascs 2a, 2b and 2c).

Finally, we will look at the effects of different mud layer depths d, and thus different
values of the parameter k4 (cases 3a, 3b and 3c¢).

From the experiments on mud that we already cited in the previous chapter, we
know that viscosity in mud varies with the frequency. However, since we are here
considering the mud as Newtonian, we need to choose one value of viscosity for all
frequencies.

The waves that we study in this thesis have a frequency of around ' = 0.5rad/s,
which correspond to a period T' = 12s. This is why we choose to adopt the modulus
of the Gulf of Mexico mud complex viscosity at w’ = 0.5rad/s as the viscosity. This
value is: pu = 400Pa.s, as can be read in figure 3-3. We naturally choose the density

to be the density of this same mud: py = 1140kg/m?>, and as a consequence v = .88

For all of the following computations, we set the water depth to be A = 5m.

4.6.1 Influence of non-linearity

We set the wave period to be T = 18s (which means v’ = 1/3rad/s), and the mud
layer depth to be d = 25cm. We then consider 3 possible wave amplitudes A = 20cm,
A = 40em and A = 60cm, corresponding to cases la, 1b and lc. From here we can

deduce the value of k and Re by:

k=kh=——h=uw}y/- (4.6.1.1)



_ €
Casc € K Re K | &= —=

la 0.04 1 0.24 |1 0.05 | 0.05 17
1b 0.08 10.24 | 0.09 | 0.05 17
lc 0.12 1 0.24 | 0.14 | 0.05 17

Table 4.2: Values of Re, &, €, k4 and « corresponding to different values of A. Case
lc corresponds to the biggest A, that is to say the biggest non-linearity.

and:

1 Adk+/gh du’
Re = 24 ' gh _ puAddw (4.6.1.2)

1
Table 4.2 sums up the corresponding values of the paramcters ¢, k, Re, kg4 and a.
€ and Re both incrcase with A and s does not depend on A. Casc la corresponds

to the smallest A (and thus smallest non-linearity) value and case 1c¢ to the biggest

olle.

We assume the initial condition:

t=0, A(0)=1 (4.6.1.3)

Surface and interface

Figures 1-1 and 4-2 show the evolution of the first three harmonics of the surface and
the interface. Even though we carried the resolution with 10 harmonics in order to
take into account all the significant ones, we chose to only display the three most
significant harmonics for clarity.

In figure 4-1, we observe that the harmonics are smoother in the less non-linear
case (la). Variations are more significant in the most non-linear case. This effect is
due to non-linearity, and is logical. Even though non-linearity is very important in
cvery case, it is even more obvious in case 1c.

Figurc 4-1 also shows that the first harmonic |A;| is more quickly damped out in
the most non-lincar case (1¢). This is because non-lincarity results in a transfer from
the first harmonics to the sccond harmonics.

From figure 4-2 we observe that the interface follows the same tendency as the
free surface: non-linearity results in more oscillations and a fastest damping of the

first harmonic.
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Figure 4-1: Effects of wave amplitude on the evolution of the first 3 harmonics of the

free surface over a thick muddy seabed. Comparison between the cases la, 1b and

le.
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Figure 4-2: Effects of wave amplitude on the evolution of the first 3 harmonics of the

interface between mud and water over a thick muddy seabed. Comparison between

the cases la, 1b and lc.
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Figure 4-3: Wave energy over a flat thick muddy seabed. Comparison between the
cases la, 1b and 1lc.

Energy variation

We numerically represented the total first-order energies for cases la, 1b and lc in
figures 2-6. This figure shows that the total energy logically decreases, because it is
dissipated in the viscous mud.

However, contrary to what we saw in chapter 2, the decrease in energy is very
slow. For cases la, 1b and lc, energy only decreases by around 50% between X = 0
and X = 40.This is simply due to the fact that we are considering a very thin layer
of mud, since O(kq) = O(k?) in this chapter. It is as a consequence logical for the
mud-induced damping to be less important than in the case O(kq) = O(k).

In figure 4-4, we represented the variation of total energy. The dashed line repre-
sents the right-hand side term of equation 4-4. It is so close to the solid line that it

is very hard to distinguish. As a conscquence, this figure shows that our numerical

results obey the law we demonstrated

4.6.2 Influence of dispersion «

We now aim to study the influence of dispersion.

We set the wave amplitude to be A = 40cm and the mud layer depth to be
d = 25c¢cm. We then consider 2 possible periods 7' = 18s and 7' = 12s (which mean
W' = 1/3rad/s, & = 1/2rad/s), corresponding respectively to cases 2a and 2b. We
still have h = 5m.

Table 4.3 sums up the corresponding values of the parameters €, k, Re, k4 and a.
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Figure 4-4: Variation of the wave energy over a flat thick muddy seabed. RHS is the
value of the right-hand side term in equation . Comparison between the cases la, 1b
and lc.



a j— €
Case € K Re Ka | o=

2a 0.08 | 0.24 | 0.09 | 0.05 17
2b 0.08 | 0.36 | 0.14 | 0.05 11.4

Table 4.3: Values of Re, k, €, kq and « corresponding to different values of dispersion
K

Free surface and interface

Figures 4-5 and 4-6 show the evolution of the first three harmonics of the surface and
the interface. Even though we carried the resolution with 10 harmonics in order to
take into account all the significant ones, we chose to only display the three most
significant harmonics for clarity.

In figure 4-5, we observe mud-induced damping is faster in the less dispersive case
(2a).

From figure 4-6 we observe one again that the interface follows the same t;ondehcy

as the free surface.

Energy variation

We numerically represented the total first-order energies for cases 2a and 2b in figure
2-11. This figure shows that the total energy logically decreases, because it is dissi-
pated in the viscous mud. As for surface harmonics, we observe that damping is very
slow compared to chapter 2. Damping is even slower in the most dispersive case.

In figure 4-8, we represented the variation of total energy. The dashed line repre-
sents the right-hand side term of equation 4-4, and the figure shows that our numerical
rosults obey the law we demonstrated. Indeed, the two lines are so close that they

arc very hard to distinguish.

4.6.3 Influence of mud layer depth d

We now aim at srudying the influence of the mud layer depth.

We set the wave period to be T' = 18s (which means o’ = 1/3rad/s), and the wave
amplitude to be A = 40cm. We then consider 3 possible mud layer depth d = 12em,
d = 25cm and d = 50cm, corresponding respectively to cases 3a, 3b and 3c. We still
have h = 5m.

Table 4.4 sums up the corresponding values of the parameters €, k, Re, kg and a.
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(a) Smallest dispersion (2a)

(b) Medium dispersion (2b)

Figure 4-5: Effects of wave amplitude on the evolution of the first 3 harmonics of the
free surface over a thick muddy seabed. Comparison between the cases 2a and 2b.
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Figurc 4-6: Effccts of wave amplitude on the evolution of the first 3 harmonics of the
interface between mud and water over a thick muddy seabed. Comparison between

the cases 2a and 2b.
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Figure 4-7: Wave energy over a flat thick muddy seabed. Comparison between the
cases 2a and 2b.

Free surface and interface

Figures 4-9 and 4-10 show the evolution of the first three harmonics of the surface
and the interface for different mud layer thickness d. Even though we carried the
resolution with 10 harmonics in order to take into account all the significant ones, we
chose to only display the three most significant harmonics for clarity.

As expected, we observe in figure 4-9 that damping is more significant in the case
of the highest mud thickness (3¢) than in the case of a very thin mud layer (3a). This
is due to the fact that dissipation happens in mud. As a consequence, the thicker the
mud layer and the more wave damping.

We also observe in figure 4-10 that the interface variations reach a higher ampli-
tude in the case of the thicker mud (3c).

As the consequence, the influence of d on the interface and free surface is the same

as in the case O(k4) = O(k) described in chapter 2.

Energy variation

We numerically represented the total first-order energics for cases 3a, 3b and 3¢ in
figurc 4-11. This figure shows that the total cnergy logically decrcases, because it is
dissipated in the viscous mud. We can see that energy is dissipated faster in the casc
of the thicker mud (3¢). This result seems logical since, as we said when we studied
the surface amplitude, the thicker the mud and the faster the wave damping.

In figure 4-12, we represented the variation of total energy. The dashed line still

represents the right-hand side term of equation 2.6.3.4, and the figure shows that our

159



10 0.02 VTSI ARG S ]

2 :

d{ 22 |Am] —d (Z |AmP)/dX
m=1 ~RHS
dX  -0.04
-0.06H
0.08 H "
) 5 10 15 20 25 30 35 40
X
(a) Smallest dispersion (2a)
0 T r r T

—d (= |Am[*ydX
~RHS

Q.

10 3
Z |Aml2)002

m=1

dX 0,04k

-0.06

M
H

0.08 . ; F
0.0 0 5 10 15 20 25 30 35 40

X
(b) Medium dispersion (2b)

Figurc 4-8: Variation of the wave energy over a flat thick muddy scabed. RHS is the
value of the right-hand side term in equation . Comparison between the cases 2a and
2b.
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(c) Highest mud layer thickness (3c)

Figure 4-9: Effects of mud layer thickness on the evolution of the first 3 harmonics
of the free surface over a thick muddy seabed. Comparison between the cases 3a, 3b

and 3c.
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Figure 4-10: Effects of mud layer thickness on the evolution of the first 3 harmonics
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(¢) Highest mud layer thickness (3c)

between the cases 3a, 3b and 3c.
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Figure 4-11: Wave energy over a flat thick muddy seabed. Comparison between the
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numerical results obey the law we demonstrated. Indeed, and as always before, the

two lines are so close that they are very hard to distinguish.
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the value of the right-hand side term in equation 2.6.3.4. Comparison between the
cases 3a, 3b and 3c.

164



Chapter 5

Horizontal bottom, very shallow

viscoelastic mud

As in the previous chapter, we assume that non-linearity effects are less important
than dispersion (O(e) = O(x?)). However, mud is not modeled as a Newtonian fluid
anymore, but as viscoelastic.

As we did in chapter 3. we need to change the horizontal momentum equation in
mud. We will demonstrate again that this modification only affects the o coefficient

in the equations.

5.1 Scaling

The equations we previously obtained in water are clearly not changed in the vis-

coelastic case, that is why we keep the scaling in water:

x = k' z= Ehib t = k(gh)'/?t'
— P — 1 ! 2 o— Koy
P= owaa v q/gizu v g;f (5.1.0.1)

C=%  o=0 [k

However, we need to modify the scaling for stress in mud. As in chapter 3, we

choose :
Tij = ———==T4j (5.1.0.2)

with p defined as:
p="2 (5.1.0.3)



to solve the last equations numerically. Indeed, we will see that neither p, neither
non-dimensional viscosity p will be needed to carry the final calculations, but only
the dimensional viscosity '

As a consequence, the scaling in mud for this chapter is:

r = kx/ 7 = % t = k(gﬁ)l/?tl
_ P _ —l‘U, V — 1 V/
pwgA e/ gh ermd\/g_ﬁ (5 1.0 4)
n= 7{% U= ful V= mf’»‘dvl
B _
T = pwan Bun = =Blav 7o = 05T

5.2 Equations in water

Since only the mud behavior is modified, the equations in water are the same as with

a Newtonian type of mud: they remain exactly the same as in the previous chapter.

5.3 Equations in mud

Most of the equations in mud are also unchanged compared to the previous chapter.
Namely equations 4.3.1.2, 4.3.2.1, 4.3.5.11, 4.3.5.18 and 4.3.6.1 remain the same:

The kinematic interface boundary condition:
n=V+OK), Z=1+ey (5.3.0.5)
The conservation of mass:
Us+Vz=0, 0<Z<1l+en (5.3.0.6)

The tangential stress boundary condition at the interface:

ou

57| = O(x?) (5.3.0.7)

Z=1

The normal stress boundary condition at the interface combined with the vertical

momentum equation:

orP  0¢

—_— — — 2 7 ¢
5~ B +O(k%), 0<Z <1+en (5.3.0.8)
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The bottom kinematic boundary condition:
U=V =0, Z=0 (5.3.0.9)

However, we need to find the new horizontal momentum equation, which is modified

by the mud behavior.

In this case where the depth of mud d is small compared to the depth of water,

we can approximate the strain as a function of the horizontal displacement U:

WU 2,00V _ U

Ex = == O A 3.0.1
z 5Z+H e 8Z (k") (5.3.0.10)
We know for simple harmonic waves:
ou s
T2z = ,Lta—Z + O(k%) (5.3.0.11)

The equation of momentum in the mud, projected on the x-axis, gives:

W (V5 V) = e (5 ) B0n)
or:

oU U AU\ 0P ¢ OTaz Oz ‘

£ (U”a— Vaz) T % T Re® xny ( 07 gy ) (5.30.13)

where U is the horizontal velocity of mud, P the pressure. A the amplitude of the
free surface, y the ratio of densities v = py /pas and d the mud depth, and Re® the

new Reynolds number:

[ Adk~/gh
Re® = @—-ﬂ——-ﬁ—l (5.3.0.14)

Equation 5.3.0.13 can be rewrittento O(x") accuracy only:

2
Re@ e (OU Wap ou +0(c) 0<Z<1l4en (5.3.0.15)
o 'ox) 0z

From equation 5.3.0.8, we know the mud pressure gradient %g—. As a consequence,

equation 3.4.0.18 becomes:

oU ¢ O2U
(2)frd =)= %
Re - ( a” +’y@ > Zz+0( €) 0<Z<l+en (5.3.0.16)
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which is true for 0 < Z < 1 4+ en.

5.4 Asymptotic equations in water and viscoelas-

tic mud

5.4.1 Water equations

Since mud-induced damping should appear at the same order as with Newtonian mud,

we define the same slow coordinate X as in the previous chapter:
X =Kz (5.4.1.1)
and we expand the functions ¢ and u as power series:

¢ = ¢ 4 k%W + 54D

4.1.2
a = a9 + g2 + k@ 4+ 5 )
We then consider the evolution of a train of harmonic waves:
1 +o0 ) 1 +o0 .
= 5 > Am(X)em g = 5 > Bu(X)er (5.4.1.3)

m=—00 m=—oc
where 8, = m(z — 1)

As a consequence, and since we got the same water equations as in the Newtonian

case, the asymptotic equation in water is the same as equation 4.4.3.6:

R . « [m/{)
dA,  imy Ky im? 3i €
V’ITZ, gk— = ——2—E m + —6—14 ——m E 2A7 Am—l—l + E OAZAZ m—1

(5.4.1.4)
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5.4.2 Mud equations

We adopt for the horizontal and vertical velocities in mud at the zeroth order the
form we used in 4.4.2.2: .

J— .

U(O) s E Z U})?)(Z)elgm

1 o (5.4.2.1)

(0) — (O) 7 60m
Vo =2 _Z: VO (Z)e

Since only the horizontal momentum has changed compared to the Newtonian case,

we obtain the same results as before except for o that becomes ¢

Lo tm -
oo = Ol—(z),um (5.4.2.2)
which mecans:
9 ‘ aAdk/gh
52, = — i dOM AV G (5.4.2.3)
€l

Let us note that the value of 7, does not depend on p,, since psp, = p, is the
dimensional viscosity.
In the end, the asymptotic cquation in mud at the first order is derived from

equation 4.4.2.11 with 7, instead of g,,:

Bm - W‘Am <1 - M) (5424)

Om

5.5 Further details

5.5.1 Surface and the interface

We now combine cquation 5.4.1.4 and 5.4.2.4 and truncate the scrics to obtain the

differential equation:

dA,, N ﬁﬁm (1 B t;mh(&m)) A @Am

dX 2 K2 O, 6
9 ¢ — m/2] (5.5.1.1)
T 2 At + Y Ay | =0

This truncated differential svstem is true for 0 < m < n.

We observe that equation 5.5.1.1 is the same as equation 4.5.1.1 except for o,,
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that became ,,.
Since this equation depends on v, s, kg, € and the 7,,. we deduce that the result

of the A,, will depend on the values:
9. pws pary A, b d, W, (5.5.1.2)

where g and py are fixed, pyr and the u/, depend on the mud we consider, and A, h,

w' and d depend on the geometry and the surface wave.

5.5.2 Energy variation in water

Following the same demonstration as in the Newtonian mud case, we naturally come

to the energy variation law:

X [:/_; 0] = 2 mZ:Re {im (1 - %@2)] An| (5520)

Equation 5.5.2.1 is actually the same cquation as 4.5.2.4, except for oy, which has

again been replaced by &,,.

5.6 Numerical results by using the first ten har-

monics

As we did in chapter 3, we are now going to plot these results for the viscoelastic
muds we previously studied.

Let us sum up the different muds we are considering:
e Case A: Gulf of Mexico mud. This mud is rather elastic.
e Case B: Mobile Bay mud. This mud is rather elastic as well

e Case C: Lianyungang mud. This mud complex viscosity’s phase is around 7 so

it is as clastic as viscous.

e Casc D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity’s

phase being close to zero.

We choose to plot the different results for those muds in the case h = 5m, A =

0.4m, w’ = 0.33rad/s and d = 25cm (corresponding to the case 1b of the previous
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chapter). In this case, we know:

[f; =0.24, € = 0.08, kg = 0.05 (5.6.0.2)

Surface and interface

In figures 5-1 and 5-2, we represent the variation of the first harmonics of the surface
and the interface. As usual, and even though we carried the resolution with 10
harmonics in order to take into account all the significant ones, we only display the
three most significant harmonics for clarity.

In figure 5-1, we observe that the damping is more important in cases A, C and
D than in casc B. This is what we expected from chapter 3, that showed that the
attenuation rate was insignificant for mud B (Mobile Bay mud). We also observe
that the Hangzhou Bay mud has a faster damping than the Gulf of Mexico and
Lianyungang muds. ‘

Damping is way slower to occur than in chapter 3. This is due to the fact that we
are considering a very thin layer of mud (since O(kq) = O(x?)).

Figure 5-2 show the variation of the interfaces. The results confirm what we
previously stated: the interface motion is strongest for the muds with the highest
damping. As a consequence, the Hangzhou Bay mud, which is the one with the
fastest damping. has the strongest interfacc motion. The Mobile Bay mud has the

smallest interface motion.

Energy variation

We numerically represented the total first-order energies in figure 4-3. This figure
shows that the total energy logically decreases, because it is dissipated in the viscous
mud.

In the case of the Hangzhou Bay mud (D), the energy reaches a ncarly 0-valuc
for X = 20 that is to say x ~ 83 sincc xk = 0.24 in the case we consider, or ¥’ = ¥ =
1670m. As A = 2—,}, A =~ 126m, we conclude that the wave is nearly damped after
around 13 wavelengths.

However, damping is slower for the Gulf of Mexico and the Lianyungang muds.
Their total energy only decreases by around 50% after around 25 wavelengths.

Damping is even slower for the Mobile Bay mud, where it nearly becomes insignif-
icant. Indeed, energy has not even decreased by 5% after 25 wavelengths.

In figure 5-4, we represented the variation of total energy. The dashed line repre-
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of viscoclastic muddy scabeds.
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Figure 5-1: Evolution of the



(a) Gulf of Mexico mud

0 5 0 15 y 20 25 30 35 40
(b) Mobile Bay mud

0.05 g . : .
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(d) Hangzhou Bay mud
Figure 5-2: Effccts of wave amplitude on the evolution of the first 3 harmonics of the

interface over different types of viscoelastic muddy scabeds. Warning, the scale is not
the same for mud D!
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Figure 5-3: Wave energy over a flat thick muddy seabed.

sents the right-hand side term of the following equation:

_0% [:; IAmP] - _7%2% [im (1 - %)] | A | (5.6.0.3)

As in the Newtonian case. the dashed line is so close to the solid line that it is

very hard to distinguish, meaning that our numerical results are right.

5.7 Flat bottom without mud, Boussinesq class

5.7.1 Governing equations

From the governing equation we found in the case of a thin layer of mud at the
bhottom, it is easy to deduce the governing equation in the absence of mud. Indeed,

the absence of mud corresponds to B = 0 in equation 4.4.3.6, which leads to:

R P L X LS _—
m. ﬁ_—6— m_g'ggm ; 1 m+1l+§al 1 Im—1 (‘)7 )

A a consequence, we obtain the following differential equation:

dA,  im? Jie [, ey _
ﬁ— — '—6— m T+ —8—-f§m Z 2A[ Am+l + Z alAl/lm—l =0 (0712)
=1 =1
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Figurc 5-4: Variation of the wave cnergy over a flat thick muddy scabed. RHS is the
value of the right-hand side term in equation 5.5.2.1. Warning, the scale is not the
same for mud D!



‘The same way, the energy variation becomes:

diX[g‘_;lel?] ~0 (5.7.1.3)

This result looks very logical, since it means that in the absence of mud, there is

no energy dissipation in water.

5.7.2 Numerical results by using the first ten harmonics

Since we don’t consider mud anymore, there are only tree parameters remaining: h,
A, and w. These parameters are only present in equation 5.7.1.2 in the ratio /K2,
which is around 1.

In figure 5-5, we comparc the surface displacement for three different cases: € /K =
0.5 (A), ¢/k? = 1 (B) and ¢/k* = 1.5 (C). These cascs correspond to different non-
linearity /dispersion ratios. The first case ¢/ k2 = 0.5 means that non-linearity is less
important than dispersion, whereas the case €/ k% = 1.5 means that non-linearity is
predominant. Once again, even though we carried the numerical resolution with ten

harmonics, we choose to only display the first three harmonics.
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Chapter 6

Sloping bottom, with shallow

viscoelastic mud

We now consider the bottom of the ocean to have a gentle slope, as shown on figure
6-1. We decide this slope to be of order O(k), so that it is comparable to the rate of
damping previously found in the flat bottom case. This means that in this chapter,
we will consider:
dhn'’ d*n
a0 O(’{ )* 2
dz’ dz'?

If the mud was Newtonian, it would naturally flow down the slope, even in a static case

= O(x?) (6.0.2.1)

(without any wave at the surface). This mud flow would disqualify the assumptions
we made up to now in this thesis, and this is why we decide not to study the case of
Newtonian mud.

As a conscquence, we consider in this chapter that the mud is a viscoclastic fluid,

as done in chapters 3 and 5. We will show that viscoelastic mud does not flow down
the slope, but is only subject to a displacement in a static case. Thus, viscoelastic

mud does not disqualify the assunptions we made up to now.

6.1 Static case of viscoelastic mud on a sloping

bottom

In this scction, we want to determine what happens in the mud layer in the static
case, ic in the absence of surface waves. For that, we won’t use any scaling and
dimensionless coordinates in this section. All the terms in this section are dimensional.
This is why in this section, and this section only, dimensional quantities are written

without primes.

179



Figure 6-1: Sketch of the axis used in the static casc.

Also, we will not use in this section the fact that the slope is gentle. We only use

the approximation that the mud layer is thin.

6.1.1 Coordinates

In order to study the static behavior of a mud layer on a sloping bottom, we choose
to use the axis z and Z, respectively parallel and normal to the slope, as shown in
figure 6-1.

As shown on the figure, h(x) is the water depth and a is the angle between the
bottom slope and a horizontal line. Z = 0 corresponds to the bottom of the mud
layer.

Since the problem we are considering is uniform by translation along z, we natu-

rally have:

0 ,

— =0 6.1.1.1

5 ( )
Because we are considering a static problem, we also naturally have:

0

— =0 6.1.1.2

As a conscquence, all quantities only depend on one variable: Z, which is normal to

the slope.

6.1.2 Mud equations in the static case

In the static case, all the forces acting in the mud are the gravity g and the shear

stress 7,7. Since we are considering the static case, the sum of these forces is zero.
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Let us project this equality on the z-axis, tangent to the slope. We obtain:

8’7};2
0z

—pwgh(x)sin(a) + =0 (6.1.2.1)

Viscoelasticity can be represented with a Kelvin-Voigt model, where stress 7;; is a

function of the strain F;; and the strain rate 65;”:
OF;;

where F is the elastic modulus and p the viscosity of the material. Since we already

stated that all differentiation with respect to time was zero, equation 6.1.2.2 becomes:
Ti; = GEy; (6.1.2.3)
In other words, viscosity docs not appear in the static case, only clasticity docs.
From equation 6.1.2.3, we know in particular:

Tz = GEypz (6.1.2.4)

Introducing the displacement U tangent to the slope, equation 6.1.2.4 becomes:

Combining equation 6.1.2.1 and 6.1.2.5, we obtain a differential equation for the

displacement U:
h()'n(a)+G2 =0 (6.1.2.6)
J— - TSl —_— 1.2,
P g 172

By integrating this equation twice, we obtain U(®):

~ pwgh(z) sin(a)
- 2G

UZ) Z2+cWz 4+ c® (6.1.2.7)

with C and C® two real numbers. From the boundary condition at the bottom,

we deduce:

UZ=0)=0 (6.1.2.8)
and thus C® = (0. The same way, we deduce from the shear stress at the interface:

au

Tey = = 0, Z=d (6.1.2.9)
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Figure 6-2: Sketch of the studied case. d is the mud layer depth measured vertically.

and thus: '
oV — _,oWgh(a:) sin(a)
G

(6.1.2.10)

In the end, cquation 6.1.2.7 becomes:

_ pwgh(z)sin(a)
B 2G

U2) Z(Z - 2d) (6.1.2.11)

We obtain that the displacement in mud is a parabola, with a 0-value at the bottom
of the layer and its highest absolute value at the interface with water (Z = d). Let
us note that if sin(a) > 0 - meaning that the water depth decreases with x - U < 0
for all 0 < Z < d. This is what we expected since the displacement should be down
the slope.

This closes the study of the static case. We obtain that. with a viscoelastic mud,
there is only a displacement of the mud down the slope. We do not have a steady flow
as we would have with a viscous mud. As a consequence, we can definitely study the
influence of water waves at the surface without the static case having any influence

on the motion.

6.2 Scaling

Now that we already studied the static case, we focus on the effect of ocean waves at

the water surface, as done in the previous chapters.
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As before, we define a dimensionless complex viscosity:

(6.2.0.12)

(6.2.0.13)

where p; is the characteristic viscosity deduced from the different sets of experiments.

Because of calculation simplifications, we will see that we still do not need to assign

a particular value to ps for the different muds. Indeed, we will see that neither s

neither any non-dimensional viscosity p will be appear in the final results, but only

the dimensional viscosity p'.

For simple harmonic waves:
Taz = —Wﬂ(w)Exz

To sum up, the new scaling for this section are:

z = ka' z=%b t = k(gh)'t’

gh
C=5  o=9¢[a0n"]"

We decide to use a new axis Z’ in mud:

Z' =2 — W) —d

as shown in figure 6-2. This way, 2’ = 0 is the bottom of the mud layer.

r A 7
T = ka' Z=% t = k(gh)\2t
/
p=-2 U=—1U V=—1_v
pwgA v/ gh errng\/gh
_ _ kyy _ _k yy
= KqA ) U= su V= efmdv
Ty = i Byy= —Fyy 1= —dop!
1 pwgA 1.t v/gh 17,t 1) erisn/gh i
_ ¥
=

(6.2.0.14)

(6.2.0.15)

(6.2.0.16)

(6.2.0.17)

Let us compare our new coordinates in mud with the ones we had in the flat bottom

case. Now, the axes follow the slope. This fact brings a correction in the differentia-
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tions, that become:

AN

0z Z

w0 s (6.2.0.18)
8z Bz redzdZ

In order to emphasize the fact that g,—ﬁ is small, let us introduce the slow coordinate:

X = kr. (6.2.0.19)
Thus:
ot
dx dX
ﬁ ﬁ2g2_h (6.2.0.20)
drz T uxe
We can now rewrite relation 6.2.0.18:
8 0
02 oz ,
or 01 redX0Z

6.3 Equations in water to order O(x?)

Let us express the velocity potential in water as a power series:

where z = —h(x) + ergn corresponds to the mud-water interface. We then obtain

O™ }
§ a5<”+1> (6.3.0.23)
— n! [ Oz d

And thus:

(z + R dhog™ (AN ey PR
Z ! (9:52 (;1:’ b+ 2da; ox N dz ¢ dm2¢
(6.3.0.24)

and

¢z = ZOO: (24 P oy gy (6.3.0.25)



6.3.1 Laplace equation

From the Laplace cquation in dimensionless variables, we know:

a o 0% {
Hogt 55 =0 (6.3.1.1)
and from 6.3.0.24 and 6.3.0.25 we deduce:
H2pn=2) dh 3@'(”’1) , d2h dh \°
my _ _2[0 7 , AR (=1 4 2 (G L)
v, ¢ 8 ( o P T axe? (dX) ¢

(6.3.1.2)

6.3.2 Kinematic Boundary condition at the interface

In dimensional form, the interface kinematic boundary condition is:

%0 - ) i) W) @ DIOF o — —hia) + eman(et)
(6.3.2.1)

In dimensionless form we obtain:

06 0n _ 00dh  ,000n

5, = a5~ Kd K e dX + €rg Koag: 2= —h(z) + ergn(z.t)  (6.3.2.2)

We use a Taylor scrics expansion of this equation to obtain:

o) ¢ 4, On dh Op B e
5_+€’1d7732“““d§+“ ( R + e 8:1:)8 +O0(kY), z=-h (6.32.3)

As a consequence, from the series of equation 6.3.0.22 we obtain:

28_77 — /{gﬂ a¢(0)
ot dX Oz

o+ engnd'® = kgr +O(k"), z=—h (6.3.2.4)

From the relationship 6.3.1.2 and knowing that ¢(z = —h) = ¢, L2(z = —p) =

ozn
& we deduce:

a0y dh 99V
_ 3

4 ‘
Wiy = K Ok (6.3.2.5)

Cb(l = Ky

and as a conscqucence:

o0 _ 3 dh 99

- 4 3
K T Y e O(K) (6.3.2.6)

¢(1) —
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As a consequence, from equation 6.3.2.6, we can deduce an explicit expression of all
‘the ¢™):

92V dh 9V, d*h dh \?
2 _ _ 2( 2 AR} (2
o\ = —k — + 2k + K* 2¢ + K ( ) )
oz dX 0z dX dx (6.32.7)

5»2¢(0)
s —/{2 8$2 + O(KJ4)
921 dh 96, d®h dh \?
@) _ _ 2 @) dh\"
¢ . (83:2 T2 o TR ga? T (dX) ¢
(0) 6.3.2.8
Y (L L B 6329
= O(x%)

Combining all these equations together, the final expression of ¢ becomes:

on dh O¢ 0>] 2 (z + h)? 9?0

¢ =9 +r*(z+h) { = — K s H O (6:32.9)

6.3.3 Kinematic Boundary condition at the free surface

The kinematic boundary condition at the surface can be written as:

99 ¢\ _ o .
(Ct + 8—:6%) =¢,, z=¢€C (6.3.3.1)

Knowing from equation 6.3.2.9 that:

o? ¢(0)

oo On dh 9 ) \ -
P [ a1 TFax e | TR BT H O (6.3.3.2)
we obtain:
0¢ 999 _ yon_ dh H(® 20 ) )
e ar T M T Nax an T W O (6.3.3.3)

Let us now introduce the horizontal velocity at the bottom:

(0)
u® = 82; , 2+ h(z)=0 (6.3.3.4)
0 © 2 -
G + e [(h + eQ)u ] = Ra: + O(K7) (6.3.3.5)
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Let us now introduce the depth-averaged velocity u. It is related to u(® by the

following relation:

24
@_______l____.__/ %dz

h+ €€ — €RAT J _htengn Oz
€
1 / 0O 4 O(x)d: (6.3.3.6)

T h+ €C — €RgM —htekan
= u® + O(x?)
Turning this last result around, we obtain the relation:
w9 =7+ O(x?) (6.3.3.7)

Using this relationship, we obtain equation 6.3.3.5 in terms of u instead of uy:

G+ 8%: (R + eC)t) = kgny + O(K?) (6.3.3.8)

We can rewrite this equation:

G~ e+ - [(h + )] = O(?) (6:3:3.9)

This result agrees with the equation we obtained in the flat bottom case (chapters
2 or 3 since the mud model does not change the calculations in water). Indeed,
equation 6.3.3.9 reduces to equation 2.3.2.9 in the case h(z,t) = 1, and this allows us

to check the calculations.

6.3.4 Dynamic boundary condition at the free surface

From the dynamic boundary condition at the surface we know:
2 I 2
K (e + () + 56[/{‘@*); +¢7] =0, z=¢((z.t) (6.3.4.1)

From the development of ¢ of the equation 6.3.2.9, we know that:

do 9, [ O dh 3?07 K2 8360 y

i TR dea—tg TR N ior | 7(h2+26<h)ax2at +O(xY) (6.3.4.2)
D6\ > 90 2 L 960 §340)

(55) N ( O ) — KK f;x aig +O(x") (6.3.4.3)

187



and:

(gg)Q:(xﬁﬂ (6.3.4.4)

So we can deduce:

) 1 /867 o,
o +C+ 5\ %2 = O(k") (6.3.4.5)
Let us differentiate this expression with respect to z:
82 ac 1 8 (96D )

and we can now introduce the horizontal velocity at the bottom u(® = -%%(2

8u(°)+£3_(;_+1 8(
ot oz 28:6

02 = O(k?) (6.3.4.7)

As done for the kinematic boundary condition, we write this equation as a function of
the depth-averaged velocity #, using the relation between u(?) and @ of the equation
6.3.3.7:

ou Ou ¢ 2 .
N + eu% e = O(xr%) (6.3.4.8)

This result agrees with the equation we obtained in the flat bottom case (equation

2.3.3.6). This equality confirms the calculations.

6.3.5 Equation of the total pressure in water

From the Bernoulli equation, we can deduce the total pressure (sum of the static and

the dynamic pressure) in the water as a function of the potential:

P'=p,+ 1y
o' , (6.3.5.1)
:—PW( ¢ (V¢) +95/>

ot’

In dimensionless form, this last equation becomes:

€ 1 z .
p=—¢t— 3 [(¢z)2 + E§(¢z)2:| — o —h{(z) + ergn < z < ( (6.3.5.2)
And since we know from 6.3.4.4 that:
(¢:)* = O(x") (6.3.5.3)

188



equation 6.3.5.2 can be reduced to:

, E , 9 A 2 - IS
p=—¢ — -2-(@1)‘ = O(K*), —h(z)+ergn < 2 < (6.3.5.4)
In particular, we obtain the pressure in water at the interface z = —h + exgn:
h(x €, -
p= *(6 A 5(02)° + O(x") (6.3.5.5)

By Taylor expansion, we know that:
O(z = —h + exan) = 6= = —h) + O(K?) = + O(?) (6.3.5.6)

As a consequence, 6.3.5.5 becomes:

h
b= (j) — (@0)e — Kan — %(((150)1)2 +O(K%)|, z=—h+ €RqT) (6.3.5.7)

6.4 Equations in mud to order O(x?)

We now want to study the mud layer in the dynamic case. Siuce the static case
has already been studied, we only focus on the wave-induced phenomenon. In other
words, we only consider the effects of the dynamic pressure, since the static pressure
has already been taken into account. The way we did in the flat bottom case (chapter
3), we go to order O(x?) in order to study the drift current which appears because of

2

non-lincarity at order O(e) = O(x?).

6.4.1 Interface kinematic boundary condition in mud

Let us write this boundary condition at the first order. We don’t need to go to second
order since this boundary condition will not be needed to calculate the drift.

The instantaneous equation of the interface is:
F'(2'\Z't)y=2Z"—(d+7)=0 (6.4.1.1)

The assumption of tangential motion then requires that:

OF (0 dn 9\ .,  OF
ot U(ax'“EaZf>F+V

. 7l !/
27 =0, Z'=d+n (6.4.1.2)
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which means. using equation 6.4.1.1:

on’ on' dn’ ,
9 _ gl g Ly 2 =d+n
50 Ual [ T 0, +n

or in dimensionless form:

on an dh

As a conscequence we obtain the following equation:

877 dh
__/___ 7 —
5t =V ldX—I-O() 1+en

By Taylor expansion around Z = 1, we obtain:

(977 dh
A § Sl
a =Y L ax oW}

N
I
[y

6.4.2 Conservation of mass in mud

dh '
(ﬁ—ﬁ——i>( N 0 0<Z<1ten

or kqdX 0Z 07

By keeping only the first order, this means:

oU k dhoU 0OV
%—aﬁ—é—z—— aZ—U, 0<Z<1+ET]

(6.4.1.3)

(6.4.1.4)

(6.4.1.5)

(6.4.1.6)

(6.4.2.1)

(6.4.2.2)

This cquation will be used later to deduce vertical velocity from horizontal velocity

in mud. Let us note that this equation is exact, contrary to most other mud cquations.

6.4.3 Horizontal momentum in mud

The equation of momentum in mud, projected on the x-axis, gives:

- 17 ‘ :
?E.}.g[U(ﬁ_iﬂﬁ)UJrvgé{l :_zy<_@__iﬁi

ot or kqdX 0Z 0z or kqdX 0Z
Re® xd | 07 \or " rpdx oz )™
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where the coordonates (x,7) are defined in 6.2.0.18. From this equation we simplify:

U 1 Adry OPy & dh 0Py (,0U k dh OU  OU
o Re®d 07  or k, dX 07

9z redX oz V04>+O()
(6.4.3.2)

where U is the horizontal velocity of mud, P; the hydrodynamic pressure, A the
amplitude of the free surface, v the ratio of densitics v = pw/par and d the mud
depth, and Re® the Reynolds number for this chapter:

o paAdk/gh
Re® = f’lf—u—g (6.4.3.3)

6.4.4 Vertical momentum in mud

The dimensional equation of vertical momentum is:

’ I y p! ;- ,
PM [8l+U/ (——a——~—g—}—l— d, )V’+V’8V] = _8 d+[8724 + (ﬁ_‘@_£> sz]

ot . ox'  dx' 07’ oz YA o0z’ ox'  dx’ 97’
(6.4.4.1)
and becomes, in dimensionless variables:
oV 0 k dh 0O ovy] v 0P,
b [U (a— B —Ha_z) vt Va—z] e 6402
€ (%ZZ 8 k dh 8 e
+ 22 | KKy — =L
Rer?ky | OZ oz ke dX 0Z
So, in the end,
)i e
57 =0(erq)| 0<Z <1+ en (6.4.4.3)

In other words, we find that the vertical pressure gradient in mud is of order O(x?).

This equation will be used to evaluate the pressure in the entire mud layer.

We can then simplify the horizontal momentum equation 6.4.3.2:

Y — €

oU 1 Adry  OP oU  k dh . 0U ou
ot Re®d 0z [ ox

Ua—x — Z;ZZX"UaZ +Vaz) + O(€*) (6.4.4.4)
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6.4.5 Interface dynamic boundary condition

Let us call n = (n.,ny) the vector normal to the interface. In dimensional notations,

we know that the components of n are:

d(=H+7')
Ny = dx'
/7 7 2
\/ 1+ (A
, (6.4.5.1)
n, =

2
d(—h/+7)
W + (detm)

since A/(z’) and 7" do not depend on Z. In dimensionless variables, we obtain:

K2 dh + ekrgR

oz
\/1+&2 K +end%;1)2
= d_X +0(x) (6.4.5.2)
1
n, = -
\/1+/12( 4 erqgdl)
=14 O(x")

Continuity of total (hydrodynamic and dynamic) stress on the mud-water interface

then requires:
Toene +1Thzny = PNy, Z =1+ €n

‘ (6.4.5.3)
Lizng +1zznz = —pnz, Z=1-+en
Total stress in mud is the sum of hydrostatic and dynamic pressure:
€K
S AR
T;; = —Pé; + 'yRe(Q) (6.4.5.4)
Introducing this sum in equation 6.4.5.3, we obtain:
€K €R
-P+— Ne + —5 5 TazNz = —PNz, Z =1+
fyRe( ) fyRe(Q) ‘
o (6.4.5.5)
€K : .
Wrxznx ( P+ TRel 2>7'44) Ny = —pny, Z =1+ e

From the approximations of n, and nz that we demonstrated in 6.4.5.1, equations
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6.4.5.5 become:

€K o dh €K 5 dh B

€K , dh €K 4
_'yRe( Tun e ( P+WTZZ) =—p+0(K*), Z=1+en
(6.4.5.6)
These last equations can easily be simplified to:
k dh
Taz = —yReP(P —p)=—= + O Z=1+¢
7 = —yRe?( )=y + O, n (6.4.5.7)

P—p=0(K"), Z=1+en

Let us now make use of the second equation (corresponding to normal stress condition)
to simplify the first one (corresponding to tangential stress condition). Since P —p =
O(k?), we obtain:
Tz = O(K%), Z=1+en
‘ ) (6.4.5.8)
P—p=0("), Z=1+en
We now focus on the first part of equation 6.4.5.8. Through a Taylor expansion,

we can approximate this equations around Z == 1:
87’12 9
Toz(Z =14en) =1,2(Z=1)+ 67}8—Z|Z:1 + O(¢€%) (6.4.5.9)

and as a consequence:

Tez(Z =1)=7o2(Z =1+ en) — endaz . Lt O(€?)
o (6.4.5.10)
=~ + O

Hence, we obtained an interface boundary condition that we will use later to find the
drift in mud:

aTzZ l

Tz(Z=1) = ilrya

4o T O(e%) (6.4.5.11)

Let us now focus on the second part of equation 6.4.5.8. From this equation we

know that:

P=p+O(%, Z=1+en (6.4.5.12)

From 6.4.4.3. we know that the vertical gradient of mud dynamic pressure is of order
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O :‘{,2 . As a consequence, we have:
?

P=p(Z=1+en)+0(k*), 0<Z<l+en (6.4.5.13)

Water pressure p is known in any point of the water layer thanks to the Bernouilli
equation. In particular, we know from 6.3.5.7 the water pressure at the interface
(z = —h +€ran):

h(z)

P=— - (d0)e — Kan — %((¢O)I)2 + O(K?) (6.4.5.14)

So we conclude from 6.4.5.13:

h(z)

€

P = — (o)t — Kan — %((cbo)x)"’ +O0(K*), 0<Z<l+en (6.4.5.15)

and we obtain in particular the dynamic pressure in mud:
, €
Py = —(¢0)t — kan — —2—((<z§0)m)2 +0(k*), 0<Z<1+en (6.4.5.16)

From equation 6.3.4.5, we also know:

9" € <a¢(0)

2
g + 5\ 7z ) = —(+ O(k") (6.4.5.17)

which is valid for all z since ¢® and ¢ do not depend on the vertical coordinate.

Combining equations 6.4.5.16 and 6.4.5.17, we get the dynamic pressure in mud:
Pi=C—rm+O(K*), 0<Z<1+eny (6.4.5.18)
and the dynamic pressure gradient in mud:

P
0P _ %6 _ Lo, 0<z<1+en (6.4.5.19)

As a consequence, we can now substitute the dynamic mud pressure Py from the

horizontal momentum equation 6.4.4.4, for 0 < Z < 1 + en:

ou lAaTIZ__7<8C @)_6( U  wdh 0U _9U

- o T Es > AR & S o 2
ot Re® d 07 oz oz Uﬁﬂf Kq dXU@Z + Vf?Z) o)

(6.4.5.20)
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6.4.6 Bottom kinematic boundary conditions

At the bottom, we impose the no-slip boundary condition:

[U=v-0 z=0 (6.4.6.1)

6.5 Asymptotic equations in water and viscoelas-

tic mud
6.5.1 Surface and interface

Water equations

We consider that the dependence of the wavenumber on z, because of the bottom

slope. As a conscquence, we introduce new variables:

1 X
X =kx, &= ;/ RY2dX —t (6.5.1.1)
so that the derivatives become:
9,9
ot 0¢ -
3 P 8 (6.5.1.2)
_ _ + e

or " "ox T Jhoe

With the new variables defined in 6.5.1.1, equations 6.3.3.9 and 6.3.4.8 become:
~Ce + Kane + khxt@ + khux + €Ceh 20 + eCh™ e + B?ae = O(K%)  (6.5.1.3)
~t¢ + eh™ Puug + kCx + h712¢ = O(x?) (6.5.1.4)
From cquation 6.5.1.3 at the first order, we deduce:

e = b2 + O(K?)
= ‘1/2C+0(f€ ) (6.5.1.

¢+ O(k7)

[}
(@2
—
(@3
~—

ﬂX = h_l/QCX -

h3/2
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We now consider (equation 6.5.1.3 4+h'/2%% equation 6.5.1.4) at the second order and

we obtain:
1/2 -

KaNe+rhxt + khix + eCeh ™20 + eCh ™1,

(6.5.1.6
+ B2 (eh™Pute + k(x) = O(K?) )
Using the relations 6.5.1.5, equation 6.5.1.6 becomes:
h
B et hxh 3¢+ (Y20 = 2200 ) 4 <Ceh ™'+ —ChTYG
K 20327 ) K K (6.5.1.7)
+ hl/2 (Eh—l/zh_l/QCh—_l/2C€ + CX) — O(I{)
K
and finally:
2hY3Cx + (+=— k S = —ne + O(k) (6.5.1.8)
* h1/2 ohk " C ke o
Now let us expand the functions ¢ and 7 as power scries:
= O 4 @ 4 2@ 6510

n= 17(0) + 1177(1) + Rzn(z) + .

Because equation 6.5.1.8 is non-linear, we decide to adopt the following form for ¢

and n(©:
1 = 1 +o00
o) _ * N\ _imé o _ 1 ime
¢ = 2m;x A (X )e = 9 m:Z_oo Bm(X)e (65110)

where we sct Ag to be Ag = 0. Then we know that:

8CX ~3 e+ ce.

(6.5.1.11)

30(C9)? &3 5N
aE $ S DUINIED SRR ES
me1 =1

Then, following the procedure in section 2.5.3, we deduce from equation 6.5.1.8:

v hdAm hx € 3 ‘ 4 m/2] AA Kq tm
m, E)—(:—_i_él\/?z_ ————m ZQA A + Zal m—1 —f——;?B =0
(6.5.1.12)

where [m/2] is the integer part of m/2 and o is a cocfficient cqual to 1 for I = [m/2]

and cqual to 2 otherwise.
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Let us observe that equation 6.5.1.12 becomes equation 2.5.3.5 in the particular

case h(X) = 1. This result confirms our calculations.

Mud equations

Let us find other coupling equations between the surface and the interface, ¢ and 7,
derived from the mud equations.

Equation 6.4.5.20 gives at the first order:

ou ar. oC
Yoz Y5 "
5% Y By T + O(k) (6.5.1.13)
with:
@_ __ € |_ .
o' = Re® |~ O(1) (6.5.1.14)

From the change of variables 6.5.1.1, we convert equations 6.5.1.13, 6.4.2.2 and
6.4.1.6 at the first order in:
0y, U 129 o, o<z <t
= i . 0<
G+ e = IS 00, 0<Z < 1+ enfa)
71/2(‘3U(0) k dh OU© oV ©) _

h - —— — = 0<Z <1 x
G wpdx 97 oz = O + en(a)
o' dh OUW©)
Sy BRI o). 21
8§ Rq dX aZ
(6.5.1.15)
Since the water equations are not linear, we consider all harmonics and write:
1 & : 1 « .
0 _ = (0) 77\ imé 0 _ = (0) ¢ 7y _imé&
v = > U (Z)ems VIO = Z_j VO(Z)e
e o e (6.5.1.16)
(T22)" = §m; (Te2) W) (Z)e™

Let us find an equation between A, and B,, from the mud equations. From the

first equation of 6.5.1.15, we know:

e d(TmZ)(rg)

17 +imUY = h=Y2imy A, (6.5.1.17)

From cquation 6.2.0.14, which only applics to simple harmonic waves, we deduce:

AU

4 =
4 O(r") (6.5.1.18)

(TxZ)Sz)) = Hm
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As a consequence, equation 6.5.1.17 becomes:

QU im im
m 0y — p-1/2 ~oe
7 + a(Q)umUm =h Q(Q)umfyAm (6.5.1.19)
which can be simplified as:
cUY 0 ~1/2=2
-7 — 52U = —p71252 A, (6.5.1.20)
where G2 is as in the flat bottom case (chapter 3):
52, = —i— 5.1.21
ol ZQ(Q)Nm (6.5.1.21)
Knowing the value of o, we deduce:
1Adk+/ gh
ai::—4””wpi VI (6.5.1.22)
Hom

Let us note that the value of &, docs not depend on py, since psp, = pl. is

the dimensional viscosity. As a® and Re® do not appear in equation 6.5.1.19, we

deduce that we will not need the value of i, to solve it.

We also know the boundary conditions:

U9 =0, Z=0
dU(O) o (()5123)

dz

and thus, Ym:
UW =0, z=0

AU
a7

We obtain the value of the horizontal velocity:

(6.5.1.24)

=0, Z2=1

A
U _Jem [1 — [1 + tanh(&,,)] cosh(6,, 2)

Vh

(6.5.1.25)
+ [tanh(G,,)] sinh(&mZ)]
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From 6.5.1.15, we also know:

Vi __im & dh AU

— = 3.5.1.26
vm, =z VhE " RredX 0Z (6:5.1.26)
Using the boundary condition:
VO(Z=0)=0 (6.5.1.27)
we obtain:
) - YAm . e
V. =—im—= o [amZ — [1 + tanh(6,,)] sinh(5,,2)
+ [tanh(d,,)] cosh(6,,2Z) — tanh(&m)] (6.5.1.28)
Kk dh
(0)
o Kq dXU

It is interesting to note that there is a new term in the expression of v, compared to
the flat bottom case (chapter 3). This is duc to the fact that we arc not considering
the same axes anymore. As a conscquence, the vertical velocity n'nlqt be corrected
with a term proportional to the horizontal velocity and the blope . Now, still from

equation 6.5.1.15, we have:

Y, B (X) = —— (V(O)(Z —1)—

K~ dh
(O) = - -r. .
—Vm —U (7 l)) (6.5.1.29)

/‘nddX m

After using equations 6.5.1.25 and 6.5.1.28, we obtain:

YA, tanh &,,
Vm, | Bn(X) = 1 [1 _ e ] (6.5.1.30)
h O
Combining cquations 6.5.1.12 and 6.5.1.30, we naturally obtain:
dA,, h € 32 /2l
X
vm, \/EdX+4\/_ - ZQAAm+z+ZC¥1Az m—l -
(6.5.1.31)

M Kq YA, ! tanh a,, 0
2 kK h Om n

where [m/2] is the integer part of m/2 and oy is a coefficient equal to 1 for [ = [m/2)]

and equal to 2 otherwise.
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This equation will be solved numerically for Ap,.

6.5.2 Drift current

Let us study the drift current in mud by going to order O(k).

At this order, we had for 0 < Z < 1 + e from equation 6.4.5.20:

U (0)0(raz) oU k dh OU QU

D ¢ B S (= J il § Sutiet il 2

o Y oz Vgps TR - (l or maxUaz *Vaz ) O
(6.5.2.1)

With the variables defined in 6.5.1.1, this equation becomes:

_QQ . (2)8(7102) 7 oC

&~ oz ——ﬁgg(@—mn)—%—é—i

1 U kdh U N VaU 4 0 (6.5.2.2)
Vi 06 rgdX 0z 0z
At order O(k), this equation is:
U 90T v 9 (é b _’Enm)) _ 734(1)
o 0z Vh oz : 0X
e[ 1 au<0> k dh U
— (Ui (0 _ = 2"
K [ v (V max?"”) oz
(6.5.2.3)

We won't study in this thesis the harmonics of ¢ and 7 the way we did for ¢ ©)
and n®. The most interesting part of this equation is that a drifting term appears.

Indeed, the zeroth harmonic of U (1) is not zero:

(1) (2 X
Nrez)y  _ KakRe Z[—-l— (U(m(—im)(U(m Lfgor?’z(im>U7§r?))

aZ 2/{/ m -m

(6.5.2.4)
+ <V<0> — ii}iU(m) U, + (1/(0) _ K dh U<0>> 8U,(,‘3)]

Ky dX 8Z

We can once again use the relation 6.2.0.14 applying for simple harmonic waves, and

we obtain:
dutd
dz

(T2)2) = + Ok (6.5.2.5)
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as a consequence, equation 6.5.2.4 becomes:

82U()7/s: Re(°) = [ (

o1 UO(—; )US%“UE%(m)U},?))

m=1

dh o) Kk dh Rl
TAQIA el §() —m (O _ K 2N 0 m ]
++< maxom ) oz T\Vm T ax V) oz

which can be simplified:

U maRe® i [< o _ & dh U(0)> s, (V(O) _#dh ) oy o]

072 2ok — kedX ™ 0z kg dX 9z
(6.5.2.7)
Knowing that UE% = (UY)* and:
o _ K dh v _ £ 9
= 2
< - Ky ax " m Ky dX m (60 8)
we obtain:
UV kgRe? & o _ & dh o) U _
5T = o Zlére (v_m ey S ) A (6.5.2.9)

Equation 6.5.2.9 will be integrated later to give Uél). We notice that this drift
only appears at the order O(r). and is as a conscquence small.

This equation is the same as the one we obtained in the flat case (equation 3.5.3.6),
except that the vertical velocity Vi is corrected by a term that accounts for the

sloping bed.

6.6 Further details

6.6.1 Surface and the interface

Let us recall equation 6.5.1.31:

[m/2]

dA, h .
1/4 X “ A
pl/aliim x T peatnt hw ZQA At + ZQZAZ -
(6.6.1.1)
Kd 17 anh(a,,) B
™ [1 - _57;_} Ap =0
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Knowing that:
Ay, hx _d(h*Ay)

= 2 A, = .6.1.2
X = 1vh ax (6.6.1.2)
equation 6.6.1.1 becomes:
[m/2]
d(h'/*A,, ) € ”
dx l{8h5/4 ZZA m+l+ ZQIA Am l
(6.6.1.3)
Kq 17 tanh(am)
— 1- A, =
e 2R [ Om 0
By truncating the infinite series we get:
[m/2]
d(h'/* A, ) € ”
dX 8h5/4 ZQA m+l+ ZalAl m—1
(6.6.1.4)

Kqg 1Y tanh(am)
od i a2 [y
K onsA [1 Om 0

The truncated differential system is true for 0 < m < n.

Once again, we note that equation 6.6.1.4 becomes equation 3.6.1.1 in the flat

bottom particular case h = 1.

6.6.2 Drift current in mud

We also truncate the result we got in 6.5.2.9 for the drifting in velocity:

62U KldRe( 2) (0) Kk dh (0) 6U7§?)
- R ——= — .6.2.1
022 Z ( kg dX Um> 0z (6 )
In the end we get:
Un’ _ yAn
Un _ 7 [—om sinh(0,,Z) + o, tanh(o,,) cosh(o,, Z)] (6.6.2.2)

0Z  h

) — imyA* ok Z —sinh(ak Z) + tanh(o},)(cosh(o}, Z) — 1)]
(6.6.2.3)
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Combining 6.6.2.2, 6.6.2.3 and 6.6.2.1, we obtain:

UMY kgRe® A
p :Z::H; - mz::l %[im;:nm 62,7 — sinh(5%, Z) + tanh(57, ) (cosh(5%, Z) — 1)]
v A= sinh(6,,2) + 6, tanh(6,,) cosh(&mZ)}}
(6.6.2.4)
which can be simplified to:
UL L kaRe® & m

3 ]Am|2%[&—*[&:‘nZ — sinh(6%,Z) + tanh(6%,)(cosh(5% Z) — 1)]

m=1 m

[0 sinh(6,,Z) + 6, tanh(5,,) cosh(&mZ)]]

azz Lokh3/?

(6.6.2.5)
Let us solve this equation to get the drift velocity.

82U(§1) n ) QK/dRe(Z)C\ m . . ~ . _ ~
577 = ;::1 | Al [7 Moffh;;/z\;[a( — 00, Zsinh(6,,2Z) + 6,0, Z tanh(é,,) cosh(6,,2)

+ Gy, sinh(0), Z) sinh(6,,2) — ,,, tanh(6,,,) sinh(a7, Z) cosh(5,,2)
— (tanh(6,,))*Gm cosh(a? Z) sinh(6,,7)
+ 0 tanh (G, ) (tanh(d,,))" cosh(6,,2) cosh(6,,Z) + (tanh(G,,))* Gy, sinh (G, 2)

— O tanh(,,) (tanh(d,,))” COSh(&’”Z))H
(6.6.2.6)
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te s SRy =T ~R =1, et ;
We write 7,, = &,» + i, , where 6% and ¢, are real. Let us first integrate once. We

use the fact that &, + &, = 267 and &,, — 67, = 2i5.;:

U(l) Z A [ ndf;p [ TZ [ ~:n(Zcosh(5mZ) _ Sinhéc:nZ))
+ &7, tanh(G,,) (Z sinh(6,,2) — g%wm—Z))
% (1 + tanh(G,,)(tanh(5,,))")
+ %%(taﬂh@m)(tanh(ﬁm))* - 1)
_ %&n(tfmh(&m) + (tanh(G,,))*)
N %{f’lﬂz)&m(tanh(&m) — (tanh(6,,))*) + (tanh(5,,))" cosh(6,,2)

— tanh(&,,)(tanh(é,,))* sinh(5,, 2 )” +C, 1)]
(6.6.2.7)
with €% to be detormmed from to the boundary conditions. Integrating again, we

get the expression of U0

o Z | A2 [ o KaRe™® [_77_1[_ 6;(Zsinh(6m2) B 200911(;} Z))

pokh3/? i Trm 0:

Z cosh(6,,2) 2sinh(&mZ))

+ oy tanh(d,,) (

(O%h(QO’RZ) . g
W m(1 + tanh(é,,)(tanh(G,,))*)
cosh(2i61 7)) _ . IR TVIUN
BT (o) ) =1
smh(ZJRA) anh (5 ))*
—8(0—3)—5— m(tanh(a,,) + (tanh(G,))")

sinh(2i6. 7) sinh(6,,2)

om(tanh(a,,) — (tanh(d,,))") + (tanh(d,,))"

8(07,)? G
osh(d,, 2 .
- tanh(&m)(tanh(&m))*(:9_%_1_50__2]] +COWZ 4 Cv(n)]
" (6.6.2.8)
From cquation 6.4.6.1, we know that:
UM (Z=0)=0 (6.6.2.9)
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2
As a consequence, we deduce the value of (2

2 S ~
3202 s kaRe® m 205, Gm(l+ tanh(G,,)(tanh(G,,))*)
‘m = - 5 52 (G )2
Holv o 20m = T 8(m) (6.6.2.10)
Om(l — tanh(,,)(tanh(5,,))*)  tanh(G,,)(tanh(5,,))*
_ = + ~
8(a},)? T

We now make use of the interface boundary condition 6.4.5.11. From this equation

bl

we know that:

i € o Tag)©
(rez)V(Z = 1) = —;n((’)——( T (6.6.2.11)
and so:
0 (0)
(1) . € 1 a(Trz) 5(sz)m o
(Tez)o (Z =1) = —EZmZI Bm——aZ—‘Z:l + B"“TIZ . (6.6.2.12)

From equation 6.2.0.14, which only applies to simple harmonic waves, we know:

aup

VD, (22)) = i 7 T Os") (6.6.2.13)
can replace 7,z in this last equation:
aU(” el 52U Ul
Yoz IZ:l :—EZZ Brptm 072 ‘Z:l—*_B mim =375~ 972 ,Z 1
m=1 |
(1 52U . . 62U0>
- _EZZ ’”(’Um 072 IZ:l) (Bm)"p mT 572 |4 (| (6.6.2.14)
m=1 |
€1 — 82Uy *
:"E§Z§R Bm(“m 972 IZ—l)
m=1
Knowing that:
YAm o
B, = TG(am) (6.6.2.15)
and:
Uy YA 1 ,
572 lz-1 = _WU 2 sech(G,,) (6.6.2.16)
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equation 2.6.2.12 becomes:

oUs”

e o
82 |A 1 = K Lo h3/0 Z% PYA G<Um),um')’14 ( m)zsech( )]
e‘y? 1 0 s . | N
- zw = Z | A PR [G (6113, (57, *sech(57,)] (6.6.2.17)
- 2’*# h3/2 Z | A S [iG(Grm) i, (5 ) *sech(G7,)]

Let us truncate this last equation:

2
€7y

(9
I(Z 1)~ 25# h3/°

Z | A S [iG (G ) i (0 &r,)sech(a7,)] (6.6.2.18)

From equation 6.6.2.7, we deduce the condition that O needs to meet in order to

respect this boundary condition:

, R 2) inh(G,, ' ‘osh(a,,
—ry ,u:fih;(; [ r: (5; ((:osh(&m) — &léfn—a_)> - tanh(am)(sinh(&m) - E%g:—))

%‘j—) (1 + tanh(d,,)(tanh(G,,))")
S—l%?-—)am( tanh(G,,)(tanh(d,,))" — 1)
E(—)%%—&gz&m(mnh(&m) + (tanh(d,,))")
2%fi#——zam( tanh(G,,) — (tanh(d,,))")

— (tanh(6,,))" cosh(d,,) + tanh(&,,)(tanh(G,,))" Sinh((}m))] —ch
et
2K h3/?

S [iG(Gm) 5 (55,) scch (d7,)]
(6.6.2.19)
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We finally obtain the value of ol

2
W00 = — S [iG () (57,) sech(57,)]
Ko
(2) inh(o
32 G 5 ((cosh(m) - M)
Hok Om Im
osh(om,
— 7 tanh(d,,) (sinh(&m) — M)
Om
sinh(262
— irl—tié%—)&m(l + tanh(,, ) (tanh(dam))")
<(7 N (6.6.2.20)
sinh(2i57 .
_ —_ZLF__ m(tanh(a,,)(tanh(G,,))* — 1)
cosh(26EF) _ ~ s
W m(tanh(d,,) + (tanh(G,,))")

osh(9i5]
— &(Eiiglfgﬂl_)&m(tanh(&m) — (tanh(dn))")
ok,

— (tanh(d,,))" cosh(d,,) + tanh(a,,)(tanh(5,,))* sinh(ém)”

The drift current is now found.

We obscrve once again that U(S” reduces to what we found in the flat bottom case
(cquation 3.6.2.5) in the special case h(z) = 1. Actually, the drift is the same as the

onc we found in the flat bottom case, except for the A=3/2 coefficient.

6.6.3 Energy variation

We found the differential equation 6.6.1.4:

! [m/2]
d(hl/“‘Am) L “ 4
T h5/4 ZQA m+l + Z Ay Ay
(6.6.3.1)
Lol O tanh@m)y
K 2 Om "
We introduce A, = h'/4A,,, and modify cquation 6.6.3.1 as:
dA,, Si ik
% g ZQA Am+z+zaz141 m—1 o
(6.6.3.2)

N h_g/gfg%m (1 _ M) A -0

K Om
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Using the same demonstration as in the flat case, we easily deduce the variation law:

d I 7 2 __op-3/2Kd ~ vy _tanh(ﬁm) - .
X[;IAml]— 2h K;Re Sm |1 — |An] (6.6.3.3)

and we then obtain the energy variation relation:

iX [\/’ﬁzi: |Am|2] —1@ Z Re [zm (1 - M)] 42| (6.6.3.4)

6.6.4 Behavior at the shore

Let us study the evolution of |A,,| towards the shore, that is to say towards A = 0. In
this study, we will consider that the water depth decreases as X increases. In other
words hx < 0.

Let us first study the attenuation rate of the different harmonics |A,,|. We already

showed in chapter 3 that the attenuation rate for each harmonic is:

1 _,,’_Zzg [m <1 _ M)} (6.6.4.1)

L, Om

and we plotted some examples. Let us recall our results and give more details. Figures
6-3 and 6-4 show the attenuation rates of the eight first harmonics |A,,| for the 4 types
of muds and for 2 different values of h. We deduce from these figures that, in the &
and h-ranges in which we are interested, the attenuation rate of the first harmonic is
most of the time the smallest. The only case in which 1/L; is not the smallest, then
1/Ls is the smallest.

As a conscquence, onc harmonic always decays last. Let us prove that this har-
monic decays to zero, and we will have proven that all harmonics decay to zero at
the shore. Let us call Ay, this harmonic.

Let us consider X such as VX > X, all the A, are negligible compared to Agon,.
Such an X, exists because the attenuation rate of Age,, is the smallest.

Ignoring all modes m # domn, let us rewrite equation 6.6.3.4 for |Agom|? only:

d 1 lAd '2
h . 2] om ". '. .
i [\/_IAd ml?| = 7 I, (6.6.4.2)
Let us write Agom such as:
*Idom = h1/4Adom (6643)
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Figure 6-3: Attenuation rates of the first ten harmonics, h = 2m, kg = 0.1.
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Figure 6-4: Attenuation rates of the first ten harmonics, A = 5m, x4 = 0.1.
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Then equation 6.6.4.2 becomes:

dlAdomIQ . 1 I‘Aclcoml2
dX  R3? Layom

(6.6.4.4)

Since the aim of this study is to consider the behavior very close to the shore, the

beach can be approximated as a plane beach. We choose s such as A(X) =1 — sX,

and thus hy = —s. The solution of this cquation is:
~ 2 hp-U2
!AAdoml2 = Qdom CXP [_ Ld o ] (6645)
With ag,,, a real constant. And thus:
Qdom 2 hU?
| Adom|” h’i/g exp [— s } (6.6.4.6)

Since Lyom > 0 and h™Y2 is a growing function of X, we deduce that |Azem[> = 0

exponentially as A — 0.

Since Agom is the dominant harmonic, and all the others are negligible, we deduce

that: |all harmonics |A,,|* — 0 exponentially as h — 0.

Let us now study the interface harmonics B,,. From equation 6.5.1.30, we know
that:

VA, tanh(G,,
Vm, |Bn(X) = 22m [1 . -51‘31(5—)] (6.6.4.7)
h Tm
As a consequence, by multiplying 6.6.4.7 to its complex conjugate:
WAL, tanh(d,) |2
Vm, |Bn|? = /Ihql . M] (6.6.4.8)
2 G

And we deduce from the previous result on the |A,,|? that |B,,|* — 0 exponentially
as h — 0.

Let us now study the drift current Uél) . Irom cquation 6.6.2.8, we can write U(gl)
as:

U7X 2) = gy - M0 2) (6:649)

where f,,(Z) is a complex function of Z with finite values. Knowing that |A,,|*> — 0
exponentially when h — 0, we deduce that |A,,]2/h*? also goes to zero exponentially

as h — 0. In the end, we deduce that U(El) — () exponentially when A — 0.
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6.7 Numerical results by using the first ten har-

monics
We now solve this equation in the particular case:

MX)=1, 0<X
MX)=1-5sX, 0<X <1/s (6.7.0.10)
h(X)=0, X>1/s
corresponding to:
hx =0, 0<X
hx =-s, 0<X <1/s (6.7.0.11)
hx =0, X>1/s

We are going to plot these results for the viscoelastic muds we previously studied.

Let us sum up the different muds we have:
e Casc A: Gulf of Mexico mud. This mud is rather clastic.
e Case B: Mobile Bay mud. This mud is rather elastic as well

e Case C: Lianyungang mud. This mud complex viscosity’s phase is around § so

it is as elastic as viscous.

e Case D: Hangzhou Bay mud. This mud is rather viscous. its complex viscosity’s

phase being close to zero.

6.7.1 Comparison of the different types of mud

We first look at the results for four types of mud in the case b = 2m, A = 0.4m,
d = 0.2m and &’ = 0.5rad/s. (corresponding to the case 1b of the previous chapter).
These values correspond to € = 0.2, kK = 0.22 and k4 = 0.1. The slope is s’ = 0.01,

corresponding to s = s'/k? = 1/5. So for all this section:

€=02, k=022, kg=01, s=02 (6.7.1.1)

Surface and interface

Computations have been carried out for 10 harmonics. In figures 6-5 and 6-7, we

present the variation of the first three harmonics of the surface and the interface.
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Warning: the scales are not the same for every mud.

In figurc 6-5, it can be observed that damping is stronger for the Gulf of Mexico,
Lianyungang and Hangzhou Bay (A, C, D) than for the Mobile Bay mud (B). This
result is consistent with the previous chapter for horizontal sea bed.

We also observe that for the Hangzhou Bay mud, the |A,,| have more oscilla-
tions than for the Gulf of Mexico and Lianyungang muds, even though the damping
lengthscale is comparable for these three muds.

We only plot the surface motion up to X = 4.6 for the Mobile Bay mud, because
numerical accuracy does not allow us to go to higher values of X without strong
oscillations appearing. However, we show in figure 6-6 a zoom-in of the interface
variation for this mud at the shore. This figure allows us to see that the surface
motion eventually reaches a zero-value at the shore.

Figurc 6-7 shows the variation of the interfaces. The results confirm what we
previously saw. In the cases of muds A, C and D, where the damping is significant,
the interface motion is stronger than for the Mobile Bay mud (B). The variation of
the interface is the most pronounced for the Hangzhou Bay mud. This is due to the
fact that, as seen in chapter 3, the value of k corresponds to resonance.

Figure 6-8 gives a zoom of the interface motion for the Gulf of Mexico, Mobile
Bay and the Lianyungang muds. These zoomed figures allow us to sce that the |By,|

always go to zcro at the shore, which is what we demonstrated in the previous section.

Drift

Figure 6-9 represents the drift we calculated in equation 6.6.2.8. As in chapters 2 and
3, the drift current is a sum of the |A,,|? multiplied by coefficients. As a consequence,
the shape of the |A,,| directly influences the drift current shape.

Let us remind the equations:
U=UY+xUY + O(x?)

1 ] — . 6.7.1.2
U = QU(()D +3 Z (Uﬁ)ew"" + cc.) ( )
m=1

This is why we represent the value %/QUél), because it is the value that appears in
the total sum of U.

Ounce again, the results presented in this figure confirm the effect we previously
described: the damping is strong for muds A and D. As a consequence, there mud

motion is stronger, and in particular the drift current is stronger. The drift current
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Figure 6-5: Evolution of the first 3 harmonics of the free surface over different types of
viscoelastic muddy seabeds. Warning: the horizontal and vertical scales are different
for mud B.
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Figure 6-6: Zoom-in of the surface motion for the Mobile Bay mud.

is smaller for the Lianyungang mud, and very small for the Mobile Bay mud.

We note the presence of oscillations in the drift current for the Hangzhou Bay
mud (D). We already noticed these oscillations for the same mud in the |A,,| in the
previous section. As we said, the drift current is a sum of the |A,,|> multiplied by
cocflicients. As a conscquence, if the |A,,| show oscillations, it is logical for the drift
current to also show oscillations.

Let us compare this figure 6-9 to what we obtained in the flat case with the
same values of €, k and x4, that is to say figure 3-20. The initial values of the drift
current at X = 0 arc the same for all muds in the flat and sloping scabed cases.
Indeed, the initial values of the harmonics are the same: |4;(X = 0)] = 1 and
Vm > 1,|An(X = 0)] = 0. and A(X = 0) = 1, so the drift values should be the same.

We also obscrve that the drift current for the Gulf of Mexico mud (A) has the
samc pattern. However, its peak value is twice bigger in the sloping bottom casc.
This is due to the fact that the drift in the sloping case is the drift in the flat case
divided by h(X)%2, and h(X) < 1.

The Mobile Bay mud (B) has a very small drift in both flat and sloping scabed
cascs.

The Lianyungang mud (C) also has the same pattern in the flat and the sloping
bottom casecs. It has a pcak occurring at the same rough valuc of X: X = 1.5, but
this pcak value is around 50 times smaller than the Gulf of Mexico mud peak. This
confirms the fact that damping is stronger for the Gulf of Mexico mud, and hence the
drift current also stronger.

Finally, the Hangzhou Bay mud (D) has small oscillations in both cases, because
the |Ap,| have small oscillations as well. In the flat case, the drift current for D is the
one that is damped the most slowly. In the sloping case, because the drift includes

this A(X) ™32 term, the drift current reaches higher values than in the flat case. It
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Figure 6-7: Evolution of the first 3 harmonics of the interface over different types of
viscoelastic muddy seabeds. Warning: the vertical scale is different for mud D and

the horizontal scale is different for mud B.
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Figure 6-8: Evolution of the first 3 harmonics of the interface near the shore for the
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Figure 6-9: Drift velocity %ﬁUél). Mud A is Gulf of Mexico mud, mud B is Mobiie
Bay mud, mud C is Lianyungang mud and mud D is Hangzhou Bay mud. « = 0.22.

increases until X = 4.6.

We only show the plot up to X = 4.6 because strong oscillations appear after
that in the Mobile Bay drift current. However, figurc 6-10 offers a zoom-in of the
drift currents near the shore for cach mud. This important figure shows that all drift
current eventually reach a zero-value. Since this is what we analytically predicted in

section 6.6.4, we obtain that numerical and analytical results agree.

Energy variation

We numerically represented the total first-order energies in figure 6-11. This figure
shows that the total energy logically decreases, to reach a zero-value at the shore
(X = 5). However, we observe once again that dissipation is slower to occur in the
Mobile Bay mud (B).
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Figure 6-11: Wave energy over a flat thick muddy seabed. Mud A is Gulf of Mexico
mud, mud B is Mobile Bay mud, mud C is Lianyungang mud and mud D is Hangzhou
Bay mud.

6.7.2 Influence of the slope s

We now focus on the influence of the slope. We look at the slope values s’ = 0.048, s’ =
0.024, s’ = 0.012, s’ = 0.008, s’ = 0.0048 and s’ = 0.0024, respectively corresponding

the non dimensional slope valucs:

s=1,8=1/2, s=1/4, s=1/6, s=1/10. s =1/20 (6.7.2.1)

We still have A = 2m, A = 0.4m, d = 0.2m and w = 0.5rad/s. These values still

correspond to:

=02 k=022 rg=0.1] (6.7.2.2)

We particularly focus on the Gulf of Mexico mud (A) and the Hangzhou Bay mud
(D), because they respectively correspond to the most elastic and the most Newtonian

muds we have data for.

Surface and interface

Figures 6-12, 6-13 and 6-14 show the variation of the surface for different slopes for
the Gulf of Mexico and the Hangzhou Bay muds.

We note that when the slope becomes less steep (like s = 1/20), the harmonics
have time to be damped out before reaching the shore. On the contrary, when the
slope is very steep (like s = 1), the harmonics are damped very quickly right before

the shore.
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Figure 6-12: Evolution of the first 3 harmonics of the free surface over different types
of viscoclastic muddy scabeds, in the cases s = 1 and s = 1/2. Warning: we usc a
different scale for the Gulf of Mexico mud, s = 1 case.
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(d) Hangzhou Bay mud, s = 1/6

Figure 6-13: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds, in the cases s = 1/4 and s = 1/6.
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Figure (-14: Evolution of the first 3 harmonics of the free surface over different types

of viscoelastic muddy seabeds, in the cases s = 1/10 and s = 1/20.

223



| B | 0.2}

0
10 — T T T
| Bl
0 01 02 03 04 XO.S 0.6

L3

02 04 06 08y
X
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Figurc 6-15: Evolution of the first 3 harmonics of the interface between mud and

water over different types of viscoclastic muddy scabeds, in the cases s = 1 and
s = 1/2. Warning: we usc different scales.
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Figure 6-16: Evolution of the first 3 harmonics of the interface between mud and
water over different types of viscoclastic muddy scabeds, in the cases s = 1/4 and
s = 1/6. Warning: we usc different scales.



|Bm| 0.2F

0.1f/-

Y 2 41 o 8 yl0 12 14 16 18

(c) Gulf of Mexico mud, s = 1/20

B
| B 02k A B e
Byl
0.1F :
N VA B .
0 2 8 XIO 12 14 16 18

(d) Hangzhou Bay mud, s = 1/20

Figure 6-17: Evolution of the first 3 harmonics of the interface between mud and
water over different types of viscoelastic muddy seabeds, in the cases s = 1/10 and
s = 1/20. Warning: we use different scales.
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Figure 6-18: Evolution of the first 3 harmonics of the interface near the shore with
the Gulf of Mexico mud. The X-scale is from 0.999992 to 1 for s = 1.
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Figure 6-19: Evolution of the first 3 harmonics of the interface bnear the shore with
the Gulf of Mexico mud. s = 1/10 and s = 1/20.

Figures 6-15, 6-16 and 6-17 show the variation of the surface for different slopes
for the same muds. As before, the variation of the interface are more important for
the Hangzhou Bay mud than for the Gulf of Mexico mud, by a factor of 10.

Figures 6-18 and 6-19 show a zoom-in of the interface motion near the shore for
the Gulf of Mexico mud. We can see on these figures that the harmonics ultimately

go to zero, which agrees with the analytical predictions.

Drift

We now focus on the drift current at Z = 1 and for the different slope steepnesses.
The shorcline corresponds to X = 1 for s = 1, to X = 2 in the casc s = 1/2, to
X =4 1in the casc s = 1/4 and so on.

Figurcs 6-20 and 6-21 show the drift current variation from X = 0 to the shore for
the different values of slope that we are considering in the case of the Gulf of Mexico
mud (A).

Because the behavior at the shore is not casy to sce in figurce 6-20, figure 6-22 offers
a zoom of the drift current at the shore. This figure ashows that the drift current
ultimately reaches a zero-value, which is what we were expecting from our analytical

study of the behavior at the shore.
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Figurc 6-20: Drift velocity %KUI(O) at Z = 1 for the Gulf of Mexico mud.
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Figure 6-21: Drift velocity %/@Ul(o) at Z = 1 for the Gulf of Mexico mud.

Figures 6-23 and 6-24 show the drift current variation from X = 0 to the shore
for the different values of slope that we are considering in the case of the Hangzhou
Bay mud (D). The drift reaches higher values for the Hangzhou Bay mud than for
the Gulf of Mexico mud. This is once again due to the resonance cffect happening in
the Hangzhou Bay mud.

In particular, we observe that the drift current reaches high values in the case of
a very steep slope, s = 1. This is because, near the shore, the harmonics are not
damped yet (see figure 6-12), but h(X) already is very small. As a consequence, the
drift, which is a sum of (Z,m)-dependent coefficients times the |A,,|?, divided by
h(X )3/2 reaches high values before decreasing exponentially at the shore.

In figure 6-25, we also plot the drift current with the Mobile Bay and the Lianyun-
gang muds. This figure allows us to compare the drift current for very steep and non-
steep slopes (respectively s = 1 and s = 1/20). As before, the graphs corresponding
to the Mobile Bay mud are cut before the shore because of oscillations appearing.

For the steep slope (s = 1), we observe that the drift current is smaller for the
Mobile Bay and Lianyungang muds than for the Gulf of Mexico and Hangzhou Bay
muds. Espedially, the drift current is 107° times smaller with the Mobile Bay mud

than with the Hangzhou Bay mud.
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Figure 6-22: Zoom-in at the shore of the drift velocity %f‘iUl(O) at Z = 1 for the Gulf
of Mexico mud.
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Figure 6-23: Drift velocity %HUI(O) at Z = 1 for the Hangzhou Bay mud.
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Figurce 6-24: Drift velocity %KJUl(O) at Z =1 for the Hangzhou Bay mud.

For the non-steep slope (s = 1/20), these muds have very different behaviors. The
result for the Lianyungang mud is like the results we obtained with the Gulf of Mexico
and the Hangzhou Bay muds: since the harmonics |4,,| are damped by the mud long
before the shore, the exponential decay of these harmonics appear long before the
shore as well, and there is no increase of the drift current near the shore due to
the shallow water (ie small value of A(X)). On the contrary, since the mud-induced
damping is very slow to happen with the Mobile Bay mud, the exponential decay
of the harmonics |A,,| does not occur long before X = 20. As a consequence, the
harmonics are not damped and the cffect of the A=3/2 in the drift current is visible:
the drift current increases with X.

As always, we show in figure 6-26 a zoom of figure 6-25 at the shore, in order to

show that the the drift current decays to zero at the shore.

Energy variation

We numerically represented the total first-order energies in figure 6-27 for the different
slopes. This figure shows that the total energy logically decreases, to reach a zero-

value at the shore (X = 5). However, we observe once again that dissipation is slower
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Figure 6-25: Drift velocity %/@Ul(o) at Z =1 for the Mobile Bay and the Lianyungang
muds.
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Figure 6-26: Zoom-in of the drift velocity %IiUl(O) at Z =1 for the Mobile Bay. and
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to occur in the Gulf of Mexico mud (A). The shore is reached for X =1 for s = 1,
for X =2 for s = 1/2 and so on.
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Figure 6-27: Wave energy over a flat thick muddy seabed for the Gulf of Mexico and
the Hangzhou Bay muds. Comparison between s = 1, s = 1/2, s = 1/4, s = 1/6,
s =1/10 and s = 1/20.
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6.8 Horizontal bottom without mud

6.8.1 Governing equations

From the study we just led in the particular case of viscoelastic muvd7 it is very easy
to deduce the surface waves behavior in the absence of mud. Indeed, the absence of
mud simply mean that B,, = 0 in equation 6.5.1.12.

As a consequence, the governing equation 6.6.1.4 for the surface waves become:

[m/2]

d(h'/*A,,) € ”
(dX ) K8h5/4 EQA m+l+ZalA, m-t| =0 (6.8.1.1)

The same way, the energy variation can be deduced from equation 6.6.3.4, that

becomes:

3515(_ [\/ﬁ i IAmIQ] —0 (6.8.1.2)

This result looks very logical, since it means that in the absence of mud, there is no

energy dissipation in water.

6.8.2 Numerical results by using the first ten harmonics

Since we don't consider mud anymore, there are only four parameters remaining: h,
A, &' and s’. We already studied the influence of dispersion and non-linearity in
chapter 3, by playing on the ratio €/x.

Let us now study the influence of different slopes. We look at the slope values
s'=0.048, s’ = 0.012 and s’ = 0.0024, respectively corresponding the non dimensional

slope values:

s=1,s5=1/4 s=1/20 (6.8.2.1)

We still have A = 2m, A = 0.4m, and w = 0.5rad/s. These values still correspond to:

le=0.2, k=022 (6.8.2.2)

The results are shown in figure 6-28 for the three different slopes. Once again,
even though we carried the numerical resolution with ten harmonics, we choose to
only display the first three harmonics.

The main result is that, in the absence of mud, the harmonics keep growing toward

an infinite value at the shore. This result is a very well known phenomenon: wave
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height increases as water depth decreases-toward the shore.
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Figure 6-28: Effects of the slope on the evolution of the first 3 harmonics of the free
surface on a solid seabed. ‘
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Chapter 7

Sloping bottom, with very shallow

viscoelastic mud

In this chapter, we still consider the bottom of the ocean to have a gentle slope, as
shown on figure 7-1.
However, we now consider that non-linearity € is small compared to dispersion,

that is to say € small compared to s:

O(e) = O(x?) (7.0.2.1)

In order to see the effect of non-linearity on mud-induced damping, we consider

the mud layer to be thiner than in the previous chapters:

= kg = O(K?) (7.0.2.2)

Slls o

so that non-lincarity and mud-induced damping act at the same order.
The same way, we now consider the slope to be of order O(k?), so that it is
comparable to the damping order we previously found in a flat bottom case. This

means that in this entire study, we will consider:

2

O(s%) |, = O(r%) (7.0.2.3)

dz?

dn'
d:r’ N

Q,
>

For the same reason as in the previous chapter, we will not study the more simple
casce of a Newtonian mud because this type of mud would result in a low down the
slope in the static case.

This is why we consider the mud to be viscoelastic. We already demonstrated that
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Figure 7-1: Sketch of the studied case. d is the mud layer depth measured vertically.

viscoclastic mud was not flowing down the slope in the static case, and that there is

only a displacement of the mud down the slope.

7.1 Scaling

As before, we define a dimensionless complex viscosity:

/

1

= — 7.1.0.4
- (7.1.0.4)

I

We will use the same scaling in water as in the flat bottom case (chapter 5) :
Ty = — gt (7.1.0.5)

where ps is the characteristic viscosity deduced from the different sets of experiments.
Because of calculation simplifications, I still do not need to assign a particular for g
for the different muds. Indeed, every time the viscosity appears in the final results, it

appears as ups, and I could thus use the dimensional value of the viscosity: p' = pu,.
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To sum up the scaling in water and mud are:

x = ka' z=%b t = k(gh)Y*
p= ;2 U= v= =t (7.1.0.6)
(=% o= BN w=
and:
z = kx' z=Z t = k(gh)¥*t'
P = pvfs,vA T 1g}1U/ V= emdl gHV/ (7.1.0.7)
T iy
L= poar Bur= ﬁE'u,t' Ti = =T
with Z’ in mud as shown in figure 7-1:
Z'=z2 —h(z)—d (7.1.0.8)

Let us compare our new coordinates in mud with the ones we had in the flat

bottom case. Now, the axes follow the slope. This fact brings a correction in the

differentiations, that become:

In order to emphasize the fact that % is small, let us introduce

This way. let us write:

LN
dzx

d*h
dr?

We can now rewrite relation 7.1.0.9:

0
5;—-)
0
—8_1‘-_>

)
dX
, d?h
dx>

— K

0z

or KkgdX 0Z
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7.2 Equations in water to order O(x?)

We want to obtain the governing equation of the surface and interface in water to
order O(k?), which is the order we will need later in this thesis. However, since this
may be useful for later studies, we will carry the calculation up to order O(x*).

We will show the parts of the results that will be used in the rest of this thesis by
highlighting them.

Let us express the velocity potential in the water as a power series:

— Eh@)" ,
bz, z,t) = §0 T¢< Nz, t) (7.2.0.13)
where z = —h(z) + ergn corresponds to the mud-water interface. We then obtain
8¢ = (z+h(@)" [00™  dh (4
= = —¢\" 2.0.14
r n! Ox i i’ (7:20.14)

And thus:

o o= (z+h)" | %™ o dh ot dh\? &2h
_ ) ooR2 N B TN S (n+1)
Dz nz:g ! gor WO e ax ) ¢ e
(7.2.0.15)
and ,
- L (z+h)" (n+2) )
¢z = ZO I a1) (7.2.0.16)
7.2.1 Laplace equation
From the Laplace equation in dimensionless variables, we know:
0%¢ 0%
2
et == =10 7.2.1.1
" or?  0z2 ( )
and from 7.2.0.15 and 7.2.0.16 we deduce:
022 dh 6™V d*h dh\*
((n) . .2 2 2 4 ((n—1) 4 20 ((n)
. ¢ . ( or  AX or Maxe® T (dX) ?
(7.2.1.2)
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7.2.2 Kinematic Boundary condition at the interface

In dimensional form, the interface kinematic boundary condition is:

ad’ Olh (') — r'(x. IR (') —n/(z,t)] O¢ 1/ VS,
0 f/ = )Gt’n (l“/f)] e )ax,n (,0) G C —h'(z") +7'(2", 1)
(7.2.2.1)

In dimensionless form we obtain:

9o 2, 877 48@dh+ > O¢0On

3, — R Rag — R g TR (935 —h(x) + exan(z, t) (7.2.2.2)

We use a Taylor series expansion of this equation:

) 52 s O 5 dh on\ 0¢ - B
5 +€/<dna 5 = K Kagy + K ( % +eﬁd8x) 5 +O(k"), z=—h (7.2.2.3)

As a consequence, from the series of equation 7.2.0.13 we obtain:

: on » dh on\ 9¢©
(1) Lo h(2) 2 2 2 3 7 —
O+ ekgn@ K Rag, A ( e erd_@a:) 5 +0(k"), =z h (7.2.2.4)

From the relationship 7.2.1.2 and knowing that ¢(z = ) = ¢ 8%( = —h) =

Z’L

o™, we deduce:

an  ,dh 960 e, OO, 0
ot e 922

+O(k")  (7.2.2.5)

and as a consequence:

oy, dh O o [ op
¢(l) — KIQKZdza_?Z _ /I E} gl + E&Qfgdb—l‘- (77 ¢ ‘ ) -+ O(H7> (7226)

As a consequence, from cquation 7.2.2.6, we can deduce an explicit expression of all
the ¢):

5260 . dh A1) d*h dh \*
(2) _ .2 1 1, 4 )
P\ = —kK ( 5+ 27 + K SO K ( ) [0
ox dX Oz dX dX (7227)

ao %o
Ox?

+ O(k")



92¢W ,dh 06  , dh dh \*
@) _ _,2 4 AN\ (3
$ =k ( B o i Lt (dX) o7

0x?
on dh ¢ dh 8¢
— 2 k2,2t 9,6 7 (7.2.2.8)
" (H "t dX “Ox TeRIX oz3 Olx')
on dh 0\ -
— 4 — L 3 !
TR <8t S9x ar ) TOW
Combining all these equations together, the final expression of ¢ becomes:
on o dh 0 0 0 (z +h)? 0%
40 4,2 on 200 9 _ 2
b=¢T +r(z+h) [“dat “ax or g \Tan T o
(2 + h)? 3n .2 0h %) N L2+ )40
T Mot T M AX o8 | Y T Al oat
62 +h)° 8%¢(® 7
—n 6! Oz +O(x)
(7.2.2.9)

7.2.3 Kinematic Boundary condition at the free surface

The kinematic boundary condition at the surface can be written as:

(Ct e%%) =, z2=¢€C (7.2.3.1)
Ox Ox

Knowing from equation 7.2.2.9 that:

, on 5 dh 9V d a@ Q)
_ .2 _ 2

b= =h [”dat S e P T )| TS

alz R [ Fn__ 4 2dh ?ﬁ_’_] (7.2.3.2)

2! B

T A

4(z+h) ) sz 4+h)P 3% ‘
B e T g O
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we obtain:

G+ 8§ 0oV B A2h_2 93O B on L , dh 9p© o 3 O
ET 0z \ ox 2 025 ) "o dX 0z 9z \" ox
52
(h+eg) ¢
K2R [ 5’3 _ o dh 93¢
2 ’”data R
K, a4¢(0) h5 86¢(0)
= (K? h2 4 5
W T e e O
(7.2.3.3)
and thus:
0 i o L h3
Ct+$ (h + €C — €rqn) Oz =Kane + K 3
N 2*n o dh 3¢
— h] —— —_— ——
h’) ac a3¢(0) ghQC 34¢(0)
" 2 9z Or? 2 Ozt
hs 66@(0) 5
/‘u r—’ ERG +O(Ii )
Let us now introduce the horizontal velocity at the bottom:
0
"y = gx +h(z) =0 (7.2.3.5)
h? 33u© h? o? , dh 9*u®
-9 - _ O] — 2/t LI I/ IS
Gt g L€ memanjul] =k + 1251 =5 o = W0 | Rag = 367 5,2
+ mQh—QQEaQU(O) /{2@—8%(0)
2 0xr Ox? 2 Ox3
R® Pul®)
SRS S 5
5! Oxb (")
(7.2.3.6)

Let us now introduce the depth-averaged velocity wu.
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It is related to u(® by the



following relation:

€C
U= —————————1 / %dz

h + 6€ — €RAT J —hteran Ox

1 < 9 9*n 0 [ dh
e 2 h — g2 22,00
h + e — ekgn /~h+emm [u0+m (z+4) (Kdataa: " oz (qu ))

(z+h)?2Pu® dh ou® (2 + h)* 0O
- 2 oz " Ef(z +h) ar | C T4l oz*
_ 1 /6‘5 [u(o) 2 (z + h)? 0%

h + EC — €RgM —h+engn 2 Ox?

9*n dh oul® (z + h)* 9'u®
2 ) _ 9,2 4 5\] 4=
+ k*(z + h) (hdc?t(?x K m )+h m e +O(k )]d

2 2,(0) .2 52 (0)
:u(0)+i[—%(h3+3€gh2)a Y B e (nd A 2/{2%8u )

+ O(IiS)} dz

H oz ' 2 otor T dX Oz
h5 94 s
—+ /€4a‘ 8564 +O(f€ ):I
.2 82 (0) 2 82 dh au(O)
— O E e 2¢Ch u ’ih T _g9,29"
W = g (B 2eCh) T S R T2 X an
h* 94u©®
+f€4—5—! e + O(K°)
(7.2.3.7)
hecause: ,
WS4 3eCh® B3+ 3eCh?
h+eC—exan  h(1+ 5+ 0(e?)
h? + 3eCh
1+ %+ 0(e?) (7.2.3.8)
— (B2 + 3ech)(1 — % +0())
= h? +2¢Ch + O(e?)
h2 h2
h+eC—eran  h(1+%+0(e2))
s ) 2.3.
= h(1= 2+ 0() (7.2.3.9)
= h+ O(¢)
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and:

hs 15
ht+eC—exgn  h(1+ S+ O(e2))
— A1 — Ehﬁ +O(e)) (7.2.3.10)
= h* + O(e)

Turning this last result around, we obtain the relation:

h? 0%u ht 9'u o K? 9%n dh Ot h¢ 0%
©) _ 5 20U 4 gu_r 4 _ 928 cu 2 NG
R T R CTIE R (“datax "X 83:) “ 3 Ba?

(7.2.3.11)

Using this relationship, we obtain equation 7.2.3.6 in terms of @ instead of u(®):

0 0 Lh20% kY d'u
G+ p [(h + € — ergn)u| = — E [h(/{ 92 + K RIS

K2 9*n o, dh Ou
5t (’idatax o aa—)

h¢ 0% h* 0*u L h? 0%u
et K ) + ()]

. 2h363a+ y B° 93 (0%

w2l

31025 " (31)2 0z° \ Oz
.2h2

— k2 |k &'n -3 2@;6‘2@

2 |"6to2 " dX o2
L h* ¢ 8u o h2( 0%u 5
“ Yo Tz o aaw T O
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We can rewrite this equation:

) . PPPu R dhPu , BY 0P li Kd,o O°n
Gt g lhteCmemami] = = w5 o =K o " GaE T 2 " g
dh Pu %o W2 PaoC O
4 2 e 20 T mES 47" -
i i w v B o M
LT L8 k2 8%

3o ar3r g T

N L h3 D3u iy 4 B0 u 2 h? 8%n
— —_— ,{ Tl — ———
S (3')26 5 I Bt
3h? dh 0%*u h? 8¢ 0*u h2¢ 934
S el 2y VR Y w 2 5Z 7
& 2 dX 0z2 ten 2 Ox Ox? ten 2 0x3
h5 u .
— 5' pr + O(xK?)
(7.2.3.13)
And finally:
i 8 - hd ad— 2h3 8317,
ét—l_%[(h—i_ec_a{dn)u]:- 3|a 3+’{—3_‘(9T“)’
e e
2 dXaz2 " T2 dX 02 dX 0z2
h5 R . h5 051
(3‘)28 (3’) Oxd
N &4E o°u B ;~:4ﬁi O u
51 9z 51 0x
K2 kg o O°7 2 h* 8%n
9 o T btore
h2¢ 83u R3¢ 93 h? 3%u
__2hcou 2 ou 5 NTO0°U
R R N T
,h?0%u 0¢ 8@ h? 0%u o h? 8¢ B*u

30220x " 9r30s2 " 2 Br 022
+ kan + O(K°)
(7.2.3.14)
Since most of the right hand terms disappear, we obtain the simplified form of the

kinematic boundary condition:

%)
G — Kame + o [(h+ e — ergn)i] = O(K°) (7.2.3.15)

In the rest of this thesis, we will only make use of this equation up to order O(x?):

G = e o= (A4 Q)] = O(x) (723316)
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This result agrees with the equation we obtained in the flat bottom case. Indeed,
equation 7.2.3.16 reduces to equation 4.2.3.8 in the case h(z,t) = 1, and this allows

us to check the long calculations.

7.2.4 Dynamic boundary condition at the free surface

From the dynamic boundary condition at the surface we know:

K2 (dy + C) + %E[ﬁcchi + ¢ =0, 2=el(z,t) (7.2.4.1)

From the development of ¢ of the equation 7.2.2.9, we know that:

op O E) 0°n , dh 0?00 K2, 3P0 hr 550 6
o= o TP er T i mar | T 2 2N g T T O
(7.2.4.2)
96\* [ 9p© T 060 9360 . A
(5}—) = ( e — k°h T Da + O(k*%) (7.2.4.3)
and: , N 2
(06N 4 (900 '
So we can deduce:
a¢(0) 9 627’] , dh 62¢(0) w2 83¢(0) 4h4 85¢‘(0)
2h D S —
or T |Mpe T IX Doz M) Geza ¥ T amr T
1 (8p® 1 5 5000 8’0“” 1L oy (0200 6
+§€( Oz ) §hh Jx Oz +§e&h Ox? = 0()
(7.2.4.5)
Let us derive this expression with respect to x:
2 .(0) 3 3 ,(0) 4 4(0) 3 4(0) 4 4(0)
0~ ¢ +/§2Hh8n hdh@qﬁ hé)qb hdh8¢ 0., 0%

_ _ h
Bioz hama T IX B ozor " "ax ox0n ey
achadqb(o) N h4 ab (0) Qg l _8_ 8¢
"oz 0x2ot K o250t 9r 2 0m
Loopo @ (060 0%0 1,0 $©) )
BT ( dr ot ) 2 (?_ z? = 0k

(7.2.4.6)
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and we can now introduce the horizontal velocity at the bottom u© = 9%

oz
ou® Py 4, dhPu® K5l dh 9*u® 63u<0
+ Kk2kgh Kkh—
ot ot20x d otdzr 2 ozt | dX 8 ot 8 20t
,0C 0% htou©® a¢ 1 9 2120 ( (00"ul”
Rl R e e e b G 5“ . a_:c( 027 >
2
1 5,50 ou©) B 6
+2e/<;h . [( 5 = O(K")
| (7.2.4.7)

As done for the kinematic boundary condition case, we write this equation as a

function of the depth-averaged velocity %, using the relation between u(® and 4 of
the equation 7.2.3.11:

Bt 3922 " (302020 or  laxor) T 3o T an

&n dh &*u  K? , O o h? 0%u dh 0*u
2 _ i _ 2 oy —
ML ri s et ey <“ 3l 83:2) WX o

Pu L0C, Pu Rt 0Pu 9¢C 1 D, o h* _0%u
—m(h 28t_€hEh8x8t+hZ!_84x6t 55+—ea—x(u + 2K )

L o200 (00N 1 .0 (9a\"_
— 3R g, (“a) h%(%) = 0(")

2 2 1 Ad- 4 2 - 2 1 915
8(u+ o h* 0% o 4 h 8u_/$_h(877 thau)+6 2 h¢ 0%u Jh 0T )

(7.2.4.8)
that can be rewritten:
Ou | ol OPu oy I O ey O g dh 6 ok O
at "3l 8x28t (31)2 ox*ot 2 0t20z dX Oz0ot 3 0z20t
h@g‘ 0%u R 0w 5 0*n dh 0%*u lfz , 0%
TR 3o e T aamar T " amer R X tras 3" 5ai5t
__4h_4 u hdh 0*u — en?Ch Pu GC 6u+ ht 0%
2 3 oztat " dX 9rot 2ot " oz ozot " 4l 0rzot
+ Qg + l _(2_(@)2 + 2h_2 ﬂ@
or 2 Ox < 31 0x Oz
I ,,0 (0% | ,,0 (oa\> &
_56/{h—8—;( —5> '2'6/€h——x‘ —a:' O(Ii)
(7.2.4.9)



Let us rewrite this equation:

Ou GU@ ¢ _th_Q Fa r* 9%u N f‘ézf‘idh n ——/-;4h—cﬂ 0*u
ot oz " or 3laz2at T (3200t | 2 o0z dX Bzot
Lh¢ 0% hOCPT | Pa L, L O

e AL ¥ e R P e N L vor
dh &*u  k* ., O0%*u k1Rt BPu dh 0%*u
4 et v 2 ~r 4 It
"X oo T 2" ool T 3 3oz T " Max azor
T ,0C O%u
T Chg agy TR (%ch@:t(?t

B h4 (‘35‘ e Ch* 0 [ 0%
4‘ 0*xot 3 oz u@:r?

1 ,,0 ( 0 1 , 0 (0u\® 6

(7.2.4.10)
By grouping the right hand side terms that look the same together, we obtain:
Ju eu% ¢ 2 B P e S 0% Qndh n
ot bz  dr 3 0x20t 12049t 2 020z
dh &1 ,2h¢ OPu hag‘ 0*u é?g 0%
+ e T —= — + ek =—h
dX otox 3 0220t " 3atorr " br Ozt

1 ,.,0 [ 0%\ 1 o (ou ;
+§€“h%(“5;5)* ha_(a_> +O()
(7.2.4.11)

And we finally get the simplified form of the dynamic boundary condition at the

surface:

ou eu@-i-% :fi_zhz Pu fofcdh O*n N E‘ih‘l ou N gG’thC Pu

o Y Tar T3 aar T 2 "aor T 12" onder Ox20t
1, 9Co%u ¢ 9% iy 223 a
B 3% h-ﬁ—t-ﬁ Te h@x c?xat h c?:v 8a:2
1 o (ou\? dh 82 6
T3 ha_z(%) + 0t e+ O)
(7.2.4.12)

Once again, we will only nced this result up to order O(k?) for the rest of this

thesis:

o0u ou  I¢

2 3
B , 0°u
+eu— 4+ — =

K
ot or  dxr 3 Or20t

+ O(rK%) (7.2.4.13)

This result agrees with the equation we obtained in the flat bottom case. In-
deed, by replacing the varying depth A(z) by 1, equation 7.2.4.13 reduces to equation

4.2.4.12. This equality confirms the long calculations.
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7.2.5 Equation of the total pressure in water

From the Bernoulli equation, we can deduce the total pressure (sumn of the static and

the dynamic pressure) in the water as a function of the potential:

P =p,+D,
B 8¢ 1., .o (7.2.5.1)
= —pw (5%7+’2‘(V¢) +92’>

In dimensionless form, this last equation becomes:

€ 1 5 z .
p=—o — 3 [(qﬁx)Q + ?(d)z)“} - —h(z) + exgn < z < ¢ (7.2.5.2)
In particular, we obtain the pressure in water at the interface 2 = —h + exgn:
h € s L, 5 .
pP= P ¢ — ) (¢z)" + ﬁ(ﬁbz) —Kan. 2= —h(x) + exam (7.2.5.3)

And since we know from 7.2.3.2 that:
(92)(2 = —h(z) + eran) = O(x") (7.2.5.4)

we deduce:

(6.)%(z = —h(2) + erqn) = O(K®) (7.2.5.5)

and equation 7.2.5.3 can be reduced to:
h € 2 6 2
p=- Oy — 5(%) —kan+O(K°), z= —h(z)+ €rgn (7.2.5.6)
By Taylor expansion, we know that:
Oz = —h + exgn) = ¢z = —h) + O(k*) = ¢ + O(K*) (7.2.5.7)

As a conscquence, 7.2.5.6 becomes:

p=" (G0 —mam— S0+ 0| 2= —h(x) b enan (7258)




7.3 Equations in mud at the first order

We now want to study the mud layer in the dynamic case. Since the static case
has already been studied, we only focus on the wave-induced phenomenon. In other
words, we only consider the cffects of the dynamic pressure, since the static pressure

has already been taken into account.

As in the flat bottom case (chapter 5), we only need the terms of the first order
(O(1)) in order to solve the surface and interface governing equations. We will not

go to higher order in this thesis.

7.3.1 Interface kinematic boundary condition in mud
The instantaneous equation of the interface is:
F' (2 iY=2"—(d+7)=0 (7.3.1.1)

The assumption of tangential motion then requires that:

oF’ 0 dh 0 OF’
Ul——-—— | F +V = Z'=d+7 7.3.1.2
v (am/ iv aZ'> Tz T N (7:312)
which means. using equation 7.3.1.1:
on ,on' ,dh’
L _ "=0, Z'=d+1
5 U'— £ U +V , +n (7.3.1.3)
or in dimensionless form:
5} 0 2 _dh
D B St ivao, Z=14 e (7.3.1.4)

E —
ot or kg dX
As a consequence we obtain the following equation:

on dh o1 =
n V———Uﬁ—%O( K3, Z=1+en (7.3.1.5)

By Taylor expansion around Z = 1, we obtain:

on dh B o1 o
B _v__UE)?Jro( 2 Z=1+ (7.3.1.6)




7.3.2 Conservation of mass in the mud

2 1%
(—a——’i—ﬂi)UwL =0, 0<Z<1l+en (7.3.2.1)

0r kqdX 0Z 0z

By keeping only the first order, this means:

oU _x*dh OU OV
O0r kydX 0Z 07

7.3.3 Horizontal momentum in mud

The cquation of momentum in mud, projected on the x-axis, gives:

oU o w*dh 9 U o  K2dh 9
P el (L - v = (-2 2 ) p,
bt 6[ (8:1: mddX(?Z> az] <ax hddxaz) (733.1)

i A 8T12+ g_f_ih_a
Rexd | 0z "™\ or T kydX 07

From this equation we simplify:

U 1 Adng _ OR  w*dh Ol
gt Re®d 07 ' 0x | mgdX 0Z

where U is the horizontal velocity of mud, P, the hydrodynamic pressure, A the

amplitude of the free surface, v the ratio of densities v = py-/pas, d the mud depth

and Re® the Reynolds number that is still:

pau AdkN/ gh

Hes

Re® =

7.3.4 Vertical momentum in mud

The dimensional equation of vertical momentum is:

6V’+ ,f 0 __c{h_’ 0 V’—l—V’aV/ __B_R"L}_ ot 4 0 d_h' 0
P By oz’ dr' 07 az'| oz | oz oz’ dz' HZ'
(7.3.4.1)
and becomes, in dimensionless variables:
oV 9 k*dh O oV v 0Py
A [U (% nddX(?Z)V vaz] T2z ‘
(7.3.4.2)

I € aTZZ 4ok 0 K~ ﬂ 0
Rer2rg | 02 N0z kgdx oz )
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=0, 0<Z<1l+en (7.3.2.2)

+ O(K%) (7.3.3.2)

(7.3.3.3)

/

A
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So, in the end,

OF;

37 - Oler)| 0<Z <1+en (7.3.4.3)

We can then simplify the horizontal momentum equation 7.3.3.2:

U 1 Adry 0P, , ‘
T I as = Ve T O (7.3.4.4)

7.3.5 Interface dynamic boundary condition
Let us call n = (ng, nz) the vector normal to the interface. In dimensional notations,
we know that the components of n are:

d(—h' ')
da’

\/l n (d(—g'jn’))Q
’ (7.3.5.1)

1
d(=h'+71)
¢1 + (dam)

since h'(z’) and 7" do not depend on Z. In dimensionless variables, we obtain:

Ny =

. 3dh on
K T% -I—élﬂlfidax

Ny =
2(_ 24k am)?
\/1+h( fde+e/£d3x)

. dh
.3 5
= —K % + O(K°)
1

n, =
2(_,2dh o o On)?2
\/1+/-z( KEEL + €RggE

=1+ O(x?)

Continuity of total (hydrodynamic and dynamic) stress on the mud-water interface

then ]‘equires:
T_c:rnl + T:ZZnZ = _pn.'l:v Z —— 1 + 677

(7.3.5.3)
TIZTLI -+ YjZZnZ = —pny, Z = 1 -+ N
Total stress in mud is the sum of hydrostatic and dynamic pressure:
€K
T,; = —Pd (7.3.5.4)

ij + _——WRe(Z) Tijs
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Introducing this sum in equation 6.4.5.3, we obtain:

€ER €K

ER

7.3.5.5
ek ( )

W ) 7'ZZ) ng =-—pngz, Z=1+en

Tzznz ( P+’)/R

From the approximations of n, and nz that we demonstrated in 7.3.5.1, equations
7.3.5.5 become:

€K 5 dh €x dh .
|-+ A — ik =1
( P+7&®HJﬁdX+7RWWA e O Z=Txe

ER dh €K \
~7R€(2 szl‘é 5% (—P‘f— WTZZ> = —p+0(ﬁ: )7 Z =1+ n
(7.3.5.6)
These last equations can easily be simplified to:
dh
Tez = =7ReP(P - i +O0(?), Z=1+e¢
! | o « dX ) 7 (7.3.5.7)

P-p=0(*), Z=1+ey

Let us now make use of the second equation (corresponding to normal stress condition)
to simplify the first one (corresponding to tangential stress condition). Since P—p =
O(k?), we obtain:

Toz = O(KY), Z=1+en

P—p=0("), Z=1+en

We now focus on the first part of equation 7.3.5.8. Through a Taylor expansion,

we can approximate this equation around Z = 1:
Toz(Z =14 €en) = 1.2(Z = 1) + Ole) (7.3.5.9)

Hence, we obtain an interface boundary condition that we will use later to find the

drift in mud:

7o2(Z = 1) = O(k?) (7.3.5.10)

Let us now focus on the second part of equation 7.3.5.8. From this equation we

know that:
P=p+0O(K), Z=1+eny (7.3.5.11)

From 6.4.4.3. we know that the vertical gradient of mud dynamic pressure is of order
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O(k?). As a consequence, we have:

P=p(Z=1+e)+0(K"), 0<Z<1l+en (7.3.5.12)

Water pressure p is known in any point of the water layer thanks to the Bernouilli
equation. In particular, we know from 7.2.5.8 the water pressure at the interface
(z=—h+exgn):

h{z
p:~:—€;l — (¢o): + O(K?) (7.3.5.13)
So we conclude from 7.3.5.12:
o h(T) s 2 -
P = — (o) +O(K%), 0<Z<1l+en (7.3.5.14)

and we obtain in particular the dynamic pressure in mud:
Py=—(¢0): +O(K*), 0<Z<1+ep (7.3.5.15)

From equation 7.2.4.5, we also know:

09
ot

= —( + O(K?) (7.3.5.16)

which is valid for all z since ¢ and ¢ do not depend on the vertical coordinate.

Combining equations 7.3.5.15 and 7.3.5.16, we get the dynamic pressure in mud:

Pi=C¢+0(%), 0<Z<1l+en (7.3.5.17)

and the dynamic pressure gradient in mud:

0P, ¢

Ofd _ 2 .
% = 9r +0(k%), 0<Z<1+en (7.3.5.18)

As a conscquence, we can now substitute the dynamic mud pressure Py from the

horizontal momentum cquation 7.3.4.4, for 0 < Z < 1 4+ en:

U 1 Adng & B -
T T g Be = g + O (7.3.5.19)
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7.3.6 Bottom kinematic boundary conditions

At the bottom of the mud layer, we impose the no-slip boundary condition:

U=V=0} z=0 (7.3.6.1)

7.4 Asymptotic equations in water and viscoelas-
tic mud

7.4.1 Surface and interface

Water equations

We decide to consider that the wavenumber changes with s, because of the bottom

slope. As a consequence, we introduce the variables:

1 [*
X =r’z, &= —;/ h12dX —t (7.4.1.1)
o2
and the derivatives are:
o 0
at ag '
5 P Lo (7.4.1.2)

%—)I{_ﬁ"rﬁa—g

With these new variables, equations 7.2.3.16 and 7.2.4.13 become:
—Ce + Rane + K2hx + KPhiix + eCeh ™V 2u + eCh T Pug + WM = O(k*)  (7.4.1.3)

2
— g + eh ™2 aue + K2 + h V2 + %haggg = O(x%) (7.4.1.4)

From cquation 7.4.1.3 at the first order, we deduce:

g = h™2C + O(r?)

a=h""?C+ O(R?) (7.4.1.5)
- hx
iy = h"0x = 55 5¢ + O(K?)
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We now consider (equation 7.4.1.3 +h!/2x equation 7.4.1.4) at the second order and

we obtain:

Kane+ K hxt + k*hiy + eCech™ % + eCh™u,

2 (7.4.1.6)
+ h1/2 (€h~1/2ﬂ’a§ + H2CX + %hﬂ&g{) = O(KZQ)
Using the relations 7.4.1.5, equation 7.4.1.6 becomes:
K _ _ h € . _ € . _
Bt 2+ h (1720 = Sc) - Sahtic + Seh g
(7.4.1.7)
+ h1/2 (h YERTYRCRT R 4 Cx 3hh %g) = O(x")
and equation 7.4.1.7 finally becomes:
3 € hl/? K
2R3y + th/oC + —hj(CQ)e e = —h—gﬂs + O(x?) (7.4.1.8)

Let us compare this result with what we obtained in the case where non-linearity was
more important than dispersion (chapter 6). Indeed, equations 6.5.1.8 and 7.4.1.8
differ. A new term appears in equation 7.4.1.8, namely %/QC&& which is due to
dispersion. This term did not appear before because dispersion was less important

compared to non-lincarity.

Now let us expand the functions ¢, n and @ as power scrics:

C=¢O 4 2cM 4 2@ 4
n =104 x2® £ty L (7.4.1.9)
i =aY + k2 + 0@ 4

Because we expect the typical distance of the mud induced damping to be x2z, let us

also introduce the slow coordinate X:
X =K’z (7.4.1.10)

Because this last equation is non-linear, we decide to adopt the following form for
C(O) and 77(()):

zm5 () m& -
Z Am =3 > Bnl(X)e (7.4.1.11)

m=—0oc m=-oc
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Then we know that:

[m/2]

3 0(C(0))2 © 3 ime ”
T :Z%me ZQA Amar+ 3 0 AAp | +cc. (7.4.1.12)

=1 =1

PO 1S
I

(—im*)A,,e"™ + cc.
m=1

Then, from equation 7.4.1.8, we deduce Ym:

[m/2]

dA,, hx € 31 im?
h——— + —=A, +— 2A; A AjAn_ | — —hA,
\/_dX+4\/E Qgh Z +1z+zaz ! ! G
Kq 1m
B, =
K2 2 0

(7.4.1.13)
where [m/2] is the integer part of m/2 and q; is a coefficient equal to 1 for [ = [m/2]

and equal to 2 otherwise.

Compared to equation 6.5.1.12 where dispersion was less important than non-
N . - . oy S
lincarity, we have one more term in equation 7.4.1.13, namely —*-hA,,, that repre-

sents the effects of wave dispersion.

Mud equations

Let us find a new relationship between A,, and B,, in order to solve equation 7.4.1.13
Equation 7.3.5.19 gives:

o _ 20mz _ 9

— = Y= Z 7.4.1.14
5 Y ay Vo +0(e), 0<Z <1+ en(x) ( )
with: _
@ _ _ < _ o 5
ol = = 01) (7.4.1.15)

From the change of variables defined in 7.4.1.1, we convert equations 7.4.1.14, 7.3.2.2
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and 7.3.1.6 in:
2 9(72)? N U ﬁyh—l/2aC(0)

EYA o€ Of
U k2 dn oU©  Hy©)

+0(e), 0<Z <1+ en(x)

W e T max ez oz~ 0<Z<iral)
on© k2 dh OU©) ,

(7.4.1.16)

Since the water equations are not linear, we consider several harmonics and write:

]' - im 1 = m
O — 3 Z U9(2)e™ v = 5 Z VO (7)eme
meTee e 7.4.1.17
o1y (0)( 7 yimé | )
() =5 3 ()P (Z)em

Let us find an equation between A,, and B,, from the mud equations. From the

first equation of 7.4.1.16, we know:

d(’fa-z)(u)

a® = " imUW = Y 2imyA,, (7.4.1.18)

From equation 6.2.0.14. which only applies to simple harmonic waves, we deduce:

(Tez)l) = Uy O(x* 7.4.1.19
er##deJr (K) ( )

As a consequence, equation 7.4.1.18 becomes:

2UW im

m
+ UW = h™ 12—y Ay, 7.4.1.20
az? oW, " 01(2)/Lm7 ( )
which can be simplified as:
Uy,

i~ Uy = —hT e A (7.4.1.21)

where 62, is as in the flat bottom case (chapter 5):
52 = —z‘a(—;’);— (7.4.1.22)
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Knowing the value of a®, we deduce:

5_2 _ _Z,mlidpmAdk\/gB
" €

(7.4.1.23)

Let us note that the value of &,, does not depend on ps, since pgp,, = pl,, is

the dimensional viscosity. As a® and Re® do not appear in equation 7.4.1.21, we

deduce that we will not need the value of pg to solve it.

We also know the boundary conditions:

U9 =0, 2=0

dU©
7 (¢), Z=1
and thus, Ym:
UV =0, Z=0
NI
c(i]Z =0, 2=1

We obtain the valuc of the horizontal velocity:

A
0 — i
"V

+ [tanh(d,, )] Sinh(c}mZ)]

From 7.4.1.16, we also know:

(0) 2 (0)
V. dVm” _ im M &> dh OUx
DTz T T X oz

Using the boundary condition:

we obtain:

Am . .
VO = sz—E [amZ — [1 + tanh(d,,)] sinh(c,,2)
+ [tanh(d,,)] cosh(6,,Z) — tanh(&m)]
Kx? dh
7(0)
T mdx
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[1 —[1 + tanh(d,,)] cosh(6,,2)

(7.4.1.24)

(7.4.1.25)

(7.4.1.26)

(7.4.1.27)

(7.4.1.28)

(7.4.1.29)



It is interesting to note that there is a new term in the expression of Vé,o) compared to
the flat bottom case (chapter 5). This is due to the fact that we are not considering
the sane axes anymore. as a consequence, the vertical velocity must be corrected
with a term proportional to the horizontal velocity and the slope . Now, still from
equation 7.4.1.16, we have:

VYm, By (X) = —{% (V,,QO)(Z =1) - K dh — U9z = 1)) (7.4.1.30)

After calculation, we obtain:

Vm, |Bpn(X)=12m (7.4.1.31)

Om

Combining equations 7.4.1.13 and 7.4.1.31, we naturally obtain:

[m/2]

dA,, hx € ” im3
h—— axX -+ \/HAm —I)Sf ZZA m+1 + Z CYZA[ m—=l] = ThAm
Kqim YA, | tanh o, | 0
k2 2 h T N

(7.4.1.32)
where [m/2] is the integer part of m/2 and ¢y is a coefficient equal to 1 for [ = [m/2]

and equal to 2 otherwise.

Let us compare this equation to what we found in the case where non-linearity
was more important than dispersion (chapter 6). We observe that equations 6.5.1.31

and 7.4.1.32 only differ by one term, which is due to dispersion, namely %Am.

As we already pointed out, this term did not appear before because dispersion

was less important compared to non-linearity.
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7.5 Further details

7.5.1 Surface and the interface

By truncating the infinite scries, equation 7.4.1.32 becomes:

W, VRSAm  hx o e 8 nizA A +[Z\:/2]aA A
m, ax 4\/7; 28h m+11 l l m—l 6 m
Ka 1mYAm [1_ tariham] 0
k2 2 h Tm,
(7.5.1.1)

The truncated differential system is true for 0 < m < n.

7.5.2 Energy variation

We found the partial differential equation 7.5.1.1:

: [m/2]
d(hY4A)  imd ),
~ At 5%5/4 Z2A Ameit + Z oA A
(7.5.2.1)
+h_5/4fjii—7m - tanh(c,,) A —0
K2 2 Om m
We introduce A,, = h'/*A,,, and modify equation 7.5.2.1 as:
~ o [m/2]
dA,  im® 5 < 3i 1
—d—X—————6—-h/Am+‘8—BmW ZQAZ m+ll+ ZalAl m—1
(7.5.2.2)
K2 2 Om "

Using the same demonstration than in the flat case, we easily deduce the variation

law:

%[éMml?] —2h~ 3/2/% ZR [W ( _ %)} |Am| (7.5.2.3)

and we then obtain the energy variation relation:

Tm

4 [\/';;zn: Anf?] = —a = zn: Re {zm (1 - %)] An2|  (7.5.2.4)




7.5.3 Behavior at the shore

Let us study the evolution of |A,,| towards the shore, that is to say towards h = 0.
Since this study is based on the cnergy variation equation 7.5.2.4, which is very
similar to the result we previously obtained (equation 6.6.3.4), this demonstration
will be similar to the one made in the previous chapter.

We will here consider that the water depth decrcases as X increases. In other
words hy < 0.

As demonstrated before, we know that there is always one harmonic |A,,| that
decays last. Let us prove that this harmonic decays to zero, and we will have proven
that all harmonics decay to zcro at the shore. Let us call Ay, this harmonic.

Let us consider X such as VX > X, all the A, are negligible compared to Agom,.
Such an X exists because the attenuation rate of Ay, is the smallest.

Ignoring all modes m # dom. let us rewrite equation 7.5.2.4 for |Agom|? only:

d 1| Adom|?
e h|A om 2] = 7 = 5.3.1
dX[ﬂ dom] T (7.5.3.1)
Let us write Adom such as:

Adom = R4 A gom (7.5.3.2)

Then equation 7.5.3.1 becomes:

d|Adom|2 o 1 |»’é~1dom|2

ix  mP L, (7.5.3.3)

Since the aim of this study is to consider the behavior very close to the shore, the

beach can be approximated as a plane beach. We choose s such as A(X) =1 — sX,

and thus hxy = —s. The solution of this equation is:

| Adom|? = Qgom exp [— Lim h_;ﬂ] (7.5.3.4)
With agem a real constant. And thus:

| Adorn|* = C;ﬁj’; oxXp [— Lim h;}lp] (7.5.3.5)

Since Lgom > 0 and A7? is a growing function of X, we deduce that [Agem,|[> — 0
exponentially as h — 0.

Since Agom s the dominant harmonic, and all the others are negligible, we deduce
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that: |all harmonics |A,,|*> — 0 exponentially as h — 0|.

Let us now study the interface harmonics B,,,. From equation 7.4.1.31, we know
that:

A, |, tanh(a,,
Vm, Bn(X)=12m {1 _ —M—)] (7.5.3.6)
h Om
As a consequence, by multiplying 7.5.3.6 to its complex conjugate:
A |? tanh(é,,) |2
. 1Bt = - . ‘mé(a >| (7.5.3.7)

And we deduce from the previous result on the |A,,|* that | B,,|> — 0 exponentially

as h — 0.

7.6 Numerical results by using the first ten har-

monics

We now solve this equation in the particular case:

W(z'y=h, 0<X
Wz')=h-s7, 0<X<1/s (7.6.0.8)
Wi(x'y=0, X>1/s

In dimensionless form, writing
s =rK3s, (7.6.0.9)
equation 7.6.0.8 becomes:

MX)=1, 0<X

M(X)=1-sX, 0<X <1/s (7.6.0.10)
MX)=0, X>1/s
corresponding to:
hx =0, 0<X
hx =—s, 0<X<1/s (7.6.0.11)

hx =0, X >1/s

We are going to plot these results for the viscoelastic muds we previously studied.

2068



Let us sum up the different muds we have:

e Case A: Gulf of Mexico mud. This mud is rather elastic.

e Case B: Mobile Bay mud. This mud is rather clastic as well

‘e Case C: Lianyungang mud. This mud complex viscosity’s phase is around Z so
it is as elastic as viscous.
e Case D: Hangzhou Bay mud. This mud is rather viscous, its complex viscosity’s

phase being close to zero.

7.6.1 Comparison of the different types of mud

We first look at the results for four types of mud in the case h = 5m, T = 18s (which
means w’ = 1/3rad/s), A = 40cm and d = 25cm. As in the previous chapter, we first
decide to set the slope such as s = 1/5. So in the end, and for this entire section, the

parameters are:

k=024, ¢ = 0.08, kg =005 s=1/5 (7.6.1.1)

Surface and interface

Computations have been carried out for 10 harmonics. In figures 7-2 and 7-4, we
present the variation of the first three harmonics of the surface and the interface.
Warning: the scales are not the same for every mud.

In figure 7-2, it can be observed that damping is stronger for the Gulf of Mexico,
Lianyungang and Hangzhou Bay (A, C, D) than for the Mobile Bay mud (B). This
result is consistent with the previous chapter for horizontal sea bed.

We only plot the surface motion up to X = 4.6 for the Mobile Bay mud, becausc
strong oscillations appear for X higher. However, we show in figure 7-3 a zoom-in of
the interface variation for this mud at the shore. This figurce allows us to sce that the
surface motion eventually reaches a zero-value at the shore.

The fastest damping occurs with the Hangzhou Bay mud, as we already noted
over a flat bottom (chapter 5).

Figure 7-4 shows the variation of the interface. For the Mobile Bay mud, the
interface displacement is very small compared to the other muds. We already observed
before that the interface displacement was small for this mud, because the mud-

induced damping is less significant than with the other muds.
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For the Gulf of Mexico, Mobile Bay and Lianyungang muds (A, B, C), the har-
monics increase next to the shore. Figure 7-5 gives a zoom of the interface motion for
these muds. These zoomed figures allow us to see that the |B,,| go to zero extremely
quickly right before the shore, which is what we expected from the analytic study we

carried in section 7.5.3.

Energy variation

We numerically represented the total first-order energies in figure 7-6. This figure
shows that the total energy logically decreases, to reach a zero-value at the shore
(X = 5). However, we observe once again that dissipation is slower to occur in the
Mobile Bay mud (B).

On the contrary, we note that energy decays more quickly with the Hangzhou Bay

mud, where mud-induced damping lecads to encrgy losscs before the shore.
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Figure 7-2: Evolution of the first 3 harmonics of the free surface over different types of

viscoelastic muddy seabeds. Warning: the horizontal and vertical scales are different
for mud B.
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Figure 7-3: Zoom-in of the surface motion for the Mobile Bay mud.

7.6.2 Influence of the slope ¢

We now focus on the influence of the slope. We look at the slope values s’ = 0.014,
s = 0.0069, s’ = 0.0035, s’ = 0.0023, s = 0.0014 and s’ = 0.00069, respectively

corresponding the non-dimensional slope values:

s=1,5=1/2, s=1/4, s=1/6, s=1/10, s =1/20 (7.6.2.1)

We still have b = 5m, T = 18s (which means w’ = 1/3rad/s), A = 40cm and

d = 25c¢m, corresponding to the parameters values:

[k =024, €=0.08, kg = 0.05] (7.6.2.2)

We only focus on the Gulf of Mexico mud (A) and the Hangzhou Bay mud (D),
because they respectively correspond to the most clastic and the most Newtonian

muds we have data for.

Surface and interface

Figures 7-7, 7-8 and 7-9 show the variation of the surface for different slopes for the
Gulf of Mexico and the Hangzhou Bay muds.

We obtained in the flat bottom casc of chapter 5 (figure 5-1), that the harmonics
| A | were not even damped at X = 40 with the Gulf of Mexico mud and are damped
after X = 20 with the Hangzhou Bay mud.

Now, with a sloping bottom, we observe that the harmonics are always damped
before the shore, to reach a zero value at X = 5. In particular, when the slope is
steep with s = 1, the harmonics are all damped at X = 1. This result agrees to what

we analytically demonstrated in section 7.5.3.
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Figure 7-4: Evolution of the first 3 harmonics of the interface over different types of
viscoelastic muddy seabeds. Warning: the scale is different for mud D.
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Figure 7-5: Evolution of the first 3 harmonics of the interface near the shore for the
Gulf of Mexico, Mobile Bay and the Lianyungang muds.
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Figure 7-6: Wave energy over a flat thick muddy seabed. Mud A is Gulf of Mexico
mud, mud B is Mobile Bay mud, mud C is Lianyungang mud and mud D is Hangzhou
Bay mud.

However, when the slope becomes less steep (s = 1/20). the harmonics have time
to be damped out before reaching the shore for the Hangzhou Bay mud. In this case,
the damping is also due to the presence of mud.

Figures 7-10, 7-11 and 7-12 show the variation of the surface for different slopes
for the same muds. We observe that the interface displacement is always stronger
with the Hangzhou Bay mud, where the damping is the most significant.

Figures 7-13 and 7-14 show a zoom-in of the interface motion near the shore for
the Gulf of Mexico mud. We see on these figures that the harmonics | B,,| ultimately

go to zero, which agrees with the analytical predictions.

Energy variation

We numerically represent the total first-order energies in figure 7-15 for the different
slopes. This figure shows that the total energy logically decreases, to reach a zero-
value at the shore (X = 5). The shore is reached for X = 1 for s = 1, for X = 2 for
s=1/2 and so on ...

We observe once again that dissipation is slower to occur in the Gulf of Mexico
mud (A). For instance, for s = 1/20 and at at X = 10 the total energy is already
nearly zero with the Hangzhou Bay mud, when it still represents more than 30% of

its initial value with the Gulf of Mexico mud.
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Figure 7-7: Evolution of the first 3 harmonics of the free surface over different types

of viscoelastic muddy seabeds, in the cases s = 1 and s = 1/2. Warning: we use a
different scale for the Gulf of Mexico mud. s = 1 case.
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(d) Hangzhou Bay mud, s = 1/6

Figurc 7-8: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds, in the cases s = 1/4 and s = 1/6.
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Figure 7-9: Evolution of the first 3 harmonics of the free surface over different types
of viscoelastic muddy seabeds, in the cases s = 1/10 and s = 1/20.
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Figure 7-10: Evolution of the first 3 harmonics of the interface between mud and

water over different types of viscoelastic muddy seabeds, in the cases s = 1 and
s=1/2.
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Figure 7-11: Evolution of the first 3 harmonics of the interface between mud and
water over different types of viscoelastic muddy seabeds, in the cases s = 1/4 and
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Figure 7-12: Evolution of the first 3 harmonics of the interface between mud and
water over different types of viscoelastic muddy seabeds, in the cases s = 1/10 and
s =1/20.
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Figure 7-13: Zoom-in of the first 3 harmonics of the interface near the shore with the
Gulf of Mexico mud.
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Figure 7-14: Zoom-in of the first 3 harmonics of the interface near the shore with the
Gulf of Mexico mud. s =1/10 and s = 1/20.

7.7 Sloping bottom without mud

7.7.1 Governing equations

From the study we just led in the particular case of viscoelastic mud, it is very easy
to deduce the surface waves behavior in the absence of mud. Indeed, the absence of
mud simply means that B,, = 0 in equation 7.4.1.13.

As a consequence, the governing equation 7.5.1.1 for the surface waves become
Vm:

[m/2)

dA,, hx € 32 im3
ﬂ'&‘}"{"mfl 28h 22141 m+1l+zalAl m—1 _ThAmzo

(7.7.1.1)

Once again, the difference between this equation and the result we obtained in

the previous chapter (equation 6.8.1.1), where non-linearity was more important than

dispersion is the dispersion term proportional to m? that appears here. As we already

pointed out, this term did not appear before because dispersion was less important
compared to non-linearity.

The same way, the energy variation can be deduced from equation 7.5.2.4, that
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Figure 7-15: Wave energy over a flat thick muddy seabed. Comparison between s = 1,
s=1/2,s=1/4,s=1/6,s=1/10 and s = 1/20.
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becomes:

dix{\/ﬁi \Amp] ~0 (7.7.1.2)

This result looks very logical: in the absence of mud, there is no energy dissipation

in water.

7.7.2 Numerical results by using the first ten harmonics

Since we don’t consider mud anymore, there are only four parameters remaining: h,
A, ' and s’. We already studied the influence of dispersion and non-linearity in
chapter 5, by playing on the ratio ¢/x2.

Let us now study the influence of different slopes. We look at the slope values s’ =
0.014, s’ = 0.0035 and s’ = 0.00069, respectively corresponding the non-dimensional
slope values:

s=1s=1/4, s=1/20 (7.7.2.1)

We still have h = 5m, T = 18s (which means w’ = 1/3rad/s) and A = 40cm,

corresponding to the parameters values:

[k =0.24, ¢ = 0.08] (7.7.2.2)

The results are shown in figure 7-16 for the three different slopes. Once again, even
though we carried the numerical resolution with ten harmonics, we choose to only
display the first three harmonics. As always, even though we carried the numerical
resolution with ten harmonics, we only display the first three harmonics.

We observe that these results are significantly different from the results of the
previous chapter. This means that the dispersion term in equation 7.7.1.1 actually
has an important influence. The harmonics oscillates more widely towards the shore
than in figure 6-28.

The main result is that, in the absence of mud, the harmonics keep growing toward
an infinite value at the shore. This result is a very well known phenomenon: wave

height increases as water depth decreases toward the shore.
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Figure 7-16: Effects of the slope on the evolution of the first 3 harmonics of the free
surface on a solid seabed.
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Chapter 8
Conclusion

We have first studied the propagation of surface and interface waves in the case of a
flat muddy seabed, considering the mud as a Newtonian fluid. Considering that non-
linearity is more important than dispersion, and by the method of multiple scales,
we have proved the existence of a drift current in mud at the second order. Through
numerical simulations, we found that the drift current in mud was the most significant
in the case of high non-linearity, high dispersion or thick mud layer. The analytic
expression for the evolution of the wave energy allowed us to verify the numerical
simulations run for 10 harmonics.

We then studied the same setting with viscoelastic mud instead of Newtonian
mud. Governing equations have once again been found for the surface, interface and
drift current variations. Four different muds have been studied, some rather elastic
and others more viscous. The attenuation rates were plotted as a function of the
dispersion for the different muds. We found that the attenuation rates did not have
any peak for long waves in the muds where the viscosity modulus was high (Gulf
of Mexico, Mobile Bay and Lianyungang). On the other hand, we found that, for
given values of the water depth, the attenuation rate had a peak for long waves in the
Hangzhou Bay mud, whose viscosity modulus is smaller. We then plotted the surface,
interface and drift current variations. We showed that the mud-induced damping was
very slow with the Mobile Bay mud, and faster with the three other muds. We showed
that the Hangzhou mud had the strongest interface displacement because of its small
viscosity modulus and that the drift current was the strongest in the Gulf of Mexico
and the Hangzhou Bay muds.

The same pattern has then be followed with a Boussinesq class case (where dis-
persion is comparable to nonlinearity). We showed that dispersion and non-linearity

were now appearing at the same order, allowing to compare both influences. We
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observed that mud-induced damping was the most significant in the case of high non-
linearity, small dispersion or thick mud layer. We then compared the results between
the viscoelastic muds and showed that, with the chosen parameters, the mud-induced
damping was the strongest for the Hangzhou Bay mud.

Finally, we studied the effect of a sloping muddy seabed. We demonstrated that,
with viscoelastic mud, the static problem only induced a displacement in the mud
layer. We demonstrated analytically that all harmonics of the surface, interface and
the drift current were decaying exponentially to a zero-value at the shore. Different
slope steepnesses were studied. We showed that, if the slope was to steep to allow
mud-induced damping before the shore, harmonics were decaying sharply to zero
at the end. However, we showed that in the case of gentle slopes and for muds
with sufficient attenuation rates, mud-induced damping appeared before the wave
could reach the shore. The drift current was plotted for different slope steepnesses,
emphasizing the fact that the highest currents are obtained at the shore with steep

slopes.
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