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Abstract

In this thesis, we derive full theoretical expressions for the moments of the matched
filtered scattered field due to volume inhomogeneities in an ocean waveguide and pro-
vide a computationally efficient time harmonic approximation to the matched filtered
model. Following the approach developed by Galinde et al 16], the expressions are de-
rived from first principles, by applying Green's theorem and the Born approximation.
The scattered field and the total moment expressions are in terms of the fractional
changes in the bottom compressibility and density, as well as the waveguide Green
function and its gradients. The volume inhomogeneities are assumed to be statisti-
cally stationary, and assumed to be correlated in all three directions following a delta
correlation function. Sound propagation in the ocean is modeled using the parabolic
equation model and actual measurements of bathymetry and sound speed at the ex-
perimental locations. Monte Carlo simulations are used to account for the sound
speed variability in the ocean waveguide due to internal waves or other sources of
acoustic field randomization. The computationally efficient time-harmonic model is
shown to provide a good approximation to the full broadband matched filtered model
for a standard Pekeris waveguide. The time-harmonic model is then calibrated for
ocean bottom reverberation at several frequencies in the 415-1325 Hz band, with data
collected during the 2003 and 2006 ONR Geoclutter Experiments on the New Jersey
continental shelf and on the northern flank of Georges Bank in the Gulf of Maine,
respectively. The statistics for the inverted bottom parameters are summarized for
all frequencies and experimental locations considered. The acoustically determined
bottom parameters are shown to vary with approximately the wavelength cubed,
suggesting that, by different frequencies selecting the scale of the acoustic inhomo-
geneities, the acoustic effects dominate over the geophysical effects.

Thesis Supervisor: Nicholas C. Makris
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

The ability to accurately predict reverberation level in the ocean for different sediment

types and frequency ranges is critical for remote sensing and imaging systems. The

reverberation in shallow continental shelf environments for moderate sea surface wind

conditions, has been shown to be mainly due to scattering from the ocean seabed [22],

[19]. Several methods have been developed to model bottom scattering, including

interface roughness scattering models, based on the roughness at the water-bottom

interface [19], [21], [4], and volume scattering models, for scattering due to seabed

volume inhomogeneities [6], [19], [23], [11], [12], [20]. For areas of relatively flat

bathymetry and for the shallow grazing angles associated with low frequency long-

range reverberation, it has been shown that volume scattering is the dominant factor

in total bottom reverberation [17], [20], [10]. Models for scattering from volume

inhomogeneities in the ocean seabed have been formulated in the literature, but have

generally not included the matched filter, which is applied in remote sensing systems

to "provide high-resolution imaging of the seafloor and submerged targets" [3]. The

matched filter "allows for scatterers extending over multiple range resolution cells of

the imaging system to be automatically localized in range, and does not require to

artificially break-up the scatterers to within each range resolution cell, as in the case

of time-harmonic or other broadband models" [1].

In this thesis, we derive full theoretical expressions for the moments of the matched

filtered scattered field due to volume inhomogeneities and provide a computationally



efficient time harmonic approximation to the matched filtered model. Following the

approach developed by Galinde et al [6], the expressions are derived from first princi-

ples, by applying Green's theorem and the Born approximation. The scattered field

and the total moment expressions are in terms of the fractional changes in the bottom

compressibility and density, as well as the waveguide Green function and its gradients.

The volume inhomogeneities are assumed to be statistically stationary, and assumed

to be correlated in all three directions following a delta correlation function. Sound

propagation in the ocean is modeled using the parabolic equation model RAM [5], and

actual measurements of bathymetry and sound speed at the experimental locations.

Monte Carlo simulations are used to account for the sound speed variability in the

ocean waveguide due to internal waves or other sources of acoustic field randomiza-

tion. The computationally efficient time-harmonic model is shown to provide a good

approximation to the full broadband matched filtered model for a standard Pekeris

waveguide. The time-harmonic model is then calibrated for ocean bottom reverber-

ation at several frequencies in the 415-1325 Hz band, with data collected during the

2003 and 2006 ONR Geoclutter Experiments on the New Jersey continental shelf and

on the northern flank of Georges Bank in the Gulf of Maine, respectively [16], [15].

The statistics for the inverted bottom parameters are summarized for all frequencies

and experimental locations considered.

This thesis is structured as follows: In Section 2, we present the analytic formu-

lations for the moments of the matched filtered scattered field and a time harmonic

approximation. In Section 3, we implement the matched filtered and time harmonic

formulations to a standard Pekeris waveguide, using bottom parameters estimated by

Galinde et al [6] for the New Jersey continental shelf. Here, we show that the time-

harmonic model provides a good approximation to the matched filtered model and

we investigate the frequency dependence of the time-harmonic model while keeping

the bottom parameters constant. In Section 4, we calibrate the computationally effi-

cient time-harmonic model to ocean reverberation data and present statistics for the

inverted bottom parameters at several frequencies and at two different geographical

locations.



Chapter 2

Analytic Formulation

In this section, we derive analytic expressions for the total moments of the matched

filtered scattered field from random volume inhomogeneities extending over multiple

resolution cells in range. We start by deriving the scattered field in terms of the

single frequency f. We then apply the matched filter and use Fourier synthesis to

obtain the time dependent matched filtered scattered field. Next, we derive full

formulations for the total scattered field moments, and indicate that the matched

filtered scattered intensity can be approximated by the incoherent term. We also

provide a computationally efficient time harmonic approximation to the matched

filtered scattered intensity.

We consider an ocean waveguide consisting of a water layer, located between an

air halfspace above, and a bottom halfspace below. We let (x, y, z) be the coordinates

of a cartesian coordinate system with origin at the air-water interface, and the z-axis

pointing down. We place the source at ro=(xo, yo, zo), the receiver at r=(x, y, z),

and the center of the inhomogeneity at rt=(xt, yt, Zt). f represents the frequency,

w = 27rf the angular frequency, c the sound speed, and k = w/c is the acoustic wave

number.



2.1 Matched filtered scattered field

To derive the matched filtered scattered field from random volume inhomogeneities,

we follow the approach developed by Morse and Ingard [18] and Galinde et al [6],

and start from the inhomogeneous Helmholtz equation for the single-frequency, time-

independent acoustic field in the presence of volume inhomogeneities:

V 24t(rt, f) + k25It(rt, f) (2.1)

= -k 2 F(rt)4t(rt, f) - V - [Fd(rt)VDt(rt, f)].

Here, F,, is the fractional change in compressibility,

n,(rt) -
IF (rt) _ , (2.2)

and Fd is the fractional change in density,

]Fd(rt) - d(r) - d (23)
d(rt)

where P. and d are the mean compressibility and density in the region, respectively

[18], [6]. The compressibility can be expressed in terms of the density and the sound

speed as , = 1/dc2.

Applying Green's theorem [18] to Equation 2.1 above, we obtain the scattered field

4s(rsIr, ro, f) from inhomogeneities within Vs, a region which we choose to extend

along the entire positive z-axis in depth, over the sonar resolution angle in azimuth,

and over multiple sonar resolution cells in range. The region is centered at rs, and

the source and receiver are located at ro and r, respectively:

4 s(rslr, ro, f) = J vs [k2 ]p(rt),t(rt, f)G(rIrt, f) (2.4)

+ Fd(rt)VDt(rt, f) - VG(rlrt, f)]dVt.

G(rlrt, f) is the Green function describing propagation from the location of the



inhomogeneity to the receiver, and 1t(rt, f) is the total field at the location of the

inhomogeneity. The total field can be expressed as the sum of the the incident and

scattered fields [18],

4t(rt, f) = eP(rtIro, f) + I1s(rt, f).

To set the source level to 0 dB re 1 pPa at 1m, we let 42 (rtlro, f) = (47r)G(rtero, f).
For small fluctuations in density and compressibility, we can make the Born approx-

imation, and approximate the total field at the inhomogeneity by the incident field

[18]. Then, we can express the scattered field at the receiver as

d s(rsIr, ro, f) =(47r) J vs [k2 lT(r)G(rtjro, f)G(rlrt, f) (2.5)

+ Pd(rt)VG(rtro, f) - VG(rlrt, f)]dVt.

Next, we derive the matched filtered scattered field for a source that transmits a

broadband waveform q(t) with Fourier transform Q(f) and bandwidth B around the

center frequency fc by applying the matched filter to Equation 2.5. We express the

matched filter, "a normalized replica of the original transmitted waveform" [3], as

H(fItM) = Q*(f)ei 2 ftm (2.6)

where tM represents the time delay of the matched filter. The matched filter reaches a

peak at t = tM. The source energy is Eo = f IQ(f)I2df and equals 1 for a normalized

source. Then, using Fourier synthesis, we find the time-dependent matched filtered

scattered field to be

Ds(rslr, ro, t) = (47r) f /ff [k2]pK(r)G(rjro, f)G(rlrt, f) (2.7)
fc-B/2 vs

+ F(rt)VG(rt~ro, f) -VG(rlrt, f)]

x IQ(f)|2e-i 2 f(t-tM) dVt df.



2.2 Full analytical expressions for the total mo-

ments of the matched filtered scattered field

Here, we derive full analytical expressions for the total moments of the matched

filtered scattered field in terms of the statistical moments of fractional changes in

compressibility and density and in terms of average realizations of the Green functions

and gradients in a randomly fluctuating ocean waveguide. Implementation-friendly

expressions for the total moments of the scattered field based on conditional moments,

where we condition on a particular set of deterministic Green functions, are detailed

in Appendix A of this thesis.

We assume the bottom inhomogeneities to vary randomly in space, following a

stationary random process within the region Vs considered. Additionally, we assume

the fluctuations in bottom properties to be independent from the fluctuations in the

ocean waveguide. Thus, we can treat the random variables I, and Fd as independent

from the medium's Green function [6]. Then, the mean matched filtered scattered

field can be expressed as

(Cbs(rsIr, ro, t)) = (47r) fcfB/2fc+B/2
(2.8)

fj [k2(IF.(r))(G(rtIro, f)G(rIrt, f))

+ (T'(rt))(VG(rtlro, f) - VG(rlrt, f))]

x I MA Qf)2 e-i27rt-tM) dVt df.
VIo



The second moment of the scattered field is

(1s(rsIr, ro, t) 2) (,Ds(rsIr, ro, tm) *s(rslr, ro, tM)) (2.9)

((4-r) [ ,:B2 k 2]p"(rt)G(rtlro, f)G(rlrt, f)
fcB/ 2 f s

+ ]7(r)VG(rtlrof) -VG(rlrt,f)] x IQ(f)I2 e-i 2
rf(

t -tm) dV df

jfc+B12 12pp(47r) [k'2 (r'/)G*(r'l lro, f')G*(rlr', f')
fc-B/2 JJJVs

+ Fd(r')VG*(r'lro, f') - VG*(rlr', f')] x I |Q(f')i2e-i27f'(t-tm) dV' df'),

which can be written as

(4,s(rsIr, ro, t) 2) (2.10)

=(47r)2f fc+B/2 c+B/2 1 ffcB/ f-/2 Sf

[k 2 k'/2 (.(rt)rr.(r'))(G(rt|ro, f)G(rlrt, f)G*(r'|ro, f')G*(rlr',, f'))

+ (rd(rt)Fd(r))(VG(r|ro, f) -VG(rlrt, f) x VG*(r'|ro, f') -VG*(rlr', f'))

+ k2(F,(r)F(r'))(G(rtlro, f)G(rlrt, f)VG*(r'lro, f') - VG*(rlr', f))

± k'2 (F,(r)Fd(rt))(G*(r'jro, f')G*(rjr', f')VG(rlro, f) -VG(rlrt, f))]

X1 IQ( f||1~)2 2w2(f -f')(t- t ) d V d Vt' df df'

To model the statistics of the density and compressibility variations, we use a

delta correlation function and assume the parameters to be correlated in all three

dimensions. As we assume the parameters to follow a stationary random process, only

the second order statistics are needed. Moreover, as the density and compressibility

variations are assumed to be fully correlated [12], we may use only one coherence

volume, Vc, for both random variables. Following the approach developed by Galinde



et al [6], we let

(Fr.(rt)IF r.(r')) (2.11)

= V(rs, zt)[(I'(rt)) - |- r') + (1](rt))(F-(r'+))

V(rs, zt)Var(I7.(rt)J(rt - r') + (F(rt))(FK(r')).

Similarly,

(Jd(rt)Fd(r') (2.12)

= V(rs, zt)Var(Fd(rt))6(rt - r') + (Fd(rt))(Fd(r'))

(PK(rt)rd(r')) (2.13)

V(rs,zt)Covar(F,(rt), Fd(rt))6(rt - r',) + (I'.(rt))(Fd(r'))

(F((r'Fd(r) 2.14)

= V(rs, zt)Covar(T,(rt), Fd(rt))6(rt - r') + (F,(r')(Fd(rt)).

Then, Equation 2.10 becomes

(K<Ds(rslr, ro, t)12) (2.15)
I fc+B/2 ffc+B/2 fff f
-(4r)2 fcKB2 V (rs, zt)

fc-B/2 fc-/2Vs

x [k2 k'2Var(ri)o(rt - r')(G(rro, f)G(rlrt, f)G*(r'ro, f')G*(rr', f))

+ Var(Fd)&(rt - r')(VG(rt|ro, f) - VG(rlrt, f) x VG*(rro, f') -VG*(rr, f'))

+ k2Covar('K, Fd)6(rt - r',)(G(rtlro, f)G(rlrt, f)VG*(r'lro, f') - VG*(rlr', f'))

+ k'2 Covar(FK, d) 6 (rt - rt)(G*(r' lro, f')G*(rlr', f')VG(rlro, f) -VG(rlrt, f))]

x | Q(f }|21Qf 2e-is7ru-f'x,-tm) dV dVt' df df'+



+fc+B/2 ffc+B/2 ff ff
( fB/2 Jf-B/2 Vs Vs

x[k 2k'12 (r(rt))(rr.(r'))(G(rtlro, f)G(rlrt, f)G*(r'l~ro, f')G*(rlr',,f'))

+ (Fd(rt))(Fd(r'))(VG(rtlro, f) VG(rlrt, f) x VG*(r'lro, f') - VG*(r r',f'))

+ k2 (r.(rt))(Fd(r'))(G(rtlro, f)G(rlrt, f)VG*(r'ro, f) -VG*(rr', f'))

± k' 2 (F(r'))(rd(rt))(G*(r'jro, f')G*(rr', f')VG(rt|ro, f) -VG(rtrt, f))]
1

X |IQ( f |2 Q{ gi 2e-i27r f-f')(t-t" ) dV dVt' df df'.
F0

After canceling the delta function with one of the volume integrals in the first

term of the above equation, we have the full expression for the matched filtered total

second moment

(lkbs(rslr, ro, t)|2) (2.16)
I fc+B/2 fc+B/2 f

(47r)2 / gB g Vc(rs, zt)
f-B/2 fc-B/2 V

x [k 2 k'2Var (r.)(G (r I ro, f ) G(r Irt, f )G* (rt Iro, f ') G*(r Irt, f'))

+ Var(Fd)(VG(rtlro, f) -VG(rjrt, f) x VG* (rt ro, f') -VG* (rirt, f'))

+ k2 Covar(IF, Fd)(G(rtIro, f)G(rlrt, f) VG*(rtlro, f') -VG* (rirt, f'))

+ k'2 Covar(Fr, 1Fd)(G*(rtlro, f')G*(rlrt, f')VG(rtjro, f) - VG(rlrt, f))]

x | IQ(f) 12jQ(fi)12e-i2(f-f')(t-tm) dV df df'+

+ (47r)2fc+B2 fc+B/2 f
+ IcB/ fc-B/2 ]]Vs 1 1 Vs

x[k 2 k'2 (1F(rt))(Fn(r'))(G(rtiro, f)G(rlrt, f)G*(r'|ro, f')G*(rlr',, f'))

+ (Fd(rt))(Fd(r'))(VG(r|ro, f) -VG(rlrt, f) x VG*(r'lro, f') -VG*(rlr', f'))

+ k2(F.(rt))(Pd(r'))(G(rtIro, f)G(rIrt, f)VG*(r' Iro, f) -VG*(rIr', f'))

+ k' 2 (F.(r')) (Pd(rl)) (G*(r'ro, f')G*(rlr', f')VG(rro, f) - VG(rjrt, f))]

X | Q(f}|21Q(fgi 2e--i27rtf-f'x(t-tm) dV dV' df df'.1o



The total variance can be expressed in terms of the total second moment and the

squared of the mean field as

Var (s(rsIr, ro, t)) (Pes(rs r, ro, t)|2 ) - I(Ps(rsIr, ro, t))|2 , (2.17)

which can be further expanded as

Var(4s(rsIr, ro, t)) (2.18)

Sfc+B/2 fcB/S(47r)2 V(rs, z,)
fc-B/2 f-B/2 VS

x [k 2k'2Var (:P,)(G (rt Iro, f ) G(r Irt, f )G* (r I ro, f') G*(r Irt, f'))

+ Var(Jd)(VG(rtlro, f) - VG(rlrt, f) x VG*(rtlro, f') - VG*(rlrt, f'))

+ k2Covar(7, IF)(G(rtlro, f)G(rlrt, f)VG*(rtlro, f') - VG*(rlrt, f'))

+ k' 2Covar(]F, Fd)(G*(rtro, f')G*(rrt, f')VG(rtlro, f) - VG(rlrt, f))]

x | IQ(f)21Q(fI)j2e-i2(f-f')(t-tm) dV df df'+

+ (47r)2Jfc+B2 f+B/2fc-B/2Ic-B/2LV
x[k2 k'2(rr.(rt)) (rr (r')) (G(rt Iro, f )G(r Irt, f )G* (r'tro, f') G*(r Ir', f'))

+ (Fd(rt))(Fd(r'))(VG(rtlro, f) -VG(rlrt, f) x VG*(r'lro, f') - VG*(rlr', f'))

+ k2(F,(rt))(Fd(r'))(G(rtlro, f)G(rlrt, f)VG*(r'Iro, f') - VG*(rlr', f'))

+ k'2 (F.(r'))(Fd(rt))(G*(r'jro, f')G*(rr', f')VG(rtlro, f) -VG(rlrt, f))]

x | Q( f}|21Qf 2e-i27rf-f'x(t-tm) dV dVt' df df'-



fcB/2 fc+B/2
- (47)2 Jfc-B/2 jfe-B/2 VsJ Vs

xk {2 k'2(Fr.(rt))(Fr.(r'))(G(rtlro, f)G(rlrt, f))(G*(r'lro, f')G*(rlr',f'))

± (Fd(rt))(Td(r'))(VG(rtlro, f) -VG(rlrt, f))(VG*(r'jro, f') VG*(rlr', f'))

+ k2 (]F(rt))(Fd(r'))(G(rtro, f)G(rlrt, f))(VG*(r' Iro, f') VG*(rIr', f'))

+ k' 2 (FK(r'))(Fd(rt))(G*(r'ro, f')G*(rlr', f'))(VG(rtlro, f) -VG(rlrt, f))]
1

X _|Q( f||21Q( i)12e-i27r f -fl't-t" ) dV dVt df df'.
Eo

While the above equation represents the full expression for the matched filtered

total variance, we show in Section 3 that the last two terms of the variance Equation

2.18 are negligible, so that the variance can be approximated by the first term. Since

the first two terms in the variance Equation 2.18 are the same as the terms of the

second moment Equation 2.16, both the second moment, or matched filtered scattered

intensity, and the variance, can then be approximated by

Var(4s(rslr, ro, t)) (2.19)
Sfc+B/2 ~fc+B/2

(47r)2 I fI Vc(rs, z,)
fc-B/2 fc-B/2 Vs

x [k2 k'2Var(1K)(G(rlro, f)G(rlrt, f)G*(rtlro, f')G*(rlrt, f'))

+ Var(Fd)(VG(rtjro, f) -VG(rlrt, f) x VG*(rtlro, f') - VG*(rlrt, f'))

+ k2 Covar(r, rd)(G(rtlro, f)G(rlrt, f)VG*(rtlro, f') - VG*(rjrt, f'))

± k' 2Covar(P, Fd)(G*(rlro, f')G*(rlrt, f)VG(rtlro, f) -VG(rlrt, f))]

X 1 |Q( f }|21Q( )1 2e-i27rf-f'xt-tm) dV df df'.
Eo

The equations presented above are expressed analytically in terms of the moments

of the density and compressibility variations, as well as in terms of averages of Green

function products over multiple realizations of the ocean environment. Implementa-

tion of the full second moment and variance formulations as expressed in Equations

2.16 and 2.18, respectively, requires, however, double integration over the volume Vs.



In Appendix A we develop a more efficient method for implementing the full formu-

lations for the total variance and second moment, based on moments conditional on

a set of deterministic Green functions.

2.3 Time harmonic approximation to the matched

filtered scattered intensity

In this section, we present a computationally efficient approximation to the matched

filtered scattered intensity derived in Section 2.2. Starting with Equation 2.5 for the

time harmonic scattered field, where Vs now represents the resolution footprint of

the imaging system, we following a procedure similar to the one used in the previous

section, and find that the time harmonic total variance is

Var(4s(rsIr, ro, f)) (2.20)

= (47r)2 JJvs V(rs, zt)

x [k'Var(FK)(IG(rtlro, f)12 |G(rlrt, f)12)

+ Var(Fd)(|VG(rtlro, f) -VG(rlrt, f)12)
± k2 Covar(T, Fd)(2R{G(rtIro, f)G(rlrt, f)VG*(rtlro, f) - VG*(rlrt, f)})] dV

+ (47r)2 Js j[k4(](r))(rr(r'))(G(rt|ro, f)G(rlrt, f)G*(r'lro, f)G*(rlr', f))

+ (Fd(rt))(Fd(r'))(VG(rtIro, f) -VG(rlrt, f) x VG*(r' Iro, f) VG*(rIr',f))

Sk 2 (F.(rt)) (Fd(r')) (G(rtIro, f)G(rlrt, f)VG*(r'lro, f) VG*(rIr', f))

+ k2 (F.(r')) (1d(rt)) (G*(r'\ro, f)G*(rr'7, f)VG(rtro, f) -VG(rlrt, f))] dV dV'

- (47c)2 vJ vJ [k4(P(rt))(L'(r'))(G(rtjro, f)G(rlrt, f))(G*(r'jro, f)G*(rlr', f))

+ (Fd(rt)) (Fd(r')) (VG(rtlro, f) -VG(rlrt, f))(VG*(r'ro, f) -VG*(rlr', f))

+ k2 (F.(r))(r(r'))(G(rtIro, f)G(rIrt, f))(VG*(r'lro, f) VG*(rIr, f))

+ k2 (F.(r'))(Fd(rt))(G*(r'lro, f)G*(rIr', f))(VG(rtIro, f) - VG(rIrt, f))] dV dV'.



In Section 3.1 we show, using Monte Carlo simulations in a standard Pekeris

waveguide, that the matched filtered scattered intensity derived in Equation 2.19 can

be approximated by the first term of the total time harmonic variance, also given by

Galinde et al [6] as:

Var(<Ds(rslr, ro, f)) (2.21)

= (47r)2 vl Vc(rs, zt)

x [k4Var(I)(IG(rtlro, f)I2 |G(rlrt, f)12)

± Var(rd)(|VG(rtro, f) - VG(rlrt, f)12)

± k2 Covar(d, a)(2R{G(rtjro, f)G(rirt, f)VG*(rtlro, f) - VG*(rlrt, f)})] dVt.
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Chapter 3

Model implementation for a

Pekeris waveguide

In this section, we implement the theoretical formulations developed in Section 2 and

Appendix A for the total moments of the scattered field to a standard sand Pekeris

waveguide, using Monte Carlo simulations of the ocean environment. We show that

the following three approximations can be made not only for multiple realizations,

but also for a single realization of the ocean waveguide: (1) the total matched filtered

second moment (Equation 2.16) is dominated by and can be approximated by the

total matched filtered variance (Equation 2.18); (2) the total matched filtered variance

(Equation 2.18) is dominated by and can be approximated by its first term (Equation

2.19), while the last two terms are negligible; (3) the first term of the total matched

filtered variance (Equation 2.19) is dominated by and can be approximated by the

first term of the total time harmonic variance (Equation 2.21). Lastly, we investigate

the frequency dependence of the time harmonic model for the scattered intensity in

an isovelocity sand Pekeris waveguide, while keeping the bottom parameters constant

for all frequencies.



3.1 Approximations to the matched filtered scat-

tered intensity

Here, we implement the formulations for the total moments of the scattered field

to a Pekeris waveguide with sand bottom such as the one illustrated in Figure 3-1,

and demonstrate that the three approximations stated above hold for any number of

realizations of the ocean environment.

water p = 1000 kg/m 3

depth al,= 6 x 10~' dB/A

Sand bottom cb = 1700 m/s

Pb = 1900 kg/m 3

b =0.8 dB/A

Figure 3-1: Pekeris waveguide with sand bottom, where C., pw and a are the sound
speed, density and attenuation of the water column, and cb, Pb and ab are those of the
sea-bottom. The water column sound speed profiles used in simulations are actual
sound speed profiles measured on the New Jersey continental shelf [16].

We allow the sound speed profiles to vary in range, in order to model the random

fluctuations in the ocean environment caused by internal waves. From a set of sound

speed profiles measured on the New Jersey continental shelf [16], we pick one sound

speed profile every 500 m in range [2] and use the parabolic equation model RAM

[5] to compute the Green functions for each randomly selected set of sound speed

profiles. The set of measured sound speed profiles used for random selection is shown

in Figure 3-2. The geometry of the problem is monostatic, with the source and

receiver collocated at the depth of 50 m. The source and receiver comprise each of

a single element. The source level is normalized to 0 dB re 1 LPa at 1 m and the

waveform transmitted is a 1 second long linear frequency modulated (LFM) pulse

centered at 415 Hz, with a 50 Hz bandwidth. The corresponding range resolution,

Ar, is then 15 m, as Ar = c/2B, where c, the reference sound speed, is 1500 m/s,

and B, the bandwidth, is 50 Hz. The statistics of the fractional changes in density



and compressibility used in the simulation are those estimated by Galinde et al [6]

for the New Jersey continental shelf, summarized in Table 3.1. The region over which

we integrate, Vs, corresponds to a seafloor patch that extends over 10m in depth

(more than sufficient for convergence) and 3* in azimuth. In range, the patch extends

from 100 m to 5500 m relative to the source/receiver location. The depth and range

increments used for computing the Green functions and gradients are dz = 0.4 m and

dr = 3 m, respectively. In azimuth, we assume the Green functions are constant over

the integration angle.

New Jersey water column sound speed profiles

10-

20-

30-

E40-

50-

60-

70-

80-

90-
1460 1470 1480 1490 1500

sound speed (m/s)
1510

Figure 3-2: The sound speed profiles measured on the New Jersey continental shelf.

Table 3.1: Statistical geologic properties of the
by Galinde et al [6].

Statistical parameters Average

Vc
(Fk)
(Fd)
(Fi)
(Fj)

Var(Fk)
Var(Fd)

Covar(J'k, Fd)

New Jersey Strataform, as estimated

values over the region

0.0030 (M3 )
0.0000
-0.0063
0.0083
0.0066
0.0083
0.0065

-0.0065



First, we show that the matched filtered scattered intensity is dominated by the in-

coherent intensity, or the variance. We implement the full expressions for the matched

filtered total second moment, total variance and the magnitude squared of the total

mean, as expressed in Equations A. 12, A. 14 and A.3, respectively, from Appendix A.

These equations represent formulations for the scattered field moments alternative

to those in Equations 2.16, 2.18 and 2.8 from Section 2: the former are formulations

expressed in terms of moments conditional on a set of deterministic Green functions,

while the latter are analytic formulations, expressed in terms of bottom parameter

statistics and averages of Green function products over multiple realizations of the

ocean environment. Equations A. 12, A. 14 and A.3, however, are more suitable for im-

Total moments: 10 realizations
-80

second moment
---- variance=L

(D -1 0 0 --..... .... ...... ..... a

C

S-140-

0
... ... ..

-180
-1 0 1 2 3 4 5 6 7 8

Range (km)

Figure 3-3: Total moments of the full 390-440 Hz matched filtered scattered field in
a Pekeris sand waveguide with varying sound speed profiles, for 10 realizations of the
ocean environment. The level of the mean squared term is dependent on the number
of realizations and on the range increment dr, while the level of the variance term is
stable.

plementation, since they don't require a double integration over the patch Vs. Figures

3-3 and 3-4 show the matched filtered moments for 10 and 1 realizations, respectively.

Both figures show that, except at the edges of the patch, where the coherent inten-

sity is non-negligible, the second moment, or scattered intensity is dominated by the



variance, or the incoherent intensity.

We note that the level of the coherent term, the mean squared, is dependent on

the number of realizations and on the range increment dr, while the level of the

incoherent term, the variance, is stable. For the latter, this implies that increasing

the number of realizations renders a smoother curve, but one realization is sufficient

to determine the correct level. For the case of one realization, in fact, the Green

function is deterministic and the total moments are equal to the conditional moments

described in Equations A.11, A.9 and A.2 for the second moment, variance and mean,

respectively, which are functions of the statistics of the bottom parameters.

Total moments: 1 realization
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Figure 3-4: Total moments of the full 390-440 Hz matched filtered scattered field in
a Pekeris sand waveguide with varying sound speed profiles, for a single realization
of the ocean environment. For the case of a single realization, the total moments are
equal to the moments conditional on a set of deterministic Green functions.

Next, we verify that the matched filtered variance, as given in Equation A.14, is

dominated by the first term. In Figures 3-5 and 3-6 we plot the variance and its

three terms, for the cases of 10 and 1 realizations, respectively. For both cases, we

note that the first term dominates the total variance, while the last two terms are

negligible. For the case of 10 realizations, the third term is the least significant, as

it decreases both with an increase in the number of realizations, as well as with a



decrease in dr. The average level of the second term, however, is dependent only on

the range increment dr. For the case of a single realization, the second and third

terms cancel each other because of the common Green function product. Thus, for

one realization, the total variance is equal to the conditional variance.

Variance terms: 10 realizations
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Figure 3-5: Total 390-440 Hz matched filtered variance and its terms in a Pekeris
sand waveguide, for 10 realizations of the ocean environment.

Lastly, we demonstrate that we can further approximate the matched filtered

scattered intensity by the time harmonic expression in Equation 2.21, where VS is

now the resolution footprint of the sonar. Thus, for the time harmonic expression in

Equation 2.21, the integration region Vs corresponds to a seafloor patch that extends

over l1in in depth, 3' in azimuth and 15m in range. We have shown that the matched

filtered scattered intensity can be approximated by the incoherent term, which, at its

turn, can be approximated by the first term of the total matched filtered variance, as

expressed in Equation 2.19. By implementing Equations 2.19 and 2.21 to the same

Pekeris sand waveguide, we show in Figures 3-7 and 3-8 that the full 390-440 Hz

matched filtered expression can be approximated by the time harmonic expression at

the 415 Hz center frequency, for both 10 and 1 realizations of the ocean environment,

respectively. Figures 3-9 and 3-10, which compare the range-averaged values of the
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Figure 3-6: Total 390-440 Hz matched filtered variance and its terms in a Pekeris sand
waveguide, for a single realization of the ocean environment. For a single realization,
the last two terms cancel each other and the total variance is equal to the conditional
variance .

two series, show the results are within a few dB. For the last two figures, we have

found that if a patch at least 10 km long were considered, averaging over a 2000

m range reduces the difference between the two curves to as low as 1 to 2 dB. We

restricted the analysis to a shorter patch in order to reduce computation time.

Equation 2.21 has just been shown to provide a good approximation to Equation

2.19 and to the total scattered intensity, and is the only term assumed in heuristic

radiometry approaches. The total time harmonic variance expression of Equation

2.20, however, is not necessarily a good approximation. While the third term of

Equation 2.20 is negligible, the second term of Equation 2.20 may not be negligible

and is an artifact caused by misapplication of coherent single frequency theory, as

shown in Appendix B.



Monostatic reverberation in Pekeris waveguide: 10 realizations
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Figure 3-7: Full 390-440 Hz matched filtered depth-integrated monostatic bottom
reverberation compared to time harmonic reverberation at center frequency 415 Hz,
for 10 realizations of the ocean environment.
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Figure 3-8: Full 390-440 Hz matched filtered depth-integrated monostatic bottom
reverberation compared to time harmonic reverberation at center frequency 415 Hz,
for a single realization of the ocean environment.
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Monostatic reverberation in Pekeris waveguide: 10 realizations
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Figure 3-9: Range-averaged full 390-440 Hz matched filter depth-integrated monos-

tatic bottom reverberation compared to range-averaged time harmonic reverberation

at center frequency 415 Hz, for 10 realizations of the ocean environment (range aver-

aging over 500 m).
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Figure 3-1: Range-averaged full 390-440 Hz matched filter depth-integrated monos-
tatic bottom reverberation compared to range-averaged time harmonic reverberation
at center frequency 415 Hz, for 10in realization of the ocean environment (ranger
aaging over 500 )
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3.2 Frequency dependence of simulated reverber-

ation

In this subsection, we investigate the frequency dependence of the bottom reverbera-

tion using the time harmonic approximation given in Equation 2.21 and keeping the

bottom parameters V, Var(]F), Var(Fd) and Covar(',Fd) constant for all frequen-

cies. The analysis is performed using a Pekeris waveguide similar to the one in the

previous subsection, where the actual sound speed profiles have been replaced with

an isovelocity profile, with the sound speed constant at 1500 m. The depth and range

increments are also modified from the previous section to dz = 0.1 m and dr = 15 m.

Because of the constant sound speed, we only implement the expression in Equation

2.21 for one realization, where the sound speed is constant.

We begin by verifying the result in Galinde et al [6] that the monopole, dipole

and cross terms in Equation 2.21 are proportional to the full bottom reverberation.

Figures 3-11 and 3-12 show that this holds for both the matched filtered model and

the time harmonic approximation, respectively. The results have been computed for

an isovelocity Pekeris sand waveguide of Figure 3-1, and the levels have been averaged

in range over 500 m.

We further demonstrate that the proportionality holds for all frequencies. We

compute the simulated bottom reverberation for all frequencies by applying the time

harmonic model to the isovelocity Pekeris waveguide and keeping the bottom param-

eters constant. After range averaging over 2000 m, we plot, in Figure 3-13, the levels

of the full reverberation, monopole, dipole and crossterm at a single point in range. It

is clear from the figure that, at 16 km in range from the receiver, the three terms are

proportional to the full reverberation for all frequencies. The result was also found

to hold for any point in range.

After having shown that the full simulated reverberation level is proportional to
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Figure 3-11: Range-averaged full 390-440 Hz matched filter
compared to its three terms: monopole, dipole and crossterm
500 m).
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Figure 3-12: Range-averaged time harmonic bottom reverberation at center frequency
415 Hz compared to its three terms: monopole, dipole and crossterm (range averaging
over 500 m).



Reverberation level versus frequency at range = 16km

-18u
400 500 600 700 800 900

Frequency (Hz)

Figure 3-13: Range averaged time-harmonic simulated
in a sand Pekeris waveguide with isovelocity sound
source/receiver (range averaging over 2000m).

monostatic reverberation level
speed profile, at 16km from

the monopole term, given below as

(47r)2 fvs Vc(rs, zt)k 4Var(Fk(rt)) (IG(rtlro, f)12|G(rlrt, f) 2 )dV, (3.1)

we can use this term to investigate the frequency dependence of the model. Since

we keep the bottom parameters Vc and Var(Fk) constant for all frequencies, we can

further restrict our analysis to the frequency dependence of the following term:

k4 Jj (IG(rtlro, f)12 |G(rlrt, f)12)dV. (3.2)

For a monostatic scenario with the source and receiver collocated, this is equal to

k 4 J j (IG(rtIro, f)14)dVt. (3.3)

Based on the equation above, for constant bottom parameters, we expect the

reverberation level to have a f4 frequency dependence due to the k4 factor, and
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a yet unknown frequency dependence due to the integral over the fourth power of

the Green function. Since penetration depth is known to decrease with increasing

frequency, however, we expect the volume integral in Equation 3.3 to be inversely

proportional to frequency.

To determine the actual frequency dependence of the simulated reverberation

numerically, we compute the time-harmonic simulated reverberation levels for a range

of frequencies using the standard Pekeris sand waveguide with isovelocity sound speed

profile. The bottom parameters are kept constant for all frequencies, and equal to

those previously summarized in Table 3.1. In Figure 3-14 we plot the simulated

reverberation levels versus range, for four different frequencies. The figure clearly

shows an increase in reverberation level for higher frequencies.
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Figure 3-14: Range-averaged time-harmonic simulated monostatic reverberation level
in a sand Pekeris waveguide with isovelocity sound speed profile, at 415, 735, 950 and
1125 Hz, respectively (range averaging over 2000 m).

To test whether the increase in reverberation level is consistent across all frequen-

cies, we plot the simulated reverberation level versus frequency for several points in

range, in Figure 3-15. We also plot the log-log of the simulated reverberation level

versus frequency for only the first range (4000 m) in Figure 3-16, and note that the



frequency dependence is approximately f4 .
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Figure 3-15: Range-averaged time-harmonic simulated monostatic reverberation level
in a sand Pekeris waveguide with isovelocity sound speed profile, for all frequencies,
at 4, 10 and 16 km in range, respectively (range averaging over 2000 m).

The fact that the reverberation level varies with approximately the fourth power

of frequency, and the presence of the k 4 term in Equation 3.3 lead us to believe that

the volume integral in Equation 3.3 is nearly frequency independent. To verify this,

we plot the volume integral versus frequency in Figure 3-17 and versus the log of

frequency in Figure 3-18. The two figures confirm that the integral is indeed nearly

independent of frequency, as it varies approximately with f -- 2.

As penetration depth is known to decrease with an increase in frequency, which

makes the statement that the volume integral is nearly frequency independent coun-

terintuitive, we provide further analysis to support this result. We plot the value of

the integral in Equation 3.3 at several depths, as indicated in Figure 3-19. As the

depth increment for this case is dz =- 0.1 m, this represents an integral over a bottom

layer that is 0.1 m thick. Next, we plot the value of the integral from the 100 m

interface, down to several depths, as mentioned in Figure 3-20. Here, the integration

is performed over all 0.1 m thick bottom layers located above the depths indicated in
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Figure 3-16: Frequency dependence of time-harmonic simulated monostatic reverber-
ation level at 16 km in range for a sand Pekeris waveguide with isovelocity sound
speed profile (range averaging over 2000 m), for bottom parameters V, Var(FK(rt)),
Var(Fd(rt)) and Covar(P,(rt)) constant for all frequencies.
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Figure 3-17: Volume integral from Equation 3.3 plotted versus frequency for several
locations in range
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Figure 3-18: Frequency dependence of volume integral from Equation 3.3.

the legend. The figures show that, although the intensity within the layers changes

for different frequencies and depths, causing the volume integral at low frequencies

to converge in depth slower than at high frequencies, the total volume integral re-

mains relatively constant across frequencies. The most plausible explanation for this

phenomenon is that the top layers, with weak frequency dependence, are dominant.

The analysis presented in this section shows that the frequency dependence of

the simulated reverberation, with constant bottom parameters V, Var(1), Var(Fd)

and Covar(F],Fd), is approximately f4 . Literature detailing experimental results [8]

reveals, however, that measured ocean bottom reverberation has a low frequency de-

pendence. This is consistent with our model if we let the coherence volume Vc vary

with frequency, as also suggested by Galinde et al [6], who state that the acousti-

cally determined , may not equal the geological coherence volume for the bottom

inhomogeneities, and it may vary with frequency. In the next section, we use the time-

harmonic model for ocean bottom reverberation to invert for the bottom parameters

for several frequencies at two distinct geographical locations.
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Figure 3-19: Value of the integral in Equation 3.3 evaluated at several depths: the
integration is performed over a bottom layer that is 0.1 m thick, as dz = 0.1 m.
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Figure 3-20: Value of the integral in Equation 3.3 evaluated from the 100 m water/air
interface down to several depths: the integration is performed over all 0.1 m thick
bottom layers located between 100 m and the depths indicated in the legend.
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Chapter 4

Model calibration to bottom

reverberation data

In this section we compare simulated bistatic, range-dependent reverberation to re-

verberation measured during the course of two experiments at sea. We use the effi-

cient time harmonic approximation of Equation 2.21 to the matched filtered model

and invert for the one parameter needed to scale the bottom parameters V(rs, zt),

Var(F,(rt)), Var(Fd(rt)) and Covar(]F,(rt)) given known ratios for the monopole,

dipole and cross terms. We use the least squares method to find the best fit param-

eter and provide statistics of the inverted parameter for each experiment, at three

different frequencies.

4.1 OAWRS bottom reverberation data

For model calibration, we use data acquired by the ocean acoustic waveguide remote

sensing (OAWRS) system during experiments conducted in 2003 on the New Jersey

continental shelf and 2006 on the northern flank of Georges Bank in the Gulf of Maine.

The 2003 experiment was conducted from April 27 to May 15, 2003 on the New

Jersey Strataform [2], [16], [13]. The bathymetry of the region is relatively flat, with

depths ranging from 65 to 80 m. The bottom sediment in the region consists mostly

of sand with a mean density, sound speed, and attenuation of approximately 1.9



g/cm 3 , 1700 m/s, and 0.8 dB/A, respectively [7], [6]. Over 100 sound speed pro-

files have been measured during the experiment to allow accurate characterization of

the randomly fluctuating continental shelf waveguide. The bistatic OAWRS system

consisted of a moored vertical array source centered at a depth of 47 m, and a hori-

zontal receiving array towed at depths between 30 and 50 m. The source transmitted

Tukey-shaded linear frequency modulated (LFM) broadband pulses in three distinct

frequency ranges, 390 to 440 Hz, 875 to 975 Hz, and 1250 to 1400 Hz, each 1 second

in duration at every 50 second interval.

fora2006jd276t223115, 950Hz

-40 -30 -20 -10 0 10 20 30 40
(km)

Figure 4-1: OAWRS image charting returns (dB re 1 pPa) received on the North-
ern Flank of Georges Bank at 18:31 EDT, on 3 October 2006. The white diamond
indicates the source and the black line is the receiver track. The white curves are
bathymetric contours for the region. Clutter is distinguished from seafloor returns by
inspecting both the bathymetry of the region and the stationarity of the returns over
multiple pings. Ship beams are also identified as radiating outward from the receiver,
symmetrically about the endfire of the receiver array.

For the 2006 experiment, conducted from September 19 to October 6 [13], [8], [15]

on the Northern Flank of Georges Bank in the Gulf of Maine, the water depth ranged

from as shallow as 20 m to as deep as 400 m. The sediment at the experimental



site was found to consist of sand with sound speed of 1700 m/s, density of 1.9 g/cm3

and attenuation of 0.8 dB/A [8]. Roughly 200 sample sound speed profiles of the

water column have been taken during the experiment. The OAWRS imaging system

consisted of a moored vertical source array and a towed horizontal receiver array,

centered at 65 and 105 m depth, respectively. One second Tukey-windowed LFM

pulses were transmitted by the source in a 50 Hz frequency band around the center

frequencies of 415, 735, 950 and 1125 Hz, 75 seconds apart.

The pressure data collected from both experiments was beamformed and matched

filtered to determine the azimuth and range of arrivals and instantaneous OAWRS

images such as the one shown in Figure 4-1 have been created for every broadband

transmission [6], [8], [16], [15].

4.2 Parameter inversion methodology

We invert for only one parameter, as we have shown that the monopole, dipole and

cross terms are proportional to the total intensity for the 415 Hz center frequency (Fig-

ure 3-12), as well as for all frequencies in the 415-1125 Hz frequency range considered

(Figure 3-13). This proportionality allows us to express the total scattered inten-

sity, or reverberation, as the product of one parameter and the monopole term. For

this, we assume that V(rs, zt) and the moments of the fractional changes in bottom

density and compressibility Var(PK(rt)), Var(Fd(rt)) and Covar(1F(rt)) are constant

across the seafloor as well as depth. Then, they can be taken outside the volume

integral in Equation 2.21 and the time harmonic reverberation can be expressed as:

Var(<bs(rsIr, ro, f)) (4.1)

= (4,r) 2 VcVar(Fk) fJ vs k'[(|G(rtjro, f)12|G(rlrt, f)12)]dV

+ (47) 2 VcVar(Jd) Jfvs [(IVG(rtlro) -VG(rlrt) 2)]dVt

.(4w) 2 VcCov(Fk, gId) Jj k2[2R{G(rtjro, f)G(rlrt, f) x VG*(rtlro, f) - VG*(rlrt, f})D]dVt,



where the first integral is a monopole term, the second integral is a dipole term, and

the last integral is a crossterm. Using the fact that the three terms are proportional,

we can define Fd and Fc so that Fd represents the ratio between the dipole integral

and monopole integral, and Fe represents the ratio between the crossterm integral

and monopole integral. Then, we can further simplify Equation 4.1 as:

Var(4s(rsIr, ro, f)) (4.2)

= (47r) 2 Vc[Var(Fk) + FdVar(Ld) + FCov(Fk, Fd)]

x vs k4 [(IG(rtlro, f)12 |G(rlrt, f)12)]dVt.

Finally, the simplified one-parameter model we use for calibration is:

Var(4s(rslr, ro, f)) 0 0 x JJvs k4[(IG(rtlro, f)12|G(rlrt, f)| 2)]dVt, (4.3)

where the parameter we need to estimate is

S= (47r) 2 Vc[Var(Fk) + FdVar(Fd) + FcCov(Fk, Fd)]. (4.4)

To find an estimate 0 for the parameter 0 from the data, we use the method of

least squares. The equation used to find the estimate 0 from the data using the model

of Equation 4.3 is

n Q1  Ig(D~SiData(rs, I rro, f)12  Var(4Is,(rsjIr~roj)))1 2min 10log( ) - 10log(V p r (4.5)
ref ref

where |4s Data(rs Ir, ro, f)12 represents the measured reverberation level at rsi. The

summation is over all n resolution footprints Vs, centered at rs, included in the

seafloor region we use for calibration. Using Equation 4.3, we find that the parameter

estimate 0 is given by

nli 10log|I sData (rs,|r, ro, f)12
10log($) = (4.6)

110log(fff, k4[(|G(rtjrojf)|2|G (r Irt, f )|2)]dVt)'



We note that using least squares for logarithmic variables may lead to biases in 6 [14].

Using beam time received pressure intensity data for one ping at a time, we find

the best fit parameter for each beam in the respective ping. We do this by applying

Equation 4.6 and estimating one value of 0 for each beam within the particular ping.

To obtain a statistically significant set of inverted parameters, we analyze multiple

pings. We restrict our analysis to pings and beams that are not contaminated by

clutter or ship noise, and to regions of relatively flat or downward sloping bathymetry.

In the next section, we describe the beam time data used in the calibration and the

methodology for implementing the model along a beam. We then compare the model

simulation results with experimental data along beams. In the following section we

compare the model simulation results with data for wide area polar plots.

4.3 Model/data comparison using beam time data

In this subsection, we begin our model/data comparison by considering the receiver

reverberation intensity versus beam time and range. In the next subsection, we

compare the model and data using wide area polar plots. All the analysis in the two

sections is performed for pings received at the center frequency 415 Hz.

Measured normalized pressure beam time series (dB re 1pL Pa) Measured normalized pressure beam time series (dB re 1 Pa)
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Figure 4-2: Measured normalized pressure level as beam time series for the New
Jersey continental shelf (left) and Georges Bank in the Gulf of Maine (right). The
black stars indicate the beams chosen for analysis. The source is broadband for 415
Hz center frequency and 50 Hz bandwidth and the source level is normalized to 0 dB
re 1 p-Pa at 1m.



Each ping, for both the 2003 and 2006 ONR Geoclutter Experiments, consists of

65 or 66 beams of data covering an azimuthal sector of 1800, received continuously

over a 50 or 75 second interval, depending on the experiment. The directions of

the beams are uniformly spaced in sin(#), where # is the angle of the beam relative

to the broadside of the receiver. Figure 4-2 shows two examples of pings recorded

during the New Jersey and Georges Bank experiments, respectively. The pings shown

are partially contaminated by ship beams and clutter, which is often the case for

the data collected, raising a need to restrict our analysis to clean beams that are

stationary over multiple pings. Because of left-right ambiguity about the receiver

heading, the reverberation data for each beam corresponds to the sum of the returns

from a pair of two separate azimuthal directions, received along what we define as

original and mirror beams. The beam time reverberation data is thus a function of
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Figure 4-3: (Left) Bathymetric map of the New Jersey continental shelf indicating
the source and receiver positions at 10:31 EDT, on 13 May 2003. The grey dia-
mond indicates the source, located at 39.2312N, 72.8818W and operating at 390-440
Hz. The black diamond indicates the receiver, located at 39.2465N, 72.8626W, with
heading 346'E. The black and magenta stars indicate the beams chosen for analysis,
corresponding to the original and mirror beams, respectively. (Right) Bathymetric
map of the northern flank of Georges Bank in the Gulf of Maine indicating source and
receiver positions at 11:58 EDT, on 26 September 2006. The grey diamond indicates
the source, located at 41.8901N, 68.2134W and operating at 390-440 Hz. The black
diamond indicates the receiver, located at 41.8212N, 68.3368W, with heading 137'E.
The black and magenta stars indicate the beams chosen for analysis, corresponding
to the original and mirror beams, respectively.

sin($) and beam time. This data can be charted to range and converted into polar



plots by multiplying the beam time with the sound propagation speed in the ocean

and accounting for the bistatic geometry i.e. the distance traveled from source to each

scatterer location in range along the beam and from the scatterer to the receiver.

To accurately model the reverberation received along each beam for a certain ping,

we first account for all the variables of the problem, such as the actual bistatic geome-

try of the respective ping, bathymetry, sound speed profiles, seafloor and ocean prop-

erties and source and receiver array types. Each beam data time series corresponds

to two patches in the seafloor, placed symmetrically about the receiver heading, along

the original and mirror directions. The two patches extend over an azimuthal angle

equal to the sonar angular resolution, over the top 10 m deep bottom layer and over

25 to 35 km in range from the receiver location, depending on the length of the data

time series we use for comparison or the extent of the region for which we have bathy-

metric data. Since we use the time harmonic model for computational efficiency, we

only integrate over volumes Vs that are 15 m long in range, corresponding to the

sonar range resolution, at each point in range along the two patches. Examples of

bistatic geometries from the New Jersey continental shelf and the northern flank of

Georges Bank in the Gulf of Maine are depicted in Figure 4-3, showing the source and

receiver (as the grey and black diamonds, respectively), along with black and magenta

stars, corresponding to the original and mirror patches selected for analysis in this

subsection. The background of the maps represents the relatively flat bathymetry in

the region chosen for analysis, respectively.

Next, we compute the Green functions using the parabolic equation model RAM.

For both experiments, we use sand as the bottom sediment type, with sound speed of

1700 m/s, density of 1.9 g/cm3 and attenuation of 0.8 dB/A, as mentioned in Section

4.1. We use a range increment dr = 15 in, a depth increment dz = 0.4 m, and we

assume the Green function is uniform in azimuth over the angular resolution. Since

both the original and mirror patches radiate outward from the receiver location,

computing the Green function from the receiver to each range increment along the

patch requires running RAM only once. However, for the bistatic case, computing

the Green function from the source to each range increment along the patch requires



running RAM a great number of times. For computational efficiency, we run RAM

from the source to only several points in range along each patch (sufficient for conver-

gence) and interpolate the points to find the source Green function along the entire

patch. The interpolation is performed in order to obtain a value for both the source

and receiver Green functions at each range increment along the patch and thus in-

crease the accuracy in fitting the model to the data. The Green functions are then

used to compute the volume integral for the monopole term in Equation 4.3 over

all resolution cells Vs along both the original and mirror patches. Since the time

harmonic result is a function of range, due to the implementation at each resolution

cell Vs, we convert range to time before adding the contributions from the original

and mirror patches. Lastly, we use the least squares method to find the parameter

that provides the best fit of the simulated reverberation to the beam time data along

each beam considered.

Parameter estimates 0 Parameter estimates 0
50 50

45  - 45
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Figure 4-4: Parameter estimates 0 (log scale) estimated from the data pings shown in
Figure 4-2 for the New Jersey (left) and Georges Bank (right) experiments, at 415 Hz.
Each 0 corresponds to one beam and was estimated using Equation 4.6, where the
summation is performed over all n resolution cells Vs, along the beam. Typically, each
beam extends for 25 to 35 km in range, which leads to values of n from 1667 to 2333,
respectively, given the sonar range resolution of 15 m. The mean of the parameter
estimates (0) is indicated by the horizontal line and is obtained using Equation 4.7,
with p = 1 and m representing the number of beams in each ping. For this figure, m
equals 31 and 36 for the New Jersey and Georges Bank experiments, respectively.

The procedure described above can be repeated for all clutter-free beams within a

certain ping, as well as for multiple pings. Typically, we average 0 over all calibrated



certain ping, as well as for multiple pings. Typically, we average 0 over all calibrated

beams within a ping and over multiple pings, and then verify the fit of the model

using the mean parameter estimate (0). For the case of p pings each with m beams,

(0) is obtained by averaging over a total of mp ping-beam samples, and is given by

(0) A j- h jh- (47)
Pj=1 h=1

In this subsection, however, we restrict our analysis to only one ping for each of

the two experiments, corresponding to the beam time series data shown in Figure

4-2. Thus, for this special case, p = 1. The parameters 0 (in log) estimated for each

of the m beams of the two pings are shown in Figure 4-4. A particular trend in 0

for consecutive beams within a ping could be an indication of a geographical feature

or of gradual ship beam contamination. The red line indicates the mean parameter

estimate (0) as given by Equation 4.7 with p = 1 and m representing the number of

beams in each ping. In Figure 4-5, we compare the measured reverberation level to

the reverberation level simulated using Equation 4.3 and (0) of Figure 4-4, along one

of the beams for each experiment. For the range averaged levels presented in Figure

4-6 for the same beams, the errors are within 5 to 6 dB.

Measured vs simulated reverberation level for beam 25 Measured vs simulated reverberation level for beam 25
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Figure 4-5: Model/data comparison along one beam for pings received at center
frequency 415 Hz during the New Jersey (left) and Georges Bank (right) experiments,
respectively. The source level is normalized to 0 dB re 1 [pPa at 1 m .
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Figure 4-6: Model/data comparison along one beam for pings received at center
frequency 415 Hz during the New Jersey (left) and Georges Bank (right) experiments,
respectively (range averaging over 2000 m). The source level is normalized to 0 dB
re 1 pPa at 1 m.

4.4 Model/data comparison using polar plots

Implementing the methodology described in the previous subsection and calibrating

the model to data for consecutive beams within a ping enables us to create wide area

polar plots of the simulated reverberation, and to compare them with polar plots of

the data. Figure 4-7 shows the polar plots for the data (top), model (middle) and

data-model differences (bottom) for the New Jersey (left) and Georges Bank (right)

experiments. We can note from the figure that for the New Jersey ping, the beam

time series was converted to an approximately symmetric range on both sides about

the receiver heading, while for the Georges bank ping, a shorter range resulted on

one side than on the other. This is because the separation between the source and

receiver is larger for the Georges Bank ping, as we have seen in Figure 4-3. The

patches of uniform intensity located at the sharp angle of the polar plots for Georges

Bank are also due to the range stretching. Overall, the results are satisfactory, as the

data-model differences plots show most of the errors fall within 5 dB. The data-model

error at the ith resolution footprint Vs5 along beam j is given by

|<s.n( ( rse3 Ir, ro, f) 12
100g( " ref

fff, k4[(|G(rtlro, f)12|G(rlrt, f)}2)dVt
- (8 "p) (4.8)
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Figure 4-7: Polar plots of measured reverberation level (top), simulated reverberation
level (middle) and their difference (bottom) for New Jersey (left) and Georges Bank
(right). The source level is normalized to 0 dB re 1 pPa at 1m
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with ks'j Data (rs Ir, ro, f) I being the measured reverberation level at rsej. Again,

since the analysis in this section is restricted to one ping, the errors in Figure 4-3 are

computed using (0) for p = 1. Figure 4-8 shows the distribution of these errors for

the entire polar area analyzed.

Histogram of errors Histogram of errors
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Figure 4-8: Histogram of the data-model differences as show in Figure 4-7 (bottom)
for New Jersey (left) and Georges Bank (right). For the New Jersey errors (left),
the mean is -1.1467 dB and the standard deviation 6.5095 dB. For the Georges Bank
errors (right), the mean is -0.3526 dB and the standard deviation 5.8003 dB.

Appendix C presents calibration results for other pings at several frequencies.

As the Appendix shows, for some of the pings recorded during the Georges Bank

experiment at the center frequencies 950 and 1125 Hz, the model was found to un-

derestimate the data for short ranges. Potential explanations may include returns

that are not accounted for by the current approach, such as the use of too narrow

of a vertical angle in the parabolic equation, fathometer returns, or returns due to

multiple scattering.

4.5 Statistics and frequency dependence of inverted

parameter

A systematic calibration of the model to data for multiple pings and frequencies

for both the New Jersey and Georges Bank experiments allows us to determine the



second order statistics of the inverted parameter 0, which we tabulate in Table 4.1.

The parameter 0, as given in Equation 4.4, is a function of the coherence volume Vc

and the second order statistics of the bottom properties Var(F,(r,)), Var(rd(rt)) and

Covar(Fs(rt)), which we assume constant in depth and across the entire experimental

site. Since 4.1 is an equation with four unknowns, the values for each of the bottom

parameters cannot be estimated from 0. What we are most interested in, however, is

the mean and variance of the parameter 0 across the seafloor, for different frequencies

and experimental locations.

Data analyzed Parameter statistics

mp (#
f Exper- p (# ping-beam Std(6) % %

(Hz) iment* pings) samples) (9) (9) (dB) Std (9) (dB) 1 std 2std
415 NJ 5 180 0.000117 -39.32 0.0000411 1.63 69.32 94.87
415 GB 4 85 0.000134 -38.73 0.0000461 1.47 74.70 95.18
925 NJ 4 144 0.0000032 -54.95 0.0000019 2.56 72.53 97.18
950 GB 4 99 0.0000059 -52.29 0.0000027 2.55 69.07 96.91
1325 NJ 4 144 0.0000019 -57.21 0.0000005 1.21 67.61 95.07
1125 GB 4 114 0.0000059 -52.29 0.0000022 1.73 66.36 96.36

Table 4.1: Table showing the results of the parameter estimation. The first two
columns represent the corresponding center frequencies and experiment locations,
respectively. The number of pings, p, and total ping-beam samples, mp, used in the
analysis are given in the third and fourth columns, respectively. The next six columns
give the mean (level and log scale), standard deviation (level and log scale), as well as
the percentage of beam samples within one and two standard deviations, respectively.
One b is estimated for each single beam in each single ping using Equation 4.6, where
the summation is performed over all n resolution cells Vs, along the particular beam.
As mentioned in Figure 4-4, we typically sum over 1667 to 2333 resolution footprints
along each beam. Then, the mean parameter estimate (0) is obtained by averaging
the parameter estimates 0 over all mp ping-beam samples, as given by Equation 4.7.
(* the NJ and GB symbols stand for New Jersey and Georges Bank, respectively)

The inversion results summarized in Table 4.1 confirm that, for a certain frequency

and for similar bottom sediments (in this case sand), the parameter estimates are

consistent. For example, at 415 Hz, for both New Jersey and Georges Bank we found

a parameter equal to about 0.0001, or negative 40 dB. This is also consistent with

the parameter estimate b we would obtain if we used the bottom parameter statistics

estimated by Galinde et al [6] for 415 Hz in New Jersey, summarized in Table 3.1.

Another observation is the fact that the value of the parameter decreases with
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Figure 4-9: Histograms of parameter values (log scale), for the New Jersey (left) and
Georges Bank (right) data.

frequency, except for Georges Bank, where the parameter 0 remains stable from 950

to 1125 Hz. To clearly illustrate this result, we plot in Figure 4-9 the distributions

of the inverted parameter estimates 6 using New Jersey and Georges Bank data at

three frequencies for each case. In Figure 4-10 we also plot the mean and standard

deviations of the estimated parameter 6 for both the New Jersey and Georges Bank

data. Since the statistics of the bottom properties should be independent of frequency,

the result supports our hypothesis from Section 3.2 that the acoustically determined

coherence volume Vc varies inversely with frequency, to compensate for the frequency

dependence of the k4 factor in Equation 3.3. After fitting linear curves in log-log

domain (Figure 4-11) through the data points for the mean estimates from figure 4-

10, we find that the frequency dependence in the New Jersey case is f--7 , and in the

Georges Bank case f-3.3. This result is consistent with the wavelength dependence of

scattered intensity found in speckle interferometry [9] and scintillation theory [2], [14].

For the case of volume scattering, when frequency dependence of scattered intensity

is greatest [9], the inhomogeneities are selected over the wavelength scale in all three

directions, leading to a dependence of approximately the wavelength cubed.
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Figure 4-10: Mean (dots) and standard deviations (error bars) for the parameter
estimate 0, as given in Table 4.1, for the New Jersey and Georges Bank data.
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Figure 4-11: Mean parameter estimates 0 (circles), as given in Table 4.1, for the
New Jersey and Georges Bank data, along with least squares fitted lines for each
experiment.
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Chapter 5

Conclusion

In this thesis, we derived full expressions for the total moments of the matched fil-

tered scattered field, using the Green theorem application to the inhomogeneous wave

equation and the Born single scatter approximation. We provided approximate ex-

pressions for the total scattered intensity, including a time harmonic approximation

implemented in terms of the resolution footprint of the sonar. We showed, using

Monte Carlo simulations of the Green function using actual sound speed profiles and

a Pekeris waveguide, that the following are true: (1) the total matched filtered second

moment can be approximated by the total matched filtered variance; (2) the total

matched filtered variance can be approximated by its first term; (3) the first term of

the total matched filtered variance can be approximated by the first term of the total

time harmonic variance. Using the least squares method, we calibrated the compu-

tationally efficient time harmonic model to reverberation data collected during two

experiments at sea, for several frequency ranges. We provided the statistics of the

estimated parameter and discussed the frequency dependence of the model and pa-

rameters. We found that the acoustic signal selects seafloor scatterers of wavelength

scale.
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Appendix A

Matched filtered total moment

expressions based on conditional

moments

Instead of implementing the analytical expressions for the total moments of the

matched filtered scattered field described in Section 2, we found it more efficient

to implement the total moment expressions derived from conditional moment expres-

sions as described in this section.

To derive the expressions for the total moments using conditional moments, we

begin with Equation 2.7, for the matched filtered scattered field, which we repeat

below as

4bs(rsIr, ro, tM) = (47)f If k 2r (rt)G(rtlro, f)G(rjrt, f) (A.1)
fc-B/2 Vs

+ Fd(rt)VG(rtro, f) -VG(rlrt, f)]
1

x IQ(f)I2e-i2 f(t-tm) dV df.

Next, using the assumption that the bottom parameters are uncorrelated with

the propagation Green functions, we condition on a deterministic set of Green func-

tions (G(rtlro, f), G(rlrt, f)), and define the conditional mean for the matched filtered



scattered field as

(4s(rslr, ro, tM)|G(rtro, f), G(rlrt, f)) (A.2)

-(47) f Jjj [k2(7(rt))G(rtjro, f)G(rlrt, f)
fc-B/2 Vs

+ (1F(r))VG(rtlro, f) - VG(rlrt, f)]

x I |Q(f)|2e-i 2rf(t-tM) d df.

The expression above is a function of the bottom parameters statistics (17,) and

(Pd) and a deterministic set of Green functions (G(rtlro, f), G(rlrt, f)), which rep-

resent one realization of the ocean environment, where at every 500m in range we

randomly selected a new sound speed profile from a large set of measured profiles.

The total matched filtered mean can then be expressed in terms of the conditional

mean as

(4)s(rs Ir, ro,7 tM) =(Ds (rs Ir, ro, tM)|IG (r I ro, f ), G (r Irt, f). (A.3)

The expression above is equivalent to the analytic expression from Equation 2.8

and does not facilitate implementation. We are more interested in the formulations

for the second moment and variance, which we derive in the remainder of this section.

The conditional second moment is now

(l4)s(rslr, ro, t M) 12|G(rtiro, f), G(rlrt, f)) (A.4)

((47r) f f[Ik 2r(rt)G(rtlro, f)G(rlrt, f)
fc- B/2 Vs

1
+ Fd(rt)VG(rtlro, f) -VG(rlrt, f)] x IQ(f)I2 e-i2f(t-tM) dVt df

(47r) f cB2 [k'r, (r')G* (r'l ro, f') G*(r Ir', f')
fc-B/2 JJJVs

+ Fd(r')VG*(r'ro, f') - VG*(rlr', f')] x IQ(f')|2e-i24 '(t -tm) dV' df'),



and can be written as

(|GDs(rsjr, ro, tm)|2|G(rtjro, f), G(rlrt, f)) (A.5)

= (47r)2 jfc+B2 jfc+B/2 HA Il
[k 2k'(IF,(rt)IF,(r')) G(rt Iro, f ) G(r Irt, f )G* (r'l ro, f') G*(r Ir', f'

± (Fd(rt)Fd(r'))VG(rtjro, f) -VG(rlrt, f) x VG*(r'lro, f') -VG*(rrf')

± k2 (F(rt)F(r'))G(rtro, f)G(rIrt, f) VG*(r'Iro, f') -VG*(rIr', f')

+ k' 2(F,(r')1Fd(rt))G*(r'lIro, f')G*(rIr, f') VG(rtIro, f) VG(rIrt, f)]

x | Q( f||21Q(fi)1so-i27r(f-f'xt-tm) dV dVt df df'.
F0

Note that there are now no expectations around the Green function products, as the

Green function and its gradients are assumed deterministic. We can further simplify

this expression, using Equations 2.11 and 2.12, to obtain

(l 4s (rs Ir, ro, tM) 12|G(rtlro, f), G(rlrt, f)) (A.6)

( 2f fc+B/2 f f V
=(47r) 2 jf+1 f+1 f j Vc(rs, zt)

x [k2 k'2 Var(IF,) J (rt - r')G(rt Iro, f )G(rlrt, f )G*(r' Iro, f')G*(rIr', f')

+ Var(L'd)6(rt - r')VG(rtIro, f) - VG(rlrt, f) x VG*(r'lro, f') - VG*(rlr', f')

+ k2 Covar(FK, Fd)6(rt - r')G(rtIro, f)G(rlrt, f)VG*(r'lro, f') -VG*(rlr', f')

+ k'2Covar(FP, ld)6(rt - r')G*(r'jro, f')G*(rlr', f')VG(rt ro, f) - VG(rlrt, f)]

X | Q( f |21Q{ gi)12e-127(f-f'x(t-tm) dV dVt' df df'+1o



fc+B/2 fc+-VB/2
+ (47r)2

fc-B/2 Jfc-B/2 J~v Vs
x[k2 k'2 (r.(rt)) (r,(r')) G(rt Iro, f ) G(r Irt, f )G* (r' Ilro, f') G*(r Ir' , f')

± (Fd(rt))( d(r'))VG(rt|ro, f) -VG(rlrt, f) x VG*(r'lro, f') -VG*(rr',f')

+ k2 (F(rt)) (Fd(r'))G(rtIro, f)G(rlrt, f)VG*(r'l ro, f') -VG*(rr', f')

+ k' 2 (F.(r'))(F(r))G*(r'|ro, f)G*(rlr', f')VG(rtjro, f) -VG(rlrt, f)]

X |IQ( f||21Q(fi 2e-'27r f -f'xt-tm) dV dVt' df df'.
Eo

By canceling the delta function with one of the volume integrals in the first term,

we have

(I<bs (rs Ir, ro, tM) 12|G(rtlro, f), G(rlrt, f)) (A.7)
Ifc+B/ fc+B/2 f

= (47r)2 f I f fV(rs, zt)
fc,-B/2 fc-B/2 Vs

x [k2 k'2 Var(1)G(rlro, f)G(rlrt, f)G*(rtlro, f')G*(rlrt, f')

+ Var(Fd)VG(rtlro, f) -VG(rlrt, f) x VG*(rt|ro, f') - VG*(rjrt, f')
+ k2 Covar(r,F)G(rtro, f)G(rlrt, f)VG*(rtlro, f') -VG*(rlrt, f')

+ k' 2Covar(F, Fd)G*(rtlro, f')G*(rlrt, f')VG(rtjro, f) -VG(rlrt, f)]

x I|Q(f)|21Qgfr)12e-i27r(f-f"'x,-t) dV df df'+

+ J47)2 fc+B/2 fc+B/2.

fc-B/2 fc-B/2 Vs V

x[k 2 k'12(Ts(rt))(r,,(r'))G(rt|ro, f)G(rlrt, f)G*(r'l|ro, f')G*(rlr',, f')

+ (Fd(rt))(]P(r'))VG(rtIro, f) VG(rIrt, f) x VG*(r'4ro, f') -VG*(rIr',f')

+ k2 (F(rt))(F(r'))G(rtlro, f)G(rlrt, f)VG*(r'lro, f') - VG*(rlr', f')

+ k' 2(P(r'))(F(r))G*(r'|ro, f)G*(rr', f')VG(rt|ro, f) -VG(rlrt, f)]

x In Q(pfe|2 owQ 2e-2r t f-f'wn t-Mt t lat tr i at s

By inspection, however, we notice that the last term in the above equation is the



magnitude squared of the conditional mean expression from Equation A.2:

|(4s(rslr, ro, tM)|G(rtlro, f), G(rjrt, f))|2  (A.8)

fc -B/2 fc:-B/2 Vsf Vs

-(4)2 Jf2 jfc+B/2 IJi~ iL

x[k 2k'2(rn(rt))(r,,(r'))G(rtlro, f)G(rlrt, f)G*(r'lro, f')G*(rlr',f')

+ (Fd(rt))(Fd(r'))VG(rtjro, f) -VG(rlrt, f) x VG*(r'ro, f') -VG*(rr', f')

+ k2 (r.(rt))(Fd(r'))G(rtro, f)G(rlrt, f)VG*(r'lro, f') - VG*(rlr', f')

+ k' 2 (r.(r'))(rd(rt))G*(r'ro, f')G*(rlr', f')VG(rtjro, f) -VG(rr,, f)]

x | Q(f }|21Qf 2e-i27r(f-f')xt-tm) dt dVt df df'.

We can also note that the first term of Equation A.7 is the conditional variance

Var ( s (rs Ir, roI tm M)|G(rt Iro, f ), C(r Irt, f )) (A.9)

= (l4,s(rsjr,rotM) 2 G(rtlro, f), G(rlrt, f))

- |(4s(rsIr, ro, tM)IG(rt Iro, f), G(rIrt, f))12
1fc+B/2 ~fc+B/2 f

(47r)2 I f IB Vc(rs, zt)
fc-B/2 fc-B/2 Vs

x [k2 k'2Var(r,)G(rtIro, f)G(rIrt, f)G* (rtro, f')G* (rIrt, f')

± Var(Ld)VG(rtjro, f) -VG(rlrt, f) x VG*(rtlro, f') - VG*(rlrt, f')

+ k2 Covar(FP, Pd)G(rtjro, f)G(rlrt, f)VG*(rtro, f') - VG*(rlrt, f')

+ k'2 Covar(IF, Fd)G*(rtlro, f')G*(rlrt, f')VG(rtlro, f) -VG(rlrt, f)]

x 1|Q(f)|21 2e-i27(f-f'Xt-t() d% df df'.

(A. 10)



Then, the conditional second moment can be expressed as

(l45s(rsjr, ro, tm)|2|G(rtjro, f), G(rlrt, f)) (A. 11)

= Var(4s(rsIr, ro, tm)|G(rtIro, f), G(rIrt, f))

+ I(Qs(rslr, ro, tm)|G(rtjro, f), G(rlrt, f))| 2,

and the total second moment as

(Ds(rs Ir, ro, tM ) 12) =(Is (rs I r, r0 , tM) 12|G(rtlro, f), G(rlrt, f))) (A. 12)

= (Var(Ds(rsIr, ro, tm)IG(rIro, f), G(rIrt, f)))

+ (I(Ds(rsIr, ro, tM)IG(rtIro, f), G(rrt, f))12 ),

where the conditional variance Var(@s(rslr,ro,tM)|G(rt~rof),G(rlrt,f)) and the

conditional mean (4 s(rslr, ro,tM)IG(rtlro, f), G(rjrt, f)) are as given in Equations

A.9 and A.2 respectively. This expression is easier to implement than Equation 2.16

in Section 2.2, which has a double integral over volume.

To derive the total variance based on the conditional expressions derived above,

we use the fact that the total variance is the difference between the total second

moment and the magnitude squared of the total mean

Var(Ps(rsIr, ro, tM)) (A.13)

= (IPs(rsIr, ro, tM)12) - I(Ds(rs Ir, ro tM)) 12

By applying Equations A.12 and A.3, we find that the total matched filtered

variance is

Var(4s(rsIr, ro, ItM)) (A.14)

= (Var(4)s(rsjr, ro, tm)|G(rtjro, f), G(rlrt, f)))

+ (I(Ds(rsIr, ro, tM)IG(rtIro, f), G(rrt, f))|2 )

- I(((Ds(rsIr, ro, tm)IG(rtIro, f), G(rIrt, f)))| 2.



Equation A.14 is also easier to implement than the full expression for the total

matched filtered variance given in Equation 2.18, due to the fact none of its terms

have a double integral over the volume Vs. To note is also that the first term in

Equation A.14 is equivalent to the expression given in Equation 2.19:

(Var(4s(rslr, ro, tM)IG(rtIro, f), G(rlrt, f))) (A.15)

_ fcB/ fc+B2(47r)2j J JJL Vc(rs, zt)

x [k2k' 2Var(F.) (G(rt Iro, f)G(rIrt, f)G*(rtlro, f')G* (rIrt, f'))

± Var(Fd)(VG(rtlro, f) - VG(rlrt, f) x VG*(rtlro, f') -VG*(rlrt, f'))

+ k2 Covar(]F, 1Fd)(G(rtlro, f)G(rlrt, f)VG*(rtlro, f') - VG*(rlrt, f'))

+ k'2 Covar(1F, Pd)(G*(rtlro, f')G*(rlrt, f')VG(rtro, f) - VG(rlrt, f))]

X 1 IQ(f)|used2 2ap-xr(i-a't -t) dVt df df',Eo

and can be used to approximate the total matched filtered scattered intensity.
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Appendix B

Second term of the time harmonic

total variance

In section 3.1 we showed that the time harmonic expression in Equation 2.21 pro-

vides a good approximation to the matched filtered scattered intensity. Equation

2.21, however, corresponds to only the first term of the total time harmonic variance,

given by Equation 2.20. Numerically, we haven't been able to show that the first

term of Equation 2.20 dominates the total time harmonic variance. While the third

term of Equation 2.20 becomes negligible for a fine range increment and for several

realizations of the ocean environment, the second term is independent of the number

of realizations, and even for a fine range increment, dominates or is comparable to

the first term. This was not the case for the second term of the total matched filtered

variance given in Equation 2.18, where both the second and the third terms have

been shown to be negligible (Figures 3-5 and 3-6). We believe that the dominance of

the second term in Equation 2.20 is an artifact of the time harmonic approximation,

which cannot approximate a finite duration pulse and so cannot resolve a scattering

patch. Implementing the time harmonic approximation is effectively equivalent to

using a continuous wave CW waveform of infinite duration. We show in this Ap-

pendix that while a 1 second long CW waveform renders results similar to the linear

frequency modulated (LFM), increasing the duration of the CW signal reduces the

range resolution and consequently overestimates the second term in Equation 2.18 for



the matched filtered variance.

The simulation in this appendix was performed for an actual New Jersey conti-

nental shelf environment approximately 80 m deep. Monte Carlo simulations using

actual sound speed profiles have been run to randomize the waveguide and to al-

low computation of the total moments. The depth and range increments used were

dz = 0.4 m and dr = 3 m, respectively. The single element source and receiver were

collocated and situated at 50 m in depth. The integration patch Vs extended over

the top 10 m layers in depth, from 100 m to 5,500 m in range and over a 3* angle in

azimuth. The center frequency and bandwidth were 415 Hz and 50 Hz, respectively,

for all waveforms considered.

LFM signal LFM spectrum
2 0.04

0 0.5 1 1.5 2
Time (s)

CW signal

I

0.5 1 1.5 2
Time (s)

Gaussian signal

0.02

0
390 400 410 420 430 440

Frequency (Hz)
CW spectrum1

0.5

0
390 400 410 420 430 440

Frequency (Hz)
Gaussian spectrum

-20

0 0.5 1 1.5 2 390 400 410 420 430 440
Time (s) Frequency (Hz)

Figure B-1: Real part (left) and source spectrum Q(f)2 for 1 second long LFM (top),
CW (middle) and Gaussian (bottom) waveforms.

We first wish to study the effect that the choice of waveform has on the simu-

lated reverberation and in particular to determine whether the first term of the total

matched filtered variance dominates for all three waveforms. We consider the LFM

waveform typically used in experiments, along with the CW and Gaussian waveforms.

We keep the signal duration r constant to 1 second for all three waveforms. The real
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part of the time domain signal and the corresponding normalized spectra Q(f)2 for

each waveform are depicted in Figure B-1. As expected, the CW and Gaussian wave-

forms have a much narrower bandwidth than the LFM. To obtain consistent results

for the simulated reverberation using all three waveforms, we normalize by the time-

bandwidth product TB. Figure B-2 shows that, indeed, the simulated reverberation

level using the first term of the matched filtered variance given in Equation 2.19, is

consistent for the three waveforms.

Simulated reverberation level: 10 realizations
-80

-LFM
-- CW

-100 .-- Gaussian

-120 -

-160-

-180
-1 0 1 2 3 4 5 6 7 8

Range (km)

Figure B-2: Simulated reverberation level using the first term of the matched filtered
total variance for 10 Monte Carlo simulations, after normalization by rB, for LFM,
CW and Gaussian 1 second long broadband pulses centered at 415 Hz and with 50
Hz bandwidth.

While we confirmed that the three waveforms give consistent results, we also wish

to verify whether the second and third terms of the full matched filtered variance

given in Equation 2.18 are negligible compared to the first term. Figure B-3 shows

the total matched filtered variance and its three terms, for 10 Monte Carlo realizations,

for the LFM, CW and Gaussian waveforms. For all three waveforms, the first term

dominates, while the second and third terms are negligible. As the range resolution

Ar = , where c is the sound speed and B is the bandwidth, the CW and Gaussian
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Figure B-3: Total matched filtered variance and its three terms, for 1 second LFM,
CW and Gaussian broadband pulses centered at 415 Hz with 50 Hz bandwidth.



pulses, with much narrower bandwidth than the LFM, offer a worse range resolution.

This explains why the plots of the CW and Gaussian variance terms in Figure B-3 are

smoother than the corresponding LFM plots. As the signal duration T increases, the

range resolution of the CW waveform decreases even further. The two peaks in the

second term found at the end points of the patch due to discontinuity of the medium

could, then, overlap for a certain value of T, causing the second term to be at the

level of the two peaks. The next part of the Appendix studies the behavior of the

second term as the duration T of the CW signal increases.

Second variance term: 1 realization
-80

Is CW
2s CW

-100 -- 3s CW
-- 4s CW

5s CW

-1206s CW
7s CW

-140

-160 ... ....

-180
0 2 4 6 8 10

Range (km)

Figure B-4: Second term of total variance (Equation 2.18) for 1 Monte Carlo simu-
lation, for CW pulses of 1 to 7 second duration, centered at 415 Hz and with 50 Hz
bandwidth.

To study the behavior of the second term as the duration r of the CW signal

increases, we only need to consider one realization of the ocean waveguide, as the

average level of the second term has been found to remain constant across realizations.

We consider CW pulses of durations r = 1 to 7 s, and plot in Figure B-4 the second

term of the matched filtered variance (Equation 2.18) for each r, for one realization

of the ocean waveguide. The figure shows that, as the signal time duration increases,

the peaks at the edges of the patch become wider, and begin to overlap. For a



hypothetical CW pulse of infinite time duration, even if wrap-around would not be

problem and the time window for the fourier transform was large, the two peaks

would still overlap and form a monotonous curve, causing an apparent dominance of

the second term.



Appendix C

Examples of calibration results for

each experiment and frequency



C.1 New Jersey, 415 Hz

Implementation to New Jersey data, 415Hz, ping fora2003jd133t143135.

Inverted parameters for ping fora2003jd133t143135 at 415Hz

0 10 20 30 40 50 60 70
Beam number

Figure C-1: Parameters obtained after fitting the model to
the data for each beam, in log scale. The red horizontal line
indicates the mean of the parameter values (log scale). Only
beams corresponding to relatively flat or downward sloping
bathymetry were included in the analysis. Endfire beams as
well as beams contaminated by clutter were also excluded.
The second half of the data and model time series were chosen
for calibration, as the model fails to predict well the data for
small ranges.



Measured normalized pressure level beam time series
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Figure C-2: New Jersey continental shelf: (top left) Polar plot of received normalized
pressure level by OAWRS at 14:31 EDT, on 13 May 2003. The grey diamond indicates
the source, located at 39.2312N, 72.8818W and operating at 390-440 Hz. The black
diamond indicates the receiver, the coordinate origin, located at 39.2465N, 72.8626W,
with heading 346'E. The black and magenta stars indicate the beams chosen for
analysis, corresponding to the original and mirror beams, respectively. (top right)
Received normalized pressure level as beam time series. The black stars indicate
the beams chosen for analysis. The three magenta stars correspond to the beams
analyzed in Figures C-3 and C-4. (bottom left) Bathymetric map of the region with
depth contours at 60, 80 and 100m. The grey and white diamonds correspond to the
source and receiver, respectively. The black and magenta stars indicate the beams
chosen for analysis. (bottom right) Polar plot of received normalized pressure with
overlain bathymetric contours.
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Measured vs simulated reverberation level for beam 25

Measured vs simulated reverberation level lor beam 25
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Figure C-3: Comparison of measured and simulated reverberation levels plotted
against: beam time (top), range from the receiver along the original beam (mid-
dle), range from receiver along the mirror beam (bottom), for beams 30, 40 and 50,
indicated by magenta stars in Figure C-2 (top right).
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Measured vs simulated reverberation level for beam 25
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Figure C-4: For the same beams as in the previous figure C-3: comparison of measured
and simulated reverberation time series after range/time averaging (top); comparison
of the monopole term before adding the reverberation intensities for the original and
mirror beams (bottom).
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89



Bean time series of measured reverberation
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Figure C-6: Beam time (left) and polar (right) plots of measured reverberation level
(top), simulated reverberation level (middle) and their difference (bottom).
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C.2 New Jersey, 925 Hz

Implementation to New Jersey data, 925Hz, ping fora2003jd124t155725.

Inverted parameters for ping fora2003jd1 24t1 55725 at 925 Hz
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Figure C-7: Parameters obtained after fitting the model to
the data for each beam, in log scale. The red horizontal line
indicates the mean of the parameter values (log scale). Only
beams corresponding to relatively flat or downward sloping
bathymetry were included in the analysis. Endfire beams as
well as beams contaminated by clutter were also excluded.
The second half of the data and model time series were chosen
for calibration, as the model fails to predict well the data for
small ranges.
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the source, located at 39.2694N, 72.8630W and operating at 875-975 Hz. The black
diamond indicates the receiver, the coordinate origin, located at 39.3108N, 72.9116W,
with heading 120'E. The black and magenta stars indicate the beams chosen for
analysis, corresponding to the original and mirror beams, respectively. (top right)
Received normalized pressure level as beam time series. The black stars indicate
the beams chosen for analysis. The three magenta stars correspond to the beams
analyzed in Figures C-9 and C-10. (bottom left) Bathymetric map of the region with
depth contours at 60, 80 and 100m. The grey and white diamonds correspond to the
source and receiver, respectively. The black and magenta stars indicate the beams
chosen for analysis. (bottom right) Polar plot of received normalized pressure with
overlain bathymetric contours.
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Measured vs simulated reverberaton level for beam 50

Measured vs simulated reverberation level for beam 30 Measured vs sinulated reverberation level for beam 40
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Figure C-9: Comparison of measured and simulated reverberation levels plotted
against: beam time (top), range from the receiver along the original beam (mid-
dle), range from receiver along the mirror beam (bottom), for beams 30, 40 and 50,
indicated by magenta stars in Figure C-8 (top right).

Measured vs simulated reverberation level for beam 30 Measured vs simulated reverberation level for beam 40



Measured vs simulated reverberation level for beam 30
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Figure C-10: For the same beams as in the previous figure C-9: comparison of mea-
sured and simulated reverberation time series after range/time averaging (top); com-
parison of the monopole term before adding the reverberation intensities for the orig-
inal and mirror beams (bottom).
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Figure C-11: Histogram of data-model differences for Figure C-12.
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Beam time series of measured reverberation
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Figure C-12: Beam time (left) and polar (right) plots of measured reverberation level
(top), simulated reverberation level (middle) and their difference (bottom).
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C.3 New Jersey, 1325 Hz

Implementation to New Jersey data, 1325Hz, ping fora2003jd124t155135.

Inverted parameters for ping fora2003jd124t155135 at 1325Hz
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Figure C-13: Parameters obtained after fitting the model to
the data for each beam, in log scale. The red horizontal line
indicates the mean of the parameter values (log scale). Only
beams corresponding to relatively flat or downward sloping
bathymetry were included in the analysis. Endfire beams as
well as beams contaminated by clutter were also excluded.
The second half of the data and model time series were chosen
for calibration, as the model fails to predict well the data for
small ranges.



Measured normalized pressure level beam time series
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Figure C-14: New Jersey continental shelf: (top left) Polar plot of received normalized
pressure level by OAWRS at 15:51 EDT, on 4 May 2003. The grey diamond indicates
the source, located at 39.2694N, 72.8630W and operating at 1250-1400 Hz. The black
diamond indicates the receiver, the coordinate origin, located at 39.3140N, 72.9185W,
with heading 117*E. The black and magenta stars indicate the beams chosen for
analysis, corresponding to the original and mirror beams, respectively. (top right)
Received normalized pressure level as beam time series. The black stars indicate the
beams chosen for analysis. The three magenta stars correspond to the beams analyzed
in Figures C-15 and C-16. (bottom left) Bathymetric map of the region with depth
contours at 60, 80 and 100m. The grey and white diamonds correspond to the source
and receiver, respectively. The black and magenta stars indicate the beams chosen
for analysis. (bottom right) Polar plot of received normalized pressure with overlain
bathymetric contours.
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Measured vs simulated reverberation level for beam 30
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Figure C-15: Comparison of measured and simulated reverberation levels plotted
against: beam time (top), range from the receiver along the original beam (mid-
dle), range from receiver along the mirror beam (bottom), for beams 30, 40 and 50,
indicated by magenta stars in Figure C-14 (top right).
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Measured vs simulated reverberation level for beam 30
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Figure C-16: For the same beams as in the previous figure C-15: comparison of
measured and simulated reverberation time series after range/time averaging (top);
comparison of the monopole term before adding the reverberation intensities for the
original and mirror beams (bottom).
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Figure C-18: Beam time (left) and polar (right) plots of measured reverberation level
(top), simulated reverberation level (middle) and their difference (bottom).
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C.4 Georges Bank, 415 Hz

Implementation to Georges Bank data, 415Hz, ping fora2006jd269t165140.

Inverted parameters for ping fora2006jd269t1 65140 at 415Hz
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Figure C-19: Parameters obtained after fitting the model to
the data for each beam, in log scale. The red horizontal line
indicates the mean of the parameter values (log scale). Only
beams corresponding to relatively flat or downward sloping
bathymetry were included in the analysis. Endfire beams as
well as beams contaminated by clutter were also excluded.
The second half of the data and model time series were chosen
for calibration, as the model fails to predict well the data for
small ranges.
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Figure C-20: Northern flank of Georges Bank in the Gulf of Maine: (top left) Polar
plot of received normalized pressure level by OAWRS at 11:58 EDT, on 26 September
2006. The grey diamond indicates the source, located at 41.8901N, 68.2134W and
operating at 390-440 Hz. The black diamond indicates the receiver, the coordinate
origin, located at 41.8212N, 68.3368W, with heading 137'E. The black and magenta
stars indicate the beams chosen for analysis, corresponding to the original and mirror
beams, respectively. (top right) Received normalized pressure level as beam time
series. The black stars indicate the beams chosen for analysis. The three magenta
stars correspond to the beams analyzed in Figures C-21 and C-22. (bottom left)
Bathymetric map of the region with depth contours at 100, 150 and 200m. The grey
and white diamonds correspond to the source and receiver, respectively. The black
and magenta stars indicate the beams chosen for analysis. (bottom right) Polar plot
of received normalized pressure with overlain bathymetric contours.
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Measured vs simulated reverberation level for beam 42
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Figure C-21: Comparison of measured and simulated reverberation levels plotted
against: beam time (top), range from the receiver along the original beam (middle),
range from receiver along the mirror beam (bottom), for beams 25, 37 and 42 indicated
by magenta stars in Figure C-20 (top right).
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Measured vs simulated reverberation level for beam 25
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Figure C-22: For the same beams as in the previous figure C-21: comparison of
measured and simulated reverberation time series after range/time averaging (top);
comparison of the monopole term before adding the reverberation intensities for the
original and mirror beams (bottom).
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Figure C-23: Histogram of data-model differences for Figure C-24.
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Beam time series of measured reverberation
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Figure C-24: Beam time (left) and polar (right) plots of measured reverberation level
(top), simulated reverberation level (middle) and their difference (bottom).
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C.5 Georges Bank, 950 Hz

Implementation to Georges Bank data, 950Hz, ping fora2006jd278t025345.

Inverted parameters for ping fora2006jd278t025345 at 950Hz70
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Figure C-25: Parameters obtained after fitting the model to
the data for each beam, in log scale. The red horizontal line
indicates the mean of the parameter values (log scale). Only
beams corresponding to relatively flat or downward sloping
bathymetry were included in the analysis. Endfire beams as
well as beams contaminated by clutter were also excluded.
The second half of the data and model time series were chosen
for calibration, as the model fails to predict well the data for
small ranges.
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Measured normalized reverberation level beam time series
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Figure C-26: Northern flank of Georges Bank in the Gulf of Maine: (top left) Polar
plot of received normalized pressure level by OAWRS at 22:53 EDT, on 4 October
2006. The grey diamond indicates the source, located at 41.9696N, 68.3507W and
operating at 925-975 Hz. The black diamond indicates the receiver, the coordinate
origin, located at 42.0776N, 68.2707W, with heading 153'E. The black and magenta
stars indicate the beams chosen for analysis, corresponding to the original and mirror
beams, respectively. (top right) Received normalized pressure level as beam time
series. The black stars indicate the beams chosen for analysis. The three magenta
stars correspond to the beams analyzed in Figures C-27 and C-28. (bottom left)
Bathymetric map of the region with depth contours at 100, 200 and 300m. The grey
and white diamonds correspond to the source and receiver, respectively. The black
and magenta stars indicate the beams chosen for analysis. (bottom right) Polar plot
of received normalized pressure with overlain bathymetric contours.

107

Polar plot of measured normalized reverberation level



M e vMeasured v- e Measured M Measured I
110- Simulated -10- I Simulated .11G - I Simulated

-120 tt20 3 120-

-130 30 130

-140 -140 140 -

S-150 - 150 - 150

-160 -60 160

~2

-170 -170 -170-

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Range along original beam (km Range along original beam (km) Range along origina beam (km)

Measured vs simulated reverberation level for beam 30 Measured vs simulated reverberation level for beam 40 Measured vs simulated reverberation level for beam 50
-100 -2205 0 -100

Mmasurmds -- mMeasured Measured110 -27: Somua d o 10 Simulated r 110 a Simulated
120 120 G 120-

-1 30 130 -130

-40- 40140

50 ri-150 -150

Is -1616 - 1-160

-170 -170 -170-z ~z
-180 -10 1SO

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35Range along mirror beam (km Range along mirror beam (km) Range along mirror beam (km)Measured vs simulated reverberation level or beam 30 Measured vs simulated reverberation level for beam 40 Measured vs simulated reverberation level for beam 50100 100 -100
=110 Smlae 110 -Smltd 110 Smlae

o 120 o 120 CD-120-

130 -130 -130

-140 -140- A40

m -10 e-150 -150

.2-160 -160 - -160

-170- -170 -70 - -

-100 1,80 '-18010 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Beam time (s Beam time (S) Beam time (s)

Figure C-27: Comparison of measured and simulated reverberation levels plotted
against: beam time (top), range from the receiver along the original beam (mid-
dle), range from receiver along the mirror beam (bottom), for beams 35, 45 and 50,
indicated by magenta stars in Figure C-26 (top right).
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Measured vs simulated reverberation level for beam 30
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Figure C-28: For the same beams as in the previous figure C-27: comparison of
measured and simulated reverberation time series after range/time averaging (top);
comparison of the monopole term before adding the reverberation intensities for the
original and mirror beams (bottom).
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Figure C-29: Beam time (left) and polar (right) plots of measured reverberation level
(top), simulated reverberation level (middle) and their difference (bottom).
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C.6 Georges Bank, 1125 Hz

Implementation to Georges Bank data, 1125Hz, ping fora2006jd276t223615.

Inverted parameters for ping fora2006jd276t223615 at 1125Hz
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Figure C-30: Parameters obtained after fitting the model to
the data for each beam, in log scale. The red horizontal line
indicates the mean of the parameter values (log scale). Only
beams corresponding to relatively flat or downward sloping
bathymetry were included in the analysis. Endfire beams as
well as beams contaminated by clutter were also excluded.
The second half of the data and model time series were chosen
for calibration, as the model fails to predict well the data for
small ranges.
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Figure C-31: Northern flank of Georges Bank in the Gulf of Maine: (top left) Polar
plot of received normalized pressure level by OAWRS at 18:36 EDT, on 3 October
2006. The grey diamond indicates the source, located at 42.2088N, 67.6892W and
operating at 1100-1150 Hz. The black diamond indicates the receiver, the coordinate
origin, located at 42.2305N, 67.8553W, with heading 177'E. The black and magenta
stars indicate the beams chosen for analysis, corresponding to the original and mirror
beams, respectively. (top right) Received normalized pressure level as beam time
series. The black stars indicate the beams chosen for analysis. The two magenta
stars correspond to the beams analyzed in Figures C-32 and C-33. (bottom left)
Bathymetric map of the region with depth contours at 100, 200 and 300m. The grey
and white diamonds correspond to the source and receiver, respectively. The black
and magenta stars indicate the beams chosen for analysis. (bottom right) Polar plot
of received normalized pressure with overlain bathymetric contours.

112

... .. ... ....

Polar plot of measured normalized pressure level Measured normalized pressure level beam time series



Measured vs simulated reverberation level for beam 35
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Figure C-32: Comparison of measured and simulated reverberation levels plotted
against: beam time (top), range from the receiver along the original beam (middle),
range from receiver along the mirror beam (bottom), for beams 35 and 45, indicated
by magenta stars in Figure C-31 (top right).
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Measured vs simulated reverberation level for beam 35
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Figure C-33: For the same beams as in the previous figure C-32: comparison of
measured and simulated reverberation time series after range/time averaging (top);
comparison of the monopole term before adding the reverberation intensities for the
original and mirror beams (bottom).
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Figure C-34: Beam time (left) and polar (right) plots of measured reverberation level
(top), simulated reverberation level (middle) and their difference (bottom).

115

-130

-140

-150

-160

-170

-180

-130

-140

-150

-160

-170

-180

20

15

10

.5

0

-5

-10

-15

-20

Polar plot of measured reverberation levels



116



Bibliography

[1] Mark Andrews. Enabling high resolution population density imaging of ran-
dom scatterer groups in a fluctuating range-dependent ocean waveguide with the
matched filter variance. PhD dissertation, Northeastern University, The Depart-
ment of Electrical and Computer Engineering, December 2009.

[2] Mark Andrews, Tianrun Chen, and Purnima Ratilal. Empirical dependence of
acoustic transmission scintillation statistics on bandwidth, frequency, and range
in new jersey continental shelf. The Journal of the Acoustical Society of America,
125(1):111-124, 2009.

[3] Mark Andrews, Zheng Gong, and Purnima Ratilal. High resolution population
density imaging of random scatterers with the matched filtered scattered field
variance. The Journal of the Acoustical Society of America, 126(3):1057-1068,
2009.

[4] Homer P. Bucker. Wave propagation in a duct with boundary scattering (with
application to a surface duct). The Journal of the Acoustical Society of America,
68(6):1768-1772, 1980.

[5] Michael D. Collins. A split-step pad[e-acute] solution for the parabolic equation
method. The Journal of the Acoustical Society of America, 93(4):1736-1742,
1993.

[6] Ameya Galinde, Ninos Donabed, Mark Andrews, Sunwoong Lee, Nicholas C.
Makris, and Purnima Ratilal. Range-dependent waveguide scattering model cal-
ibrated for bottom reverberation in a continental shelf environment. The Journal
of the Acoustical Society of America, 123(3):1270-1281, 2008.

[7] John A. Goff, Barbara J. Kraft, Larry A. Mayer, Steven G. Schock, Christo-
pher K. Sommerfield, Hilary C. Olson, Sean P. S. Gulick, and Sylvia Nordfjord.
Seabed characterization on the new jersey middle and outer shelf: correlata-
bility and spatial variability of seafloor sediment properties. Marine Geology,
209(1-4):147 - 172, 2004.

[8] Zheng Gong, Mark Andrews, Srinivasan Jagannathan, Ruben Patel, J. Michael
Jech, Nicholas C. Makris, and Purnima Ratilal. Low-frequency target strength
and abundance of shoaling atlantic herring (clupea harengus) in the gulf of maine

117



during the ocean acoustic waveguide remote sensing 2006 experiment. The Jour-
nal of the Acoustical Society of America, 127(1):104-123, 2010.

[9] Joseph Goodman. Speckle phenomena in optics. Roberts and Company Pub-
lishers, 2009.

[10] Paul C. Hines. Theoretical model of in-plane scatter from a smooth sediment
seabed. The Journal of the Acoustical Society of America, 99(2):836-844, 1996.

[11] Kevin D. LePage and Henrik Schmidt. Spectral integral representations of mono-
static backscattering from three-dimensional distributions of sediment volume
inhomogeneities. The Journal of the Acoustical Society of America, 113(2):789-
799, 2003.

[12] Dan Li, George V. Frisk, and Dajun Tang. Modeling of bottom backscattering
from three-dimensional volume inhomogeneities and comparisons with experi-
mental data. The Journal of the Acoustical Society of America, 109(4):1384-
1397, 2001.

[13] N. C. Makris. Geoclutter acoustics experiment 2003 cruise report. Technical
report, MIT, 2003.

[14] Nicholas C. Makris. The effect of saturated transmission scintillation on ocean
acoustic intensity measurements. The Journal of the Acoustical Society of Amer-
ica, 100(2):769-783, 1996.

[15] Nicholas C. Makris, Purnima Ratilal, Srinivasan Jagannathan, Zheng Gong,
Mark Andrews, Ioannis Bertsatos, Olav Rune God, Redwood W. Nero, and
J. Michael Jech. Critical population density triggers rapid formation of vast
oceanic fish shoals. Science, 323(5922):1734-1737, 2009.

[16] Nicholas C. Makris, Purnima Ratilal, Deanelle T. Symonds, Srinivasan Jagan-
nathan, Sunwoong Lee, and Redwood W. Nero. Fish population and behavior re-
vealed by instantaneous continental shelf-scale imaging. Science, 311(5761):660-
663, 2006.

[17] H. M. Merklinger. Bottom reverberation measured with explosive charges fired
deep in the ocean. The Journal of the Acoustical Society of America, 44(2):508-
513, 1968.

[18] P. M. Morse and K. U. Ingard. Theoretical acoustics. Princeton University Press,
NJ, 1986.

[19] Pierre D. Mourad and Darrell R. Jackson. A model/data comparison for low-
frequency bottom backscatter. The Journal of the Acoustical Society of America,
94(1):344-358, 1993.

118



[20] Zhaohui Peng, Jixun Zhou, and Renhe Zhang. In-plane bistatic backward scat-
tering from seabottom with randomly inhomogeneous sediment and rough inter-
face. Science in China Series G: Physics Mechanics and Astronomy, 47:702-716,
2004. 10.1007/BF02687341.

[21] Purnima Ratilal and Nicholas C. Makris. A unified model for reverberation and
submerged target scattering in shallow water. The Journal of the Acoustical
Society of America, 107(5):2920-2920, 2000.

[22] R. J. Urick. Principles of underwater sound. McGraw Hill, New York, 1983.

[23] Tokuo Yamamoto. Acoustic scattering in the ocean from velocity and density
fluctuations in the sediments. The Journal of the Acoustical Society of America,
99(2):866-879, 1996.

119


