
Design, Construction, and Experiments with a

Compass Gait Walking Robot

by
Zachary J Jackowski

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Master of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MASSACHUSTTS INSTIUTE
OF TECHNOLOGY

JU.292017]

LIBRARIES

ARCHIVES

June 2011

© Massachusetts Institute of Technology 2011. All rights reserved.

Author t of M h i Eniern

Dep artment of Mechan ical Engine ering

(~Th ~ May 6, 2011

Certified by.......

Certified by.......

Russell L Tedrake
Associate Professor

Thesis Supervisor

Sangbae Kim
Assistant Professor
ME Faculty Reader

Accepted by
David E. Hardt

Chairman, Department Committee on Graduate Theses

Design, Construction, and Experiments with a Compass

Gait Walking Robot

by

Zachary J Jackowski

Submitted to the Department of Mechanical Engineering
on May 6, 2011, in partial fulfillment of the

requirements for the degree of
Master of Science in Mechanical Engineering

Abstract

In recent years a number of new computational techniques for the control of nonlin-
ear and underactuated systems have been developed and tested largely in theory and
simulation. In order to better understand how these new tools are applied to real
systems and to expose areas where the theory is lacking testing on a physical model
system is necessary. In this thesis a human scale, free walking, planar bipedal walking
robot is designed and several of these new control techniques are tested. These include
system identification via simulation error optimization, simulation based LQR-Trees,
and transverse stabilization of trajectories. Emphasis is put on the topics of de-
signing highly dynamic robots, practical considerations in implementation of these
advanced control strategies, and exploring where these techniques need additional
development.

Thesis Supervisor: Russell L Tedrake
Title: Associate Professor

ME Faculty Reader: Sangbae Kim
Title: Assistant Professor

4

Acknowledgments

I'd like to thank Russ Tedrake for support, both in resources and direct help with

this project in the form of countless discussions and late night code contributions.

I'd also like to thank Anirudha Majumdar for a summer of great help getting the

robot take its first steps and Amy Qian for her help early on with design work and

fabrication of the robot's foot actuators. A great deal of thanks is also deserved by

everyone else at the Robot Locomotion Group, Michael Levashov for lots of help with

dynamics and modeling, Ian Manchester for the many consultations on control theory

and direct help with making it work, John Roberts for many useful discussion both

on robotics and everything else in life and everyone else for making my years at the

lab so enjoyable.

6

Contents

1 Introduction 15

2 Physical System Design 19

2.1 R obot D esign . 19

2.1.1 Overall Concept . 24

2.1.2 Inertial Measurement Unit... 27

2.1.3 H ip Sensing . 29

2.1.4 Terrain Sensing . 31

2.2 Mechanical Design.... 33

2.2.1 Feet........... 33

2.2.2 Body and Bisection Mechanism... 38

2.2.3 Hip Actuation . 39

2.2.4 Frame.. 44

3 System Architecture 51

3.0.5 The Sensor Accumulator . 53

3.0.6 The Command Dispatch . 54

3.0.7 Plug and simulate functionality 54

3.0.8 System Decentralization....... 56

4 Control Experiments 57

4.1 Virtual Constraints Experiment. 57

4.2 System Model and Identification . 60

7

4.2.1 Impact Model . 62

4.2.2 Actuator Friction . 64

4.2.3 System Identification . 64

4.3 Observer Design . 70

4.4 Harmonic Drive Compliance . 73

4.5 TVLQR Stabilized Trajectories . 77

4.6 Simulation LQR-Trees . 81

4.7 Transverse Stabilized Walking . 84

5 Conclusion 89

A System Model Derivation 95

List of Figures

1-1 The compass gait with a body is a very simple model of walking which

still reflects all the reasons why walking is a difficult problem. The

model can be fully described by the continuous dynamics of these three

links along with an instantaneous ground contact which switches the

stance leg. 17

2-1 The full robot, a free walking realization of the simple compass gait

model with a body. The robot is a planar walker but has three legs

and four feet, with good reason. 20

2-2 Full image of the acrobot . 21

2-3 Close-up of the acrobot elbow. 23

2-4 The lab's old compass gait walker on its boom. 24

2-5 'Max', an example of a dynamic walking robot with a bisecting body.

[2 2] . 2 5

2-6 Encoder flexure bracket. 30

2-7 Concept drawings for the robot's toe actuators. Lead screw design on

the left and cable drive on the right. 34

2-8 The robot's series elastic foot actuator. 35

2-9 The cable which connects to the moving carriage in an inkjet printer

was the design inspiration for the similar mechanism in the robot's feet. 36

2-10 The two middle feet branching off from the single middle leg. 37

2-11 The original foot configuration where the middle two were bolted back

to back. 38

2-12 The body's angle bisection mechanism. 40

2-13 Initial concept for a direct drive hip actuator using a frameless motor

and our own aluminum frame. This allows the motor to be built into

the robot in the most efficient way possible. 41

2-14 Explosion of a Harmonic Drive gearbox from the Harmonic Drive op-

erating principles literature [12]. 42

2-15 The 30 : 1 ratio Harmonic Drive gearbox used in this robot, showing

the very large driving teeth. Overall diameter of the flex spline (right)

is about 2.5 inches.43

2-16 The cross roller bearing inside the robot's Harmonic Drive gearbox. . 43

2-17 The robot's titanium sheet metal hip shortly after being welded. The

aluminum fixture was used to hold the three leg connections parallel. 46

2-18 Initial mockup of the robot without the upper stiffening hoop. 47

2-19 The simplified version of the robot's hip box subjected to an end load. 48

2-20 The hip box without the triangular cutouts under the same loading. . 49

3-1 The system control and sensing architecture. 53

3-2 LCM robot in simulation. 55

3-3 LCM system controlling the real robot hardware. 55

4-1 The three-link system model describing the compass gait plant. . . . 61

4-2 Plot of leg velocities resulting from an open loop command played on

the robot versus the simulator. 63

4-3 The robot setup during system identification. Note the springs stabi-

lizing the system at the equilibrium point. 67

4-4 Robot with one leg fixed for system identification. 68

4-5 The final system identification fits, compared against the training data. 71

4-6 Validation plots for the system identification 72

4-7 Time response of the balancing controller without steps taken to at-

tenuate high frequency dynamics. 73

4-8 Discrete Fourier transform of the torque signal from the good balancing

response........ 74

4-9 Discrete Fourier transform of the torque signal from the balancing re-

sponse with unwanted high frequency dynamics. 74

4-10 The bracket the IMU is attached to, possibly flexing as the hip motor

applies large torques to the structure. 76

4-11 Frequency response of the torque to IMU flex system. 77

4-12 Frequency response of the torque to inter-leg angle encoder system. . 78

4-13 TVLQR stabilized 'one step rebalance' trajectory. The small ripple

along the trajectory is due to the very high controller gains exciting

unmodeled high frequency dynamics in the system. Nominal trajectory

is in cyan while the recorded data is in red. 79

4-14 Plots of the hybrid LQR Tree controller designed to bring the robot to

equilibrium on either of the stance legs. 85

4-15 The planed periodic trajectory with the step-in trajectory from equi-

librium . 86

4-16 The TVLQR stabilized step-in and first step of the periodic trajectory

as run on the real robot. 87

12

List of Tables

4.1 Physical Constants to Identify . 66

14

Chapter 1

Introduction

As a robot designer and fabricator I come to the area of controls mostly as a consumer

but working closely with real theorists. The Robot Locomotion Group has been pro-

ducing a tremendous amount of promising new ideas in the field of applied nonlinear

control, specifically LQR Trees [19] and transverse stabilization [13]. While mathe-

matically well grounded results are important one must look to the actual purpose of

the research in order to see that it's only half the story. The other half is how well

those techniques work to solve real problems with real hardware and whether they

can be implemented successfully and efficiently. This is the end that the compass

gait walker project has been working toward. We as a research lab believe that all of

the tools required to effectively solve the control of the compass gait currently exist,

especially with the development of our LQR Trees method and wanted to develop a

hardware platform that can show that fact without a doubt.

The work involved in implementing a full demonstration of our methods on real

hardware is also important in and of itself. Previously a great amount of effort has

gone into making our methods theoretically sound and working in simulation, but

the real goal is almost always making real physical systems work better. Making this

happen brings to light a wide variety of new considerations such as how the control

theory fits in software system architecture, the constraints of running in real time,

and the amenability of common physical systems to the precise modeling our methods

require. It is by design that difficulties in this project drive the development of our

work in the future, if not explicitly finding ways to deal with them, knowing of their

importance and severity while investigating new methods to steer us away from fragile

theories.

While the goals stated above apply for the project as a whole, my goal in this thesis

is to record as many of the little bits that fall through the cracks of documentation as

possible along with the big ideas. I've been surprised and saddened to find a general

absence of design information for those getting started in building highly dynamic

robots and lot of effort is lost learning the right order of priorities and rules of thumb.

While in design there's no replacement for personal experience, knowing pitfalls ahead

of time can mean the success of an entire project.

I think it's safe to say that any robot designer knows, as a few trivial examples,

to make structures lightweight, to validate what can be before committing to build,

and to keep control loop delays small. How these individual factors should play

in an ecosystem of many competing priorities is usually completely unknown. The

designer's art is to figure out how to spread the resources available around to produce

something that works. Figuring out the right places to break the bank can mean the

difference between a successful ten thousand dollar robot and a failed fifty thousand

dollar robot. The fact is that when you're trying to push the boundaries of control

something as simple as a bargain bin inertial measurement unit can keep you from

solving the problems that actually matter. The same goes for time of course, a week

spent simulating the most critical parts of a robot could save months effort later, not

only from the first order effects of having to fix what's wrong, but the second order

effects of wasted time leading up to deciding band-aid fixes won't cut it and that

something needs to be fixed in the first place. I hope to provide an artifact of my

design process and how I balanced these competing factors.

Designers work in a different currency from most scientists and engineers because

their products are different. The working machine that's produced may not be a great

intellectual work, but it's often the real world outlet and test of those works. I hope

that the reader will come away from this not so much with an intimate understanding

of all the wonderful things I've discovered, but with a feel for the design process of this

kind of machine and the kinds of control methods that can bring it to life. Hopefully

the theorists whose work I've drawn on will also be able to see the spots that are still

sore and find inspiration for new work in them.

Why we chose to make a simple planar walking robot is an important topic when

it seems like similar things have been done before [10] [22] [5] [11] and even more

impressive walking robots have been demonstrated [8] [4] [2] [7]. We feel strongly that

in order to understand the real theoretical problems at the heart of these complicated

control problems concisely the target system needs to be exactly as complicated as

necessary and no more so. The free walking compass gait concept takes a scalpel to

complexity and reduces the physical system to the minimum necessary to bring forth

all the problems we think matter. It represents highly nonlinear hybrid dynamics

with realistic but simple ground contact. It also brings the issues of managing a

full robotic system such as carrying its own computation resources into the picture

without overshadowing what is going on at the lowest levels.

.03

M 3 , 13

c3

1c2

M 2 , 12

mi, I1

Figure 1-1: The compass gait with a body is a very simple model of walking which
still reflects all the reasons why walking is a difficult problem. The model can be fully
described by the continuous dynamics of these three links along with an instantaneous
ground contact which switches the stance leg.

A system as complicated as ASIMO or BigDog with a very large state adds little

of value as far as understanding goes while the system designed here with its small

state and number of actuators still representing all the important problems that need

to be solved on the control front. Building the robot in-house puts the expertise

with the mechanical and software system in direct contact (often in the same person)

with the people developing the control ideas that make it work which is important in

highly dynamic systems such as this where things like loop delays and modelability

can make or break experiments. The robot developed here is also in a performance

regime that hasn't been entered by a similar robot before. Careful attention to

maximizing actuator performance and ideality has enabled the boundaries of what

the system is capable of to be pushed as far out as possible while working within the

constraints of an academic lab.

Chapter 2

Physical System Design

With a relatively simple concept and purpose for the robot we thought the actual

design of the robot would be very straightforward. The lab already had built a much

smaller compass gait walker and I had personally built an acrobot, so we knew more

than a few key design points for the robot. There's always more to learn, especially

after making a jump in complexity as large as this one and we certainly learned a

lot in the process. Hopefully the most important points will all be remembered and

recorded here.

2.1 Robot Design

I mean to make a point with the layout of this chapter, that robot design is the

most important design issue in a robot. The defining characteristic of a robot is the

integration of sensing, actuation, and decision making into a singular fluid system.

The mechanical parts of the robot are inseparable in design from the electrical system

that brings them to life and the software systems that breathes intelligence into it all.

As a simple example of this, when we designed the acrobot the position encoder

for the second link was originally on the back end of the motor, a very clean design

decision that integrates the motor assembly and protects the encoder well. Previous

experience had shown that kit encoders which rely on user provided bearings had been

big sources of problems because of misalignment causing missed counts. Encoders that

Figure 2-1: The full robot, a free walking realization of the simple compass gait model
with a body. The robot is a planar walker but has three legs and four feet, with good
reason.

20

Figure 2-2: The acrobot built previous to the design of the compass gait walker. The
motor on the first link is connected to the elbow by a long driveshaft. The encoders
in question are located on the back of the motor at the top and on the elbow near
the bottom of the picture.

21

integrate their own bearings and housing are much heavier and expensive, so using

the encoder on the back of the motor is a big advantage, or at least seemed to be so

until we realized the error we had made. The two foot long carbon fiber driveshaft

that connected the motor at the shoulder of the robot to the elbow introduced a

small amount of compliance which caused extreme issues for the high-gain control

required to balance the arm around the upright position. The compliance of the

shaft, combined with the small amount of backlash in the right angle gearbox at the

elbow introduced extra dynamics that made control of the system near impossible.

In order to make headway in control of the robot we had to sacrifice the integration

of the encoder and move it down to the elbow on the other side of the gearbox. In

addition to the compromise made in the beauty of the design, we also had to sacrifice

some money in buying an encoder with its own integrated bearing set.

One of the most important takeaway lessons from that sensor change is that

modeling, control, and advanced sensing strategies are rarely the right solution for

a problem that can be designed away from the start. This is a surprisingly difficult

lesson to internalize, especially surrounded by people very good at these methods,

and it took most of the compass gait project to get all the way there. Elements of

this can be seen in almost every major design change on the robot if you look closely,

for example modifications to the hip gearbox and the location of the middle toes

which be looked at closely in their respective sections.

Structural components make up most of the 'robot' by weight and volume, but

it's important to remember that they're the facilitators of the robot's function. In

the case of a walking robot this is a little bit strange because the main function

of the machine is to push the limits of what has been demonstrated by walking

robots before, a nebulous goal that doesn't outwardly say anything about what the

functional requirements are. As with many design problems the target specifications

aren't known and may never be, the best we can do is make successive approximations

and prototypes.

Figure 2-3: One of the several acrobot elbow iterations. In this case helical miter
gears are used to achieve smoother operation along with a spring between the two
links pushing them apart. This light preload keeps the gears tightly meshed which
minimizes backlash while avoiding binding. The integrated encoder can be seen hang-
ing off the backside.

23

2.1.1 Overall Concept

The initial germs of the idea to build this robot came from a few sources and past

projects. The acrobot I had designed for the lab previously was the precursor for

many of the design details and lessons, but our work in theory and on our small scale

compass gait robot are where the desire for it actually came from. We would have

kept working with this small robot, but it had a couple flaws.

Most important was the boom. Originally the robot was put on a boom in order

to keep it from falling over sideways, but the boom turned out to have another bad

effect: it allowed the robot's key inertias and masses to be changed at will. When the

robot was originally built it wasn't actually able to walk effectively until weight was

added to the end of the boom on the other side of the fulcrum from the robot. This

can be seen in the system parameters provided with one of the papers on experiments

with the robot [10], the counterweight provided almost enough force to cancel out

gravity, providing a moon-like bounce and slowness in the robot's steps. The time

constants associated with the robot falling over without the boom were too fast to

be worked with with the available actuators and sensing. This produced experiments

which were overly optimistic and appeared nonphysical.

Figure 2-4: The lab's old compass gait walker on its boom.

This robot design works to deal with all the issues that the boom was used to

compensate for so that it could be eliminated, producing a much more honest and

believable demonstration, over more impressive terrain.

One way to change the inertial characteristics of the system without making the

legs heavier and therefore more difficult to move themselves is to introduce a bisecting

body to the robot. The example of this that the most inspiration was drawn from

was the robot 'Max' from Martijn Wisse et al at TU Delft [22]. Because the body

only travels half the angle that a leg does when its moving it only appears half the

size dynamically to the leg, but because the falling over action involved both legs

moving together the body's mass is fully represented in that portion of the dynamics.

Adding a bisecting body was also important because we planned for the new robot to

be fully autonomous, requiring it to carry its own power and computation equipment.

It's advantageous to locate all this mass in the body for the same inertial reasons,

helping keep the legs as easy to move as possible.

Figure 2-5: 'Max', an example of a dynamic walking robot with a bisecting body. [22]

In deciding to make a planar dynamic walker one of the other main design ques-

tions is whether the robot should have knees. To us this was as much a question of

research philosophy as mechanical design. In order to avoid hitting the ground as

the swing leg moves it must get shorter somehow. In most animals and on many

walking robot this is accomplished with active or passive knees, making the leg to

break during swing allows the distance between the hip and toe to get shorter. This

action, however, greatly increases the complexity of the dynamic model (remember

that point about the integration of design and control?). The canonical compass gait

model only deals with one collision, impact of the swing toe with the ground, because

the robot is assumed to be symmetric. Knees introduce a new hybrid transition into

the model: knee locking (knee unlocking usually happens in conjunction with im-

pact). Because this robot will be asymmetric this means that the introduction of

knees would change the system from two modes with two transitions, to at least four

modes with four transitions, many more if one wishes to account for breaking the

knee of the stance leg or impacting with a broken knee. In many cases this wouldn't

be much of a concern because the necessary simulation would be performed by an

automatic dynamics solver, but we prefer to keep the number of plants as small as

possible in order to keep analysis clean. The simpler the analysis the system is the

more we likely we are to understand it at a fundamental level.

The alternative to this is prismatic feet, where the feet are actuated in and out

parallel to the leg, something that doesn't happen often in biological systems. As long

as the actuators don't hit their limits then the number of plant modes and transitions

doesn't increase and the complexity of the continuous plant modes doesn't increase

too badly. Prismatic feet also have the advantage of being able to push off using the

same actuator which would be impossible with a passive or clutch based knee.

The overall size of the robot is one of the really free variables in the design.

There are a couple considerations that push it to be large: computation and system

time constants. Ideally the robot should be able to carry all the computer power

it needs to function, which we decided up front to be a mini-ITX based computer

running a modern x86 processor which means the robot's body will at least need to

accommodate the volume and weight of the motherboard and batteries to feed a 65W

processor. The mechanical time constants determine how fast and precise the control

action needs to be, getting easier with the robot getting larger. This should intuitively

make sense thinking of the simplest case, the point mass pendulum, whose natural

frequency is w = e. On the other hand, the smaller the robot, the smaller the

motors required will be, along with being more safe and less expensive. We decided

the scale of an adult human is a nice compromise between these competing objectives,

with one more advantage: it's easy to take measurements of adult humans in order

to help nail down further design aspects. This scale helps set reasonable expectations

for walking and running speed and is also visually impressive when demonstrated in

person. While humans don't normally perform the compass gait, it isn't too hard to

imitate it for the purpose of collecting some rough data.

Much of the initial rollout of the specifications that individual components were

built to was based on an initial guess for the weights of all the different robot parts.

This is one area where some design intuition is extremely important. The process

of doing things like picking how powerful the hip actuator should be is iterative, it's

impossible to know exactly what will be expected of the actuator until the entire robot

is designed, and even worse, functioning. Much of the intuition in designing a system

like this comes down to having a feel for how much assemblies should weigh before

detailed design has been done, in essence seeding the design optimization problem.

There are also a lot of constraints that can be exploited if you know what to look

for. For example, we know going into the design that the robot will need to carry

a mini-ITX form factor computer, various standard sensors, and a battery pack to

power at least the computer. These weights can help a lot to set the scale of the

design problem.

2.1.2 Inertial Measurement Unit

Because the robot isn't fixed to the ground it's surprisingly difficult to figure out the

current position of all its links. The angle between the legs is simple to measure, but

figuring out the angle of the legs relative to gravity is more difficult and extremely

important because control of the robot depends on knowing where the robot is and

how the dynamics are moving. If the robot were on a boom this would not be a

concern because the boom would be able to provide a reference to the ground. If the

robot was always in contact with the ground it would be possible to attach a plate to

the toes that could measure the ground angle, but that option falls apart if the robot

has an aerial phase where neither foot is in contact with the ground.

An inertial measurement unit or IMU uses a collection of accelerometers, gyro-

scopes, and often magnetometers to produce orientation estimates without a ground

reference besides gravity and an initial zeroing. A tremendous amount of development

has gone into these systems due to interest from military and commercial aerospace

applications and even a protracted discussion is well beyond the scope of this paper.

This also means that there's a diverse field of off the shelf hardware available for the

job.

There's a wide divide between the top of line MEMS IMUs available and the

the bottom end of the next step up, laser ring based units which offer much better

accuracy and resolution. The smallest laser ring based IMUs are designed for large

aircraft or wheeled ground based vehicles and still weigh several kilograms and cost

tens of thousands of dollars as they're largely targeted at military and aerospace

applications so the choice here is easy, the top of the line MEMS device.

The best MEMS based IMU available at the time is the Microstrain 3DM-GX3

[14], which costs about $1.9k and weighs 18 grams. According to the sensor spec-

ifications it has an accuracy of 2 degrees in dynamic conditions and 0.5 degrees in

static conditions which is strikingly close to what we experienced in actual use. Most

of the inaccuracy is in slow drift which can be pulled out using extra sensing with a

little effort which we ended up needing to do for the balancing experiment. The other

major nonideality we experienced is that the orientation estimate lags quite badly in

fast motions, for example, taking about a second to settle after a 90 degree sensor

rotation at 300 degrees per second. This turned into a nagging issue as we worked on

control for walking.

2.1.3 Hip Sensing

Measuring the angle between the two legs is plainly a place for a shaft encoder, but

there are thousands of encoders available. Absolute, relative, transmissive, reflective,

magnetic? We need to look at the functional requirements: Reliability, resolution,

interface, minimum volume and weight, availability, and cost.

Reliability first, because without being able to trust the most basic of sensors

there really is nothing that can be accomplished. Every other requirement really can

be pushed, we can always carve out a little bit of weight elsewhere, but lost ticks

means unpredictable behavior. That's worse than no behavior. Previous experience

indicates that encoders that rely on user-implemented bearings to constrain the code

wheel are susceptible to lots of problems. Misalignment between the code wheel and

shaft axes will produce wobbling over the reading head resulting in sporadic lost ticks,

axial alignment with distance misalignment will produce lost ticks more consistently.

The worst case is that these misalignments result in the code wheel crashing into the

read head which will permanently damage it. The solution to all of these issues is to

use an encoder with its own integrated shaft and bearing set.

Second, resolution, is relatively easy to deal with. Encoders are usually available

in a wide range of resolutions, but the higher it goes the more fragile and expensive

the encoder gets because the lines that must be sensed are so much smaller. Once

they get small enough even a piece of dust can wreak havoc on reliability. For that

reason it's smart to pick a resolution that isn't excessive compared to its purpose. So

how does the resolution of an encoder relate to the robot it's attached to? It's hard

to tell how much resolution is needed in position to accomplish the control objectives,

but it's pretty easy to figure out what level won't be necessary in a feasible system.

The best IMU available before moving into the laser ring range, coincidently the

one selected for this robot already, has an orientation repeatability of 0.2 degrees[14]

which translates to 1800 counts per revolution. Because the position estimate for

the whole robot is driven off the IMU the encoder will effectively inherit its flaws, so

anything much more than that is wasted, at least in terms of position.

It would be nice if there were enough ticks to go around to provide a fine estimate

of velocity too. The way this is usually done is by looking at the difference in position

over some very small amount of time, either the control loop rate, or faster than that

if it's done on lower level hardware, and then applying a low pass filter to smooth

out the signal. Figuring out this specification requires knowing a little bit about

the velocities the robot will be seeing and how the actual encoder velocity estimate

is produced. Because of the uncertainty of all of these pieces (and the fact that in

the end we won't even actually use the encoder's velocity estimate thanks to better

methods) we'll leave this one at just the mention of it.

When the encoder is maintained as a closed structure it maintains the accuracy

that it passed quality assurance with at the factory. As the encoder shaft is fully

constrained with respect to the reader structure in all degrees of freedom except a

single rotation it's important not to overconstrain it when mounting the encoder to

the robot. This is almost always accomplished with a flexure bracket. When the

encoder is attached to the shaft to measure, usually by a combination of a loose slip

fit and a set screw the whole assembly loses all of its translational degrees of freedom.

The job of the bracket is fix the angular position of the encoder body while allowing

it a small amount of motion in the two other rotational directions. An appropriate

design for the bracket is shown in Figure 2-6.

Figure 2-6: Encoder flexure bracket.

Picking the right encoder interface is often forced by the controller it hooks up

to and the simple digital quadrature interface is by far the most common for relative

encoders. This interface simply pulses at the rising and falling edge of the encoder

lines, leaving counting to the user. An absolute encoder needs to send a unique signal

depending on where the code wheel is, so they often use parallel or serial connections

that are much more complex. They are also often available with analog voltage out, as

though it were a potentiometer, or with a variable duty cycle pulse width modulated

signal. These two options, while easier to interface with, have large issues in most

cases. The analog connection is susceptible to noise, an encoder with 1000 counts

that makes a 5V max signal will have signal all the way down to 5mV, and that's a

very low count encoder. Pulse width modulated signals are limited to the balance of

update rate and clock accuracy. The faster the encoder sends updates the less time

it has for the period of its signaling square wave. A 1000 count encoder updating at

1000hz would require 1 microsecond clock resolution to read. On the plus side, both

of these interfaces only require a single signal wire and a ground, this may be very

appealing if trying to work through a slip ring.

The encoder we ended up using is the AEDA-3300 from Avago. This encoder

offers a unique combination of a large variation of available tick counts, 2400 to

80000 counts per revolution in a very small lightweight, and inexpensive package

with its own integrated bearings. This means that the sensor can be used in almost

any application on a robot which makes it a great part to design around. The only

thing it doesn't offer is its own housing, but that is easy to deal with after the fact.

2.1.4 Terrain Sensing

Figuring out the angles of the robot's links is only half the battle in establishing the

state of the whole system. It's vitally important to know which leg is the stance

leg and what the world around the robot looks like. Depending on which leg is the

stance leg the direction that torque needs to be applied in changes sign because of of

how the chain is connected to the ground. One very important facts we learned early

in experimenting with walking controllers on the robot is that thinking you're on

the wrong stance leg puts many controllers into positive feedback, meaning that the

actuator applies the limiting torque almost instantly, completely ruining any control

that had been going on before things went wrong. We'll see later on that this has

implications for time indexed controllers.

The stance leg detector went through multiple iterations depending on the hard-

ware configuration of the robot. The initial plan was to have the series elastic actuator

toes read the amount of force on them, expecting the robot to always have more weight

on the leg it's standing on and so should provide a reliable indication of the stance

leg. This turned out to be a bad assumption, not because that statement is false,

but because the weight of the robot under static conditions doesn't actually move the

springs in the feet. The stiffness of springs and amount of preload required to make

the toe action not too spongy under dynamic conditions turns out to make the static

readings from the sensors useless. This was overcome by looking at impacts instead

of static conditions. Any impact, even very small, produces distinct readings from

the load cells which provide the indication that the stance leg has changed. Knowing

which leg the robot was previously on makes this enough information to determine

the stance leg throughout time, but this strategy isn't tolerant of errors, an errant

impact detection can make the stance leg decision wrong for a long time. There's a

little bit more information available though, that's an occasional indication of which

leg the robot is on under dynamic conditions in mid step. Even though static con-

ditions aren't enough to exercise the springs the robot often undergoes accelerations

without impacts that are enough to trigger a positive stand leg identification. If this

information is used to affirm the stance leg choice from the impact detector then the

wrong leg is chosen extremely rarely, in fact once this strategy was implemented the

only errors ever made were from hardware failures.

A Hokuyo UTM-30LX scanning laser rangefinder is also used to sense terrain.

It's mounted in plane with the robot's walking plane, making the single scan line

the sensor produces capable of describing all relevant terrain to the robot. While

originally intended for the purpose of picking up rough terrain the sensor ended up

also being extremely useful on flat ground. The small amount of drift the IMU picks

up is simple to eliminate using the range estimates from the laser scanner if most of

the ground is known to be flat which is the case in many of our experiments. The

sensor provides millimeter resolution and repeatability up to 10 meters away and

scans in 0.25 degree steps at 40Hz providing a deluge of scan points which a line can

be fit to to produce a ground estimate. Knowing the laser scanner provides absolute

truth but at a slow rate compared to the IMU, this data combined with the IMU

attitude estimate in the robot's state observer using a slow zeroing filter. The zeroing

filter maintains a state which is the difference between the two raw sensor readings

after being passed through a first order low pass filter with a time constant on the

order of several seconds.

2.2 Mechanical Design

2.2.1 Feet

The robot's feet serve a few purposes. The simple compass gait model assumes that

the swing leg has some way of avoiding hitting the ground as it swings through, so

some way of making the legs shorter during swing is necessary. In addition to that, it

could be helpful if the same mechanism could be used to push off from the ground to

add energy or if the actuators could do some crude ground speed matching in order

to slow down the dynamics of the impact.

Not much of an actuator is required if the only job to accomplish is shortening

the leg during the swing phase. Previous iterations of compass gait robots at the

lab have used linkages with weak but fast motors which allow the link to extend and

retract quickly and lock into place in the extended position, but this strategy doesn't

work when the actuator is used to actually apply a force to the rest of the robot. A

good alternative to the locking linkage is a lead screw which also has a resistance to

backdriving, but doesn't have the same nonlinearities of the four bar linkage, it's able

to operate in the same way at point in its range.

Another design consideration which lends itself to the lead screw is the integration

Figure 2-7: Concept drawings for the robot's toe actuators. Lead screw design on the
left and cable drive on the right.

of a series elastic element. The series elastic actuator has been a popular robot

design element in recent years because it allows force output from actuator that

work primarily in position like lead screws. Of more importance here is ability to

bring the contact dynamics of interaction with the world outside the robot into the

robot's actuator [16]. By making the designed elastic element in the robot joint much

more compliant than the ground contact itself the dynamics of the ground contact are

brought into the actuator itself. This is a huge advantage because it means the known

compliance of the actuator dominates the impact and the hard to model dynamics of

the contact can be neglected. It also means that the collision is much more inelastic,

much like a car's suspension system is designed to have a small mass on the end of

the spring to maintain contact with the road, the toe has a small mass on the end of

the spring which means the weight of the robot forces it to stay in contact with the

ground.

Because the ground contact force can only ever be applied in one direction (the

ground will never pull the foot) only a one-sided series elastic element is required

Figure 2-8: The robot's series elastic foot actuator.

35

Figure 2-9: The cable which connects to the moving carriage in an inkjet printer was
the design inspiration for the similar mechanism in the robot's feet.

which saves a significant amount of room in the mechanism. While the mechanism

worked well it turned out to be a bad decision in hindsight because the hard contact

on one side means that an inelastic collision is experienced every time the foot force

transitions over the spring preload making the dynamics model unnecessarily complex.

The picture of one of the feet in Figure 2-8 shows a few key design elements

worth discussion. The linear potentiometer which measures the spring compression

can be seen parallel to the spring and the ribbon flex cable which connects it to the

controller board is the flat white cable connected to it. Getting that cable right was

one of the major design challenges of the actuator because the carriage which holds

the potentiometer translates a long distance. Either a full cable carriage is required

or the cable must somehow constrain itself be planar and fold over itself reliably.

The design is borrowed from what is commonly used in inkjet printers which need

to solve exactly the same problem with their moving carriage. A flat, stiff ribbon is

used which maintains itself in plane but is flexible out of that plane, allowing it to

fold over itself as the carriage moves.

The offset motor configuration is important for a reason besides packaging of the

actuator, it allows a timing belt to be inserted between the motor output and the lead

screw. This is critical because the specific loading and velocity requirements of the

foot weren't known at the time of construction, the timing belt allowed the gear ratio

be modified very easily to put the actuator's operating range in the right place once

testing established where that was. The same design decision is behind the way the

aluminum platens are clamped onto the guide shafts instead of using a more positive

locking mechanism, it allows different length springs to be added after the fact and

the amount of preload to be easily changed.

Figure 2-10: The two middle feet branching off from the single middle leg.

The final main design point on the feet is why there are four of them. The original

reason here was that it's simpler to build four of the same actuators than two of the

same and one different because it carries twice the loading of the other two. Later

on a more important reason emerged, stabilization of side to side motion. Originally

the two middle feet were joined back to back but early in testing it became apparent

that a larger stance distance was required to keep the robot solidly stable in that

direction. This is why the spreading truss pictured is aluminum rather than the

titanium sheet construction of the rest of the robot, it was produced after all of the

expensive titanium sheet had been used up. With the feet further spaced apart as

Figure 2-11: The original foot configuration where the middle two were bolted back
to back.

pictured that motion is no longer a problem.

2.2.2 Body and Bisection Mechanism

The body itself is probably the simplest part of the robot. Its only job is to hold all

of the robot's support systems together in an organized fashion. The main interesting

aspect to it is the angle bisecting mechanism whose job it is to keep the angle of the

body parallel to a bisector of the inter-leg angle. While it sounds a little complicated,

it's surprisingly easy once it's noted that the body is mounted to the frame of the

outer leg and the driveshaft for the inner leg is easily accessible. These two can be

driven against each other with some drive system and gear ratio to produce any kind

of prescribed angle with relation to the two legs. A 2 : 1 drive ratio between the links

produces the desired angle bisecting behavior.

As shown in 2-12 this is accomplished with a tensioned cable drive. While this

configuation was more difficult to design and assemble than alternatives such as a

chain drive the big advantage is that it's possible to completely eliminate backlash

and produce a very smooth drive system.

While the prescribed angle mechanism is straightforward and reliable there are

serious advantages to being able to actuate the body against the rest of the robot.

The large mass of the robot's support equipment (computer, batteries, etc) makes

it a great body to actuate against to assist in regulating the motion of the legs. In

addition to this, changing the forward or backward bias of the body while largely

keeping it bisecting the inter-leg angle can change the passive dynamics of walking

gaits, producing faster and slower walks without the cost of spending energy on

another full actuator.

2.2.3 Hip Actuation

The robot's hip actuator, which applies torque between the legs, is easily the most

important actuator on the robot as it provides almost all of the regulation during

a walking gait. Ideally this actuator would have great bandwidth, zero backlash,

unlimited speed, be able to provide more torque than we would ever be able to safely

use, and be lightweight. Stepping away from the ideals, we can limit the requirements

on speed to what would be reasonable for the leg swinging during a running gait. As

for the torque requirements, they were put together with the idea that that robot

should be able to easily lift one leg to a right angle, based on the somewhat arbitrary

initial weight budget.

Initial concepts were made around using a direct drive actuator at the hip. Direct

drive actuators provide the ultimate in bandwidth, torque accuracy, zero backlash,

and friction characteristics because they completely forgo gearboxes, using the ele-

ments of an electric motor to move the robot's links directly. This means that the

passive dynamics of the robot are easy to maintain and manipulate with little energy

input. It's possible to mimic the desired passive dynamics with a motor and high

ratio gearbox up to some limiting frequency range, but requires a lot of energy to

keep the motor following what the passive dynamics want to do. Most robotics work

up to this point is focused on completely ignoring the passive dynamics of the system

and imposing desired dynamics with some energy efficiency which is what the large

Figure 2-12: The body's angle bisection mechanism.

40

Figure 2-13: Initial concept for a direct drive hip actuator using a frameless motor
and our own aluminum frame. This allows the motor to be built into the robot in
the most efficient way possible.

gearboxes traditional to robotics excel at. A full discussion of the topic is available

in [1].

The big problem with direct drive actuators is that to get torques in the range

that we require, around 30N - m the actuators get to be unfeasibly large and heavy

because they need a large radius to apply the small electromagnetic forces generated

on. Meeting somewhere in the middle on this design issue is difficult because almost

all gearboxes have some backlash inherent to them, something that we really wanted

to avoid based on past experience with the acrobot. One gearbox that doesn't suffer

from backlash is the Harmonic Drive. Typically Harmonic Drive gearboxes are the

domain of very high gear ratios and the complete antithesis of a passive dynamic

actuator, but with some creativity a very acceptable compromise between direct drive

and weight concerns was found.

The operating principles behind the harmonic drive are very different from tra-

ditional gearboxes, involving flexible metal gears that deform elastically. The fact

that the gears deform elastically into each other means that the input and output

are always tightly meshed together. A full explanation of the operating principles,

along with a very helpful animation is available from the producer [12]. Normally the

Harmonic Drive isn't considered to be backdrivable, the large torques at the output

rw JAV

Wave Generator

Figure 2-14: Explosion of a Harmonic Drive gearbox from the Harmonic Drive oper-

ating principles literature [12].

required to break free even the tiny amount of friction at the input would cause the

very small teeth on the flex spline to skip and permanently damage the drive. In the

case of the lowest gear ratios available however, two things work in favor of backdriv-

ability. First is that with a small ratio the friction at the input is multiplied by a much

smaller amount (as it would be with any gearbox), but more importantly the teeth

inside a low ratio Harmonic Drive are very large. This means that the drive is much

more robust to large torques at the output and suffers from less friction internally.

The lowest ratio drive of 30 : 1 was selected for this application, opening up a large

selection of small, high specific torque motors to use.

Another note of interest about the gearbox used is that it's a fully contained unit

including an output bearing. The output bearing is of the cross roller type and is

tightly loaded in order to minimize play in the output. This is because the drive

is designed for having cantilevered loads applied to it, such as fully supporting a

robot arm, but has the unfortunate effect of vastly increasing the amount of friction

at the drive output. Initial tests with the gearbox were very disappointing because

very large and unpredictable torques were required to break the leg free and very

little of the desired passive dynamics were exhibited. Because the robot's leg joint

is double support thanks to the bearing opposite the gearbox this bearing doesn't

need to be nearly as tight, so the gearbox output bearing was modified by shimming

Figure 2-15: The 30 : 1 ratio Harmonic Drive gearbox used in this robot, showing
the very large driving teeth. Overall diameter of the flex spline (right) is about 2.5
inches.

out the bearing races about 0.001 inches. This small change turned the gearbox

from disappointing to better than we ever expected, exhibiting very small and very

predictable static and viscous friction characteristics.

Figure 2-16: The cross roller bearing inside the robot's Harmonic Drive gearbox.

The motor paired with the gearbox is a ThinGap TG2310 brushless, ironless DC

motor. This choice is just as notable as the gearbox because the ThinGap motor

exhibits the best specific torque characteristics available [21] at moderate speeds and

the ironless core means that the motor doesn't exhibit any of the cogging that normal

brushless DC motors have. The moderate speed point is important because with the

gearbox the motor is no longer moving extremely slowly. These characteristics are

due to a new method of producing the windings from copper sheet rather than wire.

This motor paired with the aforementioned gearbox produces a hip actuator capable

of exerting over 30N-m of force at high speeds very accurately and without any

backlash.

The big disadvantage to the gearbox is that the Haromic Drive introduces a series

compliance with the motor. This is due to the thin structure of the flex spline, the

part of the gearbox that deforms to make the magic of the device. While this isn't

noticeable most of the time, many of control experiments excited the lightly damped

(the motor side of the drive system has very little friction) high frequency dynamics

that this introduced. This can be handled in software and is discussed in Chapter 3.

2.2.4 Frame

The robot's frame, while the most visible part of the robot, is one of the less important

parts of the whole system. It serves mostly to locate all of the important actuators,

sensors, and mechanisms in space in a reliable, lightweight manner. Once it's known

what goes where and how much force will be applied between these pieces the required

structural properties can be determined and fulfilled. Rather than spend a lot of time

going over this process, I'd like to mention just a couple important design choices and

lessons learned.

The frame is a fabricated sheet metal structure. This decision has more to do

with efficiency of resources than performance of the robot. It's much cheaper than

cutting the large three dimensional structures from solid pieces of material and we

have better equipment for working with sheet metal parts in-house. The waterjet

available at the lab allows arbitrarily complex sheet metal parts to be cut with ease

and with little material waste. This means that the robot's frame can be prototyped

quickly from an expensive high performance material very quickly and at little cost.

Besides the waterjet the main enabling resource for this path is access to and skill

to use a tungsten inert gas (TIG) process welder. The TIG process allows very high

quality welds to be made with almost all structural metals, the main barrier to use

being the high manual skill required to perform it.

Following the construction method, the second piece is the material choice. All

of the frame pieces besides the legs are made from 6AL-4V titanium for a couple

unusual reasons. There are three common materials for structures such as this: steel,

aluminum, and titanium. All three materials have similar specific strength (yield

strength divided by density) and specific modulus (modulus of elasticity divided by

density).

Much of the robot's frame construction is governed by the minimum thickness

of material that can be used. Even though a part could be made exceedingly thin

according to the predicted loading it's often unwise to do so because the bumps and

scratches of everyday use could damage it and sheet thinner than about 0.035 inches

thick is difficult to weld by hand reliably. This means a low density material is desired,

leaving aluminum and titanium.

The main problem with using aluminum is that it's difficult to produce good

quality welds with it in a prototyping situation. The high thermal conductivity of

the metal makes it necessary to use very large electric currents to weld it because

it draws heat away from the weld site so effectively. When welding the material the

portion of the workpiece just on the edge of melting is much larger than with steel

or titanium, requiring more manual dexterity to manage the heat input and torch

movement.

Titanium on the other hand has thermal characteristics much closer to steel and is

very simple to weld except for one very big caveat. The material pulls in atmospheric

contaminants very easily at the temperatures involved with welding causing serious

embrittlement problems. Special care must be taken to fully shield much more of

the workpiece in a pure argon atmosphere than with steel or aluminum which still

experience contamination issues, but to a much smaller extent.

The specific titanium alloy used is 6AL-4V, otherwise known as Grade 5. It

has a good balance of stiffness and weldability, but more importantly, it's the most

commonly used alloy. This means that it's widely available on the surplus market at

reasonable prices.

The reason why the legs are carbon fiber as opposed to titanium is because they're

Figure 2-17: The robot's titanium sheet metal hip shortly after being welded. The
aluminum fixture was used to hold the three leg connections parallel.

extremely simple geometry-wise. The only thing the legs do is provide a point to point

structural connection between the feet and the hip meaning that a mass produced

tube can be used in that place without modification. Carbon fiber construction could

have been used for the rest of the robot with performance benefits, but the molding

and layup process is much, much more difficult and expensive than the sheet metal

welding alternative.

Hip Box Analysis

As part of a side project to learn about finite element analysis, the robot hip was

subjected to an in-depth analysis after being built with interesting findings worth

noting here. The cutouts in the hip box structure that contains the hip actuator were

made based on design intuition. The box can be thought of as a simple beam and the

triangular cutouts attempt to remove material from the neutral axis where it isn't

being used effectively. This should produce a structure that has a better stiffness

to weight ratio. In order to find out if this actually happened a simplified model of

the hip box was compared to a a model of the same outside dimensions without the

cutouts. The box without the cutouts has a weight of 383 grams versus 275 grams

Figure 2-18: Initial mockup of the robot without the upper stiffening hoop.

Figure 2-19: The simplified version of the robot's hip box subjected to an end load.

with the cutouts.

The analysis was performed using ADINA, a commercial FEA package, with shell

elements. The analysis assumed small strains but large displacements. The box is

fully fixed at one end and an end load was applied along the top edge of the opposite

end. The loading isn't what is actually seen with the robot, but is representative of

some of the real loadings when looking at how the overall structure behaves. The

primary reason for the simplified loading is to make the simple box model analytically

tractable so that the initial FEA results could be checked against a known answer.

Figure 2.2.4 shows the relevant numerical results of the analysis. The stiffness of

the simple box remains high and linear up to extremely high loads but the modified

box shows much less rigidity initially and the analysis fails at a relatively small load.

In both cases the analysis failed because of catastrophic buckling. The initial takeaway

message is that the material removal was a bad idea, it actually ruined both the

stiffness and strength of the structure for little weight savings.

The exact structural mechanism by which this happened can be seen in the com-

parison between Figures 2-20 and 2-19. The simple beam shows a pronounced bulging

Figure 2-20: The hip box without the triangular cutouts under the same loading.

Minimum Displacement vs Force
--4--Simple Box - -- Cut-Out Box

Force (Newtons)

O.OOE+00

-1.OOE-04

-2.OOE-04

-3.OE-04

-4.OE-04

-5.OOE-04

-6.OOE-04

downward of the top plate which doesn't happen with the complex beam, what's hap-

pening here is the material removal removes the coupling between the box sides and

the top. In the case of the simple box the highly loaded bottom part of the sides is

held in plane by the section that first order beam intuition suggests isn't doing any-

thing useful. When this material is removed the thin sections that should be carrying

the load go into buckling almost immediately.

Chapter 3

System Architecture

Besides the base mechanical and electrical design of the robot there is another world

of software infrastructure that ties all the individual sensors and actuators together.

Previous experimental platforms we had built at the lab used relatively simple soft-

ware systems, a master program that communicated will all the onboard sensors and

actuators, typically connected via a single data acquisition board.

This kind of setup works halfway decently for robots that have a few similar sen-

sors, for example a couple encoders, an IMU, and some motors. All the libraries to

work with the different devices can be linked in and threaded together without too

much complication. This kind of system often uses a software backend like DSpace,

Labview, or Simulink XPC. As a robot grows in complexity the software's respon-

sibilities start to bloat and the system becomes more fragile unless failure cases are

expected and handled. Along with that bloat, it can be expected that most of the

software in a research lab's arsenal will be somewhat buggy and have little in the way

of fault tolerance because it was produced by graduate students. Ideally pieces of the

robot's system should be able to fail without bringing down any other parts, be easily

monitored, and be trivially reusable without knowledge of the underlying code.

It's also often the case that a robot often requires software pieces compatible only

with different programming languages and communication between multiple comput-

ers. For example, a motion capture arena, the robot's onboard computer, and a

controller computer with a user interface. As it's a buggy research platform we'd

also like to log every little thing that happens so that we pin down fault conditions

and replay sensor streams for offline algorithm testing. This list of desires in more

complex robotic systems quickly gets away from the capabilities of monolithic design.

Seeing the need to integrate many different subsystems on our robot, a CAN net-

work with five motor controllers, motion capture arena, inertial measurement unit, a

LIDAR scanner, and possibly multiple other computer systems running control sys-

tems offboard we looked toward the Lightweight Communications and Marshalling

(LCM) system developed at MIT around the DARPA Urban Challenge vehicle. The

premise of the system, in contrast to many other heavyweight robotics software pack-

ages is to form the simplest, most decentralized system possible with little in the way

of predefined structure in the system or in the data. It's a simple set of libraries that

let programs written in many different languages seamlessly communicate with each

other either on a local computer or over a network [9].
This is a big deal to roboticists interested in control of dynamic systems because

we care about different things than normal roboticists. We typically care about send-

ing small packages of data, sets of gains, encoder readings, etc. around very fast

and closing loops with them without too much software infrastructure. Small, fast

programs are desired that keep errors isolated and allow deep logging without inter-

ference with operation. To that end we've found great use in LCM. The standardized,

but lightweight and distributed architecture has allowed us to develop a system that

fits our needs exactly is usable with all of our robots.

The architecture we have designed closely resembles the canonical control loop

with a few key differences which make it compatible with the real world. At the

hardware interfacing level we have a handful of sensors that all connect to the com-

puter via different interfaces. The four toe actuators connect via a single CAN bus,

the hip motor via a separate CAN bus, the IMU directly over USB, and a wide range

of other possible sensors connect over TCP/IP, like the Vicon system. Each of these

sensors, actuators, or sensor networks has its own independent process running at the

operating system level. Programs like the IMU interface simply send status updates

as fast as they get them while others send their data out on a clock.

Figure 3-1: The system control and sensing architecture.

A good example of a clocked interface is the dead man switch, it sends an 'enable'

message at 100hz which all of the actuator programs look for. Because it is connected

to a button it could send messages as fast as it likes and flood the network. Alter-

natively it could send messages only on state switches, but this is dangerous because

messages can be dropped, we would like a signal that's constantly available. The

switch is actually located on the robot's joystick along with several other buttons and

control sticks which do only send their state when they change. The single joystick

interface program provides for all of this functionality.

3.0.5 The Sensor Accumulator

The next piece in the control loop past the sensors would normally be a state estima-

tor, but, this being the real world, things can't be that easy. All of the sensors send

their data at different rates, sometimes at rates higher than we want to run the control

loop at. This problem is especially acute because ideally the state estimator would

be written in Matlab, providing the best prototyping environment and access to the

full model of the robot, but Matlab can't handle the IMU blasting out data at 1kHz.

The solution to this is to put a synchronization program in between them, which

can easily be written in C because it doesn't have to do anything complicated. This

program, called the Sensor Accumulator, subscribes to the LCM channels of every

sensor on the robot, takes in every message they send, and sends out a consolidated

"Robot Measurement" message at a fixed rate. This not only fixes the performance

issue already stated, but eliminates another more subtle issue. The state estimator

can be expected to have a lot of computation to do with the data it gets, enough that

it would need a separate thread to manage all the incoming sensor messages while

it does its real job. A consolidated measurement message on a fixed clock means

that the state estimator can not only operate with a single thread, but can simply

block until it gets the measurement message, making the sensor accumulator a very

effective clock for the whole control loop. The measurement message triggers a state

update and the consequential state estimate message, which then triggers a control

update.

3.0.6 The Command Dispatch

The control update bring into light the Sensor Accumulator's brother, the Command

Dispatch. The command dispatch receives a consolidated actuator command message

and has the job of splitting that up into all the different messages that actually go

out to the hardware interfaces. This functionality is less critical than the Sensor

Accumulator's asynchronous sensor management, but is still important to the ability

to abstract away the hardware for the purpose of simulation, the dual purpose of the

architecture.

3.0.7 Plug and simulate functionality

With the Sensor Accumulator and Command Dispatch both serving as a firewall to

the detailed hardware interfaces a few very cool things are easily accomplished. The

robot is reduced to a system that is commanded and sensed via two well defined

messages. These two messages have can be read by matlab and turned into the

canonical measurement and command vectors, y and u. The state vector that is

traditionally produced from the measurements is also defined as an LCM message

and message to vector mapping to be sent from an independently operating state

estimator process to a controller.

This means that it's possible to replace the hardware robot with either a simulator

that produces perfect state messages or with a simulator that produces measurement

messages according to a sensor model with zero changes to the code of any existing

piece. It also means that it's easy to log the inputs and outputs of the entire system

using preexisting LCM utilities and play back real sensor messages from the robot

to debug state estimator issues, or play back state messages to investigate controller

changes.

The base hardware communication software has the very straightforward job of

forming the bridge between the software that contains all of the intelligence of interest

and the hardware system which means that all of the information really available

about the robot is accessible to the logging utilities. This vastly simplifies debugging

because it means the actual hardware isn't required to perform diagnostics on the

experimental software and the record can be replayed slowed down. For example, it's

simple to take several data records of the robot switching stance legs and then to

design and test an impact detector offline.

xhat x Sensor xhat-- Control -u Simulato Model] Estimator - oM Visualizer

Figure 3-2: Diagram showing the typical use case for the architecture used in the
context of simulation. Graphic courtesy of Andrew Barry.

Figure 3-3: Graphic courtesy of Andrew Barry.

3.0.8 System Decentralization

In the LCM architecture the computer's networking infrastructure forms something

akin to a big 'pool' of messages, in which any program is able to add or read messages

without any other program knowing about it. This means that in addition to the

ability for a logging program to dip into the pool without disturbing anything, it's

also possible to bridge these pools of messages between different computers completely

transparently. For example, if the robot has a scanning laser rangefinder it's possible

to run a computationally intensive data processing program on a different computer,

avoiding any possible problems with bogging down the main hardware interfacing

system that needs to operate on a strict clock. It's also possible to run experimental

control loops on a separate computer with a monitor and full Matlab GUI, or have a

remote control that's plugged into a separate computer and transmits LCM messages

back to the robot.

We found there are also places where this can turn against system performance.

The robot commonly generates megabytes per second of data, which is trivially han-

dled by a wired network connection, but when the robot is run untethered on a

wireless connection the link can get overwhelmed and will slow down the entire mes-

sage passing system. An expanded package of LCM utilities called bot-lcm-tools is

available by contacting the authors of LCM [9] which includes a selective tunneling

program. This allows the message pool to be explicitly segregated between computers

and a TCP tunnel established between them to transmit the messages that actually

need to travel across the link. On this robot those two signals were the remote control

and dead man switch messages from a command computer.

Chapter 4

Control Experiments

While the mechanical design and system architecture are the biggest physical arti-

facts of the project, the controls work that actually turns those pieces into a walking

machine is both the heart and the real target of the project. The design and fabrica-

tion took the first nine months of the project while the investigation of what it takes

to control the system well has taken the second nine months.

Actually going through the process of making what are straightforward tasks in

simulation work on real hardware has taught us a tremendous amount about the

strengths and weaknesses of our methods and has given us a wealth of problems to

focus new theory on. This chapter walks through the control experiments attempted

chronologically.

4.1 Virtual Constraints Experiment

When we finished the actual robot, got all the actuators and sensors working well,

the first thing we wanted to do was get it walking via a well investigated method with

which good results were nearly guaranteed. Walking control based on the theory of

virtual constraints has been applied successfully to several robots, notably RABBIT

[3] and MABEL [5].

The basic idea of the controller is that, having a desired walking trajectory defined,

all of the motions of the system such as foot positions or the angle of the swing leg

are treated as prescribed motions clocked off a key state of the robot which progresses

monotonically through a single period of the gait. In the case of this robot that state

is the angle of the stance leg, the most difficult state to effect change on because of the

large inertia it's tied to. Leaving this state free to evolve on its own frees the control

system from trying to regulate the trajectory in time. While it's possible that the

system can be stopped by a large enough disturbance as with any controller (no level

of cleverness is going to pick it up off the floor) the controller has some guarantees of

convergence to the nominal trajectory if all the prescribed motions are followed well.

Without a full system model it's still possible to put together a walking controller

using this method for the compass gait because we know something important about

the geometry of the robot. As long as the swing leg is in a position to catch the robot

as it's falling forward or backward it's impossible to fall over. There are obviously

limits to this, the robot can speed up until the leg position can't be kept in front

of it, but it provides a good base for keeping the robot standing up. A second

controller, possibly modifying the trajectory the toes follow can regulate the robot's

speed, providing more or less push-off or causing the swing leg to impact the ground

with a shorter or longer step.

A controller based on this architecture was built using mostly trial and error.

While that isn't what I would have done if repeating the process it worked quite

well to quickly produce a working, if fragile, walking controller in a short time frame.

Having the wide variety of tools we've developed in the process of additional control

experiments like a reliable system model and trajectory optimization tools I think we

could produce a more reliable controller of the same architecture much more quickly.

In the iteration of the controller that ended up producing the best trajectories on

the real robot the position of the toes was constrained to be the absolute value of

a linear function of the stance leg angle, producing triangular trajectories where the

swing toe is at minimum extension at zero stance leg angle and the stance toe is at

maximum to facilitate the swing through. The swing leg position is regulated to a

bezier curve, again dependent on the stance leg angle. The curve was initialized as

line with a slope of 2, simply putting the leg where the robot is falling and was then

modified experimentally. As an additional way to add energy half of a period of a

sine wave is added to the start of the swing toe trajectory. This allows a short lived

'nudge' to be exerted to speed up the robot without significantly changing the rest of

the motion.

A couple of perhaps obvious, but still important observations were made during

this experiment. First is that we found it very difficult to regulate the position of the

swing leg with a conventional linear controller, a result also noticed in the development

of MABEL [18]. The swing leg is in essence a pendulum and if we try to maintain

the inter-leg angle as twice the angle of the stance leg it means that the the leg will

be brought to angles far from vertical, very much invalidating any linearization of

the dynamics. As the leg gets further from vertical more torque is required to hold

position which must get taken up by a proportional or integral gain term, gains that

work well at one angle don't work at others. While gain scheduling is a possible

solution here, a much better solution is available: feedback linearization. The simple

addition of a torque counteracting gravity, proportional to the sine of the swing leg

angle eliminated the largest nonlinearity without needing a full model of the system

and vastly improved the tracking of the linear controller.

The second observation applies to the design of the robot for controllability. In

this underactuated walking with a point foot there are two control objectives in

competition: regulation of the stance leg versus regulation of the swing leg. Trying

to balance in place requires more attention to be paid to the stance leg making it

advantageous to have a swing with with a large inertia (there's more to 'push' against

when making corrections to the stance leg). In walking the opposite is often desired;

the stance leg dynamics are left to evolve on their own while the swing leg is quickly

moved to keep the robot upright and regulate energy via changing the step length.

In this kind of walking it's advantageous to have very lightweight toes and legs in

comparison to the rest of the robot. While we were eventually able to accomplish

both control tasks with the robot as designed, the aforementioned changes for each

case would have made the control task significantly easier.

4.2 System Model and Identification

The system model used for control design is simple in concept, but rather complex

mathematically. Diagrammed in Figure 4-1, the robot is treated as three links, each

with a mass and inertia, connected at the hip joint. The body angle 63 is constrained

to bisect the angle between the two legs so it isn't a system state but it is kept to

simplify defining the system Lagrangian. The motor rotor inertia is rolled into the

body link inertia because they both act together and will be indistinguishable via

system identification. The chain is connected to the ground with a second pin joint

representing the ground contact of the point toe, free to rotate but fixed translation-

ally by the weight of the robot on top of it. In practice it is possible for the toe to

slip when the hip applies large torques. This is left out of the model to keep it at the

minimum complexity necessary to accomplish the planning and control objectives.

The Lagrangian is constructed from the positions, velocities, and angular velocities

of the three bodies in the conventional fashion. The derivation, while largely mechani-

cal, is quite long and performed using Mathematica. The Mathematica notebook used

is included in Appendix A. The final equations are formatted in the manipulator equa-

tion form shown in Equation 4.1, where q and u are defined as in Equations 4.2 and

4.3. The constants Ci are the physical quantities related to combinations of masses,

lengths and inertias.

H(q)ij + C(q, q)q + G(q) = Bu (4.1)

_[01 1 9qI 6 (4.2)
02 J

T
u = (4.3)

.03

M3, 13

1c2

M 2 '12

02

ml, 11

Figure 4-1: The three-link system model describing the compass gait plant.

C3 - c5cos(9_) + 2c6cos(0-)

1 + c1 - 2c4 + 4c6cos(0)

0
C =

(cesin(o) - c5sin(_))01

(c5sin(6_) - 2c6sin(
2))02

C6(201 - #2)sin()

lcl

H=
C3 -

C2

c5cos(9-) + 2c6cos ()
(4.4)

(4.5)

[w2(2c6sin(-0+) + C5Sin(0 1)) 1
w 2(2c6sin(-0+) + (c4 - 1)sin(02))

The manipulator equations can be linearized around a fixed point in order to

produce linearized dynamics in the familiar state space form [20], the end product

shown in Equations 4.8 and 4.9.

01

02 (47)

di

02

0 Ii
A = H-1G -H-1C x=xou=uo (4.8)

0B = H-1B x=xo,u=uo (4.9)

4.2.1 Impact Model

We chose to use an inelastic impact model for these experiments for a few reasons.

First, this is what we would like to be happening in reality. A partially elastic collision

would mean that the leg bounces off the ground at impact and that the dynamics

of the event can't be approximated as instantaneous. As mentioned earlier, we took

care to make sure the design of the toes helped to enforce this condition by adding

compliance into the feet. This little bit of of a 'suspension' system between the toe and

the rest of the robot helps accomplish that goal by making the toe very lightweight

compared to the rest of the robot and the spring that holds it against the ground, any

oscillation coming from the impact is forced to happen between the robot and the toe

rather than between the toe and the ground. This is desirable because the robot-toe

system is designed by us, easily modeled, and stays inside a continuous plant mode

(in the ideal case).

Analysis of the real impact data shows that the impacts are indeed almost perfectly

inelastic even with the toes fully retracted which removes the series elastic effect from

the feet. In the fully retracted case with the toes impacting on wood blocks we found

that the impact dynamics happened practically instantaneously, within a single time

step of the control loop. This is shown in Figure 4-2. Important to note here is that

the velocities here are produced using a state observer based on the hybrid model

which makes the impact appear more clean that it would from the true velocity.

Outer Leg Velocity Inner Leg Velocity
0.8 - 1

Simulated
0.6 - Real Robot

0.4 05

0.2 -

0

02\

-0.2 -0.

-0.6 -1

-0.8 -

-1 ' ' ' ' ' -1.5
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

Time (seconds) Time (seconds)

Figure 4-2: Plot of leg velocities resulting from an open loop command played on the
robot versus the simulator.

The actual solution for the impact dynamics of a multi link chain like this robot is a

little bit complicated but thankfully the process is very mechanical. The derivation of

this for an open kinematic chain like this robot and most others of interest in robotics

is available from several sources, one of which is Yanzhen Xie's master's thesis on a

similar bipedal robot but with knees [23]. With the gradients of the collision function

for this robot defined as in equation 4.10 the impact update is as in equation 4.11.

One common confusion when performing the impact update is which model gets

used for mass matrix in the update equation. The answer here is neither of the

stance models. The plant dynamics derivation must be performed in the unpinned

configuration. This is why the collision function gradients has entries for two extra

states, the x and y position of the stance foot. The derivation for the unpinned plant

was performed by Michael Levashov as is included in Appendix A.

-cos(Oi,,) -sin(6i,)

A T g cos(0o0 t) sin(O0 ut) (4.10)
A q 1 0

0 1

- M-AT(AM-AT)--lA4- (4.11)

4.2.2 Actuator Friction

Previous investigation with the Harmonic Drive gearbox has shown a pair of basis

functions including Coulomb and viscous friction fit the friction rather well and those

basis functions are used here. Rather than modeling the Coulomb friction as a true

discontinuity a somewhat arbitrarily sloped but steep sigmoid is substituted to make

the dynamics differentiable.

In practice we ended up being able to identify the friction model quite accurately

which allowed us to feedback linearize the friction away so the nonlinearities don't

need to be accounted for in the rest of the control design performed.

- bvisc(#2 - 01) - bcoul(~ (2oo # -l)(. 2
T-friction = -+SeO - 1 -b -u<2(2-)] (4.12)

bvisc(02- 01)+ bcoul(1+e(-20(92-Ol))

4.2.3 System Identification

While finding a suitable model form is important, it's only half the job required to

produce a suitable system model for control design. For a large mechanical system

such as this it's often adequate to measure the actual system parts or compute their

properties from the software used to design them (Solidworks in this case), but these

individual static measurements are usually only so accurate when it comes to a sys-

tem even as complex as the robot under discussion. We would like to be able to

simulate the whole system accurately with a time horizon of several seconds, the ex-

pected length of a step or recovery maneuver. To this end the technique of system

identification via simulation error optimization is used. Unlike the conventional least

squares system identification which optimizes based on the one step prediction er-

ror of the system accelerations, simulation error based system identification uses the

metric shown in Equation 4.13 where yex are the system outputs from experiment

and ysim are the system outputs from the simulator.

k=N

J= 1 yex[k] - ysim[k] 2 (4.13)
k=O

A set of data is collected on the real robot with some input signal used to excite

it, this same input with the same initial conditions is applied to the robot simulator

and the measurement vectors produced by each at each time step are compared.

The squared difference between simulation and reality is the cost to be minimized

and is a nonlinear optimization problem. The minimization is performed by varying

the inputs to the robot model according to one of the many nonlinear optimization

methods available, in this case Matlab's fminsearch function was used.

When fully expanded it's easily seen that the system's equations of motion take

the form of a set of scaled nonlinear basis functions. Specific combinations of masses,

lengths and inertias are what is really important to the motion of the robot rather

than the individual measured parameters we commonly work with. Terms such as

sines and cosines of state variables form a set of basis functions in the equations that

are multiplied by the system parameters. When doing the more conventional least

squares identification this is made very obvious, but it still needs to be remembered

when working with the simulation error based methods because working with a set

of optimization variables that are overparameterized will cause incorrect output, but

without any warnings as the computer chugs along. Only these combinations that

multiply distinct basis functions can be identified by the dynamic motions of the

robot. These parameters are listed in Table 4.1.

Table 4.1: Physical Constants to Identify

Parameter Definition Calculated SysID
1 Leg length - measured 1.045 1.045
mt Total robot mass - measured 15.2 15.2
ci 11mi 0.0207 0.1007
C2 12 m 2 0.1101 0.1434
C3 13m3 0.0017 0.000596
C4 l1" 0.1382 0.1151

C5 2"m 0.0987 0.1264

C631M 0.0329 0.0026
bv Hip viscous friction none 0.0418
bc Hip coulomb friction none 0.1109

The actual experimental records used to optimize the simulator took a little bit of

creativity to come up with themselves. The ideal place to take data is where the robot

will be during normal walking and balancing tasks, but without a working controller

those areas of state space is unstable. In order to make those areas stable for the

purpose of identification two springs were added as pictured in Figure 4-3 which

make the system passively stable around the balancing fixed point. The two spring

constants were identified to high accuracy in a separate experiment and were added

explicitly to the equations of motion for the simulator. This setup still identifies the

system parameters without the springs because those parts of the equations of motion

are unchanged.

Several other different system identification setups were also used to make sure

that all parts of the dynamics were adequately excited and to check against the results.

In addition to the spring-stabilized tests conducted with each leg as the stance leg

two additional tests were conducted with each leg fixed in the upright position. These

two fixed leg tests each provide data on a different subset of the parameters, while

the spring tests provide data on all the parameters but with them represented in the

experiment with different prominence.

In addition to these tests we also performed a test in which both legs are parallel

and the robot moves in a full pendulum mode with the stabilizing springs. The

Figure 4-3: The robot setup during system identification. Note the springs stabilizing
the system at the equilibrium point.

dynamics in this case are a very simple degenerate form of the full equations of

motion and doesn't even include actuation, the robot is only excited by its initial

conditions. This test represents all of the physical parameters, but in a way in which

they can't be individually identified, and makes a good independent check on all of

the other tests.

In performing the system identification a lot of expertise in the process of produc-

ing good data sets was amassed. Someone performing the process again will likely

re-learn a lot of these points in their own experimentation, but hopefully the right

track will be found a little more quickly.

One of the things we noticed is that initial conditions and zeroing can play an

undesirably large role if the experiment design allows them to. This is especially bad

Figure 4-4: The robot with one of the legs fixed, producing a stable configuration
and focusing on a subset of the system's dynamics.

because there is necessarily some variation in how the system is set up each time.

For example, if the system is initially standing at the upright equilibrium then it can

fall in either direction and the dynamics evolve slowly from that point. It would be

much better to start from some known position in which the speed and direction with

which the motion evolves is less dependent on the initial conditions like zero velocity

at some point far from the origin.

A similar point applies for parts of state space reached during the test. Unstable

equilibria, where the motion can evolve in two different directions depending on some

very small change in state, like being near zero velocity at the upright, can make it

very difficult for the simulation error optimization to converge. Say the optimizer

wants to add a tiny bit of inertia to the stance leg, in this situation at some point. it

will mean the difference between making it over the upright position and not. This

produces cliffs in the cost landscape which, while they reflect the problem that has

been posed to the optimizer, aren't really a part of the identification problem you want

to solve. If only the experiment had been designed to carry more velocity through the

upright position, or avoid it entirely, then the optimizer would be able to smoothly

vary that inertia, allowing the whole set of parameters to slide into place more easily.

We also spent a fair bit of time trying to identify the system when it's closed

loop stable, after we had produced a working balancing controller. While technically

this kind of setup can work, in systems like this robot and many of the robots we

work with it doesn't have a chance. This is because the control action required to

keep the robot upright is extremely strong and the nonidealities of the control loop

corrupt the response a great deal. These nonidealities are things such as delays, the

frequency response of the motor and controller, unmodeled high frequency dynamics,

and the frequency responses and drift characteristics of the sensors used. All of these

items have their own parameters which a more thorough system identification would

be interested in, but really need to be handled in smaller, more focused experiments.

A point that is easy to overlook, but may be more important than any other

point here is that utmost care needs to be taken in how the system identification

data is handled. Because there is a lot of data coming from many different tests

and setups every detail needs to be recorded and confirmed. Several times during

the experiments and various re-fits of the data and re-runs of experiments we lost

confidence in previous data sets because of very simple things, like not being sure that

the sensor zeroing was performed properly, or what the sampling rate was because

it had been changed at some point, or if the sampling rate was maintained properly

throughout a test run. This means complete record keeping whether in the log files

themsevles or in another notebook. Confidence in the working set of data is extremely

important because it means less work will need to be repeated, and there are fewer

incorrect rationalizations to be made when the analysis turns out bad. Being able to

look back at the data set and know for sure that the analysis is wrong instead of the

data being wrong is invaluable.

One last note on the system identification process is that while ideally the basis

functions are capable of representing the physical system perfectly, this is almost never

true thanks to difficult to model pieces like joint friction. As a specific example, when

identifying the friction drive elbow joint of the acrobot we used viscous, coulomb,

and quadratic friction terms to obtain a very good fit in the area of state space we

collected data on. This included mostly medium velocity and long, smooth motions

of the robot. When we wanted to start using the model we identified for balancing

control it turned out to be wildly inaccurate because the near zero velocity regime

for the joint friction looks very different from where we collected data and having

incorrect basis functions, the the model didn't generalize to other velocities well. The

point to be taken here is that data should be collected in exactly the regions of state

space you want the model to be accurate in, close often will not cut it when the basis

functions aren't true to the real dynamics.

4.3 Observer Design

While both positions are measured by the robot's sensors as previously described,

only one of the velocities that make up the full state is measured. The IMU produces

position and velocity of the stance leg, but the swing leg velocity must be deduced

from a position encoder only. Previous experience with similar platforms has shown

that the low pass filtering required on the quantized position signal from the encoder

produces results in two competing nonidealities. Either a delay that causes instability

in the kind of high gain controller required for balancing or the remnants of enough

noise that the controller produces unacceptable vibration must be accepted.

To work around this problem a discrete, full order high-gain observer is used to

produce the velocity measurements. It's possible to use the nonlinear system model

inside the conventional fixed gain observer structure as described in Equations 4.14,

4.15 and 4.16 in order to produce more accurate observations with the tradeoff that

the observer dynamics are harder to analyze. In this case the nonlinear observer can

be much better because it accommodates the nonlinear friction model. Luckily, if the

Pendulum Mode

2

0.2

0.1

0

-0.1

-0.2
0

0.4

02

0

-0.2

0 10

Time (seconds)

Outer Leg Stance, Outer Leg

5 10
Time (seconds)

- Actual
Fit

-

0

0.1

0

-0

0

CL 0

-0

0

-0.

--

1

0.6

-0.

10

Outer Leg Fixed

- --Aclual
- -- Fit -AV~

1 5 10 1
Time (seconds)

Inner Leg Stance, Outer Leg

Time (seconds)

Figure 4-5: The final system identification fits, compared against the training data.

gains and system assume the form described by Khalil shown in Equation 4.17 the

system has good stability properties[15]. The c term in the gain matrix provides a

convenient way to tune the time constant of the observer, in practicality to balance

between disturbance rejection and the nice low-pass/low-delay characteristics of the

observer that kill off sensor noise and unmodeled high frequency dynamics. In practice

the observer estimates both velocities very well and the velocity from the IMU is

actually dropped from the measurement vector which is reflected here and the value

E = 0.2 was used.

01

02
71

(4.14)

.4

.2

0

.2

.4

Actual
----- \Fit

0

4 6
Time (seconds)

Inner Leg Fixed

0.11

8-v
0. 01

0. -0.1

(

Pendulum Mode

2 4 6 0 1
Time (seconds)

Inner Leg Stance, Inner Leg

) 5 10
Time (seconds)

Outer Leg Stance, Inner Leg

5 10 1
Time (seconds)

Inner Leg Position

1 1.5 2 2.5 U U.b 1 tb

Time (seconds) Time (seconds)

Outer Leg Velocity Inner Leg Velocity

Time (seconds) Time (seconds)

Figure 4-6: Time plots of the real robot executing a trajectory planned with the

identified model for model validation. The actual command differs from the nominal

because friction was not included in the model used by the planner. The friction

compensator used was also identified using the same techniques.

k[k + 1] = f (x[k], u[k]), y[k] = Cx[k]

R[k + 1] = i[k] + T(S[k] + L(y[k] -9[k])

(4.15)

(4.16)

Time (seconds)

CommandOuter Leg Position

(4.17)

4.4 Harmonic Drive Compliance

An issue that showed up in every control experiment was the excitation of unmodeled

high frequency dynamics when feedback gains were pushed high enough. This was

most notable in the case of the balancing controller which wasn't able to stabilize the

system until the gains were raised past a specific threshold, well past the point at

which the high frequency dynamics were shaking the robot apart. In contrast to Fig-

ure ??, Figure 4-7 shows the time response of the system with the balancing controller

when steps to combat the unwanted excitation aren't taken. Fourier transforms for

the torque signal in each case are shown in Figures 4-8 and 4-9. Note the large peak

just above 10Hz in the second plot as compared to the DFT of the good response.

'Good' System Response

Figure 4-7: A typical time response
a nonzero initial condition.

3.5 4 4.5 5

of the balancing controller when switched on with

The tricky issue with this situation was that without a couple very specific mea-

0 0.5 1 1.5 2 2.5 3
Time (seconds)

'Bad' System Response

4

2

0

a-2

0 1 2 3 4 5 6
Time (seconds)

Figure 4-8: Time response of the balancing controller without steps taken to attenuate
high frequency dynamics.

Discrete Fourier Transform of 'good' system response

5 10 15 20 25 30 35 40
Frequency (Hz)

Figure 4-9: Discrete
response.

Fourier transform of the torque signal from the good balancing

sures it wasn't feasible to produce a working balancing controller for the robot. A

first order IIR filter on either the input or the output is able to block the unwanted

high frequencies, but brings with it too much delay and prevents successful balancing.

A much more selective filter (a fifth order Chebychev Type I filter was one of many

Discrete Fourier Transform of 'bad' system response

0.6 -

0.4

0.2 -
0

5 10 15 20 25 30 35
Frequency (Hz)

Figure 4-10: Discrete Fourier transform of the torque signal from the balancing re-
sponse with unwanted high frequency dynamics.

tried) is capable of better performance, but wasn't able to solve the issue. The key

piece of the rejection puzzle was the state observer.

The process of 'tuning up' the state observer initially involved selecting an f which

produced smooth, reasonable looking velocities from the position data in a few simple

test cases of moving the robot around by hand. This led to the very small value of

C= 0.02, placing most of the emphasis on the measurements rather than the system

model. This would normally be a good thing because it means unmodeled dynamics

like the robot getting pushed unexpectedly are able to come through. The unwanted

high frequency dynamics are treated the same way by the observer, passing them

through from the sensors to the output.

If the observer has a perfect model of the system the sensor signals would pass

right through unaltered because the internal model and sensors would always be in

perfect agreement. Anything that isn't part of the observer's model gets attenuated

to some extent, in essence in addition to generating the velocity states the observer

is a 'model-pass filter'. It lets though things not based on a specific frequency range

but based on what it expects to see at the inputs. This is exactly what is needed in

this case. Because the model the observer operates on is very accurate it's possible to

turn f all the way up to 0.2, relying heavily on the model and leaving the unwanted

high frequency dynamics that exist in real life, but not in the model, at the door.

The main disadvantages to this approach are that it rejects all disturbances, even

those wanted in the state like a push from an external source, and that it isn't robust

to model changes. Usually the observer's internal model is treated more as a general

guide than the ground truth so they tend to perform well even with inaccurate models,

but that is the not case when used in this manner. Nevertheless, it solved the problem

at hand surprisingly well when conventional filtering methods failed.

Figure 4-11: The bracket the IMU is attached to, possibly flexing as the hip motor
applies large torques to the structure.

A final question to ask about the high frequency dynamics is where they are

coming from. Originally they were thought to be coming from flexing of the IMU

mount which is very close to the motor as shown in Figure 4-10. It's possible that

when large torques are applied the IMU moves in relation to the rest of the structure.

To test this hypothesis a conventional frequency sweep was performed, looking at the

magnitude response between the motor input and the robot's various sensors. The

robot was stabilized upright by hand without holding it tightly and a 5N - m chirp

between 1 and 20Hz was applied over a duration of several minutes. The recorded

signal was high pass filtered at 1Hz in order to eliminate slow movement of the robot

as a whole, the absolute value taken, and finally low pass filtered in order to extract

the shape of the magnitude response from the high frequency sinusoid used to drive

the system. The result shown in Figure 4-11 was somewhat surprising as it didn't

show significant peaking at 10Hz, but did show a significant drop off right around

that point.

When the original hypothesis didn't seem to hold up the search for the true cause

was expanded and the same treatment was performed on the system of torque to

the inter-leg angle encoder. This data is shown in Figure 4-12. In contrast to the

IMU mount this data shows a noticeable peak right at the target frequency. The

current hypothesis as to what is happening here is that the harmonic drive flex spline

is the compliance that is getting excited. This was further confirmed (somewhat

haphazardly) by the addition of mechanical damping to the motor rotor which put

an abrupt end to the oscillations.

<10-s Magnitude Response; Torque to 81

7 -

6

5 -
ay

'E 4"O

3 -

2

0 5 10 15 20 25 30 35 40
Frequency (Hz)

Figure 4-12: Frequency response of the torque to IMU flex system.

Magnitude Response: Torque to 82
X 10.3

aU.U

E 0.6-

0.4 -

0.2 -

0 5 10 15 20 25 30 35 40
Frequency (Hz)

Figure 4-13: Frequency response of the torque to inter-leg angle encoder system.

4.5 TVLQR Stabilized Trajectories

Time Varying LQR control for the stabilization of trajectories has become a staple

solution for nonlinear systems in the lab and was the second walking solution we

attempted to get working on the real robot. TVLQR tackles the problem of control

of a nonlinear system by linearizing the plant around a predefined trajectory. As a test

problem to work on we chose the 'one step rebalance' task, starting from equilibrium

conditions on one leg the robot takes a step and attempts to get into the balancing

controller on the other leg. This was done with the robot raised up on blocks so the

feet don't need to be actuated.

One of the main failings of TVLQR is that it runs on a predefined clock. What

this means is that the controller not only needs to regulate the system to a specific

state, but it's trying to get there in a specific amount of time which is an unnec-

essarily difficult control problem in most cases. This is particularly bad for hybrid

systems because the linearization that TVLQR uses is also indexed with time which

means that it's possible that the controller gains are completely wrong for the sys-

tem's equations of motion. This is particularly bad for this system where the sign

0.05 0.35 15

0 0.31
0.2

-0.05

-0.2015 : 0.15 j

-0.2
0.05

-0.25 0

-0.3 -0.05 -10
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2,5 0 0.5 1 1.5 2 2.5

lime (seconds) Time (seconds) Time (seconds)

Outer Leg Velocity Inner Leg Velocity
00B 1

0.6

0.4 0.5
0.2

-00

W -02 4

-0.6

-1 -t

0 05 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

Time (seconds) Time (seconds)

Figure 4-14: TVLQR stabilized 'one step rebalance' trajectory. The small ripple
along the trajectory is due to the very high controller gains exciting unmodeled high
frequency dynamics in the system. Nominal trajectory is in cyan while the recorded
data is in red.

on the control output changes depending on which stance leg the robot is on, if the

robot doesn't impact the ground exactly when the controller expects it to then it gets

thrown into positive feedback resulting in spectacular failure. We chose to combat

this problem by disabling the controller feedback near the expected impact point in

time which helped to minimize the problem, figure 4-13 shows this well. The trajec-

tories are slightly misaligned in time, enough that the time around where feedback is

disabled is exceeded resulting in a short lived spike in the command signal until the

real system came into line with the model.

Another important topic to discuss on TVLQR as it relates to underactuated

system like this robot is the issue of cost tuning. The state cost matrices Q final cost

Q' provide a lot of knobs to turn in developing controllers for specific application

Outer Leg Position Inner Leg Position Command

allowing the designer to weight how the controller values errors in each of the systems

and couplings between those states but this freedom is a double-edged sword in that

it makes it possible to make bad decisions in addition to good ones. Simple strategies

like weighting all of the states similarly which often works in fully actuated systems

can produce extremely bad controllers for systems like the compass gait as measured

by the size of the controller's basin of attraction. Finding the combination of state

costs and final state costs which produce the best controllers takes a combination of

design intuition and brute force.

Design intuition in the selection of controller costs is important because in the

case of an underactuated system errors in state must be traded off against each other

in order to nail the desired final state. High costs need to be put on states that

are important to the system linearization and long term stability, so the stance leg

position gets the highest cost, followed by the swing leg position second, and the two

leg velocities as a very, very distant third and fourth. This allows the controller make

the correct decision to give up lots of state error in the swing leg in order to regulate

errors in the stance leg which is the ultimate decider in whether you're still standing

up. In addition to this, the final costs need to be very high in relation to the costs

along the trajectory in order to allow the controller to make significant excursions

from the nominal in order to actually get close to the final states, presumably the state

that really matters. The danger here is that the further off the nominal trajectory

the plant goes in reality the more incorrect the linearization is, so some cost along

the trajectory is necessary to keep it reasonably close.

4.6 Simulation LQR-Trees

The LQR-Trees algorithm, originally described by Russ Tedrake in his 2009 paper

[19], provides a way to fill a robot's state space with a sparse tree of trajectories

leading to a goal point or trajectory. This is useful for situations where you wish

to bring a complicated nonlinear system such as the acrobot to an equilibrium, but

perhaps more importantly, bringing a similar system into a limit cycle like walking.

The algorithm combines aspects of rapidly exploring randomized trees with tra-

jectory planning and TVLQR stabilization of the trajectories. This combination of

tools isn't very interesting in itself because it's impossible to know what parts of the

space the existing trajectories already cover, but with tools recently developed it's

possible to figure out how large a volume around a trajectory can be brought to the

goal point by that trajectory. This makes it possible to figure out where new tra-

jectories are needed and to avoid volumes that are already covered but the code for

doing this is highly complex to implement and at its current stage of development,

quite fragile.

An alternative to the formal verification methods was also developed along with

the algorithm which uses simulations instead of mathematical proofs to produce non-

conservative estimates of the basins of attraction though falsification [17]. Reist's

method relies on dividing the tree of trajectories into nodes, each of which represents

a discrete time step in the trajectory it belongs to. These nodes contain their location

in state space, nominal control signals, control gains, a Lyapunov function, and scalar

p which marks the level set of the Lyapunov function which the controller is known

to stabilize.

Instead of finding a value for p when the trajectory is first added to the tree as in

the original LQR-Trees algorithm, p is initialized to be infinite. On each major loop

of the algorithm a random point in the state space is sampled and the tree is asked

if any of the nodes in it claim to be able to bring that point to the goal. For each

node that claims this a TVLQR controller is constructed starting with that point and

running to the goal and then simulated, if the simulation ends within the basin of

attraction of the time invariant controller it is considered successful and a new major

iteration is started. If the simulation fails, the edge of that node's basin is cut down

to where the trajectory is at the point in time where it is active. As more simulations

are performed the basins will converge on a nonconservative estimate of where they

are valid.

The primary addition of this work is the extension to hybrid systems. The situ-

ation as presented with this robot is generating a tree for getting the robot back to

the upright equilibrium on a specific stance leg, so the problem has four continuous

states and one discrete state for which leg the robot is standing on. The robot can

be in either of the two stance leg states and should be able to take multiple steps

if necessary to get back to the goal, meaning that even if it's on the target leg the

robot should be able take some multiple of two steps to get back into the equilibrium

state if it's not feasible to get directly there. There are a couple major concerns with

hybrid systems as they relate to LQR-Trees, the lack of a distance metric for states

between plant modes, and the need to specify a schedule of plant modes for the direct

collocation method of trajectory optimization used [6].

The solution here was brute force but effective. The tree nodes were extended to

also track which plant mode their state belongs to and the distance metric the tree

uses was modified to report states in a different mode as infinitely far away. This

means that the tree would never attempt to build trajectories between plant modes,

but if trajectories already existed which crossed between modes then the tree would

be able to grow to the nodes in the matching mode on either side of the switching

surface. In order to populate the tree with trajectories which cross the switching

surfaces the extend operation makes multiple attempts for each sample point with

different mode schedules.

1. If the sample state is the same as the target state attempt to grow to the nearest

node.

2. If this isn't feasible, attempt to take a step into the other plane mode and back

to the goal state.

1. If the sample state not in the same mode as the target state first look for any

nodes which connect back from the sample mode and try to grow to the closest.

2. If this isn't feasible, attempt to connect directly back to the goal node in the

other mode.

This method allows the tree to be well populated by trajectories that cross the

switching surface without having a distance metric by specifying a known good node

instead. While this results in excess trajectory density around the goal, the effect

should be greatly lessened with a trajectory optimizer capable of optimizing over the

tree end constraint which is formally part of the algorithm but was omitted in this

case for ease of implementation. The results from this extend strategy can be seen in

Figure 4-14 which shows a pair of hybrid trees, one for each possible stance leg. This

is because in reality we don't care which leg the robot ends up standing on once it's

back at equilibrium, but each requires its own tree because the robot is asymmetric.

The major time sink in running the algorithm is checking whether a specific sample

and closest node are feasible to connect. The only way to figure this out is to run the

trajectory optimizer until either a time limit is exceeded or it reports that the problem

is infeasible, but we found it can take up to 30 seconds to produce a trajectory of

reasonable accuracy. Taking 30 seconds to decide a sample is infeasible isn't a winning

strategy when tens of thousands of points need to be processed to map out the edges

of the feasible space. One way around this is recognizing that assessing the feasibility

of a trajectory, a yes or no answer, isn't very dependent on the trajectory produced

being very accurate. To make use of this a two step trajectory optimization strategy

is employed where the first optimization run uses a very small number of knot points,

one about every quarter second, followed by an accurate optimization with a large

number of knot points, seeded with the output of the first. This allows feasability to

be tested in about one second on average and only sinking the time to develop the

full accuracy when it's likely to have a useful result.

Along with this issue, it became very clear that the claims the algorithm makes

about filling the feasible state space need to be heavily qualified in practice. While

randomness in the trajectory optimizer initialization makes this technically true, in

this case the direct collocation method used often failed to produce a trajectory

using known good start and end points several times before eventually finding an

initialization it likes. This means that it may take an extremely long time to produce

something that looks like it covers the space. In the case of Figure 4-14 the algorithm

was run for 48 hours, sampling 306422 points with 45 of them resulting in successful

trajectories. This performance is expected to improve once the final tree constraint

is allowed to move up and down the tree.

The reason why experimental results haven't been produced for the LQR-Trees

experiment yet has to do with finding which node the robot is closest to quickly.

The distance metric is based on evaluating the LQR Cost To Go between the robot's

current state and the tree node which is currently done for every node on the tree

and then sorted. For the tree shown here this takes long enough that the robot is in

a completely different part of the tree. In the past this has been solved by running

the robot's dynamics forward for as long as it's expected to find where the robot is

in the tree and finding the nearest node to that state. The problem is that in this

case the robot usually falls over far enough in that time to be unrecoverable. Work

is currently being done to improve the speed of this operation including simple code

optimization and making use of additional information available about which nodes

are relevant to look at to reduce the number of calculations necessary.

4.7 Transverse Stabilized Walking

Transverse stabilization is a control strategy much like TVLQR, but completely dif-

ferent. Rather than indexing the trajectory in time it's indexed off a phase variable

T, freeing it from time, much like the virtual constraints controller mentioned before

except without a single state of the robot being the driving signal. This control strat-

egy has been developed in large part by Ian Manchester, who showed it working on

the simple compass gait robot mentioned in Section 1 [13] and played a major part in

making it work on this robot. His paper contains a full discussion of the technique.

Because the controller isn't explicitly indexed off time the previously mentioned prob-

lem of the mode switch with TVLQR is no longer an issue.

We would like to demonstrate LQR Trees working with this transverse control with

the real robot as had been shown only in theory. Toward that goal we constructed

the most simple realization of the tree, the periodic orbit with a single recovery

maneuver, a step in from the upright equilibrium. A periodic walking trajectory

was planned using the previously mentioned DIRCOL code along with transversal

2 1 -

0. -

0~ 0

-1 - -0.5-

-2
-1 -0.5 0 0.5 1 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3

Position (rad) Position (rad)

Inner Leg Stance Goal - Inner Leg Inner Leg Stance Goal - Outer Leg
1 2 -

0.5 -3

-2*

- 4 -0.2 0 0.2 0.4 0.6 -1 -05 0 0.5 1
Position (rad) Position (rad)

Figure 4-15: Plots of the hybrid LQR Tree controller designed to bring the robot to
equilibrium on either of the stance legs.

surfaces and a transverse controller to stabilize the trajectory. A second trajectory

from the upright equilibrium on the outer legs to the impact state in the periodic

trajectory was planned similarly, along with matching the transversal surface at the

end of the trajectory with the impact surface just as with the periodic trajectory.

The experiment results are shown here in Figure 4-16 for the first two pieces of the

trajectory, the step in and first periodic phase.

A couple important notes from the trajectory. First, the difference in how the

trajectory follows time should be noted. The time indexed nominal state trajectories

are plotted in cyan while the the T indexed state trajectories which the controller is

regulating to are shown in blue. Second, the controller is able to handle the model

errors seen previously in the TVLQR response plots more naturally. Model errors

that cause the trajectory to take slightly longer or shorter in time don't impact the

Outer Leg Stance Goal - Inner Leg Outer Leg Stance Goal - Outer Leg

Outer Leg

0.5[

Inner Leg

0.5[

-1.51 ' ' ' ' I -1L.
-0.4 -0.2 0 0.2 0.4 0.6 -0.4

Position (rad)
-0.2 0 0.2 0.4

Position (rad)

Figure 4-16: The planed periodic trajectory with the step-in trajectory from equilib-
rium.

Outer Leg Position

nominal, time
real
mode switch
nominal, tau

Inner Leg Position

0 1 2 3 0 1 2 3
Time (seconds)

Outer Leg Velocity

Time (seconds)

Inner Leg Velocity

2 3 0 1 2 3
Time (seconds) Time (seconds)

Command

0 1 2
Time (seconds)

0 1 2 3

Time (seconds)

Figure 4-17: The TVLQR stabilized step-in and first step of the periodic trajectory
as run on the real robot.

-o 4

0.5

0

rest of the trajectory, instead the trajectory slides into place as it's needed by the

actual robot's dynamics. In applications where the state of the system matters while

the specific time that state happens at doesn't, walking instead of catching a ball for

example, the transverse controller presents a significant performance and robustness

advantage.

In process of working with Ian Manchester to bring the transverse controller from

its largely theoretical status to working on arbitrary systems several sore spots were

uncovered, specifically in the optimization of the transversal surfaces along the tra-

jectory which define the space the controller operates in and how the progress of

the robot along the nominal trajectory is tracked by the controller. The last plot

in Figure 4-16 shows the progress of thc T phase variable via the previous method

used to calculate it (blue) and a new method based on an observer first attempted

on this robot (cyan). The actual work that went into bringing the controller into the

condition of working well on this robot will be published along with more complete

results of the transverse stabilized walking experiment shortly following this thesis.

The limited results here are largely due to a lack of time rather than problems with

the method.

88

Chapter 5

Conclusion

This thesis has presented the development of a compass gait walking robot from

concept through experiments, focusing on the interaction between mechanical design

choices and the control of the system with several aims. The first of these is the

application of several new ideas in control including LQR-Trees and transverse sta-

bilization to a full robotic system with all of the nonidealities of sensing and system

modeling issues. While not explicitly the focus of the writing here, the issues experi-

enced have been very helpful in provoking the development of these control strategies

past the theory stage and into a stage of development compatible with widespread im-

plementation. Further, the difficulties exposed have been fed back into the research

process, guiding the development of theory into areas where it's weak such as the

high reliance on an accurate system model and the limitations of performing complex

control strategies in real time.

The second of these aims is to further the development of high performance and

highly dynamic robotics as a field of design. This thesis should provide a good feel for

the important objectives and pitfalls specific to designing highly dynamic mechanical

systems and the way the mechanical design is inseparable from the control strategy.

This is especially the case when heavily model reliant methods are used such as here,

many core design decisions rested on how amenable mechanisms were to modeling

and how they impacted model complexity.

Going forward, I hope that my contributions in the hardware platform and the

software system design that support it continue to produce useful research results for

years to come and provide direction for new designers in their own design of high

performance dynamic robots.

Bibliography

[1] Haruhiko Asada and Kamal Youcef-Toumi. Direct-Drive Robots - Theory and

Practice. The MIT Press, 1987.

[2] Humanoid Robot Research Center. Introduction of khr-3(hubo).

http://hubolab. kaist. ac. kr/KHR-3.php.

[3] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-

De-Wit, and J. W. Grizzle. Rabbit: a testbed for advanced control theory. IEEE

Control Systems Magazine, 23(5):57-79, Oct. 2003.

[4] Boston Dynamics. Bigdog - the most advanced rough-terrain robot on earth.

http://www. bostondynamics. com/robotbigdog. html.

[5] Grizzle, JW, Hurst, J., Morris, B., Park, H.W., Sreenath, and K. Mabel, a

new robotic bipedal walker and runner. In American Control Conference, 2009.

ACC'09., pages 2030-2036. IEEE, 2009.

[6] C. R. Hargraves and S. W. Paris. Direct trajectory optimization using nonlinear

programming and collocation. J Guidance, 10(4):338-342, July-August 1987.

[7] Hobbelen, D., de Boer, T., Wisse, and M. System overview of bipedal robots

flame and tulip: Tailor-made for limit cycle walking. In Intelligent Robots and

Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pages 2486-

2491. IEEE, 2008.

[8] Honda. The honda humanoid robot asimo. http://world.honda.com/ASIMO/.

[9] Albert S. Huang, Edwin Olson, and David C. Moore. Lcm: Lightweight commu-

nications and marshalling. International Conference on Intelligent Robots and

Systems (IR OS), 2010 IEEE/RSJ, pages 4057-4062, October 2010.

[10] Fumiya lida and Russ Tedrake. Minimalistic control of a compass gait robot

in rough terrain. In Proceedings of the IEEE/RAS International Conference on

Robotics and Automation (ICRA). IEEE/RAS, 2009.

[11] Karssen and J.G.D. Design and construction of the Cornell Ranger, a world

record distance walking robot., 2007.

[12] Harmonic Drive LLC. Operating principles. Website. http://www.

harmonicdrive.net/reference/operatingprinciples/.

[13] Ian R. Manchester, Uwe Mettin, Fumiya Iida, and Russ Tedrake. Stable dy-

namic walking over rough terrain: Theory and experiment. In Proceedings of the

International Symposium on Robotics Research (ISRR), 2009.

[14] Microstrain. 3dm-gx3 specifications. Website. http: //www. microstrain. com/

productdatasheets/3DM-GX3-25datasheetversionl.06.pdf.

[15] S. Oh and H.K. Khalil. Nonlinear Output-Feedback Tracking Using High-gain

Observer and Variable Structure Control*, 1. Automatica, 33(10):1845-1856,

1997.

[16] Gill A. Pratt, Matthew M. Williamson, Peter Dillworth, Jerry Pratt, Karsten

Ulland, and Anne Wright. Stiffness isn't everything. In Proceedings of the 4th

Iternational Symposium on Experimental Robotics (ISER), 1995.

[17] Philipp Reist and Russ Tedrake. Simulation-based LQR-trees with input and

state constraints. In Proceedings of the International Conference on Robotics

and Automation (ICRA), 2010.

[18] Sreenath, K., Park, H.W., Poulakakis, I., Grizzle, and JW. A compliant hybrid

zero dynamics controller for stable, efficient and fast bipedal walking on MABEL.

International Journal of Robotics Research, 2010.

[19] Russ Tedrake. LQR-Trees: Feedback motion planning on sparse randomized

trees. In Proceedings of Robotics: Science and Systems (RSS), page 8, 2009.

[20] Russ Tedrake. Underactuated Robotics: Learning, Planning, and Control for Ef-

ficient and Agile Machines: Course Notes for MIT 6.832. Working draft edition,

2010.

[21] ThinGap. Brushless tg2310 blde motor. Website. http: //www. thingap. com/

pdf/tg2310series.pdf.

[22] Martijn Wisse. Essentials of dynamic walking; Analysis and design of two-legged

robots. PhD thesis, Technische Universiteit Delft, 2004.

[23] Xie and Y. Dynamic effects of an upper body on a 2d bipedal robot. Master's

thesis, University of Twente, 2006.

94

Appendix

System Model Derivation

A

n[7 phip = {Sin [-e]] * 1, Cos [-] * 1) (* Position of hip joint*)
SetAttributes[1, Constant]

Out[7 {-1 Sin[e 1] , 1 Cos[1]}

inp1 pml = phip - {Sin[- * (11) , Cos[-e] * (1c)} (* Position of mass 1 *)
SetAttributes[lc 1 , Constant]

out[11 {-1 Sin[e 1] + lc1 Sin[e]' , 1Cos[O 1] -c Cos[e]

inj 3 pm2 = phip + {- Sin[* lc2, Cos[e * lc2} (* Position of mass 2 *)
SetAttributes[lc2, Constant]

Outa1 {-1 Sin[e]] -c2 Sin[e [, 1 Cos[e 1] + 1c2 Cos [0 }

(e 1+ e I
e 3= ; (* Introduce bisection: q3= (ql+q2) /2 *)

2

pm3 = phip + {- Sin[e 4 * lc3, Cos [e *lc3} (* Position of mass 2 *)
SetAttributes[lc3, Constant];

S1+[2 e1+02
t1 1 Sin [0 1lc3 Sin ,1 1 Cos [] + lc3 Cos[2 2

8n-s U = Simplify[ml* g * pm[[2]] + m2 *g * pm2[[2]] +m3 * g * pm3[[2]]]
(* Total Potential Energy of the system *)
SetAttributes[{ ml, m2, m3, g}, Constant]

ut[11 g (-1c ml + 1 (ml + m2 + m3)) Cos[1 + 1c2 m2 Cos [0 4 + 1c3 m3 Cos e0 2]

ino q = {J , e 4;
dq =Dt [q, t]

ut[21 {Dt [], t] , Dt [G 2, t]

h[22 vml = D [pml, {q}] .dq

out22 { (-1 Cos (0] + 1C1 Cos[1]) Dt [0 2, t] , Dt [0 2, t] (-1 Sin[e] + 1c1 Sin[0])

vm2 = D[pm2, {q}].dq

Ouq[231 {-1 Cos [9 1] Dt [6], t] - 1c2 Cos [G 4 Dt [O 2, t] ,-l Dt[6], t] Sin[O 1 c2 Dt [0 2, t] Sin[O

n vm3 = D[pm3, {q}] .dq

1 C9 1+0 2 1 01+02Out[24 -1 Cos [0 - -3 Cos IDt [0] t] --c3 Cos[Dt [0 2, t]
2 2 2 2

1 0 1+02 1 0 1+0 21 c3 Dt [0 2, t) Sin +Dt[0], t] - Sin[O 1 c3 Sin
2 2 ~ ~2 2)

2 | compassgait bisec-equations-simple.nb

1 1 1 1
ST = Simplify[- ml * vm1.vm1 + - m2 *vm2.vm2 + - m3 * vm3.vm3 + - I1 * Dt [e 3 t]2 +

2 2 2 2
1 1
-12 * Dt [e 2 t]2 + -I3 * Dt [e t] (* Total kinetic energy for the system *)
2 2

SetAttributes[{ Il, 12, 131, Constant]

O 4 Il + 13 + 4 12 m1 - 8 1 1c1 ml + 4 1C12 ml + 4 12 m2 + 4 12 m3 +lc32 m3 + 4 1c3 m3 Cos 0 1 2
8 2

0 1- 8 2
Dt[], te]2 +2 (I3 + 1c32 m3 + 2 1 1c3 m3 Cos 2 + 4 1 c2 m2 Cos [1-

Dt [0], t] Dt [0 , t] + (4 12 + 13 + 4 1c22 m2 + lc3 2 m3) Dt [0 2 t] 2

2 L = Simplify [T - U]

1 0 1+0 2SOut(27)=- - 8g (- lclml +1 (ml+m2 +m3)) Cos[0 1 +lc2m2 Cos[O + lc3m3 Cos 0 +
8 2

4 Il + I3 + 4 12 m1 - 8 1 1c1 ml + 4 1C12 ml + 4 12 m2 + 4 12 m3 + 1c32 m3 + 4 1 1c3 m3 Cos

(1- + 2
Dt [0 1 t] 2 + 2 (13 + 1c32 m3 + 2 1 1c3 m3 Cos 12] + 4 1 1c2 m2 Cos [0 1- 0

Dt [0], t] Dt [0 2, t] + (4 12 + 13 + 4 1c22 m2 +lc32 m3) Dt [0 2, t]

(* Fl and F2 are generalized non-conservative forces *)

iniaji= egnMotion = Simplify[Dt[D[L, {dq}], t] -D[L, {q}] - {r, -r} /. D[Dt[q[[1]], t], q[[1]]] -+ 0/.
D[Dt[q[[2]], t], q[[2]]) -+ 0]

u4 - -4 T + 411 +I3+4 12 ml -81lcml+4 lc12 ml +4 12 m2 +4 12 m3 +lc32 m3 +41 1c3 m3 Cos[

0 1-0 2
Dt[0], {t, 2}] + I3+1c32m3+2 1 1c3 m3 Cos 2 +4 1 1c2m2 Cos[0 1- 0 Dt[0 2, {t,2}] -

4 g m1Sin[+ 4 glc1m1Sin[0 14 g1m2 Sin[(1 - 4 glm3 Sin[O 1 -
01-02 01-02

1lc3 m3 Dt[], t] 2 Sin I +2llc3m3Dt[0 I, t] Dt[02, t] Sin] +
2 2

0 1-0 2 0 1+0 2
1 1c3 m3 Dt [0 2, t]2 Sin + 4 1 1c2 m2 Dt [0 2, t]2 Sin[0 1- 0 2 g 1c3 m3 Sin

22

1 (1-02
4 r + I3 + 1c32 m3 + 21 1c3 m3 Cos]+ 4 1 c2 m2 Cos [1- 0 4 Dt[0], {t, 2}]+

4 2
0 1- 0 2

(4 I2 + I3 + 4 1c22 m2 +lc32 m3) Dt[O 2, {t, 2}] - 2 1c3 m3 Dt [0 , t]2 Sin
2

L 1+02 2
4 1 lc2 m2 Dt [0], t]2 Sin[O 1- 0 4 g lc2 m2 Sin[O 2 g lc3 m3 Sin 1

compassgait bisec equations simple.nb | 3

In(461= temp = Normal [Coef f icientArrays [eqnMotion, Dt [dq, t]]] ;
(* temp has now two elements: coefficients of Dt[dq,t] and remainder *)
remain1 = temp[[]];
Mfixed = temp[[2];
MatrixForm[Mfixed]
FullSimplify[eqnMotion-remainl-Mfixed.Dt[dq, t]] (* Should be all 0's *)

Out'481 VatrixForrn=(4 Il+ 3 + 4 12 m1 -8 1 lc1m1+ 4 1i12 m1+ 4 12 m2 + 4 12 m3 + lc3 2 m3 + 4 1 lc3 m3 Cos 0 1e 2] (13 + 1c3

1(13 + 1c3 2 m3 +2 1 lc3 m3 Cos [1 2] +41 1c2 m2 Cos[G 1-0

Ou49 {0, 0}

IN5so temp = Normal [Coef f icientArrays [remainl, dq, "Symmetric" -* True]];
remain2 = temp[[1]];
Ctensor = temp[[3]];
Cfixed = Ctensor.dq;
MatrixForm[Cfixed]
Simplify[remainl - remain2 - Cfixed.dq] (*Should be 0's*)

Out(S4 MatrixForm

-} 11c3 m3 Dt[0], t] Sin[2 + 1 1c3 m3 Dt [0 2, t] Sine 2 1 1c3 m3 Dt [0], t] Sin[002 + Dt [C
4 2 __24_

Dt [0 3, t] (- l1c3 m3 Sin[1 1e 2 - l1c2 m2 Sin [0 1-6 0

Out[5's {0, 0}

n Bfixed = -{Coefficient [remain2, t] }T;
MatrixForm[Bfixed]

Out[5 MatrixForm=

1

SGf ixed = remain2 + Bf ixed. { c};
MatrixForm[Gfixed]

OuS Mr\4ixForm=

- g1ml Sin[O] +glc1m1 Sin[G - glm2 Sin[1]-glm3 Sin[1] glc3m3 Sin[e3-2 1

-g 1c2 m2 Sin[0 -g lc3 m3 Sin[I a9 2

