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Abstract

In this thesis, I perform intensity-based tomographic phase imaging in two ways.
First, I utilize the paraxial transport of intensity equation (TIE) to construct phase
maps of a phase object at multiple projection angles and reconstruct the object 3-
dimensionally using basic tomographic principles. Then, I use an Intensity Diffraction
Tomography (IDT) approach to improve the quality of reconstruction by accounting
for diffraction effects under 1st order Rytov Approximation. I improve both ap-
proaches by applying compressive sensing techniques to estimate missing points in
the undersampled data. Finally, I compare I-DT with single-shot, Gabor-type dig-
ital holography (also integrating use of compressive sensing principles) and discuss
improvements and extensions of the presented implementation of IDT.
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Chapter 1

Introduction

A phase object is any object that delays the path of light wave without changing its

amplitude. This tiny delay in the path length of light passing through the object

is indiscernible to the human eye (as well as standard camera detectors), which can

only sense light intensities. As a result, phase objects apear "invisible" to us. Math-

ematically, such objects are described as having an index of refraction that is entirely

real.

If the difference in index of refraction between a phase object and its surrounding

media is small, then the object is a "weak phase object," and standard detectors

(including the human eye) cannot detect the presence of the object at all. (e.g., one

can clearly see the edges of a clear piece of glass in air, but if that piece of glass is

immersed in mineral oil, then the edges of the glass are no longer observable and the

object is no longer discernable, See Figure 5-1)

Weak phase objects are abound in nature, and examples include jellyfish, lenses

in the eyes of animals, and cellular organelles (immersed in water/cytoplasm). Since

many biologically relevant creatures/objects are phase objects, it would be helpful

to have an imaging system capable of making such objects visible in a quantitative

fashion to detectors.

The contents of this work focus on implementing an imaging system capable 3-

dimensional reconstruction of phase objects from intensity/amplitude measurements

alone. Bringing together concepts from the fields of tomography, phase imaging,



and compressive sensing, this work experimentally demonstrates an imaging system

capable of retrieving the 3-dimensional complex index distribution of phase objects.

Permutations of these topics will be discussed, and experimental results will be shown.

Such a system has the ability to offer greater detail in imaging phase objects and

would significantly benefit the medical imaging community (e.g. live cell imaging in

pathology). Potential extensions of this work, including a real-time imaging system

for flow cytometry is discussed in the concluding section of this work.

1.1 Motivation

Any one who's ever looked through a clear window has seen a phase object (the

window). Phase objects do not alter the intensity of the light passing through it, and

when looking through a clear window, one cannot tell if the window was there or not

to begin with (or how thick the window is). In this sense, the window is "invisible"

to our eyes.

The keen reader will note that we can actually see the presence of a clear pane of

glass (although not its thickness) at its edges, and indeed, if we look at the edges of

a clear pane of glass, we see the strongly scattered light at the edge of the glass/air

interface. In general, if the difference in index of refraction between a phase object

and its surround media (or within itself) is great enough, then we will notice the

scattering of light as it scatters within/at the edges of the object.

If the difference between the index of refraction of an object and its surrounding

media is small, then the object is termed a "weak phase object," and the edges of

the object are no longer visible to the human eye. The presence of an object can

still be determined by defocusing the image of the object upon a detector [1, 2], but

quantifying the index difference between the object and its surrounding media cannot

be done from a single image.

Examples of weak phase objects include: jellyfish in water, cellular organelles (cell

organelles have indices of refraction that are very close to that of their surrounding

media), and packets of heated air (e.g., just above a candle flame). In the case of the



AmplitudePhs

L. Waller

Figure 1-1: Cells are good examples of phase objects. They delay the light pass-
ing through it but do not alter the amplitude in any appreciable amount. Thus,
there is little information in the amplitude/intensity at the detector plane, but much
information in the phase of the field at the detector plane.

third example, if the temperature differences are high enough (or change fast enough),

then the presence of the heating is visible as a disturbance of light from behind the

heated air packet [3].

The frequency of illuminating light plays a role in determining whether or not an

object is a "phase object" and determines the scattering effects that will need to be

considered when imaging the object. For instance, a piece of glass index-matched

to surrounding mineral oil may be a phase object at optical frequencies (primarily

Rayleigh/Mie scattering), but it is not a phase object at X-ray frequencies (Compton

Scattering). At X-ray frequencies, objects scatter so strongly that a different model is

used (instead of weakly scattering models used in optical-regime phase imaging). "[4]

Attenuation" of (straight) rays of X-rays makes the glass an "amplitude object."

This work will focus predominately on optical-regime phase objects. In general,

this regime is the most biologically relevant for applications such as clinical pathology.

1.2 Tomography

Computed Tomography is the process of reconstructing a 2-Dimensional slice of an

object from projections of some parameter that object. Recently, the technique has

gained wide popularity in the fields of medical imaging for devices such as CT and



PET scanners. While CT and PET scanners collect data from photons in the X-ray

regime, this work focuses on tomography of phase objects in the visible light regime.

In the visible regime, tomography is a much more difficult task since scattering

effects cannot be lumped together as "attenuation." Additionally, modern detectors

can only detect the intensity of light, not the phase of the wave. The experiments pre-

sented in this work overcome these two issues by combining techniques of diffraction

tomography (for scattering effects) and transport of intensity imaging (to retrieve

phase from intensity information alone).

Diffraction Tomography is a method to account for weak scattering effects in an

imaged object. While tomographic inversion of collected data (to retrieve the object

function) typically employs use of the Fourier Slice Theorem, a related theorem, the

Fourier Diffraction Projection Theorem (which fills in arcs in Fourier Space instead of

lines) is used when diffracting effects cannot (or should not) be ignored [5, 6]. Effects

of weak diffraction in the optical regime are typically modeled under first order Born

or Rytov approximations.

1.3 Phase Imaging

Various methods exist to image phase objects. Some are qualitative (e.g., phase-

contrast microscopy), and other are quantitative (e.g., phase-unwrapped interfero-

metric microscopy and transport of intensity imaging). Quantification of the phase

of an uniform-index object is equivalent to determining how thick that object is. In

general, quantification of phase gives the "optical thickness" of that object (in this

sense, the measured phase is a projection of sorts), and tomographic reconstruction

can determine the 3-D index of refraction profile of a phase object of interest.

Although intensity-based phase retrieval can be performed for a wide range of il-

luminating frequencies, (including X-rays under special circumstances [7]), this work

focuses on the use of the Transport of Intensity Equation (TIE) for imaging of phase

objects. The TIE measures the intensity imaged at multiple planes in order to recon-

struct the full field (amplitude and phase) at a plane between the measured planes



[8, 9]. The transport of intensity equation is a conservation of flux equation and will

be discussed more in Chapter 3.

1.4 Compressive Sensing

Compressive sensing is a recently-developed framework for the systematic use of spar-

sity priors to improve estimates of solutions to under- determined linear systems. [31]

Elements of compressive sensing theory can be applied to reduce noise in tomographic

reconstructions as well as to reduce the number of measurements required for accu-

rate reconstruction. In this work, compressive sensing is applied to various imaging

geometries (e.g., plane wave/regular, synthetic aperture, etc.) both in simulations

and experimentally to improve the quality of reconstructions.

1.5 Scope of this work

Chapters two through four give an overview to the fields and theories of tomogra-

phy, phase imaging, and compressive sensing. Although each chapter can be read

independent of the others, emphasis is placed on the combination of techniques.

Chapter five presents the experimental setup and results for TIE tomography

and Intensity Diffraction Tomography (IDT). Data collection and Processing steps

are outlined, and graphical results are shown. Potential variations to tomographic

phase imaging are discussed, with the objective of moving towards a real-time 3D

phase imager. Examples include: (1) volume holographic IDT, (2) Dual-camera IDT,

(3) real-time IDT from chromatic aberration, (4) SLM-defocus IDT, and (5) Struc-

tured Illumination IDT. Since registration is an issue for many of these methods, the

chapter will include a brief discussion of various image registration methods (cross-

correlation, maximization of mutual information, minimizing joint entropy, minimiz-

ing least-square error, etc.)

Chapter five concludes with a recapitulation of concepts in the work and discussion

of potential future work and applications (real-time flow cytometer) of intensity-based
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Chapter 2

Tomography

Computed Tomography is a mathematical algorithm for tomographic reconstruction

from projection data (reconstruction of a slice of information based on captured pro-

jections of that information). The projections can be attenuation of x-rays through an

object (as in the case of traditional x-ray CT scanners) or "total phase delay" of a weak

phase object (as in the case of phase tomography of weak objects without accounting

for diffraction). This chapter will discuss the basic concepts of computed tomography.

It will also discuss diffraction tomography and the various assumptions and processes

involved in reconstruction from incomplete Fourier-Space measurements.

2.1 Principles of Tomography

Tomographic reconstruction is a two-step process. First, projections of some feature

of an object are captured at multiple view-angles. Then, the information in these pro-

jections is processed to reconstruct slices of the feature-of-interest (the one captured

from the projections) of the original object.
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Figure 2-1: Steps of tomographic reconstruction

2.1.1 Projections and the Radon Transform

A projection of some property of an object is given by the equation:

P(6) = J p(x, y)ds (2.1)
l(O,x')

where the line integral above denotes the straight line integral of the parameter p

through the object. The location and orientation of the line is demarcated by 0

and x'. The projection of an object is the sum/integral of that object along the red

rays "projected" onto a new axis tilted at a specific angle. Figure 2-2 illustrates a

projection through an "MIT" object at an angle of 0 = 10*. Using trigonometric

properties and the delta function, the mathematical description of a projection can

be rewritten as:

P(0, x') = j j p(x, y)6(x cos 0 + y sin 0 - x')dxdy (2.2)

A 3600 collection of projections about an object through is known as the Radon

vyo ume reconstruction

2,objett
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Figure 2-2: A projection through an "MIT" object

Figure 2-3: Radon Transform of object in Figure 2.2
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Transform of the object (Figure 2-3). Based on the features of the Radon transform,

information/descriptions of the object can be determined. Theoretically, all of the

information of the (non-scattering) object is present within the radon transform, but

the transform itself does not lend itself to easy understanding of what the object

looks like (although a trained eye could pick out corners and edges of an object from

a sinogram fairly easily). Thus, in order to recover the object itself (in a representation

that is intuitive to understand), further computation must be performed.

2.1.2 Reconstruction Considerations & the Inverse Radon

Transform

Central to tomography is the Fourier Slice Theorem, which states that:

F(u, 0) = So=o(u) (2.3)

In the above equation, F(u, 0) denotes the value of the 2D Fourier Transform of

the object along the v = 0 line in the frequency domain, and So=o(u) represents the

1-dimensional Fourier Transform of the projection at 0 = 0.

S(O,u) = j P(0,x')e327x' dx' (2.4)

In other words, the 1D Fourier Transform of the projection is equivalent to a line

in the 2D Fourier Transform of the object (Figure 2-4, Proof in Appendix). The

results obtained above are independent of the orientation between the object and the

coordinate system. Thus, if a projection is acquired at an angle 0 relative to the

original measurement, then the ID Fourier Transform of that projection is equal to a

line in the 2D Fourier Transform of the object which has an angle of 0 to the u-axis.

Formulation of the tomographic reconstruction process in Fourier Space presents

two problems. First, the Fourier Slice Theorem is a continuous theorem and does not

account for the discrete values of the sampled data (as one would need when doing



Figure 2-4: Fourier Slice Theorem

numerical computation). The problem is illustrated in the figure below; when doing

numerical computation, the 2D Fourier Transform values at discrete coordinates are

required for reconstruction, but even with infinite spatial resolution of projections

(very finely sampled), unless an infinite number of angles are measured as well, one

cannot exactly determine the appropriate value of the pixel. that corresponds with

the measured point (which is in polar coordinates).

A second problem with the Fourier Space formulation of tomographic reconstruc-

tion is that minor errors in the frequency domain can lead to significant global errors

in the reconstructed data. This presents problems for processes which fill in empty

regions of Fourier Space using traditional interpolation methods.{4, 6]

The Inverse Radon Transform sidesteps these problems by simply "back-projecting"

each projection through the object and summing the projections to retrieve an esti-

mate of the object. Since the center of the object is "oversampled" relative to other

points in the object (Figure 2-6), appropriate weighting functions need to be applied

to the data. The necessity of weighting higher frequencies more heavily than lower

frequencies when back-projecting is illustrated in Figure 2-6. Typically, a triangular,

Hamming, or Hann window is used to compensate for the "overweighting" of central

frequencies.
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Gridding is necessary for Fourier-Domain reconstruction
coordinates do not align with the cartesian coordinates

Figure 2-6: Fourier Domain coverage by tomography. Low frequencies are oversam-
pled relative to higher frequencies.
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Figure 2-7: Medical CT. Medical CT scanners return images of cross-sections of

patients. The figure on the right is an image of patient abdomen.

When the radon transform cannot be used (as in the case of diffraction tomog-

raphy), the individual problems have to be addressed individually and conventional

solutions to the above problems are discussed later in this chapter.

2.1.3 Applications

Computed Tomographic Reconstruction has been used widely in medical imaging,

predominately for X-ray regime imaging processing such as CT scans (Fig. 2-7) or

PET scans. In medical CT imaging, the real part of the attenuation coefficient is

measured and the "attenuation coefficient" (percent of incident x-rays that reach the

detector) of x-rays passing through human/animal tissue). If a pure phase object

is imaged, lower-energy light can be used (e.g. - visible light) and the total phase

delay of the measured (as in the case of TIE or interferometric methods) to determine

the phase delay introduced by the object. Depending on the object, its surrounding

media, and the frequency of the illuminating light, diffraction effects may need to be

considered during tomographic reconstruction.



2.2 Diffraction Tomography

Diffraction Tomography is a method related to traditional tomography that accounts

for diffracting effects of the object. Under simplifying assumptions, a weakly-scattering

object can be reconstructed to greater accuracy than if diffraction were not accounted

for. Instead of the 1D Fourier Transform of each projection filling in lines in the 2D

Fourier Space of the object, the 1D Fourier Transforms of the "scattered projections"

fill in arcs in the 2D Fourier Space of the Object.

Diffraction tomography (DT) is an image reconstruction technique used to retrieve

the complex refractive index of a weakly scattering object from measured wavefronts.

The technique has found its way into a wide variety of applications, and has proven

particularly useful in the fields of cell biology and pathology to elucidate cellular

and intracellular features without the use of fluorescent contrast agents or proteins.

The organelles of a cell can be considered weakly scattering phase objects since they

have indices of refraction close to that of cellular cytoplasm. In general, samples of

biological interest tend to contain little or no amplitude information but have well-

defined phase structure. The samples diffract/scatter light weakly, and thus, there has

been a strong motivation to develop imaging techniques capable of three-dimensional

phase-amplitude retrieval of weakly scattering phase objects.

2.2.1 Basic Principles

The fundamental theorem of diffraction tomography (Fourier Diffraction Theorem)

posits that a measured field "projection" of an object (the forward-scattering field

along a single plane of measurement) is equivalent to the Fourier Transform of an

object over a semicircular arc in Fourier Space. Under cases of high frequency inputs,

the Fourier Diffraction Theorem reduces to the Fourier Projection Theorem.

To better understand the reasoning behind the Fourier Diffraction Theorem, let

us first begin with the homogeneous Helmholtz Equation.

[V2 + k2 (r)]$( ,t) 0 (2.5)



k = 2TT/X

Figure 2-8: k, and ky components of the waves are constrained to lie within the
k-sphere. The magnitude of the combined vector components is ko = )

Suppressing the time dependence and noting that for homogeneous media (constant

n - constant A, k) yields:

[V2 + ke(i)]@(f) = 0 (2.6)

Solutions to this equation are of the form ejk'f= 0(r) (plane wave), and one can

think of all solutions as a weighted superposition of plane waves. If we consider the

2-D case for simplicity (and without loss of generosity, to borrow an expression from

a labmate of mine), we have:

() = a(ky)ei(k.x+kyy)dky + #(ky)ej(-kx+kvyY)dky (2.7)

The above equation expresses a field that has been decomposed into 1-D plane wave

components. For each ky, there are only two possible kr's (+ or -) that satisfy

kx + k2 - k2 (we have chosen to ignore evanescent waves, since their effects decay

rapidly). Figure 2-8 illustrates this.

If we further constrain our setup to only right-ward propagating waves (+^ direc-



tion), then the previous equation reduces to:

() =I a(k)e(k.x+ky) (2.8)

Arbitrarily setting a measurement plane for the field (somewhere to the right of

the sources) at x = 0, we have:

(07,y) = ea(kky)e(kyy) (2.9)

From the equation above, we see that the field ("detected" at this plane is the 1-D

Fourier transform of the weighting function, a(ky), which denotes the coefficients of

plane waves propagating to the right. In other words:

a(ky) = F{(0,y)} (2.10)

Once a(ky) is determined, one can substitute the value back into equation 2.9 to

determine the field anywhere to the Right-Hand-Side of the x = 0 plane. In summary,

"If one knows the field at one plane (and that all sources are to the left of that plane),

then he/she can get/determine the plane-wave breakdown of that field. Then, he can

propagate each plane wave component to a distance, 1, to the RHS of the measured

plane/line.

Note: 4 piane wave(X =, y) = piane wave(X = 10, y)ejk( 1i- 1 o)

Returning to out homogeneous wave equation, we now make a slight modification

to allow for weak index inhomogeneities.

[V2 + k(f) 2]4(r) = 0 (2.11)

Under scalar assumptions (ignoring polarization effects), k(r-) can be written as:

k(r) = ko -n(f) = ko - [no + ns(f)] (2.12)



where no is the index of refraction of the surrounding media and n, denotes the

perturbance/deviation of the index of refraction within a volume from the baseline

index. Plugging this into the wave equation yields the following steps:

[V2 + kon() 2 ]$(r-) = 0 (2.13)

V2 ( = k - ko + kg)(r) (2.14)

(V 2 + k2) #b(f) - 1)0(r) (2.15)

The first term on the Right-Hand-Side of 2.15 is known as the "scattering potential"

of the object (o(f) k2[n 2(f) - 1]) and after substitution the wave equation for small

inhomogeneities can be written as:

(V2 + k)@(?) = -o(Fr)(?) (2.16)

If the total field @(F) is considered as the sum of the original incident field, o(F) and

the scattered field 0,(), then based on the knowledge that the original incident field

(field present when there are no inhomogeneities) has the solution:

(V2 + k2)4() = 0 (2.17)

We can substitue in this information and arrive at the following wave equation for

just the scattered component of the field:

(V 2 + k)#(f) = -o(r)@(r) (2.18)

This equation has a Green's function solution, g(ri:') = SL ' (zero-order Hankel

function of the first kind; in the 3-D case, solution is just a spherical wave), which

solves:

(V2 + k )g(rf|F') = -(f- F') (2.19)

Representing the forcing function (RHS of equation 1.18) as a superposition of im-



pulses, we have:

o(f)(f) = (2.20)

From the above summation description, the scattered field can now be re-written as

a superposition (convolution):

,.(1)0 g(r'- r')o(r-)@(r')d?' (2.21)

The integral above describes the scattered field, but the inputs (on the right hand

side) are in terms of the total field (0+0,). In order to solve the above equation for the

scattered field, further simplifying assumptions are required. The two most common

of these assumptions are the Born Approximation and the Rytov Approximation.

2.2.2 Born Approximation

Qualitatively, the Born Approximation can be described as "an incident wave upon

the volume scatters just once from each point in that volume, and the strength of

that scattering is determined by scattering potential." Earlier, it was shown that the

total field can be considered the sum of the incident field and a (weaker) scattered

field (b(r) = Oo(r) + 0,(r-)). Plugging this into the last equation of the previous

section yields:

V) J g(r'- r' ')o(f) Oo(' ')d?' + J g(/+ ( - r')o(f)#,.(F')d ' (2.22)

Under a "scatter once' assumption, the scattered field can be considered very small

compared to @0 and the second term in the above equation can be dropped. This

results in the "First Order Born Approximation"

$,( V $B1 (r- g(-- -F)o(r)O( po/)dr-' (2.23)



Under a "scatter twice' assumption, the Po in the above equation can be replaced by

0 + PBO This results in the "Second Order Born Approximation"

OB2 (rJ''z Q('- 0)( [0 0 (r -~ OBo -r']-(.4

Higher-order Born Approximations can be written similarly as:

( o(+) + 1m(r) + #B 2( ) + --- (2.25)

where each higher-order scattered field is the output due to an input field which is

itself the Born field of one order less. The intuition behind this statement is premised

upon iterative application of Huygen's principle. Each point within the scattering

object emits as a point source (weighted by the scattering potential of the object).

The newly created field, which is weaker than the original incident field now causes

the points within the object to emit as point sources yet again (weighted by both the

incident field value and the scattering potential), and the process is repeated in the

"Born Series" until a total field is converged upon.

The First-Order Born Approximation remains valid when the scattered field is

much smaller than then incident field. For a thick homogeneous cylinder or radius a,

the approximation holds if an6 < :, where ns is the change in refractive index with

respect to the surrounding media and A is the wavelength of light used to illuminate.

From the equation, we see that validity of the Born approximation depends on the

total phase delay through the object. (change in the phase between the incident field

and the wave propagating through the object must be less than 7r) [6].

2.2.3 Rytov Approximation

The Rytov approximation considers the total field as a complex phase, 0(f) = e0 =

e(0o0(i)++a()), 4io() - eso(r?). Plugging this into our wave equation (V 24'(?) + k27p(r)

0) yields:

V 24(r) + k2e4' = 0 (2.26)



(2.27)

(2.28)

V [(V#)($(?))] + k2eO - 0

V 2q [7p(r)] + (V4)2 b(f) + k2,0(r-) = 0

(V#) 2 + V2 + k2 = 0 (2.29)

for homogeneous media, and

(V#) 2 + V 20 + k = -) (2.30)

for media with slight index inhomogeneities. Substituting in the complex phase rep-

resentation of the field (#(i) = #o(r) + 0,,(-)) and rearranging the above equation

yields:

(VO) 2 ± 2Vq$0 V4, + (V40 )2 + V2 o + V 24 ± k+ = o() (2.31)

where the F dependency of # in the above equation has been suppressed to simplify

notation. Now, subtracting the homogeneous solution (2.29) gives:

(V#,) 2 + 2Vb 0V4, + V2#s = -o(f) (2.32)

Linearization of Eqtn. 2.32 requires a bit of a diversion. First, let us consider the

following application of the product rule:

V 2(#boq4) = V(Vo - Os + 0oV5)

Distributing and applying the product rule again, we have:

V 2 (0o0 3) = V(VOo -V0.) + V(00o0) = V 2 bo . 4$s + 2V5oVq, + fpoV 2 4,

(2.33)

(2.34)

Now, considering that the input is a plane wave (o = Aeik'), we have the relation-

ship:

V 2 )o = -k( 23

Thus,

(2.35)



Plugging this into 2.34, we have:

2#oVoo -V4$ + 0oV 2 $ - V 2 (0o05) + k 2@od,0 (2.36)

And substituting this back into 2.32 yields:

(V 2 + k2o)0#, = -o [(V#,) 2 + o(f)] (2.37)

The above differential equation has the solution:

odS g(r - i)#o [(Vq$) 2 + o(r)] dfl (2.38)

The First-Order Rytov Approximation asserts that:

(V#s) 2 + o(F) ~ o(r) (2.39)

The first order Rytov Approximation is valid when o(?) > (V#$,) 2 (when the rate of

change of the scattered phase is small). The condition on the rate of change of the

index of refraction can be written as [6]:

(V#,8 )2n > k 2 (2.40)

Using the Rytov Approximation, equation 2.38 reduces to:

0o0,= f g(V- ')00("I)o(r-')d ?' (2.41)

This equation has the same form as the first order Born approximation for the scat-

tered field. The difference is that the quantity on the left no longer corresponds to

the scattered field (as it did under the born approximation), but is instead equal to

the incident field times the complex phase of the scattered field (Oo(i) -4,(r)).



2.2.4 Fourier Diffraction Projection Theorem

The simplest Diffraction Tomography setup involves illumination of the scattered

object with a monochromatic plane wave. Under assumptions of weak scattering,

scalar approximations may be employed, and the wave may be written as @oej(kr-wt),

where w is the frequency of the monochromatic plane wave, and k = w/c is the wave

number. Separating time and spatial dependencies, the incident wave may be written

as: $5 (r, t) = #i(r)e-wt.

As discussed earlier, the scattering object is characterized by a scattering poten-

tial o(f), related to the complex refraction index of the material, n(r), by: o(r) =

k [n2(r) - 1]. If the index of refraction is slowly varying, then the first order Rytov

approximation can be employed. Under this approximation, the total field (incident

plus scattered) at the detector plane can be expressed as:

0(r) ~ fi(r)eO(r) (2.42)

Continuing under the first Rytov approximation, the complex phase function is given

by:

(r) =o(r') e jklrr' )dsr (2.43)
Oi(r) IV r - r

The Fourier Diffraction (FDP) Theorem posits that (proof in appendix) [6, 5, 48, 24]:

I(u,v,z = d) = ( O(usi + vs 2 + (w - k)so)e-(xVY) (2.44)

where

IQ(u, v, z) = (27)2 J j d(x, y, z)e-j(ux+vy)dxdy (2.45)

denotes the 2D Fourier Transform of the scattered phase. It is clear from this equation

that the FT of the measured fields (e.g., retrieved from TIE of interferometry after

phase unwrapping), should correspond to shifted hemispherical shells in Fourier Space

(depending on which approximation is used, a logarithm may need to be first taken

before application of the FDP theorem).



Figure 2-9: Fourier Diffraction Projection Theorem [6]

2.2.5 Reconstruction Issues

While computed tomography is typically performed using the inverse radon transfor-

mation (due to speed and simplicity of the algorithm - computations can be done as

soon as projection data is acquired instead of having to wait for all the data to be

acquired before doing all of the processing), diffraction tomography cannot. Instead,

in order to reconstruct, one must use a back-propagation algorithm or else interpolate

in Fourier Space.

Several methods have been proposed for efficient backpropagation algorithms.

Slaney discusess a filtered backpropagation algorithm in [6] but concludes that inter-

polation in frequency space is a preferable option to this method. Another method

for diffraction tomography reconstruction, proposed in [13], re-projects the "arcs" in

Fourier Space to lines for use in a inverse radon transform algorithm.

For a more generalized reconstruction (including one that allows for different sam-

pling patterns in Fourier Space, as one might see in MRI or a highly undersampled

diffraction tomography system as in the compressive sensing case), one should inter-

polate in Fourier Space and utilize nonlinear processing methods (e.g., compressive

sensing) to achieve high quality reconstructions.

Interpolation in Fourier Space can be grouped into two principle types: grid-

driven and data-driven interpolation. Grid-driven interpolation estimates the value

at each grid point (in the case of tomography, the cartesian coordinates) based on
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Figure 2-10: Grid-driven vs. Data-driven interpolation [14]

the surrounding known coordinates (from the actual measurements). A significant

advantage of grid-driven interpolation is its simplicity (very easy to do e.g., bilinear

interpolation, and it does not require a density estimate as data-driven interpolation

does) when the location of the neighboring data points is known analytically. A

disadvantage of grid-driven interpolation is that it will not, in general, use all of the

acquired data for the reconstruction. (especially at locations where the collected data

density is higher). As a result, it is not as SNR-efficient as data-driven interpolation.

In contrast, data-driven interpolation takes each each data point and add a weighted

contribution from that point to a region of surrounding/neighboring grid points. Con-

ceptually, one can think of this as convolving the collected data with a shift-variant

kernel. This process "resamples" each measured pixel into the surrounding grid-

points. The principal advantage of this method is that all of the collected data is

used, and this method is thus more SNR-efficient than grid-driven approaches. The

tradeoff is that in order to describe an accurate shift-variant kernel, one must de-

cide on a density estimate to correct for the fact that the data may exist in greater

concentration in specific k-space location. In the case of traditional tomography and

diffraction tomography, these density weightings can be determined analytically, so

the principle drawback to data-driven interpolation is actually processing speed. In

general, the larger and more complex the interpolation kernel is, the slower the inter-

polation process will be.



2.2.6 Applications

In the optical regime, diffraction tomography has primarily been used for cell imaging.

Feld et al have successfully imaged cells in 3D with high resolution using diffraction

tomography coupled with phase unwrapping and iterative tomographic reconstruction

techniques [15, 16, 17]. The advantages of the experimental system demonstrated in

this work over interferometric DT systems (as well as other systems for deterministic

phase retrieval) will be discussed later in this work.
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Chapter 3

Phase Imaging & the Transport of

Intensity Equation

Phase Imaging encapsulates the many broad and diverse methods used to image phase

objects. An overview of different phase imaging methods are shown in Figure 3-1.

This section will discuss the first 3 (top row) of these imaging methods briefly and

focus the remainder of the section on intensity-based phase retrieval.

3.1 Interferometric Phase Retrieval

Interferometric phase retrieval methods interfere the scattered wave passing through

the phase object with a plane reference wave in order to generate a pattern of fringes

that can be recorded on a camera. One could consider a Michelson interferometer

used in such a simple manner to image the phase delay introduced by an object

immersed in index-matching fluid.

As seen from figure 3-2, the image on the camera will be a pattern of fringes.

Mathematically, the interference pattern observed is:

I(x, y) = |Are'0 + Asej1 2  (3.1)

where A, is the complex field from the reference arm of the interferometer and A. is



Figure 3-1: Overview of Different Methods for Phase-Retrieval

Figure 3-2: A Michelson Interferometer used to retrieve phase information from a
pure-phase object.
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the complex field form the signal arm (the arm where the phase object to be probed

is. In order to tell from the existence of fringes that the object is tilted/slanted.

By phase-shifting the reference arm at least twice by a small known amount (e.g.,

A/2) and recording the intensities captured after each shift has been made, one can

reconstruct the phase distribution after phase unwrapping to determine the direction

of the tilt/slope of the object.

In order to abstract quantitative information about the phase of the object, these

phase must be "unwrapped" [19, 20]. Phase unwrapping algorithms address the 27r

phase ambiguity (e.g., a sudden jump by 27r in phase delay is not noticed in this

interferometric system) issues as well as the directionality issue discussed earlier.

The phase recorded on the camera ranges from 0 -+ -r, so the total phase delay must

be guessed based on how the phase is changing. Unfortunately, phase unwrapping is

computationally challenging, and "jumps" in phase can lead to drastic errors in the

phase unwrapping reconstruction. An additional drawback of interferometric systems

is that they are typically complex, sensitive to noise/perturbations, and expensive to

build/operate.

In order to capture 3-D phase information, either the object must be rotated or

the imaging system must be rotated about the object. If images are acquired in such

a fashion, then the object can be reconstructed three-dimensionally via principles of

tomographic reconstruction discussed in chapter 2. In some cases, it is neither feasible

to rotate the imaging setup (too bulky) nor the object (too small, as in the case of

cells). In these cases, "partial-angle" tomography can be performed by scanning a

beam through multiple angles (tilted plane wave) to illuminate different perspectives

of the object. The fourier-space via this method is incomplete and resembles the same

coverage one would achieve via synthetic aperture tomography.

3.2 Iterative Phase Retrieval

Iterative Phase Retrieval Methods begin with an initial guess for the phase of the

object. That "guess" phase is forward propagated a distance z with a fresnel propa-



ky

Figure 3-3: Fourier Space coverage of synthetic aperture tomography.

gation kernel [21]. The fresnel kernel, which can be thought of as a paraxial spherical

wave with appropriate boundary conditions is given as:

e pkz (2 + _ 2h(x, y; z) =. exp j+r (3.2)jAz 2z

and thus the output field when the input field g(x, y) is propagated by a distance z

is given by:

gu(x, y; z) = gin(x, y) * h(x, y; z) = F {Gi2 (u, v) * H(u, v; z)} (3.3)

The convolution can be computed as the superposition of weighted values of the

inputs, or processed in the Fourier Domain (using, e.g., the FFT) for computational

speed. The corresponding measured field at the output plane is given as:

I(x, y; z) = Igi. (x, y) * h(x, y; z)| 2 = IF {G;,(u, v) * H(u, v; z)} 12 (3.4)

The output intensity is then compared to the actual intensity output, and and

the constraint is then "back-propagated" to the input plane. Any input constraints

known (e.g., the object is smooth, pure-phase, or has X pre-known features) are then



Object Plane
(Apply object constraints)

Image
(Apply image constraints)

iterate

SI,.l" I= G(.,y)12

Figure 3-4: Iterative phase retrieval "ping-pongs" back and forth, applying constraints
at the object and image planes, until a final answer is converged upon..

applied to this field, and the field is then re-propagated to the output plane. This

process "ping-pongs" back-and-forth until a final solution is converged upon. One

significant drawback of iterative phase retrieval methods is that their result is non-

unique. Wedberg and Stamnes have previously demonstrated optical-regime phase

tomography on a cylindrical object using this approach [65].

3.3 Digital Holography

The holographic inverse source problem seeks to determine the complete complex

index distribution of three- dimensional(3D) objects from measured wavefront infor-

mation. The procedure is difficult because inversion from intensity measurements to

the scattering potential that generated that intensity is generally not a unique pro-

cess. [22] Off-axis holography solves some of these issues but is experimentally more

complex to setup. In-line holography is experimentally simple but requires extra

computation for retrieval of object information.

Conventional methods to solve the holographic inverse source problem from in-

line holograms use a two-step process. First, the hologram is back-propagated to



different transverse planes. Then, a focus metric is applied to the back-propagated

images to remove out-of-focus content. The remaining in-focus features are explained

to be the sources contributing to the original hologram. In general, the accuracy

of these methods depend strongly on the effective use of a priori information in the

filtering step. The theory of in-line digital holographic reconstruction is discussed

more in chapter 4, when compressive sensing techniques are demonstrated as a tool

for solving the holographic inverse problem of particle scattering.

3.4 Transport of Intensity

The general idea of transport of intensity imaging is that although a single intensity

measurement cannot give you field information, if one know the intensity distribution

of light as it propagates over an entire volume, then he can specify the field at all

points within that volume exactly (in the absence of phase vortices).

When the field is paraxial, the TIE specifies the relationship between phase and

the first derivative of intensity with respect to the optical axis, yielding a compact

equation which allows direct recovery of phase information [8, 24]. Proof of the above

equation (TIE) is in the appendix of this work. The TIE is valid for partially coherent

illumination [23], allowing resolution out to the partially coherent diffraction limit and

making it suitable for use in a brightfield microscope [27].

27r 8
- I =-V 1 .-IVa.# (3.5)A Oz

In the above equation, I is the intensity measured in a plane perpendicular to the

axis of propagation, z, and the I subscripts indicate the operator acting in a plane

perpendicular to the optical axis. A is the spectrally-weighted mean wavelength of

illumination [23], and # is the phase.

If the intensity is constant, then the previous equation reduces to a 2D Poisson

Equation [29, 30].
27r 0 V2 = &# (3.6)-A O Vzq



Figure 3-5: Transport of Intensity as conservation of mass

and can be solved using an FFT-based Fast Poisson Solver or via iterative algorithms.

If the intensity is not constant, then a substitution must be made and the Poisson

Equation solved twice to yield the retrieved amplitude and phase [8].

From a fluids perspective, the paraxial Transport of Intensity Equation (TIE) can

be thought to describe flow due to a gradient potential. At its root, the TIE describes

a conservational principle. The perpendicular gradient of the phase of coherent light

represent the flux of light in/outwards in the x & y directions. The divergence of that

quantity denotes the "source or sink" nature which arises due to the intensity change

from plane-to-plane of constant z.

In the simulation below, a pure-phase "MIT" phase object is located at some

distance away from the camera. By focusing at the plane where the object is, the

camera will see nothing. If one defocuses the camera than he can see that an object

is certainly present, but he/she has no idea what that object is. By applying the

Transport of Intensity Equation, one can retrieve the exact value of the phase at the

object plane.



Figure 3-6: Transport of Intensity Simulation
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Figure 3-7: (Left) Original phase at input plane. (Right) Phase retrieved via appli-
cation of TIE. Magnitudes of retrieved phase do not take into account scale factor in
the data.



Chapter 4

Compressive Sensing

In the past decade, compressive sensing has emerged as a powerful tool for the system-

atic utilization of sparsity priors to improve estimates of solutions to underdetermined

linear systems. Compressive sensing is optimal to use when measurements are "ex-

pensive" (costly in resources or time) and computational power (post-processing) is

cheap/readily available.

Arising out of work on image compression, compressive sensing is premised upon

the fact that a wide class of objects can be represented "sparsely" in some basis (e.g.,

wavelets). If the class of objects is known (e.g., you know the images will all be

of blood vasculature), then a specialized dictionary or mixed basis can be trained

and utilized for image reconstruction/denoising based on compressive sensing priors.

In this manner, one can seemingly "break the Shannon-Nyquist" limit to resolution

(because of the a priori knowledge that the object is sparse in a particular basis.

A significant problem with previous approaches utilizing sparsity priors was that

in order to find the "sparsest" solution, a enormous space of the objective function

needed to be searched. Essentially, the methods sought to minimize the LO norm of

inputs that would match the measured data ("sparsest solution possible"), a problem

which Candes, Romberg, and Tao [31] proved to be NP-hard. Their solution to

this problem was to, instead of seeking to minimize the LO norm of the guessed

solution, to seek to minimize the Li norm instead (a problem solvable using linear

programming techniques). This breakthough, along with publicly accessible code for



solving underdetermined linear systems based on compressive sensing principles, has

allowed the field of compressive sensing to flourish. In this chapter, I discuss and

demonstrate the use of compressive sensing techniques for image reconstruction and

for in-line digital holographic reconstruction.

4.1 Theory

Compressive sensing is a relatively recent non-linear sampling theory developed by

Cands, Romberg, Tao, and Donoho [31, 32] . In contrast to the classical sampling

theorems developed by Shannon and Golay in 1949 which posit that in order to

accurately reconstruct a signal [33], the sampling rate must be greater than twice

the spatial bandwidth, compressive sensing theory states that the number of samples

required to accurately reconstruct a signal depends solely on the sparsity of the signal

(i.e., the number of non-zero coefficients). In the context of compressive sensing, an

S-sparse signal is one that has exactly S non-zero coefficients with all remaining

coefficients having values of exactly zero. The number of samples required for exact

reconstruction of a signal is related solely to the sparsity, S, of the signal, regardless

of signal length or spatial bandwidth.

The authors in [31, 32, 34, 35, 36] have demonstrated that a signal, assumed to

be sparse in a particular basis (e.g. space, wavelet, fourier, etc.), and sampled in an

orthogonal domain can be accurately reconstructed with overwhelming probability

using many fewer measurements than suggested by the Shannon-Nyquist sampling

theorem. Recently, Takhar et al. applied compressive sampling principles to create a

single pixel camera [37], and Brady et al. applied compressive sensing to reconstruct

the scattering potential of dandelion seeds from in-line digital holographic measure-

ments [56]. Candes and Plan [?] have shown that compressive sensing algorithms

can be used in the presence of noisy measurements and function to denoise a signal

(e.g., when the sensing matrix is identity matrix) both when the measurements are

incomplete and when the measurement matrix is full-rank.

From basic linear algebra, it is known that at least n equations (or measurements)



Figure 4-1: Compressive Sensing Reconstruction based on knowledge that an object is
sparse in its LO-norm (majority of its coefficients are 0 in domain of interest) "grows"
along the axes instead of minimizing the L2-norm ("growing a circle"). In practice,
solving minimizing the LO-norm is NP-hard, so the Li-norm is minimized instead
("growing a diamond").

are required to reconstruct a signal with n unknowns. If only m equations are given,

where m < n, then the solution can be determined to be restricted to a line, plane,

hyperspace, etc. The usual solution to determining an estimate for the signal of inter-

est is to minimize the L2-norm (the sum of the squares of all of the coefficients; often

associated with the energy of the signal) of the coefficients of the signal estimate. This

is equivalent to growing a circle/hypersphere until it touches the line/plane/hyper-

space of possible solutions. The first point of contact is the solution that minimizes

the L2 norm of the estimate (while matching the observed measurements, which re-

strict data to a line/plane/hyperplane). If the signal is known to be sparse, then the

appropriate solution should not seek to minimize the L2 norm, but instead should

seek an estimate that minimizes the LO norm of the signal. This is equivalent to

searching along the axes for the first point of intersection.

Candes, Romberg, and Tao have proven that seeking a solution that minimizes

the LO norm is an NP-hard problem [31] and thus, infeasible for high-dimensional

datasets. However, they also proved that if the sampling basis and measurements

satisfy a sufficient condition called the restricted isometry property (RIP) [31], then

seeking the estimate with a minimum Li-norm (the sum of the absolute values of the

coefficients) converges to the same result as the estimate that minimizes the LO-norm



with overwhelming probability. Specifically, the proved that if:

M > |S -p2(<D, T) - log(n/J) (4.1)

where m is the number of measurements, S is the number of non-zero coefficients in

the signal, n is the length of the signal, and y is the degree of coherence between

the signal and measurement bases (i.e., the maximum inner product between the two

bases; equal to 1 for orthogonal bases), then the Li-norm retrieves the same result as

the LO-norm with probability P > (1 - 5)

The conclusion found was significant because Li-minimization problems can be

solved rapidly with linear programming methods. Variations of the Li-minimization

problem (such as Total Variation (TV) minimization, which minimizes the Li-norm

of the gradient of an image) can be cast as Second-Order Cone Problems and solved

in related manners.

Various open-source Li and TV-minimization solvers are readily available, and

we adapt the compressive sensing solvers NESTA (developed by Becker, Bobin, and

Cands) [39] and TwIST (developed by Bioucas-Dias and Figueiredo) [40] towards the

applications of image restoration and compressive holography demonstrated later in

this chapter.

4.2 Applications

4.2.1 Incomplete Fourier Measurements

A common orthogonal domain to take measurements in (or to have measurements

analyzed in) is the Fourier Domain. Many interesting discrete-time signals are sparse

in the time domain, and many others are sparse in frequency (e.g., people's voices or

the sounds that a machine can make are often limited in frequencies that they can

emit). In the optical regime, measurements taken at the pupil plane of a 4f system

are the Fourier Transform of the input. If a signal is sparse in the time domain, then

it is optimal to take measurements in the Fourier Domain (or any other orthogonal
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Figure 4-2: Compressive reconstruction of sparse signal from limited number of ran-
dom Fourier-Domain measurements.

domain). If a signal is sparse in the frequency domain, then it is optimal to take

measurements in the Time/Space Domain (or any other orthogonal domain). From

a limited subset of measurements in an orthogonal domain, sparse signals can be

reconstructed exactly using principles of compressive sensing.

Figure 4-2 demonstrates compressive sensing results when the samples in the or-

thogonal domain are selected randomly. As mentioned earlier, the authors in 135]
proved that random measurements are optimal for gleaning maximal information

from the orthogonal domain from as few measurements as possible.

In some cases, one cannot take random measurements in an orthogonal domain.

For instance, optical systems are limited by aperture size and their output are low-

pass filtered (only lower spatial frequencies that pass through the aperture). This

means that the "sampled" frequencies all lie within a low-frequency region (they are

not randomly selected). Figure 4-3 illustrates that even though this is the case, it

may still be possible to reconstruct a result from the low-pass-filtered/undersampled

data using CS principles that is accurate when compared to the original signal. This

is, in a sense, a form of "super-resolution" achieved computationally by applying the

-
.

d
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Figure 4-3: Compressive reconstruction of sparse signal from low-frequency Fourier-
Domain measurements

extra knowledge that the object to image is sparse (or sparse in its gradient or in some

other domain, as discussed later) towards the reconstruction of the original signal.

Compressive reconstruction methods work not always work if the samples are not

randomly chosen. For instance, one can imagine if the input were a single delta

function and the measurements were taken periodically. It would be possible for the

measurements to hit all zeros, thus providing no information to the user at all. The

"super-resolution" discussed earlier is also problematic when the signal is not locally

sparse (if the signal is composed of thin rectangles instead of just spaced-out spikes).

Taking measurements randomly in an orthogonal basis avoids these issues.

The results in Figure 4-2 and 4-3 hold even in the presence of noise (although they

require more measurements for accuracy), which is better than simple deconvolution

could do. A general rule of thumb is that one must have approximately "4 - S"

measurements (in an orthogonal domain to the domain that the signal is sparse in)

in order to reconstruct an S-sparse signal exactly.



Image: NOT sparse Gradient of Image: sparse

Figure 4-4: Even when the object itself is not sparse, compressive sensing methods
may still work by minimizing some other norm such as the Total Variation Norm (LI of
the gradient of the image). An overwhelming majority of objects man-made/nature-
made are "smooth" (sparse in wavelet domain and TV norm) and will not correlate
with noise.

4.2.2 Compressive Tomography

The Fourier-domain demonstrations of compressive sensing shown in the previous

subsection easily extend to 2-Dimensional signals, and the extension invites the logical

next-step of using compressive sensing to improve tomographic inversion, which by

nature is an incomplete sampling problem (discussed in chapter 2).

Since most real-world object aren't sparse (i.e., they're not composed of dots), a

different domain is used for compressive tomography techniques. In general, instead

of minimizing the Li-norm of the object in the space domain, either (1) the Li-norm

in the wavelet domain (or a trained dictionary domain) or (2) the TV-norm (Li-

norm of the gradient of the image) in the space domain is minimized. The TV-norm

is assumed to be sparse since the features of an image are assumed to be "mostly

smooth" across the image, without many abrupt large changes.
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Figure 4-5: Compressive Sensing can be used for exact tomographic reconstruction
from a limited number of angles of projection

4.2.3 Image Restoration

In the above sections, we considered that the signal was sparse in space (or total

variation) and that the samples were acquired in a domain orthogonal to the space

domain. This sequence need not be in this order, and it is possible to consider

measurements occurring as samples of the space domain and the compressive sensing

solver solving for a solution in an orthogonal domain (e.g., wavelet) which is sparsest

(or has the lowest Li norm possible). This is the case for compressive-sensing based

image restoration techniques. The "incomplete measurements" are the subset of pixels

of the image acquired, and the "signal" is the wavelet-domain representation of the

image.

Applying compressive reconstruction principles in reverse allows one to accurately

reconstruct images from a vastly smaller-than-100-percent subset of actually measured

pixels. The ratio of pixels required for perfect reconstruction can be lower than 10

percent for CS techniques based on trained dictionaries. The compressive results

shown in the figure have much lower L2 error than if the gaps in the images were

simply reconstructed using bilinear interpolation (comparison shown in appendix).



Figure 4-6: Compressive Sensing can be used to reconstruct an image based on a tiny
subset of pixels. The reconstruction adds the a priori information that the image is
smooth. Reconstruction quality can be improved if the image is known/assumed to
be sparse in a particular tailored dictionary domain.

59



4.3 Compressive Digital Holography

4.3.1 Theory

In-line Digital Holography provides an experimentally simple setup for imaging in 3-

dimensions and has been used widely for underwater marine biological research (e.g.,

imaging of plankton movement), particle image velocimetry (PIV), and biological

microscopy [41, 42, 43]. A typical Gabor-type (in-line) digital hologram captures

single-shot images recording the interference pattern between an on-axis reference

plane wave and the scattered field from a collection of objects. After the image is

captured, numerical methods are used to reconstruct the scattering potential of the

object(s) of interest (i.e., those that generated the scattered fields which interfere with

the reference wave to form the interference pattern captured on camera) [44, 45]. In-

line digital holography suffers from the twin-image problem [46], and resolution is

limited by the detector size. As a result, the quality of reconstructions obtained from

on-axis digital holography is usually quite poor.

The simplest possible digital holographic setup involves illumination of a scattering

object (or set of objects) with a spatially coherent, monochromatic plane wave. A

Gabor (in-line) hologram is formed by the interference pattern of the original wave,

E,, with the wavefront generated by the illuminated objects with scattering potential

7?(x', y', z'). Since cameras can only record intensity at optical frequencies, a 2-D

detector array records the irradiance incident on the camera:

I(x, y) - |Er + E, 2 = IE2 ± E,(x, y)|2 + (E*)(E(x, y) + (Er) (E* (x, y) (4.2)

Under the first order Born approximation (valid for small, weakly scattering ob-

jects), each point within the scattering object is assumed to scatter just once, and

the scattered field, E, , is given by:

E.(x, y) = ff dx'dy'dz'rj(x', y', z')h(x - x', y - y', z - z') (4.3)



where h(x, y, z) is the Fresnel kernel, which designates the free-space propagation of

a point- source [18].

For a planar reference wave, the term |E, 2 is constant, and thus it can be removed

by subtracting the DC term from the Fourier Transform of the measured intensity.

Additionally, E, can be assumed to be equal to 1 without loss of generality. Then,

the above equation for irradiance reduces to:

I(x, y) = 2Re {E,(x, y)} + E,(x, y)| 2  (4.4)

Folding the nonlinearity cause by the |E,(x, y) 12 term into a term for model error,

e(x, y) results in the equation:

I(x, y) = 2Re {E,(x, y)} + e(x, y) (4.5)

The equation above represents a linear mapping between the scattered field and mea-

surement intensity.

Brady et al. showed that by combining the first Born approximation with a multi-

slice approximation, the discretized field at the detector plane (i.e. upon each pixel

of the camera) is given by [56]:

Eni7n = Z12 mim 2 ,1 exp jklAz k2 - mA- m2A} (4.6)

where i denotes the Fourier transform of 'r, F- 1 denotes the discrete inverse Fourier

Transform operator, Ak denotes the lateral sample spacing (pixel size/lateral resolu-

tion), and A2 denotes he sample pitch in the z-axis (depth resolution). By letting:

9 = G2DQBf (4.7)

where B is a block-diagonal matrix of 2D DFT's of size Nx by Ny and Q = [P1P 2... PNz]

representing slice-by-slice propagation. ([Pi]mi,m 2 - ejkl zel A;,2 -m A-mZA2)



As discussed earlier, the squared field term can be folded into the error term, and

doing so allows an in-line holographic intensity measurement (under First-order Born

and multi-slice approximations) to be algebraically written as:

g = 2Re(g) = 2Re{G 2DQBD} + e (4.8)

The above equation expresses a linear relationship between the scattering potential,

f, and the observed intensity, g. The error term, e, is comprised of components due to

ignoring the nonlinear term of the squared field and components due to system noise.

The nonlinear error is traditionally removed using off-axis holography, but Brady et

al. showed that the denoising properties of compressive sensing can be used to localize

the error generated by the nonlinear term to the reconstruction slices closest to the

detector plane or to remove the error altogether [56]. Ignoring noise for now, and

casting the above equation as Ax = b, the optimization problem can be defined as

follows:

Minimize |X|lobjective function subject to ||b - Ax||11 < E (4.9)

The goal is to find the scattering potential, f, with the best objective function fit

(e.g., lowest Li-norm or TV-norm) that matches the observed data (i.e. the recorded

hologram, g) to within a maximum level of error tolerance, c. Several open-source

compressive-sensing solvers have been written to solve problems framed in such a

manner, and we adapt the solvers "NESTA" and "TwIST" [39, 40] to solve the

optimization problem.

4.3.2 Experiment

An in-line digital holographic imaging system was set up to image particles moving

in water. A spatially filtered and collimated reference beam from a 633nm HeNe

laser was used to illuminate a fish-talk filled with distilled water and seeded with

microparticles. In order to satisfy conditions of compressive sensing and the first-

order Born Approximation, the particles were seeded at a sufficiently sparse density.



Figure 4-7: In-line digital holography setup

Images were captured on a 2592-by-1944 pixel Aptina MT9PO31-12STM CMOS

camera. After capture, the images were downsized (cropped) to 200 x 200 pixels for

ease of computation and zero-padded on all four sides to a size of 512 x 512 pixels

in order to avoid artifacts caused by circular convolution from use of the Discrete

FT/FFT. Data processing was performed on a laptop with a 2.66GHz Intel Core i7

processor with 8GB of RAM. The codes used to process the data were written in

Matlab, and the processing took about an hour.

The compressive sensing method was able to reconstruct three-dimensional scat-

tering potentials and determine the 3-dimensional locations of the particles (shown

below). By repeatedly running the algorithm for multiple frames of image capture,

a video tracking the 3-dimensional movement of each particle was generated (not

shown).

As discussed by the authors in [56], because the diffraction patterns generated

by the squared field term dont correlate well with all of the object planes, the noise

created by ignoring this term in the linearizing formulation used in this paper tends

to remain localized within the first few planes of reconstruction. By segmenting out

these planes of noise (which can be safely assumed to be devoid of scattering potential

as per the setup geometry) we may overcome errors introduced into reconstruction

from in-line digital holography due to the nonlinear squared scattered field term.

To remove the effects of the twin image on the reconstruction, we numerically
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Figure 4-8: Digital Hologram of bubbles images with the setup in the preceding figure



confine our estimate domain to just one side of the measurement plane. The "op-

timization problem" we define for our compressive holography experiment solves for

the 3D scattering potential of the object rather than a field at any particular position

(which require calculation of a superposition of all of the object planes, each of which

is at a different distance away), and by picking an object/ scattering potential, 'q,

on one side of the measurement plane, we know that the virtual object, r/*, will be

located on the other side of the measurement plane. Thus, by confining the recon-

struction domain to just one side of the captured hologram, we can readily resolve

the twin image problem in the reconstruction. A similar line of logic was successfully

applied by Latychevskaia and Fink to remove the twin image problem in 2D digital

holographic reconstruction [47].

Classically, the transverse resolution of an imaging system is given by: Ax

Az/D, where z is the distance from the object, and D is the aperture size. Axial

resolution is given by Az ~ A(2z) 2/D 2. However, by using non-linear compressive

sensing theory, we are able to overcome these resolution limits.



Figure 4-9: Simulated Hologram with 10 particles at different z depths
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Figure 4-10: Compressive Reconstruction of several planes of the volume from simu-
lated hologram. Bubbles show localization to the correct plane.

Figure 4-11: Volume-rendered Compressive Reconstruction of entire volume of
recorded hologram from Figure 4-8
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Chapter 5

Intensity-Based Phase Tomography

This section presents the principal contribution of this thesis. A bulk phase object is

imaged tomographically, and the 3-dimensional profile of that object is reconstructed

using principles of intensity transport and diffraction tomographic reconstruction.

Results from direct inversion without application of transport intensity, and direct

inverse using an inverse radon transformation are also shown as well. In the case of the

former (reconstruction without application of TIE), results were very poor. In the case

of the latter (reconstruction without consideration of diffraction), results match actual

physical characteristics of the diamond fairly well. The reconstruction fidelity can be

improved by taking diffraction effects into consideration, and the ability to improve

results even further from use of compressive sensing is discussed and simulated.

5.1 Background/Motivation

Phase contrast microscopy is the traditional method for qualitative imaging of weak

phase objects (those with indices of refraction close to that of their surrounding me-

dia). If quantitative results are desired, as is often true in the case of cell imaging

within the fields of pathology and cell biology, then interferometric systems coupled

with the use of phase unwrapping algorithms are usually employed to quantify the

amplitude and phase of the field observed at a detector plane. If the complete three-

dimensional (3D) structure of the phase object is desired, then the data is acquired to-



mographically and inversion algorithms are used to reconstruct the three-dimensional

complex index distribution of the object.

Unfortunately, interferometric measurement systems are often bulky, expensive,

and sensitive to small perturbations. Furthermore, phase unwrapping requires sophis-

ticated post-processing that is generally unstable with noise, introducing reconstruc-

tion artifacts. Intensity-based phase retrieval techniques, in which both the amplitude

and phase of a field are retrieved from defocused intensity measurements, offer an ex-

perimentally simple solution to determining phase quantitatively without the use of

phase unwrapping algorithms.

Recently, it has been shown that transport of intensity can be used to image op-

tical fibers (cylindrically symmetric) immersed in index-matching fluid [26]. In this

chapter, we apply transport of intensity principles to tomographically image and re-

construct an asymmetric bulk phase object (12 mm thick) in 3D. My imaging system,

which is capable of retrieving the complex index distribution of a phase object with-

out use of interferometry, has wide applicability in fields such as underwater imaging,

cell biology, pathology, and even x-ray imaging (e.g., for security or medicine). An

added benefit is that our system is experimentally simple to set up and can be easily

adapted to fit imaging geometries of conventional brightfield microscopy with minimal

modifications.

Intensity-based methods of phase retrieval are based upon the principle of con-

servation of energy of a propagating wavefield. The transport of Intensity Equation,

upon which TIE tomography and Intensity Diffraction Tomography (IDT) are based,

is discussed in Chapter 4. If multiple projection angles about an object are captured,

then the objects complex index distribution can reconstructed by following basic prin-

ciples of tomography [4, 6]. For my tomographic setup, I chose to rotate the object

inside the imaging system rather than the system about the object for reasons of

experimental simplicity.



Figure 5-1: A glass diamond index-matched to its surrounding media was used for
this experiment. Placing the diamond in the oil turns it "invisible" to our eyes (it
delays light passing through it but does not alter its amplitude/intensity)

Figure 5-2: A smaller version of the diamond in the preceding figure was used for this
experiment. The diamond was mounted on an inverted rotation stage so that images
could be acquired in a tomographic fashion.
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Figure 5-3: Experimental Setup

5.2 Experiment: Diffractionless Assumption

A transparent object (Pyrex diamond) was placed in index-matching fluid and imaged

using the system in Figure 5-3. The experimental setup consisted of a rotation stage

mounted in an inverted position to hold the scattering object suspended in index-

matching medium. A 4f (4x demagnification) imaging system was used to center

defocus about the object and to relay the image onto the camera detector (Aptina

CMOS) which was mounted on a linear stage.

The object was illuminated with a collimated plane wave from a 632.8nm HeNe

laser. Intensity measurements were taken from 90 independent and equally spaced

angles through a total of 1800 of rotation (Figure 5-3). Since the imaging system

could not be easily rotated, the object was rotated 20 between each set of image

captures. At each angle, three images were taken: one corresponding to the in-focus

image of the object, one corresponding to an over-focused image of the object via

movement of the linear stage by +10ptm, and one corresponding to under-focused

images of the object obtained from movement of the linear stage by -10pm. The

+/ - 10pm defocus images were used to generate tomographic reconstructions using

TIE tomography and using IDT methods.



E

Figure 5-4: Images were captured in-focus, over-focused, and under-focused.
Background-subtraction was applied via pixel-wise division before processing.
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Figure 5-5: Applying the Transport of Intensity Equation to the defocused images
results in a phase map representing the approximate phase depth/thickness of the
object.

After capture, the images were normalized via pixel-wise division by the back-

ground (Figure 5-4). The background-subtracted intensity images were then used to

reconstruct three-dimensional refractive index distributions. Tomographic TIE re-

sults were retrieved by application of the TIE algorithm to each set of images at

each angle, followed by tomographic inversion of the phase information by a filtered

backprojection method.

Images and data were processed on a 2.66 Ghz MacBook Pro with 8GB of RAM.

The TIE was solved using an FFT-based Fast Poisson Solver, and processing took

less than a minute for all view angles. Tomographic reconstruction was performed in

a slice-by-slice fashion and took approximately 10 minutes for filtered backprojection

(TIE) and 2 hours for backpropagation (IDT). We did not attempt to correct for

wobble of the object during rotation (e.g., via image registration) but found the

tomographic reconstructions to be relatively insensitive to them.

For the TIE-based method for retrieval of index distribution, phase maps were

generated using a simple finite difference method to approximate the derivative of

the two intensities with respect to propagation distance. Under the assumption that



Figure 5-6: Volume-Rendered reconstruction of the object. Features such as edges
are discernible.

the object does not scatter and that the intensity at the in-focus plane is constant,

the phase maps can be estimated to linearly correlate with the depth of the object

(n -thickness). For this section of the experiment no attempt was made to account

for diffraction.

The 2D Fourier Transforms of these phase maps were placed into Fourier space

(sinogram) for slice-by-slice inversion via filtered backprojection. This method is

similar to that employed by the authors in [26] to image small optical fibers. The

reconstructed object was volumetrically rendered for verification (Figure 5-6). The

results show agreement with the general features, shape, and dimensions of the imaged

object (diamond). Using a simple threshold/connectivity algorithm for segmentation,

the object can be further separated from everything else in the image (Figure 5-

7). In contrast, results from tomographic inversion of the raw intensity data (after

normalization) are quite poor (Figure 5-8)



Figure 5-7: Reconstructed Diamond after segmentation via thresholding and connec-
tivity constraints.

Figure 5-8: Attempts to reconstruct the object from the original images alone result
in a "shell" - the edges of a diamond are slightly discernible due to scattering effects,
but otherwise the diamond is not detectable



5.3 Measuring the Index of the Diamond

The diamond-shaped object used in this experiment was submerged in an index-

matching oil bath of Wessons vegetable oil. The index of refraction of the vegetable

oil was measured using an ellipsometer to be na = 1.475 ± 0.003 for 632.8nm light.

In order to measure the index of refraction of the diamond, a thin layer was sec-

tioned with an Ultracut E ultramicrotome and fixed to a silicon substrate for index

measurement via ellipsometry. The diamond section was still thick after slicing to

be used in a commercial ellipsometer for thin films, so a custom index measurement

system/ellipsometer had to be built to measure the index of refraction of the diamond.

The system setup for index measurement is shown in Figure 5-9. An incident

unpolarized laser light source (532 nm) was passed through a linear polarized to

independently probe the diamond surface (assumed to be flat) with p-polarized and

s-polarized light across a spectrum of angles. Based on the observed reflectance

intensities at each angle of incidence (and for each polarization), an estimate for the

index of refraction of the diamond was obtained.Specifically, the index was retrieved

by optimization of the curve-fit for the Fresnel Equations to the data collected.

The measured/collected data is shown in Table 5.1 (maximum intensity was 0.91±

0.03 when no diamond was present in the imaging system), and the curve-fits for the

data are shown in Figures 5-10 and 5-11 (s-polarized and p-polarized, respectively).

The index of refraction obtained using this method was shown to be ndiamond ~ 1.48±

0.03. For purposes of this experiment, the diamond was assumed to be homogenous.

5.4 Intensity Diffraction Tomography

Gbur and Wolf previously presented a hybrid intensity-based diffraction tomography

model that requires only that the lowest order perturbation of the phase of the field

remains paraxial (as opposed to the field being paraxial [48, 49]. Under the first order

Rytov approximation, a low-pass filtered estimate of the scattering potential can be

retrieved via the following methodology [48, 49, 12]:



I I Photodetector

incident light
(polarized)

reflected light

Phase Object

Figure 5-9: Setup: Measurement of Fresnel Reflection Coefficients

Figure 5-10: Fresnel coefficient curve-Fitting for s-polarized light. x-axis is angle of
incidence/reflection, y-axis is normalized intensity ratio



Table 5.1: Data collected for index measurement based on Fresnel Coefficient. Inci-
dent light had an intensity value of 0.91 ± 0.01
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Figure 5-11: Fresnel coefficient curve-fitting for p-polarized light. x-axis is angle of
incidence/reflection, y-axis is normalized intensity

In high-frequency applications, only the wavefield intensities, I(x, y, z) = U(x, y, z) 2

e('-*) are measurable. From the intensity, one can define an IDT intensity data

function as [48, 49]:

dr(x, y, z) = log[I(x, y, z)] = <(x, y, z) + <b*(x, y, z) (5.1)

Taking two intensity measurements, I(x, y; z = d) and I(x, y; z = d + A), on

two detector plants at distances of d and d + A, respectively, from the scattering

potential at a given tomographic viewing angle, one can define the data functions

d, (x, y; z = d), and di(x, y; z = d + A) completely.

In accordance with the derivation in [48], a second data function can be defined

as follows [48, 49, 12]:

DA(u, v; d) = Di(u, v; d) - D(u, v; d + A)ej(w-k)A (5.2)

where D1 represents the 2D Fourier Transform of d,(x, y; z) for a given plane of

constant z. By ignoring evanescent components (i.e., components where u2 +v 2 < k2),



and provided that the planes of intensity measurement are sufficiently close, it can

be shown that [48, 49, 12]:

DA(u, v; d) = (2r)F(usi + vS 2 + (w - k)so)e(wk)d { e (5.3)

The above equation has a similar form to that of the Fourier Diffraction Theorem and

is known as the IDT Fourier Diffraction Theorem [12]. The IDT Fourier Diffraction

Theorem can be used to directly reconstruct a low-pass filtered estimate of scattering

potential, f(r), from knowledge of the wavefield intensities on two parallel detector

planes at each tomographic view angle. We employ this theorem in conjunction

with a back-propagation algorithm introduced in [6] to reconstruct three-dimensional

complex index distribution.

For intensity diffraction tomography, the data function from Equation 5-2 was

placed into a modified Fourier-space sinogram, and inversion to obtain the complex

refractive index of the object was performed using a back-propagation algorithm

from [24] and [13]. The index contrast was retrieved and adjusted to give absolute

index based on ellipsometry measurements of the index of the surrounding media

(nmedia = 1.475).

5.5 Measuring Diamond Dimensions

The dimensions of the diamond were measured with a digital caliper. The object was

assumed to be circularly symmetric, and the caliper measurements were confirmed to

be in agreement with the observable object outline from in-focus images taken of the

diamond. Caliper measurements of the diamond were 5.9mm for object height and

12.0mm for object width. Figure 5-12 shows a rough schematic of the diamond

5.6 Comparison of Reconstructions

The figures in this section compare the quality of reconstructions from (1) direct

tomographic inversion without phase retrieval, (2) TIE-based tomography, and (3)
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Figure 5-12: Diamond Schematic. The shape of the diamond was approximated from
the object outline in the in-focus image, and object dimensions were measured with
a caliper.

Figure 5-13: The TIE-based reconstruction does not match the dimensions of the
diamond very well.

Intensity-Based Diffraction Tomography.

In theory, if the field is paraxial enough, then the TIE and IDT cases should

be equivalent (If the transmitted field is paraxial, then reconstruction using IDT is

equivalent to placing the TIE-retrieved field into arcs in Fourier Space and applying

the Fourier Diffraction Projection Theorem). Anastasio proves this in [12], and a

recapitulation of his proof is in the appendix.

5.7 Compressive Intensity Tomography

Compressive sensing was simulated on different setups of diffraction tomography to

estimate what the quality of reconstructions might look like. The results for compres-
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Figure 5-14: The IDT-based reconstruction more accurately matches the dimensions
of the diamond.

Figure 5-15: Volumetric reconstruction of object: (left) without TIE or IDT (middle)
with TIE (right) with IDT. The TIE reconstruction has more well-defined edges, but
the volume/dimensions of the object reconstructed is not as accurate as that in the
IDT reconstruction
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Figure 5-16: Compressive Diffraction Tomography reconstruction from limited view-
angles. (left) original image. (middle) Fourier-space coverage from synthetic aperture
diffraction tomography, (right) recovered image
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Figure 5-17: Convergence of the Compressive Sensing Solver, TwIST

sive tomography and compressive diffraction tomography are shown in Figure 4-5 in

Chapter 4. The results from limited-angle tomography (as in the scanning/synthetic

aperture system detailed in chapter 2) are shown below for the ideal case. A plot of

the reconstruction accuracy convergence rate is shown below as well. While requiring

gridding to work, the method used for the simulated data returns results that are

significantly better than those obtained via the methodology of [69] and [70]



5.8 Conclusions and Extensions: Toward Real-Time

Phase Tomography

This work demonstrates 3-Dimensional tomography of a phase object using transport

of intensity principles. In this work, intensity changes/variations within a volume

where measured by manually moving the detector (e.g., via placing it on a linear

stage). If this movement could be avoided (and multi-plane measurements made

simultaneously), then one could design a system capable of real-time phase retrieval.

Coupling real-time phase retrieval with rapid 360-degree rotation about the object

would yield a system capable of real-time phase tomography.

5.8.1 Dual-camera TIE

Perhaps the simplest method for acquiring images at multiple planes simultaneously

would be to simply split the post-object wavefront and use two cameras as detectors in

the system (placed at different distances from the object). In practice, it is extremely

difficult to align the images from the two camera using traditional image registra-

tion techniques (minimizing L2 difference, minimizing/maximizing cross-correlation,

minimizing joint entropy/maximizing mutual information, etc.).

5.8.2 SLM-based defocus system

To avoid these issues of alignment, one could use a spatial light modulator (SLM)

to computationally defocus the light (thereby capturing multiple planes of intensity

in "real-time"). This could be technically challenging to do since the SLM must be

properly calibrated an have fine enough pixel resolution to defocus (Note: SLM-based

defocusing can be performed in the Fourier domain as well with the proper placement

of lenses.)

Waller et al. have explored two other novel methods for acquiring multi-plane

images for real-time transport-of-intensity-based phase retrieval. They are discussed



briefly below:

5.8.3 Volume Holographic TIE Tomography

This system capitalizes on the ability of a volume holographic imaging system to

image multiple planes at the same time. A thick ("volume") hologram is placed at

the pupil plane of a 4f system, and the Bragg selectivity of the volume hologram is

utilized to image a single depth of an object (angular selectivity at the Fourier plane).

If the volume hologram is multiplexed, than multiple planes can be imaged at the

same time. Waller et al. in [74] use this setup to acquire images at multiple depths

to retrieve the phase depth of a phase object. This method suffers the same problems

that dual-camera TIE faces with image registration.

5.8.4 Color TIE Tomography

This setup utilizes chromatic aberrations in lenses and reformulates the TIE to a

color-modified version. From a single color-image, the red, green, and blue channels

will be either: over-focused, in-focus, or under-focused to a degree depending on

the amount of chromatic aberration present in the system. Based on the over and

under-focused data, one can retrieve phase using a modified TIE derived in [72]. The

authors in [73] have demonstrated this system's use for real-time phase retrieval.

5.8.5 Application Real-time phase imaging flow cytometer

One potentially significant application of real-time phase-retrieval from intensity mea-

surements would be in a flow cytometry setup. One could imagine a phase-imaging

system that rotates around a "ring" (similarly to modern CT scanners) to capture

"slices" of the object of interest in real-time. Since the cells are flowing at some fixed

rate in flow cytomters, their movement by this ring would allow for acquisition of 3-

dimensional phase data. Such a system could significantly improve our understanding

of live cells and pathology.



Appendix A

Derivations

A.1 TIE Derivation

Paraxial TIE derivation (Teague 1983).

(j + + k)uz(r)Ozy 2k

+ I(V(u*VU - UVU*))

U ej4(z)

N

=0

= Eo(z)eje(z)

U* = E*(z)e-jw(z)

7U = (u)(jV4)

= (U*)(-jv#) (A.6)

(U*)(u)(jV#) = jI(z)V4 (A.7)
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A.2 TIE-IDT equivalence [12]

IDT-equivalent TIE equation: VII(x, y, z) =I(x,z) iI(x, y, z)

TIE equation: -ka(xYz) =V - (I(xy,z)(Vi-I(x,y,z)))

The proof of IDT-TIE equivalence in the paraxial regime is given in [12] and shown

below:

If the transmitted wavefield (U(x, y, z) = U (z, y, z)e*) is paraxial, then 1(x, y, z)| <

1. The TIE posits that:

a-k a I(x, y, z) = VI(X, y, z) -Vi4(x, y, z) + I(X, y, z)VI2 i(x, y, z). (A.12)

where VI - + !2. Under Rytov approximation, the above equation can be

re-expressed as:

1 a
-k -I(x, y, z)

I(x, y, z) az
= VilogI(x, y, z) -V 1 4i(x, y, z) + V2Ii(x, Y, z)

or equivalently,

1 a
-k -~,y z zI(x, y,z) = 2Vi r(Xy,z) V(x,y,z) + Vipi(x, y, z).

IDT reconstruction theory assumes the validity of the first-order Rytov approxi-

mation for wave propagation in an inhomogeneous medium and thus requires that

V1(x, y, z)- V(x, y, z) m 0 in the entire medium (throughout the scattering potential

and surrounding media). This statement implies that:

V ((X, y, z) - V r,(X, y, z) + V'I (x, y, z) - V i(X, y, z) ~ 0 (A.15)

and also that:

Vi,(X, y, z) - ViD,(X, y, z) + ViA2 (x, yy,z) . V(i(Xz Y, z) = 0

(A.13)

(A.14)

(A. 16)



everywhere. By use of the inequality:

127-LCD, (x, y, z) -V 4i(x, y, z)| < Vi<D4, (, y, z) -V7j_( X, y, z) +VcDi (X, y, z) -V17L<D i(X, y, z)

(A.17)

one finds that the term 2VA<D,(x, y, z) - V_<D1(x, y, z) to be neglible in equation X.

Thus, if the wavefield is paraxial and the first-order Rytov approximation is valid

(everywhere), then the TIE and IDT equations are equivalent.
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