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Abstract

While the vast majority of underwater vehicles rely exclusively on sonar and vision
to detect obstacles and maneuver, live fish also use their lateral line organ. The role
played by the canal lateral line system is particularly important for hypogean fish,
such as blind Mexican cave fish, who use it to avoid obstacles and navigate dexterously
in complex environments. Similarly, pressure sensors could be used on underwater
vehicles to expand their range of operability by filling the gap left by sonar and vision
systems in turbid cluttered environments.

To understand how much information can be extracted from the artificial lateral
line of an underwater vehicle exploring an unknown environment, the case of a foil
passing a static object in still water is analyzed. A two-dimensional potential flow
approach based on a source panels method is used to characterize the spatio-temporal
pressure signature of the object as sensed by the vehicle. Simulations are used to
estimate the sensing range of an artificial lateral line and the appropriate density of
pressure sensors.

To emulate the object-detection and shape-recognition capabilities of the lateral
line, an adapted unscented Kalman filter is combined with the hydrodynamic model.
The method developed is experimentally tested in a water tank, using a hydrofoil
instrumented with pressure sensors passing a static cylinder. The results show that
location and shape informations of an elliptical cylinder can be successfully inferred
from experimental pressure measurements. Performance of the proposed method for
object identification using pressure sensors are discussed and ways to improve it are
suggested.
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Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

1.1 Research motivation

The aim of this project is to allow underwater vehicles to use spatially distributed

pressure sensors for mapping and navigation. Most underwater vehicles today rely

exclusively on sonar and vision to detect obstacles and maneuver. However, both

systems have limited capabilities and serious disadvantages, so the development of a

new sensing capability might expand the range of operability of underwater vehicles.

The main limitation of vision is that light does not propagate well in water. Nat-

ural light does not penetrate further than 100 to 200 meters below the surface, and

using vision at greater depths necessitates the use of powerful spotlights. However,

if the water is murky, even a powerful spotlight will be helpless at lighting up the

environment.

Sound usually propagates well in water, even though it can also suffer from scat-

tering. However, sonars are very noisy: they strongly disturb the marine life ([30])

and are incompatible with any discretion requirement. Finally, sonars are not very

effective in cluttered or confined environments due to excessive sound reflection.

Evolution endowed fish with a lateral line, a simple passive system that allows

them to navigate dexterously, even in dark complex environments. Recent advance-

ments in the area of microengineering will soon make it possible to build sensors that

match the size and mimic the functions and organization of the lateral line. While



underwater spotlights and sonars consume a lot of energy and are typically expansive

and cumbersome, artificial lateral lines could be a cheap alternative for a passive nav-

igation system. However, the hydrodynamics involved needs to be better understood

in order to provide an efficient navigation system. It is the goal of this research to

gain insight into what the pressure distribution along a moving body can tell us about

the environment.

How far away can an object be detected? How much information on its shape can

be inferred from the measurements of an artificial lateral line? How should pressure

sensors be distributed? Here are a few questions that are addressed in this thesis.

1.2 Biological inspiration: the lateral line

1.2.1 Morphology and physiology of the lateral line

The mechanosensory lateral line is a hydrodynamic receptor system that allows all

fish and most amphibians to detect water motions around them. It is composed

of a collection of small mechanoreceptive units called neuromasts. Each neuromast

consists of a conglomeration of sensory hair cells associated with support cells that

secrete a gelatinous mass, the cupula. When water flows past the cupula, friction

causes it to move, which in turn deflects the cilia of the hair cells (Figure 1-iC). The

deflection of the cilia is then transduced into trains of action potentials which are

transmitted to the central nervous system for post-processing.

Fish possess hundreds to thousands of these neuromasts, located in various-but

stereotypical-positions on the head and trunk ([34]), as illustrated in Figure 1-1A for

a blind Mexican cave fish (Astyanax mexicanus). There is evidence that the lateral

line is implicated in many behaviors such as schooling, courtship and spawning, prey

detection, predator avoidance, rheotaxis, and spacial orientation ([8], [5]).

In most fish, there are two lateral line submodalities: superficial neuromasts, iso-

lated on the surface of the skin and scales, and canal neuromasts embedded in sub-

dermal water-filled canals (Figure 1-1). Experiments that selectively disable either



Figure 1-1: The structure of superficial and canal neuromasts. (A) Indi-
vidual neuromasts appear as yellow points due to fluorescent staining [2-(4-
(dimethylamino)styryl)-N-ethylpyridinium iodide] of the hair cells in the blind Mex-
ican cave fish (Astyanax mexicanus). (B) A magnified view of a portion of the head
highlights the different sizes of canal (solid circle) and superficial (dashed circle) neu-
romasts. (C) A schematic of a superficial neuromast illustrates its main anatomical
features. (D) A schematic drawing of a canal neuromast. Adapted from [35].



superficial or canal neuromasts suggest that the two subsystems respond to different

stimuli and play distinct roles in fish behavior ([27], [6], [21]). Superficial neuromasts

respond to the flow of water along the skin of the fish; they provide an important

source of information on currents in the environment of the fish and play a central role

in behaviors like rheotaxis ([27]). However, superficial neuromasts do not respond to

flow perturbations if the fish is exposed to running water ([11]).

The canals open to the environment at periodic intervals through pores, such that

there is usually one neuromast between two pores (Figure 1-2A). As a result, the

response of each canal neuromast to fluid motions inside the canal is proportional

to the pressure difference between the two surrounding canal pores as illustrated in

Figure 1-2B ([10], [7]). Unlike surface neuromasts, posterior canal neuromasts are

A B P

epidermis scale pore canal
neuromast 

4

sensory
hair cel

sensory nerve sensory
nerve

Figure 1-2: Schematics of a typical canal (A) and of the motion-sensing neuromast
between a pair of pores inside a canal (B). Adapted from [1].

not stimulated by running water, which allows them to detect flow perturbations in

any current condition ([111). Experiments by Jansen [21] and Coombs [6] also showed

that canal neuromasts respond to faster and smaller scale stimuli. Therefore, canal

neuromasts are important to behaviors that require information about fine spatial

details like prey localization and obstacle avoidance ([5]).



1.2.2 Importance of the lateral line for hypogean fish

The role played by the canal lateral line system is particularly important for hypogean

fish (that spend their life in deep caves), such as blind Mexican cave fish ([28]). In

the absence of light, hypogean fish cannot rely on vision to build up a 'picture' of

their environment: they use hydrodynamic imaging instead. Most hypogean fish have

a reduced visual system that they barely use, but an enhanced lateral line system.

Canal neuromasts seem to play an essential role in replacing vision as the major sense

by which blind cave fish perceive their surroundings. The flow-field that exists around

a gliding fish is perturbed by objects in its immediate vicinity and these perturba-

tions are detected by the lateral line system. In this way fish can build up a 'picture'

of their environment, a process that has been called active 'hydrodynamic imaging'

([17]).

Behavioral experiments ([33], [91) showed that blind Mexican cave fish are not only

able to detect the presence of obstacles placed in their environment, but they are also

capable of encoding both their shape and size. Von Campenhausen [33] also showed

that fish trained to choose between doors of different shapes (horizontal and vertical

rectangles) would glide in front of the doors before making their choice. These exper-

iments confirm the hypothesis that the lateral line, and more specifically the canal

subsystem, not only allows fish to navigate safely in unknown environments, but also

to build up a three-dimensional 'image' of their surroundings.

Pressure sensing is a primary sense for hypogean fish and a promising comple-

mentary sensory capability for underwater vehicles. Using micro-electromechanical

(MEMS) pressure sensors that would act like an artificial lateral line system has

the potential to enable underwater vehicles to navigate even when vision and sonars

cannot be used.



1.3 Previous work

1.3.1 Hydrodynamics of lateral line stimuli

The development of artificial lateral lines for underwater vehicles would enable imag-

ing and navigation in environments where vision and acoustic sensing fail (such as

murky cluttered environments) with much less energy and more discretion than sonar,

since it is a passive system (as discussed in Section 1.1.1). But despite numerous ar-

ticles published on the theme of fish lateral line system (see previous section), very

few studies have aimed at reproducing the ability of imaging of blind Mexican cave

fish into an artificial lateral line. So far, most of the work has been restricted to

localizing a prey modeled by a dipole ([15], [29], [5]), which is of limited usefulness

for underwater vehicles trying to navigate.

There are two essential aspects in object detection: the detection of objects them-

selves (mostly the effect on the flow of the no flux condition imposed at the object

surface), and the detection of their wake (if they are moving relative to the flow).

Since vortices are characterized by a very distinctive low pressure, pressure sen-

sors are very efficient at tracking vortices. Experiments by Chagnaud [3] showed that

gold fish can detect a Karman vortex street and encode the vortex shedding frequency.

Franosch [13] developed a mathematical model to determine how vortex rings in a

Karman vortex street stimulate the canal lateral line of an axially symmetric body.

But objects in water do not only produce a wake, they also have their own hy-

drodynamic signature: they alter the flow surrounding them in way that depends on

their size and shape. As stated earlier, the vast majority of studies on the question of

object detection focused on the case of a vibrating or translating sphere ([29], [15]).

Despite our knowing that fish can encode shape (133], [9]), very little has been done

to understand the hydrodynamics involved in shape encoding. The first study aiming

at understanding the hydrodynamics of object identification was recently carried out

by Sichert [32]. Sichert laid the foundations of hydrodynamics mapping using veloc-

ity sensing. In his model, the shape of a moving body of revolution is described by

means of a multipole expansion and reconstructed-based on velocity readings by a



detecting body-using a maximum likelihood estimator. An important conclusion of

this work is that at a distance smaller than the moving object size, the velocity field

carries more information than its dipole simplification.

However, it has been shown experimentally that fish rely mainly on their canal

subsystem ([6]) to detect and identify obstacles. Based on this observation, Bouffanais

[2] investigated the forward and inverse problem of object detection and identifica-

tion in outside flow using pressure sensing. He developed a parameterization that

separately encodes size, location and shape of a plane object and concluded that the

behavior of blind Mexican cave fish ([33])-'accelerate and glide past'-is probably

the most efficient one. Fish first get an estimate of the size and location of the ob-

stacle, and then gather finer information on its shape.

Both studies ([32] and [2]) simplified the problem enough to make it possible to

use analytical models that help understanding the hydrodynamics involved. However,

neither of them took into account the disturbances caused by the sensing object itself.

In general, the pressure and velocity measured by the lateral line of a fish result from

interactions between the outside flow, the fish and the unknown object. In the most

extreme case-in the absence of outside flow-the only way for a fish to detect and

identify stationary obstacles is to generated flow itself. In this case, the lateral line

can be considered as an active sensing organ, and this is the behavior observed in fish

that glide past objects in still water tanks ([33]). However, in the case of a cruising

underwater vehicle trying to avoid obstacles, this active sensing does not require ad-

ditional power input than what is necessary for cruising.

One of the only contributions to the understanding of the hydrodynamics involved

in active object detection is a 25 year-old study from Hassan ([16]). He modeled the

current around fish with a certain configuration of sources and sinks and used an

iterative method to ensure that no water fluxes through the body. He observed that,

when gliding past a circular cylinder, the spatio-temporal pressure signature along

the fish is unique for each combination of radius and distance. In the case of a frontal

approach, the results showed that the current velocity along the fish head increases

noticeably, but not until the fish is at a relatively short distance from the obstacle.



Slightly more recently, he used a method developed by Geer ([14]) to describe the flow

created by a slender body of revolution gliding toward or along a plane surface ([18],

[19]). This method models the alteration of the flow due to the presence of a slender

sensing body of revolution as a superposition of hydrodynamic poles continuously

distributed along the axis of the body.

No study has yet aimed at studying the hydrodynamics involved in active object

identification using the lateral line, and it is the goal of this thesis to lay the first

foundations for such studies.

1.3.2 Bio-mimetic lateral lines

In parallel to the recent development of hydrodynamic methods aimed at under-

standing stimuli of the lateral line, there has been a growing interest in trying to

manufacture artificial lateral lines. The development of both hydrodynamic tools

and sensing devices is crucial to be able to mimic the capabilities of blind Mexican

cave fish.

The main challenge in the design of artificial lateral lines is to fabricate sensors

that are small enough not to interfere with the flow while being sensitive enough to

detect flow structures. Fan [12] reported the first fabrication of an artificial lateral

line. He designed hair cell sensors (with a 820 pm tall cilium) that respond to flow

velocity in one direction. A few years later, Yang and Chen ([38], [4]) reported for

the first time the use of an artificial lateral line (consisting of 500 ptm high hot wire

anemometers) to detect both a dipole and the wake of a cylinder. Inspired by the

canal lateral line, they also proposed to package it as a canal to act like a high-pass

filter and avoid the signal to be overcome by strong DC components. This first ex-

ample of use of an artificial lateral line to detect flow structures is very promising

and makes it more urgent to develop algorithms that will make it possible to use

this emerging sensing technology for underwater vehicle applications. More recently,

McConney [26] and Yang [39] reported designs of artificial lateral lines more closely

inspired from the fish lateral line with bio-mimetic neuromasts. Yang [39] also devel-

oped a beamforming algorithm (inspired from traditional sonar techniques) to localize



dipoles in three-dimensional space and successfully used it with his bio-mimetic lat-

eral line to localize both a vibrating sphere and a tail-flicking crayfish. However, as

mentioned earlier, localizing vibrating spheres is of limited practical usefulness for

underwater vehicles.

No successful implementation of micromechanical pressure sensors to mimic the

the canal subsystem has yet been reported, but advancements in the area of micro-

engineering that made the microfabrication of MEMS anemometers arrays possible

are likely to make the fabrication of MEMS pressure sensors possible in the next few

years.

1.4 Chapter preview

Chapter two introduces the problem studied in this thesis: a moving foil passing a

static object in stationary two-dimensional inviscid flow. It also presents the numer-

ical approach used to solve it.

Chapter three describes the pressure distribution along the foil when passing an

object. Quantitative characterizations and guidelines for the use of pressure sensors

to identify object shapes are given.

Chapter four details experiments performed to test the proposed method. The

results of experimental object identification are also presented.

Chapter five discusses the performance of the object identification method pro-

posed and several ways to improve it. The limits of the inviscid model are also

discussed.

Chapter six draws conclusions on the research while recommendations for future

work on the project are proposed in Chapter seven.
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Chapter 2

Object identification: theory

2.1 Discussion of existing methods

The simplest way to characterize the hydrodynamic signal measured by a natural

or artificial lateral line consists in modeling the problem in the context of two-

dimensional potential flow models. Comparisons between viscous and inviscid sim-

ulations of a dipole near a fish [29] showed similar pressure gradients in both cases.

They also showed important differences between the magnitude of the pressure gradi-

ent measured by a two-dimensional fish and a rotationally symmetrical one. However,

a two-dimensional study is always a good source of information as a preliminary study

before going for much more intensive three-dimensional simulations. We just need to

keep in mind that the results from two-dimensional studies cannot directly be gener-

alized to three-dimensional cases.

Algorithms have recently been proposed to identify the shape of objects under-

water using velocity ([31]) or pressure ([21) measurements. Both consider the case of

a moving object detected by the lateral line of a body that does not affect the flow.

The fact that the sensing body is considered as a 'ghost' might be a severe limitation,

especially when the two objects are close (and they have to be close enough for the

lateral line to sense information about the object shape). Interactions between the

two bodies are precisely what makes active sensing possible. Since the goal here is

to develop a model for active sensing, the possibility to extend either of these two



models to the case of several objects hydrodynamically interacting with each other

will now be briefly discussed.

Conformal mapping ([2]) is a very efficient and elegant way to map the potential

pressure field created by a moving object. It is also attractive because it gives a sim-

ple analytical expression of shapes. The conformal mapping study therefore provides

a good way to characterize the shape of an object and understand the role of each

parameter, especially the decreasing importance of shape parameters of increasing

complexity. However, it requires situation of interest to be the conformal map of a

configuration for which we know the analytical solution: there are very few of them.

A two-dimensional object in free space can be transformed into a circle through a

conformal map, and there is a known analytical solution for the pressure field around

a circle. But no conformal map could allow us to transform a configuration with two

objects into one for which a closed form solution is known. In conclusion, conformal

mapping is great to give understanding on simple configurations, but it is not flexible

enough to be adapted to more general cases.

The multipole expansion method ([31]) seems more flexible than the conformal

mapping while still giving a good insight into the decreasing importance of the mul-

tipole of increasing order. However, the spherical expansion used in [31] requires a

rotational symmetry that will usually be broken in the presence of two bodies. A

multipole expansion could still be used for a two-dimensional approach, which would

release the symmetry requirement. In this case, the velocity potential due to a sta-

tionary object in steady flow (of velocity U) can be written as ([25])

<D(+E) = U -Y+ ( - )--. (2.1)
n>1

This method has been tested in the simple case of a single object in a steady flow. The

pressure is measured along a circle around the object and the multipole expansion is

estimated using a standard least squares estimator. The shape is then estimated by

following the streamline corresponding to the stagnation point. Typical results are

shown in Figure 2-1. As can be seen from the top figures, the shape estimate can be



fairly accurate when the shape is not too different from that of a circle. However, the

bottom figures show that when the aspect ratio becomes significant (on the order of

2:1) the multipole approximation of the shape is very poor. The conclusion of these

tests is that the multiple expansion is good at approximating the far-field potential,

but not at estimating the shape of the object that created it.

Figure 2-1: Examples of shape estimation using a multipole expansion

As a conclusion, both analytical methods lack the flexibility needed to be extended

to more general problems like two objects hydrodynamically interacting. A flexible

'object based' (as opposed to 'far-field potential based') is needed. Since in potential

flow theory objects affect the flow through the no-flux condition imposed along their

surface, an intuitive way to represent them is a distributed flow source over their

surface ([25]). Nonetheless, the conformal mapping method provides a convenient

shape characterization that can be used in this new framework.

2.2 Shape characterization

It is believed that blind cave fish can separately encode the distance, size and shape of

objects ([9]). Therefore, a convenient-and potentially biologically relevant-way to

parameterize the problem is to characterize an object by two parameters accounting



for its position, one size parameter and several shape parameters. Another desirable

feature of the parameterization is that the number of shape parameters needed to

account for the pressure decreases with the distance to the object. Bouffanais [2] pro-

posed such a characterization. Taking inspiration from his work, we can characterize

objects by a parameterized curve:

( 00S(O) = a + R ei'+ p:Ake-ikO , G [0, 27r],
k=1

= x+iy+ R eZ + |p le0k(a -0)), 0 E [0, 27r],
k=1

= xz y +R e + E(pkx -+ ipky )e-ik , 0 E [0, 27r] (2.2)
k=1

where a (a = x + iy) refers to the location of the object 'center', R to its size and

each y4 (pk = Ipk leikok = Pkx + ipky) term is associated with a (k + 1)-gonal type of

perturbation of the shape from that of a circle. As k increases, the impact of the yk

term on the pressure field decays very quickly with distance from the cylinder ([2]).

For an ellipse of eccentricity e, only the first shape parameter p1 is non-zero:

|pil = is a monotonous function of the eccentricity; a = arg(pu1 ) is twice the

angle between the major axis and the horizontal axis; and R is the arithmetic mean

of the minor and major radii of the ellipse. Equivalently, the shape defined by the

parameterized curve S(O) = a + R pu("--O) is an ellipse of major radius R(1 +| p),

minor radius R(1- pl) and eccentricity 2 . It will also be useful later to notice that

the vertical radius of this ellipse (defined as the radius of the orthogonal projection

of the ellipse on the imaginary axis) is r, = R 1 - pl.

2.3 The forward problem: hydrodynamic modeling

The problem considered is the following: a moving 'fish-like' body (S(1)) gliding at

constant speed (V) past a stationary object (S(0 ) in uniform flow (of velocity U).

Given the moving object, its trajectory, and the location (a), size (R) and shape (p)



of the stationary object, as well as the outside uniform stream, the velocity potential

anywhere in the flow field can be expressed in terms of a singularity distribution over

the surface of the objects ([20]). The boundary-value problem considered is sketched

in Figure 2-2.

S

V

Figure 2-2: Boundary-value problem

The velocity potential 4 may be decomposed as follows:

(2.3)

We are looking for the solutions of the following boundary-value problem:

In the fluid:

On SC0 :

On SM1):

V2( = 0

(9n
At infinity: V4D= U -

The source formulation of the problem is:

(2.5)

where S S(O)u(l), 6 is an unknown source distribution on the surface of the objects

and G(z, () = -ln f - (| is the two-dimensional Rankine source Green function.

1)

- Vp = 0,

o&n = (Z - U) -n,
(2.4)

(() = U . , + 0(s)

X~)= ofG~,)sf,

J S



From Eq. 2.5, we have:

-.G
-(f (V I )ds(O).an

Substituting Eq. 2.4 into 2.6, we obtain:

,G
an- (7, )ds(~

U -

(V -- U) -

The approach used to numerically solve Eq. 2.7 for 6(e) consists in:

1. breaking up the surface S into N straight line segments,

2. assuming the source strength is constant over each line segment (panel).

The relation in Eq. 2.7 can then be evaluated by breaking up the integral as the sum

over all panels:

a() n (7, ()ds(()
{

(V - U) - n

for 7 S().

for 7- SM.(

For I = sfi (f being the centroid position of the i-th panel) and 6j the source strength

of the j-th panel, Eq. 2.8 becomes:

( - K

(V - U) - i

if i E I

if E44 S)

(2.9)

6 is obtained by solving the linear system A6 = b. The velocity potential at any point

7 in the fluid can then be calculated by:

N

j=1 Si
G(7, )ds() (

(2.6)

for 7 E S ()

for 7E S ).
(2.7)

N

j=1 JSi

(2.8)

N

j=1

Bn ('

(6, ()ds(()
S3 a 

0

(2.10)



The velocity of the fluid can subsequently be computed using:

N
u=# =U+E 1#G:,(ds() (2.11)

j=1 S

Finally, the unsteady Bernoulli equation gives us:

p(i) =-P () +-- I 2 + C. (2.12)
( 4t ( 21

When the pressure is calculated on the surface S1, it is calculated as follows:

d( di - 1 2
p X) = p () -- V + -|G|2 + CV P dt V dt 2

=-p dt) - + 2 2 + C. (2.13)

Since the pressure is calculated at the surface of the foil, it should always be estimated

at the center of a panel. In order to get a sense of the number of panels needed to

reasonably estimate the pressure measured along the foil, we consider the problem

sketched in Figure 2-3A, where the red dot on the foil represents the point where

the pressure is calculated. Each surface is broken up into segments of uniform size.

Figure 2-3B, shows the calculated pressure at the red dot when breaking up the foil

into 300 segments, and the circle into 10 to 200 segments. In Figure 2-3C, the circle

is broken up into 50 segments and the foil into 50 to 500 segments. With only 20

segments for the circle and 100 for the foil, the error falls below 5%. We can therefore

estimate that using 50 segments for the circle and 200 for the foil is a safe compromise

A B Circle discretization C Foil discretization
0.08 0 0

0.06 -20 -20

0.04 -40 -40

o 0.02 -60 -10 -- 50
CL0. -20 (L -100

0 W=.5 r/s )p -80 -0 -80 -200
-200 -500

-0.02 -101 o10
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3

Position (m) Time (s) Time (s)

Figure 2-3: Surface discretization



between accuracy and calculation time.

The combination of the shape parameterization presented in Section 2.2 and the

numerical potential flow model defines the forward methodology: relating pressure

measurements to the variables of interest (location, size, and shape).

2.4 The inverse problem

2.4.1 Choice of the inversion algorithm

Combined with an inversion technique, the forward model can be used to solve the

inverse problem: locating and identifying an object using pressure measurements. In

experiments, the pressure measured is corrupted by noise. For proper inversion, the

technique must be: 1) robust to noise, 2) capable of handling non-linearity, since the

pressure does not depend linearly on the characterizing parameters of the stationary

object and 3) dynamic, in order to be used in navigation of underwater vehicles.

A widely used class of algorithms to solve dynamical systems are Kalman filters.

Parameters can be efficiently estimated on-line by writing a state-space representa-

tion:

Xk+1 rk(2.14)

y - f (xk, uk) 1 e4

where x is the state vector (in our case, the shape we are trying to identify), r the

process noise, y the observation (in our case, the pressure measured by the lateral

line), e the measurement noise, u accounts for other parameters (location of the sen-

sors, velocities) and f is the function that calculates the pressure at sensor locations

given a set of objects.

When f is not linear (as in our case), the most common approach is to use an

extended Kalman filter (EKF) which sirnply linearizes f so that the covariance and

mean of the state can be recursively estimated using a traditional linear Kalman Fil-

ter. But the assumption that a linearized transformation of means and covariances

is approximately equal to the true nonlinear transformation can be unsatisfactory for



highly nonlinear functions. And more important, the EKF requires the calculation of

the Jacobian of f, for which no analytical expression is available here.

Therefore, the unscented Kalman filter (UKF) [23] is probably more suitable to

solve this problem. Rather than approximating the function f, the UKF approxi-

mates the state probability density function by deterministic sampling. It is based on

two fundamental principles. First, it is easier to perform a nonlinear transformation

on individual samples than on a probability density function. Second, it is not too

hard to find a set of individual points in state space whose sample probability density

function (pdf) approximates the true pdf of a state vector. This set is found using the

unscented transformation in which 2n +I1 sigma points (n is the state dimension, here

the number of shape parameters) are chosen based on a square-root decomposition

of the prior state covariance. These sigma points (here they are object shapes) are

propagated through the true nonlinearity (the pressure function), without approxima-

tion, and a weighted mean and covariance is then calculated. This approach results

in approximations that are accurate to the third order (Taylor series expansion) for

Gaussian inputs for all nonlinearities. For non-Gaussian inputs, approximations are

accurate to at least the second-order [23].

The UKF is therefore more accurate than the more traditional EKF for highly

nonlinear problems. Moreover, it does not require the computation of derivatives for

which no analytical expressions are available here. It also samples the state pdf with

much less points than would be required by a Monte Carlo method, which makes it

better suited for real time applications.

2.4.2 The unscented Kalman filter

The unscented transformation

As introduced above, the unscented transformation chooses a set of 2n + 1 (sigma)

points so that their sample mean and covariance are x and P,,. The nonlinear

function is applied to each point in turn to yield a cloud of transformed points; y and

Pyy are the statistics of the transformed points. We form a matrix X of 2n + 1 sigma



vectors Xi according to the following:

X0
Xin

Xi+n

(2.15)

-)

= + W(n + A) Pxx ,Z
= ( (n + A) Pxx) ,

where A = a 2 (n + r) - n is a scaling parameter. The constant a determines the

spread of the sigma points around R. It is usually set to a small positive value

(10-4 < a < 1) but the choice of the value will be discussed in the next section.

The constant r is a secondary scaling parameter, which is usually set to the heuristic

value 3 - n ([24]). Finally, ( (n + A) Pxx) is the ith column of the lower-triangular

Cholesky factorization of (n + A) Pxx.

The sigma vectors are propagated through the nonlinear pressure function:

Yi =f (Xiu), i = 0,. .. ,2n. (2.16)

The mean and covariance for y are approximated using a weighted sample mean and

covariance of the transformed sigma points,

2n

Z yi, (2.17)
i=0

2n

Py ~
i=0

W()(y - y)(yi - (2.18)

with weights given by

n+A'

W(M) WC) -

WON = _+ 1 - a2 + ,n+A

2(n-+ A)Z

where # is a parameter used to incorporate prior knowledge of the distribution of x

(for Gaussian distributions, # = 2 is optimal [23]).

(2.19)

(2.20)

i = 0, ..., In,

i = 0, ..., In,



Update equations

First, the shape and its covariance are initialized:

X0 = E[x], (2.21)

P = E[(x - O)(x - 0 )T 2.22)

In the absence of prior information, we initialize the shape to a circle and the covari-

ance to a diagonal matrix, as will be discussed in Section 4.3. Then, at each time

step (each new pressure measurement), sigma vectors are calculated and the mean

and covariance of the shape are updated.

For k > 1, the time update (a priori values) and sigma vectors are calculated as

follows:

Xk =X k-li (2.23)

P-, x_ + Rr_ (2.24)

Xkik-1 = [ lk kC + (n + A)P :k - (n + A) , (2.25)

Ykik_1 = f(Xkk _1, Uk), (2.26)
2n

9k = S W(m)yikk1 (2.27)
i=O

And the measurement update equations (optimal gain and updated shape and co-

variance) are:

2n

PY- y (Yikk1 - Yk) (Yi,kk _1 - s k)T + Re, (2.28)
i=0
2n

PXkYk = ( W (Xikk 1 - Xk)(Yi klk_1 -i )T, (2.29)
i=0

gk = P(P 2.30)

k = ]- + kk (Ykyk), (2.31)

PXk= Px - 9k~~kg (2.32)



where hats above letters stand for 'estimated value', R' is the process-noise covariance

and R' is the measurement-noise covariance.

Adapted unscented Kalman filter

The UKF described above is usually used assuming all distributions are Gaussian.

However, some configurations are not physical and cannot exist, this is the case of

two rigid bodies intersecting each other. Using non-physical configurations as our

sigma points can skew statistics and produce unusable results. One way to prevent

this from happening, is to properly tune the value of the parameters of the UKF.

This problem is avoided in two steps. We first ensure that, at each time step,

the a priori estimate of the object (iR) and the sensing body do not intersect. If

needed, the Kalman gain of the previous time step is scaled down to ensure the non

intersection.

Once the a priori configuration is valid, it is possible to find a radius r such that

all the configurations in the ball of center ik and radius r are valid. Therefore, the

parameter c-that determines the spread of the samples around the mean in the

unscented transform ([22])-can be chosen (for each time step) small enough that all

the sigma points are valid. a is set to its default value (a = 0.9) if it produces valid

sigma points.

The UKF and the forward model can now be combined to solve the inverse prob-

lem: locating and identifying an object in the flow using pressure measurements.



Chapter

Theoretical pressure distribution on a

foil passing an object

From now on, we will consider the case of a foil passing by an object. The foil

considered in the rest of this thesis is a NACA 0018 foil (chord c = 15 cm, maximum

thickness T = 2.7 cm). The position along the foil is measured as the arc length

starting at the front, as shown in Figure 3-1. Only the pressure along the side of the

foil that is closest to the object will be considered.

Figure 3-1: Position along the foil (in)

3.1 Comparison between different scenarios

The lateral line can be used both as a passive or active sensing modality. In the

passive case, the fish relies on other bodies around it to interact with the flow and

create measurable flow patterns. In the active case, the fish itself creates the flow that

interacts with its environment. Flow perturbations due to the presence of objects are



measured by the lateral line and information about the environment is extracted. In

general, both mechanisms are at play simultaneously. To understand the differences

and interactions between the two mechanisms, three scenarios are considered: passive

sensing, active sensing, and the combination of both. In all the simulations presented,

the flow velocity (if non zero) is U = 0.1 m/s, the speed of the fish is V = 0.5 m/s.

The object is a circular cylinder of radius r = 0.5T = 1.35 cm and the minimum

distance between the foil and the object is d 0.25T 6.75 mm. The problem

considered is sketched in Figure 3-2.

0 r

T ---
V

Figure 3-2: Sketch of the problem and variables

3.1.1 Passive sensing

This is the case that has mainly been investigated so far ([2], [32]). In this scenario,

the foil measures pressure but is considered as a 'ghost' in that its effect on the flow is

ignored. This case is considered as a benchmark for the other scenarios. The pressure

along a 'ghost' foil as it passes the cylinder is plotted for three different angles of

outside flow in Figure 3-3.

The vertical axis represents the position along the foil (as defined in Figure 3-1).

The horizontal axis represents time as the foil passes the cylinder. The black dotted

line shows the orthogonal projection of the cylinder center on the foil.

Here, the pressure field is the well known superposition of a free stream and

a dipole. As the foil passes the cylinder, it simply measures this pressure field. In
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Figure 3-3: Passive pressure signature

the case considered, the foil measures a high or low pressure (depending on the flow

angle) of magnitude 30 Pa. The pressure signal measured by the foil simply gets

translated along the foil as it passes the cylinder. A horizontal or vertical slice of

the plots in Figure 3-3 would be enough to summarize the information they contain.

This means that measuring the pressure along the foil does not give significantly more

information than measuring the pressure at one point in time or at one location on

the foil.

3.1.2 Active sensing

In this case, the flow motion is generated by the foil. As can be seen in Figure

3-4A, the steady motion of the foil induces a high pressure at its front and a low

pressure along its side, which makes it hard to distinguish the pressure pattern due

to the presence of the object. Subtracting the steady state pressure reveals a pressure

pattern (Figure 3-4B) very different from the passive case one. This pattern is much

more complicated than in the passive case, so it potentially bears more information.

Unless explicitly mentioned, the pressure will always be plotted after subtraction of

the steady pressure.

The spatio-temporal pressure signature is characterized by a pressure peak at

the front followed by a drop along the thickest part of the foil. The last third of

the foil is only very weakly affected by the presence of the object. Contrary to the

passive sensing case, time and space give different information, and disposing of a

dense enough array of MEMS pressure sensors would experimentally make it possible

A = B E)=-3n/4 C 8=-n/2
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Figure 3-4: Active pressure signature

to take advantage of all the information. As the foil passes the object, the object

experiences various flow velocities and directions, hence giving richer information than

in the passive case. The spatio-temporal pressure characteristics will be investigated

in the second part of this chapter. On the downside, the pressure signal amplitude is

the same as in the passive case even though the speed of the foil is five times greater

than what the flow speed was. This is due to the fact that the flow velocity at the the

object decreases as the foil passes further away. For this reason, the pressure signal

will also decrease faster with distance in this case than in the passive one.

3.1.3 Active sensing with external flow

Self-generated and outside flow can be combined in order to take advantage of the two

scenarios described above. In this case, unlike in the passive case, the magnitude of

the pressure signal strongly depends on the orientation of the outside flow compared

to the motion of the foil. If the foil moves against the current (Figure 3-5A), the

effective velocity of the foil is greater, and the effects of both flows add up to create

a very strong pressure dip as the foil passes the object (of magnitude 200 Pa, as

compared to 30 Pa with the outside flow or self-generated flow alone). In the case

when the foil moves perpendicular to the outside current (Figure 3-5C), the pressure

signal much weaker, except at the very front of the foil as it approaches the cylinder.

An oblique current (Figure 3-5B) leads to an intermediate effect.

The simultaneous presence of outside and self-generated flows potentially allows to

take advantage of both. Due to the presence of the outside current, the flow velocity

A Total pressure B Unsteady pressure
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Figure 3-5: Combined pressure signature minus steady state

at the object does not drop as the foil gets further. Thanks to the self-generated

flow, the pressure distribution changes with time if the foil passes close enough to it.

Moreover, depending on the direction of the flow, both effects can add up to generate

a very strong pressure signal. In this perspective, active sensing in the absence of

external flow can be considered as a 'worst case scenario'. This is the case that we

will investigate in the next section.

3.2 Characterization of the pressure distribution on

a foil passing a cylinder

This section investigates the pressure distribution on a foil passing objects of various

sizes without external flow. Hassan [16] has already discussed the spatio-temporal

pressure distribution on a foil passing circular cylinders of various sizes and distances,

but the question has remained unaddressed since then. Here, we will first discuss

variations in size and distance for a circular cylinder, and extend the discussion to

ellipses and more complex shapes (like triangles).

3.2.1 Variation in size and distance of a circular obstacle

Figure 3-6 shows the pressure signature of circular cylinders of radius 0.3T and 0.5T

and at distance 0.2T and 0.3T. The general pattern of the spatio-temporal pressure

distribution is the same as described earlier, but for different cylinders, it differs in

A e=-n B 6=-3n/4 C E)=-n/2



peak (and drop) amplitude and spread. For a larger object (Figure 3-6B), the pressure

signal is stronger; as the object is moved away (Figure 3-6C), the pressure signal gets

weaker but its spread increases. As the object gets simultaneously further and smaller

(Figure 3-6C, by a factor 1.6), only the spread of the pressure signal is affected.
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Figure 3-6: Pressure signature: variation in size and distance

These observations are confirmed by Figure 3-7 where the pressure signature of

the reference cylinder (r = 0.2T, d = 0.3T) has been subtracted to the other pressure

signatures for easier comparison.
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Figure 3-7: Pressure signature differences: variation in size and distance
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Figure 3-8 shows pressure signals for more extreme cases: A) a very small and

very close object; B) an object ten times bigger and further; and C) a very big object.
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The figure shows that the general pattern of the spatio-temporal pressure distribution

along the foil remains the same even in these more extreme configurations. The

amplitude and spread of the pressure signal can vary by several orders of magnitude,

but here again, the amplitude of the pressure drop seems to be conserved when r/d

is constant.
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Figure 3-8: Active pressure signature in more extreme cases

The previous observations suggest that the amplitude and spread of the pressure

signal are two relevant features to look at in order to determine the size and position

of a circular cylinder based on its pressure signature. To generalize and quantify

these observations, the amplitude of the pressure drop (max(-p)) has been plotted

in logarithmic scale (Figure 3-9A) as a function of distance (d) and radius (r) of the

cylinder, for d ranging from 0.1T to 10T and r from 0.05T to 5T. The pressure

can locally be approximated by a linear regression in logarithmic space. To classify

configurations in terms of distance and size of the object, Figure 3-9B shows linear

regressions for the four quadrants delineated by d = T and r = 0.5T. The equation

of each plane is written in the corresponding quadrant.

It has been observed with Figures 3-6 and 3-7 that the pressure drop amplitude

seems to be a function of the ratio r/d. The linear regression (Figure 3-9B) shows

that for O.1T < d < T and 0.05T < r < 0.5T, it can indeed be approximated by

a function of r/d: max(-p) - 10(r/d) 5 Pa. However, this is not the case for all

configurations:

* For bigger cylinders, the dependence on the size of the cylinder gets weaker: for

O.1T < d < T and 0.5T < r < 5T, max(-p) ~ 10(r/T)0 2 (T/d) Pa.
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Figure 3-9: Pressure drop amplitude: variation in size and distance.

" For further cylinders, the dependence on the distance gets stronger: for T <

d < 10T and 0.05T < r < 0.5T, max(-p) ~ 30(r/T)2 (T/d)3 Pa.

* For further and bigger cylinders, both effects are combined, such that for T <

d < lOT and 0.5T < r < 5T, max(-p) ~ 10(r/T)(T/d)2.5 Pa.

It is interesting to notice that for small and close objects, the pressure amplitude

only depends on the ratio r/d, while for larger and further objects, it is roughly

proportional to the thickness of the foil. This is due to the fact that close to the

object, the flow velocity is dictated by that of the foil, while further away it also

depends on the amount of water displaced by the foil.

It has also been observed (Figure 3-6) that the pressure spread increases with

the distance of the object, but only gets weakly affected by its size. The pressure

spread is defined as the integral of the absolute value of the pressure over time and

over the length of the foil, normalized by the amplitude of the pressure drop (S =

f p/pz,, dl dt). Figure 3-10A shows how the pressure spread changes with object

distance and size. Whereas the pressure drop amplitude decreases with distance and

increases with size of the cylinder, the spread (S) increases with both distance and

size. Figure 3-10B shows linear regressions for the same four quadrants as in Figure

3-9B.

e For small and far cylinders (T < d < lOT and 0.05T < r < 0.5T), the spread is

almost independent on the distance: S ~ 10-2(r/T)0-6 m.s.

A 20*log(rnax(-p)) B Linear regressions
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Figure 3-10: Pressure spread: variation in size and distance

* For bigger cylinders (T < d < lOT and 0.5T < r < 5T), the spread is slightly

more sensitive to changes in distance: S ~ 10-2(r/T)0.5 (d/T)0 ' m.s.

" For closer cylinders (O.1T < d < T and 0.05T < r < 0.5T), the spread also is

slightly more sensitive to changes in distance: S ~ 10-2(r/T)0.7 (d/T) 0 2 m.s.

" For closer and bigger cylinders (0.01T < d < 0.1T and 0.OT < r < 5T), the

spread is almost as sensitive to distance as to size: S 10-2(r/T)0-5 (d/T) 0 3

m.s.

3.2.2 Elliptical shapes

In this section we investigate (mainly qualitatively) how changes in aspect ratio and

orientation of a cylinder affect the spatio-temporal pressure distribution on the foil.

For a foil moving horizontally, we define the horizontal and vertical radii of an el-

lipse (respectively rh and r,) as shown in Figure 3-11. We define the radius (r) of

an elliptical cylinder as its mean radius: r - rlh"v To understand how changes in

the three radii affect the pressure signature of the object, we compare in Figure 3-12

the pressure signature of a circular cylinder of radius r = 0.5T to elliptical cylinders

of eccentricity e = 0.75 with the same A) vertical radius; B) horizontal radius; and

C) radius, as sketched in Figure 3-11.

In the four cases plotted here, the minimum distance between the cylinder (as de-

fined in Figure 3-2) is d = 0.32T. The general pattern of the spatio-temporal pressure



Figure 3-11: Cylinders used to investigate changes in horizontal and vertical radius

distribution is again the same for all cylinders, but slight differences in amplitude can

be observed. The most noticeable trend is that a larger horizontal radius produces a

much larger pressure signal.
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Figure 3-12: Pressure signature: variation in horizontal and vertical radii

More information can be extracted from the pressure difference between the ellip-

tical cylinders and the circular cylinder (Figure 3-13). Figure 3-13A shows that the

pressure peak and drop are both much stronger for a cylinder with a larger horizontal

radius. However, unlike Figure 3-7A (where both horizontal and vertical radii are

2rh

B (DI2r
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Figure 3-13: Pressure difference: variation in horizontal and vertical radii

larger), Figure 3-13A shows patterns slightly different from Figure 3-12: it is much

more symmetric as regards to the dashed line. Figure 3-13B shows that changing the

vertical radius has very little effect on the pressure signature of the cylinder. Figure

3-13C, that corresponds to an ellipse of intermediate size, exhibits an intermediate

pattern.

To visualize the effect of cylinder orientation on the pressure, Figure 3-14 shows

the pressure difference between a circular cylinder of radius r = 0.5T at distance

d = 0.32T and ellipses of same radius (located at the same distance) oriented at dif-

ferent angles. It can be observed that the pressure signal is stronger for the horizontal

ellipse (Figure 3-14A) and weaker for the vertical ellipse (Figure 3-14C), as explained

in the previous paragraph. For an ellipse oriented at r/4 (Figure 3-14B), the pressure

drops slightly earlier than for the cylinder due to the asymmetry of the configuration.

It is also interesting to notice that the pressure differences (when compared to a same

size circle) for ellipses of parameters yt and -- t are of opposite sign.

3.2.3 More general shape variations

Figure 3-15 shows the pressure difference between a circular cylinder of radius r

0.5T at distance d = 0.32T and almost triangular (Figures 3-15A and 3-15B) and

square shapes (Figures 3-15C and 3-15D). The corresponding shape is sketched in

the bottom left corner of each plot. As shapes become more elaborate, the pressure

signal also increases in complexity. However, the pressure difference (when compared

A r=-0.5T/(1-p), p=0.2 B r=0O.5T/1+u), u=0.2 C r=-0.5T, P=0.2
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Figure 3-14: Pressure difference: variation in orientation, r = 0.5T and [A 0.2e

to a same size circle) for shape parameters of opposite signs are still opposite.

It has been observed in Figure 3-13 that changing the horizontal diameter of an

ellipse affects the pressure signature much more than changing its vertical diameter.

This is intuitively due to the fact that changing the horizontal diameter strongly

changes the shape of the ellipse close to the foil, whereas changing the vertical di-

ameter mainly changes the shape of the ellipse further from the foil. Further from

the foil, the effects of the no-flux condition are more diffuse, and the fluid velocity is

smaller, so the pressure on the foil is primarily affected by the shape of the cylinder

closest to it. To confirm this interpretation and somehow quantify it, we investigate

the impact on the pressure signature of two transformations: cutting 1/4 of an el-

lipse and changing its aspect ratio (Figure 3-16). Figure 3-16C shows three cylinder

shapes. The reference cylinder (cylinder o) has parameters r = 3.81 cm = 1.4T and

y1 = -0.2. The foil passes at distance d = 0.32T of all cylinders. Figure 3-16A is a

plot of the spatio-temporal pressure difference between cylinders a and o, where a is

the same cylinder as o, cut at 3/4 of its height. There is only a 3 Pa difference, despite

the fact that 1/4 of the ellipse has been cut. Cylinder b shows how much (or how
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little) you need to alter the aspect ratio of ellipse o to get a pressure difference of the

same magnitude (as plotted in Figure 3-16B): you do not need to alter it much. The

pressure difference due to cutting the cylinder is more global because, as mentioned

earlier, changes in the shape far from the foil produce diffuse pressure differences, but

the amplitude is the same as when subtracting 0.03 from p.

3.3 Sensitivity analysis

We now have a good picture of the spatio-temporal pressure distribution on a foil

passing an object and how it is affected by changes in distance, size and shape of the

object. Since our goal is to locate and identify objects using pressure sensors, it is

of interest to know how sensitive the pressure measured by the foil is to variations

of these parameters. A quantitative sensitivity analysis is carried out in this section.

We define the pressure sensitivity in parameter x as Sx = max (|dp/dxl) because it is

easy to relate to technical limitations. Plots of sensitivity defined as the integral over

the length of the foil and over time of |dp/dx| can also be found in Appendix A.

3.3.1 Variation in distance of a circular obstacle

Figure 3-17 shows the pressure sensitivity to distance (d = d/T) and how it de-

pends on the distance and size of the cylinder. In accordance with intuition, the

pressure is most sensitive to distance for close and big objects. A linear regression

in logarithmic space (Figure 3-17B) gives a rough approximation of the sensitivity

as Sg ~ 10(r/T)(T/d)3 . However, a closer look at Figure 3-17A reveals that the

sensitivity decreases fastest for far and small objects. Sensitivity to distance is plot-

ted as a function of distance in Figure 3-18 for r = 0.05T, r = 0.5T and r = 5T.

Linear regressions for r = 0.5T are plotted for d < T and d > T. It shows that

a better approximation for the sensitivity is Sg ~ 20(r/T)(T/d)2 for d < T and

Sg ~ 40(r/T)(T/d)4 for d > T. This result indicates that sensitivity to distance

decreases very quickly when objects get further than the foil thickness.
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3.3.2 Variation in size of a circular obstacle

Figure 3-19A shows the pressure sensitivity to size (r = r/T) and how it depends on

the distance and size of the cylinder. The sensitivity decreases with distance but is

not monotonic with size. For a given distance d, the sensitivity to size is maximum

for r/T = 0.6N/d/T. The sensitivity to size is plotted against distance in Figure

3-19B for r = 0.05T, r = 0.5T and r = 5T. Linear regressions for r = 0.5T are

plotted for d < T and d > T and give the approximation S, - 20(T/d) for d < T and

S , ~30(T/d)3 for d > T. For r = 0.05T, S, ~ 2(T/d) on the whole distance range

considered. For r = 5T, Sf,~ 3(T/d) 3 for d > 0.3T.
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Figure 3-19: Sensitivity to size

3.3.3 Variation in eccentricity of an elliptical obstacle

Figure 3-20A shows the pressure sensitivity to eccentricity for a horizontal ellipse of

radius r = 0.5T and how it depends on the distance and eccentricity of the ellipse.

The sensitivity in eccentricity is mostly independent of the eccentricity while it clearly

decreases with distance. The sensitivity to eccentricity is plotted against distance in

Figure 3-20B for y = 0 and yt = 0.5. Linear regressions for t = 0 are plotted for d < T

and d > T. They give the approximation S,, ~ 7(T/d) for d < T and S,, 13(T/d) 3

for d > T.



A 20*Iog(max(jdp/djpj))5 B
0.950 0

o p=0
0.8 40 * p=0.5

0.730
20 ,

0. 20-
0.510 *

x0.5M a0y=-23x+17
0.4 0 E 0-0 E
0.3 10

0.2 -20 -20 y=-60x+22
0.1 -30

-40 -40.
-0.5 0 0.5 1 -1 -0.5 0 0.5 1

log(d/T) (dB re 1Pa) log(d/T)

Figure 3-20: Sensitivity to eccentricity for a horizontal ellipse

3.3.4 Variation in orientation of an elliptical obstacle

Figure 3-21A shows the pressure sensitivity to orientation (d = a/(27r)) for an ellipse

parameterized by r = 0.5T and |p| = 0.2. For small distances, the sensitivity has

a slight non monotonic dependence on a (it is highest for a = 1/3 and a = 2/3),

while it clearly decreases with distance. The sensitivity to orientation is plotted as a

function of distance in Figure 3-21B for a = 0.77r and a = 7r. Linear regressions for

a = 7r are plotted for d < T and d > T. They give the approximation S, 5(T/d)"

for d < T and S. ~ 14(T/d)3 for d > T.
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Figure 3-21: Sensitivity to orientation



3.3.5 More elaborate shape variations

Shapes, as defined in Eq. 2.2, are parameterized by a series of pk terms. Based on

the pressure field generated by an object in steady flow ([2]), the sensitivity to Pk is

expected to decrease faster with distance for larger ks. Sensitivity to yUk is plotted in

Figure 3-22 for k E {1, 2, 3} for cylinders of radius r = 0.5T. Considering a circle

as the reference shape, p1 corresponds to an elliptical deformation, P2 to a triangular

deformation and p3 to a square deformation. Whereas for d < T the sensitivity is

almost the same for the three pkS, at d = 10T, S, 1 ~ 6S, 2 - 30S1 . For d > T, the

sensitivity to highest order terms decreases fastest, which confirms our expectations.
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Figure 3-22: Sensitivity to shape

3.4 Guidelines for the use of pressure sensors for ac-

tive object identification

3.4.1 Sensing range

In Section 3.3, we have characterized the maximum pressure measured by a foil passing

an object as a function of the size and distance of the object. We have also identified

the pressure sensitivity to changes with size, distance and shape of the object. We can

now use these results to estimate the capabilities of a foil equipped with distributed



pressure sensors in terms of object detection and identification.

Depending on the pressure sensors characteristics and background noise, we can

define Apo as our pressure resolution. As defined earlier, f = r/T and d d/T are

the normalized radius and distance of the object.

We have observed in Section 3.2.1 that the pressure amplitude is about

max(-p) ~ 10 Pa, for j< 1,
(3.1)

max(-p) ~ 10 ~ Pa, for > 1.
d5/2

Using the fact that the pressure is proportional to the square of the foil velocity (V)

(see Section 2.3), we see that the ability to detect an object by passing in front of it

with a foil equipped with pressure sensors requires:

Apo < 40V2 Pa, if < 1,
(3.2)

Apo < 40V2 Pa if > 1.
don '

Using our sensitivity analysis, the same reasoning can be applied to translate the

pressure resolution into resolution in terms of size, position and shape of the cylinder.

We know from Section 3.3.1 that a distance change Ad causes pressure variations of

order

Ap ~ 80V 2 Ad-~ Pa, if d< 1,
d2~ (3.3)

Ap ~ 120V2Ad ~ Pa, if d > 1.
d4

Therefore, the error in distance estimation E = Ad/d based on pressure measure-

ments will be on the order of

Apo d
{Ea 80 V2 f fd<1, 

(3.4)
Ba Apo d d1

E 120V 2 if > 1.



We can similarly use the results from Section 3.3.2 to approximate the error in size

estimation E = Ai/ for an object of diameter comparable to the thickness of the

foil. In general this will provide a lower bound of the error.

E Po~ d ifd2< 1
80V 2 f (3.5)

Quatiyig te hae Er ~ - if > 1.Ef 120V2 ifd>1

Quantifying the shape estimate precision is more complicated as it depends on more

parameters. For the sake of argument, we can use the result of Section 3.3.3 to

estimate the conditions under which we will be able to distinguish a horizontal ellipse

of shape parameter y and radius r = 0.5T from a circle:

Apo < 30V2 Pa, if j< 1,
d (3.6)

Apo < 50V2-- Pa, if d> 1.

Let us now consider the canonical example that we have used so far: a foil moving

at speed V = 0.5 m/s past a circular cylinder of radius r = 0.5T. We assume here

that our pressure resolution is Apo = 5 Pa. According to Eq. 3.2, we will be able

to detect the presence of an object if its distance to the foil is less than 0.8T. To

have a 10% precision on our estimates of distance and size, we need to pass less

than 0.2T away from it. Finally, if the object was an ellipse of parameters r = 0.5T

and y = 0.1, we would need to pass 0.1T away to tell that it is not a circle. It is

also interesting to notice that, although when the object is far the pressure is more

sensitive to elliptical shapes than to triangular or square shapes, at the distance at

which you would be able to identify an ellipse, the pressure is as sensitive to triangular

and square deformations as to elliptical deformations. However, in terms of shape

estimation, trying to identify too many parameters might worsen the overall estimate.



3.4.2 Sensor density

The above discussion is purely based on variations in pressure due to the presence

of objects in the flow. However, the quality of the estimate will also depend on the

spatial density of sensors and sampling rate, as well as on the inference algorithm

used.

It has been observed that in the active object identification scheme, the pressure

signal is not simply translated in time, but each point along the foil measures a

different pressure trace. Therefore, high sampling frequency and high spatial density

are not equivalent. The signal is characterized by a pressure peak at the front followed

by a pressure drop along the first two thirds of the body, whereas the pressure along

the last third of the foil is only weakly affected by the presence of a nearby object.

This observation indicates that, to actively identify objects, pressure sensors should

be distributed along the first two thirds of the foil.

We have observed in Section 3.2.1 that the size and distance of an object can be

identified by looking at the pressure spread and amplitude. However, the pressure

signal needs to be looked at in more details to be able to identify the shape of an

object. The typical magnitude of the pressure gradient, for the case considered, is 1

kPa.m-' (see Figure 3-23). If we consider that 5 Pa is the smallest pressure difference

that can be resolved, then a spacing of 5 mm gives a virtually infinite resolution.
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Figure 3-23: Pressure gradient signatures: (A) for a cylinder of r = 0.5T and distance
d = 0.3T and (B) is the difference with a cylinder 1.5 times bigger and further away.
A positive pressure gradient corresponds to an increase in pressure from the front of
the foil to its tail.
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Chapter 4

Experimental object identification

4.1 Experimental set-up

4.1.1 Instrumented hydrofoil and testing tank

Experiments have been conducted in the SMART (Singapore-MIT Alliance for Re-

search and Technology) Centre testing tank in Singapore to test the method devel-

oped to identify objects in the flow using pressure sensors. The tank has dimensions

3.6 x 1.2 x 1.2 meters. As shown in Figure 4-1A, the moving body used to generate

flow motions and sense pressure is a NACA 0018 foil (chord c = 15 cm and span

s = 60 cm) cast with internal 3.18 cm PVC tubing to transmit pressure from taps

at the foil's mid span to the top. The foil is dragged past a static cylinder using

an x-y gantry system supplied by Parker Engineering and controlled using Parker

motor controllers and proprietary motion control software. Honeywell 19CO15PG4K

pressure sensors are mounted on top of the foil, and measurements are collected at a

sampling rate of 500 Hz via a NI USB-6289 DAQ. The location of the sensor ports is

shown in Figure 4-1B.

4.1.2 Flow visualization

Particle image velocimetry (PIV) is used to visualize the flow structures associated

with measured pressure signals. PIV relies on the imaging of particles suspended
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Figure 4-1: Experimental set-up. (A) picture of the experimental set-up (the foil is
moving towards the photographer). (B) schematic of the cross-section of the experi-
ment.

in the flow field using a high speed digital camera, and illuminated using a thin

high-intensity laser sheet, as can be seen in Figure 4-2. PIV images represent a two-

dimensional picture of the fluid flow. Post-processing is done on the images using

correlation to create a vector field that can be used for visualization or calculation

of flow characteristics. Imaging is accomplished using a Phantom V10 high-speed

camera placed below the tank, using a 35 mm lens. The camera is capable of taking

full resolution images of four megapixels at a frequency of 500 frames per second. For

these experiments, frame rates are limited to 300 and 200 Hz and exposure times are

between 1 and 3 milliseconds.

4.1.3 Experimental parameters

The foil is dragged at velocity V = 0.5 m/s past a static cylinder of elliptical cross

section oriented at various angles. At its closest point, the foil is 5 to 10 mm away

from the cylinder. The shape parameters (as defined in Eq. 2.2) of the elliptical

cylinder are: R = 3.81 cm, [pl = 0.2. The major radius is oriented at T/4, 7r/2 or

37r/4, which corresponds to ac - {7r/2, 7r, 37r/2}. The results from seven runs are
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Figure 4-2: Flow visualization

discussed in the following paragraphs. The parameters for each run are summarized

in Table 4.1 (where the axis of symmetry of the foil defines y = 0).

Table 4.1: Cylinder parameters

Run # y/c r/c p
1 0.43 0.25 -0.2
2 0.43 0.25 -0.2
3 0.43 0.25 -0.2
4 0.43 0.25 -0.2
5 0.43 0.25 0.2i
6 0.45 0.25 0.2i
7 0.43 0.25 -0.2i

4.2 Pressure measurements analysis

The length of the tank allows the foil to reach a steady state before passing the

cylinder. As discussed in Section 3.1, the steady state is subtracted to the pressure

measurements in all the analysis that follows. The mean slope of the pressure is also

subtracted to the measurements to account for changes in hydrostatic pressure along

the length of the tank.



4.2.1 Noise characteristics

Typical pressure traces (the pressure traces of Run 1) are shown in Figure 4-3A. Three

distinct time periods are identified: before t = 0 s (before passing the cylinder), from

t = 0 s to t = 0.4 s (while passing the cylinder) and after t = 0.4 s (after passing

the cylinder). Before t = 0 s, the signal is dominated by noise. Figure 4-3B shows

the corresponding power spectrum. The noise is clearly not white but the spectrum

is rather messy, without any strong dominant component (the strongest component

is around 30 Hz). Between t = 0 s and t = 0.4 s, the signal is dominated by the

interaction between the foil and the cylinder: a clear pressure peak is measured by

sensor 1, while sensors 2 and 3 measure a strong pressure drop. This time period

will be discussed in more details in the next section. The last period, like the first

one, is dominated by noise, but its characteristics are different. The noise of the last

period is dominated by a low frequency (2 Hz) component, as confirmed by the power

spectrum Figure 4-3C.
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Figure 4-3: Pressure traces and power spectra

The main sources of noise are electrical noise from the motor and mechanical

vibrations of the foil. The high frequency components (like the 30 Hz component) are

most likely electrical noise, while low frequency components (like the 2 Hz component)

are most likely due to mechanical oscillations of the foil. Other potential sources of



noise are electrical noise from other sources and background noise of the fluid flow.

To take the noise and its variability into account, the measurement-noise covariance

R' used in the UKF is calculated for each run based on the pressure measured 0.5

to 0.3 s before the characteristic drop of pressure at the second sensor (the matrices

can be found in Appendix B).

4.2.2 Comparison between measured and simulated pressure

A close-up of the pressure measured by the sensors when passing the cylinder for

Run 1 is plotted in Figure 4-4A in solid lines (the plots for all runs can be found in

Appendix C). It is compared to the pressure predicted by the potential flow model

(dashed lines). Here again, the time period can be split into two periods: from t = 0

s to t = 0.2 s, the measurements are noisy, but they match the predictions; for t > 0.2

s, predictions and measurements do not match any more. A vertical black dashed

line indicates the time until which measurements and predictions match. As will be

discussed in Section 5.4, the flow on the foil separates and this is why the potential

flow model stops being valid. Only pressure measurements before the black dashed

line are used to locate and identify the cylinder.
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Figure 4-4: Theoretical and measured pressure on a foil passing a cylinder.

The theoretical spatio-temporal pressure distribution along the foil is also plotted

in Figure 4-4B, showing the sensor locations (horizontal dashed lines), the position of

the cylinder center as respect to the foil (oblique dashed line), and the time at which

the model stops being valid (vertical dashed line). The figure shows that the first



sensor is located where the pressure peak is largest, while the second one, located at

maximum width, lies where the pressure drop is strongest. It can also be observed

that the flow roughly starts separating when the maximum width of the foil passes

the cylinder.

4.3 Object identification using pressure measurements

4.3.1 Process noise

In addition to noise, several sources of error affect the process of identifying a cylinder

based on pressure measurements. In the measurements themselves, an error of a few

pascal in the subtraction of the steady and hydrostatic pressure is very likely. The

pressure sensors might also have a slight drift. Modeling is the other main source

of error. Modeling errors can be geometric (errors in the shape of the foil, location

of the sensors, finite expansion for the shape of the cylinder, ...) or hydrodynamic

(mostly viscous effects). To account for all these errors, an artificial process noise is

added to the state-space representation of the problem. Since this noise is artificial, it

cannot be directly measured but has to be empirically estimated. The process-noise

covariance is chosen of the simplest form: diagonal with two degrees of freedom-one

for the size and location parameters (x/c, y/c and R/c) and the second one for the

shape parameters (p, and p.). The generic process-noise covariance is therefore:

a 0 0 0 0

0 a 0 0 0

Re= 0 0 a 0 0 (4.1)

0 0 0 b 0

0 0 0 0 b



a and b are empirically chosen such as to optimize the performance of the filter. The

values chosen for the present experiments are:

a = 4.4 x 10-6

b = 2.5 x 10-5

4.3.2 Strategy and initialization

Due to the amount of correlated noise and errors inherent to the experiments, all

attempts to fully identify the cylinder (location and geometry) in one pass have been

unsuccessful. However, fish have been observed to pass several times in front of new

objects ([33]), and it seems reasonable to assume that they first locate the objects

and estimate their size before refining their shape estimate. A similar approach is

used here: the first pass is used to get a first estimate of the position (x and y) and

size (R) of the cylinder. A second pass (using the same data) refines the first guess

and estimates the shape parameters (tx and p..).

For all experiments, the UKF starts as the pressure stops being statistically zero

and is initialized with 100% error. The covariance matrix is empirically initialized to:

0.4 0 0
Pxo= [0 0.4 0 (4.2)

0 0 0.4

After the first pass, the final location and size estimates are used to initialize the

UKF for the second pass, and the shape parameters are initialized to zero (a circle).

The covariance matrix of the second pass is initialized as a block diagonal matrix.

The first block is the final covariance matrix of the first pass augmented by 4 x

10-3 on the diagonal (to account for the fact that the best estimate under circular

assumption might not be the same as under elliptical assumption) and the second

block is (084 0.04). The UKF starts slightly later for the second pass than for the first

pass so as to emphasize the data that have the lowest noise/signal ratio.



4.3.3 An example of object identification

The process of cylinder size and location estimation as described above is shown in

Figure 4-5 for Run 6. The evolution of the three parameters is plotted in solid lines.

They all stay above their theoretical value (dashed lines) during most of the run, but

end up converging to their theoretical value. Configurations corresponding to four

times indicated by letters a to d are also sketched. The dashed blue ellipse shows the

actual position and shape of the cylinder while the red circle shows the UKF estimate

of the position and size of the cylinder at the corresponding time.

Size and position estimation

--- x/c

----4--

------- ---

a b c d
0 0.05 0.1

Time (s)
0.15 0.2

Figure 4-5: Experimental object localization

Figure 4-6 shows the evolution of all parameters during the second pass. The

value of the location and size parameters, identified during the first pass, do not

significantly change during the second pass. The shape parameters immediately jump

to their actual value and then slightly oscillate around this value.
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Figure 4-7 shows the measured (solid lines), filtered by UKF (dashed lines) and

predicted by theory (dotted lines) pressure for the first (Figure 4-7A) and second

pass (Figure 4-7B). As can be seen, the measurements are very noisy, especially at

sensor 3, but the filtered pressure is very close to the predicted pressure, especially

during the second run. It appears clearly that as the filtered pressure gets closer to

the predicted pressure, the estimated shape gets closer to the actual shape of the

cylinder. This run is the perfect example of the first pass being used to get a rough

estimate of the size and location of the cylinder, and the second pass building on the

estimates of the first one to get a more precise estimate of the object shape.
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Figure 4-7: Measured (solid lines), filtered by UKF (dashed lines) and predicted by
theory (dotted lines) pressure for the first (A) and second (B) pass.

4.3.4 Performance of experimental object detection and iden-

tification

The plots showing the evolution of the estimated parameters as well as the measured,

filtered and predicted pressure traces for all runs can be found in Appendix D. It can

be seen that all object localizations are quite accurate. It is interesting to notice that

the estimated circle best fits the part of the ellipse that is closest to the foil. Similarly,

even when the global shape of the ellipse is not very accurately identified (like in Run

4), the estimated ellipse fits very well the bottom part of the cylinder. Run 5 and

7 are also interesting. For these runs, despite the fact that the size is not very well



estimated, the shape estimate is surprisingly accurate. The object size and shape are

encoded separately and, to some extent, they can be estimated independently.

We will now look more globally at the performance of experimental object iden-

tification and compare it to the performance predicted by our analysis in 3.4.1. The

results of experimental object identification are summarized in Table 4.2. For each

run, Table 4.2 displays:

0 o- = /| Rc ||2

* p = y/T, the actual vertical position of the cylinder center

* r= r/T, the actual mean radius of the cylinder

p p, the actual shape parameter of the ellipse

Sd= d/T = - fI1 - |- 0.5, the minimum distance between the foil and the

cylinder

* A Q the error percentage in final estimate of the vertical position of the cylin-

der center

" Af/f, the error percentage in final estimate of radius of the cylinder

* Ad/d, the error percentage in final estimate of the minimum distance between

the foil and the cylinder

Using the analysis developed in Section 3.4.1, with Apo = 10 Pa, we expect distance

and radius errors on the order of 0.4d, which is very close to observed errors.

Finally, it is interesting to notice that the distance to the cylinder is the parameter

that is best estimated, which stands even more clearly if absolute errors are considered

instead of percentages. This indicates that the distance to the cylinder might be a

more relevant parameter than the object center location. We also observed that the

portion of the ellipse that is closest to the foil is usually best estimated. These two

observations suggest that a local surface parameterization might be more appropriate

to the use of pressure sensors than our global shape parameterization. Moreover,



Table 4.2: Results of experimental object identification

Run # o- A p. d Aq/P Af/f Ad/d lAp|
1 6 2.4 1.4 -0.2 0.2 0.2 0.2 0.1 0.3
2 8 2.4 1.4 -0.2 0.2 0.2 0.1 0.1 0.3
3 8 2.4 1.4 -0.2 0.2 0.003 0.2 0.1 0.2
4 9 2.4 1.4 -0.2 0.2 0.2 0.1 0.1 0.1
5 7 2.4 1.4 0.2i 0.5 0.3 0.3 0.4 0.1
6 7 2.5 1.4 0.2i 0.6 0.2 0.3 0.2 0.1
7 8 2.4 1.4 -0.2i 0.5 0.3 0.5 0.1 0.1

in the perspective of underwater vehicle navigation, a local characterization that

could apply to any obstacle would also be more appropriate than a global shape

identification.
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Chapter 5

Discussion and further simulations

5.1 Sensing range

Hydrodynamic imaging is known to be a short-range sense (1361), and in the exper-

iments discussed in the previous chapter, the foil passes less than 0.1 body length

from the object. How far away can an object be detected (depending on its size), and

is there a way to increase this distance?

The first half of the question has been investigated in Section 3.4.1 based on the

amplitude of the pressure signal. We will now look at the actual performance of

the algorithm using simulated pressure data. The pressure is simulated using the

algorithm described in Section 2.3, and a white Gaussian noise of variance 20 Pa2 is

added to simulate noise of magnitude comparable to experimentally observed noise

(see Appendix B). The other parameters used in the simulations are set to the values

identified for the experiments (Section 4.3.1 and 4.3.2) and the strategy described in

Section 4.3.2 is used to identify the object. The cylinder used in the simulations has

shape parameters r = T, p, = -0.2 and p. = 0.1 and the speed of the foil is set to

V = 0.5 m/s.

Using these parameters and strategy, it is found that the detection range is about

d = T. A localization and identification process is shown in Figure 5-1A&B for such

a distance. At that distance, it takes a while before the foil notices the presence of

the object, but once it detects it (t ~_ 0.1 s), the position and size parameters con-



vergence is very fast. Figure 5-1C&D show the corresponding simulated (solid lines)

and filtered by UKF (dashed lines) pressure traces.
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Figure 5-1: Identification of an ellipse located at maximum sensing distance.

The pressure signal amplitude at that distance is around 8 Pa, i.e. between once and

twice the standard deviation of the noise. Table 5.1 summarizes the object identi-

fication performance in this simulation. It displays the (final) estimates and their

respective error, as well as the corresponding Apo based on the analysis of Section

3.4.1. The values found for Apo are about one order of magnitude smaller than the

0.3 0.4



noise standard deviation. These results show that our UKF is very good at filter-

ing white Gaussian noise. In the presence of white Gaussian noise, our algorithm

can achieve estimates much more accurate than would be expected from the value of

the standard deviation. However, the distance at which it can detect objects is still

dictated by the noise standard deviation. It seems that the main limitation of the

algorithm is its sensing range.

Table 5.1: Object identification performance using simulated data

Parameter f d t
Value 1 2.8 1 -0.2 + 0.li
Error 0.1 0.2 0.05 0.07
Apo 2 X 1 0.5

In all the cases considered so far, the flow is generated by the moving foil. How-

ever, as discussed in Section 3.1, the presence of an outside flow can considerably

increase the amplitude of the pressure signal, thus allowing objects to be detected

further away. The same simulation as described above has been run with the addition

of an outside flow of velocity U = 0.1 m/s oriented against the motion of the foil. It is

found that the object can be detected as far as d = 2.5T away from the foil. This is a

considerable improvement (as compared to d = T in static water), for the addition of

a relatively slow outside flow. The convergence of the location and shape parameters

at that distance is shown in Figure 5-2A&B. The corresponding measured and filtered

pressure (respectively solid and dashed lines) are shown in Figures 5-2C&D. Like in

the absence of outside flow, the amplitude of the pressure signal is comprised between

once and twice the standard deviation of the noise.

In reality, the presence of outside flow might increase the ambient noise, which is

not taken into account here, but it clearly has the potential to increase the detection

range.
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5.2 Impact of sensor density on object identification

Another limitation of the algorithm performance using experimental measurements

is the very limited number of pressure sensors used. Due to the available sensor size,

only three pressure sensors have been used in the experiments described in Chapter

4. With three sensors, an error or drift of a few pascals on any sensor can seriously

impair the performance of object detection and identification.

To illustrate this phenomenon, the same simulation as the one described in Sec-

tion 5.1 (without external flow) has been run, simulating a drifting sensor. A linear

drift reaching 10 Pa at t = 0.3 s has been added to sensor 2 to simulate a drifting

sensor (so it is a drift of 33 Pa/s). The drift does not significantly impair the ability

to detect the presence of the object, but it strongly affects the global performance

of object localization and identification. As can be seen in Figure 5-3A, when the

object is detected (shortly before t = 0.1 s), the estimates quickly jump to values

close to their actual value, but then drift away (unlike in Figure 5-1A). The second

pass (Figure 5-3B) does not improve the size and location estimate and the final

estimated shape is very different from the actual shape. Figures 5-3C&D show the

corresponding pressure traces.

Having more pressure sensors would make the algorithm performance less sensi-

tive to the presence of a faulty sensor. The simulations with and without the faulty

sensor have been run with a denser array of pressure sensors (20 sensors equally dis-

tributed on the front two third on both sides of the foil). As can be seen in Figure

5-4A, increasing the sensor density does not increase the distance at which objects can

be detected, but it significantly increases the convergence speed of the parameters.

Figure 5-4 shows the results of object detection and identification using the denser

array of pressure sensors.

When one of the sensors is faulty, the advantage of having a denser array of pres-

sure sensors is more significant. Figure 5-5 shows the results of object detection and

identification with an array of 20 pressure sensors, with the one located at maximum

width on the side of the object having a linear drift. As expected, the drift of one



A Size and position estimation

0 0.1 0.2 0.3 0.4
Time (s)

0.2

0 150.05O
-0.05

-0.15 -0.1 -0.05 0 0.05 01 0.15 -0.1 -0.05 0 0,05 01 0.15
Posiion (m) POSRMM (M)

0.25 C 01
02 0.08

E0.15 '90.06

0.1 0.04

0.020.05

-01 0 0.1 0.2 0 005 01
Posioon (m) Posion (m)

C Pressure

0.1 0.2
Time (s)

- sensor 1j
- sensor 2
- sensor 3

0.3 0.4

B Shape identification

Ti

0.12

0.1

0
-0.02

-0 15 -0 1 -0.05 0 0.05
PoL40in (m)

C
0.15

005

01

-0.1 -0.05 0 0.05 0 1 0.15
Posibon (M)

-20'-
0

me (s)

005 b

01
-01 -005 0 0.05 0.1

0-15 d

01

0 
0 5

0 0
-0.05 0 0,05 0.1 0.1S

POSAge (M)

0.1 0.2
Time (s)

Figure 5-3: Identification of an ellipse located at maximum sensing distance, with a
drifting sensor

20

10

a.
-10

-20
0 0.3 0.4



A Size and position estimation

0.1 0.2
Time (s)

0.3 0.4

0.1
£008 ..:
004

-0.1 -0.05 0
PostiOn (M)

01 7

£008

002

0 0.05 0.1
Posilon (m)

B Shape identification

Time (s)

SIa 0' b00 1
0.08 ' , £0

00D4 I00

002 0.02

-015 -01 -0.05 0 -01 -0.05 0
Position (m) Posiion (m)

-0,05 0 005
Posiion (i)

0 0.05 OI
Position (m)

Figure 5-4: Identification of an ellipse located at maximum sensing distance, with a
denser array of pressure sensors

-0.2'-
0

-005 0 005
Position (mn)



A Size and position estimation

0 0.1 0.2 0.3 0.'
Time (s)

0.08
005

00

0.02
-005

01

-0.15 -01 -0.05 0 0.05 0.1 0.15 -01 -000 0 0.00
01 00 0 0.0

Posdbon ()Posldon (m)

000 C d
0 06 0 0

O0 0.04

002 0.02

0 0

-005 0 0.05 0 005 01
Posiion (M) Positon (M)

B Shape identification
0.6 a d X/

( 0.4
E -- R/c
L -pX
"o. 0.2x-

0
0

-0.2- - - -- -- -- -- --

-0.4
0 0.1 0.2 0.3 0.1

Time (s)

o,a oos-,

0.08

006 , 008

0,04 10040

002 0.02

-002 0

-015 -0.1 -005 0 -01 -005 0
Position (M) Position (m)

-0.05 0 0.05
Position (M)

Figure 5-5: Identification of an ellipse located at maximum sensing distance, with a
drifting sensor in a denser array of pressure sensors

0 0.05 0.1
Positon (m)



sensor goes unnoticed in the presence of a dense array of pressure sensors.

More interestingly, a dense array of pressure sensors is also more robust to a given

probability of failure of the pressure sensors. For example, consider sensors that have

a probability 1/3 of drifting. Assume the slope of the drifting sensors is given by a

normal distribution of mean 0 and standard deviation 33.33 Pa/s. Figure 5-3 illus-

trates this case with 3 sensors (except that the drift is not randomly chosen) and

Figure 5-6 illustrates it with 20 sensors, one every three sensors drifting. Comparing

Figures 5-3 and 5-6 shows that increasing the number of sensors improves the conver-

gence of the object identification algorithm and the accuracy of the final estimate.
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A dense array of pressure sensors is therefore more robust to a probability of some

sensors being defective, but there is also another reason why you might want to use a

dense array of pressure sensors. One way to estimate the appropriate sensor density

is to simply look at the pressure gradient along the foil passing an object, as done in
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Section 3.4.2. An alternative approach is to examine the effect of sensor density on

object identification performance.

It has been observed in Section 3.1, that in the active sensing scheme, sampling

frequency and sensor density are not equivalent, due to the fact that the pressure

signal along the foil does not simply translate in time. Therefore, there might be

an optimal sensor density below which the lack of spatial density cannot be com-

pensated by a higher sampling frequency. The optimal density might very well de-

pend on the size and distance of the cylinder, but by way of example, the case of

the foil passing at d = 0.3T from a cylinder with geometry parameters R = 1.5

cm and y = 0.2i is investigated here. White Gaussian noise of standard deviation

2 Pa is added to the simulated pressure measurements. Between 10 and 70 pres-

sure measurement points are evenly distributed along the front two thirds of the

foil (as illustrated in Figure 5-7C) and the sampling rate (f) is chosen as the ratio

f = 20000/(number of sensors) (such that the average frequency is 500 Hz). The

final error is calculated as E = I + ( + + A p2 + Ayt), where A(-) is the

difference between the final estimate an the actual value of parameter (.). For each

simulation, the convergence time (time elapsed before E < 0.2) and the final error is

calculated. Each case is simulated twelve times and the time of convergence and final

error mean and standard deviation are plotted (Figure 5-7A&B). Both convergence

time and final error plots suggest that, at least for the configuration considered here,

when the sensor spacing is greater than 5 mm, the performance of the object iden-

tification decreases. Amazingly, the optimal spacing suggested by these observations

scales with the actual spacing of lateral line canal neuromasts in the trunk canal of

blind Mexican cave fish that can be estimated from Figure 1-1A (roughly 1 mm for

a 6 cm long fish).

5.3 Pressure sensors or pressure gradient sensors?

The work presented in this thesis is based on pressure measurements. However, canal

neuromasts of fish are known to respond to pressure gradients ([7]). Would there be



A Convergence Time

Figure 5-7: Convergence time (A) and final error (B) of the object identification as a
function of sensor spacing. (C) shows the sensor locations for a spacing of 6 mm.

any advantage in using pressure gradient sensors instead of pressure sensors? As we

shall see, probably...

When moving in open water, a fish creates a pressure field that it can recognize

as being its own. In the case of a simple forward motion, this pressure field is char-

acterized by a high pressure at the front, and low pressure along the main part of

the body (Figure 3-4A). When gliding past an object, the pressure change induced

by the presence of the object can be quite small compared to the ambient pressure

field, which is why, in this study, the steady pressure field has been subtracted to

every pressure trace. However, as can be seen in Figure 5-8A, the ambient pressure

gradient along the body is pretty small. So measuring the pressure gradient (as fish

do) reduces the ratio signal of interest over total pressure (except at the very front of

the foil). As was mentioned in the introductory chapter of the thesis, this is one of

the advantages of the lateral line canal subsystem over the superficial subsystem.

Moreover, using pressure gradient instead of gradient would annihilate the need

to take into account the hydrostatic pressure and subtract the steady pressure. Since

both have been identified as potential sources of errors, getting rid of them should

improve the performance of the algorithm.

Figure 3-4A also suggests distinct uses of the head and trunk canals. As inves-

tigated by Windsor [371, when approaching a wall head-on, the increase in pressure

gradient is confined to the head. Figure 3-4A shows that, when gliding past an object,
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Figure 5-8: Pressure gradient signature

no noticeable change in pressure gradient happens along the head. Therefore, head

canal neuromasts are probably mostly used for obstacle avoidance while the trunk

ones serve for object identification.

5.4 Limits of the potential flow model

The results from Section 4.3 demonstrate that object localization and recognition are

possible with experimental pressure measurements. However, only the pressure mea-

sured before the maximum width of the foil passes the cylinder are compatible with

our model. Indeed, as has been observed in Section 4.2.2, the potential flow model

stops being valid after this point. Flow visualization has been used to investigate

the transition that causes the potential flow model to stop being valid (the set-up is

described in Section 4.1).

Figure 5-9 compares the velocity field predicted by the inviscid model to the ex-

perimental velocity field measured using Particle image velocimetry. As can be seen,

both flows are quasi-identical everywhere, except in a small region materialized by

green and orange ellipses. To get finer details of the flow characteristics in the small

region of interest, an individual particle has been followed, and its pathline is marked

in green in Figure 5-10. It appears very clearly in the frame sequence that between

t = 0 s and t = 0.1 s the particle is in a laminar flow, but between t = 0.1 s and

A Total pressure gradient B Unsteady pressure gradient



Simulated Flow Velocity

B Particle Image Velocimetry

Figure 5-9: Comparison between experimental and simulated velocity field

t = 0.2 s, the flow separates, as the particle starts swirling. Separation affects the

entire pressure field around the foil.

U
Figure 5-10: Flow separation: a pathline

Figure 5-11 shows the pressure gradient distribution along the foil as it passes

the cylinder for the configuration of Runs 1 to 4. The pressure sensor locations are

represented by horizontal dashed lines, an oblique line marks the position of the cylin-

der and a vertical line marks the approximate time when the potential flow model

stops being valid. This line also coincides with the onset of a strong adverse pressure

gradient (orange patch in the middle of the figure), which theoretically explains why

the flow separates.

Viscous effects were already known to strongly affect the signal measured by sur-

face neuromasts as well as the dynamics of the flow in the canals ([35]). However,

in the cases previously studied (vibrating sphere), viscous effects did not affect the

pressure gradient measured by canal neuromasts (129]). We show here that in the case
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Figure 5-11: Unsteady pressure gradient along thee foil

of a fish gliding past an object, viscous effects strongly influence the signal measured

by canal neuromasts.



Chapter 6

Conclusions

The blind Mexican cave fish, able to dart in the dark and identify the shape of static

objects in static water by gliding past them, has been used as an inspiration for a

novel object identification algorithm based on pressure sensors. A two-dimensional

potential flow approach based on a source panels method has been used to char-

acterize the pressure distribution on a vehicle passing a static object in stationary

flow. A shape parameterization inspired from conformal mapping was applied to in-

dependently encode the position, size and shape of the object. Finally, the unscented

Kalman filter has been adapted to take into account the fact that two bodies cannot

physically intersect.

Experiments have been run in a tank, using an instrumented foil moving past a

cylinder, to test the method developed. The algorithm has proved to be very success-

ful at locating the cylinder, and mostly successful at identifying it, despite a strongly

correlated noise. It has been observed that since the location and size are encoded

separately, the shape of the cylinder can be identified even when the size and location

estimates are slightly offset.

Based on simulations using a NACA 0018 foil to model the fish, the distance at

which an object can be detected (depending on its size) has been estimated. It has

been found that for the amount of noise experienced in the laboratory, the sensing

range is about the width of the foil. However, simulations have shown that the sens-

ing range can be significantly increased in the presence of an outside flow.



The experiments performed used three commercial pressure sensors and it has

been shown that increasing the number of pressure sensors should make object detec-

tion and identification more efficient and more robust to sensor failures. Estimates

based on typical pressure gradient values and object identification performances, in-

dependently suggested that a spacing of 5 mm between pressure sensors was optimal.

These estimates justify the need in micro mechanical pressure sensors for efficient

object identification.

In this study, the steady pressure has been subtracted from every measured and

simulated pressure to make the pressure generated by the cylinder more noticeable.

This need can however be eliminated by measuring pressure gradient, as fish actu-

ally do. We have also observed that while the front 10% of the fish (or foil) is key

to obstacle avoidance, measurements along the following 50% are essential to object

identification.

Finally, we have shown that the potential flow model gives accurate predictions

of the pressure field, until the flow separates.



Chapter 7

Recommendations for future work

On the experimental side, running experiments described in Chapter 3 with a denser

array of pressure sensors (ideally a dense array of micro pressure sensors, when those

become available), would allow a better comparison between the pressure field pre-

dicted by our potential flow model and the measured pressure.

Simulating the interactions between the moving foil and the stationary object in

viscous flow would also help identify the impact of viscosity on the pressure mea-

sured along the foil. A learning algorithm could then be used to develop an efficient

(on-line) algorithm that uses both potential flow and viscous features of the flow to

identify objects.

The unscented Kalman filter has been observed to be more efficient at object iden-

tification than at object detection. In the case of an underwater vehicle navigating

in an unknown environment, it would be advantageous to use an efficient detection

algorithm and limit the use of the unscented Kalman filter to object identification.

Finally, investigating object identification has brought insight into parameters

that affect the pressure along a body exploring its environment. We have observed

that the distance of the object is a more relevant parameter than its center position.

We have also observed that the pressure along the foil is much more sensitive to the

nearby portion of the object than to its global shape. Moreover, when navigating

underwater, knowing the shape and position of the closest boundaries and obstacles

is probably more useful than knowing the actual shape of relatively small objects.



Therefore, a more local shape or boundary parameterization should be considered in

the future.



Appendix A

Alternative definition of sensitivity

In this Appendix you will find the same figures as in Section 3.3 with the sensitivity

defined as the integral over the length of the foil and over time of |dp/dx|.
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Figure A-1: Sensitivity to distance
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Appendix B

Measurement-covariance matrices

Measurement-covariance matrices (in Pa 2 ) for experiments (Chapter 4) and simula-

tions (Chapter 5) are gathered in this appendix.

Run 1

Run 2

13

R% K
3

21

RC~ K
6

27
C=4Rc 4

5

28

7

Run 3

Run 4

3 3

32 12

12 16

7 6
42 14

14 27

4 5

45 21
21 29

9 7

60 24

24 22

(B.1)

(B.2)

(B.3)

(B.4)



Run5 1
29 9 9

Rc = 9 14 11 (B.5)

9 11 22

Run 6
22 10 13

Rc 10 14 16 (B.6)

13 16 35

Run 7
26 14 18

Rc 14 15 18 (B.7)

18 18 36

Simulations
20 0 0

Rc 0 20 0 (B.8)

0 0 20



Appendix C

Pressure measurements figures

In this appendix, the pressure traces from the experiments (solid lines) and the pres-

sure traces predicted from the potential flow model (dashed lines) are displayed.
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Appendix D

Experimental object identification

figures

This appendix shows the the convergence of the estimated parameters for experimen-

tal object localization (on the left) and identification (on the right). It also compares

the shape of the estimated object (in red) to the actual object (dotted blue ellipse) for

several times. It finally shows as the measured (solid lines), filtered by UKF (dashed

lines) and theoretical (dotted lines) pressure traces.
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