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Measuring the Collective Potential of Populations
From Dynamic Social Interaction Data

Manuel Cebrian, Mayank Lahiri, Nuria Oliver, and Alex (Sandy) Pentland

Abstract—In any society, is the way in which individuals in-
teract, intentionally or unintentionally, designed to maximize
global benefit, or does it result in a fundamentally non-egalitarian
stratification of society, where a small number of individuals
inevitably dominate? Our ability to observe and record inter-
actions between individuals in real populations has improved
dramatically with modern technological improvements, but it
is still a difficult task to use this data to model cooperation and
collaboration between individuals, and its global effect on the
entire population. To shed light on these questions, we model an
individual’s value in society as an epistatic mathematical function
of a set of binary choices, and the collective potential of a popula-
tion as the expected value of an individual over time. Individuals
try to selfishly improve their societal value by adopting the choices
of their neighbors, constrained by the actual observed interaction
topology and order. As a result, we are also able to investigate how
far natural populations are from an optimal regime of functioning.
We show that interaction topology has a large impact on collective
potential, but the relative order of specific interactions seems to
have a negligible effect.

Index Terms—Genetic algorithms, social factors, social net-
works.

I. INTRODUCTION

T HE study of how people interact in successful corpora-
tions is providing managers with better tools to allocate

human resources, organize work, and be more efficient in gen-
eral [1]–[3]. Similarly, natural science research into social insect
behavior is helping computer scientists design robust distributed
control and optimization algorithms [4]–[6]. Cooperation and
competition within natural populations are the bedrock of com-
plex social structures, but although our technological ability to
observe the dynamics of interactions within these populations
has improved, modeling and quantifying the global sociological
effects of these dynamics remains a difficult problem. There has
also been little work in quantifying how far a population of enti-
ties is from its optimal regime of functioning in terms of global
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wellness of the entire population, and what little literature does
exist is not intended for social interpretations [7].

This problem is fundamentally connected to an important
question in social science that concerns the interplay between
individual and collective success in social networks: how does
a person’s interactions with other people affect their social po-
sition? Furthermore, how is society at large globally influenced
by the collective effects of these local interactions [8]–[10]? In
the social sciences, this has long been the focus of a “positivist”
line of thinking, which defines social progress as the changing
of society towards an ideal state, generated by individual contri-
butions and aggregated by collective interactions [11], [12]. It is
also the question we investigate in this paper, albeit in a strictly
quantitative sense.

We leverage the unprecedented opportunities offered by the
recent availability of large amounts of social interaction data,
such as e-mail and phone call records, and ideas from optimiza-
tion theory and social network analysis, to analyze real popula-
tions in terms of the questions just posed. The result is a novel
framework that allows us to characterize populations from so-
cial interaction data in a mathematically robust way, based on
the population’s intrinsic ability for local interactions to pro-
duce a positive global outcome over time. We describe this as the
collective potential of a population, and analyze several real net-
works in terms of the impact of interaction topology and order
on its collective potential.

Our framework for computing the collective potential of a
population is based on the notion of a hypothetical collective
potential curve. Each individual in a population has a dynamic
state at any given time, which we model as a real-valued func-
tion of multiple, interacting binary choices that the individual
has made. The interactions between these binary choices, and
thus the overall state function, may be made arbitrarily com-
plex, with the end result being that the “value” of each individual
within the population is expressed as a single, continuous value.
We also assume that each individual seeks to increase their state
value by interacting with their neighbors over time, and adopting
some of their neighbors’ more beneficial choices, i.e., when im-
itating the neighbor’s choices would result in the selfish positive
outcome of increased state value.

The collective potential curve of a population is then defined
as the trajectory of the expected state value in the population
over time,1 with a key contribution of our method being that the
expectation is computed over all possible state functions in a
computationally tractable way. The collective potential curve

1Note that other statistics of the distribution of state values are equally appli-
cable.
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therefore represents the efficiency of constructive, collabora-
tive processes in a population over time, or how efficiently the
structure and dynamics of social interactions can foster posi-
tive global change in the population through selfish local inter-
actions. Although an expectation over all possible state func-
tions cannot be computed analytically, we show that in practice,
computational simulation estimates of the collective potential
curves of large, real populations converge very quickly, usually
in a few dozen iterations, even with populations of millions of
individuals.

The collective potential curve presents some interesting
avenues for the analysis of populations from dynamic social
interaction data. Diffusion processes that take place in social
networks have been studied in the context of epidemiological
modeling [13], [14], and more recently in “viral marketing”
scenarios, where word-of-mouth recommendations drive the
adoption of a product [15], [16]. Since the collective potential
curve models a form of diffusion through a dynamic network
over time, it allows us to explicitly compare the effect of interac-
tion order and topology on the efficiency and speed of diffusion,
and also to compare the dynamics of different populations which
have been controlled for size and other external factors. Our
definition of the collective potential curve of a population has
its roots in a number of research areas. The global dynamics of
individuals following binary choice models has been studied
extensively in mathematical sociology [17]–[19]. There has also
been interest in how the structure of the network impacts the rates
of diffusion of information [20], [21].

Our contribution here is to model a population by means of an
arbitrarily complex state function that operates on a multitude
of choices made by each individual. We use a simple model of
interactions between individuals—determined by real interac-
tion data2—and vary the complexity of the state function, com-
puting an expectation over all possible functions in a countably
infinite class of state functions [22]. The sociological idea of a
society progressing towards an ideal state through interactions
between individuals is modeled by a form of collective opti-
mization [23], [24]. The specific type of collective optimization
we use is a modified form of a simple genetic algorithm [25],
which bears similarities to parallel genetic algorithms with spa-
tially distributed populations and mating topologies [26]–[29].
The generation of arbitrarily complex state functions is based on
a class of synthetic functions called Hyperplane Defined Func-
tions (HDFs), initially devised as difficult test cases for genetic
optimization methods [22].

This paper is organized as follows. In the next section, we
describe our framework in detail. In particular, we describe the
Simple Genetic Algorithm (SGA) as an optimization technique,
which is central to our framework, as well as the nature of HDFs
as objective functions of arbitrary complexity.

In Section III, we present a detailed experimental study to
evaluate our ideas on a number of real dynamic networks and
summarize our findings. Finally, our conclusions and lines of
future work are presented in Section IV.

2It should be noted that social interaction data is often easier to collect than
actual diffusion data, which is why stochastic diffusion models are used to esti-
mate the efficiency and extent of diffusion.

II. COLLECTIVE POTENTIAL IN DYNAMIC NETWORKS

Our framework quantifies a number of sociological principles
in as simple a way as possible. Each individual is represented by
a binary state vector that encodes a set of choices it has currently
made, without specifying the form or function of each choice.
By allowing the state vectors to grow arbitrarily long, we can en-
code any number of choices. A global objective function oper-
ates on the state vectors and assigns each one an objective score,
as a measure of value for its choices. Although the presumption
of a global measure of worth for all individuals might violate
some sociological principles, we compensate by allowing the
objective function to be arbitrarily complex.

Individuals in the population seek to increase their own worth,
which they achieve by interacting with other individuals. We as-
sume a simple model of interactions between individuals, where
the topology and order of interactions between individuals are
governed by recorded data. For example, in a dataset of phone
call records, an undirected or mutual interaction between two
individuals takes place when they call each other. Similarly, if
the dataset consists of e-mail records, an e-mail sent between
two addresses qualifies as a directed interaction from the sender
to the recipient, i.e., the sender gains no advantage in sending
the e-mail, but the recipient might. Furthermore, communica-
tions networks are by no means the only type of data that can be
used. Interaction networks in the recent past have been derived
from physical proximity determined by BlueTooth sensing de-
vices [30], [31], wearable badges [2], radio tracking collars on
wild animals [32], and bibliographic databases of co-publica-
tion patterns [33], among others.

During each interaction, a random subset of choices (state)
is temporarily exchanged between the pair of interacting indi-
viduals. This exchange becomes permanent if the value of the
state of either individual increases (unless the interactions are
directed, in which case only the recipient’s state can change).
Although this is a very simple model of interactions between
individuals, it is surprisingly flexible when paired with an ap-
propriate objective function.3 Furthermore, by holding the in-
teraction model constant, the only variable in our model is the
objective function.

The collective potential curve of the population is defined as
the rate of increase in the expectation of the objective value of
individuals in a population over time. The expectation is com-
puted over all possible objective functions, which encompass a
large class of collective behavior models. Thus, our method is
essentially parameter free. This allows us to measure how effec-
tive a population is at spreading positive processes, which may
be choices, ideas, information, or any of a number of other dif-
fusion processes.

In the next subsection, we describe the interaction algorithm
in detail, and in the following subsection, the choice of objective
function.

A. Genetic Optimization in Dynamic Networks

In the most general form, dynamic networks consist of a set
of individuals interacting with each other

3It can be shown that many social network diffusion models in the literature
can be reduced to collective potential processes. This is subject of ongoing re-
search and will be published elsewhere.
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over a period of discrete timesteps. The exact definition of
what constitutes an individual or interaction depends on the
domain being analyzed, and is not central to our problem. Let

be a binary string of length representing the state of
individual at time , randomly initialized according to some
distribution. Let be an objective function (described in
detail in Section II-B) that assigns an objective score to any
state string

We assume that exactly one interaction occurs at
each time step , although this assumption can be easily relaxed.
The interaction model is similar to the formulation of a simple
genetic algorithm [25], [34], [35], and is formally defined as
follows.

1) Let and be the two individuals interacting at time ,
with corresponding state strings and . A crossover
point is selected uniformly at random from the integer
range .

2) Two new state strings are created by swapping the tails
of and , where the tail is defined as all positions
including and after index . Let these two new state strings
be and . When or , crossover has no
effect, since and are necessarily identical to and

, respectively. Consider the following example:

If , we would get the following two new strings after
crossover:

3) The objective score of each new state string is then evalu-
ated. If any of them have a greater objective score than ei-
ther of their parents or , the corresponding parent’s
state string is replaced for the next iteration:

In the case of ties in the objective scores of the original and
a new string, the original state string is retained. This is an
important step if the resultant model is to serve as a general
case of certain network diffusion models in the literature,
but is not required in general.

4) The steps above are repeated for all recorded interactions
in increasing time order. After each interaction, the average
objective score in the population is measured.

The process described in steps 1–4 is repeated for multiple
random trials, with different random initial states, until the av-
erage objective score curve computed in step 4 stabilizes. We
show in Section III that these estimates of the expectation con-
verge very quickly, usually in less than a few dozen random
trials. Note that the procedure outlined above is similar to collec-
tive optimization [23], parallel or spatial genetic algorithm with
distributed populations [24], [26]–[29], and the economic anal-
ysis of interacting agents distributed in a networks [24], [36]. To
the best of our knowledge, our research is the first to work to-
wards a convergence of these topics, bridging the gap between
microdynamics of individual level success and macrodynamics
of global success.

B. Hyperplane-Defined Functions

A standard tool for the analysis of canonical genetic algo-
rithms is Holland’s Schema Theorem [35]. Along with the
building block hypothesis proposed as a refinement of it in
[25], it explains the ability of a GA to solve optimization
problems by manipulating short binary substrings occurring
at specific positions, called schemata,4 that contribute to an
increase in the objective value of a longer string that contains
them. The crossover operator can then be seen as a mechanism
for probabilistically exchanging schemata between a set of
random strings. As strings of lower fitness are replaced with
strings of higher fitness, the average and maximum objective
values of the population increase over time, eventually leading
to the discovery of a local or global optimum. Although other
mechanisms have been proposed to analyze canonical genetic
algorithms,5 as well as a proliferation of algorithmic variants
(see, for example, [39] and [34]), the use of schemata is appro-
priate in our context.

In particular, we are concerned with a class of schemata-
based, synthetic objective functions called HDFs, which were
originally designed to serve as difficult benchmark functions
for assessing the performance of different genetic algorithms
[22]. An HDF is constructed by selecting a set of schemata
that contribute a certain value to the overall objective score of
the string. The schemata are chosen randomly and hierarchi-
cally, starting with relatively short schemata of order 1 occur-
ring at random starting positions within the string. Pairs of such
schemata are concatenated to generate schemata of order 2, and
so on, with each schema receiving an individual positive or neg-
ative score. The end result is an objective function that takes a
binary string as input and returns an objective score that is the
sum of the scores of all the individual schemata contained in it.
Further details are described in Holland [22], which shows how
HDFs can be used to generate objective functions of arbitrary
optimization difficulty (e.g., nonlinear, discontinuous, nonsepa-
rable, nonsymmetric functions).

The following example illustrates the generation of a simple
HDF that takes a binary string of length as

4sing. schema
5There is some debate about whether the Schema Theorem explains the ge-

netic algorithm’s ability for efficient optimization [22], [34], [37], [38], but the
specific aspects of the Schema Theorem being debated do not affect our use of
schemata here.
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TABLE I
DATASET CHARACTERISTICS

input. The asterisk character (“ ”) denotes a “don’t care” char-
acter that matches any binary value. The following are the set of
randomly chosen schemata that define the HDF:

The following binary strings are now evaluated using the HDF
above:

As noted earlier, HDFs are an infinite class of functions of
arbitrary complexity, and are thus appropriate for modeling a
number of complex phenomena. They are a natural representa-
tion for information exchange, where each schema represents a
unit of information, and different units can interact in complex
ways. A large number of local minima, plateaus, discontinuities,
and other difficult optimization landscape features ensure that it
is not trivial to optimize an HDF. In our experiments, we use the
method described in [22] to construct HDFs – including the ar-
tificial truncation of negative objective values to zero that yields
a non-negative objective function – and generate two higher or-
ders of schemata.

III. EXPERIMENTAL RESULTS

We now present an experimental study of our technique ap-
plied to four real dynamic network datasets. Our primary objec-
tive is to analyze the shape of the collective potential curves for
each dataset, and how these shapes change under different kinds
of random perturbations of the original interactions. We are also
concerned with how quickly collective potential curves stabilize
to their final shape, and an analysis of the role that specific in-
dividuals play in the process. Each facet of the analysis will be
dealt with in a separate section below, following a description
of the datasets we used.

A. Datasets

We used four real dynamic network datasets for our experi-
mental evaluation, two of which are publicly available. Table I

lists the characteristics of each dataset. Due to privacy and confi-
dentiality considerations, we only state orders of magnitude for
the CDR-J and CDR-C datasets.

1) (CDR-J) Telecommunications companies collect call
detail records (CDRs) from telephone subscribers for a
variety of reasons, including billing and network perfor-
mance analysis. These records generally contain details
of every call attempted, made, received, and dropped, as
well as other information like talk time. We obtained fully
anonymized, one-way encrypted CDR data from a large
telecommunications provider for a random sample of
customers from a fixed geographical area. Each individual
is a telephone subscriber, and an interaction occurs be-
tween two individuals when one makes a phone call to the
other. We ignore the direction of the call because phone
conversations (as opposed to phone calls) are inherently
bidirectional.

2) (CDR-C) This dataset is similar to the CDR-J dataset,
except that the random sample of customers is chosen
from a completely different geographical area. Like the
other CDR dataset, CDR-C is completely anonymized and
one-way encrypted.

3) (Enron E-mails) As part of its investigation into corporate
fraud at the now defunct Enron Corporation, the United
States Federal Energy Regulatory Commission obtained
and publicly released the complete e-mail records of 150
(former) Enron executives.6 The dataset contains records
of all messages sent, received, and deleted by each of the
executives, resulting in a very rich e-mail dataset. We used
a version of the dataset with 84 716 e-mail addresses and
1 343 655 unique, non-duplicate e-mails. Each individual
in the network is an e-mail address, and a directed inter-
action occurs when an e-mail is sent from one address to
another.

4) (Peer-to-peer file sharing) We use publicly released,
anonymized traces of peer-to-peer file sharing in an in-
ternal university network [40]. Each individual is a unique
computer, and a directed interaction occurs between two
computers when one downloads a file from the other.
Although the original study states that 6528 users shared
291 925 files over 81 days, we were able to parse far
fewer file transfers from the publicly available data, as
shown in Table I. Note that although the files trans-
ferred were usually audio files, there was no such restric-
tion in place, and the transfer of arbitrary files through
peer-to-peer networks is a common vector for computer
virus propagation.

6Publicly available at http://www.cs.cmu.edu/ enron/
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Fig. 1. Collective potential curves for the original datasets as well as their perturbed versions. (a) CDR-J. (b) CDR-C. (c) Enron E-mails. (d) Peer-to-peer.

B. Methodology

We ran 200 random trials for each dataset, each with a dif-
ferent randomly generated HDF objective function. The HDFs
were chosen to operate on state vectors of a random dimension

bits. State vectors were randomly initialized.
Note that in some situations, it might be useful to guarantee
that initial state vectors are somehow uniformly of “low” fit-
ness. However, since the express purpose behind the use of an
HDF is to generate a difficult optimization function, it is hard
to determine the global optimum (or optima), and therefore to
determine what constitutes a state vector of low fitness. We ran
three different sets of experiments with the same number of in-
dividuals and interactions: one with the original interaction data
as given by the experimental datasets, another where the inter-
acting individuals were chosen randomly (random topology),7

and a third with the original interactions taking place in a shuf-
fled order (shuffled interaction order). These two additional ex-
periments allow us to analyze the impact of topology and in-
teraction order on the collective potential curves. We also ran
a similar set of experiments using randomly generated HDFs
operating on state vectors of the same dimension, with the dif-
ference in results being negligible.

C. Collective Potential Curves

The first aspect of our analysis is to investigate the shape of
collective potential curves for each of the datasets described in
Section III-A. Fig. 1 shows these curves for all four datasets.
What can we expect these curves to look like? Recall that the

7This represents a random dynamic interaction topology, and is equivalent to
sequentially sampling edges uniformly at random from a complete graph.

collective potential curve is the expectation of the average ob-
jective value in the population over time, computed over all pos-
sible objective functions. Since HDFs are artificially truncated
to non-negative values, the curve will be positive for all points.
Since individuals only change their choices (state) if it is benefi-
cial to them, the curve will also be non-decreasing. Furthermore,
we are not interested in the actual objective values of the func-
tion, but rather the average value relative to the maximum value
discovered at the end of each run. Thus, the curves are normal-
ized by the maximum discovered objective value (hence, their
values are in the interval). The number steps of the simula-
tion equals the number of interactions recorder for each dataset.

1) Impact of Topology: Our first observation is that the shape
of the collective potential curve for random topologies matches
what is theoretically expected from random mixing. Giacobini
et al. [29] analyzed the average fitness of individuals in GAs
with spatially structured populations, including randomly struc-
tured populations, and our empirical results are in agreement
with theirs. Note that although epidemics (and thus general dif-
fusion processes) are expected to spread quickly in scale-free
networks [41], [42], a random topology has the advantage (or
disadvantage, depending on the scenario) of bridging the gap
between isolated communities or graph components in the long
run.

Although the shape of the random topology curve in the
CDR-J dataset seems to be qualitatively different from the other
datasets, this may be explained by the large size of the popula-
tion relative to the number of recorded interactions—CDR-C,
in comparison, has an equivalent number of interactions, but
its population is an order of magnitude smaller, being much
denser. Thus, the curve presented in Fig. 1(a) is comparable to
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the early stages of the curves in other datasets. As the number
of interactions grows, a random interaction topology represents
the best possible scenario for collective potential in the long run,
since it is equivalent to randomly sampling edges sequentially
and uniformly at random, with replacement, from a complete
(clique-like) interaction topology. Thus, isolated communities
are broken down, similar to the spread of “good” schemata in
parallel genetic algorithms [27]. Note that this is the asymptotic
behavior of the random topology as the number of interactions
grows, not the short-term behavior over a possibly small, fixed
number of interactions.

2) Impact of Interaction Order: We also note that shuffling
the order of interactions seems to always have a positive impact
on the collective potential curve, i.e., the average objective value
of the population increases faster than with the original order
of interactions. There is a very simple, plausible explanation
for this phenomena. It is well understood that many types of
real networks exhibit a high degree of clustering [43], [44], and
that the composition of clusters in networks change over time
[45], [46]. A good set of schemata might therefore get “stuck”
by circulating within a cluster, unable to spread to other nodes
in the population outside the cluster, until nodes that carry the
good schemata change affiliations to a different cluster. This
is a well-known notion in evolutionary biology and ecology
[47] and, closer to our context, in the study of parallel genetic
algorithms with distributed populations [27]. By shuffling the
order of interactions in the original dataset, we help to break
up some of these clusters in the time dimension, thereby al-
lowing better mixing of good schemata throughout the entire
population.

It is important no note that shuffling has a larger positive im-
pact on CDR-J than on CDR-C [Fig. 1(b) and (b)]. Although
there are many plausible reasons for this phenomenon, one pos-
sibility is that the geographical region covered by the CDR-J
is known to be much larger and also have a higher level of re-
gional deprivation than the region covered by CDR-C, a facet
which has been previously connected to a lower communica-
tion diversity using phone datasets [30]. Shuffling the order of
the interactions breaks down temporal clusters and increases the
level of communication diversity on average over time, which
would then manifest in a more pronounced lift in the collective
potential curve than in CDR-C.

D. Convergence Analysis

The collective potential curves in Fig. 1 are produced by sto-
chastic processes, so a natural question is to ask how stable they
are, or how many random trials are required till they converge
to a robust estimate. For each trial, we calculate the average de-
viation of the curve from the average curve computed up to the
previous iteration. Fig. 2 shows this value at each trial for the
original dataset curve in Fig. 1, where the average absolute devi-
ation is used as the distance measure between successive curves
and the average up to the previous trial.

The results indicate that the collective potential curves settle
to their expectation very quickly, usually requiring less than 15
trials for the mean absolute deviation to drop to less than 1%.
We obtain similar results using different distance measures,

Fig. 2. Convergence of collective potential curves for the original datasets.

such as the root-mean-squared deviation and the maximum
deviation, which indicate that the collective potential curves
are quite stable and tractable to compute, even for large
datasets.

E. Node Effects

In the previous two sections, we analyzed the global collec-
tive potential of our experimental populations. We now turn our
attention to individuals within the populations, particularly to
the distribution of objective values in the population at the end
of processing all interactions. Recall that the initial state vectors
were randomly chosen binary strings. Fig. 3 shows the cumula-
tive distribution of objective values for all four datasets at the
end of processing all interactions, averaged over 200 random
trials.

1) Final Objective Distributions: The empirical distribu-
tions of final objective values show some common features.
Perhaps the most prominent feature is a knee in the lower

-axis of the distribution. This is particularly pronounced in
the CDR-J [Fig. 3(a)] and Enron [Fig. 3(c)] datasets, at final
objective values of and , respectively. These
knees represent a significant section of the population that does
not advance in fitness values relative to the top performer;
approximately 20% of nodes for CDR-J and 40% for the Enron
dataset are in this region. Similar knees are evident in the other
two datasets, representing isolated islands of low objective
values.

Although the reason for this disparity could be intrinsic struc-
tural differences in the populations, another possible reason is
that it is an artifact of the data collection process. For the CDR
datasets as well as the Enron dataset, a number of phone num-
bers and e-mail addresses are included in the dataset simply as
a result of communicating with a set of “core” nodes. In the
CDR examples, these core nodes are customers of the telecom-
munications company who are included in the random sample,
and in the Enron dataset, the core consists of executives whose
mailboxes were subpoenaed, as well as their close associates.
The core nodes are unique because all or most of their inter-
actions are actually observed. In these datasets, there is by ex-
tension a significant “periphery” of nodes, whose activity is not
completely observed. As a result, isolated from the active core,
they do not get the same opportunity to interact and increase in
their objective values as the core nodes. This is fundamentally
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Fig. 3. Empirical cumulative distributions for the average final objective values of nodes in each population. (a) CDR-J. (b) CDR-C. (c) Enron E-mails.
(d) Peer-to-peer.

an issue of missing data, and is an important and largely un-
solved consideration in all of networks research.

However, it is interesting to note there is no such issue with
the peer-to-peer dataset. All computers involved in the file
sharing study were directly observed as part of the experiment,
so there is no core or periphery. Yet, we see similar features in
the final fitness distributions, which could indicate that at least
some part of the features in the other distributions are intrinsic
to the structure and dynamics of the populations.

2) Stratification of Societies: The final objective value distri-
butions shown in Fig. 3 raise interesting questions about which
characteristics of the datasets cause stratified distributions in
final objective values. As mentioned earlier, there is generally
a core of nodes for whom we have complete information, with
the remaining nodes being discovered incidentally in the course
of interactions with core nodes. We can therefore expect core
nodes to have many more observed interactions than periphery
nodes, which could result in their having more chances to in-
crease their state, and thus a higher final objective value on av-
erage than periphery nodes.

Fig. 4 shows scatter plots of the average final objective value
of each individual plotted against the number of interactions it is
involved in, and Fig. 5 plots the same data against the number of
neighbors for each node (unique interactions). Despite the fact
that we are not able to find a strong trend, there is certainly some
structure in the result. On the one hand, having a large number
of interactions and even more importantly, having a large neigh-
borhood leads to high final fitness, as seen in both figures. On
the other hand, having a high final fitness does not necessarily
imply a large number of interactions or a large neighborhood.

This is true for those individuals who are possibly locked in-
side an isolated island of low fitness, with no interactions that
can reach the population at large. The frequency of their inter-
actions (Fig. 4) is irrelevant, given that they always talk to a
set of isolated individuals of low average fitness. Barring other
contributing factors, a possible sociological explanation of this
is the following: if you live in a very isolated town, it does not
matter if you talk to a few or many people, as you have few con-
nections to the outside world.

If the stratification observed in the final objective distribu-
tions were an artifact of missing data, then we would expect a
trend in the average final fitness as a function of the number of
contacts an individual is involved in. However, no such trend is
visible in either the original datasets [Fig. 4(a), (d), and (g)] or
their shuffled versions [Fig. 4(b), (e), and (h)]. We do not plot
the CDR-J dataset for practical purposes, as it would contain
more than data points.

It should be noted that the random topology serves as a model
case of an egalitarian society. Individuals are assigned initial
state vectors from the same (uniform) random distribution, and
chosen randomly for interactions with other individuals. The
topology and order of interactions is also random, which results
in the contact frequencies of all individuals being drawn from
the same multinomial distribution. As a result, in the random
topologies, individual objective values and contact frequencies
are distributed in a relatively small range, as is theoretically ex-
pected. There is relatively little differentiation between the in-
dividuals with the highest and lowest final objective values in
a population where everyone gets the same opportunities for
interaction.
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Fig. 4. Average final objective value of each individual compared to the number of contacts (interactions) it is involved in. (a) Peer-to-peer: original dataset. (b)
Peer-to-peer: shuffled order. (c) Peer-to-peer: random topology. (d) Enron: original dataset. (e) Enron: shuffled order. (f) Enron: random toplogy. (g) CDR-C:
original dataset. (h) CDR-C: shuffled order. (i) CDR-C: random toplogy.

Fig. 5. Neighbors. (a) CDR-C. (b) Enron. (c) Peer-to-peer.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have defined and computed collective po-
tential curves based on real social interaction data by means of
a robust, parameter-free, estimate of the capacity of a popula-
tion to increase their collective wellness in a given time period.

Next, we have empirically investigated the impact that the net-
work topology and the order of interactions have on the collec-
tive potential of a population. Our results are compatible with
known results from population genetics and evolutionary com-
putation, namely that networks with random topology asymp-
totically yield the highest collective potential, and small levels
of perturbation in the timing of the interactions help to prevent
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inbreeding of good solutions, and tend to speed-up the collec-
tive potential growth rate. Finally, it is interesting to note that
under our model, having a large number of contacts with other
individuals and a large neighborhood of contacts leads to a high
final fitness, but the converse is not necessarily true, i.e., certain
individuals consistently achieve a high final fitness value in spite
of having smaller and more infrequent circles of contacts.

Our experimental results also show a number of interesting
features that warrant further sociological analysis and experi-
ments. For example, shuffling the order of interactions in the
CDR-J dataset has a more pronounced effect on the lift in col-
lective potential that shuffling the CDR-C dataset. It is know that
the region the CDR-J dataset was drawn from has a higher level
of regional deprivation than CDR-C. Since shuffling the inter-
action order breaks down temporal clusters, it is interesting to
ask whether sociological factors such as an inherently low level
of communication diversity in the CDR-J region is responsible
for this phenomenon.

In future work, we envision two directions for our research.
The first deals with validating and explaining the sociological
implications of our findings here. Some possible questions are
to ask if there are commonalities in the local network proper-
ties of individuals at each strata of society, or if the collective
potential curves are correlated with global network properties
such as hierarchy or community structure. A second line of re-
search would be to investigate the nature of the genetic sto-
chastic process we have described in this paper, in terms of its
capabilities as a collective behavior model, its convergence, and
other possible uses.
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