
MIT Open Access Articles

Sharing Supermodular Costs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Schulz, A. S., and N. A. Uhan. “Sharing Supermodular Costs.” Operations Research
58.4-Part-2 (2010) : 1051-1056.

As Published: http://dx.doi.org/10.1287/opre.1100.0841

Publisher: INFORMS

Persistent URL: http://hdl.handle.net/1721.1/67659

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/67659
http://creativecommons.org/licenses/by-nc-sa/3.0/

OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000
issn 0030-364X |eissn 1526-5463 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

c© 0000 INFORMS

Sharing Supermodular Costs
Andreas S. Schulz

Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology,
Cambridge, MA 02139, schulz@mit.edu

Nelson A. Uhan
School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, nuhan@purdue.edu

We study cooperative games with supermodular costs. We show that supermodular costs arise in a variety
of situations: in particular, we show that the problem of minimizing a linear function over a supermodular
polyhedron—a problem that often arises in combinatorial optimization—has supermodular optimal costs. In
addition, we examine the computational complexity of the least core and least core value of supermodular
cost cooperative games. We show that the problem of computing the least core value of these games is
strongly NP-hard, and in fact, is inapproximable within a factor strictly less than 17/16 unless P = NP. For
a particular class of supermodular cost cooperative games that arises from a scheduling problem, we show
that the Shapley value—which, in this case, is computable in polynomial time—is in the least core, while
computing the least core value is NP-hard.

Subject classifications : games/group decisions: cooperative; analysis of algorithms: computational
complexity; mathematics: combinatorics.

1. Introduction
Cooperative game theory offers a mathematical framework for determining “agreeable” ways of
sharing the costs collectively incurred by a group of cooperating agents. A (transferable utility)
cooperative game (N,v) is defined by a finite set N of players, and a cost function v : 2N →R, with
v(∅) = 0. A subset S ⊆N is referred to as a coalition. The quantity v(S) is the joint cost incurred
by the agents in coalition S if they cooperate. Cooperative game theory has been used extensively
to study cost sharing for a myriad of application areas of operations research (e.g. Owen 1975,
Bird 1976, Granot and Huberman 1981, Kalai and Zemel 1982, Potters et al. 1991, Hartman et al.
2000, Goemans and Skutella 2004, Chen and Zhang 2006).

In this work, we focus on situations in which agents face supermodular, or increasing marginal
costs. A set function v : 2N →R is supermodular if

v(S ∪{j})− v(S)≤ v(S ∪{j, k})− v(S ∪{k}) (1)

for all j, k ∈N such that j (= k, and S ⊆N \ {j, k}. We focus on cooperative games (N,v) where v
is nonnegative and supermodular. We call such games supermodular cost cooperative games.

One of the most important solution concepts in cooperative game theory is the core (Gillies
1959). Suppose x∈RN is a cost allocation vector: for each i∈N , xi is the cost allocated to agent i.
(For notational convenience, for any vector x∈RN we define x(S) =

∑
i∈S xi for any S ⊆N .) The

core of a cooperative game (N,v) is the set {x ∈ RN : x(N) = v(N), x(S) ≤ v(S) for all S ⊆ N}.
In other words, the core of (N,v) is the set of all cost allocations that distribute v(N)—the cost
incurred when all agents cooperate—in a way such that no subset of agents would be better off
by abandoning the rest of the agents and acting on its own. An empty core can be seen as an
indication that cooperation amongst all agents is undesirable.

It is straightforward to show that the core of a supermodular cost cooperative game is empty
(as long as costs are not modular1). Intuitively, this makes sense: the marginal cost associated

1

Schulz and Uhan: Sharing Supermodular Costs
2 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

with adding a particular agent increases as the size of a coalition grows, diminishing the appeal of
cooperation. Even though in this situation cooperation may be undesirable from the perspectives
of the individual agents, an external party (e.g. a governing authority) may still be interested in
encouraging or enforcing cooperation if the agents’ failure to cooperate causes negative externalities.
In this case, one might ask, “How much do we need to penalize a coalition for acting independently
in order to encourage all the agents to cooperate?” This notion is captured in the least core value of
a cooperative game. The least core of a cooperative game (N,v) is the set of cost allocations x∈RN

that are optimal solutions to the linear program

z∗ = min{z : x(N) = v(N), x(S)≤ v(S)+ z for all S ⊆N,S (= ∅,N} (LC)

(Shapley and Shubik 1966, Maschler et al. 1979). The optimal value z∗ of (LC) is the least core
value of (N,v). The computational complexity of computing a cost allocation in the least core has
been studied previously in several contexts (Faigle et al. 2000, Kern and Paulusma 2003, Faigle
et al. 2001). Properties of the least core value, on the other hand, seem to have been largely ignored;
one exception is Deng (1998).

In this work, we demonstrate that supermodular costs arise in a variety of situations: in particu-
lar, we show that the problem of minimizing a linear function over a supermodular polyhedron has
supermodular optimal costs (Section 2). This situation arises often in combinatorial optimization,
especially in scheduling. In addition, we study the computational complexity of the least core and
least core value of supermodular cost cooperative games. We show that the problem of computing
the least core value of these games is strongly NP-hard, and that no ρ-approximation algorithm2 for
this problem with ρ < 17/16 is possible, unless P = NP (Section 3). We also examine a particular
class of supermodular cost cooperative games that arises from a scheduling problem, and show that
the Shapley value3—which, in this case, is computable in polynomial time—is in the least core of
these games, although computing the least core value of these games is NP-hard (Section 4).

2. A class of optimization problems with supermodular optimal costs
We begin by providing some motivation for looking at cooperative games with supermodular costs.
The problem of minimizing a linear function over a supermodular polyhedron—a polyhedron of
the form {x∈RN : x(S)≥ u(S) for all S ⊆N}, where u : 2N →R is supermodular—arises in many
areas of combinatorial optimization, especially in scheduling. For example, Wolsey (1985) and
Queyranne (1993) showed that the convex hull of feasible completion time vectors on a single
machine is a supermodular polyhedron. Queyranne and Schulz (1995) showed that the convex
hull of feasible completion time vectors for unit jobs on parallel machines with nonstationary
speeds is a supermodular polyhedron. The scheduling problem they considered includes various
classical scheduling problems as special cases. Goemans et al. (2002) showed that for a scheduling
environment consisting of a single machine and jobs with release dates, the convex hull of mean
busy time vectors of preemptive schedules is a supermodular polyhedron.

In this section, we show that the optimal value of minimizing a linear function over a supermodu-
lar polyhedron is a supermodular function. As a result, by studying supermodular cost cooperative
games, we are able to gain insight into the sharing of optimal costs for a wide range of situations.

Theorem 1. Let N be a finite set, and let u : 2N →R be a supermodular function. If dj ≥ 0 for all
j ∈N , then the function v : 2N →R defined by

v(S) = min
{∑

j∈S

djxj : x(A)≥ u(A) for all A⊆ S

}
for all S ⊆N (2)

is supermodular.

Schulz and Uhan: Sharing Supermodular Costs
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 3

Proof. Let S be a subset of N with s elements, and let j, k ∈ S such that j (= k. Without loss of
generality, we assume that S = {1, . . . , j−1, j, j+1, . . . , k−1, k, k+1, . . . , s}, and that the associated
costs satisfy d1 ≥ · · · ≥ ds. Define d0 = ds+1 = 0, Si = {1, . . . , i} for i = 1, . . . , s, and S0 = ∅.

It is well-known that minimizing a linear function over a supermodular polyhedron can be
achieved by a greedy procedure (Edmonds 1970). In particular, the value of v(S) is

v(S) =
s∑

i=1

di

(
u(Si)−u(Si−1)

)
=

s∑

i=1

diu(Si)−
s−1∑

i=0

di+1u(Si) =
s∑

i=0

(di− di+1)u(Si).

We also have that

v(S \ {l}) =
l−1∑

i=0

(di− di+1)u(Si)+
s∑

i=l

(di− di+1)u(Si \ {l}) for l = j, k,

v(S \ {j, k}) =
j−1∑

i=0

(di− di+1)u(Si)+
k−1∑

i=j

(di− di+1)u(Si \ {j})

+
s∑

i=k

(di− di+1)u(Si \ {j, k}).

Therefore, the effect of adding k to S \ {k} is

v(S)− v(S \ {k}) =
s∑

i=0

(di− di+1)u(Si)−
k−1∑

i=0

(di− di+1)u(Si)−
s∑

i=k

(di− di+1)u(Si \ {k})

=
s∑

i=k

(di− di+1)
(
u(Si)−u(Si \ {k})

)
.

Similarly, the effect of adding k to S \ {j, k} is

v(S \ {j})− v(S \ {j, k}) =
s∑

i=k

(di− di+1)
(
u(Si \ {j})−u(Si \ {j, k})

)
.

Since u is supermodular, we have that u(A) − u(A \ {k}) ≥ u(A \ {j}) − u(A \ {j, k}) for any
A⊆N \ {j, k}. This, with the fact that di− di+1 ≥ 0 for all i = 1, . . . , s, implies that

v(S)− v(S \ {k}) =
s∑

i=k

(di− di+1)
(
u(Si)−u(Si \ {k})

)

≥
s∑

i=k

(di− di+1)
(
u(Si \ {j})−u(Si \ {j, k})

)
= v(S \ {j})− v(S \ {j, k}).

Therefore, v is supermodular. !
Using similar techniques, we can also show that maximizing a nonnegative linear function over

a submodular polyhedron—a polyhedron of the form {x ∈ RN : x(S)≤ u(S) for all S ⊆N} where
u : 2N →R is submodular4—has submodular optimal values. An important example of maximizing
a nonnegative linear function over a submodular polyhedron is finding a maximum weight inde-
pendent set of a matroid; in fact, a version of our result has been mentioned in the literature for
this special case (see Nemhauser and Wolsey 1988, page 715).

Schulz and Uhan: Sharing Supermodular Costs
4 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

3. Computational complexity
We now turn our attention to the computational complexity of computing the least core value of an
arbitrary supermodular cost cooperative game (N,v). For the remainder of the paper, we assume
that there are at least two agents (n≥ 2).

Theorem 2. Computing the least core value of supermodular cost cooperative games is strongly
NP-hard, even if a cost allocation in the least core is known.

Proof. We show that any instance of the strongly NP-hard maximum cut problem on an undi-
rected graph (Garey et al. 1976) can be reduced to an instance of computing the least core value
of a supermodular cost cooperative game. Consider an arbitrary undirected graph G = (N,E).
Let κ : 2N → R be the cut function of G; that is, κ(S) = |{{i, j} ∈ E : i ∈ S, j ∈N \ S}|. Also, let
the function η : 2N →R be defined as η(S) = |{{i, j} ∈E : i ∈ S, j ∈ S}|. Clearly, η is nonnegative.
Using the increasing marginal cost characterization of supermodularity (1), it is straightforward
to see that η is supermodular. Using counting arguments, it is also straightforward to show that
η(S)+ η(N \S)+κ(S) = η(N) for any S ⊆N .

Now consider the supermodular cost cooperative game (N,v), where v(S) = 2η(S) for all S ⊆N .
For each player i ∈N , we define the cost allocation xi = deg(i), where deg(i) denotes the degree
of node i in G. In addition, let z = maxS⊆N,S &=∅,N κ(S). Note that x(N) =

∑
i∈N deg(i) = v(N), and

for all S ⊆N , S (= ∅,N ,

z ≥ κ(S) = (2η(S)+κ(S))− 2η(S) = x(S)− v(S).

Therefore, (x, z) is a feasible solution to (LC). Now suppose (x∗, z∗) is an optimal solution to (LC).
Adding the inequalities x∗(S)≤ v(S) + z∗ and x∗(N \S)≤ v(N \S) + z∗ for any S ⊆N , S (= ∅,N ,
and using the equality x∗(N) = v(N), we have that

2z∗ ≥ v(N)− v(S)− v(N \S) = 2κ(S) for all S ⊆N,S (= ∅,N.

Therefore, z∗ ≥ z. It follows that z∗ = z = maxS⊆N,S &=∅,N κ(S), and x is a cost allocation in the least
core of (N,v). In other words, finding the least core value of (N,v) is equivalent to finding the
value of a maximum cut in G = (N,E). !

In our proof of the above theorem, we show that for any instance of the maximum cut problem on
an undirected graph, there exists a supermodular cost cooperative game whose least core value is
exactly equal to the value of the maximum cut. Since the maximum cut problem is inapproximable
within a factor of 17/16−ε for any ε > 0 unless P = NP (H̊astad 2001), we immediately obtain the
following inapproximability result.

Corollary 1. There is no ρ-approximation algorithm for computing the least core value of super-
modular cost cooperative games, where ρ < 17/16, unless P = NP.

4. A special case from single-machine scheduling
In this section, we study a particular supermodular cost cooperative game that arises from schedul-
ing situations. Consider a setting where agents each have a job that needs to be processed on
a machine (or processor), and any coalition of agents can potentially open their own machine.
Suppose each agent i ∈N has a job with processing time pi ∈R>0 and weight wi ∈R≥0. Jobs are
independent, and are scheduled non-preemptively on a single machine, which can process at most
one job at a time. A scheduling game is a cooperative game (N,v) where the cost v(S) to a coali-
tion S is the minimum sum of weighted completion times of jobs in S. If weight wi is interpreted as
agent i’s per-unit-time waiting cost, then v(S) can be seen as the minimum total waiting cost for
agents in S. By Theorem 1 and the previously mentioned result of Wolsey (1985) and Queyranne

Schulz and Uhan: Sharing Supermodular Costs
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 5

(1993), scheduling games are indeed supermodular cost cooperative games. The least core value of
scheduling games has a natural interpretation: it is the minimum amount we need to charge any
coalition for opening a new machine in order to encourage cooperation.

Cooperative games that arise from scheduling situations have been studied previously. In sequenc-
ing games (e.g. Curiel et al. 1989), agents—each with a job that needs to be processed—start
with a feasible solution on a fixed number of machines, and the profit assigned to a coalition of
agents is the maximal cost savings the coalition can achieve by rearranging themselves. Scheduling
games have received somewhat limited attention; some authors have developed axiomatic charac-
terizations of various cost sharing rules for these games (Maniquet 2003, Mishra and Rangarajan
2005).

Smith (1956) showed that scheduling jobs in nonincreasing order of wj/pj minimizes the sum of
weighted completion times on a single machine. To simplify the analysis, for the remainder of this
paper we assume without loss of generality that w1/p1 ≥ · · · ≥wn/pn. Under this assumption, we
have that v(S) =

∑
i∈S

∑i
j=1,j∈S wipj for any S ⊆N .

The structure of the cost function for scheduling games allows us to explicitly express a cost
allocation in the least core of scheduling games and recast the least core linear program (LC) as
the maximization of a set function defined solely in terms of the cost function v. We consider the
cost allocation x̄ defined as follows:

x̄i =
1
2
(
v(Si)− v(Si−1)

)
+

1
2
(
v(N \Si−1)− v(N \Si)

)
(3)

=
1
2
wi

i∑

j=1

pj +
1
2
pi

n∑

j=i

wj (4)

for i = 1, . . . , n, where Si = {1, . . . , i} and S0 = ∅.
Theorem 3. Suppose (N,v) is a scheduling game.

(a) The cost allocation x̄ defined in (4) is in the least core of (N,v).
(b) The least core value of (N,v) is z∗ = 1

2
maxS⊆N,S &=∅,N{v(N)− v(S)− v(N \S)}.

Proof. For any S ⊆N , the cost allocation x̄ defined in (4) satisfies

2
(
x̄(S)− v(S)

)
=

∑

i∈S

i∑

j=1

wipj +
∑

i∈S

n∑

j=i

piwj − 2
∑

i∈S

i∑

j=1
j∈S

wipj (5a)

=
∑

i∈S

i∑

j=1

wipj +
∑

i∈S

n∑

j=i

piwj −
∑

i∈S

i∑

j=1
j∈S

wipj −
∑

i∈S

n∑

j=i
j∈S

piwj (5b)

=
∑

i∈S

i∑

j=1
j∈N\S

wipj +
∑

i∈S

n∑

j=i
j∈N\S

piwj (5c)

=
∑

i∈S

i∑

j=1
j∈N\S

wipj +
∑

i∈N\S

i∑

j=1
j∈S

wipj (5d)

=
∑

i∈N

i∑

j=1

wipj−
∑

i∈S

i∑

j=1

wipj −
∑

i∈N\S

i∑

j=1

wipj +
∑

i∈S

i∑

j=1
j∈N\S

wipj +
∑

i∈N\S

i∑

j=1
j∈S

wipj (5e)

=
∑

i∈N

i∑

j=1

wipj −
∑

i∈S

i∑

j=1
j∈S

wipj −
∑

i∈N\S

i∑

j=1
j∈N\S

wipj (5f)

Schulz and Uhan: Sharing Supermodular Costs
6 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

= v(N)− v(S)− v(N \S). (5g)

Let z̄ = 1
2
maxS⊆N,S &=∅,N{v(N)− v(S)− v(N \ S)}. The solution (x̄, z̄) is feasible for (LC), since

(5a)-(5g) implies x̄(N) = v(N), and for any S ⊆N , S (= ∅,N ,

z̄ ≥ 1
2
(
v(N)− v(S)− v(N \S)

)
= x̄(S)− v(S).

Now suppose (x∗, z∗) is an optimal solution to (LC). As in the proof of Theorem 2, we obtain the
following lower bound on 2z∗:

2z∗ ≥ v(N)− v(S)− v(N \S) for all S ⊆N,S (= ∅,N.

Therefore, z∗ ≥ z̄. It follows that the cost allocation x̄ is in the least core of (N,v), and the least
core value of (N,v) is z̄. !

In addition to being an element of the least core, it happens that the cost allocation x̄ as
defined in (4) is the Shapley value of scheduling games (Mishra and Rangarajan 2005). This is
quite remarkable: for an arbitrary supermodular cost cooperative game, the Shapley value is not
necessarily in the least core. Example 1 illustrates this point.

One might also wonder if the cost allocation x̄ as defined in (3) is in the least core, or coincides
with the Shapley value, for general supermodular cost cooperative games. Note that the definition
of x̄ in (3) depends on the ordering of N (for scheduling games, we ordered N according to
nonincreasing wj/pj). For a given permutation σ : N → N where σ(i) denotes the position of
player i∈N , we define the cost allocation x̄σ as follows:

x̄σ
σ−1(i) =

1
2
(
v(Si)− v(Si−1)

)
+

1
2
(
v(N \Si−1)− v(N \Si)

)

for i = 1, . . . , n, where Si = {σ−1(1), . . . , σ−1(i)}, and S0 = ∅. The cooperative game (N,v) defined
in Example 1 is an instance of a supermodular cost cooperative game (in particular, v is of the
form (2)) for which the cost allocation x̄σ is not in the least core and is not the Shapley value, for
any permutation σ of N .

Example 1. Consider the cooperative game (N,v) defined as follows. There are four players:
N = {1,2,3,4}. Each agent i ∈ N has a processing time pi = i. The cost v(S) to a coalition S
is the minimum total completion time of jobs in S on two identical parallel machines with non-
preemptive processing. By Theorem 1 and a result by Queyranne and Schulz (1995), v is super-
modular. The Shapley value of this game is φ1 = 3/2, φ2 = 17/6, φ3 = 23/6, and φ4 = 29/6, and
maxS⊆N,S &=∅,N{φ(S) − v(S)} = 5/3. However, the least core value of this game is 3/2. It is also
straightforward to check that maxS⊆N,S &=∅,N{x̄σ(S)− v(S)} = 2, for all permutations σ of N .

Although computing the least core value of an arbitrary supermodular cost cooperative game is
strongly NP-hard, it is still unclear at this point if this is the case for scheduling games. It turns
out that computing the least core value of scheduling games is weakly NP-hard: by Theorem 3(b),
computing the least core value of scheduling games is equivalent to the problem of minimizing the
sum of weighted completion times of jobs on two identical parallel machines with non-preemptive
processing, which is weakly NP-hard (Bruno et al. 1974). This is in contrast to Theorem 3(a), which
implies that we can compute a cost allocation in the least core of scheduling games in polynomial
time.

Schulz and Uhan: Sharing Supermodular Costs
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 7

5. Concluding remarks
Given that the problem of computing the least core value of supermodular cost cooperative games
is strongly NP-hard, one might be interested in designing approximation algorithms for this prob-
lem. In a companion paper (Schulz and Uhan 2010), we build a framework to approximate the
least core value of supermodular cost cooperative games (N,v), by approximately computing a
coalition S whose dissatisfaction e(x,S) = x(S)−v(S) is maximum, given a cost allocation x. This
framework yields a (3 + ε)-approximation algorithm. As a by-product, we also show how to com-
pute accompanying approximate least core cost allocations for these games. In particular, we show
how to compute a cost allocation in the 2-approximate least core of supermodular cost cooperative
games (N,v); that is, a cost allocation x∈RN that satisfies

x(N) = v(N),
x(S)≤ v(S)+ 2z∗ for all S ⊆N,S (= ∅,N,

where z∗ is the least core value of (N,v). Using our approximation framework, we are also able to
get better performance guarantees for subclasses of supermodular cost cooperative games: we give
a fully polynomial-time approximation scheme for computing the least core value of scheduling
games, as well as a polynomial-time algorithm for computing the least core value and a cost
allocation in the least core of a cooperative game that arises from matroid optimization.

Endnotes
1. A set function v : 2N → R is modular if (1) is satisfied with equality for all j, k ∈N such that
j (= k and S ⊆N \ {j, k}.
2. A ρ-approximation algorithm (ρ≥ 1) is an algorithm that always finds a solution whose objective
value is within a factor ρ of the optimal value, and whose running time is polynomial in the input
size. The parameter ρ is known as the performance guarantee of the algorithm.
3. The Shapley value (Shapley 1953) of a cooperative game (N,v) is the cost allocation φ ∈ RN ,
where

φi =
∑

S⊆N\{i}
|S|!(|N |−|S|−1)!

|N |!

(
v(S ∪{i})− v(S)

)
for all agents i∈N.

In words, the Shapley value of each agent i reflects agent i’s average marginal contribution to
the coalition N . The Shapley value is a classic, well-studied solution concept in cooperative game
theory; for example, see Roth (1988).
4. A set function v : 2N →R is submodular if −v is supermodular.

Acknowledgments
The authors would like to thank the associate editor, two anonymous referees, and Garrett van Ryzin for
their helpful feedback. This research was supported by the National Science Foundation (DMI-0426686).

References
Bird, C. G. 1976. Cost-allocation for a spanning tree. Networks 6 335–350.
Bruno, J., E. G. Coffman, R. Sethi. 1974. Scheduling independent tasks to reduce mean finishing time.

Communications of the ACM 17 382–387.
Chen, X., J. Zhang. 2006. Duality approaches to economic lot sizing games. Working paper.
Curiel, I., G. Pederzoli, S. Tijs. 1989. Sequencing games. European Journal of Operational Research 40

344–351.
Deng, X. 1998. Combinatorial optimization and coalition games. Handbook of Combinatorial Optimization,

vol. 2. Kluwer, 77–103.

Schulz and Uhan: Sharing Supermodular Costs
8 Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

Edmonds, J. 1970. Submodular functions, matroids, and certain polyhedra. R. Guy, H. Hanani, N. Sauer,
J. Schönheim, eds., Combinatorial Structures and Their Applications (Calgary International Conference
on Combinatorial Structures and Their Applications). 69–87.

Faigle, U., W. Kern, J. Kuipers. 2001. On the computation of the nucleolus of a cooperative game. Interna-
tional Journal of Game Theory 30 79–98.

Faigle, U., W. Kern, D. Paulusma. 2000. Note on the computational complexity of least core concepts for
min-cost spanning tree games. Mathematical Methods of Operations Research 52 23–38.

Garey, M. R., D. S. Johnson, L. Stockmeyer. 1976. Some simplified NP-complete graph problems. Theoretical
Computer Science 1 237–267.

Gillies, D. B. 1959. Solutions to general non-zero-sum games. A. W. Tucker, R. D. Luce, eds., Contributions
to the Theory of Games, Volume IV , Annals of Mathematics Studies, vol. 40. Princeton University
Press, Princeton, 47–85.

Goemans, M. X., M. Queyranne, A. S. Schulz, M. Skutella, Y. Wang. 2002. Single machine scheduling with
release dates. SIAM Journal on Discrete Mathematics 15 165–192.

Goemans, M. X., M. Skutella. 2004. Cooperative facility location games. Journal of Algorithms 50 194–214.
Granot, D., G. Huberman. 1981. Minimum cost spanning tree games. Mathematical Programming 21 1–18.
Hartman, B., M. Dror, M. Shaked. 2000. Cores of inventory centralization games. Games and Economic

Behavior 31 26–49.
H̊astad, J. 2001. Some optimal inapproximability results. Journal of the ACM 48 798–859.
Kalai, E., E. Zemel. 1982. Totally balanced games and games of flow. Mathematics of Operations Research

7 476–478.
Kern, W., D. Paulusma. 2003. Matching games: the least core and the nucleolus. Mathematics of Operations

Research 28 294–308.
Maniquet, F. 2003. A characterization of the Shapley value in queueing problems. Journal of Economic

Theory 109 90–103.
Maschler, M., B. Peleg, L. S. Shapley. 1979. Geometric properties of the kernel, nucleolus, and related

solution concepts. Mathematics of Operations Research 4 303–338.
Mishra, D., B. Rangarajan. 2005. Cost sharing in a job scheduling problem using the Shapley value. Pro-

ceedings of the 6th ACM Conference on Electronic Commerce. 232–239.
Nemhauser, G. L., L. A. Wolsey. 1988. Integer and Combinatorial Optimization. Wiley, New York, N.Y.
Owen, G. 1975. On the core of linear production games. Mathematical Programming 9 358–370.
Potters, J., I. Curiel, S. Tijs. 1991. Traveling salesman games. Mathematical Programming 53 199–211.
Queyranne, M. 1993. Structure of a simple scheduling polyhedron. Mathematical Programming 58 263–285.
Queyranne, M., A. S. Schulz. 1995. Scheduling unit jobs with compatible release dates on parallel machines

with nonstationary speeds. E. Balas, J. Clausen, eds., Integer Programming and Combinatorial Opti-
mization (IPCO 1995), Lecture Notes in Computer Science, vol. 920. Springer, Berlin, 307–320.

Roth, A. E., ed. 1988. The Shapley Value: Essays in Honor of Lloyd S. Shapley . Cambridge University
Press.

Schulz, A. S., N. A. Uhan. 2010. Approximating the least core and least core value of cooperative games
with supermodular costs. Working paper.

Shapley, L. S. 1953. A value for n-person games. H. W. Kuhn, A. W. Tucker, eds., Contributions to the
Theory of Games, Volume II , Annals of Mathematics Studies, vol. 28. Princeton University Press,
Princeton, 307–317.

Shapley, L. S., M. Shubik. 1966. Quasi-cores in a monetary economy with nonconvex preferences. Econo-
metrica 34 805–827.

Smith, W. E. 1956. Various optimizers for single-stage production. Naval Research Logistics Quarterly 3
59–66.

Schulz and Uhan: Sharing Supermodular Costs
Operations Research 00(0), pp. 000–000, c© 0000 INFORMS 9

Wolsey, L. A. 1985. Mixed integer programming formulations for production planning and scheduling
problems. Invited talk at the 12th International Symposium on Mathematical Programming, MIT,
Cambridge, MA.

