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Interesting Eigenvectors of the Fourier Transform
Berthold K.P. Horn∗

Abstract—It is well known that a function can be
decomposed uniquely into the sum of an odd and an
even function. This notion can be extended to the unique
decomposition into the sum of four functions — two of
which are even and two odd. These four functions are
eigenvectors of the Fourier Transform with four different
eigenvalues. That is, the Fourier transform of each of
the four components is simply that component multiplied
by the corresponding eigenvalue. Some eigenvectors of
the discrete Fourier transform of particular interest find
application in coding, communication and imaging. Some
of the underlying mathematics goes back to the times of
Carl Friedrich Gauss.

Index Terms—Function decomposition, Fourier trans-
form, Discrete Fourier transform, Coded apertures, Coded
aperture imaging, Gaussian Integers, Eisenstein Integers,
Legendre symbol, Legendre sequence, Legendre symbol
sequence, Bi-level auto-correlation, Ideal auto-correlaton,
Flat power spectrum, Periodic phase sequences.

I. Background

A function f can be uniquely decomposed into a sum
of an even component, fe, and an odd component, fo:

f = fe + fo with Rfe = fe and Rfo = −fo (1)

where R is an operator that reverses a function, i.e.
(Rf )(x) = f (−x). Noting that R(fe + fo) = fe − fo,
we can easily find the even and odd components using

fe = (f +Rf )/2 and fo = (f −Rf )/2 (2)

We can rewrite this as fe = Pef and fo = Pof , where

Pe = (I +R)/2 and Po = (I −R)/2 (3)

are operators that project a function into the subspaces
of even and odd functions respectively, with I being the
identity operator.

As behooves projection operators, P2
e = Pe and P2

o =
Po, — which can be seen by noting that R2 = I . R has
exactly two eigenvalues, namely +1 and −1, since, from
R2 = I , we get the equation λ2 = 1 for the eigenvalues.
Note that each of the projection operators is degenerate
since it maps vectors that lie in the other subspace to zero,
and so must have a zero eigenvalue.

There is a subspace of even functions and a subspace of
odd functions and any function can be uniquely decom-
posed into the sum of two functions, one from each of
these two subspaces. With respect to the operator R, all
even functions have eigenvalue +1 and all odd functions
have eigenvalue −1.
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While we are here, note that,

F(fe) = F(fe)
∗ and F(fo) = −F(fo)

∗ (4)

if fe and fo are even and odd respectively, where F is
the Fourier transform operator, and ∗ denotes the complex
conjugate. All this is well known. Now for the fun part.

II. Splitting a function into four components

First, recall that the inverse Fourier transform is pretty
much the same as the forward Fourier transform, except
for a sign change of the product in the exponent (for
convenience we use the unitary Fourier transform here).
As a result, if, “by mistake,’’ we apply the forward Fourier
transform, instead of the inverse Fourier transform to Ff ,
then, instead of getting back f, we get f reversed, i.e.
F(Ff ) = F 2f = Rf. It follows from F 2 = R that
F 4 = R2 = I . Hence F has exactly four eigenvalues,
namely +1, −1, −i, and +i, since from F 4 = I we get the
equation λ4 = 1 for the eigenvalues. Again, this is known
[1], [2], although, the idea of eigenvalues of the Fourier
transform may seem at bit odd at first.

Following the example of decomposition into even and
odd components above, we note that there are four sub-
spaces, each containing functions with one of these four
eigenvalues w.r.t. F . Thus we might look for a unique
decomposition of a function f into four components, one
from each of the four subspaces:

f = f+1 + f−1 + f−i + f+i (5)

with Ff+1 = f+1, Ff−1 = −f−1, Ff−i = −if−i , and
Ff+i = if+i . We note that

F(f+1 + f−1 + f−i + f+i) = f+1 − f−1 − if−i + if+i (6)

so that, if it should turn out that we could find this
decomposition cheaply, then we would have a really cheap
way of computing the Fourier transform!

III. Finding the four components

Using this last equation, and what we know about the
properties of R and the even and odd components, we can
show that the four components are given by:

f+1 = (fe + Ffe)/2, and f−1 = (fe − Ffe)/2, (7)

f−i = (fo − iFfo)/2, and f+i = (fo + iFfo)/2, (8)

or
f+1 = P+1f and f−1 = P−1f, (9)

f−i = P−if and f+i = P+if, (10)



2 TRANSACTIONS OF THE ROYAL SOCIETY OF SOUTH AFRICA

where

P+1 = (I + F)(I +R)/4, P−1 = (I − F)(I +R)/4, (11)

P−i = (I − iF )(I −R)/4, P+i = (I + iF )(I −R)/4, (12)

are operators that project a function into the four sub-
spaces. Again, as required of projection operators, P2+1 =
P+1, P2−1 = P−1, P2−i = P−i , and P2+i = P+i , as can easily
be verified using F 2 = R and R2 = I . Also note that,

Pe = P+1 + P−1 and Po = P+i + P−i (13)

and that all four components of a function can be com-
puted using a single Fourier transform (since FR = F ∗).

Perhaps somewhat surprisingly, the four projections of a
real function are also real, as can be seen by inspecting
the projection operators. For example, in applying P+1,
only the even component of the function is used and the
transform of an even (real) function is real (and even).
Similarly, in applying P+i , only the odd component of
the function is used and the transform of an odd (real)
function is imaginary (and odd). Multiplying by i turns
the imaginary partial result into real. And so on.

There remains one issue, which is what to call these sub-
spaces. In analogy with the “even’’ and “odd’’ subspaces,
the following names are proposed “recto even,’’ (λ = +1),
“verso even,’’ (λ = −1), “recto odd’’ (λ = −i), and “verso
odd,’’ (λ = +i). Suggestions for more intuitive names
would be appreciated!

Finally, with regret, but no real suprise, we note then
that the obvious implementation of the required projection
operators involves Fourier transforms! So apparently the
“super cheap’’ Fourier transform based on the four-way
decomposition of a function is not a viable approach.

IV. Discrete Version

A particular instance of the general analysis above may
help illuminate these ideas. Consider discrete sequences of
period n. In this case, R is an n × n symmetric matrix
with Ri,j = δi+j−(n−1) — that is, with 1’s along the “anti-
diagonal,’’ and 0’s elsewhere. It is easy to see that R2 = I .
We have already shown that the eigenvalues of R are +1
and −1, but what about the eigenvectors? For a symmetric
n × n matrix we expect to be able to find n independent
eigenvectors. But here we only have 2 distinct eigenvalues,
so the eigenvectors are not uniquely defined. But we can
easily find some basis for each of the two subspaces.

For the even subspace we can, for example, use the basis
{ei}, with e0 = [1, 0, 0 . . . 0, 0], e1 = [0, 1, 0 . . . 0, 1], e2 =
[0, 0, 1 . . . 1, 0], etc. For the odd subspace we can use the
basis {oi}, with o1 = [0, 1, 0 . . . 0,−1], o2 = [0, 0, 1 . . . −
1, 0], etc. (note that there are slight differences between the
case when n is even and when n is odd, and that the two
subspaces do not have the same dimensions). There are, of
course, an infinite number of alternate bases for the two
subspaces.

Moving on to the (unitary) discrete Fourier transform
(DFT) now, we see that F is an n×n symmetric matrix, with
Fk,l = (1/

√
n)e−2πi kl/n for k = 0 to n − 1 and l = 0 to

n−1. We have already shown that there are four eigenvalues,
but what about the eigenvectors?

Here again, it may seem odd that the DFT should have
eigenvectors, but note that the matrix F is orthonormal
((FT )∗F = I ) and so represents a kind of “rotation’’
of an n dimensional space — with the inverse transform
(F−1 = F ∗) performing a counter-rotation. This view of
the DFT perhaps makes the notion of eigenvectors appear
less surprising.

While F has a full complement of n eigenvectors because
it is unitary, the eigenvectors are not uniquely determined,
since there are only four distinct eigenvalues (the number of
eigenvectors corresponding to each eigenvalue depends on
the congruence class of n mod 4 [1]). Several sets of basis
vectors have been investigated based on different criteria
for what make “nice’’ bases. Some have been motivated by
the notion of a “fractional’’ DFT [3], [4]. The idea is that
if the DFT represents a rotation, then one should be able
to consider a smaller rotation that, say, goes only half way,
but that, when repeated, yields the full rotation.

V. Detailed example of discrete case

To explore the notion of the projection operators that
yield the four components, consider, as a specific example,
the case n = 4, where

F = 1

2

⎛
⎜⎜⎝
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎞
⎟⎟⎠ (14)

a symmetric matrix with characteristic equation

λ4 − (1+ i)λ3 − (1− i)λ2 + (1+ i)λ− i = 0 (15)

or (λ− 1)2(λ+ 1)(λ− i) = 0. (Note that, in this particular
case, the root λ = −i is “missing’’ and that the root λ = +1
is repeated). We construct

P+1 = 1

4

⎛
⎜⎜⎝
3 1 1 1
1 1 −1 1
1 −1 3 −1
1 1 −1 1

⎞
⎟⎟⎠ (16)

Here P+1 directly provides two eigenvectors for the “recto
even’’ subspace, namely [3, 1, 1, 1]T and [1, 1,−1, 1]T (Note
that P+1 only has rank two because the third column equals
the difference of the first and twice the second, and the
fourth column is the same as the second). Next,

P−1 = 1

4

⎛
⎜⎜⎝

1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1

⎞
⎟⎟⎠ (17)

Here P−1 yields the eigenvector [1,−1,−1,−1]T for the
“verso even’’ subspace. Further

P+i = 1

2

⎛
⎜⎜⎝
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎞
⎟⎟⎠ (18)
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where P+i yields the eigenvector [0, 1, 0,−1]T for the “verso
odd’’ subspace. Finally,

P−i =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (19)

For n = 4, F does not have the eigenvalue −i, so there is
no “recto odd’’ subspace and indeed the projection matrix
P−i is zero. Note that all four of the projection matrices
are real, as expected, and also symmetrical. For n > 4, all
four subspaces exist. As can be seen, in general the four
subspaces do not have the same dimensions.

As an exercise, the reader may wish to work out the
details for the case n = 3, where the three eigenvalues are
+i, −1, and +1, with no repeated roots.

VI. Eigenvectors of the DFT with particularly
interesting properties

While there are an inifinite number of eigenvectors of
each of the four subspaces, some are of particular interest.
Consider, for example, eigenvectors that have components
that are restricted to take on the values +1 and −1 (except
for a 0 for the 0-th component). Exhaustive search for small
n yields some candidates. For example, the even sequence

0 + 1 − 1 − 1 + 1

for n = 5 has the (real) transform
0 + 1 − 1 − 1 + 1

while the (odd) sequence
0 + 1 + 1 − 1 + 1 − 1 − 1

for n = 7 has the (purely imaginary) transform
0 − i − i + i − i + i + i

It is perhaps surprising that a sequence composed merely
of +1’s and −1’s could be an eigenvector. It turns out
that this is not just a curiosity, but has important practical
implications. The power spectrum of such a sequence is flat
(except for the zero frequency, or DC, term, which we shall
silently ignore from now on), since the power spectrum
is the magnitude squared of the transform, and here, the
transform is the sequence itself multiplied by a (possibly
complex) eigenvalue of unit magnitude.

Sequences with flat power spectrum are of particular
interest in coding and communications. One reason is that if
a signal is convolved with such a waveform (on the sending
end), then deconvolution (on the receiving end) amplifies
noise equally at all frequencies, because the deconvolution
filter (inverse of the coding filter) also has a flat spectrum.
If a coding filter is used that does not have a flat spectrum,
then the decoding filter must have a higher response at
frequencies were the coding filter has low response. This
means that noise at some frequencies will be amplified more
than at others, leading to an overall loss in signal-to-noise
performance (for fixed signal power).

The decoding sequence here has the same spectrum as
the original coding sequence, except that the phases are

all reversed (so that the product of the transforms of the
coding and decoding sequences has the same value at all
frequencies).

It is well known that impulses and chirps have flat power
spectra. These waveforms are widely used in radar, for
example. Here we find another class of waveforms that have
flat power spectra. Such waveforms are used, for example,
in cell phone communication and coded aperture imaging.

VII. Ideal Bi-level Auto-correlation

An equivalent way of understanding the above is to
consider the auto-correlation of such a sequence with itself.
Correlation with a sequence corresponds to convolution
with that sequence reversed. Reversing a sequence flips the
sign of the phases in the Fourier transform. Convolution
of two sequences corresponds to multiplication of their
transforms (scaled by

√
n in the case of the unitary DFT).

So we find that the transform of the auto-correlation here is
the same for all frequencies (except for the zero frequency
term). Inverse transforming, we obtain a large value for
zero shift and a constant (small) value for all other shifts.
Thus these special sequences have the so-called bi-level
auto-correlation feature. As a result, the sequence itself can
be used effectively in decoding.

For such a sequence {lk} of period n we have

n−1∑
k=0

lk lk+m = n δm − 1 (20)

where indices are treated mod n (see Appendix B for a
proof). It is illuminating to correlate the sample sequences
shown above for n = 5 and n = 7 with themselves to
check this property. It is remarkable that sequences with
this property exist.

A small modification is needed for some practical ap-
plications of these sequences. A coded aperture used in
imaging with radiation that cannot be refracted or reflected,
for example, can only have a hole in a mask, or no hole, at
each point on a regular grid of points [5], [6]. So incoming
radiation intensity can in effect be multiplied by +1 (open
hole) or 0 (no hole) — but not by −1. We can arrive at a
usable hole pattern by picking only the +1’s (or the −1’s for
that matter) in the sequence to drill a hole. Equivalently,
we can add 1 to the sequence and divide the result by 2,
to get a binary pattern {l ′

k
}, where l ′

k
= (lk + 1)/2, which

can be represented by holes (1’s) and blocked areas (0’s) in
a mask (except for the zeroth term of the sequence, which
we won’t get into here).

The addition of a constant to all elements of the sequence
adds an impulse at zero frequency to the transform and
so does modify the result a bit. Such binary sequences
still have the ideal bi-level auto-correlation property (now
something like (n δm−1+n)/4). That is, there is one (large)
correlation value for zero shift, and another (smaller) value
for all other shifts — although now the “smaller’’ value is
about half the size of the larger one, rather than very much
smaller. In deconvolution this non-zero value leads to a
constant background “pedestal’’ which can be subtracted
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out after deconvolution. The constant background is not
without disadvantage, however, since, in practice, mea-
surements are corrupted by noise, and so the “constant’’
background won’t be quite constant, and the signal-to-
noise ratio will be adversely affected by this compromise
forced on us by our inability to drill “negative holes.’’

VIII. Generating eigenvectors with special properties

Aside from brute force search, is there some systematic
way of finding eigenvectors with these special properties?

One way is to exploit quadratic residues from number
theory. A number n is a quadratic residue mod p if there
exists a number i such that i2 ≡ n mod p. When no such
number exists, then n is a quadratic non-residue mod p.
We can find all the quadratic residues mod p simply by
taking all numbers from 0 to (p−1) (actually 0 to (p−1)/2
suffice), squaring them, and taking the result mod p. By
convention, 0 is not considered a quadratic residue (while
1 is obviously always a quadratic residue, for all p). It is
easy to see that the quadratic residues from a group, and
that the non-residues form the coset of that group.

If one finds the quadratic residues for p = 5 and
p = 7, and puts a +1 in the sequence for every quadratic
residue and −1 for every quadratic non-residue, one obtains
the sample eigenvector sequences presented above. This
construction can be written using the Legendre symbol:

(
n

p

)
2

=

⎧⎪⎨
⎪⎩
0 when n is 0 mod p

+1 when n is a quadratic residue
−1 when n is a quadratic non-residue

(21)

Then the special sequences of length p that we are inter-
ested in are just {ln}, where ln is the Legendre symbol.

At this point we have almost enough to try and formally
prove that such sequences are eigenvectors of the DFT
when p is a prime, and that they have the ideal bi-level
auto-correlation property. One way to determine the value
of the Legendre symbol that is useful in proving such results
is Euler’s criterion (

n

p

)
2

≡ n
p−1
2 mod p (22)

The value of the expression on the right will always be 0,
+1, or −1 if we pick the residue of smallest magnitude
(rather than using a residue in the range 0 and p − 1). In
this regard, note that (p − 1) ≡ −1 mod p.

Using these ideas, one can show that the eigenvalue is
+1 when p ≡ 1 mod 4 while the eigenvalue is −i when
p ≡ 3 mod 4. Actually, it turns out that this is not
quite as easy as it might appear at first sight. Fortunately
Gauss (!) provided formulae for what are now called Gauss
sums [7] in his work on “quadratic reciprocity’’ that are
hepful in this endeavour. See Appendix A for proof of the
eigenvector property of the Legendre symbol sequences.
See Appendix B for proof of the bi-level auto-correlation
property of the Legendre symbol sequences.

IX. Extensions to two dimensions

For imaging, coded aperture masks typically need to be
two-dimensional [5], [6] The above ideas can be extended
to two-dimensional patterns using Gaussian integers and
Eisenstein integers. Gaussian integers are of the form
(a+ bi), where a and b are “rational’’ integers (our usual
numbers) and i2 = −1. Gaussian integers correspond in a
natural way to points on a square lattice in the plane. We
can, of course, easily generalize the usual arithmetic oper-
ations on rational integers to those on Gaussian integers,
including multiplication

(a+ bi)(c + di) = (ac − bd)+ (ad + bc)i (23)

using i2 = −1. The squared norm is the product with the
conjugate, and so the squared norm of (a+ bi) is a2 + b2.
“Units’’ are Gaussian integers of norm one (+1, −1, −i,
and +i — i.e. powers of i).

Gaussian primes are Gaussian integers that cannot be
decomposed into products of Gaussian integers — other
than products involving units. Gaussian integers have many
of the properties of ordinary integers, such as being
uniquely decomposable into products of Gaussian primes
(where “unique’’ means ignoring multiplication by units).
As a result, we can use Euler’s criterion to generalize the
Legendre symbol, customarily defined only in terms of
“rational’’ integers, to work with Gaussian integers. We can
then generate doubly periodic patterns of +1’s, −1’s (and
occasional 0’s) on a square grid in the plane.

Hexagonal lattices have certain advantages over square
lattices. We can develop patterns for hexagonal lattices
using a similar approach, just starting with Eisenstein
integers instead of Gaussian integers. Eisenstein integers
are of the form (a + bω), where ω3 = −1, with ω �= −1.
From ω3 + 1 = 0 we obtain (ω + 1)(ω2 −ω + 1) = 0, and,
because ω �= −1, we find ω2 = ω − 1.

Eisenstein integers correspond in a natural way to points
on a hexagonal lattice in the plane. Again, arithmetic oper-
ations on rational integers can be generalized to Eisenstein
integers. Multiplication can be written

(a+ bω)(c + dω) = (ac − bd)+ (ad + bd + bc)ω (24)

using ω2 = −1−ω. Conjugation needs to be defined using
(a + bω)∗ = (a + b) − bω and so the squared norm of
(a+ bω) is a2 + ab + b2. Again, units have norm one and
here are ω, −ω∗, −1, −ω, +ω∗, and +1 (i.e. powers of ω).

We can use Euler’s criterion to generalize the Legendre
symbol to Eisenstein integers using the above arithmetic
operations. Consequently we can generate doubly periodic
patterns of +1’s, −1’s (and occasional 0’s) on a hexagonal
grid in the plane.

X. Fourier transforms of two dimensional patterns

When we compute the Fourier transforms of the two-
dimensional patterns described above, we find that they
once again resemble the patterns themselves! First, being
discrete and periodic, the transform will be periodic and
discrete (albeit generally not lined up with the spatial grid
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itself). Then, the magnitude of the transform is constant
(except for the zeros). Further, the pattern of phases
matches the original pattern, except, they are reflected
about a line through the origin (or equivalently, mirror
image reversed and rotated). So they may be considered
“eigenvectors’’ of the two-dimensional Fourier transform,
with the “eigenvalue’’ now being a complex scale factor and
a reflection in the plane.

0 + – – + + + + – + – – – + –
– – – + – + + + + – – + 0 + –
+ + + – + – – – + – – + – – –
+ + + + – – + 0 + – – + + + +
– – – + – – + – – – + – + + +
– + 0 + – – + + + + – + – – –
– + – – – + – + + + + – – + 0
– + + + + – + – – – + – – + –
+ – + + + + – – + 0 + – – + +
– + – – – + – – + – – – + – +
+ – – + 0 + – – + + + + – + –
+ – – + – – – + – + + + + – –
+ – – + + + + – + – – – + – –
– – + – + + + + – – + 0 + – –
+ + – + – – – + – – + – – – +

Fig. 1. Doubly periodic pattern with a basic repeating pattern
containing p = 29 (p = 52 + 22) points.
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Fig. 2. Fourier transform of the doubly periodic pattern,
with basic repeating pattern outlined. The L-shaped region is
a reflection of the basic repeating pattern in Fig. 1.

XI. Extension to lower fill factors

Half the numbers from 1 to p− 1 are quadratic residues
and half are not, so a coded aperture mask made using
the method described above will be about half holes and
half blocked areas. The fraction of open holes is called
the fill factor, f say, and is about 50% for this method of

Fig. 3. Doubly periodic pattern with a basic repeating pattern
containing p = 643 (p = 182+18×11+112) points (red dot +1,
green dot −1). The fill factor is 322/643 or about 50.07%.

Fig. 4. Fourier transform of the doubly periodic pattern, with
color indicating phase. The phase pattern is a reflection of the
mask pattern in the spatial domain, shown in Fig. 3.

generating coded patterns. This means that the background
pedestal described above is rather large and its deliterious
effect on the signal-to-noise ratio significant.

One can do better with lower fill factor, for, while the
signal is proportional to the fill factor, f, the background
pedestal is proportional to the fill factor squared, f 2. That
is, even as the signal is reduced with lower fill factors, the
signal-to-noise ratio (or more precisely contrast-to-noise
ratio) may be improved with lower fill factors. But do
patterns with lower fill factor exist that have the ideal bi-
level auto-correlation properties?

The answer is in the affirmative. For example, for certain
values of p, bi-quadratic residues — where we replace
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squaring with raising to the fourth power in the above —
have only about 25% fill factor and have the desired auto-
correlation property. It is possible to show that, in this case,
the bi-quadratic residues form a group, and that this group
has three cosets.

These extensions can be analysed using a generalization
of the Legendre symbol to also include the power to which
the number is to be raised (here the fourth). We can try
and generalize Euler’s criterion using the definition(

n

p

)
4

≡ n
p−1
4 mod p (25)

In this case, the result can take on four values (rather than
just +1 and −1). The sets defined by the four different
values correspond to the bi-quadratic residue group and
its three cosets. As an example, here is the result for p = 5:

0 + 1 + 2 − 2 − 1

Now (+2)2 ≡ −1 mod 5 and (−2)2 ≡ −1 mod 5, so we
can think of +2 and −2 as square roots of −1. Replacing
them with +i and −i, we obtain the sequence

0 + 1 + i − i − 1

In this fashion we obtain periodic sequences consisting of
+1’s, −1’s, −i’s, and +i’s (instead of just +1’s and −1’s).

Sequences defined by the above generalization of the
Euler criterion, suprisingly, still have the bi-level auto-
correlation property — as long as we take correlation
of two complex sequences to mean addition of products
of terms from one sequence with the complex conjugate
of corresponding terms from the other sequence. For a
sequence of period p, the auto-correlation for zero shift
is (p − 1), while it is −1 for all other shifts, as before.

These sequences also have a kind of eigenvector property
w.r.t the DFT. Namely, the DFT of the sequence equals the
complex conjugate of the sequence multiplied by a complex
factor of magnitude one (i.e. no longer just +1 or −i).

For practical applications we typically need a real bi-
nary sequence. These can be obtained by considering all
positions where the residue computed in this fashion have
the same value, e.g. +1. Unfortunately, while quadratic
residue patterns with the bi-level auto-correlation property
are ubiquitous, bi-quadratic patterns with this property are
rarer: the prime p has to be of the form 16k(k + 1)+ 5 or
16k(k + 1)+ 13 for some integer k.

Octic residue patterns have only about 12.5% fill factor,
which is even better from a signal-to-noise point of view.
The octic residues form a group, and there are seven cosets
of that group. If we try to generalize Euler’s criterion as(

n

p

)
8

≡ n
p−1
8 mod p (26)

we obtain a result that can take on eight values. These
correspond to the octic residue group and its seven cosets.
As an example, here is the first half of the result for p = 17:

0 + 1 + 4 − 8 − 1 + 8 + 2 − 2 − 4

(the second half is the same sequence in reverse order, since
this sequence is even).

Now (+4)2 ≡ −1 mod 17 and (−4)2 ≡ −1 mod 17, so
we can think of +4 and −4 as the two square roots of
−1. Further, (+2)4 ≡ −1 mod 17 and (−2)4 ≡ −1 mod 17,
(+8)4 ≡ −1 mod 17 and (−8)4 ≡ −1 mod 17, so we can
think of +2, −2, +8 and −8 as the four fourth roots of
−1. If we let w = (1+ i)/

√
2, then w2 = +i, (w∗)2 = −i.

This leads to an even sequence, the first half of which is:
0 + 1 + i − w∗ − 1 + w∗ + w − w − i

The result can be called a “phase sequence’’, a periodic
sequence of complex values of unit magnitude.

What may appear to be a somewhat ad hoc process can
be formalized by noting that the eight values themselves
from a group that can be generated from a primitive root.
In this example, 2 is a primitve root (while 1 and 4 are
not), and 20 ≡ +1, 21 ≡ +2, 23 ≡ +8, 24 ≡ −1, 25 ≡ −2,
26 ≡ −4 and 27 ≡ −8 (all taken mod 17 of course). If we
assign w to the primitve root, then powers of that root can
be assigned to all elements of the periodic sequence.

Sequences defined by the above generalization of the Eu-
ler criterion still have the bi-level auto-correlation property
(as long as we define correlation of two complex sequences
as above). Their DFT also is equal to the complex conju-
gate of the sequence itself multiplied by a complex constant
of magnitude one.

Again, we can derive useful binary sequences from the
periodic phase sequences using the technique described for
bi-quadratic residues. Sadly, octic residue patterns obtained
this way with the bi-level auto-correlation property are rare.
The first few values of p for which octic residue patterns
exist are p = 73, p = 26, 041, p = 104, 411, 704, 393, p =
660, 279, 756, 217, p = 160, 459, 573, 394, 847, 767, 113.
Now p = 73 is too small to be useful for imaging (one
would have only 73 independent pixels in the resulting
image), and noone plans to drill a coded aperture mask
with a few hundred billion holes or more!

The above generalization of Euler’s criterion can be used
to define periodic phase sequences for arbitrary m > 1 for
any odd prime p such that p ≡ 1 mod m. Such sequences
can be one-dimensional or two-dimensional, using another
generalization of the Euler criterion. Methods for mapping
these periodic phase sequences to binary sequences, how-
ever, only work for particular values of the prime p, which
depend on the value of m chosen.

XII. Conclusions

An arbitrary function can be decomposed into four
functions, each being an eigenvector of the Fourier trans-
form, the four differing in eigenvalue. This generalizes the
decomposition into even and odd parts. Unfortunately, this
does not appear to provide a cheap way for computing the
Fourier transform.

The operators projecting a function into the four sub-
spaces can be conveniently illustrated in the discrete case,
where the DFT is a symmetric n × n matrix and periodic
sequences can be treated as n-vectors. The four projection
operators are degenerate symmetric real matrices.
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The eigenvectors are not unique because there are only
4 distinct eigenvalues. Some eigenvectors with particularly
interesting properties are used in coding, communications
and coded aperture imaging. Number theory is an aid
to generating sequences with these special properties. Ex-
tensions to two-dimensional patterns are possible using
Gaussian integers and Eisenstein integers.
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Appendix A
The DFT of the Legendre symbol sequence

The unitary DFT {Lk} of the Legendre symbol sequence
{ln} is given by

Lk = 1√
p

p−1∑
n=0

(
n

p

)
e−i2πkn/p (27)

This can be rewritten as follows, given the definition of ln,
and noting in particular that l0 = 0:

Lk = 1√
p

∑
n∈R

e−i2πkn/p − 1√
p

∑
n∈N

e−i2πkn/p (28)

where R is the set of quadratic residues mod p, and N is
the set of nonresidues (where we exclude 0 as is customary).
If k = 0, the above sum is simply the difference between
the number of quadratic residues and nonresidues lying
between 1 and (p − 1). The difference is zero since there
are as many quadratic residues as quadratic nonresidues.
So L0 = 0, which is not surprising given that the sum
of the terms in the sequence {ln} is 0 (the zero frequency
component is proportional to the sum of the elements of
the sequence).

Now any number from 1 to (p − 1) is either in R or in
N , so we can rewrite the sum in the alternate form

Lk = 2√
p

∑
n∈R

e−i2πkn/p − 1√
p

∑
n∈R∪N

e−i2πkn/p (29)

The set R∪N consists of all the numbers from 1 to (p−1).
Now if k �= 0, then

p−1∑
n=0

e−i2πkn/p = 0 (30)

Hence the same sum starting with n = 1, instead of 0, must
equal −1. Consequently, for k �= 0, the difference above can
be written

Lk = 2√
p

∑
n∈R

e−i2πkn/p + 1√
p

(31)

Now the number n is in R iff there exists j such that
n ≡ j2 mod p. This suggests replacing the sum over
all n ∈ R with a sum over j , and replacing n with j2

in the terms being summed. In particular, the expression
j2 mod p for j = 1, 2 . . . (p − 1) generates all of
the quadratic residues mod p. Larger values of j do not
produce new values since (p + j)2 ≡ j2 mod p.

Actually, the above expression produces each quadratic
residue exactly twice since (p − j)2 ≡ j2 mod p. Hence
the sum over n ∈ R in the above expression corresponds to
a sum over j = 1 to (p − 1)/2 in

Lk = 2√
p

(p−1)/2∑
j=1

e−i2πkj2/p + 1√
p

(32)

The sum can be expanded using Euler’s formula to yield

(p−1)/2∑
j=1

cos
2πkj2

p
− i

(p−1)/2∑
j=1

sin
2πkj2

p
(33)

We first compute L1 and then show that Lk , for k �= 1,
equals either L1 or −L1.

From Gradshteyn and Ryzhik (1.344 [8]) we have

n−1∑
k=0

cos
2πk2

n
=

√
n

2

(
1+ cos

nπ

2
+ sin

nπ

2

)
(34)

n−1∑
k=1

sin
2πk2

n
=

√
n

2

(
1+ cos

nπ

2
− sin

nπ

2

)
(35)

When n is odd, the cosine terms on the right equal 0. The
sine terms equal +1 for n ≡ 1 mod 4 or −1 for n ≡ 3 mod
4. Further,

cos
2π(n− k)2

n
= cos

2πk2

n
(36)

sin
2π(n− k)2

n
= sin

2πk2

n
(37)

so the terms in the sum from (n+1)/2 to (n−1) are equal
to the terms from 1 to (n− 1)/2 (in reverse order). So

2

(n−1)/2∑
k=1

cos
2πk2

n
+ 1 =

{√
n for n ≡ 1 mod 4

0 forn ≡ 3 mod 4
(38)

(note the change of lower limit in the sum), and

2

(n−1)/2∑
k=1

sin
2πk2

n
=

{
0 forn ≡ 1 mod 4√
n for n ≡ 3 mod 4

(39)
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Applying these results to the formula for Lk , with k = 1,

L1 =
{
1 for p ≡ 1 mod 4

−i for p ≡ 3 mod 4
(40)

To find Lk for k > 1, we distinguish two cases:
(1) When k is a quadratic residue mod p, then:

kj2 mod p forj = 1, 2 . . . (p − 1) (41)

generates the quadratic residues (twice, in various permuted
orders depending on k), since kj2 ≡ (j ′j)2 mod p for
some j ′. So in this case Lk = L1.

(2) When k is not a quadratic residue mod p, then:

kj2 mod p forj = 1, 2 . . . (p − 1) (42)

generates the non-residues, since kj2 �≡ (j ′j)2 mod p for
any j ′. So in this case the result can be obtained by taking
the sum over all n and subtracting the sum over values of
n that are quadratic residues mod p:

Lk = 2√
p

⎛
⎝p−1∑

n=1

e−i2πn/p −
(p−1)/2∑
j=1

e−i2πj2/p

⎞
⎠+ 1√

p
(43)

The first of the two sums in the parenthesis equals −1 as
explained above. So

Lk = − 2√
p

(p−1)/2∑
j=1

e−i2πj2/p − 1√
p

(44)

Comparing this to the earlier equation for Lk when k = 1,
we finally see that Lk = −L1 when k is not a quadratic
residue mod p. Overall then

Lk =

⎧⎪⎨
⎪⎩
0 if k is 0 mod p

+L1 if k is a quadratic residue mod p

−L1 if k is a quadratic nonresidue

(45)

We know that L1 = 1 for p ≡ 1 mod 4, and L1 = −i for
p ≡ 3 mod 4. Comparing the equation with L1 = 1 with
the equation for the Legendre symbol makes it clear that
the transform {Lk} is the same sequence as the original
Legendre sequence {lk}. Similarly for L1 = −i we see that
the transform is simply the Legendre sequence multiplied
by −i. So finally we obtain{

Lk = lk if p ≡ 1 mod 4

Lk = −ilk if p ≡ 3 mod 4
(46)

That is, the DFT of the Legendre symbol sequence is simply
a multiple of the sequence itself.

Appendix B
Auto-correlation of Legendre symbol sequence

Consider the Legendre sequence {ln}, where

ln =
(
n

p

)
(47)

with l0 = 0. By Euler’s criterion

ln = n
p−1
2 mod p (48)

If p is a prime there will exist a primitive root g such that
gk mod p, for k = 1 to p−1, generates all of the numbers
from 1 to p−1 exactly once (in some permuted order). The
“index’’ (or “logarithm’’) of n w.r.t. g is then defined by

gindg(n) ≡ n mod p (49)

for n �≡ 0 mod p. Consequently

ln = gindg(n)
p−1
2 mod p (50)

for n �≡ 0 mod p, but

g
p−1
2 ≡ −1 mod p (51)

so
ln = (−1)indg(n) (52)

That is, for n �≡ 0 mod p, ln equals +1 or −1 depending
on whether indg(n) is even or odd.

The (periodic) auto-correlation of the sequence {ln} is

cm =
p−1∑
n=0

lnln+m (53)

where the indices are taken mod p. For m = 0 this is the
sum of a zero and (p − 1) ones, (since l2n = +1 for n �≡
0 mod p) and so c0 = (p − 1). For m �≡ 0

cm =
p−1∑
n=1

n+m �≡0

(−1)indg(n)(−1)−indg(n+m) (54)

where we omit the two terms involving l0, since l0 = 0, and
made use of the fact that (−1)−m = (−1)m. So finally

cm =
p−1∑
n=1

n+m �≡0

(−1)indg(n)−indg(n+m) (55)

The difference in the exponent assumes all integer values
between 1 and (p− 2), mod (p− 1), exactly once over the
indicated range of n (i.e. omitting n = 0 and n +m ≡ 0).
Thus there is one more −1 raised to an odd power than
−1 raised to an even power in the sum, and so cm = −1
for m �≡ 0.

So we see that the auto-correlation comes to (pδm − 1),
and so the Legendre symbol sequence has the ideal bi-level
auto-correlation property.


