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Call Center Stress Recognition

with Person-Specific Models
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Abstract. Nine call center employees wore a skin conductance sensor
on the wrist for a week at work and reported stress levels of each call.
Although everyone had the same job profile, we found large differences
in how individuals reported stress levels, with similarity from day to day
within the same participant, but large differences across the participants.
We examined two ways to address the individual differences to automat-
ically recognize classes of stressful/non-stressful calls, namely modifying
the loss function of Support Vector Machines (SVMs) to adapt to the
varying priors, and giving more importance to training samples from the
most similar people in terms of their skin conductance lability. We tested
the methods on 1500 calls and achieved an accuracy across participants
of 78.03% when trained and tested on different days from the same per-
son, and of 73.41% when trained and tested on different people using the
proposed adaptations to SVMs.
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1 Introduction

Chronic psychological stress carries a wide array of pathophysiological risks,
including cardiovascular disease, cerebrovascular disease, diabetes, and immune
deficiencies [8]. An important step in managing stress, before it becomes chronic,
is recognizing precisely when and where it occurs. Technologies that automati-
cally recognize stress can be extremely powerful, both diagnostically and thera-
peutically. As a diagnostic tool, technologies such as these could help individuals
and clinicians gain insight into the conditions that consistently provoke maladap-
tive stress responses. As a therapeutic tool, these technologies could be used to
automatically initiate stress-reduction interventions. In stressful work settings,
such as a call center, these technologies could not only lead to more timely and
reduced-cost interventions, but also to more productive environments where em-
ployees could better manage their workload, so that they could provide a better
experience for customers.

While research on automated stress recognition has taken many different
forms, the systems that have been proposed in the engineering literature typically
contain two principle components: 1) a sensor-based architecture that records



relevant features and 2) a software-based system that makes predictions about
an individual’s current stress level. The sensing modalities can take many forms,
including audio and visual modalities, but biosensors provide the most direct
access into the physiological changes that accompany stress-induced changes [3].

While great strides have been made in real-life biosensing [13], the compu-
tational task of inferring stress levels from biosensor data is still a considerable
challenge. There is often great variability in how people experience stress [10]
and how they express it physiologically [11], and this interpersonal variability
can stymie efforts to build a one-size-fits all stress recognition system. This work
explores using data from each individual to help manage the problem of interper-
sonal variability. In particular, we modify the loss function of SVMs to encode
a person’s tendency to report stressful events, and give more importance to the
training samples of the most similar participants. These changes were validated
in a case study where skin conductance (SC) was monitored in nine call center
employees during a one-week period of their regular work.

This paper is organized as follows. Section 2 reviews previous studies on
the subject of this work. Section 3 provides details about the data collection.
Section 4 presents the problem of interpersonal variability and proposes two
complementary methods to address it. Section 5 explains the data preprocessing
and experimental protocols. Section 6 provides results and analysis.

2 Background and Previous Work

2.1 Physiological Stress and Skin Conductance

Stress-induced changes can be monitored with biosensors, and a particular focus
is often placed on the sympathetic nervous system, which is designed to mobilize
the body’s resources in response to a challenge or a threat. While most visceral
organs are dually innervated by both the para- and sympathetic nervous systems,
the eccrine sweat glands are thought to be solely controlled by the sympathetic
nervous system [3]. Thus, skin conductance sensors that measure eccrine sweat
gland activity are often used to monitor sympathetic nervous system activity.

A century of short-term lab measurements have shown that SC is subject to
inter-person variability, with differences in age, gender, ethnicity, and hormonal
cycles contributing to individual differences [3]. Furthermore, many researchers
suggest that stable personality differences may contribute to differences in skin
conductance lability - a psychophysiological trait characterized by high SC re-
sponsivity and slow habituation [12]. As early as 1950, researchers have seen
links between SC lability and such personality characteristics as emotional ex-
pressiveness, and antagonism [5]. Moreover, individuals defined as SC labiles
have been seen to show greater myocardial reactivity in response to stress [9].
When developing stress recognition algorithms that incorporate measures of SC,
interpersonal sources of variance should be considered.



2.2 Automatic Stress Recognition

Several automatic stress recognition techniques have been explored in the re-
search literature. In most cases, data are collected in the laboratory where vari-
ables that introduce noise are controlled or eliminated.

Researchers have explored a variety of classification methods, and techniques
to reduce interpersonal variability. Barreto, Zhai and Adjouadi [1], for example,
used SVMs to discriminate between stressful and non stressful responses in a
laboratory setting. The SVMs outperformed other classification algorithms, ob-
taining an accuracy of 90.1%. Various physiological signals were used in the
classification, including SC, blood volume pulse, pupil diameter (PD) and skin
temperature (ST). To account for participant variability, they divided extracted
features from each participant with their corresponding baseline features. In a
separate study, Setz et. al. [14] used SC to automatically distinguish between
cognitive load and psychosocial stress. In this case, Linear Discriminant Analy-
sis (LDA) obtained 82.8% accuracy, outperforming SVMs. Setz et al. found that
the average number of SC peaks, as well as their height distributions, were the
most relevant features to the problem. To account for participant variability, dis-
tributions were computed for each participant independently. In another study,
Shi et al. [15] discriminated between stressful and non-stressful responses under
social, cognitive and physical stressors. They obtained 68% precision and 80% re-
call using SVMs with SC, electrocardiogram (ECG), respiration (R) and ST. The
problem of participant variability was addressed by subtracting a person-specific
parameter to the features of each participant. This parameter was estimated as
the average feature of all-non-stressful events of the participant.

In an effort to automatically recognize stress in a real-life setting, Healey
and Picard [6] monitored ECG, electromyogram, SC and R from people during
a driving task. They used LDA to automatically discriminate between low (at
rest), medium (city) and high (highways) levels of stress with 97% accuracy. In
this case, the signals from each participant were normalized between zero and
one, as proposed by [11].

All of these studies, except for Setz et. al. [14], used a combination of physi-
ological signals, an approach that typically improves recognition accuracy. Nev-
ertheless, some of the signals, such as PD and ECG, may not be easily recorded
in real-life settings where comfortable and inconspicuous sensors are required to
preserve natural behavior.

3 Study Design

Location and Participants. The study was conducted at a call center in
Rhode Island, and was approved by the Institutional Review Board at the Mas-
sachusetts Institute of Technology. Nine call center employees (five females and
four males) agreed to participate in the study. The employees all had the same
job description and they all handled the same types of calls.

Throughout the course of one week, and only during work hours, participants
wore a wristband biosensor and made self-report ratings at the end of each call



they received. Besides those two, minimally invasive conditions, the participants
went about their work as usual. Their day is primarily spent on the phone, and
they handle high volumes of calls, many of which come from angry and frustrated
customers.

Data Collection. Three sources of data were collected in this study: SC, self-
report measures, and worker call logs. SC was collected at a sampling rate of
8 Hz, similar to [10] and [15], and was recorded from dry Ag-AgCl 1cm diameter
electrodes on the wrist, using an early beta version of the Affectiva1 QTMSensor,
a commercial sensor based on [13].

Throughout the study, participants were also asked to rate each call they
received in terms of stress. Specifically, they were asked “How was the last
call?” using a 7 point likert scale, with the endpoints labeled as “extremely
good” indicating non-stressful and “extremely bad” indicating very stressful.
While this question may not capture other types of stressors, it allowed for
quick (1-2 seconds) and non-disruptive self-report ratings. The call center also
provided break times and detailed call logs for each participant containing the
start-time, end-time, and duration of every call our participants received.

A total of 1500 calls were included in our study, averaging 4.51 minutes
in length. Calls that had missing stress ratings, or corrupted SC (due to beta
hardware problems or motion artifacts), were excluded. Fig. 1 shows a one day
example of collected raw data.
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Fig. 1. Example of data from one participant that contain calls (dots), stress ratings
(darker areas represent more stressful calls), and break times (squares.)

4 Proposed Method

Throughout this paper, we shall focus on the problem of supervised classification.
Let {(xi, yi)}

n
i=1 be an i.i.d. training set, where xi represents the feature vector

1 http://www.affectiva.com



of the sample i, and yi its class label, where yi = {−1, 1}. Let the class priors of
this set be P+ = #y=1

n
= n+

n
and P− = n

−

n
. Similarly, we define the testing set

as {(xi, yi)}
n
i=1, and its priors P+, and P−.

We consider the problem where training data comes from the observation of
a set of participants, and the testing data belongs to a new participant. This
methodology introduces the common problem of participant variability, which
usually violates the i.i.d. assumption and leads to an overall decrease in perfor-
mance. To address the participant variability problem, we propose incorporating
information of the testing participant into the loss function of SVMs.

Support Vector Machines [2] are considered state-of-the-art supervised clas-
sification algorithms, and their main goal is to find the hyperplane w that max-
imizes the margin between data samples belonging to two classes (e.g., stressful
vs non-stressful responses). The standard formulation of SVMs is as follows:

min
w

1

2
‖w‖2

︸ ︷︷ ︸

regularization

+
C

n





n+∑

i∈{y=+1}

ξi +

n
−∑

j∈{y=−1}

ξj





︸ ︷︷ ︸

loss function

, (1)

s.t. yi(w
Txi) ≥ 1− ξi and ξi ≥ 0, i = 1, 2, . . . n (2)

where C is the misclassification cost, and ξi is the slack variable for the sample
xi. For any new sample x, prediction is performed through y = wTx.

4.1 Changing Class Priors

In the context of stress recognition, class priors indicate the probability to report
stressful events. In equation 1, priors of the training data are directly integrated
into the loss function, and will condition the predictions of the classifier. Since
different people may report more or less stressful events, we propose modifying
SVMs’ loss function to encode the class priors of the testing participant.

A standard method to modify the class priors is the introduction of class
weights (S+ and S−) for each type of misclassification error such as:

loss function =
C

n





n+∑

i∈{y=+1}

S+ξi +

n
−∑

j∈{y=−1}

S−ξj



 . (3)

If S+

S
−

= P
−

P+
, the classifier will tend to equally predict positive and negative

samples [7]. To predict with the same priors of the testing data, we propose to

use S+ = P+

P+
, and S− = P

−

P
−

. These weights come from enforcing the testing

class priors

P+ =
n+S+

n−S− + n+S+

and P− =
n−S−

n−S− + n+S+

, (4)



while preserving the same magnitude of the misclassification error:

n+ + n− = S+n+ + S−n− . (5)

4.2 Selecting Training Samples

As described in Section 2, most of the approaches to address the interpersonal
variability problem are based on feature transformations. Although these nor-
malizations work well in practice, some participants may be less relevant than
others to the classification because their display of physiologically responses is
very different to the ones of the testing participant. Using a small set of unlabeled
testing data, we propose finding the similarity of each training subject with the
testing subject and use it during classification. We can encode this information
as follows:

loss function =
C

n





r∑

p=1

vp

np

∑

i∈participantp

ξi



 , (6)

where r is the number of training participants, np is the number of samples of the
participant p, and vp defines the similarity of the participant p for classification,
based on SC lability. In particular, we computed the average number of peaks (at
least 0.05 µS of amplitude) per second and their height average for each training
participant, and used k-Means clustering with k = 2 to divide the participants.
Given a new testing participant, we computed the same information and assigned
v = 1 to the participants of the closer cluster, and v = 0 to the participants of
the furthest one.

5 Experimental Setting

Preprocessing. Prior to our analysis, stress ratings were normalized for each
participant in order to use all of the scale and to attenuate subjectivity. Further-
more, since the call ratings were quite unbalanced (see Table 1), we transformed
the problem to a binary case where calls defined as definitely non-stressful (rat-
ing of “extremely good”) were grouped into the negative class, and the remaining
calls were grouped into the positive class. Table 2 shows the average P+ value

Table 1. Distribution of call ratings (1 - “extremely good” and 7 - “extremely bad”).

Rating 1 2 3 4 5 6 7

Number of Calls 657 379 163 139 45 83 34

of different days for each participant. As hypothesized, the tendency to report
stressful events is very different between participants and similar for different
days of the same person.



Table 2. Average and standard deviation (STD) of P+ for the nine participants.

Participant 1 2 3 4 5 6 7 8 9 Average STD

Average (%) 97.06 86.63 78.88 75.51 66.35 56.77 34.76 28.73 10.93 59.51 29.05

STD (%) 2.69 10.89 10.06 14.80 5.45 11.68 2.93 31.01 2.86 10.26 8.96

Exponential smoothing (α = 0.8) was applied to the SC signals to reduce
noise and motion artifacts. Skin conductance signals for each participant were
also normalized between zero and one to reduce the overall variability of the
group [11]. From each signal, we extracted the following features: duration, max-
imum and minimum values and their relative positions to the signal duration,
mean, standard deviation, slope between the first and last signal values, number
of zero crossings, and quantile thresholds to capture the distribution of peak
heights as described in [14]. These features were normalized to have zero mean
and unit standard deviation.

Experiments. Two testing protocols were used for the analysis. The first pro-
tocol (A) used leave-one-day-out cross-validation to obtain the stress ratings of
one participant. That is, we used all days of a participant’s data to train the
algorithm, except one day that was used for testing. The process was repeated
until all days were used as testing data. We expect this protocol to give the best
performance for this data set, because both training and testing data come from
the same participant. In practice, however, this protocol scales badly because
it requires annotated information for each new participant. The second proto-
col (B) used leave-one-participant-out cross-validation. Here, the algorithm was
trained with data from eight participants to predict the stress levels of the re-
maining participant, and it was repeated until all of the participants had been
part of the testing data. This is a more realistic but difficult protocol in which
the distribution of the training data and the testing data are dissimilar due to in-
terpersonal variance. We tested the proposed modifications in this protocol with
the expectation that it would mitigate the variance while preserving scalability.

To perform classification, we used the publicly available LIBSVM library [4]
that provides an efficient implementation of SVMs. We used the Radial Basis
function as the kernel function to allow non-linear decision boundaries. For each
training set, leave-one-participant/day-out was also used to find the parameters
(log2 C ∈ {−3 : 2 : 5}) and log2 kernel width ∈ {−15 : 2 : −1}) that maximized
the following expression:

TN

2(FN + FP + 2TN)
+

TP

2(FN + FP + 2TP )
, (7)

where TP and TN are the number of correctly predicted stressful (true positives)
and non-stressful (true negatives) calls respectively, and FN and FP correspond
to the number of misclassified stressful (false negatives) and non-stressful (false
positives) calls respectively. This expression enforces the same relevance to both
classes independently of their class priors.



6 Results

Following the previous experimental settings, Fig. 2 shows the results for pro-
tocol A, protocol B, and improvements of protocol B - correcting class priors
(CCP) and selecting training samples (STS). As expected, when no improve-
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Fig. 2. Classification accuracy for each participant.

ments were applied, protocol B showed consistently lower average performance
than protocol A, 58.45% and 78.03% respectively. This finding confirms that par-
ticipant variability is difficult to model even though our data was appropriately
normalized for all experiments. While CCP and STS individually increased the
average accuracy to 69.83% and 70.91% respectively, the combination of the two
improvements increased performance to 73.41%. Moreover, STS has the addi-
tional benefit of reducing the amount of training samples and therefore reducing
the computational cost of the training phase. Closer inspection of Fig. 2 shows
that the improvements did not increase performance for two out of the nine par-
ticipants (4 and 6). No significant relationships could be made between the two
participants, but a replication of similar experiments with a larger number of
participants could shed light on this topic. To compare the overall performance,
Fig. 3 (left) shows the Receiver Operating Characteristic (ROC) curves of pro-
tocol A, protocol B and B + STS + CCP. By observing the area under the curve
(AUC), we can conclude that both improvements increased the overall accuracy.

Although accuracy has been used for most of the research papers to compare
performance, it may not be the most adequate metric for real-life settings where
class labels may be very unbalanced. For instance, accuracy values could be
high if the algorithm predicted just the most likely class which could potentially
ignore the class of interest (e.g., stressful calls.) As a complementary metric, we
use precision-recall curves (see Fig. 3, right.) To analyze this curve, we can study
a real case application where the company wants to collect stressful calls to train
their new employees. In this case, the company wants to know how many of the
calls predicted as stressful by the classifier were also reported as stressful by the



employees. For instance, if we optimize our methods to correctly detect stressful
calls 60% of the time (i.e., recall = 0.6), the percentage of these detections that
are also reported as stressful calls (precision) is 78.40% for protocol A, 65.84%
for B + STS + CCP, and 46.82% for B alone. These results are in line with
the results using accuracy and, therefore, we can conclude that the proposed
methods partly address the participant variability problem.
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7 Conclusions

This is one of the few research studies on stress recognition in an uncontrolled
(real-life) setting. Unlike many other studies on workplace stress, we did not alter
the working conditions to artificially create stressful scenarios. This naturalistic
approach introduced undesired real-life variables (e.g., unbalanced reports, arti-
facts), many of which accentuated the problem of participant variability. In this
context, we proposed two methods to account for individual differences in order
to discriminate stressful vs. non-stressful calls of nine call-center employees.

The two improvements - correction of the class priors and the selection of
training samples - rely on the use of data from the testing participant. In many
cases, the recovery of testing class priors may be unfeasible or expensive but, in
this case, simple questionnaires can be used to obtain that information. As we
showed great similarity in participants’ stress reports across days, we can also use
one day of labeled monitoring to obtain the priors. As for the STS, we explored
the use of SC lability to encode similarity between participants, a method that
does not require any labeling. In the future, we intend to explore other similarity
measures based on demographic characteristics (e.g., age, gender or ethnicity),
and we intend to incorporate temporal models (e.g., Hidden Markov Models) to
capture the dynamics of stress.



In this paper we have illustrated the benefits of using person-specific models
for stress recognition in a call center setting, but the methods explored in this
paper can generalize to many areas of Affective Computing. Indeed, participant
variability is a common issue in many types of affect recognition applications,
and new methods are sorely needed to help tackle this problem.
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