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Abstract

Convective weather is responsible for large delays and widespread disruptions in
the U.S. National Airspace System, especially during summer. Although Air Traffic
Flow Management algorithms exist to schedule and route traffic in the face of disrup-
tions, they require reliable forecasts of airspace capacity. However, there exists a gap
between the spatial and temporal accuracy of aviation weather forecasts (and existing
capacity models) and what these algorithms assume. In this thesis we consider the
problem of integrating currently available convective weather forecasts with air traffic
management in terminal airspace (near airports).

We first demonstrate how raw convective weather forecasts, which provide deter-
ministic predictions of the Vertically Integrated Liquid (the precipitation content in
a column of airspace) can be translated into reliable and accurate probabilistic fore-
casts of whether or not a terminal-area route will be blocked. Given a flight route
through the terminal-area, we apply techniques from machine learning to determine
the probability that the route will be open in actual weather.

This probabilistic route blockage predictor is then used to optimize terminal-area
operations. We develop an integer programming formulation for a 2-dimensional
model of terminal airspace that dynamically moves arrival and departure routes to
maximize expected capacity. Experiments using real weather scenarios on stormy
days show that our algorithms recommend that a terminal-area route be modified
30% of the time, opening up 13% more available routes during these scenarios. The
error rate is low, with only 5% of cases corresponding to a modified route being
blocked while the original route is in fact open. In addition, for routes predicted
to be open with probability 0.95 or greater by our method, 96% of these routes are
indeed open (on average) in the weather that materializes.

In the final part of the thesis we consider more realistic models of terminal airspace
routing and structure. We develop an A*-based routing algorithm that identifies 3-D
routes through airspace that adhere to physical aircraft constraints during climb and
descent, are conflict-free, and are likely to avoid convective weather hazards. The
proposed approach is aimed at improving traffic manager decision-making in today’s
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operational environment.
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Chapter 1

Introduction

The increase in demand for air travel in the United States has been accompanied

by an increase in congestion and delays in the National Airspace System (NAS),

and has made the system more susceptible to weather disruptions. This problem is

particularly intense during summer months, when travel demand is high and there

is frequent convective weather activity (thunderstorms) over much of the continental

United States.

Although mathematical models exist to optimize flight routes and minimize de-

lay in the face of reduced capacity, these models tend to make strong simplifying

assumptions about the form and accuracy of weather forecasts, and usually do not

validate solutions against actual weather scenarios and operational conditions. This

thesis focuses on bridging the gap between available aviation weather forecasts and air

traffic flow management algorithms in terminal airspace. We develop a probabilistic

model of convective weather impact using archived weather data and techniques from

machine learning. This weather model is integrated into several traffic flow manage-

ment models which dynamically restructure terminal airspace to use more robustly

available routes. We validate all models against real weather scenarios, and evaluate

potential benefits to operations.
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1.1 The causes and impacts of air traffic delay

Following a steady increase in revenue over the last decade, the global commercial

airline industry generated $483 billion dollars of revenue in 2008 (IATA, 2010). In

the domestic United States alone, this activity included over 660 million passenger

enplanements and the transport of over 13 million revenue ton-miles of cargo (Bureau

of Transportation Statistics, 2010a). Although 2009 saw a decline in air carrier capac-

ity due to the downturn in the global economy, the Federal Aviation Administration

(FAA, 2009) forecasts an annual increase of 2.2% in passenger enplanements through

2025.

This large demand for air travel, coupled with limited capacity in the National

Aviation System (NAS), has led to rampant year-round flight delays. In both 2007

and 2008, over 20% of domestic flights in the United States were delayed by more

than 15 minutes (Bureau of Transportation Statistics, 2010a). According to an FAA-

sponsored study estimating the economic impact of delays, the cost of all US air

transportation delays totaled $32.9 billion, including $8.3 billion cost to airlines and a
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staggering $16.7 billion cost to passengers (NEXTOR, 2010). This estimate accounted

for passenger time lost due to missed connections, flight cancellations, and delayed

flights.

Figure 1-1 shows a time series of the total number of delayed flights in the United

States by cause for the year 2008, as reported by the FAA’s OPSNET database.

A delayed flight in this dataset is defined as a flight which arrives more than 15

minutes later than its scheduled arrival time. Although OPSNET is known to greatly

underestimate the true extent of delay (due to the definition used and the resulting

practice of airlines to add large buffers to scheduled arrival times) (El Alj, 2003), the

delay trends are nevertheless illuminating. We see that although the causes of air

transportation delay include aircraft equipment issues, runway maintenance, traffic

volume, security delay, and late passengers, the primary cause of aviation delay has

historically been weather. Indeed, in 2008, 45% of total minutes of delay and 66%

of delayed flights were weather-related (Bureau of Transportation Statistics, 2010b;

OPSNET, 2010). These delays tend to spike in the summer months when travel

demand is high and convective weather activity hits congested airports and airspace

in the eastern United States, as shown in Figure 1-1 for the year 2008.

Figure 1-2 shows the total number of delayed flights over the last 10 years, and

clearly illustrates the consistent spikes in delay during the summer months of each
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year. Although weather is inherently chaotic and hence poses a challenge to schedul-

ing, only about 6% of flight delays are due to extreme weather which prevents flying,

leaving a large opportunity for improvement (Bureau of Transportation Statistics,

2010b).

With the demand for air traffic operations expected to grow significantly over

the next two decades, it has become increasingly important to develop approaches

that will enable the efficient operation of the airspace system, even in the presence

of convective weather. In the next section, we review the current state of affairs in

terms of aviation weather forecasts and traffic flow management techniques that try

to decrease delays.

1.2 Background and Related Literature

Although traffic flow management has been an active area of research for decades,

activity has recently been invigorated with the FAA’s Next Generation Air Trans-

portation System (NextGen) plan, and Europe’s corresponding Single European Sky

ATM Research (SESAR) program. These programs have highlighted the needs and

goals for modernizing airspace and airport operations as aviation demand increases

through the years 2025 and 2020, respectively, and are funding research and devel-

opment in critical areas, including aviation weather and dynamic airspace configura-

tion (Joint Planning and Development Office, 2004; SESAR Consortium, 2006). This

section summarizes research relevant to this thesis.

1.2.1 The National Airspace System

This section gives a brief description of the structure and day-to-day operation of the

NAS.

At the highest level, the NAS is partitioned into volumes of airspace, each con-

trolled by an Air Route Traffic Control Center (ARTCC, or center). The airspace of

each center is further subdivided into a set of sectors, which are the units of airspace

typically controlled by individual air traffic controllers. As aircraft fly between sectors

(and centers), control of these aircraft is handed off between controllers. The specific

20



partition of airspace into a set of sector boundaries is a sectorization.

Near major airports, there are additional Terminal Radar Approach Control (TRA-

CON) facilities to control traffic going into and out of the corresponding airport(s).

The terminal-area, or terminal airspace, is the airspace controlled by the TRACON,

and is typically divided into a set of sectors, each corresponding to a direction of

air traffic (arrival or departure). Each major airport has an air traffic control tower

which controls aircraft on the airport surface and in nearby airspace.

The airspace capacity of a sector is the number of aircraft that can simultaneously

be present in the sector. This number is a function of air traffic controller complexity,

and can vary depending on the complexity of flow patterns within the sector or other

conditions such as the presence of weather hazards. The Airport Acceptance Rate

(AAR) is the number of aircraft per unit time (usually an hour) that can be supported

by the airport. Under adverse weather conditions, these sector capacities and AARs

are lowered, and can be highly uncertain and variable.

Aircraft flying under Instrument Flight Rules (IFR) follow a filed flight plan,

which is represented by a sequence of waypoints (2D points in airspace, sometimes

corresponding to a physical navigational aid such as a VORTAC station) connected

by airways.

Each flight through the terminal-area must follow a Standard Instrument De-

parture (SID) when departing an airport, and a Standard Terminal Arrival Route

(STAR) when arriving. These routes are specified by a sequence of waypoints, along

with rules governing the speed, heading, and altitude of aircraft at certain waypoints.

Waypoints are also referred to as fixes. In this thesis, we refer to the fixes at which

handoff occurs between the TRACON and Center as the outer fixes of the terminal.

The term standard route refers to either a STAR or SID. The terminal airspace sec-

torization, as well as all arrival and departure waypoints and routes, are fixed, even

when the presence of hazardous weather renders them unusable. An airport has mul-

tiple STARs and SIDs, and the assignment of an aircraft to a route is a function of its

origin (or destination) airport, aircraft type, runway restrictions, and load balancing

of runways.
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A commonly-seen terminal-area layout is the four corner post configuration, in

which airspace is divided into four arrival sectors alternating with four departure

sectors, each containing an arrival or departure gate along with one or more stan-

dard routes (and corresponding outer fixes) per gate. This layout is common for

non-metroplex airports in which one airport is the dominant player in surrounding

airspace. Figure 1-3 contains a diagram of a terminal-area structured in a four corner

post configuration.

The primary function of Air Traffic Control (ATC ) is to facilitate the safe and

efficient operation of the NAS. To ensure safety, ATC is responsible for maintaining

the separation of aircraft (through voice radio communication and aircraft position

tracking using various automated and manual systems) and providing information

to aircraft (including weather conditions and airport conditions). Aircraft that have

filed IFR flight plans must obtain approval from ATC throughout their flight. ATC

also performs strategic and tactical planning to organize traffic flows so as to manage

congestion. The Air Traffic Control System Command Center (ATCSCC ) located

near Washington D.C. manages strategic planning across the entire NAS by coordi-

nating various traffic management interventions when the local Center or TRACON

facilities are unable to resolve capacity imbalances. For instance, the ATCSCC may

initiate a ground holding program for flights into Chicago if a large Midwestern storm

is expected to decrease capacity in the region.

airport

sector 

boundary

arrival 

sector

Center
TRACON

arrival 

flight

waypoint downwind 

leg

outer fix

departure 

sector

Figure 1-3: Diagram of a terminal-area structured in a four corner post configuration.
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Further details about airspace structure and the communication, navigation, and

surveillance systems of air traffic control can be found in Belobaba et al. (2005, chap.

13).

1.2.2 Air Traffic Flow Management Models

Air Traffic Flow Management (ATFM) is the process of making strategic decisions

a few hours ahead of the time of operations, to balance the demand for aircraft

operations with the capacity of the NAS. The capacity of airspace resources is strongly

influenced by ambient weather, since aircraft need to avoid hazardous atmospheric

conditions and may therefore be forced to deviate from their planned trajectories.

Early research in the field involved large-scale integer programming models which

determined how to route a set of aircraft from their planned departure locations to

their planned destinations while minimizing the cost of delays. Capacity was the ma-

jor system constraint and limited how many aircraft could simultaneously occupy a

region of airspace. In their seminal paper, Bertsimas and Patterson (2000) were able

to solve realistic-sized instances and obtain near-optimal solutions due to the special

structure of their formulation, which featured many facet-defining inequalities, result-

ing in LP relaxation solutions which were often integral. They made the assumption

that the impact of weather on the capacity of a resource at any time was known, and

used the deterministic estimates of capacity to route flights between their origins and

destinations. Eulerian models for this problem which treat the traffic as continuous

flows have also been studied, and (Menon et al., 2006; Sun et al., 2006).

However, deterministic capacity estimates based on weather forecasts can be in-

accurate under stormy weather conditions. This fact has motivated optimization

approaches that assume multiple capacity scenarios for airspace resources, with as-

sociated probabilities of occurrence (Bertsimas and Odoni, 1997). Researchers have

also modeled uncertainty in capacity as a stationary Markov chain, and developed

a stochastic dynamic programming algorithm to select delay-optimal routing strate-

gies (Nilim and Ghaoui, 2004). More recently, robust optimization approaches have

been proposed that assume a set of possible capacity values, and try to keep the
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system safe for any possible realization of the capacity (Bertsimas et al., 2007).

1.2.3 Dynamic Airspace Configuration

There has also been a body of research whose approach for more efficient management

of air traffic has been to analyze and relax the currently fixed and rigid structure of

the NAS. The goal for dynamic airspace configuration is to improve access to available

airspace and thereby increase achievable capacity.

In the problem of airspace sectorization, researchers have sought to find meth-

ods to partition and re-partition airspace in a way that allows for the safe and ef-

ficient management of aircraft flows by air traffic controllers (Leiden et al., 2007).

Past research has focused on enroute airspace, and has typically modeled the prob-

lem as one of partitioning a geometric space subject to convexity, connectivity, and

minimum-time-in-sector constraints. The objectives used have served as proxies of

overall controller complexity and workloads, and involve balancing sector workload

and minimizing inter-sector crossings.

Researchers have used many different solution techniques to solve the resulting

NP-hard problem, including genetic algorithms that partition airspace using Voronoi

tessellations which are found by successively moving 2D coordinates (Delahaye and

Puechmorel, 2006), and mathematical programming formulations that partition 2D

airspace into hexagons and then assign the hexagons to a set of sectors (Yousefi,

2005). In yet another approach, Basu et al. (2008) develop a method that recur-

sively partitions a geometric space to build sectors, and mention that the pie-cut has

potential for sectorization in the terminal-area. However, to the best of our knowl-

edge, there has not been a focus on either the unique challenges and characteristics

of resectorizing the terminal-area, or on the effect of weather on resectorization.

There has also been growing interest in the operational concept of adaptable

airspace, which focuses on resolving capacity imbalances by dynamically changing

local airspace structure (Kopardekar et al., 2009; Klein et al., 2007). Terminal airspace

in particular could benefit from this concept, as standard arrival and departure routes

are often shut down when they are affected by adverse weather, resulting in decreased
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airspace capacity. There is clear potential to recover lost capacity by dynamically

altering the terminal airspace structure in these situations. The concept of flexible

terminal-area airspace has been highlighted by the Joint Planning and Development

Office (2009) as part of the NextGen ATM-Weather Integration Plan.

1.2.4 Convective Weather Forecasts

Several convective weather forecast products are available for the United States NAS.

These forecasts generally take the form of a grid, where each grid cell, or pixel,

corresponds to a 2-dimensional section of airspace. Each pixel is associated with a

value indicating the severity level of weather at that point.

MIT Lincoln Laboratory’s Convective Weather Forecast product is a state-of-

the-art 0-2 hour forecast, used throughout the United States to aid air traffic con-

trol (Wolfson et al., 2004). The forecast is static, meaning that each pixel contains

one deterministic value indicating weather severity, with no additional estimate of the

likelihood that the forecast is correct, or a distribution over possible severity. Specific

details about the forecast are provided in Section 2.1.

Due to randomness in the weather and the resulting inaccuracy of weather fore-

casts, creating a plan for routes is not realistic using static forecasts alone. Indeed,

flying through a region of airspace that turns out to be stormy could compromise

safety. This has led to research into developing probabilistic weather forecasts for

aviation. NCWF-2 is one such forecast developed by the National Center for Atmo-

spheric Research, which at each pixel gives a probability p that the pixel will contain

convective weather. Initial validation of the forecasts show that these values of p

have significant errors associated with them, and tend to be large overestimates of

true values (Seseske et al., 2006).

Researchers at the National Oceanic & Atmospheric Administration (NOAA) have

developed the Rapid Update Cycle (RUC) weather prediction system, which includes

an hourly-updated convective forecast for aviation weather, with a grid resolution of

20 km (Benjamin et al., 2004). The RUC Convective Probability Forecast (RCPF) is

built on top of this, providing 3-, 4-, 5-, 6-, 7-, 8-, and 9-hour forecasts of the likelihood
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of convective activity within a cuboidal grid volume with 40 km edges (Weygandt

et al., 2008).

In addition to these grid-based forecasts, there exist several products which define

weather events using polygons. Since these polygons tend to be quite large (on

the order of several airspace sectors), these forecasts are targeted at more strategic

decision-making.

The Collaborative Convective Forecast Product (CCFP) is one such product, de-

veloped by the NOAA Aviation Weather Center (2010). The CCFP predicts polygons

of convection over the continental United States at lead times of 2-, 4-, and 6-hours,

and is updated every 2 hours. Each of these polygons (typically covering several en-

route centers) is associated with a coverage level (sparse, medium, or solid), forecast

confidence (low or high), echo tops range, and an indication of growth and direc-

tion of movement. The product is created using the RCPF as input, and through a

collaboration between multiple stakeholders including the Aviation Weather Center,

traffic managers, and airlines. It is used by traffic managers for strategic planning of

airspace flow.

Sheth et al. (2006) have proposed a probabilistic weather forecast based on poly-

gons. In their model, a weather cell is represented by a polygon, and the probability

that weather will occur at a point in the polygon decreases with increased distance

from the center. This structure is then used to estimate flight lengths and deviation

delays. However, the model has not been validated against the behavior of actual

weather. In addition, for the polygons to have much meaning, they may have to be

very large and therefor may not be useful for fine-grained ATFM.

1.2.5 Validation of Aviation Weather Forecasts

Traditionally, entities that develop forecast products have provided users with statis-

tics based on pixel-by-pixel comparisons of the forecast with actual weather. These

statistics, used to evaluate the performance of the forecast product, include rates

of false positives, false negatives, bias, and skill scores such as the Critical Success

Index. The studies authored by Wolfson et al. (2004), Kay et al. (2006), Weygandt
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and Benjamin (2004), and Seseske et al. (2006) have conducted historical evaluations

of CIWS, CCFP, RCPF, and NCWF-2, respectively. These studies have typically

concluded that the weather forecasts show poor skill scores, making it unclear how

the forecasts can be reliably used for ATFM.

There have also been efforts to develop more ATFM-based metrics for evaluating

convective weather forecasts. These include metrics based on co-occurrence probabil-

ities (Chatterji and Gyarfas, 2006), object-oriented approaches to forecast validation

(Brown et al., 2004; Mahoney et al., 2004), and studies that evaluate forecast accu-

racy as a function of the spatial resolution and storm type (Evans et al., 2009). These

studies show that while the accuracy increases at the cost of spatial resolution when

compared to pixel-based comparisons, the skill scores still tend to be low and show

high variability. Overall, the spatial smoothing of these verification techniques, as

well as the forecast errors reported in existing validation studies, makes it difficult to

use direct predictions in fine-grained traffic flow algorithms.

1.2.6 Capacity Estimation

ATFM algorithms have typically used airspace capacity as a proxy for weather impact.

There have been numerous attempts at creating models of airspace capacity in the

presence of convective weather.

Krozel et al. (2007) consider the problem of estimating the capacity of a sector of

enroute airspace by computing a theoretical capacity given weather in the region. This

is done through the application of continuous maximum flow theory. However, this

work relies on static weather forecasts and does not incorporate uncertainty intervals

or any measure of forecast accuracy. This line of research is taken a step further by

Mitchell et al. (2006). They consider weather forecasts accompanied by a region of

uncertainty. However, the uncertainty profiles are randomly generated. Finally, Song

et al. (2009) study the correlation between sector throughput and various measures

of convective coverage, and conclude that these correlations can be incorporated into

an algorithm for sector capacity.
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1.2.7 Integration of aviation weather forecasts with ATFM

There has been some recent research attempting to bridge the gap between convective

weather forecasts and ATFM algorithms.

Notably, researchers at the MIT Lincoln Laboratory have developed and validated

a model of pilot deviation, which predicts, given convective weather and echo tops

data, the probability that a pilot will deviate from around a region of airspace (De-

Laura et al., 2008). In addition, the Route Availability Planning Tool (RAPT) uses

convective weather forecasts to model deterministic departure jet route blockage, and

is operational in the New York TRACON (DeLaura and Allan, 2003). Liu et al.

(2008) use historical airport arrival rates to create scenario trees of arrival capacities

at any given airport. Although these scenario trees result in an improvement over pre-

vious models of the ground holding problem, capacities are not tuned to reflect day-of

weather information, and validation focuses on SFO, which is most often impacted

by fog, as opposed to convective weather.

There has also been work on algorithms to efficiently synthesize routes through

regions of airspace affected by convective weather (Prete and Mitchell, 2004; Krozel

et al., 2006). This work takes fine-grained and time-varying weather forecast data as

static weather input, and focuses on synthesizing short and flyable routes which do

not get too close to regions of airspace impacted by weather. However, the weather

forecasts are treated as ground truth, and routes are not evaluated against actual

weather scenarios.

We conclude that while there has been much prior research on ATFM algorithms

that assume accurate convective weather forecasts as input, there has been little

work in adapting existing convective forecasts, and in evaluating relevant accuracy

and error metrics for use in these applications.

1.3 Contributions of thesis

As highlighted in the previous section, there has been a large disconnect between

assumptions made in air traffic flow management algorithms with regards to aviation
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weather forecasts, and in the accuracy and usability of these forecasts. This thesis’

focus is weather-aware air traffic flow management in airport terminal-areas. There

are four main contributions:

1 a probabilistic model of route robustness which gives reliable predictions of blockage

for terminal arrival and departure routes,

2 a mathematical model for dynamic terminal airspace configuration in the face of

convective weather which is shown to increase airspace capacity during convective

events,

3 an approach to the design of realistic conflict-free 3D terminal routes which can help

traffic managers plan terminal flow during weather events, and

4 validation of all models against actual weather scenarios, avoiding assumptions about

the performance of aviation weather forecasts.

These contributions will be briefly described in the following sections. The research

presented in this thesis has appeared in Proceedings of the ARAM Special Symposium

on Weather-Air Traffic Management Integration, American Meteorological Society

89th Annual Meeting (Michalek and Balakrishnan, 2009a), USA/Europe Air Traffic

Management R&D Seminar (Michalek and Balakrishnan, 2009b), Proceedings of the

49th IEEE Conference on Decision and Control (Michalek and Balakrishnan, 2010),

and Transportation Science (Pfeil and Balakrishnan, to appear in 2011).

1.3.1 Probabilistic model of route robustness

The first contribution of this thesis is the development of a probabilistic forecast of

weather impact, with air traffic flow management in mind. We show that the quality

and accuracy of convective forecasts for aviation can be measured in terms of the

likelihood that a given trajectory will be blocked by true weather conditions. We

consider various features (characteristics) of the forecast weather along arrival and

departure routes, and identify features that are highly correlated with route blockage.

Using techniques from machine learning, we propose and validate classification

algorithms that predict whether a given route is likely to be open or blocked in actual

weather, based on the values of different features of the route as determined by the
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forecast. We evaluate our algorithms using several metrics, such as the accuracy (the

fraction of time that the prediction is correct), the false positive rate (the fraction of

time that we forecast that the route will be open but it ends up being closed), and

the false negative rate (the fraction of the time that we forecast that the route will

be closed, but instead it remains viable). We convert this binary prediction into a

probabilistic forecast by assigning a probability to each prediction, representing the

classifier’s probability that the route is open.

The end-result is a route robustness model, which predicts the probability pr that

a given route r will be open (subject to certain assumptions and constraints to be

described later) for a fixed horizon.

1.3.2 Model for terminal-area dynamic airspace

The second contribution of this thesis is a model for dynamic terminal airspace con-

figuration in the face of convective weather. We begin with the observation that

air traffic control often allows small ad hoc displacements in aircraft trajectories in

order to temporarily increase arrival or departure throughput in the face of thun-

derstorms. Motivated by this practice, we identify and evaluate gentle strategies for

re-configuring airspace, without drastically rearranging airspace structure and while

limiting disruption to existing air traffic control procedures.

We start with a model in which the previously-developed route robustness fore-

cast guides the selection of fixes that are likely to be open when weather materializes;

this selection is traded off against the deviation from the default terminal-area con-

figuration. We show that the recommended changes to airspace structure are robust

to changing weather conditions, allowing the model to be integrated into terminal

airspace planning.

The simple fix movement model is extended to optimally choose terminal-area

arrival and departure fixes as well as sector boundaries, for a given weather forecast,

subject to constraints on displacement from today’s fixed airspace structure. We

develop an integer programming model to solve this more complex problem, and

evaluate the potential increases in terminal throughput if the model were adopted.
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Experiments using real weather scenarios on stormy days show that our algorithms

recommend that a terminal-area route be modified 30% of the time, opening up 13%

more available routes that were forecast blocked during these scenarios. The error

rate is low, with only 5% of cases corresponding to a modified route being blocked

in reality, while the original route is in fact open. In addition, for routes predicted

to be open with probability 0.95 or greater by our method, 96% of these routes (on

average over time horizon) are indeed open in the weather that materializes.

1.3.3 Identification of realistic 3D airspace trajectories for

tactical planning

The third contribution is an approach based on the A* search algorithm to identify

conflict-free 3-dimensional routes through terminal airspace which adhere to realistic

airport and airspace constraints, and take airspace demand and weather conditions

into account.

Each 3D route identified is associated with an altitude profile (it can be thought of

as a 2D cone that grows at increasing distance from the runway) corresponding to the

fleet mix along the route. All routes (and their altitude profiles) are separated both

horizontally and vertically, and are flyable in the sense that they tend to be straight

except for a few smooth, wide-angle turns. The algorithm can also be used to model

noise restrictions in the form of altitude minima, as well as metroplex constraints in

the form of obstacles corresponding to location of nearby STAR and SID flows.

The approach can be integrated into a tactical decision support tool for air traffic

control as follows. Up to 90 minutes ahead of operations at an airport operating

at a given airspace configuration, the standard 3D arrival and departure routes are

evaluated against the weather forecast. For each route which is predicted to be

blocked, a conflict-free route between the airport runway and a terminal fix (near the

original) are identified using the A*-based shortest path algorithm. Controllers can

then shift traffic to these new available routes.
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1.3.4 Validation with actual weather conditions

The final contribution of this thesis is the emphasis on validation of models against

actual weather scenarios throughout the development and evaluation process. We use

weather data from Hartfield-Jackson Atlanta International Airport (ATL) terminal-

area for the 2007 and 2008 convective seasons as a case study for all models mentioned.

This is a departure from much of the previous research in air traffic flow management.

1.4 Organization of thesis

This thesis is organized as follows. Chapter 2 describes the Lincoln Lab convective

weather forecast product, discusses issues with using deterministic pixel-based fore-

casts for ATFM, and shows how a route-based approach can be used to evaluate

convective forecasts. Chapter 3 develops and evaluates the data-driven route robust-

ness model. Chapter 4 introduces a simple model for terminal dynamic airspace

configuration and shows how to implement fix changes in a dynamic environment,

and then extends the model with an integer programming formulation. Chapter 5

proposes a more realistic model of terminal routes that incorporates demand for a

route, physical aircraft and airport constraints, 3D aircraft flow with realistic climb

and descent rates, as well as weather forecasts. An algorithm is developed to identify

airspace routes subject to these constraints. Finally, Chapter 6 concludes the thesis

with a summary and discussion.
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Chapter 2

Convective weather forecasts for

traffic flow management

This chapter introduces a state-of-the-art convective weather forecast developed by

MIT Lincoln Laboratory. We discuss the limitations in forecast accuracy using tra-

ditional metrics for forecast evaluation, and show how these methods are not entirely

useful from a TFM perspective. We then introduce a route-based approach to view-

ing and evaluating weather forecasts, and show how the resulting forecasts post much

better skill scores, while being useful for TFM.

2.1 Lincoln Lab convective weather forecast

MIT Lincoln Laboratory has developed the Corridor Integrated Weather System

(CIWS), which consists of two weather forecast products with time horizons of 0-

2 hours, for a grid of 1 km × 1 km pixels covering (in 2D) a large portion of the

NAS (Wolfson et al., 2004).

The first product, depicted in Figure 2-1, consists of predicted values of Vertically

Integrated Liquid (VIL) at each pixel. These VIL values are integers in the range

[0, 255], which represent the amount of liquid at a point in the sky integrated vertically.

For ease of use, VIL values can be mapped (nonlinearly) into seven levels of convective

activity, ranging from level 0 (no activity) to level 6 (very severe). A VIL value
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Figure 2-1: Diagram of MIT Lincoln Lab’s CIWS VIL forecast near ATL

above a certain threshold in the observed data (133, in practice) corresponds to

weather of severity level 3 or higher, and is commonly considered by pilots to be

hazardous (Krozel et al., 2006). Although we use this value as a strict limit to define

hazardous weather in this research, the threshold of what pilots will fly through

varies depending on numerous factors including airspace demand and proximity to

destination airport1. Forecasts are issued for horizons spanning between 5 minutes

and 120 minutes in 5-minute increments, and are updated every 5 minutes. In other

words, at time T0, forecasts are available for time T0 +5, T0 +10, T0+15, . . . , T0 +120.

Along with the archived forecast data we also obtained the observed VIL values for

the same region of airspace at that time, allowing for validation of the quality of the

forecast.

The second CIWS product is a forecast of echo tops (height at top of storm) at the

same grid resolution and update times. Since the focus of our research is the airport

terminal- area, where storm height is not a significant factor for pilot deviations, we

1Pilot deviation in the terminal-area is not as well understood by researchers as in enroute
airspace, and level 3+ weather may be just one predictor for deviation among other factors such as
demand. The willingness of the pilot to fly through Level 3+ weather has been observed in terminal
operations
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do not discuss this product further.

CIWS gives users a general idea of what weather will look like, and is used in

various decision support tools by air traffic controllers and airlines. Lincoln Lab, as

well as other forecast providers, track daily statistics such as rates of false positives,

false negatives, and skill scores, but these vary daily and by storm.

2.2 Pixel-based evaluation of CIWS forecast

In this section, we evaluate CIWS accuracy by computing several standard statistics

on a set of the stormiest weather scenarios over ATL from the summer of 2008,

which we refer to as WeatherScenarios2008.2. The results highlight some of the issues

associated with integrating convective weather forecasts with TFM.

2.2.1 Evaluation of skill scores

We first define a few verification statistics that have traditionally been used to evaluate

weather forecasts. Consider a pixel for which a forecast and actual weather data exist.

A true positive (TP) is when the forecast and actual weather both show hazardous

weather at the pixel. A true negative (TN) is when the forecast and actual both show

no hazardous weather. A false positive (FP) is when the forecast predicts hazardous

weather, but the pixel is clear in actual weather, and the opposite is the case in a

false negative (FN). Using these base statistics, we can form four standard measures

of forecast skill: the Critical Success Index (CSI) is defined to be TP
TP+FP+FN

, the

probability of detection (POD) is defined to be TP
TP+FN

, the false alarm rate (FAR) is

defined to be FP
TP+FP

, and accuracy is defined to be TP+TN
TP+TN+FP+FN

.

Figure 2-2 shows the performance of the forecast in terms of CSI, POD, FAR,

and accuracy, for a range of time horizons. To evaluate the CIWS VIL forecast, we

partition VIL into two sets: positive (weather level 3 or higher, corresponding to

hazardous weather), and negative (weather level 2 or lower, corresponding to non-

hazardous conditions).

Accuracy posts the best performance, with scores above 0.9 for each time horizon.

2Weather scenario selection is described in detail in Section 2.5.1
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Figure 2-2: Four skill scores for the CIWS weather forecast, at increasing time hori-
zons.

However, this high score merely reflects the high proportion of level 0 pixels present

in the weather data (most pixels do not contain weather activity), resulting in a

strong majority of true negatives. The other three statistics, which do not include

TN and are therefore more relevant for assessing the quality of the forecast, perform

very poorly. CSI is 0.5 and below across time horizons, which means that more than

half of the time that either the forecast or actual pixel contains weather, the forecast

is erroneous. The POD and FAR are similarly low, especially for time horizons of

30-min and higher.

2.2.2 Distribution of actual weather given forecast

Although the forecast skill scores were low at longer time horizons, this does not

paint the entire picture of how well the forecast predicts actual VIL. Weather is

by nature stochastic, so a deterministic forecast cannot be expected to capture the

underlying distribution of true VIL. In this section, we compute the distribution of

actual VIL given a forecast, and evaluate and draw further conclusions about forecast
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performance.

Let w(x, t) be the observed weather for pixel x at time t. Let fτ (x, t) be the

τ -minute weather forecast for pixel x at time t. In other words, fτ (x, t) is the forecast

created at time t−τ , for time t. We would like to evaluate the conditional distribution

Pr(w(x, t) = v | fτ (x, t) = u). Note that this distribution is likely to be independent of

the specific pixel x or the specific time t, but might depend on the general geographical

area or the time of day.

Figure 2-3 shows histograms of VIL that actually occurred given a forecast VIL

of level 3, for time horizons τ = 30 (left) and τ = 60 minutes (right). The histograms

reflect data from the same set of 2008 weather scenarios near ATL as in the previous

section. Although both plots look roughly Gaussian, the mean VIL is level 2, and

the mode is level 0 for each. This indicates over-prediction of weather severity, and

moreover, when hazardous weather is predicted at a pixel, on average that pixel turns

out to be safe to fly through in true weather. Finally, the heavier peak around VIL

values of 125 for τ = 30 when compared against τ = 60 confirms higher prediction

accuracy at shorter time horizons.

Figure 2-3: Histogram of true VIL when Level 3 VIL (in the range [133, 162]) is
forecast, for 30-min (left) and 60-min (right) horizons.

These histograms suggest the possibility that the CIWS forecast gets the general
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Figure 2-4: Distribution of true weather level given a forecast at a pixel, for varying
time horizons across a large set of summer 2008 weather scenarios.

weather trends right, but is incorrect in the spatial position of weather cells. This

spatial error in the distribution of true VIL is further explored in Figure 2-4, which

shows the distribution of actual weather level given a predicted weather level across

time horizons. The top-left plot shows the distribution of actual weather level when

level 3 or higher (L3+, from now on) is forecast. For time horizons of 30-min and

longer, the distribution reflects the same over-forecast of hazardous weather as seen

in the previous section, where true weather is level 2 and lower at the majority of

pixels.

However, when the definition of true positive is relaxed so that the presence of

L3+ weather within a B km neighborhood of the forecast pixel counts as a correct
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prediction, this distribution shifts right, with a majority of pixels at L3+ (as illus-

trated in the top right histogram with B = 5, and the bottom left with B = 10).

This confirms the presence of spatial error in the forecast, though the value of B that

makes this distribution shift varies, and can be too large to be useful for fine-grained

planning of flight plans. Finally, the bottom right plot shows the distribution of true

weather when level 1 or 2 is forecast. Note that we leave out level 0, because it

represents a majority of cases, and would completely shift the distribution to the left.

This plot indicates that either the forecast performs well on predicting lack of hazard,

or that the true weather is level 2 or lower in the vast majority of cases. Either way,

this contributes to the strong TN score.

This section validated CIWS by evaluating forecasts of individual pixels, and

found large forecast errors and a tendency to over-predict weather impacts. These

findings match evaluations of other forecast products. We next argue that despite

these findings, when we move our perspective away from individual pixels and view

forecasts in terms of entire routes with a tolerance for spatial error, CIWS may be

very useful (and accurate) for air traffic planning.

2.3 Forecast objectives from an operational per-

spective

The evaluation of a weather forecast by comparing the predicted and true weather at

individual pixels does not capture several operational realities of traffic flow planning.

First, it is possible that the forecast gets the general weather trends right, but is

incorrect in the exact position of the weather cells. This phenomenon is illustrated

with the scenario in Figure 2-5. A storm cell is forecast to hit 10 km north of a

filed flight plan. When weather materializes, the actual storm is displaced such that

it lies 10 km to the south of the filed flight plan, resulting in very low skill scores:

Critical Success Index and Probability of Detection are each 0, and False Alarm Rate

is 1. Despite these poor skill scores, this forecast is actually quite good for planning

purposes, since a planned trajectory could easily be moved 10 km north. Moreover,
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Figure 2-5: Illustration of potential advantages of route-based forecast evaluation over
a pixel-based skill scores.

any north-south operations would be unaffected because there is no lateral error in

the prediction.

Second, predicting the storm type (regardless of precise location of weather cells)

can be very useful for TFM. For example, a storm consisting of many small sparsely

distributed cells of weather activity (a popcorn storm) may have low forecast accu-

racy in pixel-by-pixel comparisons, and yet have many available routes between cells,

resulting in no practical capacity reduction.

Thirdly, a forecast with reasonable spatial accuracy (with some error at individual

pixels) can be very useful for planning. Indeed, knowing that there is a 30% chance

of rain into Boston today, for instance, does not help to determine if there will be a

route open from the east into Boston Logan Airport at 5PM, or if flights should incur

delay on the ground and avoid entrance into the Boston area between 5 and 6 PM.

However, a forecast which predicts weather in a region generally west of the airport

may be enough to correctly manage west-bound flows.

These operational realities suggest that a route-centric approach may be a better

way to evaluate weather forecasts used for TFM. Identifying persistent routes through

weather might identify opportunities for increased capacity even in the presence of

storms and of inaccurate forecasts. We next develop a terminal airspace model for

evaluating (and using) forecasts in this way.
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2.4 Model for a route-based forecast

Motivated by the previous analysis, we would like to study the following problem:

Given a weather forecast for some time in the future and a set of predetermined

potential routes, we would like to best identify those routes that are likely to be open

in the actual weather that materializes, and also to quantify the uncertainty associated

with our prediction mechanism.

2.4.1 Definition of open route

In order to solve this problem, we adopt the following definition for an open route.

A route is defined to be open or clear in the observed weather if there exists

a route within a B km neighborhood of the original route that is not impacted by

weather. This potentially displaced route is called the perturbed route. Note that

the perturbed route may be identical to the original one.

This relaxed definition allows for slight deviations in a planned route that reflect

the “wiggle room”, or the ability of an aircraft to make small adjustments to the

planned route. The parameter B can be adjusted to reflect operational constraints

for a particular terminal-area and the desired level of flexibility, although B will

typically be small (between 5 and 10 km).

2.4.2 Terminal airspace setup

We now describe the terminal airspace model that will be used throughout this thesis.

It is depicted in Figure 2-6(a).

The input is a terminal-area, defined by two concentric circles: an outer circle

CO of radius RO, and an inner circle CI of radius RI . Aircraft flying under

instrument flight rules currently follow their filed flight plans which are represented

by standard waypoints connected by airways. Aircraft flows from and to the airport

are typically routed through specific way-points on the outer circle known as fixes,

which are points of entry into or exit out of the terminal-airspace. The circle CO

represents the points at which arriving aircraft first enter the terminal airspace, while
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Figure 2-6: Diagram of terminal airspace: (a) depicts the set-up and (b) shows the
dynamic weather grid.

CI represents the point at which aircraft begin their landing procedure (for example,

the crosswind leg of the approach) into the airport. In contrast, departures traverse

the terminal-area in the reverse direction, entering it close to the airport at CI and

exiting it through the outer boundary CO. The parameters RI and RO are adjustable

depending on the characteristics of an individual airport. RI typically ranges between

10 km and 30 km, while RO is roughly 100 km.

2.4.3 Dynamic weather grid

Before we can superimpose a weather forecast over the terminal model just described,

we must incorporate a notion of time into the model. In particular, we would like

to account for the movement of aircraft through airspace and have the forecast at a

particular location (pixel) correspond to the time when the aircraft flies through it.

In order to model this aircraft movement, we construct a dynamic weather

grid by splicing together weather data for consecutive time intervals. This grid is

depicted in Figure 2-6(b) using a real weather scenario. The grid is divided into eight

sectors alternating between arrivals and departures, which have different dynamic

grids. We assume aircraft arrive at CO at time t. Planning occurs t0-minutes in
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Figure 2-7: An example of departure routes through a dynamic weather grid.

advance of aircraft arrival. For departures, the corresponding dynamic grid assumes

aircraft arrive at CI at time t, with the same t0-minute planning horizon. This grid

will therefore be used for planning at the current time, namely, (t− t0).

The distance between two concentric circles in the grid corresponds to the dis-

tance flown in 5 min by a typical aircraft. These circles are drawn assuming an

average aircraft speed of 180 knots in the terminal-area; we have also conducted sim-

ilar analysis for aircraft speeds of 85 knots, corresponding to slower, general aviation

aircraft. (Michalek and Balakrishnan, 2009a).

Figure 2-7 provides an illustrative example with three departure routes overlaid on

a dynamic weather forecast on the left, and the same routes overlaid on the observed

dynamic weather for that scenario on the right. In this example, the planning horizon

of interest is t0 = 30 minutes. At the current time (t − t0), we are interested in

predicting whether potential routes for aircraft that are currently 30 min from the

terminal-area entrance (CI for departures) will be open. This would allow us to

provide recommendations on which terminal-area route to fly through. In order to

do this, we use the 30 min forecast in the innermost annulus of the dynamic forecast

grid, the 35 min forecast for the next annulus, the 40 min forecast for the next one,

and so on. Similarly, for validating the performance of this forecast along this route,
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we will consider the observed weather along the route in each annulus at the time

that the aircraft flies through it, i.e., the observations 30 min from the current time

for the innermost annulus, 35 min from the current time for the next annulus, and so

on.

Each potential departure route is a path between a departure fix on CO and a

point on CI . In this example, the routes are examples of forecast inaccuracy. Two of

the three routes (denoted by solid blue lines) are predicted to be open but are blocked

by weather in reality, while the third (denoted by a dotted red line) is forecast to be

blocked, but is open in the weather that actually materializes. Although this example

focuses on departures, the weather grid is simply inverted for arrivals: the outermost

annulus would contain the 30-min forecast, etc.

All weather scenarios considered in the remainder of this thesis use this dynamic

weather grid.

2.4.4 Identifying robust routes through terminal airspace

We can now restate our problem in more concrete terms:

If an aircraft is routed along a trajectory between CO and CI, and given a t-minute

weather forecast through the corresponding dynamic weather grid, what is the proba-

bility that that this trajectory will be open in the weather that actually materializes?

2.5 Generation of data sets

This thesis uses weather data for Hartsfield Atlanta International airport (ATL)

terminal-area extensively. This section describes the selection of weather scenarios,

the selection of potential arrival and departure routes within each scenario, and the

initial validation of these routes in the forecast grid against perturbed routes in the

true weather grid.

2.5.1 Selection of weather scenarios

We focus on the terminal airspace of ATL, which is the busiest airport in the world

in terms of total aircraft operations, and experiences significant delays due to con-
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vective weather. ATL is also chosen as a case study due to its standard corner post

configuration, and the fact that Atlanta is inland, and avoids some additional forecast

inaccuracies (which have been observed anecdotally by forecast providers) due to the

effect of the ocean on weather patterns.

CIWS data for the summer 2007 and 2008 convective seasons was provided by MIT

Lincoln Lab. Each day of CIWS data yields approximately 30 GB of uncompressed

binary data, hence weather scenarios were selected using only a partially-automated

process. The selection process began by using FAA OPSNET data to determine the

most weather-impacted days when ranked according to weather-related delays, during

the months of June and July 2007, and June through August 2008. Once a set of

dates were narrowed down, ATL terminal-area weather was automatically extracted,

the number of level 3+ weather pixels in the true weather grids were computed across

entire days, and the periods with significant convective weather activity (as judged

by having more than a human-selected threshold of hazardous weather pixels) were

visualized using Matlab scripts. A human then selected roughly 4 weather scenarios

separated by at least 30 minutes for each high-activity day, trying to include different

type of weather situations (developing storm, well-developed storm, popcorn storm,

line squall, etc.).

The final set of weather scenarios were partitioned by year, and are referred to

WeatherScenarios2007 and WeatherScenarios2008 for the remainder of this thesis.

The selected dates are specified in Table 2.1. Each weather scenario actually corre-

sponds to 10 subsets of data, corresponding to planning horizons t0 of 10-, 30-, 60-,

90- and 100-minutes, for both departures and arrivals. For the remainder of this

thesis, we refer to a weather scenario as a date and time t, a planning horizon t0, and

a direction (arrival or departure).

2.5.2 Selection of routes

Now that a set of weather scenarios have been selected, the next step is to select

routes through these scenarios. We can then study how well CIWS predicts route

blockage on this set of route, and later improve upon this prediction.
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WeatherScenarios2007 WeatherScenarios2008
dates times (GMT) dates times (GMT)

Jun 5 17:30 18:00 18:30 19:00 Jun 1 12:00 14:00 20:45
Jun 8 19:30 20:00 20:30 21:00 21:30 Jun 3 18:15 19:45
Jun 12 5:30 6:00 6:30 7:00 Jul 8 20:00 21:00 22:00 22:45
Jun 14 21:15 21:45 Jul 10 16:30 18:30 19:30 20:30 21:30
Jun 15 18:30 19:00 19:30 20:00 Jul 13 13:30 14:00 15:30 17:30 19:30
Jun 19 19:00 19:30 20:00 20:30 Jul 31 16:15 17:00 18:00 19:00
Jun 25 19:00 20:00 20:30 21:00 21:30 Aug 26 03:00 09:15 11:00 12:30 19:00
Jun 28 22:30 23:00
Jun 29 21:00 22:30 23:00
Jul 1 21:00 21:30 22:00 22:30 23:00
Jul 11 16:00 16:30 17:00 17:30 18:00
Jul 19 16:00 16:30 17:00 17:30
Jul 29 19:30 20:00 20:30 21:00

Table 2.1: Weather scenarios considered during 2007 and 2008 convective seasons.

Routes through forecast weather

Potential aircraft trajectories through each weather scenario are generated by simply

sampling eight straight routes between C0 and CI , as depicted in Figure 2-8. These

eight trajectories represent a random sample of routes through varying weather fore-

casts and flight orientations.

Routes through true weather

Each route r generated in the manner described above is evaluated using the observed

weather data. Recall that r is open if there exists a corresponding perturbed route r′

in the observed weather grid within B km of r. Recall that r′ cannot pass through any

hazardous weather, and that this B km neighborhood allows for slight perturbations

in the original route (on the order of several kilometers).

Open routes are synthesized by solving a shortest-path problem with turn penalties

through the dynamic grid of observed weather, modeled as an integer program (IP).

Note that although the shortest path problem with turn penalties is known to be

solvable in polynomial time (Ahuja et al., 1993), we use an IP approach because it

allows for simple and useful augmentations to the formulation. For example, adding

a constraint to penalize the deviation of the solution from the original route or to
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Figure 2-8: Illustration of the eight routes sampled for an arrival forecast scenario.

penalize routes which are too close to L3+ weather, gives better perturbed routes for

visualization.

The formulation is as follows. A directed graph G(N ,A) is constructed such that

the set of nodes N contains all pixels within B km of r (in the dynamic observed

weather grid) which are free of weather hazards, and such that each set of adjacent

nodes forms an arc a ∈ A. At time t, a unit of flow is sent from a set of source

nodes S = CO ∩ N (the subset of nodes lying on the outer circle CO) to a set of

sink nodes T = CI ∩ N . For simplicity, we use a standard transformation and

introduce a supersource S̄ and a supersink T̄ , and route one unit of flow between the

two through the source nodes and sink nodes (Ahuja et al., 1993). To model turn

penalties, NX(i, j) ∈ N is defined to be the node which constitutes a straight next

arc if (i, j) is used. In other words, nodes i, j, and NX(i, j) form a straight line in the

observed weather grid. Since we would like to recommend a route which, in addition

to being short, requires a minimum amount of maneuvering on the part of pilots, the

objective is to find the minimum cost flow f such that out of all minimum cost flows,
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f has the minimum number of turns.

xij := flow on arc (i, j) ∈ A

zij := 1 if (i, j) ∈ A is a turn, 0 otherwise.

min
∑

(i,j)∈A

cijxij + λ
∑

(i,j)∈A

zij

s.t.
∑

j∈N :
(i,j)∈A

xij −
∑

j∈N :
(j,i)∈A

xji = bi ∀i ∈ N (2.1)

zij ≥ xij −
∑

k∈NX(i,j):
(j,k)∈A

xjk ∀(i, j) ∈ A (2.2)

x, z ∈ {0, 1}n (2.3)

Constraints 2.1 are the flow balance constraints, with bi := −1 for a supersource

S̄, bi := +1 for a supersink T̄ , and bi := 0 for all other nodes i in N . Constraints 2.2,

in conjunction with the penalty term in the objective function, serve to minimize the

number of turns in the path without changing the path length, since it is desirable

that aircraft trajectories have a limited number of turns for simplicity. All arcs that

follow (i, j), except (j, k) for k = NX(i, j), pay a penalty in the objective function.

λ is chosen to be sufficiently small (less than the maximum length of any path) to

eliminate longer routes with fewer turns. Finally, x and z are restricted to binary

variables in 2.3, to ensure that flow is not split up. Note that although this formulation

models the case of arrivals, the same IP can be used to model departures by replacing

the underlying dynamic grid.

This problem is solved for each of the selected routes in each data set; the infea-

sibility of the problem implies that the route is blocked in the observed weather grid,

while feasibility implies that the route is considered open. A version of this problem

can also be solved with different sets of sources and sinks and with B =∞ to generate

a large set of candidate routes for a given weather forecast scenario (Michalek and

Balakrishnan, 2009a).
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2.5.3 Details of route dataset

Once a set of routes is synthesized for each weather scenario, we can analyze the

resulting dataset. We have partitioned the weather scenarios by year so that one set

can be used for testing, and the other independent set can be used for training, later

in the thesis. We refer to these two sets as Data2007 and Data2008. In this section

we show how viewing forecast performance through the lens of routes (instead of

pixels) with some allowed wiggle room can significantly improve the apparent forecast

accuracy.

We begin with a visualization of the resulting routes. Figure 2-9 shows examples

of several synthesized routes. Each pair of images corresponds to a single weather

scenario, with a sample route in a dynamic forecast grid on the left, and the corre-

sponding perturbed route in the actual weather on the right, if it exists. The topmost

weather scenario is an arrival at the 60-minute planning horizon on 070612 at 0630Z,

and depicts a route that is open according to the forecast and ends up being open

in actual weather. The scenario in the center corresponds to 070619 at 1900Z, and

shows an arrival route at the 90-minute planning horizon. The exact original route

is blocked according to the forecast, but a nearby perturbed route is available in the

true weather grid. The bottom scenario is a departure route on 070608 at 2030Z at

the 30-minute horizon. In this situation, the forecast route is not open in the observed

weather grid.

Table 2.2 gives a summary of the overall statistics for Data2007 for arrivals and

departures at the five planning horizons studied. Although the parameters B, RI , and

RO are configurable, the table data corresponds to a wiggle room of B = 8 km, inner

radius RI = 10 km, and outer radius RO = 100 km. Each route is evaluated using

the forecasts and observed weather appropriate for the times at which the affected

aircraft will traverse the route, as described in Section 2.4.3.

As indicated by the table, each dataset consists of 408 routes, the majority of

which are open. The percentages of routes that are forecast open (i.e., routes that

do not pass through Level 3+ weather in the forecast) are between 48% and 63% for
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Figure 2-9: Examples of routes synthesized in the forecast grid (left), and validated
against the observed weather (right).
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# forecast actual actual open given actual closed given
dir t0 routes open (%) open (%) forecast open (%) forecast closed (%)

a
rr

iv
a
ls

10 408 48 74 98 52
30 408 47 74 94 57
60 408 48 74 86 64
90 408 57 74 86 58

100 408 62 74 84 59

d
ep

a
rt

u
re

s 10 408 50 76 99 54
30 408 50 76 94 59
60 408 48 76 87 66
90 408 58 76 89 60

100 408 63 76 88 56

Table 2.2: Overall statistics for each of the 10 datasets in Data2007.

both arrivals and departures, meaning that approximately half of the routes in the

dataset are forecast to be blocked. However, these same routes are open over 74% of

the time in the weather that materializes (that is, there is a perturbed route in the

neighborhood of the original route which does not pass through Level 3+ weather in

the observed weather). The percentage of routes actually open is equal within each

flight direction because the set of actual weather scenarios are identical (while the set

of forecast scenarios depends on the planning horizon t0).

The last two columns indicate how the forecasts and true weather differ for in-

dividual routes. Routes that are forecast as open are overwhelmingly open in the

observed weather grid, with rates of 84% and above. Arrivals have slightly lower

rates than departures, and the rates decrease with increasing planning horizon. Both

of these trends are to be expected, because arrivals typically encounter the bottle-

neck at the end of their route through terminal airspace, where the forecasts are less

accurate. Finally, routes that are forecast as closed are closed in the true weather

approximately 60% of the time. These low rates reflect the effect of the additional

flexibility allowed for finding routes in the actual weather.

To further evaluate this route-based method of viewing and using weather fore-

casts, Figure 2-10 shows forecast skill scores for Data2008, providing a direct compari-

son against Figure 2-2, which gave skill scores for the same weather scenario forecasts,

but evaluated at the raw pixel level.
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Figure 2-10: Skill scores for the route-based weather dataset improve over scores for
pixel-based forecast evaulation.

Before we analyze these results, we must resolve the discrepancy in the notion of

time horizon in the two settings. The time horizon τ for pixel-based forecasts does

not have an analog in the route-based setting, because the associated dynamic grid

has a planning horizon t0 instead. However, the dynamic grid embeds forecasts of

time horizon at least t0. In particular, t0, t0 + 5, t0 + 10, and t0 + 15. Since forecast

accuracy decreases with increased time horizon, we would expect this to only hurt

the skill scores of the route-based forecast.

At the 10-minute horizon, the pixel-based forecasts outperform their route-based

counterparts. This is likely due to the known high accuracy in CIWS at the very short

10-minute horizon. Since the route-based setting at the 10-minute planning horizon

includes forecasts of length 10-25 minutes (as just discussed), and since τ = 25 minutes

gives much higher CIWS forecast error, the route-based skill scores can be expected

to suffer.

However, the situation is reversed for time horizons of 30 minutes and greater,

where POD, CSI, and FAR are significantly worse for the pixel-based forecasts. In-

deed, the probability of detecting blocked routes (POD) is above 0.6 across time

horizons, while the pixel-based POD scores are below 0.4 for all but the shortest time

horizon. At 100-minutes, the route-based POD score posts a three-fold improvement
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over its pixel-based counterpart. The critical success index (CSI) shows a similar

story: it decreases from 0.45 to 0.25 with increasing time horizon, while the pixel-

based CSI remains below 0.15 for time horizons above 60 minutes. Although the false

alarm rate (FAR) is quite high for the route-based forecast (between 0.55 and 0.71), it

is even higher in pixel-based context: above 0.75 for time horizons above 60 minutes.

Lastly, although the accuracy of the route-based forecast is above 0.75, it under-

performs the pixel-based forecast. This is due to the large imbalance between the

L3+ (positive) and L2- (negative) CIWS pixels, causing the true negatives (TN) to

dominate the accuracy score. By contrast, the route-based dataset is more balanced,

making its accuracy scores lower but more meaningful.

2.5.4 Conclusion

The raw data suggest that subject to minor adjustments, air route planning at hori-

zons up to 100 minutes is quite reasonable, since routes that are forecast to be open

end up being overwhelmingly so. Likewise, routes that are forecast to be blocked

tend to be open in the observed weather, which indicates potentially underutilized

capacity. This is encouraging, and shows that allowing even small adjustments to

planned trajectories can improve the quality of decision-making based on the weather

forecast.

However, the gap between routes which are predicted to be blocked and those that

are actually so in Table 2.2, as well as the less-than-perfect skill scores in Figure 2-

10, suggests that there is room for improvement in route-based forecasts. The next

chapter introduces a method to bridge these gaps by using features of a weather

forecast to better predict route blockage.
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Chapter 3

Prediction of robust routes

through terminal airspace

This chapter builds upon the route-based approach to evaluating weather forecasts for

air traffic management, and uses techniques from machine learning to identify robust

routes through airspace. That is, routes which are open once weather materializes,

despite inherent spatial and temporal errors in the corresponding convective weather

forecast.

We begin with the introduction of a set of features, or functions of the weather

forecast, which are likely to influence route blockage. These features are first eval-

uated based on how well they can predict route blockage individually, and are then

incorporated into classification algorithms. The classifiers are designed to predict

whether a given route through terminal airspace will be open or blocked, given the

values of these features. Several classification algorithms are described and evalu-

ated based on performance, accuracy, and parameter sensitivity. The chapter ends

with a translation of the binary classification of route blockage (open or blocked) into

probabilities, resulting in a probabilistic predictor of route blockage.
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3.1 Features for route blockage prediction

Having generated a dataset of terminal-area routes, the next natural step to improve

the prediction of route blockage is to identify characteristics of the convective forecast

which may best point to an increased likelihood that a given trajectory will be open.

This section introduces the set of features chosen as potential blockage predictors.

Intuitively, if a planned route is forecast to have level 2 weather along its entire

length, we may expect this route to be more likely to end up blocked than a route

which only passes through forecast weather of level 0. This reasoning of how features

of the forecast may indicate higher likelihood of blockage lead to the selection of

the following eleven features of potential interest. For each route r through forecast

weather scenario F :

1 mean VIL along route r,

2 standard deviation of VIL along route r,

3 minimum distance to level 3+ weather along route r,

4 mean distance to level 3+ weather along route r,

5 maximum VIL in neighborhood of route r,

6 length of the most restrictive bottleneck that route r passes through,

7 maximum pixel density of level 3+ weather along route r,

8 maximum VIL density along route r.

9 theoretical capacity for F ,

10 number of segments in the minimum cut of F , and

11 length of shortest minimum cut segment of F

These features fall into three feature types: features of the forecast along the route

r (features 1-2), features of the forecast in the neighborhood of r (features 3-8), and

features of the entire terminal weather forecast (features 9-11).

Features 1-4 are reasonably self-explanatory, and pertain to the forecast VIL along

r, and to the proximity of r to hazardous weather. Feature 5 is the maximum VIL

forecast in the neighborhood of radius B along r. Here B is flexible, but we match

it to the B in our weather model (typically 8-10 km). Feature 6 is the length of the
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tightest bottleneck between level 3+ weather through which r passes.

Feature 7 reflects the intensity of the weather in the neighborhood of r. It is

computed by taking a B km neighborhood around r, and finding the strip of pixels

perpendicular to r with the largest percentage of level 3+ forecast pixels. Feature 8

is computed using the same perpendicular strips as feature 7, except that it considers

the largest average VIL along a perpendicular strip. If r is forecast to pass through

level 3+ weather, features 3 and 10-11 will all equal 0, but features 7 and 8 may still

contain pertinent information about the nature of the hazard.

Features 9-11 refer to the theoretical capacity of the dynamic forecast grid and the

corresponding minimum cut, illustrated by example in Figure 1-1. This theoretical

capacity is based on continuous maximum flow theory, which shows that the maxi-

mum throughput of a continuous domain (in our case, the annulus from CO to CI)

corresponds to the minimum cut through a corresponding discrete graph (Mitchell,

1988). To compute the theoretical capacity, we follow the developments on contin-

uous maximum flow extended to the case of airspace by Mitchell et al. (2006) and

Krozel et al. (2007). This work presents a polynomial-time algorithm for comput-

ing the maximum flow through a polygon with holes, from a set of source edges to

a set of sink edges. In our case, the polygon represents the terminal airspace, the

holes represent weather, and C0 and CI are sets of sources and sinks, respectively.

The algorithm involves the creation of a discrete critical graph, where a shortest path

30
10

Figure 3-1: Illustration of minumum cut M and features 9-11 of the weather forecast.
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through this graph gives the cost of the minimum cut through the continuous region,

and is also equal to the maximum flow.

Let M be this minimum cut. Then feature 9 is the length of M , feature 10 is

the number of disjoint segments in minimum cut M , and feature 11 is the length of

the shortest segment of M . In Figure 3-1, features 9, 10, and 11 are 40, 2, and 10,

respectively. Note that since the minimum cut gives the bottleneck for flow through

the airspace, all open trajectories necessarily pass through this bottleneck region.

However, since r is not necessarily open (it may pass through level 3+ pixels), it does

not necessarily cross the minimum cut M .

3.2 Identifying robust routes using individual fea-

tures

This section develops a simple model of route robustness, based on estimating the

conditional probability that a route will be blocked given the value of an individual

feature. The resulting estimates also provide a visual explanation of how each feature

relates to route blockage.

3.2.1 The conditional probability of route blockage

Given route u through a weather scenario, let fi(u) be the value of feature i for route

u. The following equation is used to empirically estimate the conditional probability

that u is open given the value of feature i:

P( u is blocked | fi(u) = v) =
#{route r | r is blocked & fi(r) = v}

#{route r| fi(r) = v} (3.1)

where the # operator gives the size of the set. Since most features are continuous,

feature values are binned when necessary to avoid zeros in the denominator of Equa-

tion 3.1. Bin sizes are chosen so as to balance the conflicting objectives of achieving

low sampling error on one hand, and identifying a significant trend on the other.

That is, small bin sizes result in bins with very few data points, and thereby in large
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sampling error. This large error results in a large confidence interval about the ratio

of open to blocked routes within these bins, precluding any firm conclusion about

this ratio. In contrast, large bin sizes may wash out some of the trend in blockage

probability as a function of feature value. At the extreme, placing all data into a

single bin would not tell us anything about the different blockage rates as feature

value increases. The bin sizes used are 5, 10, or 20 units.

We make one adjustment to the binning of continuous features to account for the

long tail in the distribution of several features. For these features, there exists a very

low density of data at values above some threshold, resulting in tail bins with very

few or no data points, and hence very large sampling error. To avoid this, we group

the last 2% of data into a tail bin. For instance, for bin size 10 and a feature with

values in the range [0,100], but with very sparse data above value 50, we would end

up with the bins [0, 10), [10, 20), [20, 30), [30, 40), [40, 50), and [50,∞), and with the

respective labels 5, 10, 20, 30 , 40, and 50+.

Let p̂ denote the resulting conditional probability in Equation 3.1 for a given

bin. We can compute a confidence interval for p̂ for each bin, but our data is such

that many bins have p̂ very close to 0 or 1, and these are often the bins with few

data points (n less than 10). To avoid the poor performance of the standard Wald

confidence interval under these conditions, we use the Agresti-Coull variation to the

Wald confidence interval (Agresti and Coull, 1998; Brown et al., 2001). The Agresti-

Coull interval effectively places a Bayesian prior onto p̂, by simply adding 2 data

points to each class before computing the point estimate p̂ and the confidence interval

p̂±zα/2

√

p̂(1−p̂)
n

, where zα/2 is the 100(1−α/2)th percentile in the normal distribution.

Due to sampling error introduced in the process of data selection and binning, the

conditional probabilities contain some noise and must be smoothed. The smoothed

conditional probability P(u blocked |fi(u) = v) is computed by taking the average of

5 neighboring bins (bin v as well as 2 bins on each side of v), weighted by the number of

routes in each bin. The window size of 5 was chosen empirically to decrease sampling

error without smoothing out local trends.
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3.2.2 Comparison of results across features

We now evaluate the set of features in terms of the conditional probabilities of route

blockage just described, by plotting p̂ at each feature value along with confidence

intervals and the smoothed estimate of p̂.

Figure 3-2 shows results for each feature, with planning horizon fixed at 60-

minutes, and flight direction fixed to departures. Overall, we see that different fea-

tures exhibit different relationships to blockage in terms of type and strength of

trend. There are several metrics along which we can compare the plots. First, we
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Figure 3-2: Probability of route blockage conditional on the value of each feature, for
departures at the 60-minute planning horizon.
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can compare the difference between maximum and minimum blockage probability,

which gives a measure of magnitude for the blockage fit. Higher magnitude means

the blockage estimate is more discerning (has more certainty associated with both

open and blocked class predictions), and hence a more useful predictor. Second, the

size of the confidence intervals also gives a measure of the uncertainty associated with

a prediction, making smaller intervals preferable.

Most features have a monotone trend, either non-increasing or non-decreasing in

feature value. While several features show a distinct trend in blockage as a function

of feature value, others’ blockage line is quite flat. Moreover, several features are

accompanied by very large confidence intervals at each bin, making it difficult to

identify any trend in the data with much certainty.

For the first two features (mean VIL along route, and standard deviation of VIL

along route, respectively), the likelihood of blockage increases with increased feature

value. This agrees with intuition, since high VIL values along a route indicate that

it passes through some weather-affected regions, which are more likely to show up

as level 3 or higher in the true weather. Likewise, higher standard deviation of VIL

indicates increased variability in weather conditions along the route, and hence higher

likelihood that weather will materialize. These route-based features are among the

strongest predictors of blockage.

The next set of features, which are functions of the neighborhood of the route, vary

in their performance as predictors. For feature 3 (minimum distance to weather), we

see that routes which are very close to hazardous weather (in the forecast) end up more

likely to be blocked, while routes which are very far from forecast hazards stay viable

in the true weather. Feature 4 (average distance to weather) shows the same trend

with higher magnitude. The blockage fits for features 5 (max VIL near route) and 6

(length of bottleneck for route) also agree with intuition: as feature 5 increases, so

does blockage probability, while as feature 6 increases, blockage probability decreases.

Features 7 (max pixel density near route) and 8 (max VIL density near route) are

particularly good indicators of route blockage, with smoothed probabilities of blockage

increasing from 0 to almost 0.6 as feature value increases. The only feature which
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such high magnitude is feature 1.

The final set of features deal with the weather forecast scenario as a whole. Feature

9 (theoretical capacity) has the noisiest results, with very large confidence intervals

and a flat trend line, though there is a slight correlation between increased theoretical

capacity and decreased route blockage probability. Feature 10 (number of min cut

segments) also shows a relatively flat blockage trend. This is likely because the number

of segments in a minimum cut can occur both if the theoretical capacity is very high

(there is 1 large cut segment, for instance), or very low (there is a very small cut

segment). The high capacity case would make routes more likely to be viable, since

they are less likely to be close to adverse weather cells, while the reverse is true for

low capacity. And finally, feature 11 (length of shortest min cut segment) does have

tight confidence intervals at the extremes of the distribution, with higher probability

of blockage at low feature values (though still under 0.5), and vice versa for high

feature values. However, the confidence intervals in between these extreme bins are

very large. Overall, features 9-11 are the poorest predictors of route blockage.

3.2.3 Results across flight direction and planning horizon

In the previous section we compared route blockage plots for individual features, at

fixed flight direction (departures) and planning horizon (60-minutes). We now per-

form comparisons between arrivals and departures, and between varying time hori-

zons, with other parameters fixed. We demonstrate the general trends by showing

one example of each.

Figure 3-3 compares route blockage for arrivals and departures, with feature value

and planning horizon fixed at feature 1 and 60-minutes, respectively. The two plots

are very similar; both show a monotonically non-decreasing blockage line from 0.1

to 0.6, with identical bins and comparable confidence intervals. There is a slight

difference in the smoothness of the two blockage trends, in that departures have a

smoother blockage fit than arrivals.

We now compare the sensitivity of route blockage to planning horizon. Figure 3-4

shows the results as planning horizon varies across horizons of 10, 30, 60, and 90
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Figure 3-3: Sensitivity of route blockage to flight direction, for feature 1 (mean VIL
along route) at the 60-minute planning horizon.

minutes, with feature value and flight direction fixed to feature 8 and departures,

respectively.

The difference in plots as time horizon increases is striking. Both the magnitude of

blockage and the sizes of confidence intervals are significantly better at the 10-minute

planning horizon as compared to the 90-minute. In fact, the curve is close to an ideal

“S-shaped” curve at 10-minutes, with endpoints converging close to 0 and 1, and with

relatively small confidence intervals. As time horizon increases, the blockage curve

decreases in magnitude (it peaks at only 0.5 for t0 = 90 minutes), it flattens out, and

the confidence intervals increase in size. These trends are consistent with the fact

that forecasts are more accurate at shorter time horizons.

These visualizations of the relationship between individual features and blockage

are useful as predictors of route blockage and to better understand feature behavior.

However, we have not identified a single best predictor or blockage, nor a way to

combine features to create an improved predictor. We spend the rest of the chap-

ter doing just this, by using methods from machine learning to compare individual

features more concretely, and then developing a classification algorithm to improve

blockage prediction.
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Figure 3-4: Sensitivity of route blockage to varying planning horizon, for feature 8
(max VIL density near route) and departures.

3.3 Feature selection using mutual information

To evaluate features for classification and gain a better understanding of which fea-

tures best correlate with blockage individually, we compute the Mutual Information

(MI) between each feature Xi and the blockage label y (+1 for open, -1 for blocked).

Mutual information is an information-theoretic measure of the dependence between

two random variables X and Y , and measures how much the uncertainty of X is

reduced if Y is observed. This measure considers each feature individually and does

not capture situations in which two features combined correlate well with y. In other

words, the larger the value of MI for a feature, the greater the correlation of that

feature to route availability.

For discrete random variables X and Y with joint pmf pX,Y (x, y), and marginal

pmfs pX(x) and pY (y), respectively, their mutual information, I[X; Y ], can be ex-
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pressed as

I[X; Y ] =
∑

x

∑

y

pXY (x, y) log
pX,Y (x, y)

pX(x)pY (y)

We approximate the distribution functions using their Maximum Likelihood param-

eter estimates, which are valid when the dataset size is much larger than the domain

size of the joint pmf. In other words, P̂X(x) = n̂X(x)
n

and P̂X,Y (x, y) =
n̂X,Y (x,y)

n
are

used as estimates of the pmfs. For features with continuous domains, we do not adopt

more complicated approaches to approximating MI for continuous distributions, and

instead discretize the data into equally sized bins, as described in the previous section.

Figure 3-5 contains a comparison of MI between each feature and blockage, across

planning horizons for both arrival (left-hand-side histogram) and departure (right-

hand-side histogram) datasets. The relative MI of features tends to reflect two princi-

ples: the spatial accuracy of a weather forecast decreases with increased time horizon,

and the weather forecast in the neighborhood of a route (including the structure of

weather cells) has bearing on the viability of a route. Indeed, features 7 and 8, which

reflect both the structure and intensity of forecast weather in the neighborhood of

a route, consistently have the highest MI scores. Feature 1 also tends to perform

well at shorter planning horizons, when the weather forecast on the route is subject

to relatively low spatial error. On the other hand, features 4 and 6 outperform fea-
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ture 1 at longer planning horizons, since they reflect the prevalence of weather in the

neighborhood of the route (and not just the weather activity on the actual route).

As expected, the MI values tend to be higher overall at shorter planning horizons,

reflecting the higher forecast accuracy at shorter time horizons. This also explains

why departures have slightly higher MI than arrivals across the board, because ar-

rivals cross the inner circle CI (a bottleneck region) at the end of their trip through

the dynamic terminal-area, while departures cross at the very beginning, when the

forecast at CI has a shorter time horizon. Figure 3-5 also reveals several insights

into the relationship between VIL forecasts and route blockage: for example, it shows

that feature 3 (the minimum distance between the route and level 3+ weather in the

forecast), is a worse predictor of blockage than feature 4 (the mean distance of the

route to level 3+ weather).

Finally, Figure 3-5 shows that the theoretical capacity (features 9 and 10), which

is a frequently-cited quantity in planning terminal-area routes (Krozel et al., 2007),

is a poor predictor of route blockage. This may be because while the theoretical

capacity predicts that N arrival routes will be open for the next hour, it does not

indicate the constraint (which is critical for planning) that these routes all enter the

terminal-area from the west. Moreover, it is possible for the forecast and realized

theoretical capacities to be identical, and to yet require that aircraft use trajectories

that deviate significantly from the planned routes.

The above analysis provides a better understanding of how well the features of a

convective weather forecast correlate with route blockage. In the next section, the

features will be combined into a classification algorithm to predict robust routes.

3.4 Classification algorithms for route availability

This section describes the classification algorithms used for supervised learning of

route availability. We first give a brief introduction to supervised learning and clas-

sification, describe the training objectives, and then describe the ensemble methods

used for classification.
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3.4.1 Introduction to supervised learning and classification

The task of supervised learning is to use supervised data to build a prediction function

f that can predict an unknown outcome. For example, an individual (Alice) would

like to automatically determine whether a new email is spam. Alice already has

information about 1000 previously received emails and knows which of those emails

are spam. She can use this knowledge to build a function that will predict whether

or not new incoming email is spam.

Supervised data is a set of points (xi, yi), i = 1, 2, . . . n, where the xi are input

values, or features, and the yi are output values. The xi can be a vector of values. In

the spam example, the features xi may be counts of certain words such as “Nigeria”

and “free” in the i’th received email, i = 1, . . . , n. The output yi is 1 if the i’th email

is spam, and 0 otherwise. The process of selecting the features xi is called feature

selection.

When the output values yi are discrete, the supervised learning function is referred

to as a classifier ; when these values are continuous, it is a regression. When there

are only two classes, the task is a binary classification problem. Many classification

methods have been developed, and the choice of which to use for a particular problem

depends on the data. The process of tuning a classification method to a specific

dataset (typically by selecting parameters for the function f in some way) is called

training. The data used for training is called training data. When a trained classifier is

used to predict the outcomes of new test data for evaluation and validation purposes,

the process is called testing.

One simple set of binary classification algorithms are linear classifiers, which use

a linear combination of the features x to predict the outcome y. In other words, a

hyperplane is selected to separate the two classes. In particular, the optimal sepa-

rating hyperplane separates the two classes by maximizing the distance between the

separating hyperplane and any training point xi. This optimal hyperplane (β, β0) can

be identified by solving the following quadratic optimization problem (which can be
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done efficiently in practice):

min ||β||2

s.t. yi(x
T
i β + β0) ≥ 1, i = 1, . . . , n

The resulting prediction function f : R
n → {0, 1} for input data x ∈ R

n is the

following: f(x) is 1 if βx + β0 ≥ 0 and 0 otherwise.

When the training dataset is not separable, the formulation above is infeasible.

In this case, the idea of finding a maximum margin separating hyperplane can be

generalized by introducing a slack variable to the mathematical formulation to deal

with unseparable datapoints, along with a penalty for missclassifying training data.

The resulting formulation is still a convex optimization problem, and the resulting

classifier is a Support Vector Machine (SVM). SVMs are powerful in that hyperplanes

can be extended to non-linear functions of the features using kernel functions. One

commonly used kernel function is the Radial Basis Function (RBF) kernel.

An ensemble classifier is a set of individual classifiers that are trained separately,

and whose predictions are combined into a single ensemble prediction. These in-

dividual classifiers can be SVMs, decision trees, other classifiers, or a combination

thereof.

For more information about supervised learning, Hastie et al. (2003) and Mitchell

(1997) are excellent resources.

3.4.2 Classification training objectives

When evaluating a classifier, the class predictions are compared with the actual classes

of a test set, according to the standard two-class confusion matrix:

predicted open predicted blocked

actual open TP (True Positive) FN (False Negative)

actual blocked FP (False Positive) TN (True Negative)

We note the difference between these definitions and those in Section 2.2: here,

a positive is defined to be an open route (i.e. a route not containing hazardous
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weather). This difference is a natural consequence of the move from a pixel-based to

a route-based evaluation of forecast accuracy.

Although it is typically desirable to maximize the accuracy (total number of cor-

rect predictions) of a classifier on a test set, the context of aviation weather warrants

a modified objective. Due to safety concerns, it is more important to correctly pre-

dict a route that ends up blocked than one that ends up open. This emphasis on

correctly predicting members of the blocked class (minimizing false positives) is com-

plicated by the fact that the dataset is imbalanced, having fewer blocked examples

than open, making it inherently harder to perform well on the blocked (minority)

class. As we will see in Section 3.5, there exists an inherent tradeoff between the false

positive rate and accuracy, which translates into a tradeoff between increased safety

and underutilized capacity.

In addition to the FP and FN rate, we compute the following (standard) perfor-

mance metrics to the evaluate our classifier:

accuracy =
TP + TN

n

true negative accuracy(a−; recall) =
TN

TN + FP

true positive accuracy(a+) =
TP

TP + FN

g-mean =
√

a− × a+

where n is the total number of routes in the data set.

In particular, the recall is a measure of how well the classifier performs on members

of the minority class which in this case is the set of routes that are blocked in the actual

weather that materializes. We seek to maximize this value through classification.

3.4.3 Classification of route blockage

The machine learning literature has shown that ensemble classifiers tend to perform

well on imbalanced datasets, outperforming non-ensemble methods (Hulse et al., 2007;

Chen et al., 2004; Liu et al., 2006). We follow these methods closely, and develop two
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ensemble classification algorithms: an ensemble of Support Vector Machines, and an

ensemble of weighted decision trees, also known as a Weighted Random Forest.

Figure 3-6 depicts the process of training an ensemble classifier on an imbalanced

dataset.

The process consists of several steps:

1 Data2007, the dataset described in Section 2.5, is randomly partitioned into a train-

ing set consisting of 70% of data points, and a test set consisting of the remaining

30%. To ensure an unbiased data set, weather scenarios from the same date are

not split up.

2 The training set is further processed: m blocked instances of the training set are

set aside, and N bootstrap samples of the open instances are generated, each of

size m.

3 The blocked set is combined with each of the bootstrap samples to create N boot-

strap training sets of size 2m, with a balance between open and blocked instances.

4 These N bootstrap samples are then used to train N classifiers with 5-fold cross-
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Figure 3-6: Process for training an ensemble classifier on an imbalanced dataset.
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validation and a grid search to select parameters which maximize classification

recall.

5 The resulting N classifiers combine to form a single ensemble classifier. On a new

test data point, each ensemble member gives a decision (open or blocked), and the

ensemble decision is simply the majority vote.

In our experiments, the number of classifiers in the ensemble is N = 11, and m

(the bootstrap sample size parameter equal to the number of blocked instances) varies

based on planning horizon and other dataset parameters, but averages to 55 (20% of

the dataset size).

Two classification methods were trained with this ensemble approach, by changing

the classification algorithm used in Step 4. The first is an ensemble of Support

Vector Machines (SVM), each trained with an RBF kernel. The second is a Weighted

Random Forest, which is trained using a set of increasing weights that penalize the

misclassification of blocked examples, and hence promote high recall. We refer to

these classifiers as ESVM and WRF, respectively, for the remainder of the chapter.1

Two additional classifiers were trained on Data2007 to predict blockage, namely, a

(single) SVM with an RBF kernel, and a decision tree with a weighted loss function.

Since ESVM and WRF outperformed them in terms of maximizing recall, we only

discuss them briefly in the next section.

3.5 Classification Results

In this section, we analyze the performance of the ESVM and WRF classifiers that

were just introduced. We first discuss the ESVM classifier, and include an analysis

of result sensitivity to several model parameters. We next discuss the performance of

the WRF classifier, and finish with a brief summary of the nonensemble classifiers,

which performed poorly in comparison.

1The classification algorithms were trained and tested using the R language for statistical com-
puting (R Development Core Team, 2008). The R package e1071 was used for Support Vector Ma-
chines (Dimitriadou et al., 2009), and the package rpart was used for Weighted Random Forests (Th-
erneau and Atkinson, 2008).
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3.5.1 Results for Ensemble of SVMs Classifier

To evaluate ESVM , we train the classifier using Data2007 for five planning horizons

(10-, 30-, 60-, 90-, and 100-minutes), for arrivals and departures, and with model

parameters fixed to RI = 10 km, RO = 100 km, and B = 8 km. We then test the

resulting classifier using Data2008, an independent dataset. We compare the decision

of ESVM on each route against the deterministic raw weather forecast, denoted by

Fx, which classifies a route as open if each pixel along the route is level 2- in actual

weather (in the dynamic grid), and classifies it as blocked otherwise.

Table 3.1 shows the performance of ESVM compared to Fx, with results averaged

over five runs of the classifier. Overall, we find that at the shorter planning horizons of

10-, 30-, and 60-minutes, the ensemble classifier outperforms Fx in terms of accuracy,

but not recall. This situation is reversed at the longer planning horizons of 90- and

100-minutes, where there is improvement in the recall rate of ESVM at a cost to

accuracy. Indeed, arrivals at 90-minutes post a 3% improvement in recall rate over

the Fx , with similar cost to accuracy rate. At 100-minutes, the improvement in recall

rate is 17%, with a 15% cost to accuracy. The results for departures show similar

trends.

These results agree with intuition, since the recall rates of the raw weather forecast

(and hence Fx) are known to be high at shorter horizons where weather forecasts are

known to be more accurate, leaving little room for improvement. However, the accu-

racy rates at these short planning horizons can be improved due to the wiggle room

introduced when validating routes, allowing for slight shifts in the original routes,

often uncovering routes around weather cells present in the area. When planning

horizon increases, the classifier can make gains in the recall rate. But this gain comes

at a cost to accuracy: because the classifier is trained to be more conservative in

declaring routes as open, it is likely to declare some routes which are actually open

as blocked. Due to the imbalance in the test set, this necessarily causes a noticeable

decrease in accuracy on the open (majority) class. This tradeoff between recall rates

and accuracy can be directly controlled in the Weighted Random Forest classifier

72



10-min 30-min 60-min 90-min 100-min

a
rr

iv
a
ls

ESVM Fx ESVM Fx ESVM Fx ESVM Fx ESVM Fx

Acc 88.57 82.14 81.87 77.68 75.80 76.34 76.07 77.68 58.04 72.77
a− 83.89 91.67 73.33 77.78 62.78 66.67 75.00 72.22 87.22 69.44
a+ 89.47 80.32 83.51 77.66 78.30 78.19 76.28 78.72 52.45 73.4

g-mean 0.87 0.86 0.78 0.78 0.70 0.72 0.76 0.75 0.66 0.71
% TP 75.09 67.41 70.09 65.18 65.71 65.62 64.02 66.07 44.02 61.61
% FP 2.59 1.34 4.28 3.57 5.98 5.36 4.02 4.46 2.05 4.91
% TN 13.48 14.73 11.79 12.5 10.09 10.71 12.05 11.61 14.02 11.16
% FN 8.84 16.52 13.84 18.75 18.22 18.3 19.91 17.86 39.91 22.32

d
ep

a
rt

u
re

s

Acc 90.71 79.91 81.07 77.68 77.05 74.55 69.2 73.66 68.66 74.11
a− 78.97 84.62 78.46 82.05 62.05 64.10 61.54 64.10 71.8 66.67
a+ 93.19 78.92 81.62 76.76 80.22 76.76 70.81 75.68 68.00 75.68

g-mean 0.86 0.82 0.80 0.79 0.70 0.70 0.66 0.70 0.69 0.71
% TP 76.97 65.18 67.41 63.39 66.25 63.39 58.48 62.50 56.16 62.50
% FP 3.66 2.68 3.75 3.12 6.61 6.25 6.70 6.25 4.91 5.80
% TN 13.75 14.73 13.66 14.29 10.80 11.16 10.72 11.16 12.50 11.61
% FN 5.62 17.41 15.18 19.20 16.34 19.20 24.11 20.09 26.43 20.09

Table 3.1: Validation results for the ensemble SVM classifier (ESVM), compared to
the raw weather forecast (Fx)

through the weight in the training loss function, which places an explicit penalty on

misclassified blocked routes. This will be explored later in this section.

For completeness, we evaluate ESVM in the same way we evaluated the pixel-

based and route-based forecasts in Sections 2.2, and 2.5.3, respectively. That is, we

perform a direct comparison of ESVM against the raw route-based forecast (Fx) in

terms of CSI, POD, FAR, and Accuracy skill scores. Figure 3-7 shows the results,

with ESVM skill scores shown as solid lines, and Fx scores as dotted lines. The

data for ESVM comes from the average of five trained classifiers for both arrival and

departures, evaluated on the Data2008 dataset. Note that here the positive class is

reversed to match the initial discussion of skill scores in Section 2.2, and the positive

class are routes which are blocked/hazardous. We find that ESVM outperforms Fx

in terms of CSI and FAR for all time horizons. On the other hand, it under-performs

in terms of overall accuracy (except for at the 10-minute planning horizon). POD is

more complicated, as ESVM has higher (hence better) POD at the longer planning

horizons of 60-minutes and up. The discussion of Table 3.1 above explains these

results.
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Figure 3-7: Skill scores for the ESVM forecast of route blockage (solid lines), as
compared to the raw route-based weather forecast (dotted lines).

Now that we have seen the performance of ESVM for a fixed set of terminal-area

model parameters, we analyze its sensitivity to several of these parameters.

3.5.2 Sensitivity of classifier to inner radius RI

Several parameters of the terminal-area model were fixed in the previous section. We

now investigate the behavior of ESVM as two of these parameters vary in real-world

ways. Ideally, ESVM is not overly sensitive to any single model parameter.

We begin with an analysis of the sensitivity of ESVM to the inner radius RI . In

our terminal-area model, arriving aircraft begin their final merge, or the downwind

leg of their flight, upon crossing RI . As such, the specific characteristics of a given

airport (for instance, a longer downwind leg, or a final merge starting farther from

the airport) should determine the appropriate setting of the parameter RI .

To test classifier sensitivity to RI , we vary it between 10 km and 30 km in 5

km increments. This represents the range of realistic values of RI across airports.

Datasets are created for each value of RI (note that feature values will change with

RI), for all planning horizons, for both arrivals and departures, and with wiggle room
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Figure 3-8: Sensitivity of the ESVM classifier to RI , as measured in terms of accuracy
(left) and false positive rates (right).

B fixed at 8 km. The ESVM training process is run for each dataset, and the same

statistics as in Section 3.5.1 are calculated for the test set.

Figure 3-8 shows the effect that RI (varied from 10 to 30 km) has on accuracy

and false positive rates, for the case of arrivals at the 10-100 minute planning horizon.

The accuracy rates stay fairly consistent with increasing RI , although variability in

accuracy is greater at longer planning horizons. The false positive rates tend to

decrease with increasing RI , effectively giving better performance when routes are

shorter. We hypothesize that this is because shorter routes inherently have fewer

potential hazards to avoid, and because a larger diameter around the airport relaxes

the bottleneck for flow.

3.5.3 Sensitivity of classifier to wiggle room B

In this section we study the sensitivity of the classification results to the wiggle room

parameter, B. Although B was previously set to 8 km, it is an adjustable parameter

meant to represent the maneuverability that an aircraft is allowed without having to

change its (declared) planned route.

Figure 3-9 illustrates the effect of varying B between 0 km (no wiggle room al-

lowed) and 20 km on classification accuracy (gray) and false positive rates (blue). The

box plot end points represent the minima and maxima of the data, which includes

both arrivals and departures, and inner radius RI values of 10 and 20 km.

The results show that average accuracy rates tend to increase with B, while av-
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Figure 3-9: Box plot of sensitivity of the ESVM classifier to wiggle room B, as
measured in terms of accuracy (gray) and false positive rates (blue).

erage false positive rates tend to decrease with B. These trends can be explained as

follows: increased wiggle room for any given weather scenario makes it more likely

that the route will be open (and the classifier learns that increased maneuverability

makes routes more likely to persist), which decreases the number of potential false

positives. At the same time, the imbalance between open and blocked routes results in

increased accuracy when more routes are classified as open. The results show smaller

variance as B increases, since the wiggle room removes some of the randomness in

the spatial prediction.

It is worth noting that the improved classification performance with larger wiggle

room must be traded off against a diminished capability for fine-grained planning.

For example, a smaller wiggle room could take priority along an Area Navigation

(RNAV) route. In particular, RNAV has enabled the introduction of air traffic routes

along which aircraft are not constrained to fly from beacon to beacon. Instead, these

routes increase lateral freedom and allow aircraft to fly any route within a network of
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beacons. This has enabled performance-based navigation such as Required Navigation

Performance (RNP) routes, which require among other things that aircraft flying the

route calculate their 3D position to within k nautical miles of their true position. For

low values of k, it would be necessary to specify appropriately low values of wiggle

room B.

3.5.4 Results for Weighted Random Forest classifier

The performance of the WRF classifier is similar to that of ESVM, as it can learn

from the features of the weather forecast to predict blocked routes, thereby improving

recall over the raw weather forecast, but at a cost to overall accuracy. The detailed

classification metrics are omitted to avoid repetition (they are similar but inferior to

ESVM). However, we do explore the effect of the WRF weight parameter, which ex-

plicitly penalizes misidentified blocked routes, providing an illustration of the tradeoff

between FP rate and accuracy.

The direct control of this tradeoff is very useful in practice, as a decision maker

such as a traffic manager could use it to select an operating point, choosing between

higher accuracy on one hand, which would mean a more aggressive strategy and hence

higher throughput, and a lower false positive rate on the other, which would be a more

conservative strategy with a potential capacity loss.

Figure 3-10 depicts this relationship across four planning horizons, with RI , RO,

and B fixed at 10, 65, and 8 km, respectively. A diagonal trend is evident between

the FP rate and the accuracy rate of the WRF for each planning horizon. The label

on each point (where each point is the mean of 10 iterations) contains the weight

used in the training function. Points associated with a lower weight tend to be in

the top right (higher FP rate and accuracy), while points associated with a higher

weight tend to be in the bottom left (lower FP rate and accuracy), for each planning

horizon.

The figure also depicts the changes in accuracy and FP rates across the planning

horizons: at the shorter planning horizons, the classifier can attain higher accuracy

rates and lower FP rates (due to the greater reliability of the weather forecast), while
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Figure 3-10: Comparison of false positive and accuracy rates of WRF for each plan-
ning horizon, as a function of weight (penalty against false positives).

at the longer planning horizons, the absolute improvement in FP rate is greater, but

at a correspondingly larger cost to accuracy, than at shorter planning horizons.

Finally, Figure 3-10 depicts the FP and accuracy statistics for the raw weather

forecast (Fx, as defined in Section 3.5.1). These are denoted by circles, as a point

of comparison. At the 10-minute planning horizon, Fx dominates WRF , while the

situation is reversed by 100-minutes, when Fx is dominated by WRF at all values of

the weight. This reinforces the notion, also observed for ESVM , that the advantages

of classification are realized for planning horizons longer than 10-minutes and increase

with length of planning horizon.

3.5.5 Two more classifiers

Several additional classifiers were trained on the route blockage dataset, in order

to validate the results of ESVM and WRF , and compare with other, non-ensemble,
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classification methods. Since ESVM and WRF outperformed these methods in terms

of maximizing recall, we only include brief descriptions and summaries of results.

A Support Vector Machine (SVM) was trained using two types of datasets. The

first was a simple (imbalanced) partition of Data2007 into a training and test set.

The second took this training set and oversampled the minority (blocked) class to

produce a balanced training set. An SVM with an RBF kernal was trained on each

dataset using 5-fold cross-validation to optimize for recall. A separate classifier was

trained on many subsets of features, where feature combinations were selected based

on mutual information and by balancing different feature types (features related to

the weather grid such as theoretical capacity, and features related to the specific route

such as mean VIL along the route). However, both data sets resulted in classifiers

with very high FP rates (as compared to ESVM and WRF), though they also had

higher accuracy rates than Fx.

In addition, a decision tree was trained on an imbalanced data set. In order to

maximize the recall rate, a weighted loss function was used just like for the WRF.

Even with a high penalty for miss-classifying the blocked class, the resulting classifier

had very high FP rates. This method also posted higher accuracy rates than Fx.

Overall, all non-ensemble methods tested failed to effectively learn from the fea-

tures set to detect false positives.

3.6 Probabilistic prediction of route availability

Thus far we have evaluated the performance of the ESVM classifier in providing a

deterministic binary prediction of route blockage. The usefulness of this prediction

would be improved if it were probabilistic, as a probabilistic prediction of route block-

age would enable the selection of the most robust route through terminal airspace.

This section extends the binary classifier into a probabilistic one, and validates the

resulting predictions. Such a probabilistic forecast will then allow for the optimization

of terminal-area fixes and airspace structure, which will be described in Chapter 4.

The ESVM classifier has the following natural mapping into a probabilistic pre-

diction. The classifier consists of N (possibly dependent) ensemble members, each
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of which are trained to give a separate SVM prediction of route blockage based on

the features of a potential route. This binary prediction can be turned into a prob-

abilistic prediction using logistic regression; the logistic function f(z) = ez

1+ez is fit

to the decision values of the classifier using maximum likelihood (Hastie et al., 2003,

chap. 4.4). The e1071 package for R used in classification computes this automati-

cally (Dimitriadou et al., 2009), giving a set of N probabilities predicting blockage for

a given route. We set the ensemble prediction to the mean of these N probabilities.

This fusion strategy (equivalent to the sum of experts) was chosen in part because

it is a simple and effective fusion strategy that outputs a probability rather than a

binary value (Alkoot and Kittler, 1999). Moreover, the mean prediction was found to

behave similarly to the majority vote (the fusion strategy typically used in ensemble

methods, and used for ESVM). That is, the two fusion strategies disagreed on fewer

than 0.5% of datapoints, where a disagreement is defined as a case when the majority

vote predicts a route is blocked while the mean vote is larger than 0.5, or vice versa.

Let ESVM-P refer to the ensemble of SVM classifiers modified, as just described,

to give probabilistic predictions of route availability using the mean of individual

ensemble predictions. Figure 3-11 validates the resulting predictions of ESVM-P, by

comparing the prediction given by the classifier against the empirical fraction of open

routes, among those route that are given similar predictions.

More concretely, classifier predictions are divided into 20 bins of size 0.05 each.

The set of routes for a given set of parameters (terminal model parameters, flight

direction, and planning horizon) are then evaluated using ESVM-P, and each is given

a probability that the route will be available. The fraction of open routes in each

bin represents the empirical probability that a route will be open given its classifi-

cation probability. The confidence intervals in the figure represent the Agresti-Coull

confidence intervals corresponding to each fraction. The black trend line is a smooth-

ing of these empirical probabilities, performed by taking the average of each five-bin

window, weighted in proportion of the number of data points in each bin, exactly

as described in Section 3.2.1. This smoothed line represents the actual probability

that a route will be open, given the classification probability. The gray line is the
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Figure 3-11: Validation of classifier’s probabilistic prediction of route availability, for
departures at increasing planning horizons, compared to the calibration line x = y.

calibration line at x = y. Note that a classifier that were perfectly calibrated would

have a smoothed fit that matched this line.

At each time horizon in the figure, the smoothed probability line falls above the

calibration line, indicating that the classifier’s probabilistic estimate tends to be a

conservative estimate of true probability. This trend is shown for specific parameter

settings and departures here, but is representative of other values of the parameters,

and arrivals as well. The conservative nature of the fit can be explained by the classi-

fication training function. The training places more weight on avoiding false positives

than on accuracy (which is dominated by being correct on the open routes), thereby
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lowering the confidence on open routes. For this reason, we use the raw classifier

probabilities (corresponding to the x = y calibration line) to perform optimization

in the next section. It is important to note that any increasing fit of the probability

data points would give similar optimization results, and would typically differ only in

probability values.

Also noteworthy are the contrasting distributions of data seen in Figure 3-11,

indicated by the uneven and varying confidence interval lengths. At the shorter

planning horizons, the histogram data is concentrated at the last few bins. Since

there is less data (and larger confidence intervals) around the midpoint 0.50, this

indicates consensus in the prediction. In contrast, the longer planning horizon of

100-minutes (bottom right) has its shortest confidence intervals concentrated closer

to the 0.50 probability point, indicating the presence of lower confidence and lack of

consensus amongst the ensemble members, resulting in lower-probability predictions.

This trend is seen across a range of parameter settings, and could be explained by

the inverse relationship between forecast accuracy and planning horizon.

Having thus validated the probabilistic forecasts of route availability, we can refer

to ESVM-P as a model of route robustness, because it gives a measure of which

routes are likely to withstand uncertainties in the weather forecast and ultimately be

open in the weather that materializes.

3.7 Conclusion

This chapter used techniques from machine learning to develop a model of route

robustness. The model predicts, given the weather forecast, the probability that a

route through terminal airspace will be open.

The chapter began with the introduction of eleven features of the weather fore-

cast that were identified for their potential to predict route blockage. The individual

features were shown to give reasonable (binary) predictions of blockage using the

empirical conditional probability of blockage given the feature value, and were also

evaluated using mutual information. They were next combined and used to train

several classification algorithms, of which the the ensemble of SVM (ESVM) classifier
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outperformed the others in terms of maximum recall (a measure of how well the clas-

sifier performed on blocked examples), when tested against a set of actual weather

scenarios. In addition, ESVM was shown to outperform the raw CIWS weather fore-

cast in terms of recall. A tradeoff was demonstrated between the recall and accuracy

of the classifiers. In the final part of the chapter, the binary ESVM predictions were

mapped into probabilities, and the resulting prediction probabilities were validated

and shown to be conservative predictions of route blockage. That is, if the classifier

predicts that route r will be open with probability 0.8, we can expect that r will be

open at least 80% of the time.

Our approach to using weather forecasts to predict route blockage, and evaluating

the resulting classifier against actual weather, is an important first step towards the

realistic integration of weather forecasts with traffic flow management algorithms

and decision support tools. The remainder of the thesis builds on top of this route

robustness model, and introduces new models and algorithms with the potential to

increase airspace capacity, improve throughput, and reduce delays during adverse

weather conditions.
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Chapter 4

Dynamic Reconfiguration of

Terminal Airspace

In this chapter we incorporate the route robustness model developed in Chapters 3

into air traffic management decision making. We focus on the concept of Dynamic

Airspace Configuration (DAC), and investigate methods to make changes to terminal

airspace structure in the presence of uncertain weather conditions, with the goal of

increasing airspace capacity.

The central questions investigated are: given a weather forecast, how can the

terminal-area be restructured to minimize disruptions to scheduled airspace usage?,

and 2) can minor adjustments be made to existing airspace structure (for instance,

by moving an airspace route or sector boundary) in order to avoid or mitigate the

effects of blocked airspace?

This chapter is organized as follows. We begin by motivating the operational

concept of adaptable airspace, and describe key differences, in terms of goals and

constraints, between enroute and terminal DAC. Next, we introduce and evaluate

an algorithm for optimally placing terminal fixes and routes, without making any

other changes to airspace structure. We build upon this model by gently relaxing

the boundaries of terminal sectors, and develop an integer programming formulation

to select optimal fixes and routes, as well as sector boundary placements. All the

proposed algorithms are evaluated using real weather scenarios.
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4.1 Motivation for dynamic terminal airspace

As described in Chapter 1, Section 1.2.3, DAC algorithms strive to restructure the

NAS in ways that allow air traffic control to better manage aircraft flows. Although

past research has largely focused on enroute airspace in clear weather conditions, the

principle of better matching airspace structure to ambient conditions also has the

potential to benefit airport terminal-areas, which are the bottlenecks for NAS traffic

flow. In this section, we motivate the benefits of DAC in terminal airspace, and

describe the unique challenges that present themselves in the terminal setting.

4.1.1 Terminal airspace structure and air traffic constraints

Figure 4-1 shows the terminal airspace structure for ATL with and without traffic

overlaid. All traffic data is taken from the Enhanced Traffic Management System

(ETMS). Figure 4-1(a) depicts the terminal sectors and routes, with the four STARs

in green, and the corresponding waypoints indicated by green triangles. SID fixes

are indicated by red triangles. Airspace at ATL is shown to have a four corner

post configuration, as is typical of non-metroplex airports in which one airport is

the dominant player in surrounding airspace. That is, airspace is divided into four

arrival sectors alternating with four departure sectors, each containing an arrival or

(a) airspace structure (b) aircraft tracks

Figure 4-1: Terminal airspace structure for ATL, typical of other four corner-post
airports. c© Google 2010, Image U.S. Geological Survey, USDA Farm Service Agency.
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departure gate along with one or more fixes per gate. Note that each departure gate

contains four departure fixes. The TRACON boundary is approximately 75 km away

from the airport, although the STARs begin farther out than that, at about 100 km.

Figure 4-1(b) shows air traffic overlaid onto the airspace structure, and illustrates the

designed separation between arrivals (red) and departures (blue) in the outer section

of the terminal, and the merges that occur closer to ATL.

Although traffic is organized and well-structured during normal operating con-

ditions, the situation becomes much more complex when the terminal airspace is

affected by convective weather. Such scenarios are encountered, for example, when a

STAR is blocked by weather. The next section illustrates the discruptions to nominal

traffic patters during convective weather events.

4.1.2 Terminal airspace operations during convective weather

This section shows visualizations of traffic operations when the terminal airspace is

impacted by convective weather, and discusses the operational challenges and poten-

tial inefficiencies.

Figure 4-2 compares traffic patterns on a nominal day with clear weather condi-

tions against three separate scenarios in which blocks of airspace and waypoints along

standard routes are blocked by convective weather. Each visual contains a snapshot

of five minutes of traffic, with arrivals in red, departures in blue, and airspace fixes

as black diamonds. Each track contains a bubble at its final position to indicate the

direction of flight.

In Figure 4-2(a), traffic travels directly over terminal waypoints and strictly follows

the corresponding STARs and SIDs. Arrival traffic is present at each of the four

STARs and departure traffic uses all departure fixes. This changes in the three

weather-affected scenarios that follow.

In Figure 4-2(b) we see that both southern STARs are unused, even though the

southwest one is weather-free. This could be due to upstream weather in enroute

airspace not shown on the zoomed-in image, or could be due to forecast error which

had predicted greater impact on the southwest STAR. There are also substantial
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(a) nominal conditions on Jun 3 2008, 1600Z (b) storm on Jul 31 2008, 1900Z

(c) storm on Jul 13 2008, 1330Z (d) storm on Aug 26 2008, 1900Z

0 1 2 3 4 5 6

Figure 4-2: Comparison of air traffic flow near ATL during nominal and convective
weather conditions.

deviations along the northwest STAR, well into departure airspace, and there are

dramatic deviations of northbound departures.

Figure 4-2(c) shows similar behavior. The southwestern STAR has no traffic

although there is a gap in the weather in the adjacent airspace. The northwest STAR

has a steady stream of arrivals entering through a very narrow break in the weather.
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Departures are open in all directions, although northbound departures are deviating

around weather cells.

Finally, Figure 4-2(d) shows widespread holding of arrivals at the TRACON

boundary. The southwest fix in particular is interesting because the arrival route

is clear yet aircraft continue to hold. In contrast, the northeast STAR is in use de-

spite large weather cells nearby, causing aircraft to deviate through a narrow gap in

the weather, before entering the downwind leg phase of their approach. Departures

seem to be slowed down in all directions.

To improve our understanding of terminal air traffic operations during thunder-

storms, we interviewed several air traffic controllers in the United States and Europe.

Controllers mentioned that flight deviations are typically ad hoc and done on an

aircraft-by-aircraft basis. Specifically, an aircraft will follow its filed flight plan and

if the pilot sees a weather cell that looks hazardous, he/she will request a devia-

tion. ATC will respond by trying accommodate that deviation, and may suggest the

same deviation to later flights. During weather events when arrivals are in danger

of deviating, departure operations are often slowed down by the TRACON in or-

der to ensure separation (which may have to be temporal), and to limit controller

complexity. Appendix A contains details of the air traffic controller interviews.

In summary, despite rigid airspace and route structure, once an aircraft is in the

air with a filed flight plan, air traffic controllers do allow deviations around weather

cells when requested by pilots. In effect, the current operational environment already

has some flexibility in changing routes. Disruptions from nominal operations include

aircraft crossing into adjacent sectors, deviating from standard arrival and departure

routes, and holding when airspace is seemingly available. These disruptions increase

the complexity of air traffic control operations and are often accompanied by a de-

crease in airspace throughout. Clearly, there exist tactical opportunities to recover

capacity currently lost due to stormy conditions.
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4.1.3 Comparison of terminal and enroute Dynamic Airspace

Configuration

Although researchers have studied algorithms for increasing airspace capacity through

DAC, previous research has primarily focused on enroute airspace. In this section

we discuss the substantial differences in the constraints and objectives of a good

sectorization and airspace design, for enroute versus terminal airspace.

Typically, DAC algorithms for enroute airspace select a set of convex and con-

nected sectors which minimize controller complexity constraints (Delahaye and Puech-

morel, 2006; Yousefi, 2005; Basu et al., 2008). Aircraft flying through a given enroute

sector may cross in several different directions, and there may be several jetroute

intersections, sometimes merging more than two traffic flows.

In contrast, aircraft trajectories in the terminal-area are less complex in certain

ways. They can be modeled by line segments, without turns, from the terminal fix

to the airport (or vice versa in the case of departures), with all turning, merging,

and crossing confined to an inner circle very close to the airport. This simplifies

the convexity and connectivity constraints of the sectorization problem, and allows

airspace sectors to be constrained to pie slices.

Besides these inner merges, aircraft crossings are rarely allowed in the terminal-

area, and arrivals and departures are kept in separate airspace to minimize complexity

and maintain safety.

The typical enroute sectorization constraint of balanced workload between sectors

is not quite relevant for terminal airspace. During any given time interval (say, 30

minutes), there is an inherent imbalance of arriving and departing traffic in terminal

airspace, as a result of the banking of operations. This means that the load balancing

of controller workload among all sectors is not an objective (although it may be

desirable to spread the arrival demand across all arrival sectors). However, controller

workload is still an important factor in the terminal-area, and can be decreased, for

instance, by limiting the deviations from existing airspace structure.

A more appropriate objective for the terminal-area is that of meeting demand
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by (for example) expanding sectors when arrival demand is larger than departure

demand, or by moving sectors or routes during periods of weather activity. In the face

of weather, a predicted storm cell may render an entire sector (or more) impenetrable

by pilots, and it is desirable to mitigate the complexity and capacity hit of such

situations.

The remainder of this chapter focuses on algorithms for terminal DAC which

consider these unique constraints and objectives of terminal airspace.

4.2 Terminal-area DAC model setup

Motivated by existing inefficiencies in air traffic operations, there are several ways in

which the terminal airspace can be restructured to optimize capacity in the presence

of hazardous weather, with varying degrees of complexity:

1 move standard routes and corresponding fixes, keeping sector boundaries fixed,

2 move standard routes, corresponding fixes, and allow for renegotiation of sector

boundaries, and

3 design airspace from scratch.

These strategies are ordered in terms of increasing changes to existing operations,

and hence increasing complexity to traffic controllers (as compared to current prac-

tice).

In this chapter we begin with approach 1 and study the potential benefits of

even a small amount of operational flexibility. We fix all sector boundaries and

move fix locations and corresponding routes within each sector so as to minimize

the probability that each route is blocked by hazardous weather. Keeping the sector

boundaries fixed limits the additional complexity and air traffic controller workload

that arise from redefining sector boundaries. Approach 2 is explored later in this

chapter, and Approach 3 is studied in Chapter 5.

4.2.1 Terminal airspace sectorization model

This section introduces the terminal-area model used in this chapter, which is based

on the one used for the route blockage model in earlier chapters.
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Consider the model depicted in Figure 4-3, which represents the terminal airspace

T using two concentric circles, as seen previously: an outer circle CO of radius RO, and

an inner circle CI of radius RI . CO represents the points at which arriving (departing)

aircraft enter (exit) the terminal airspace. The inner circle CI represents the points

at which aircraft start their final approach into the airport and perform any merges

or other maneuvers.

The dashed gray lines represent the division of T into a set S of m sectors, where

each s ∈ S contains a fix, whose position and direction (either arrival or departure)

are indicated by the placement of the gray arrow. The solid line in the southeast

arrival sector indicates the route that aircraft take from the outer fix to the airport,

in that particular sector. Note that these routes, as well as all sector boundaries, lie

along radii of the circle CO, and are of length RO − RI .

4.2.2 Route robustness model

We use the model of route robustness developed in Chapter 3 and finalized in Sec-

tion 3.6 as an input to the terminal DAC algorithms. Thus, for a route r through the

terminal airspace, we have a probability p̂r that the route will be open (with some

wiggle room) when the actual weather materializes.
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Figure 4-3: Model of terminal airspace with standard sectors and fixes
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4.3 Model 1: Dynamic terminal routes

In this section, we consider the problem of selecting one route and outer fix for

each sector in terminal airspace at tactical planning horizons, while keeping sector

boundaries fixed. The goal is to select routes which will be flyable by pilots in actual

weather conditions.

The setup in Section 4.2 gives rise to a natural and simple algorithm for moving

terminal routes and associated fixes in the face of disruptions from convective weather:

select the maximum probability route and associated fix for each sector. We next give

details of this approach and analyze operational gains.

4.3.1 Algorithm Description

Consider the following algorithm, which given a planning horizon t0 and a weather

scenario, selects terminal routes and fixes within each sector independently:

For each sector s:

1. Generate a set of potential routes and corresponding fixes by sampling straight-line

routes at incrementally increasing angles from the airport. Each potential route

begins at RI and ends at RO; the intersection of the route with CO defines the

associated fix.

2. For each potential route r, evaluate p̂r, the probability that r will be open given

the weather scenario, planning horizon t0, and route direction (either arrival or

departure, depending on s).

3. Output the route r∗ with maximum probability of being open (as long as the

probability exceeds 0.50). Ties are broken by picking the route that is closest to

the standard route. If all probabilities corresponding to a given sector are less

than 0.50, declare s blocked.

The algorithm is depicted visually for one departure sector in Figure 4-4. As

shown, the SID route and corresponding standard departure fix may be replaced by a

route and associated fix that is more likely to be open, chosen from a set of potential

fixes.
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Figure 4-4: Selection of an optimal route and associated fix for one sector, as a
function of the weather forecast and standard fix location.

Since sectors are optimized independently, and since there is an implicit B km of

wiggle room in the actual route (and fix) flown, the algorithm as described does not

necessarily maintain separation between adjacent routes. To ensure strict separation

of at least 2B km, it is necessary to simultaneously solve across all sectors. Further-

more, the perturbed routes may violate sector boundaries, especially for larger values

of B. However, these violations are rare in our experiments; there were no violations

of route separation, and a single boundary crossing violation of under 1 km, among

the 224 cases studied in the next section. For simplicity we do not consider them

further.

4.3.2 Algorithm Analysis

The route movement algorithm was tested on the Data2008 dataset consisting of 28

weather scenarios. The parameters were set to B = 8 km, RI = 20 km and RO = 100

km, and the route robustness classifiers were trained on the independent dataset

Data2007.

Table 4.1 shows the overall performance of the algorithm for varying planning

horizons, and for arrival and departure sectors. Each row corresponds to one plan-

ning horizon and direction combination, and represents 112 data points (28 weather

scenarios, each with 4 sectors per flight direction). The computed metrics reflect the

effectiveness and trade-offs of the dynamic fix movement algorithm.

The first metric reported, movements, refers to the percentage of fixes moved,
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move- fix classified fix blocked given potential avoid- avoided
t0 ments blocked classified blocked able blockage blockage

(min) (%) (%) (%) (%) (%)
ar

ri
va

ls
10 21 18 50 75 60
30 20 18 55 55 35
60 19 22 32 48 36
90 32 24 30 44 37
100 34 36 23 48 40

d
ep

ar
tu

re
s 10 22 21 43 65 61

30 29 26 34 59 48
60 34 32 25 72 64
90 36 32 25 58 56
100 48 40 24 51 42

Table 4.1: Overall results for dynamic route and fix movement algorithm.

and gives a measure of how often the algorithm recommends an alternate fix. This

number increases with planning horizon, and tends to be larger for departures than

for arrivals. Note that when we refer to a fix (movement, blockage, etc), we are

implicitly referring to the fix and associated route. We use this convention during the

remainder of this analysis, for simplicity.

The second metric, classified fix blockages, refers to the percentage of (original)

fixes for which the classifier predicted blockage. This number increases with increasing

planning horizon. Of course, a predicted fix blockage does not necessarily mean the

fix will actually be blocked, and this situation is captured in the next metric, the

percentage of actual blocked fixes given that the fix is predicted to be blocked. Here

we find that the longer planning horizons are accompanied by lower values, indicating

that the classifier’s prediction is less accurate at longer planning horizons.

Potential avoidable blockage shows the percentage of predicted-blocked fixes for

which the algorithm recommends an optimal fix (which is predicted to be open). We

find that at shorter planning horizons, the potential to avoid blockages is predicted

to be greatest, staying well above 50%, meaning that the algorithm gives an alternate

routing possibility more than half the time.

Finally, avoided blockage refers to the percentage of predicted-blocked fixes for
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which the optimal fix recommended by the algorithm is open in actual weather. This

number tends to decrease with planning horizon, and tends to be higher for departures

than arrivals. The gap between the last two columns gives a measure of accuracy on

predicted-blocked routes, though it does not distinguish between fixes assigned a 0.90

probability of being open and those with 0.60 probability. Clearly the accuracy should

depend on these probabilities, and we explore this correlation later.

Table 4.2 provides a closer look at the standard routes and associated fixes that are

moved to some optimal route and fix by the algorithm. When a route is moved, there

are four possible outcomes: the original route and the optimal route are both open in

the observed weather (Open/Open), both are blocked (Blocked/Blocked), the original

route is blocked while the optimal is open (Blocked/Open), or the original route is

open while the optimal is blocked (Open/Blocked). Ideally, we’d like to minimize

Blocked/Blocked and Open/Blocked, the cases where the algorithm recommends an

unavailable route.

The table indicates several trends. First, Open/Open accounts for more than

63% of route movements across all categories, while Open/Open and Blocked/Open

together account for more than 76% of movements, indicating that the optimal route

is usually likely to be at least as good as the original. A movement of a route that

turns out to be open may seem undesirable, but since the confidence in the optimal

original / optimal
t0 number of Open/ Blocked/ Open/ Blocked/

(min) movements Open Open Blocked Blocked

ar
ri

va
ls

10 24 15 4 0 5
30 22 16 2 0 4
60 21 16 0 2 3
90 36 31 1 0 4
100 38 33 0 0 5

d
ep

ar
tu

re
s 10 25 18 6 1 0

30 32 25 3 4 0
60 38 31 3 2 2
90 40 33 3 4 0
100 54 47 2 3 2

Table 4.2: Analysis of route movements.
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route and associated fix is greater than the original (it is associated with a higher

probability of being open), the optimal route is the more conservative choice and has

higher expected capacity.

There are very few data points in the other three categories, indicating possibly

large sampling error, so we only perform modest analysis of these cases. At the 10-

minute planning horizon for both arrivals and departures, it is a good decision to

move the route, which is consistent with the short-term accuracy of the pixel-based

forecast. Thus, tactical decisions to move fixes can be relied on, although more care

and validation must be pursued at longer and more strategic planning horizons.

Table 4.3 shows algorithm performance as a function of classifier prediction prob-

ability p̂, and provides a validation of the probability estimates associated with each

route and fix movement recommendation. Each column lists, for a set of input pa-

rameters and for a range of values of p̂, the empirical percentage of optimal fixes

that were open in actual weather.1 For instance, for arrivals at a 90-minute planning

horizon, among those optimal fixes (corresponding to actual weather scenarios) that

were predicted to be open by the classifier with probability between 0.95 and 1.00,

1Note that the data points represented by Table 4.3 are not just those from Table 4.2, but include
the recommended route from all sectors for which the algorithm finds an open route (all routes r

such that p̂r > 0.5).

t0 % open given % open given % open given
(min) p̂ ∈ (0.95, 1.00] p̂ ∈ (0.75, 0.95] p̂ ∈ (0.50, 0.75]

ar
ri

va
ls

10 97.92 - -
30 94.38 - -
60 - 91.46 -
90 96.30 88.90 -
100 - - 95.35

d
ep

ar
tu

re
s 10 96.00 - -
30 97.53 - -
60 98.11 87.50 -
90 91.05 88.46 -
100 - 92.31 88.24

Table 4.3: Dynamic route movement as a function of the predicted probability of
being open, p̂.

97



96.30% of them were open in the actual weather that materialized. Blank entries

correspond to cells with fewer than 13 data points, which were removed to eliminate

cells with sample variance over 0.05.

As was noted in Section 3.6, the longer the forecast planning horizon, the lower

the likelihood of high-probability predictions from the classifier. This explains the

uneven distribution of data points among the three probability levels studied. The

table shows that the percentage of open routes tends to stay within the predicted

percentage when there are enough data points. This means that decision-makers can

be more confident in fixes that have a high probability of being open. The table also

shows that the validation is less accurate with increased planning horizon and with

decreased probability interval, as expected based on the classification results.

Thus, the predicted probabilities correlate well with actual rates of route avail-

ability, and can be used to inform route movement decisions in marginal weather

conditions.

4.3.3 Stability of route selection

In the fix relocation algorithm as described, all recommended route movements and

associated fixes are designed for aircraft that begin their flight through the terminal

at a specific time t. The algorithm is dynamic in the sense that changing weather

conditions are incorporated into that specific journey through the terminal. However,

as a weather scenario evolves, the same fix will not necessarily be optimal (or robust)

for flights that enter the terminal later, say, at t + 20.

In practice, it is necessary to decide when to initiate a dynamic fix movement,

and to understand the frequency and scale of any subsequent adjustments as weather

evolves. This section introduces a dynamic variant of the fix relocation algorithm

(DYN from now on), which allows us to analyze the stability of route recommenda-

tions.

Given a weather scenario with starting time t, planning horizon t0, and fixed

parameter settings as before, we run the algorithm presented in Section 4.3 for times

t, t + 5, . . . , t + 55, using the planning horizon t0 in each iteration. Let the i’th time

98



period be denoted by Ti. We break any ties among potential optimal routes during

period Ti by selecting the route closest to the optimum from period Ti−1. The first

time period uses the standard fix as a tie breaker, as in the original algorithm.

For each sector s, let p̂∗i (s) be the probability (from the route robustness model)

that the optimal fix for sector s is open in period Ti. Let Di(s) be the displacement

in degrees of this optimal fix (in period Ti) from the optimal fix in the previous time

period, Ti−1. Let n be the number of data points (sectors optimized). We run DYN

for all Data2008 weather scenarios (n = 224), with parameters set to t0 = 60 minutes,

B = 8 km, RI = 20 km, and RO = 100 km.

Figure 4-5 shows the fix locations and associated routes recommended by DYN for

one departure sector, as a weather scenario evolves over six consecutive periods (i.e.,

30 minutes). The top row contains the (dynamic) weather forecast, with the route

and fix from the previous time-period in magenta, and the new recommended optimal

route and fix in blue. The bottom row contains the actual weather corresponding to

each time period, as well as the perturbed route closest to the optimal, in blue. This

perturbed route is not necessarily a straight line, and merely indicates feasibility by

avoiding weather hazards. In other words, the leftmost images correspond to the

route and fix location (in blue) assigned to flights that arrive in the first 5 minutes
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Figure 4-5: Example of dynamic route movement for six consecutive time periods.
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of the scenario, the images immediately to the right of that correspond to the fix

location and routes for flights that arrive in the next 5 minutes, and so on.

This scenario is illustrative of the typical behavior of a given sector. The first

recommended movement (or the first movement after a fix blockage) is the largest,

and subsequent movements are much smaller (or nonexistent). To understand the

stability of routes under the algorithm more deeply, we next analyze results for the

entire dataset.

Table 4.4 summarizes the behavior of DYN between two (arbitrarily chosen) con-

secutive periods, showing how recommended fixes tend to evolve with weather. Of

note are the results for high and low-probability fixes. For a sector whose optimal

route has probability over 0.95 (which accounts for 74% of all sectors), the optimal

route for the next time period is open 99.4% of the time, and averages a movement of

1.2 degrees (equivalent to 2.4 km at the outer circle). Furthermore, a blocked sector

(in which p̂∗ < 0.5, accounting for 12% of all points) remains blocked 86% of the time

during the next time period, and in the case that it opens up, the corresponding route

movement averages to 14 degrees. As was demonstrated in the visual example, this

confirms that displacements tend to be few and small in most cases, and grow larger

after a blockage.

Since consecutive time periods are not expected to be independent (fast-moving

storms are likely to be accompanied by more or larger route movements during all

12 time periods), Table 4.4 does not paint the whole picture. Across all twelve time

periods, the average sector is blocked for 1.4 periods, and contains 2.4 fix movements.

predicted probability % of time sector mean std. dev.
of optimal fix in T6: n is predicted µ(D7) σ(D7)

p̂∗6 (%) blocked in T7 (deg) (deg)

0.95 < p̂∗6 74 0.6 1.2 4.2
0.90 < p̂∗6 <= 0.95 6 7.7 2.3 6.9
0.50 < p̂∗6 <= 0.90 8 15.8 7.8 14.3

p̂∗6 <= 0.50 12 85.2 14.0 16.0

Table 4.4: Stability of route movements between consecutive time periods T6 and T7.
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The average movement size across all fix movements (including the first time period)

is 9.5 degrees, equivalent to 16.6 km at the outer terminal boundary CO. Thus we

can conclude that over a typical 1-hour period, fixes tend to remain open, especially

once a high-probability fix is identified.

In summary, the dynamic approach to moving routes during convective weather is

applicable to TRACON operations for non-metroplex airports, which have the type

of simple arrival and departure routes studied. Moving fixes during severe weather

scenarios has the potential to increase terminal capacity and to improve controller

workload as far as dealing with pilot deviations, since target fixes are more likely to

be flyable.

4.4 Model 2: Dynamic terminal routes with rene-

gotiation of sector boundaries

The previous section considered the problem of improving air traffic operations by

making dynamic changes to standard terminal routes and fixes when the standard

structure is likely to be affected by convective weather. In this section, we build upon

the previous approach and consider the additional benefits when we allow for gentle

changes to sector boundaries in addition to dynamic changes to standard routes and

fixes.

We first develop an integer programming formulation for the problem which as-

signs airspace sector boundaries, terminal routes, and fixes such that the selected

routes are predicted to be open during convective weather activity. The model also

limits deviations from existing airspace layout. We then apply the model to real

weather scenarios and analyze the results.

4.4.1 Integer programming formulation

The integer program (IP) essentially partitions the terminal airspace into pie slices

and assigns sector boundaries and routes to these slices, subject to constraints on

the maximum displacement from the original boundaries and the minimum distance
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between adjacent routes, as depicted in Figure 4-6. The IP strives to select routes

with high probability of being open (any route selected must be forecast to be open)

while at the same time limiting deviation from the original airspace layout.

Input

We start with terminal airspace T partitioned into n pie slices, each corresponding to

a potential route and associated fix (a route is an (undirected) line segment between

CI and CO, along a radius of RO). The set of these potential routes (and fixes) is

F := {1, . . . , n}, where the number n of potential routes should be chosen to be large

enough to provide many options (say, 360 for a terminal-area), but small enough so

that each route is at least 1 km wide at the outer boundary (the granularity of the

weather forecast). We are also given a set S := {1, . . . , m} of sectors.

Because the terminal-area is circular, route 1 is adjacent to route n geometrically

(distance is 1). To deal with this “wrap around” effect in the formulation, we intro-

duce an augmented set of n+ wedges F+ := {1, . . . , n+} ⊃ F , and an augmented set

of sectors S+ := {1, . . . , m + 1} ⊃ S. The number n+ of wedges must be at least n

plus the maximum number of wedges in a single sector.

The final input is a weather forecast for T corresponding to a specific date and
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Figure 4-6: Model of terminal airspace with standard sectors divided into wedges and
allowable range of sector boundary locations.
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planning horizon t0.

Parameters

The IP uses the following parameters:

For each s ∈ S and i ∈ F+, the weather forecast is given in terms of blockage

probability p̂si, the probability that i will be open in s. Note that arrival and departure

routes may have different likelihoods of blockage, so p̂si depends on the direction of

sector s.

For each s ∈ S and i ∈ F+, drte
s,i is the distance of wedge i to the original route

for sector s, while dsect
s,i is the distance of wedge i to the original boundary for sector

s. The boundary of sector s always refers to the clockwise-first boundary (or, the

boundary with minimum wedge number, mod n), so that sector s extends from its

boundary to the boundary of sector s + 1. All distances in this formulation are in

number of wedges.

Parameter K is the maximum displacement of a sector boundary, parameter L is

the minimum distance between any two routes, and M is a large constant. Finally,

the parameters α, β, γ, and λ are used to control the weight given to the various

objectives (discussed in Section 4.4.1).

Variables

variables are

xsi = 1 iff sector s is assigned wedge i

ysi = 1 iff the boundary of sector s is at wedge i

zs = 1 iff sector s is open

where s ∈ S+ and i ∈ F+.

Objective

Four main objectives are desirable in the sectorization of terminal airspace:

1 maximizing the probability that the selected terminal routes are open,

2 limiting the distance between the new sector boundaries and their default locations,

3 limiting the distance between the new routes and their default locations, and
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4 keeping each sector open if feasible.

These objectives can conflict with each other, since a high-probability route in

sector s may only be feasible (depending on the weather forecast) if the boundary

of sector s is moved clockwise, rendering sector s + 1 blocked (say, if all remaining

potential routes are blocked: p̂(s+1)i ≤ 0.5 ∀ i ∈ (s + 1)). Thus, we create a linear

combination of these objectives, and explore trade-offs in Section 4.4.2. The overall

objective function is therefore to minimize:

∑

s∈S

[
∑

i∈F+

α xsip̂si − β ysid
sect
s,i − λ xsid

rte
s,i ]− γ (1− zs) (4.1)

In (4.1), the parameter α is the weight given to the first objective, namely, maxi-

mizing the probability that the selected routes are open, β and λ are the penalties

for deviation from the default sector and route locations respectively, and γ is the

penalty for closing down a sector, along with its associated arrival or departure route.

Constraints

The first two constraints ensure that each sector has exactly one boundary, and that

a route is selected for each open sector, respectively.

∑

i∈F+

ysi = 1 ∀s ∈ S (4.2)

∑

i∈F+

xsi = zs ∀s ∈ S (4.3)

The next set of constraints ensure that an optimal route and associated fix f ∗ for

sector s is feasible for s: f ∗ is contained within s, and f ∗ is forecast open (p̂sf∗ ≥ 0.5).

∑

i∈F+

iysi ≤
∑

i∈F+

ixsi + M(1− zs) ∀s ∈ S (4.4)

∑

i∈F+

ixsi ≤
∑

i∈F+

iy(s+1)i ∀s ∈ S (4.5)

0.5zs ≤
∑

i∈F+

xsip̂si ∀s ∈ S (4.6)
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The next two constraints ensure that routes are at least L wedges apart, and that

sector boundaries are moved no more than K wedges from their default locations,

respectively.

L ≤
∑

i∈F+

ix(s+1)i −
∑

i∈F+

ixsi + M(1− zs+1) ∀s ∈ S (4.7)

∑

i∈F+

dsect
si ysi ≤ K ∀s ∈ S (4.8)

Finally, we have constraints to take care of the wrap around effect due to the

circular airspace structure by essentially setting sectors 1 and m + 1 to be equal. We

assume without loss of generality that sector 1 is always defined to have its boundary

at wedge K + 1, so that its boundary will be kept between 1 and 2K + 1 by the IP.

x(m+1)i = 0 ∀i ∈ {1, . . . , n} ⊆ F+ (4.9)

x(m+1)i = x1(i−n) ∀i ∈ {(n + 1), . . . , n+} ⊆ F+ (4.10)

y(m+1)i = 0 ∀i ∈ {1, . . . , n} ⊆ F+ (4.11)

y(m+1)i = y1(i−n) ∀i ∈ {(n + 1), . . . , n+} ⊆ F+ (4.12)

zm+1 = z1 (4.13)

Equations (4.9) and (4.10) assign sector (s+1) the same wedge (route) as sector 1

(mod n). Equations (4.11) and (4.12) assign sector (s + 1) the same sector boundary

as sector 1 (mod n). Finally, (4.13) ensures that sector (s + 1) is open iff sector 1 is

open.

4.4.2 Computation of model solution

The IP formulation was tested using data from the same Data2008 dataset as the

simpler model discussed in Section 4.3. The stochastic route robustness model was

calibrated for a terminal-area with RI = 20 km, RO = 100 km, and B = 8 km using

the independent Data2007 dataset.

Although the model presented is an integer program, which is NP-hard in general,
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the problem size can be kept small in practice, thus eliminating computational issues.

As defined, the IP has 2mn + m = O(mn) constraints and roughly 7m + 4 n
m

+ 1 =

O(m + m
n
) variables. In particular, when n = 360 and m = 8, the problem size

is roughly 5800 variables and 250 constraints. Despite the non-integrality of the

formulation (there exist non-integral optimal solutions to the LP relaxation), this

turns out to be easily solvable using CPLEX, which consistently solved the problem

in under 0.1 seconds on a 2.66GHz processor with 3.8GB of RAM, running 64-bit

Fedora 11.

Due to the nature of the multi-objective optimization, we next give a detailed

description of results for one setting of the objective function parameters. Afterwards,

we look at how the weightings of various objectives affect the sectorization results.

4.4.3 Analysis of results for fixed parameter settings

This section describes results of the model when (α, β, λ, γ) = (100, 1, 1, 1). This

parameter setting emphasizes the selection of a robust route (one with high probability

of being open), with small penalties for the displacement of routes and sectors from

their default positions, as well as a small penalty for a blocked sector.

Figure 4-7 shows diagrams of the sectorization found by the algorithm for two

weather scenarios. The magenta arrows correspond to the original (standard) terminal

routes (of the indicated direction) passing through the original fixes, while the blue

arrows correspond to the new, optimal routes and fixes. The purple arrows represent

overlap of magenta and blue, and indicate that the algorithm kept the original route

and fix in place.

The top scenario of Figure 4-7 corresponds to weather on July 13 2008 at 1930Z

with the forecast corresponding to a 60-minute planning horizon on the left, and actual

weather on the right. In this scenario, the algorithm does not move any sectors, but

does move fix ROME further away from weather activity, giving it a higher probability

of being open. Moreover, two sectors in the southwest are (correctly) declared blocked.

All other routes are kept in place, and it turns out these routes are open and clear of

convection.
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The bottom scenario corresponds to August 26 2008 at 1100Z, with the planning

horizon again set to 60 minutes. We see that the sector containing fix ROME is

predicted to be blocked. The algorithm makes a small sector boundary adjustment in

the northwest sector, illustrating its potential to open up routes and fixes that would

otherwise be blocked. The algorithm recommends a move of the sector boundary

which results in a route predicted to be open with probability 0.875. Fix CADIT is

then moved to the far side of its sector so as to maintain separation. In the observed

weather (on the right), this turns out to have been a good decision, as both the

new ROME and CADIT fixes (and corresponding routes) are open, while the original
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Figure 4-7: Sectorization results for two illustrative weather scenarios, one with a
sector boundary shift (bottom), and one without (top).
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t0 % route % sector route pred. route blocked potential avoided
(min) move- move- blocked given pred. avoidable blockage

ments ments (%) blocked (%) blockage (%) (%)
ar

ri
va

l 10 26 1 19 48 62 9
30 28 4 18 55 45 6
60 25 5 21 29 54 10
90 25 3 24 30 54 9

d
ep

ar
tu

re 10 24 7 21 42 74 15
30 33 7 26 31 65 15
60 37 4 32 22 71 20
90 34 4 31 23 55 15

Table 4.5: Overall results for terminal route and fix optimization with renegotiation
of sector boundaries.

ROME fix is blocked by a large weather cell.

Now that we have a sense of what the algorithm results look like, we concentrate

on aggregate results. Table 4.5 shows the overall performance of the algorithm for

varying planning horizons, and for arrival and departure sectors. Recall that in this

analysis the objective function parameters α, β, λ, and γ are fixed to 100, 1, 1, and

1, respectively. Each row corresponds to one planning horizon and direction (ar-

rival/departure) combination, and represents 112 data points (28 weather scenarios,

each with 4 sectors in the appropriate flight direction). The computed metrics reflect

the effectiveness and trade-offs of the optimization model.

The first metric reported, route movements, refers to the percentage of routes

(and corresponding fixes) moved and gives a measure of how often the algorithm

recommends an alternate route. This number tends to be larger for departures than

for arrivals, but shows little variance within each direction. The second metric, sector

movements, reports the percentage of instances (sector data points) for which a sector

boundary was moved. This value is small (under 7% across the board) for this setting

of parameters, reflecting the fact that sector movements only occur when there is a

large gain in route robustness.

The next metric, forecast route blockages, refers to the percentage of (original)

routes which were predicted to be blocked. This number increases with increasing
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planning horizon. Of course, a predicted route blockage does not necessarily mean the

route will be blocked once weather materializes, and this situation is captured in the

next metric, the percentage of actual blocked routes given that the route is forecast

to be blocked. Here we find that the longer planning horizons are accompanied by

lower values, reflecting the lower forecast accuracy at longer time horizons.

Potential avoidable blockage shows the percentage of predicted-blocked routes for

which the algorithm recommends an optimal route (which is predicted to be open).

We find that at shorter planning horizons, the potential to avoid blockages is predicted

to be greatest. The percentage of avoidable blockages is above 50% in all cases, except

for an outlier at arrivals with 30-minute planning horizon, meaning that the algorithm

gives an alternate routing possibility more than half the time.

The last column, avoided blockage, refers to the percentage of standard routes

(and associated fixes) which are predicted to be blocked and for which the algorithm

recommends an optimal route which is open in actual weather. It gives an estimate

of the potential increase in airspace capacity if the algorithm were implemented. We

note that these values are not monotonic in planning horizon. This is likely due to

the existence of a “sweet spot” at mid-level planning horizons. That is, at shorter

planning horizons the forecast is already quite good and not much can be gained from

optimization, while at longer planning horizons there is more error in predictions of

open routes by the algorithm (and probabilities of blockage for optimal routes tend

to be lower). The sweet spot is at planning horizons in between. Finally, note that

this table does not distinguish between routes assigned a 0.9 probability of being

open and those with 0.6 probability. The accuracy should clearly depend on these

probabilities, and this correlation is explored later, in Table 4.7.

Table 4.6 provides a closer look at the routes that are moved to some optimal

location by the algorithm. When a route (and its associated fix) is moved, there are

four possible outcomes: the original route and the optimal route are both open in the

observed weather (OO), both are blocked (BB), the original route is blocked while

the optimal is open (BO), or the original is open while the optimal is blocked (OB).

Ideally, we would want that the cases where the algorithm makes a mistake in moving
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# route Original / Optimal Open/Open +
t0 move- Open/ Blocked/ Open/ Blocked/ Blocked/Blocked

(min) ments Open Open Blocked Blocked (%)
ar

ri
va

l 10 29 18 6 0 5 83
30 31 23 4 0 4 87
60 28 22 1 2 3 82
90 28 22 1 2 3 82

d
ep

ar
tu

re 10 27 17 9 1 0 96
30 37 29 5 2 1 92
60 41 34 2 2 3 88
90 38 34 1 1 2 92

Table 4.6: Analysis of route movements for model 2.

a route, BB and OB, be few in number, while BO (especially) and OO be many.

The table indicates several trends. First, OO accounts for more than 62% of route

movements across all categories, while OO and BO together account for more than

82% of route movements, indicating that the optimal route is usually likely be at least

as good as the original. A movement of a route that turns out to be open may seem

undesirable, but the confidence in the optimal route and associated fix is greater than

the original, making it the more conservative and robust choice. There are very few

data points in the other three categories, indicating possibly large sampling error,

so we only perform modest analysis of these cases. Nevertheless, at the 10-minute

planning horizon for both arrivals and departures, and at the 30-minute horizon for

departures, it is a good decision to move the route. This is consistent with the

validation (in Chapter 2) of the short-term accuracy of 1 km × 1 km pixel-based

forecasts. Thus, tactical decisions to move routes can be relied on, although more

care and validation must be employed at longer and more strategic planning horizons.

Table 4.7 shows algorithm performance as a function of prediction probability.

The columns give the empirical percentage of open routes, given a range of blockage

probabilities (from the classifier) for those routes. The standard error is also reported

in parentheses. Blank entries correspond to cells with fewer than 10 data points,

which were removed to eliminate cells with standard error greater than 0.10.
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t0 % open given % open given % open given
(min) p̂ ∈ (0.95, 1.00] p̂ ∈ (0.75, 0.95] p̂ ∈ (0.50, 0.75]

ar
ri

va
l 10 99.03 (0.01) - -

30 95.96 (0.02) - -
60 91.67 (0.03) - -
90 100.00 (0.00) 89.47 (0.04) 84.62 (0.10)

d
ep

ar
tu

re 10 99.02 (0.01) - -
30 95.83 (0.02) 90.00 (0.09) -
60 95.29 (0.02) 93.75 (0.06) -
90 95.24 (0.03) 92.59 (0.05) -

Table 4.7: Dynamic route movement of model 2 as a function of the predicted prob-
ability of being open, p̂.

The uneven spread of data points among the three probability levels is an artifact

of the behavior of the underlying weather model, which is less likely to assign high-

probability predictions as the planning horizon increases. The table shows that the

percentage of open routes tends to stay within the predicted percentage when there

are enough data points. The table also shows that the validation is less accurate

with increased planning horizon and with decreased probability interval, as expected

based on the behavior of the weather forecast model. Thus, the predicted probabilities

correlate well with actual rates of route availability, and can be used to inform route

movement decisions in marginal weather conditions.

4.4.4 Analysis of results as objective function varies

This section discusses results of the optimization as the parameters in the objective

function vary.

Figure 4-8 shows how four key result statistics are affected as each of the four

objective function parameters is varied while the others are fixed. When fixed, pa-

rameters are set to values studied in Section 4.4.3: α = 100, and β = λ = γ = 1. The

results focus on departures at a 60-minute horizon, and all other model parameters

are unchanged from Section 4.4.3.

The figure shows that parameters α (preferring increases in route robustness prob-
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Figure 4-8: Sectorization results as a function of objective function parameters

ability) and λ (penalty on distance of route movement) have the largest effect on the

percentage of route movements (top left), the percentage of sector boundary move-

ments (bottom left), and percentage of potential avoided blockages (bottom right).

These parameters often work against each other, and a clear trade-off in results is

evident in the plots.

In contrast, as γ increases, there is a very modest effect of under 3% on these

first three statistics. This can be explained by the relatively small number of total

sector boundary movements available – when a route is moved, there is often a high-

probability route within the original sector boundaries, making a boundary movement

unnecessary. The penalty β on the distance of a sector boundary movement also shows

modest effects on these three statistics, for similar reasons.

The top-right plot shows average increase in probability for a route movement,

which is surprisingly invariable to the four parameter values. Low values of α show

the largest effect, but in general this statistic stays around 0.45. This indicates that

when a route is moved, on average there is a high gain in robustness. We note that

the lack of variability in this plot could be due to the choice of the fixed parameters.
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Overall, we see that the parameters have expected results in key result statistics,

and decision-makers can tune these to reflect their preferences.

4.5 Conclusion

This chapter has focused on the development and evaluation of two models for making

dynamic changes to terminal airspace structure in order to improve throughput dur-

ing thunderstorms. Both the simple initial model, which limited structural changes

to moving the standard terminal arrival and departure routes, as well as the more so-

phisticated integer programming model, which made changes to sector boundaries as

well as standard routes, were shown to have the potential to avoid periods of standard

route blockage and to improve the robustness of the terminal structure.

An interesting follow-on problem is to investigate the benefits of sectorization

“from scratch”, similar in spirit to research performed for enroute airspace, where the

current sectors are typically not considered as constraints. Furthermore, the models

as presented have not considered arrival and departure demand, which certainly has

bearing on which routes are more important for traffic managers to keep open. Mod-

eling these could lead to a more complete understanding of how much weather-related

delay is avoidable. The next chapter takes the ideas and successes of the models pre-

sented, and develops realistic 3D route recommendations given the forecast outlook

and demand for airspace.
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Chapter 5

3D routing in terminal airspace

Previous chapters modeled aircraft trajectories in two dimensions and made several

assumptions about the structure of routes, including the assumptions that routes are

straight and angled incident to the airport.

In this chapter we model more realistic aircraft, airport, and traffic control con-

straints and develop algorithms for identifying three dimensional (3D) routes through

terminal airspace. The modeling in this chapter is a culmination of previous work,

and captures (directional) airspace demand, aircraft dynamics (including turn angle,

climb and descent rates, route smoothness, and route length), 3D deconfliction of

arrival and departure routes, avoidance of obstacles in 3D (including other airports

in a metroplex), and weather forecasts.

We begin by considering the problem of designing airspace routes with the listed

constraints, but without accounting for weather. In other words, we consider the

problem of designing terminal airspace from scratch. We develop a facility location-

based integer programming formulation for the problem of selecting distance-optimal

airspace fixes. These fixes are aligned with the traffic flowing in and out of the airport.

We then describe a modified A* algorithm which identifies 3D routes between fix-

runway pairs subject to the constraints listed. We discuss experimental results for

the Chicago airspace.

In the second half of the chapter, we move to the context of tactical planning

up to 90 minutes ahead of inclement weather and consider the problem of designing
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3D conflict-free routes that are likely to be robust to inaccuracies in the weather

forecast, taking into account the same set of constraints. We build upon previous

chapters by incorporating the route robustness model with the A* algorithm to yield

more realistic route recommendations. The result is a proof-of-concept illustration of

how robust 3D routes through convective weather may be determined.

5.1 Constraints for realistic terminal airspace tra-

jectories

In this section we list the high-level characteristics and constraints that describe stan-

dard routes through terminal airspace. These constraints fall into two categories: air-

craft constraints which are specific to individual aircraft, and the external constraints

necessarily for safe and environmentally-friendly air traffic operations.

The aircraft-specific constraints are:

1. 3D routes must take into account the fleet mix and its corresponding range of

ascent and descent rates.

2. Runway choice for an aircraft depends on landing equipment, aircraft size, and

weight; not all aircraft can be assigned to a given runway.

3. Routes must be fairly “smooth” and have few turns.

The external constraints include:

4. Vertical and horizontal flow separation.

5. Noise restrictions in the form of vertical minima over cities or neighborhoods.

6. Runway capacities.

7. Existence of a downwind leg buffer for merging.

Note that several of the above constraints are actually more like objectives rather

than true constraints. For example, a route with one turn has better ride quality

than a route with two, but the number of turns is not a physical limitation of the

aircraft. Several other constraints are unspecific only because the details can vary.

For example, in today’s airspace aircraft are separated vertically by 1000 feet, and

horizontally by 2.5 nmi in the TRACON. However, this depends on radar accuracy,
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and the requirements are likely to change with the future adoption of RNAV and

other technologies. Specifics will be detailed later in the chapter when algorithm

parameters are set.

Now that we have described the high-level constraints of realistic airspace design,

we introduce the problem of designing terminal airspace structure and routes subject

to these requirements.

5.2 Blank slate design of terminal airspace

Currently, STAR and SID routes are designed manually based on the airport layout,

existing Navaid infrastructure, nearby constraints (including cities and other airports)

and expected traffic patterns. This is a continuing process that is adjusted over time

in a gradual, ad hoc manner. In this section we consider the problem of automatically

designing conflict-free terminal airspace routes from scratch.

This direction of research could support the development of new or dynamic

3D airspace routes, which is a goal of research for the NextGen and SESAR pro-

grams for modernizing airspace. In particular, it fits within the NextGen concepts

of Trajectory-Based Operations (TBO) and dynamic resource and airspace manage-

ment (Joint Planning and Development Office, 2007). TBO would change the current

management of high-density airspace into a system in which exact knowledge of air-

craft positions could increase opportunities for controllers to improve throughput (by

decreasing separation, adding more routes to airspace, etc.). The concept of dynamic

resource management would allow for entire airspace flows to change dynamically in

the face of changing demand and weather conditions. This would be made possible

by improved Flight Management Systems (FMS) which could follow exact 4D routes.

Understanding the design of terminal routes and generating those automatically based

on demand and conditions could be a step towards achieving these goals.

5.2.1 Previous Research

The problem of designing conflict-free trajectories for a set of flights has been stud-

ied in the research literature. Researchers have focused on the problem of solving
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conflicts in air traffic in 4 dimensions (3D + time) and in enroute airspace. The prob-

lem has been found to be extremely computationally intensive, and most research

uses meta-heuristics to tackle the problem. Approaches have included genetic algo-

rithms (Durand et al., 1996), ant colony optimization (Durand and Alliot, 2009), and

more recently an approach based on light propagation (Dougui et al., 2010).

These approaches have modeled some of the constraints listed, including vertical

and horizontal flow separation as well as aspects of the physics of flight. However, our

focus is flow-based separation for a range of altitude profiles rather than time based

separation for individual aircraft. This is more relevant for terminal airspace, which

is extremely high density while having relatively simple flows which converge at the

airport.

5.2.2 Problem Statement

Given a terminal airspace region, a set of airport locations, and demand for airspace,

the goal is to design a set of 3D routes through airspace (from the TRACON boundary

to the runway) which adhere to airspace and controller constraints (1-7) while being

optimal in some sense. In our application, we focus on demand-weighted distance

optimality, i.e., that the total distance traveled by all aircraft should be minimized.

5.2.3 Solution Approach

The problem as described does not assume any structure on the outer fixes, the

points at which aircraft are handed off between the TRACON and center. If we were

to assume that these outer fixes are given (say, as the standard STAR and SID fixes),

the subsequent problem of designing 3D conflict-free routes subject to constraints (1-

7) would be computationally hard. If the state space were discretized and there were

no separation or smoothness constraints, it could be modeled as a multicommodity

flow, which is NP-hard to solve. However, with the addition of altitude profiles, the

problem can no longer be readily modeled as a traditional network flow. This is one

reason that meta-heuristics have been used to tackle related problems in previous

research.
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For these reasons, we separate the problem of selecting optimal outer fixes from the

problem of identifying terminal routes through airspace, and solve the two problems

sequentially. First, we model the optimal outer fix placement problem and determine

placements using an integer programming model. Second, given these fix placements,

we identify terminal routes sequentially using airspace demand as input, with a mod-

ified A* algorithm. These methods are described in the following two sections, and

results for Chicago airspace are discussed later in the chapter.

5.2.4 IP formulation for selection of optimal terminal fixes

Given terminal-area demand in the form of a set of O-D pairs, we model the prob-

lem of selecting optimal outer fixes for an airport A as a facility location problem.

Specifically, we open two types of facilities: arrival fixes and departure fixes, and

assign demand to each facility so as to minimize the demand-weighted distance trav-

eled. The model aims to align the outer fix positions with major flow directions,

under the assumption that the great-circle distance route can be flown from origin to

destination.

The linear integer programming formulation, illustrated in Figure 5-1, is as follows.

Consider a circle CO which defines the outer boundary of the TRACON for airport

A. Partition the terminal boundary into n segments, each of which is a potential fix

location with an associated nonnegative demand (for both arrivals and departures).

For each flight between airports A and B, there is a unit demand point at the node

closest to the intersection of CO with the great-circle A−B route. The problem is to

select a subset of m fixes of each flight direction so as to minimize the total distance of

deviations flights make from their great-circle route when flying into or out of airport

A. To ensure separation of flows we add a constraint on the minimum distance L

between each pair of arrival and departure fixes.

More formally, let N = {1, 2, . . . , n} be a set of nodes. Demand from some

direction d ∈ D originates from each node j ∈ N , and is denoted by bd
j , where D :=

{arr, dep} (in this application there are two direction types: arrival and departures).

There is a set of potential fixes F , and each i ∈ F can be “opened” as either an
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Figure 5-1: Diagram of demand-based optimal outer fix selection model

arrival or departure fix.

Let the cost of assigning a potential demand point bd
j to fix i ∈ F be cd

ij. This cost

is equal to the demand bd
j times the distance between j ∈ N and potential fix i ∈ F ,

and is denoted by sij.

The variables are:

yd
i = 1 iff fix i ∈ F is open for direction d ∈ D

xd
ij = 1 iff demand j ∈ N of direction d ∈ D is assigned to fix i ∈ F

The formulation is:

min
∑

d∈D,i∈F,j∈N

cd
ijx

d
ij (5.1)

s.t.
∑

i∈F

xd
ij = 1 ∀j ∈ N, ∀d ∈ D (5.2)

∑

i∈F

yd
i ≤ m ∀d ∈ D (5.3)

∑

j∈N

xd
ij ≤Myd

i ∀i ∈ F, ∀d ∈ D (5.4)

M(2− yarr
i1 − ydep

i2
) + si1i2(y

arr
i1 + ydep

i2
) ≥ 2L ∀i1, i2 ∈ F (5.5)
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The objective function Equation 5.1 is simply the total cost (distance flown) by

aircraft. Note that other objectives could be incorporated into this cost function,

including wind-optimal routes which reflect average wind conditions, and distance-

optimal routes between standard jet routes rather than origin airport.

Equation 5.2 assigns each demand point to exactly one fix of the appropriate

direction. Equation 5.3 bounds the number of fixes selected for each direction by m.

In a more general setting, m can be replaced by a separate md for each direction

d ∈ D. Equation 5.4 ensures that each demand point of a given direction is assigned

to an open fix of the same direction; if any demand of direction d is assigned to fix i,

then fix i must be open. Finally, Equation 5.5 separates the two fix types by at least

L km, and in particular ensures that arrivals and departures are not assigned to the

same fix. M is a large constant.

Once we have selected a set of optimal outer fixes, we use them as input to the

conflict-free trajectory generation algorithm, described next.

5.2.5 A∗–1: algorithm for 3D conflict-free route identification

This section describes the standard A* algorithm and introduces modifications nec-

essary for our application.

Given a graph G = (N, A) with nodes N , arcs A, and arc costs ca ≥ 0 ∀a ∈ A,

Dijkstra’s shortest path algorithm finds the shortest-length path from a given source

s ∈ A to a given sink t ∈ A, in time O(|N |2) (Ahuja et al., 1993). Nodes are expanded

one by one, where the node x ∈ N with the lowest cost d(s, x) from the source is

selected at the start of each iteration, out of all unexamined nodes.

The A* algorithm builds on this base algorithm and introduces a cost-to-go heuris-

tic that tends to decrease the number of nodes that are examined in practice, although

the theoretical run time does not change (Hart et al., 1968; Dechter and Pearl, 1985).

This cost-to-go h(x) from node x ∈ N to the sink t must be a lower bound on the

cost of the actual shortest x− t path. Nodes are expanded one at a time as in Dijk-

stra’s algorithm, but the node chosen at each iteration is the node x with minimum

f(x) := d(s, x) + h(x), the lowest combined distance from the source and estimated
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cost-to-go. This has been proven to give an admissible s− x path at each iteration,

yielding a shortest s − t path upon algorithm completion. If the cost-to-go is cho-

sen well, A* tends to be very fast in practice. Algorithm 1 has pseudocode for the

basic A* algorithm. Subprocedures are described with more detailed pseudocode in

Appendix B.2.

Algorithm 1 Find 3D Route

procedure A*(s, t) ⊲ source and sink node, plus network parameters
CLOSED ← ∅
OPEN ← {s}
f [s]←heuristicDistanceToSink(s)
while OPEN 6= ∅ do

x ← argminy∈OPENf [y]
OPEN ← OPEN\{x}
CLOSED ← CLOSED ∪ {x}
if x == t then

return RECONSTRUCT PATH(x)
end if

for all y ∈ CHILDREN(x) do

if y ∈ CLOSED then

continue
end if

if y /∈ OPEN then

h[y]←heuristicDistanceToSink(y)
f [y]←∞

end if

f [y]←minf [y], g[x] + c(x, y) + h[y])
end for

end while

return INFEASIBLE
end procedure

We adopt the basic A* algorithm to sequentially identify 3D terminal routes. The

node state space has 5 dimensions: x, y, z, the heading θ, and the total heading γ.

There is a source node s with some initial heading, and a sink node t. The altitude

z represents an altitude range centered at z. This altitude range is governed by the

altitude profile for the particular route, which is a nondecreasing function A(·) of the

shortest path from the source to each node.

We first defined these terms. For each node u = (xu, yu, zu, θu, γu), there exist k
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arcs (u, v) such that v = (xv, yv, zv, θv, γv), ||(xu, yv)− (xv, yv)|| = 1 km, the altitude

is zv = A(zu +1) and θv ∈ {θu−2θ∆, θu−θ∆, θu, θu +θ∆, θu +2θ∆}. The total heading

γv reflects any heading changes: γv = γu + |θv − θv|. Parameter θ∆ is the incremental

change in heading possible between nodes. In other words, nodes are expanded in k

directions adjacent to u, and the altitude is adjusted to reflect the altitude profile.

The set of nodes as described is very large: if the state space were discretized

for a 200 x 200 km terminal airspace, with the first three parameters rounded to

the hundredths digit, and with 72 possible values for heading and total heading (for

θ∆ = 5◦), there would be more than 214 nodes and k times as many arcs, making it

intractable to enumerate the entire graph.

The A* algorithm is well-suited for this setting because nodes are expanded as

needed at each iteration. Moreover, the Euclidean distance can be used very effec-

tively as cost-to-go h(x) (and is used in subprocedure heuristicDistanceToSink in the

pseudocode) because it always provides a lower bound on the shortest path distance.

We make several adjustments to A* to incorporate constraints (1-7). The con-

straint on heading changes while expanding nodes ensures that turns are smooth and

do not contain large angles. The shortest path requirement results in relatively short

routes. To ensure that these routes do not spiral upwards in order to avoid obsta-

cles, nodes are deleted when their total heading γ exceeds some constant H (we use

H = 360◦). The downwind leg buffer, vertical minima for noise restrictions, and

separation of flows are enforced as obstacles such that no node can be expanded to

intersect with an obstacle. A data structure of obstacles is checked when neighbor

nodes are expanded.

This enhanced algorithm will be referred to as A∗–1 from now on.

5.3 Results for blank slate terminal design

We test our two-phase approach to designing terminal airspace routes using Chicago

airspace as a case study. This terminal was selected because it is a metroplex, it sees

a significant amount of NAS traffic, and it is heavily affected by convective weather.

Its two major airports Chicago O’Hare International (ORD) and Chicago Midway
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(MDW) are positioned only 25 km apart. ORD is the 2nd busiest airport in the

United States with an average 2400 operations per day in 2010, while MDW averaged

roughly 30% of that, with 670 flights per day (OPSNET, 2011).

This section begins by describing Chicago airspace and the airport configurations,

altitude profiles, and demand used in our study. We then use this input to evaluate

our route design algorithms.

5.3.1 Chicago airspace configuration

We focus on a single airport configuration at ORD: 22R, 28 | 22L, 2L, 32R (arrivals

on runways 22R and 28, and departures on runways 22L, 32L, and 32R). According

to the FAA’s Aviation System Performance Metrics (ASPM) Data, this was the 4th

most common configuration at ORD in 2008, and the 2nd most common eastern

arrival configuration during the same time period (FAA, 2010). At MDW, we focus

on the 4R | 4R configuration, the 2nd most common configuration during 2008.

This pair of configurations was in operation on June 4 2008, between 15:00 and

19:00 local time (CST). Figure 5-2 shows a visualization of traffic for this time period1

with the main STAR and SID routes at ORD overlayed. The bottom of Figure 5-2

shows close-ups of traffic at ORD and MDW to highlight this particular configuration.

5.3.2 Demand data

Demand is a key consideration when determining optimal routes through airspace, as

the placement of terminal fixes should line up with major traffic flows. In this section

we use ETMS data to generate demand scenarios for our problem at each of the main

Chicago airports.

We compute two empirical demand data sets for use in this chapter:

Demand1: Demand for a single runway configuration. For each O-D pair ser-

viced by the airport between 15:00 and 19:00 CST on June 4 2008, we

compute arrival and departure demand counts separately. Each OD-pair

is then grouped by azimuth with respect to ORD, giving a count of arrival

1Traffic data is from the Enhanced Traffic Management System (ETMS)
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Figure 5-2: Air traffic over Chicago airspace on June 4 2008 (top), with close-ups
of ORD (bottom left) and MDW (bottom right). c© Google 2010, Image U.S. Geological
Survey, USDA Farm Service Agency.

and departure demand at each azimuth.

Demand2: Demand for an extended time interval that reflects typical flow pat-

terns at an airport. The dataset is computed identically as above, but for

operations on the entire day of June 4 2008.

The short-term demand scenario Demand1 will be relevant later in the chapter for
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making tactical changes to arrival and departure routes during convective weather.

Each O-D demand point will be assigned to the nearest STAR or SID route in the

current airspace structure, to determine true demand, and to determine priorities

when making decisions about dynamic route movements. The reason we do not

simply check empirical counts along standard routes is that these counts may have

been subject to load balancing or other air traffic control procedures, artificially

increasing demand along certain standard routes.

The long-term average demand at an airport, Demand2, is relevant to the blank

slate design of terminal airspace, and will be used for the results later in this section.

5.3.3 Altitude profiles

The final input data needed for designing 3D routes through airspace is a description

of altitude profiles for ascending and descending aircraft. We estimate ascent and

descent profiles empirically using one day of operations for ORD.

When the total distance to ORD is plotted against flight level (FL) for all flights,

we find that the altitude profiles across all flights are roughly cone-shaped with linear

boundaries. Using this observation, we estimate the ascent and descent profiles by

fitting a cone to the data, a cone which contains α% of tracks with α ∈ [0, 100].

Ideally α is close to 100%.

Formally, we’re given aircraft positions and altitudes for a given time period as a

set of points (x1, y1), (x2, y2), . . . , (xn, yn), where each (xi, yi) is a (flight distance from

ORD, flight level) pair. We would like a set of two lines x = a1x + b and x = a2x + b,

with the same y-intercept b (so that they form a cone), which contains α% of the

traffic points. These lines are estimated from points (xi, yi) which satisfy xi ≤ Dmax

km, where Dmax is a cutoff on distance from ORD used to estimate the altitude

profile.

We estimate b̂, â1, and â2 using the following procedure:

1. Take all data points (x, y) with x <= Dmax. (For arrivals we use Dmax = 30 km,

for departures Dmax = 20 km.)

2. Let b̂ be the y-intercept of the linear regression of these points.
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Figure 5-3: Altitude profiles for arrivals (left) and departures (right), estimated em-
pirically using flight tracks for ORD.

3. Let z := (y − b̂)./x. This gives the slope for each pair of points.

4. Sort z, and set â1 and â2 to the α
2
- and (1− α

2
)-percentiles of z, respectively.

Figure 5-3 shows the resulting α = 95% altitude profiles for arrivals and depar-

tures, corresponding to ORD traffic on June 4 2008. The arrivals profile on the left

end shows a linear relationship between distance to ORD and flight level, though

there are a range of altitudes corresponding to different aircraft types and opera-

tional practices. In particular, the horizontal signals in the figure indicate that the

altitude profiles are influenced by STAR routes rather than purely aircraft abilities.

However, for distances under 30 km, there is a clear conic shape, and we use this (as

L) to estimate descent profiles. After 60 km from the airport, altitudes are relatively

flat. Therefore in our model, we extend the cone to 60 km, and then assume altitude

flattens out between 60 and 100 km. For departures (right), the climb is steady, and

we extend the cone through to 100 km, with a maximum flight level of 250.

Table 5.1 gives altitude profiles for varying values of α for arrivals and departures.

Naturally, the cone becomes tighter around the linear fit at lower values of α.

There are two potential shortcomings to the altitude profiles as computed. In real-

world operations, each demand point (for example, an outer departure fix) may serve

a different fleet mix. This can be accounted for by computing separate altitude profiles

for each such demand point to reflect these differences. Second, by using empirical
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α arrivals departures

80
y = 1.28x + 6.26 y = 1.85x + 12.83
y = 1.78x + 6.26 y = 3.09x + 12.83

90
y = 1.18x + 6.26 y = 1.65x + 12.83
y = 1.89x + 6.26 y = 3.28x + 12.83

95
y = 1.06x + 6.26 y = 1.48x + 12.83
y = 2.01x + 6.26 y = 3.44x + 12.83

Table 5.1: Estimated altitude profiles for arrivals and departures for varying confi-
dence intervals

tracks to estimate the altitude cones, the resulting altitude profiles are a function

of existing STAR and SID routes and their corresponding altitude constraints. It

would also be possible to estimate theoretical altitude profiles using the Base of

Aircraft Data (BADA), which could result in altitude profiles which reflect optimal

performance within a fleet mix.

5.3.4 Results: optimal terminal fixes

The integer program for identifying optimal outer fixes (described in Section 5.2.4)

was run using the Demand2 dataset for ORD. This section describes the computa-

tional results.

The model parameters were set to m = 4, so that 4 arrival and 4 departures routes

were selected (for ease of comparing against a four corner post configuration)2, and

L = 20, thus limiting the required separation between arrival and departure fixes to

20 km.

The resulting IP formulation had over 250,000 variables and constraints. The

computational effort to solve the problem was significant; CPLEX solved the instance

to optimality in just under 4 hours on a 2.66 GHz processor with 4GB of RAM.

An integral solution within 5% of optimum was found in under 1 minute. We did

not attempt to improve this solution time because our particular application does

2This value of m is reasonable for arrivals, as airports typically have 4 arrival fixes arranged at
the four corner posts of the airspace. However, departures are different. Airports typically have 4
departure gates, but each gate contains 2-4 fixes. Moreover, departures tend to fan out and not pass
directly over the fixes filed on their flight plan. For simplicity we set m to 4 for departures in this
case study.
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Figure 5-4: Comparison of outer fixes selected by IP approach (left) with the STAR
and SID fixes at ORD (right).

not require real-time solutions, but this would be an interesting problem for future

research.

Figure 5-4(a) shows optimal fix positions (100 km away from ORD), with arrival

fixes indicated with red squares, and departure fixes indicated with blue circles. Note

that fixes alternate between arrival and departures, just like in the standard corner

post configuration of ORD depicted in Figure 5-4(b), though they are positioned more

heavily to the south rather than spread out evenly around CO, in order to be aligned

with demand (there is not as much demand coming into ORD from the north).

To evaluate the quality of this solution, we compare it against the standard con-

figuration as follows. For the Demand2 dataset, we compute the great-circle distances

flown for both the optimal and the standard fixes, such that each demand point is

assigned to fly via its closest fix (of the appropriate direction). The standard fixes

used for ORD are the arrival fixes BENKY, BULLZ, WYNDE, and HALIE, and the

departure fixes SIMMN, CMSKY, MOBLE, and BAE. We note that this comparison

is not entirely fair to departures because we only use four departure fixes rather than

the full set at ORD.

For arrivals, the savings of optimal over standard fixes is 4,328 km, equivalent
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to 0.26% of total distance traveled across 1,248 flights. For departures the savings

was much lower at 768 km, or 0.05% of total distance across 1,267 flights. The

low percentages are not surprising and reflect the relatively long O-D routes, whose

distance is not significantly affected by the displacement of their target along a 100 km

circle outside of Chicago. However, the total distance saved can become worthwhile

when savings accumulate over entire years and multiple airports.

5.3.5 Results: conflict-free 3D routes

This section presents the results of running the A∗–1 algorithm on Chicago airspace.

We first describe the input and parameter settings. Let F ∗ be the set of optimal

outer fixes identified by the IP in the previous section, and let FSTD be the set of

standard outer fixes for the configuration in dataset Demand2. The outer fixes F ∗

are the sinks for our algorithm. Each sink is paired with a source corresponding to a

runway, which is selected as follows. First, each fix f ∈ F ∗ is paired with the closest

standard fix f ′ ∈ FSTD (this is done manually by looking at Figure 5-4). Among all

runways in the Demand2 configuration at ORD, select the runway r∗f ′ which sees the

greatest empirical demand fed by f ′. For example, if f ′ is an arrival fix, r∗f ′ is the

most common runway used by the STAR corresponding to f ′. The source s is then

defined to be a final approach fix 10 km away from the runway threshold for arrivals,

and the point at which we start to see departure tracks for departures, about 1.5 km

from the departure runway threshold. With this choice of source points, we can align

the altitude profiles with each s. The heading γs for the source corresponds to the

heading of empirical f ′−s tracks when they cross s. Let S denote the resulting set of

sources (and note that different fixes can be routed to the same source). The demand

associated with each s− f pair is the Demand2 demand for f , denoted df .

We now have eight source-sink pairings s− f (corresponding to inner- and outer-

fixes) for which to identify routes.

The ascent and descent profiles used were those developed in Section 5.3.3 with

α = 80%. To ensure smooth routes, nodes are expanded by 1 km in each of k := 5

directions, in increments of θ∆ := 5◦. Thus the maximum turn angle is 15◦ and all arc
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costs are 1. The maximum amount of turning along a route is H := 360◦. The vertical

and horizontal separation assumed are 1000 ft and 2 km, respectively. For simplicity

in this experiment, we do not introduce obstacles to ensure room for a downwind leg

and merging operations for arrivals, nor do we incorporate vertical minima over cities

or neighboring airports. The cost-to-go h(u) used is the Euclidean distance between

node u and sink f plus an additional distance to account for any heading change that

must take place to travel along the u− f line segment.

For each fix-runway pair, we identify a route through terminal airspace sequen-

tially, using the following procedure:

1. Sort the s − f pairs by decreasing demand df , with arrivals first, followed by

departures

2. Let Obstacles(s)= ∅ ∀s ∈ S

3. For each s− f pair (in order):

4. Run A∗–1 to identify the shortest-path route r∗s−f , avoiding Obstacles(s)

5. Update Obstacles(s′) ∀s′ ∈ S, s′ 6= s to reflect horizontal and vertical

separation around r∗s−f

Note that once a route is identified, it is added to the list of obstacles for all other

routes, except for those routes which share a source (and therefore target the same

runway in the same direction). This is to accommodate necessary merges of routes

that share a runway resource, and tends to produce natural merge and split points.

Figure 5-5 shows results of the algorithm. The solution time was on the order of

seconds for 7 of the routes, and just under 4 hours for the final route added, F238-DEP.

The computational burden grew substantially in the case of F238-DEP because much

of the state space was examined due to obstacles blocking the (obstacle-free) shortest

path. Although real time route solutions are not necessary for this application, they

will be important in the next section when weather is integrated into the algorithm so

as to improve tactical decision making during thunderstorms. We will discuss further

heuristic improvements to the algorithm runtime there3.

3The statespace pruning step will be shown to improve runtime substantially. For comparison,
the algorithm identifies an optimal route for F238-DEP in under 3 minutes.
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Figure 5-5: 3D conflict-free terminal routes, at different angles

Overall the terminal routes identified are smooth and adhere to the stated con-

straints. Despite the sequential (and hence not necessarily globally optimal) approach,

we have made a first step into the automated design of realistic 3D terminal airspace

trajectories. Simulations and human factors analysis would be necessary to fully

evaluate these routes against existing STARs and SIDs.

5.4 3D routes through convective weather

This section incorporates the algorithm for realistic 3D routes through airspace into

an approach for decision support during convective weather events.

The main idea is as follows. The STAR and SID routes are evaluated using the

route robustness model t0 minutes ahead of operations. New 3D conflict-free routes

are identified to replace those predicted to be blocked. Note that the weather forecast

used is still 2D, but any route recommendations based on the forecasts are 3D, with

guaranteed horizontal and vertical separation of flows. Since the forecast of VIL

represents vertically integrated liquid, and since flights are climbing or descending in

the terminal-area, it is reasonable to use this 2D forecast for 3D planning.
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5.4.1 Algorithm

Let RSTD be the set of standard routes, where each r ∈ RSTD specifies a route between

source node sr and sink node tr. The algorithm is the following.

1. For each r ∈ RSTD, obtain the probability p̂r that r will be blocked in the true

weather, given the forecast available t0 minutes in advance of operations.

2. For all routes r with p̂r > 0.5: fix r in place as an obstacle.

3. For all routes r with p̂r ≤ 0.5, ordered by demand, arrivals first:

4. Run A∗–2 to obtain a new route r′ with sink t′r within L km of tr along CO

5. Fix r′ as an obstacle

Note that the procedure A∗–2 in step 4 refers to a further modified version of the

A* algorithm, described in the next section. The key modifications include improved

runtime and the incorporation of weather.

When a route r is fixed as an obstacle in Steps 2 and 5, all nodes within the

horizontal and vertical separation distance of r are removed from the network for

routes r′ that do not share a source tr with r.

5.4.2 A∗–2: Further modifications to the A∗ algorithm

This section describes A∗–2, a version of the A∗ algorithm for identifying realistic 3D

routes through airspace introduced in Section 5.3.5, with the several modifications.

The first modification is a change to the cost function of each arc, in order to

incorporate weather into the cost function. When a new route is identified, we would

like it to be robust to the error in the weather forecast. However, although the route

robustness model can evaluate each of a set of routes, it is not designed to identify

an optimal feasible solution (unless all feasible routes are evaluated). Instead of

using the predictor directly, we take knowledge gained during the development of the

route robustness model to develop a cost function that penalizes nodes likely to have

hazardous weather. We create a heuristic cost function at each node which combines

the features which have been shown to be good predictors of blockage.

More precisely, the previous cost function for arc (u, v) ∈ A was the Euclidean
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distance between u and v, c(u, v) = ||u − v||. We define the new cost function to

be c′(u, v) = ||u− v||+ fforecast(v), a function of the forecast grid overlayed onto our

network. For simplicity, we use a linear combination of three simple features: the

maximum weather level in the B km neighborhood of v, the weather level at v, and

the distance to L3+ weather from v. Let f1(v), f2(v), f3(v) refer to these respective

values for node v. Then we use fforecast(v) = max(0, f1(v) − 2) + M max(0, f2(v) −
2) + 0.1 max(0, 10− f3(v)).

The second modification is the addition of a supersink so that nodes along CO

and within L km of the original sink rt are all feasible sinks. This way the original

route can move to avoid weather hazards. This change to the network merely requires

replacing the check x == t in Algorithm 1, line 9, (which checks if the current node

x is equal to the sink node t) with the subprocedure IS SINK that checks whether

the described condition is satisfied.

The final modification is a speed improvement. We improve the performance of the

algorithm significantly by pruning the state space regularly. After every 10,000 nodes

from the OpenSet have been examined, procedure PRUNE is run, which removes from

OpenSet any nodes that are dominated by close neighbors. This essentially decreases

the size of the statespace while avoiding larger rounding errors (which would occur

if the statespace were less granular). The procedure PRUNE is described in greater

detail with pseudocode in Appendix B.

5.4.3 Experimental Results

This section presents results for the tactical planning of 3D routes through weather

at a 60 minute planning horizon.

We use as input the Chicago airspace structure shown in Figure 5-2, along with

the Demand1 demand scenario. For simplicity, we apply the weather scenarios from

ATL to this traffic, so that the route robustness model does not have to be retrained

on Chicago weather patterns.

Initial experimental results are shown in Figure 5-6, with the weather forecast

overlayed with terminal routes for three separate scenarios. Unchanged standard
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Figure 5-6: Experimental results for three weather scenarios. Red routes are conflict
free routes identified by the A∗–2 algorithm.

routes are indicated with black text, and altered routes are indicated with red bold

text. In Figure 5-6(a) the forecast and standard routes are shown for scenario 1.

Convective weather is forecast to be present only in the southern portion of the ter-

minal, and CMSKY is the only route predicted to be blocked by the route robustness

model. Figure 5-6(b) shows the results of A∗–2 , which identifies a new route that

maneuvers around forecast weather cells, and replaces the standard CMSKY STAR.
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Figures 5-6(c) 5-6(d) show algorithm results for two more scenarios, which move the

standard WYNDE and HALIE routes, respectively.

5.4.4 Caveats and future directions

Our approach to 3D terminal airspace planning is a proof-of-concept. Further en-

hancements and validations are required to fully evaluate the approach. In addition,

there are several caveats that should be addressed.

The first caveat is that the standard routes evaluated with the route robustness

model contain turns, including the downwind leg for arrivals. The blockage predictor,

however, was trained solely on straight routes (line segments), and should be re-

trained on routes with turns. In previous work we found little change in prediction

performance when turns were included in the feature set (Michalek and Balakrishnan,

2009a), so we have reason to believe the predictions are still reasonable.

A related issue is the assumed aircraft speed profiles, which are unchanged from

previous chapters, and assume a straight route flown at a constant speed. However,

the altitude profiles used correspond to empirical aircraft speed, which changes with

distance to the airport (arrivals slow down and departures speed up). Since the CIWS

grid has very little movement in weather cells between 5-minute increments, this is

not expected to affect the results.

The second caveat is related to merge operations very close to the airport. The

downwind leg of arrivals should largely be static in the A∗–2 algorithm. In addition,

when multiple routes with the same source split off (or merge), they should not cross

again. This is violated in Figure 5-6(d) by the BENKY and HALIE routes, which

share a source, then separate near the airport (HALIE skips the downwind leg), and

cross again. Enhanced handling of merges should be included in future versions of

the algorithm.

Finally, the algorithm as described returns a route of minimum cost, but does

not then evaluate the route’s likelihood of being open. This validation should be

performed.
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5.4.5 Conclusion

Realistic terminal airspace planning in the face of weather can be of enormous use

to air traffic control; it can improve tactical decision-making and thereby reduce

delay during weather events. The ad hoc decision-making present in many airport

terminals during convective weather events can be improved with robust predictions

of blockage and 3D conflict-free route recommendations that traffic controllers can

trust. While work is needed to train and equip ATC and pilots with the ability

to implement dynamic airspace changes, we believe that it can decrease delay and

decrease airspace complexity during weather events.
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Chapter 6

Conclusions

The focus of this thesis has been on the integration of state-of-the-art aviation weather

forecasts into air traffic management decision-making. We conclude with a summary

of the thesis and its major contributions, and a discussion of potential directions for

future research.

6.1 Review of Thesis

The thesis began in Chapter 1 with a review of research literature related to air traffic

flow management, dynamic airspace configuration, convective weather forecasts, and

airspace capacity forecasts. We saw that while there existed much research in each of

the areas, there was a gap between the assumptions made in ATFM algorithms and

the form and reliability of existing aviation weather products.

Chapter 2 introduced the state-of-the-art CIWS convective weather forecast de-

veloped by MIT Lincoln Laboratory. As with other aviation weather forecasts, there

were significant spatial and temporal errors when comparing the forecast VIL at each

individual pixel against the VIL that actually materialized. We argued that while

this may be the case, the CIWS forecast could still be useful from a traffic flow

management perspective, as local errors are not necessarily critical for planning.

Motivated by this argument, we introduced a route-based approach to viewing

and evaluating weather forecasts, and showed how the resulting forecasts posted much

139



better skill scores, while at the same time being useful for TFM.

Chapter 3 took the route-based approach one step further and presented an ap-

proach for identifying routes that are likely to be robust to the inaccuracies of con-

vective weather forecasts. A set of features of weather forecasts were evaluated for

high correlation with route blockage in observed weather. These features were then

utilized in classification algorithms based on machine learning techniques to predict,

given a set of potential routes and a weather forecast, which routes were likely to

be blocked in the observed weather. The performance of the proposed classifiers was

evaluated and compared to the raw forecast predictions, using several metrics includ-

ing the false positive rate and the overall accuracy. It was shown that classifiers can

be optimized to minimize the FP rate (important for aviation applications), and the

trade-offs between overall accuracy and the FP rate were illustrated.

Chapter 4 applied the route robustness model to the problem of dynamically re-

structuring terminal airspace. Two models were proposed. The first was an algorithm

that simply selected the most robust (high probability) route in each sector, keeping

existing sector boundaries fixed. The second was an integer programming formulation

for the problem of selecting an optimal route in each sector while gently moving sector

boundaries, subject to constraints on the deviation of sector boundaries and routes

from the standard positions. Both approaches were evaluated against 28 weather

scenarios at ATL from summer 2008 (the route robustness model was trained on a

separate 2007 dataset). Both models were shown to increase airspace throughput

during convective weather. In particular, the IP model made available 13% more

routes that were forecast blocked during these scenarios.

The stability of recommended routes in the face of changing weather conditions

was also evaluated by tracking algorithm results for 12 consecutive time periods,

each 5 minutes apart. The routes output by the algorithm were found to be highly

stable; once a high-probability route was identified, it tended not to move during the

subsequent time period, with an average displacement of only 1◦. Moreover, across

all scenarios evaluated in this way, an optimal route was available 88% of the time.

Chapter 5 relaxed several assumptions made in the terminal airspace model used

140



earlier in the thesis, with the goal of identifying realistic 3D routes through terminal

airspace that could be used to route aircraft during convective events. The chapter

began by studying the problem of designing terminal airspace routes from scratch,

in the sense that no assumptions were made about today’s airspace structure. Given

O-D demand for a given period of time, optimal fixes were selected using an inte-

ger programming formulation. For each of these fixes and an appropriate runway

(dependent on the specific runway configuration in operations), an algorithm based

on the A* shortest path algorithm was developed to identify a 3D conflict-free route

through the terminal. The algorithm identified routes which adhered to the following

pilot, airport, and air traffic controller constraints: horizontal and vertical separation,

smooth with a realistic turn radius, included an altitude profile representative of the

fleet mix flying the route, and avoided obstacles such as cities and airspace used by

nearby airports.

The second part of the chapter incorporated this 3D route identification algorithm

to tactical route planning during convective weather, using Chicago airspace as a case

study. The main STAR and SID routes at ORD were evaluated against the weather

forecast using the route robustness model. For those routes predicted to be blocked,

new routes were identified (sequentially in order of demand) using the A* algorithm

(which was further modified to penalize for features of the weather forecast).

6.2 Future Directions

This section highlights a few directions for future research.

Incorporation of controller workload

The proposed methods for modifying existing airspace structure have focused on

proofs-of-concept and identifying potential benefits of relaxed airspace configuration.

Although we have had informal discussions with former air traffic controllers and

airspace operators about the assumptions made, we have not performed a study of

the implications of this research on controller complexity. Further research into human

factors and controller workload involving human-in-the-loop experiments is necessary

to study how changes to terminal airspace structure would affect operations and
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safety.

Improving model of pilot deviation in terminal airspace

In this research we have defined level 3+ VIL to be hazardous, as pilots tend not to

fly through it in enroute airspace. In reality, the situation is more complex, especially

in terminal airspace. There exist cases of pilots flying through level 3 weather, and

cases of pilots who seem to be avoiding level 2 weather1. In terminal airspace, multiple

factors are believed to affect pilot deviation, including demand, how much delay a

flight is already experiencing, and VIL. It would be interesting to incorporate a better

model of pilot deviation into this work.

Improving the Tactical 3D planning approach

Chapter 5 introduced an approach for modeling realistic aircraft, airport, and ATC

constraints to identify 3D routes. More experiments of this approach are warranted

to further prototype the idea for use in decision support. The modeling of merges

and downwind leg buffers should be explicitly considered.

Global rather than sequential route identification

The 3D routing approach from Chapter 5 identified conflict-free routes sequentially.

Although each subsequent route is the shortest path given constraints set by the routes

discovered earlier, this does not necessarily result in a globally optimal solution in

which the combined route length is minimized. Although simultaneously solving for

all routes is expected to be computationally difficult, it definitely warrants further

research.

Better incorporation of demand

Demand is an important factor in making decisions about whether or not to prioritize

traffic on a given route. We incorporated demand into our model in Chapter 5 by sim-

ply changing the order in which we identified new routes, thereby giving precedence

to routes with higher demand. Demand could be incorporated more fully into the

model in other ways, such as by setting capacities on individual routes and modeling

the spill-over of traffic onto lower-demand routes.

1This is based on conversations with the Aviation Weather Sensing Group at MIT Lincoln Lab-
oratory
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This thesis has shown that it is possible to incorporate weather forecasts with reliable

and realistic tactical air traffic management algorithms and decision support tools.

The proposed methods were shown to have the potential to increase airspace capac-

ity during convective weather events. With the aircraft equipage and technological

advancements of the NextGen air transportation system, the opportunity and poten-

tial for traffic management decision support will increase further, and the research

directions outlined could significantly reduce this future congestion and delay.
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Appendix A

Interviews with Air Traffic

Controllers

In the process of conducting research for this thesis, we have had conversations with

several air traffic controllers. The informal interviews took place during July 2010, and

focused on the existing flexibility of airspace structure and air traffic operations, and

on the potential for dynamic airspace concepts during weather events. This appendix

contains a record of the conversations. Thank you to Jean Anouilh, Bertrand Foucher,

and Leo Prusak for taking their time to answer our questions.1

ATC during convective weather

During weather events, ATC is tactical. One aircraft requests a heading change, and

ATC vectors that aircraft to the airport; same for next aircraft. Once one aircraft

asks to deviate, ATC has a better understanding of the weather situation and can

tell later aircraft to make the same deviation and go the same way.

If arriving aircraft are moved from their nominal routes or fixes, the departures

are usually slowed down by ATC to create a buffer for the increased coordination

necessary to maintain separation.

To illustrate the difficulty in forecasting weather accurately and managing traffic

during weather events, consider the following example from one morning of operations

1Disclaimer: this appendix does not contain a transcript of the interviews, but rather an inter-
pretation by the author of this thesis (based on notes) of contollers’ opinions.
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in New York. There was a large storm 50 miles west of La Guardia Airport (LGA)

which was moving east and which would pass just north of the airport. Some arrivals

were deviating. However, although the departure SID to the southeast was “open”

according to the airport, the departing aircraft were sitting on the ground, unwilling

to go.

Flexibility of STAR and SID routes

The TRACON manages traffic from the Center boundary until a point at which all

streams are merged. At this point, control is passed to the airport tower. It is possible

for aircraft to make lateral changes to their STAR routes and fly a new route around

a weather hazard, but it is important that this new route feeds into the same inner

fix. The streams into an airport are complicated, and should be managed with the

runway location in mind.

There are no strict rules in the terminal area. Anything goes, and flights are not

required to follow specific routes. In the case of a weather event, the pilot usually has

the best perspective and knows best what the weather is like, so for example, may

request to deviate to the left around a storm. The controller on the other hand, may

not know if the left or right is better. This happens all the time.

Currently, the movement of metering fixes is done occasionally during weather

events. However, the blockage of a fix is typically hard to plan for.

For these reason, any changes to approach routes are typically made tactically.

To give another example, consider two streams coming southbound, which then split

and each land on one runway (one splits east, one splits west). If the eastern stream

is blocked, the terminal will call an upstream center and ask them to re-route that

flow in some way, so that they enter the TRACON at a different point. The terminal

control manages the new stream.

Since streams do a lot of winding around near the airport, separation is often done

by altitude. This is especially true in a metroplex like the CDG terminal.

Arrivals planning to use a given runway (say, if the runway orientation is fixed

and there is only one runway choice) can enter the terminal from any direction. It
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is always possible to re-orient these aircraft as needed. But, since there are a many

other routes (in a busy TRACON), the standard ones are used. Moving these standard

routes to accommodate one new route which must be oriented in some way would be

very complicated for controllers.

When asked if it could be easier for the controller to automatically recommend

alternate, deconflicted routes, one controller mentioned that though in principle it

could be easier for the controller, it is very tricky to predict weather.

Flexibility of sector boundaries

Making small movements to a sector boundary along with changes to standard arrival

and departure routes would be technically feasible and makes sense from an effi-

ciency and operational perspective. However, it would necessitate some small changes

to current ATC practises. Furthermore, there is yet to be a solid solution proposed for

the problem. If a “playbook” of potential routes existed, that would require a route

infrastructure in place, as the controller working the airspace would need knowledge

of the new fix.

The challenge is that forecasts are imprecise, and they really do not predict where

weather will be exactly. So even if a fix is moved, it will likely be blocked anyway once

weather materializes. Thus the concept is likely to degenerate to current operations,

in which it is up to the pilot to deviate, and in which ATC gives ad hoc vectors.

Changes in sector direction

Changing the direction of a sector, for example by changing a departure sector to

an arrival sector to accommodate an arrival push, is possible. It would not be too

complex for controllers.
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Appendix B

Pseudocode for 3D route planning

This appendix contains detailed pseudocode for the algorithms run for 3D planning

in Chapter 5.

B.1 Details of the A* algorithm

This section provides more details for subprocedures of the A* algorithm (Algo-

rithm 1) in Chapter 5.2.5, as implemented for the 3D route planning application.

CHILDREN

The procedure CHILDREN returns a list of child nodes for current node u. These

child nodes are close neighbors of u, and represent lateral steps of distance STEPSIZE,

a corresponding increase in altitude, and potentially a small displacement in heading,

from u. In our experiments, STEPSIZE = 1 km. This section gives a detailed

definition of the child nodes.

Let u = (xu, yu, zu, θu, γu). Let parameter DEG STEP be the heading stepsize

for each child node, and let parameter NSTEPS be the number of steps of size

DEG STEP to take in each direction. The result of the CHILDREN procedure is

upto 2NSTEPS+ 1 child nodes.

Given these paramters, we define the children of u as follows. The node uk =

(xuk
, yuk

, zuk
, θuk

, γuk
) is a child of u with heading θuk

= θu + kDEG STEP, for k =
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−NSTEPS, . . . ,−1, 0, 1, . . . , NSTEPS. With this heading θuk
, the lateral position

(xuk
, yuk

) of node uk is set to coordinates of distance STEPSIZE km from u, in the

new heading θuk
; the altitude zuk

is a function of the total distance flown so far, and

can be computed from zu using the altitude profiles from Section 5.3.3. Finally, the

total heading change γuk
is set to γu + k∗DEG STEP.

Once each candidate child uk is computed, it is discarded if either γu > H (H =

360◦ was used in this thesis) or if uk overlaps with restricted airspace. To determine

the latter condition, a data structure of restricted airspace is maintained. This data

structure is indexed by 3D position (rounded to the nearest integer), and each 3D

cell contains an ordered list of restricted altitudes. This data structure is checked to

determine if uk is feasible.

RECONSTRUCT PATH

The procedure RECONSTRUCT PATH is run once the sink node is reached, and

follows back-links from that sink node to the source node. This is done by keeping

a data structure CAME FROM in memory such that CAME FROM[u] points to the

node v along the shortest u − v path. In our implementation, CAME FROM is a

hash table. The line of code “CAME FROM[u] = v” is used to add a back-link to u

at the point that the node v is added to the OpenQueue or updated in OpenQueue.

Note that v is updated whenever v is still in OpenQueue and the cost associated with

v is decreased. Specifically, this command is added following Algorithm 1, line 18.

B.2 Pseudocode for A∗–2 : IS SINK and PRUNE

This section contains pseudocode corresponding to the A∗–2 algorithm from

Chapter 5, Section 5.4.2.

IS SINK

The procedure IS SINK is a subprocedure of the A∗–2 algorithm that checks if

the sink node has been reached. Specifically, for any predefined sink node t along the

outer circle of the terminal CO, the algorithm terminates once it encounters any node
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t′ which also intersects CO and is within L km of the original sink t. The value of L

used in experimental runs in Section 5.4.3 was 20 km.

The pseudocode is in Algorithm 2.

Algorithm 2 check if node u is a sink

procedure IS SINK(u, t) ⊲ current node u; designated sink node t
radiusu ← ‖u‖ ⊲ lateral distance from airport (

√

x2
u + y2

u)
radiust ← ‖t‖
deltaDist ← ‖u− t‖
if |radiusu - radiust| < 2 AND deltaDist <= L then

return TRUE
else

return FALSE
end if

end procedure

PRUNE

The procedure PRUNE is run at regular intervals as a speed improvement to the

A∗–2 algorithm. Essentially, the procedure removes nodes u from OpenSet that are

close to some other node v which dominates u.

Node u = (xu, yu, zu, θu, γu) is close to node v = (xv, yv, zv, θv, γv) if their 3D po-

sitions are equal when rounded to the nearest integer, and if their headings θ are equal

once divided by 15 and rounded down. That is, when round(xu) = round(xv), round(yu) =

round(yv), round(zu) = round(zv), and floor(θu

15
) = floor(θv

15
). Furthermore, u domi-

nates v if u is close to v and the cost associated with u is strictly within 1 unit of the

cost associated with v (i.e. f(u)− f(v) < 1) and the total angle associated with u is

at least 30 degrees less than the one for v (i.e. γu ≤ γv + 30). Note that nodes which

have large differences in heading are not close enough to each other for domination

to be considered. Moreover, nodes which have substantially fewer accumulated turns

are discarded for close-by nodes with similar cost and fewer total turns.

The pseudocode is in Algorithm 3.
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Algorithm 3 decrease size of OpenSet by removing dominated nodes

procedure PRUNE(openQueue) ⊲ priority queue of non-dominated nodes
prunedList ← ∅
while openQueue.size() > 0 do

[costu, u] ← openQueue.pop()
prunedu ← u.getPrunedCoords() ⊲ increase granularity of state space
if prunedList.hasKey(prunedu) then

closeNodes ← prunedList.get(prunedv)
for [costv, v] ∈ closeNodes do ⊲ nodes close to u

diffCost ← costu - costv
diffTotalAngle ← v.getTotalAngle() - u.getTotalAngle()
if diffTotalAngle > 30 AND diffCost < 1 then

uIsAdmissible ← TRUE
closeNodes.pop(prunedv) ⊲ v is dominated by u; remove v

else if diffTotalAngle > 30 AND diffCost >= 1 then

uIsAdmissible ← TRUE ⊲ keep both u and v
else if diffTotalAngle ≤ 30 then

uIsAdmissible ← FALSE ⊲ u is dominated by v; skip u
end if

end for

if uIsAdmissible then

closeNodes.append([costu, u]) ⊲ keep u
prunedList[prunedu] ← closeNodes

end if

end if

end while

return prunedList ⊲ return the updated, pruned openQueue
end procedure
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