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Abstract

Modern biology is being remade by a dizzying array of new technologies, a deluge
of data, and an increasingly strong reliance on computation to guide and interpret
experiments. In two areas of biology, computational methods have become central:
predicting and designing the structure of biological molecules and inferring function
from molecular evolution. In this thesis, I develop a number of algorithms for problems
in these areas and combine them with experiment to provide biological insight.

First, I study the problem of designing RNA sequences that fold into specific
structures. To do so I introduce a novel computational problem on Hidden Markov
Models (HMMs) and Stochastic Context Free Grammars (SCFGs). I show that the
problem is NP-hard, resolving an open question for RNA secondary structure design,
and go on to develop a number of approximation approaches.

I then turn to the problem of inferring function from evolution. I develop an algo-
rithm to identify regions in the genome that are serving two simultaneous functions:
encoding a protein and encoding regulatory information. I first use this algorithm to
find microRNA targets in both Drosophila and mammalian genes and show that con-
served microRNA targeting in coding regions is widespread. Next, I identify a novel
phenomenon where an accumulation of sequence repeats leads to surprisingly strong
microRNA targeting, demonstrating a previously unknown role for such repeats.

Finally, I address the problem of detecting more general conserved regulatory el-
ements in coding DNA. I show that such elements are widespread in Drosophila and
can be identified with high confidence, a result with important implications for un-
derstanding both biological regulation and the evolution of protein coding sequences.

Thesis Supervisor: Bonnie Berger
Title: Professor of Applied Mathematics
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Chapter 1

General Introduction

Biology is in the midst of a revolution. Data is being collected at a scale unimaginable

only a few years ago, and experiments are being automated and performed massively

in parallel. Many results that used to take years can now be achieved in weeks or even

days. This has provided tremendous opportunities but also great challenges. How do

we manage and analyze the deluge of data? How do we extract meaning in complex

biological systems? And how do we co-opt technologies that nature has invented over

billions of years of evolution for our own needs? Increasingly, mathematical modeling

and computation are crucial to finding the answers.

This thesis takes a number of modest steps toward answering some of these chal-

lenges. A broad unifying theme underlying this work is the application of algorithms

to the study of RNA. While seen classically as a passive molecule, shuttling infor-

mation from DNA (the information storer of the cell) to proteins (the machinery of

the cell), RNA has now grown to be seen as a functional molecule in its own right.

Indeed in the last ten years, a class of RNA genes called microRNAs, a major subject

of investigation of this thesis, has been shown to be one of the most important compo-

nents of cellular regulation. The work presented here goes further in establishing the

19



20 CHAPTER 1. GENERAL INTRODUCTION

scale of that role. Below, I give a high-level introduction to the problems addressed

in the following sections of this thesis. More detailed and technical introductions for

each subject are given in the chapters at the start of each section.

1.1 RNA Secondary Structure Design

In the first section of this thesis, I study the problem of RNA secondary structure

design (Fig 1-1). This problem can be seen as an inverse to the RNA secondary

structure prediction problem. In the prediction problem, one is given the nucleotide

sequence of an RNA molecule and the goal is to find the base-pairing structure that

sequence will form. In the design problem, one starts with a desired structure of base-

pairing, and the goal is to find a nucleotide sequence that will take on this structure.

A solution to this problem has been a long sought-after goal [48, 3, 11], as designing

structure is a first step towards designing function.

I show how to abstract the RNA design problem to a problem on Stochastic

Context Free Grammars (SCFGs) and in the process, define a novel problem on

grammatical models. I use this abstraction to study the computational complexity

of the problem. The major result of this section is a proof of the limitations of

computers in solving this problem. Indeed, I show the design problem is NP-hard (a

result that holds even on the simpler model of HMMs), proving that a polynomial

time algorithm isn’t possible unless P = NP. I then go on to offer a number of

approximation approaches.

1.2 Regulatory Codes in Protein-Coding Regions

In the remaining three sections of this thesis, I study a problem of overlapping biolog-

ical codes. I show that within many regions in DNA that encode the instructions on
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Figure 1-1: Section I of this thesis examines the RNA structure design problem, which
is an inverse to the RNA structure prediction problem.

how to make a protein, there are simultaneous codes in the DNA specifying regulation

of the gene (Fig 1-2). One of the difficulties in identifying such regions is that the

signals for regulatory codes are masked by biases introduced by the code for making

a protein. I develop algorithms that utilize the genomes from related species to infer

such regions by their evolutionary signatures. In particular, I develop methods that

explicitly control for the evolutionary effects of the the protein-coding aspect of such

regions in order to reveal the effects of the regulatory codes alone. I use these tools

to examine three situations in more detail.

MicroRNA Target Prediction in Coding Regions: In Section II, I perform

a search for the genes regulated by microRNAs. microRNAs are very short RNA

molecules that regulate cellular state by turning off specific genes before they can be

made into proteins. Central to understanding the functional role played by microR-

NAs has been an effort to map out the genes regulated by them. Most effort in the
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Figure 1-2: Sections II - IV of this thesis examine regions in the genome of dual func-
tionality. Such regions both encode functional proteins and simultaneously encode
regulatory signals.

search for such targets of a microRNA has focused on targeting that occurs within

the non-coding regions of potential target genes. I show, however, that microRNA

targeting is far more widespread in coding regions than has often been appreciated.

Importantly, I also develop tools for predicting such targets and perform a number

of experiments to verify my predictions.

Repeat-Mediated microRNA Targeting: In Section III, I explore a novel phe-

nomenon involving repeated regions in the genome. Repeated sequences of many

types make up a large portion of many genomes, including that of humans. The

functional consequences of many of these repeats are still being explored. I show

that the accumulation of some classes of repeats that occur in protein coding regions

can lead to surprisingly strong targeting by microRNAs. Experiments confirm the

targeting relationships predicted from genome sequence, and a phylogenetic analysis



1.2. REGULATORY CODES IN PROTEIN-CODING REGIONS 23

shows how an evolutionary process leads to the accumulation of such repeats. These

results demonstrate a novel mechanism through which weak regulatory signals can

combine to create substantial regulation.

Widespread Non-Coding Regulation in Drosophila Coding Regions: In

Section IV, I turn to the problem of finding more general non-coding regulatory

signals in coding DNA. In addition to microRNA targeting, many other regulatory

processes exist that can be specified by sequences within protein coding regions.

I show evidence that conserved codes for regulating such process are surprisingly

prevalent in Drosophila coding regions, making up as much as 10% of such regions.

In particular, I examine a set of ultraconserved regions that show strikingly high

levels of conservation and investigate the possible causes for this conservation.
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Part I

The Structure Design Problem
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Chapter 2

Grammatical Models and

Structure Design

Probabilistic grammatical formalisms such as hidden Markov models (HMMs) and

stochastic context-free grammars (SCFGs) have been applied towards a diverse set

of problems in computational biology. Because of their intuitive representation, their

power to capture some of the essential relationships present in data, and the existence

of polynomial-time algorithms (e.g. the Viterbi algorithm) and practical training pro-

cedures (e.g. the Baum-Welch algorithm), these formalisms have enjoyed tremendous

popularity in the past decades.

Previously, three natural problems for a grammatical model have been described:

the decoding problem (given a model and a sequence, find the most likely derivation),

the evaluation problem (given a model and a sequence, find the likelihood of the

sequence being generated), and the learning problem (given a set of sequences, learn

the parameters of the underlying model). In the first section of this thesis, I formulate

another natural problem on HMMs and SCFGs, which is the inverse of the decoding

problem: given a derivation and a model, find a sequence for which this derivation is

27



28 CHAPTER 2. GRAMMATICAL MODELS AND STRUCTURE DESIGN

the most likely one. Because the decoding problem is solved by the Viterbi algorithm

in HMMs and by the CKY algorithm in SCFGs, I refer to the problem on these two

models as the Inverse-Viterbi and the Inverse-CKY problem, respectively.

The motivation for the inverse problem comes from protein and RNA design.

The design of biological molecules with a desired structure is a long sought-after

goal in computational biology. While a number of achievements have been made in

protein structure design, the problem remains difficult [13, 81, 83]. For RNA, there

has been recent interest in secondary structure design [8], and a number of fairly

successful heuristics have been developed to solve this problem [48, 3, 11]. Generally,

structure design can be divided into two goals: the positive-design aspect of finding a

sequence that has low energy in the desired structure, and the negative-design aspect

of blocking the sequence from having low energy in other structures. While some work

has explored the negative-design aspect in protein structure design [13], most work

has focused solely on the positive-design aspect. In RNA secondary structure design,

the positive-design aspect is largely trivial (desired paired positions in the secondary

structure can simply be chosen to be complementary bases) and the negative-design

aspect, which involves attempting to block erroneous base pairings in other structures,

is central to solving the problem.

In Chapter 3, I show that the inverse problem is NP-hard for HMMs (and as a

result for SCFGs). I then give approaches for making the problem tractable in some

cases. In particular, for HMMs I give a branch-and-bound algorithm. This algorithm

can be shown to have fixed-parameter tractable running time: if there are K states,

the emission alphabet is Σ, the path length is n, and all of the log-probabilities in

the model are greater than −B (so that all the non-zero probabilities in the model

are greater than e−B) and are defined to a precision δ, then the branch-and-bound

algorithm has worst-case running time O((2B/δ+1)K−2nK2|Σ|), which is exponential
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in the number of states but linear in the path length. I also show how to cast the

problem as a simple mixed integer linear program.

The hardness proof provides a negative solution to an open problem on the ex-

istence of a polynomial time algorithm for RNA secondary structure design. A

polynomial-time algorithm that only depends on the energy model for RNA sec-

ondary structure being SCFG-like, as is the case for the Zuker energy model (the most

successful model curently available for RNA secondary structure prediction [107]),

without making additional assumptions on the particular form of the energy model,

is not possible unless P = NP . It does, however, remain possible that a polynomial-

time algorithm could exist for certain specific energy models. I discuss this point

further in Section 3.4.
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Chapter 3

The Design Problem

3.1 Problem Definition

3.1.1 Definition of the Models

An HMM consists of a set N of K states and an alphabet Σ. The symbols in Σ are

emitted on transitions between the states. The probability of emitting the symbol a

when transitioning from the state sk to the state sl is specified by the value of the

parameter pa
sk,sl

. Without loss of generality, there is a unique initial state S.

The normalization condition requires that

∑

sl∈N

∑

a∈Σ

pa
sk,sl

= 1 for k = 1, . . . , K

Similarly, an SCFG consists of a set N of K non-terminal symbols, and a set Σ of

terminal symbols. The non-terminals are rewritten according to a set R of rewriting

rules. The probability of applying each rewriting rule α is specified by the value of

the parameter pα. These parameters determine the SCFG. Without loss of generality,

there is a unique starting non-terminal symbol S.

31
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Every rule α replaces a single non-terminal with a string γ of non-terminals and

terminals:

α = Nk → γ

Here Nk (the terminal symbol being rewritten) is referred to as the left-hand side of

the rule, abbreviated as l(α).

The normalization condition requires that

∑

{α∈R|l(α)=Nk}

pα = 1, for k = 1 . . . , , K

I don’t insist that the SCFG be in Chomsky Normal Form (CNF) because in some

applications (such as RNA secondary structure design), the correspondence between

the design and inverse problem defined in this paper may only be natural if the SCFG

is not converted to CNF.

I’ll use boldface letters to indicate sequences of symbols. Thus, a state-path of

length n in the HMM is written as π = π1 . . . πn, where each πi is a state in the HMM.

Such a path emits a sequence of n−1 emission symbols, ω = ω1 . . . ωn−1 where each ωi

is a symbol from Σ. The joint probability of a state-path π and an emission sequence

ω is given by Pr(π, ω) =
∏n−1

i=1 pωi
πi,πi+1

. It is frequently more convenient to deal with

sums rather than products, which can be achieved by working in log-space, taking

qa
s1,s2

:= log(pa
s1,s2

) and therefore log(Pr(π, ω)) =
∑n−1

i=1 qωi
πi,πi+1

.

A derivation of length n in the SCFG is the successive application of rewriting

rules, beginning with the starting symbol S, which generates a yield ω = ω1 . . . ωn

where each ωi is a symbol from Σ. The derivation can be summarized in the form

of a tree T . The joint probability of a derivation tree T and a yield ω is given by

Pr(T , ω) =
∏

α∈R(T ) pα, where R(T ) denotes the multiset of rewriting rules used to

derive T . As with HMMs, it is convenient to work instead with the log-probabilities,
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qα := log pα, which gives log(Pr(T , ω)) =
∑

α∈R(T ) qα.

3.1.2 Definition of the Direct Problem

In the original Viterbi problem, one is given an emission sequence ω0 from an HMM

and the goal is to find the most likely state-path to have generated ω0: the π that

maximizes the conditional probability given the emission Pr(π|ω0). Since Pr(π|ω0) =

Pr(π,ω0)
Pr(ω0) , and ω0 is fixed, it is equivalent to simply maximize the joint probability

Pr(π, ω0). The Viterbi problem can therefore be expressed as: given ω0, find an

element of arg maxπ Pr(π, ω0) (here arg max is the set of all arguments maximizing

the function). For an HMM with K states and an emission of length n, the Viterbi

algorithm finds the best state-path using dynamic programming in time O(nK2|Σ|)

[103].

Similarly, the direct problem for an SCFG is formulated as follows: given a yield

ω, find the derivation tree T which maximizes the joint probability Pr(T , ω). In other

words, given ω, we find an element of arg maxT Pr(T , ω). The optimal derivation is

referred to as the Viterbi parse of ω. For a derivation of length n in an SCFG with

rewriting rules R in Chomsky Normal Form, the CKY algorithm finds the Viterbi

parse in time O(n3|R|) [26]. Modified versions of the CKY algorithm can also handle

SCFGs in similar forms, such as those used in RNA structure prediction, with the

same time complexity (for example see [25]).

3.1.3 Definition of the Inverse Problem

In the Inverse-Viterbi problem, a desired output of the Viterbi algorithm is known

and the goal is to design an input to the Viterbi algorithm that will return this output.

In mathematical terms the problem is: given a state-path π0, find an ω so that π0

is in arg maxπ Pr(π, ω), or determine that none exists.
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In an HMM used for structure prediction, the above definition of the inverse

problem captures what it means to do structure design: one knows the structure

(state-path) and tries to find a sequence that has a higher score with that structure

than with any other structure. It is important to emphasize that for many π there

will be no such ω. In fact, it can be shown that only polynomially many paths are

designable [30]. This captures the intution that many physical structures are not

designable: there is no sequence that will lead to an RNA molecule folding into these

structures.

Upon encountering the inverse problem, the first reaction of many is to suspect

that it can be easily solved by taking the most likely emission string given the desired

state-path. To illustrate why this is not the case, consider the 2-state HMM shown

in Figure 3-1. Say that the desired state-path to design is Bn = B . . . B. The most

likely emission given this state-path is an−1 = a . . . a, but when run on such a path

the Viterbi algorithm will not return Bn. In fact, the only sequence that the Viterbi

algorithm will return Bn on is bn−1. This simple case illustrates that to design a

path of all B’s it is important not just to pick emissions likely given this path, but to

simultaneously block other possible paths (in this case those paths containing A’s).

Note further that the probability of bn−1 being emitted from Bn at random is (0.2)n−1.

Therefore, neither picking the most likely emission sequence nor randomly generating

sequences from the state-path will in general solve the Inverse-Viterbi problem with

probability greater than exponentially small in the length of the state-path.

I incorporate one generalization into the definition of the problem of inverting

the Viterbi algorithm, because it seems natural to the design problem. I allow con-

straints on the emissions that can be chosen in any position (given as the Σi below).

The algorithms developed in this paper handle this generalization without any added

complexity.
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Figure 3-1: A 2-state HMM illustrating the distinction between the Inverse-Viterbi
problem and the trivial problem of finding the most likely emission from a given
state-path. The 2 states are A and B, while the 2 possible emissions are a and b.
Each transition is marked with the possible emissions followed by their corresponding
probabilities. In order to design Bn the only possible sequence is bn−1, which is the
least likely sequence to be produced by Bn.

INVERSE-VITERBI

Input: An HMM, a state-path π0 of length n and for every position i in 1, . . . , n a

set Σi ⊆ Σ giving allowed emissions at position i.

Output: An ω where each ωi ∈ Σi so that π0 is in arg maxπ Pr(π, ω), or ∅ if no such

ω exists.

Similarly, the inverse problem for an SCFG requires one to find an input that cor-

responds to a given output. In other words, given a derivation T0, we would like to

find an ω such that T0 is in arg maxT Pr(T , ω), or determine that none exists. Note

that this problem only makes sense if the tree T0 has had all of its leaves removed

(I’ll call such a tree ”naked”); in other words, the tree includes the specification of

non-terminals but not the terminal symbols produced.
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INVERSE-CKY

Input: An SCFG, a naked derivation tree T0 that corresponds to an emitted string

of n terminals and for every position i in 1, . . . , n a set Σi ⊆ Σ giving the allowed

emissions at position i.

Output: An ω where each ωi ∈ Σi so that T0 is in arg maxT Pr(T , ω), or ∅ if no such

ω exists.

3.2 NP-hardness of the Inverse Problem

I now prove that the Inverse-Viterbi problem is NP-hard. To do so, I introduce the

decision problem corresponding to Inverse-Viterbi:

DESIGNABLE

Input: An HMM and a state-path π0

Output: YES if there is an ω so that π0 is in arg maxπ Pr(π, ω), otherwise NO.

An algorithm that solves Inverse-Viterbi would also solve Designable and so by prov-

ing Designable is NP-complete, I show that Inverse-Viterbi is NP-hard.

Theorem. Designable is NP-Complete

Proof. Clearly Designable is in NP so I just need to show Designable is NP-hard. I

do so by presenting a polynomial-time reduction from 3-SAT to Designable.

In outline, the construction is achieved by creating an HMM with one component

that can emit all possible non-satisfying assignments for the 3-SAT problem along with

a special state outside of this component that can emit all binary strings, but that

does so with smaller probability. Because this probability is small, the path consisting
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of repeatedly being in the special state is only designable if a specific sequence of 0’s

and 1’s could not possibly be emitted by the component corresponding to the 3-SAT

formula. And such a sequence is, by the construction, a satisfying assignment of the

3-SAT formula.

In full detail, the construction is as follows (see Fig 3-2). Assume the 3-SAT

formula consists of m variables and r clauses. The HMM consists of a begin state

B, two special states S and T and r(m + 1) states labelled Xi,j where 1 ≤ i ≤ r

and 1 ≤ j ≤ m + 1. The emission alphabet consists of 0, 1, and the special symbol

#. The state B transitions to either S or any of Xi,1 with equal probability, 1
r+1 ,

while emitting #. The state S transitions to itself while emitting 0 or 1, each with

probability 1
2 . The state T transitions to itself with probability 1 while emitting #.

The r sets of states Xi,1, . . . , Xi,m+1 for 1 ≤ i ≤ r are arranged in independent chains,

each corresponding to the ith clause, that emit all strings {0, 1}m that do not satisfy

the ith clause. Such a chain is constructed by the following: if the ith clause contains

the jth variable un-negated then Xi,j transitions to Xi,j+1 while emitting 0 with

probabilty 1, if the ith clause contains the jth variable negated then Xi,j transitions

to Xi,j+1 while emitting 1 with probabilty 1, and if the ith clause doesn’t contain the

jth variable then Xi,j transitions to Xi,j+1 while emitting 0 or 1 each with probability

1
2 . Finally, Xi,m+1 transitions to T while emitting # with probability 1.

The state-path to design is BSm+1. Observe that the joint probability of this

state-path and an emission sequence of the form #{0, 1}m is ( 1
r+1)(

1
2)

m, and that only

emissions of this form have non-zero probability for this state-path. Further observe

that the only other state-path that could emit such a sequence must be of the form

BXi,1 . . . Xi,m+1, and the joint probability of such a sequence and such a state-path

is ( 1
r+1)(

1
2)

m−3 if the emission sequence contains a # followed by a non-satisfying

assignment to the 3-SAT formula, but the joint probability is zero if the emission
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Figure 3-2: The reduction from 3-SAT to DESIGNABLE. Each transition is marked
with all non-zero probability emissions followed by their corresponding probabilities.

sequence contains a # followed by a satisfying assignment. Since ( 1
r+1)(

1
2)

m−3 >

( 1
r+1)(

1
2)

m, the only sequence that could design BSm+1 is a # followed by a satisfying

assignment and therefore BSm+1 is designable if and only if there is a satisfying

assignment to the 3-SAT formula.

The above construction is done in polynomial time, and therefore I have success-

fully given a polynomial reduction from 3-SAT to Designable.

For further clarity, an example of the HMM constructed for 3-SAT instance
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Figure 3-3: The reduction from 3-SAT to DESIGNABLE illustrated for the specific
3-SAT instance (x1 ∨ x2 ∨ x̂4) ∧ (x̂1 ∨ x̂3ix ∨ x4).

(x1 ∨ x2 ∨ x̂4) ∧ (x̂1 ∨ x̂3 ∨ x4) is given in Figure 3-3.

Corollary 1. Inverse-CKY is NP-hard.

Proof. An HMM can be thought of as an SCFG with a non-terminal corresponding

to each state and a terminal to each letter in the emission alphabet. Every branching

rule rewrites a state as a letter and another state, so that all derivation trees are

right-branching. Since the problem is hard on HMMs it is also hard on the extended

class of SCFGs.
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3.3 Approximation Approaches

In this section, I give two approaches for finding a solution to the inverse problem,

a branch-and-bound algorithm and a formulation of the problem as a mixed integer

linear program. Both of these are derived from the same basic approach, based on a

set of constraints I develop that are satisfied by an ω if and only if it is a solution to

the inverse problem. Below I first develop these constraints. Similar constraints and

a mixed integer linear program can be developed for SCFGs.

3.3.1 Constraint Formulation

Conceptually, the set of inequalities for HMMs is derived by looking at how the

Viterbi algorithm works and enforcing constraints on ω so that the Viterbi algorithm

is forced to return the desired state-path π0.

The Viterbi algorithm calculates an n by K table of values Mi,s of the best log-

probability scores for the state-path from positions 1 to i with final state s. Because

of the special form of the HMM score, this table can be filled in iteratively:

(1) M1,S = 0 and M1,s = −∞ for all s += S.

(2) Mi,s = maxs′(Mi−1,s′ + qωi−1

s′,s ) for 2 ≤ i ≤ n and all s.

The best state in the nth position is then read off as πn ∈ arg maxs(Mn,s), and the

earlier ones are read off by a traceback routine: the best state in position n− 1 is an

s′ that maximized (Mn−1,s′ + qωn−1

s′,πn
), and so on.

From the above, one can directly read off the constraints on the emission symbol

ωi in position i for 1 ≤ i ≤ n − 1, that need to be satisfied in order to design a

state-path with states πi. For the Viterbi algorithm to return the desired path, we

need for every state in this path to traceback to the previous state in the desired path

and for the last state in this path to have the best log-probability score:
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(3) Mi,πi + qωi
πi,πi+1

≥ maxs $=πi(Mi,s + qωi
s,πi+1

) for 1 ≤ i ≤ n− 1

(4) Mn,πn ≥ maxs $=πn(Mn,s)

3.3.2 Branch-and-Bound Algorithm

What is particularly nice about inequalities (1) - (4) is that they allow for an in-

ductive method for choosing possible ωi in an emission sequence based only on the

choices of ωj for 1 ≤ j ≤ i− 1. This is because the inequality constraining the choice

of ωi (inequality (3) above) only depends on the values for Mi,s. And the values for

Mi,s only depend on the choices made for ω1 through ωi−1. This naturally leads to

a branch-and-bound algorithm. Branch-and-bound algorithms are frequently useful

in solving computationally hard problems. A branch-and-bound algorithm is com-

plete (it always finds the correct answer) and frequently efficient on many problem

instances.

The branch-and-bound algorithm steps through position i from 1 to n−1, at each

step maintaining a list of emission sequences of length i that could be extended to

possible length n−1 sequences the algorithm will ultimately return. At each step i, the

algorithm forms emission sequences of length i from the emission sequences of length

i − 1 stored in the previous stage by appending possible emission symbols onto the

sequences from the previous stage. In order to avoid performing an exhaustive search,

at every stage the algorithm prunes the search space by applying two elimination

rules. The first elimination rule ensures that for a given length i − 1 sequence from

the previous stage, an ωi is only appended onto this sequence to form a length i

sequence if the traceback constraint (constraint (3)) is satisfied by the choice ωi. The

second elimination rule examines pairs ω and ω̃ of partial strings of length i that

remain after the application of the first elimination rule. It eliminates ω due to ω̃, if

given that ω can be extended to a solution to the design problem, then ω̃ must also
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be able to be extended to a solution.

Specifically, the second elimination rule is based on the following observation. If

for all states s, Mi+1,πi+1 − Mi+1,s is at least as large under ω̃ as it is under ω (i.e.

if for all states s, the relative preference of ω̃ for πi to state s is at least as large as

that of ω), then the traceback constraints (inequality (3) above) on all positions j for

j > i and the ending constraints (inequality (4) above) can only be easier to satisfy

when extending ω̃ than when extending ω.

It is important to note that for the case of a 2-state HMM the branch-and-bound

algorithm is an exact polynomial-time algorithm. This is because there is only one

Mi+1,πi+1 −Mi+1,s value to compare the choices for ωi on (there is only one state s

other than πi at every position since there are only 2 states to choose from), and so

there is always a best choice for ωi at every position based on the past choices.

The branch-and-bound algorithm is exact for all HMMs, but has no guaranteed

worst-case running time. If one makes additional assumptions about the HMM, how-

ever, it can be shown that the algorithm also has fixed-parameter tractable running

time. Specifically, I assume that all q values (the log-probabilities) satisfy q ≥ −B

(except for the zero-probability transitions, which have value −∞). Furthermore, I

assume that these q values have been rounded off to precision δ.

Under these assumptions, any two values Mi,s and Mi,s′ satisfy |Mi,s−Mi,s′| ≤ B

(or else the difference is equal to ±∞). This follows from the definitions:

Mi,s = maxs′(Mi−1,s′ + qωi−1

s′,s ) and

Mi,s′ = maxs(Mi−1,s + qωi−1

s,s′ ).

Let the maximum in the expression for Mi,s be attained with s0. Then

Mi,s′ ≥Mi−1,s0 + qωi−1

s0,s′

= Mi−1,s0 + qωi−1
s0,s + (qωi−1

s0,s′ − qωi−1
s0,s )
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Algorithm 1 Branch-and-Bound Algorithm
Input: An HMM, a desired state-path π0 of length n, and for every position i in
1, . . . , n a set Σi ⊆ Σ giving the allowed emissions at position i
Output: A sequence ω such that π0 is in arg maxπ Pr(π, ω) or ∅ if no such
sequence exists.
Variables: A list Li of all partial sequences of length i considered at the ith
iteration each together with its corresponding K-vector of values Mi,s.
Initialize: L0 = {(ε,0)}
for i = 1 to n− 1 do

Set Li = ∅
for all (ωi−1, vi−1) ∈ Li−1 and all ωi ∈ Σi do

Form ωi = ωi−1ωi by concatenation
Compute the K-vector vi of values Mi+1,s

Add (ωi, vi) to Li iff Elim Rule 1 doesn’t apply
end for
for all (ωi, vi) ∈ Li do

From vi compute and store the (K − 1)-vector u of values Mi+1,πi+1 −Mi+1,s

for s += πi+1

end for
Apply Elim Rule 2 to all pairs of entries of Li

end for
for all (ωn−1, vn−1) ∈ Ln−1 do

if Mn,πn < maxs $=πn(Mn,s) then
Remove (ωn−1, vn−1) from Ln−1

end if
end for
Return: An element of Ln−1 or ∅ if Ln−1 is empty.
Elim Rule 1: Eliminate ωi if Mi,πi + qωi

πi,πi+1
< maxs $=πi(Mi,s + qωi

s,πi+1
)

Elim Rule 2: Eliminate ωi due to ω̃i if ω̃i ∈ Li has (K − 1)-vector u componen-
twise ≥ that of wi

= Mi,s + (qωi−1

s0,s′ − qωi−1
s0,s ),

so that, upon rearranging,

Mi,s −Mi,s′ ≤ qωi−1
s0,s − qωi−1

s0,s′ ≤ 0− (−B) = B,
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and by symmetry, we also get Mi,s′ −Mi,s ≤ B, so finally, |Mi,s −Mi,s′| ≤ B.

In particular, only 2B/δ distinct non-infinite values are possible for each of the

(K − 1) possible Mi,πi −Mi,s values, along with the value ∞ (the value −∞ isn’t

possible for any acceptable ω, since this would have failed to satisfy constraint (3)

in the previous step) . In the branch-and-bound algorithm, it is only impossible to

remove either ω or ω̃ (both of length i) due to the other if they are incomparable:

the values one gives for Mi,πi −Mi,s are larger for some s and smaller for some other

s. But there are only (2B/δ + 1)K−2 incomparable values: for two sequences that

share the first (K − 2) Mi,πi −Mi,s values, any values for the last Mi,πi −Mi,s will

make them comparable.

Therefore, in the branch-and-bound algorithm there are at most (2B/δ + 1)K−2

sequence possibilities that must be retained at any stage, and so with a careful im-

plementation the running time of the algorithm is O((2B/δ + 1)K−2nK2|Σ|). This

bound is exponential in the number of states, but linear in the length of the structure

to be designed. (This bound is independent of the base used to get the q values

(log-probabilities), because changing the base introduces a factor into both B and δ

that cancels.)

For SCFGs in CNF, a similar idea allows one to obtain an exact algorithm that

runs in polynomial time if there are only 2 non-terminal symbols. However, the

idea used above for candidate string elimination does not immediately generalize to

SCFGs because of their non-linear nature; an HMM outputs one symbol per state,

but a non-terminal in an SCFG can generally end up producing any substring of the

output string.
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3.3.3 Casting as a Mixed Integer Linear Program

One can also start with the inequalities that must be satisfied for ω and cast the

inverse problem as the problem of finding a feasible solution to a mixed integer linear

program. I provide this simple formulation because it allows both practical and

theoretical tools developed for integer programming to be applied directly to our

problem.

The formulation as a mixed integer linear program is done by defining 0-1 vari-

ables εi,j, where εi,j = 1 indicates that the jth emission symbol is chosen for ωi.

Enforcing that there is only one emission choice made at every position is equiva-

lent to requiring
∑

j εi,j = 1 for i = 1 to n − 1. Each maximum in the constraints

is replaced by≥ , while the traceback constraints are enforced by additional equalities.

Integer Linear Program For HMMs

Objective:Feasible Solution

Variables:

εi,j, 0-1 valued, for 1 ≤ i ≤ n− 1 and 1 ≤ j ≤ |Σ|

Mi,s, for 1 ≤ i ≤ n and 1 ≤ s ≤ K

Constraints:
∑

j εi,j = 1 for all 1 ≤ i ≤ n− 1

εi,j = 0 if j /∈ Σi for all 1 ≤ i ≤ n− 1

M1,S = 0 and M1,s = −∞ for all s += S

Mi,s ≥
∑

j εi−1,j(Mi−1,s′ + qj
s′,s) for all s, s′ and all i ≥ 2

Mi,πi =
∑

j εi−1,j(Mi−1,πi−1 + qj
πi−1,πi

) for all i ≥ 2

Mn,s ≤Mn,πn for all s += πn
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3.3.4 Simulations

In order to demonstrate that in practice the branch-and-bound algorithm can provide

for significant time savings under some settings, I present some very simple simula-

tions from an implementation of the branch-and-bound algorithm. The simulations

were performed in the following manner. First, HMMs were randomly generated by

drawing each-transition-emission pair probability from the uniform distribution and

then normalizing the values, rounding off to precision δ = 0.01. Separately, both

arbitrary state-paths and designable state-paths were generated at random from this

HMM (the latter by randomly sampling emission sequences and running the Viterbi

algorithm on these sequences) and the branch-and-bound algorithm was timed on

both types of instances. The algorithm ran significantly faster on arbitrary paths,

the majority of which are not designable, than on arbitrary designable paths (taking

milliseconds rather than seconds per run).

Figure 3-4 shows running times of simulations on random designable state-paths

for different numbers of states K and path lengths n, with fixed emission alphabet

of size |Σ| = 20. For each pair of K and n values, 10 HMMs were generated at

random and for each of these HMMs, 10 designable paths were generated at random,

as described above. The branch-and-bound algorithm was then run and the average

time to design a sequence over these 100 runs was recorded. On these problem in-

stances, the running time of the algorithm scales roughly linearly with path length

n. Interestingly, while the running times initially increased with increasing K values,

the running times were lower for K = 50 and K = 100 than for K = 20, an obser-

vation that was repeated for multiple experiments. The longest run of the algorithm

took 80 seconds. A solution by exhaustive search would require examining |Σ|n pos-

sible sequences, which for that run would have been 20400 sequences. All code was

implemented in Matlab and run on a 3.06 GHz Intel Xeon PC.
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Figure 3-4: Running times of the branch-and-bound algorithm on designable paths.
Simulations shown for number of states K = 3, 10, 20, 50, 100, path lengths n = 10,
20, 50, 100, 200, 400 and emission alphabet size |Σ| = 20.

3.4 Implications and Future Directions

The NP-hardness result proves that there is no algorithm with running time poly-

nomial in both the path size and the model parameters unless P = NP . It does,

however, leave open the possibility that there are algorithms polynomial in the path

size, but exponential in the model parameters. Indeed, the Branch and Bound al-

gorithm is a PTAS (Polynomial Time Approximation Scheme) [102] for the Inverse

Viterbi problem, according to the following argument. Instead of requiring an emis-

sion string to be an exact solution to the Inverse Viterbi problem, say we require

only an ε approximate solution. That is we require an emission string ω for which

the desired path π is at worst a multiplicative factor of 1 + ε less likely than some

other path given ω. Then, working in log-space, we allow a discrepancy of at most
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ε (here we use that log(1 + ε) ≤ ε). This implies that for a path of length n, we can

choose δ = ε/(n − 1), since there are n − 1 emissions in a path of length n. And

therefore, the Branch and Bound algorithm will have a worst-case running time of

O((2B(n− 1)/ε + 1)K−2nK2|Σ|). Given a specific model (which fixes B, K and |Σ|),

this is polynomial in the path length, n.

An open question is whether the Branch and Bound algorithm can be extended to

SCFGs. It can be shown that the algorithm extends to SCFGs when the branching

structure of the derivation (i.e. the shape of the derivation tree, but not the states

themselves) can be assumed to be the same as the desired derivation tree. Indeed,

this holds for SCFGs in specific forms (such as Chomsky Normal Form), where the

branching structure is essentially fixed. However, while all SCFGs can be converted

to Chomsky Normal Form, in the conversion process the interpretation of a partic-

ular derivation (i.e. the secondary structure in the RNA secondary structure design

problem) from the original SCFG is lost. So far, I have not been able to find an

equivalent algorithm that works on more general classes of SCFGs.

From a practical perspective, however, the most useful result section in this sec-

tion is probably the NP-hardness result. Heuristic algorithms for designing RNA

secondary structures exist and the latest have reasonable run-times for modest sized

input structures [11]. Until the hardness result, it had remained an open question

whether heuristics were really necessary or if an exact polynomial-time algorithm

could be found. It’s possible that some of the algorithms laid out above could be

used to improve on the running time of some of these algorithms. However, given

that the heuristic algorithms are already pretty good, the endeavor more likely to

have an impact on the problem of structure design is the improvement of the energy

models themselves.



Part II

MicroRNA Target Prediction in

Coding Regions
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Chapter 4

MicroRNAs and Comparative

Genomics

4.1 MicroRNA Biogenesis and Targeting

In the model of molecular biology that emerged during the last century, RNA was

relegated to a relatively passive role, shuttling information from DNA (the information

storer) to proteins (the functional molecules of the cell). It wasn’t until the discovery

of the ubiquity of microRNAs that the extent of the revision needed to this simplified

picture was revealed. Indeed, when discovered in 1993, the first known microRNA,

lin-4, was thought to be a rare and nematode-specific phenomenon [72]. The discovery

in 2000 of another C. elegans microRNA, let-7, conserved across both mammals and

Drosophila quickly led to the realization that these early examples were part of a more

widespread phenomenon [84]. Now, 11 years later, it is known that microRNAs are

ubiquitous across both animals and plants, with many species containing hundreds or

more of these genes [45]. Together microRNAs form a rich layer of post-transcriptional

regulation, and control a wide variety of biological processes [12, 45] with important
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implications for a number of human diseases [66, 1].

In the following paragraphs, I briefly outline the basics of microRNA biology,

highlighting their biogenesis and function. As with most descriptions of biological

phenomena, the ‘rules’ presented here are broad brush strokes. A small number of

exceptions to these general rules have already been discovered (such as a microRNA

that bypasses Dicer processing [21]) and still more are likely to be discovered after

this writing.

MicroRNAs are formed through one of two pathways (Fig 4-1): (i) transcrip-

tion of a long (up to many kilobases) primary transcript containing extensive self-

complimentarity or (ii) transcription within an intron of a protein-coding gene [85].

In the first case, the primary transcript is processed by Drosha, which cuts the tran-

script, leaving an ∼70 nucleotide self-complimentary hairpin structure. In the later

case, the ∼70 nucleotide hairpin is formed directly from a spliced out intron. In either

case, this hairpin (called the pre-miRNA) is then exported from the nucleus by the

protein Exportin5. Another protein Dicer cuts the pre-miRNA hairpin and retains

one of the two ∼23 nucleotide strands from the stem of the hairpin as the mature

miRNA which is then incorporated into a complex with an Argonaute protein.

Once loaded into the complex with Argonaute, the primary function of a mi-

croRNA is to direct the post-transcriptional silencing of protein-coding genes. While

early studies suggested that this occurred primarily through translational repres-

sion [2], more recent work has suggested that the largest effect is due to destabiliza-

tion of the mRNA itself (possibly through multiple mechanisms [40]). The silencing

of a particular gene is largely mediated by Watson-Crick base-pairing between the 5’

end of the miRNA–the so-called seed region–and a target message (Fig 4-2). Target

sites can be grouped by the extent to which they match the region of the miRNA seed

(nucleotides 2-7). The weakest site, with base-pairing to these 6 nucleotides (6mer
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Figure 4-1: MicroRNAs are produced in one of two parallel pathways. In the first,
they are processed from long primary transcripts with extensive self-complementarity,
while in the second they are formed directly from the spliced introns of protein coding
genes. In either case, the microRNA is subsequently exported from the nucleus,
cleaved, and loaded into an Argonaute protein.
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Figure 4-2: Canonical microRNA targeting occurs through base-pairing of the 5’ end
of a microRNA (the seed) to the 3’UTR of an mRNA. Seed matches can be grouped
into different categories according to the extent of base-pairing.

site), usually confers only mild repression and is frequently augmented in functional

sites. Those with an adenosine opposite nucleotide 1 (7mer-A1 site) generally confer

more repression, followed by those with base-pairing to nucleotide 8 of the miRNA

(7mer-m8 site), followed by those with both (8mer site) [73, 38]. Other context fac-

tors, such as local AU-content, also influence the repression mediated by an individual

site [73, 38].

A focus of research in microRNAs has been, and continues to be, the identification

of the genes that each microRNA targets. So far, the majority of characterized

miRNA target sites have been in the 3’ untranslated regions (UTRs) of mRNAs. In

order to identify such 3’UTR targets, a number of target prediction tools have been

designed. In addition to the presence of seed sites, these tools incorporate additional

information, such as conservation, local AU-content, and the structural accessibility

of the target mRNA to form a set of most likely targets [34, 67, 9, 64]. Such tools

have proven to be an invaluable resource for miRNA researchers.

An open question has been the extent of targeting that does not fit this canonical
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pattern, and in particular the extent of biologically relevant targeting outside of

3’UTRs. In this section of the thesis, this question is examined in detail. Through a

combination of computational and experimental results, I provide evidence that such

targeting is far more extensive than previously appreciated

4.2 Comparative Genomics

The last ten years have seen the mapping of genome sequences of an impressive num-

ber of species (at the time of this writing, genomes are available for 46 vertebrates,

15 insects, and 6 nematodes among numerous others). Availability of these sequences

has enabled an extremely fruitful avenue of research: comparison of sequence data

across species to infer the molecular evolutionary history. Knowledge of this history

can provide, among other things, a map of the selective pressures exerted on different

genomic features and can be an incredibly powerful tool for investigating biological

function from sequence data alone. A foundation for this work is a simple model that

I describe below: that of the evolution of an allele in a population under the simulta-

neous influence of selection and drift. Below, I give a brief derivation of the formula

under this model for the fixation of a newly acquired allele under selection. While

in most work in comparative genomics (including much of the work in this section)

the application of this formula frequently gets reduced to something like ‘Conserved

equals functional’, there are some subtleties in the formula that are important to re-

member for interpreting results. This will be particularly important for interpretation

of the results in Part IV of this thesis.

The model taken is a simple one: a locus with 2 possible states A and B, in a

population of N individuals of a hermaphroditic diploid organism (the hermaphroditic

assumption is merely one of convenience–using a 2 sex model would only require a

small correction to the population size used [36]). The individuals are assumed to
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be randomly mating, so that all of the genotype frequencies can be assumed to be in

Hardy-Weinberg equilibrium [36]. The genotypes are assumed to have the following

relative fitnesses:

Genotype Relative Fitness

AA 1

AB 1 - hs

BB 1 - s

The parameter s is called the selection coefficient and h the heterozygous effect.

The heterozygous effect h can be used to capture all possible dominance relations

(including heterozygous advantage, as found in the sickle-cell locus in some African

groups [36]). Here, we take the simplifying assumption that h = 1/2, i.e. that

the fitness effects are completely additive. Reproduction is considered to proceed in

discrete generations and can be described as a resampling of the 2N alleles (with

replacement) weighted according to the relative fitness of the genotypes.

Allele A is assumed to begin at a given frequency in the population, p. Start-

ing from this point, different aspects of the dynamics of the frequency of A can be

interrogated. Despite its simplicity, the model can capture a number of phenomena

that are informative of the evolutionary history. For example, one can interrogate the

distribution of allele frequencies within a single population of an allele under a given

selection coefficient. From this, the frequency spectrum of given alleles can be used

to identify selection [36]. One can also ask what the effect of selection on alleles has

on other alleles physically linked to that allele, which is a question I will return to in

more detail in Section IV. But in this section, I examine a simple question: what is

the probability that allele A comes to take over the entire population? The derivation

is given in outline and loosely follows [36].

The evolution of frequency of the A allele can be modeled as a random walk. If
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the population size, N , is sufficiently large, then it is possible to model the process

continuously in what is called the diffusion approximation [36]. The probability of

fixation (that allele A ultimately takes over the population) is written as F (p). Then

the probability of fixation from frequency p is given by the probability of going to a

new frequency p′ and reaching fixation from that point:

F (p) =

∫

p′
T (p, p′)F (p′)dp′ (4.1)

where T (p, p′) is the probability of going from p to p′ in one reproduction step. For

sufficiently large N (and under the additional assumption that selection is not so

large, so that s2 << 1
N ), T (p, p′) will be concentrated around p. In this case, it is

possible to approximate F (p′) with a Taylor expansion:

F (p′) = F (p) + (p′ − p)
dF (p)

dp
+

(p− p′)2

2

d2F

dp2
(4.2)

Putting this back into into the 4.1 gives:

F (p) ≈
∫

p′
T (p, p′)(F (p) + (p′ − p)

dF (p)

dp
+

(p− p′)2

2

d2F

dp2
)dp′ (4.3)

To derive a formula for T (p, p′), it is necessary simply to obtain the probability of

drawing a single copy of A from a Bernoulli process. The probability of drawing an A

is the probability of drawing the genotype AA (which is present at fraction p2 and has

relative fitness 1) plus one-half the probability of drawing the genotype AB (which

is present at fraction 2p(1 − p) and has relative fitness 1 − s/2.) This probability is

given by:
p− s

2(p(1− p))

1− s(1− p)
= p +

s(p)(1− p)

2
+ O(s2) (4.4)

Therefore, keeping only leading terms in s, the mean change in frequency of A in a
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single step is given by p(1−p)s
2 and the variance is given by p(1−p)

2N . If N is large, the

Gaussian is a good approximation for the binomial distribution. Therefore one can

take T (p, p′) ≈ 1√
2πσ2

e
−((p−p′)−µ)2

2σ2 , where µ = p(1−p)s
2 and σ2 = p(1−p)

2N . Putting this into

4.1 gives:

F (p) = F (p)

∫

p′

1√
2πσ2

e
−((p−p′)−µ)2

2σ2 dp′+
dF (p)

dp

∫

p′
(p′ − p)

1√
2πσ2

e
−((p−p′)−µ)2

2σ2 dp′

+
d2F

dp2

∫

p′

(p− p′)2

2

1√
2πσ2

e
−((p−p′)−µ)2

2σ2 dp′

= F (p) + µ
dF (p)

dp
+

(σ2 + µ2)

2

d2F

dp2
(4.5)

Again the assumption is that s2 << 1
N and so µ2 << σ2. Using this and canceling

common terms, the differential equation becomes:

0 = s
dF (p)

dp
+

1

2N

d2F

dp2
(4.6)

Solving the above differential equation on F (p) with boundary conditions F (0) = 0

and F (1) = 1 gives the equation:

F (p) =
1− e−Ns/N

1− e−2Ns
(4.7)

Of particular interest is the case of a new mutant A allele arising, which begins

with frequency 1
2N . This new allele then has the probability of fixation given by:

F (
1

2N
) =

1− e−s

1− e−2Ns
(4.8)

This is one of the most important equations in comparative genomics. A number

of observations on this equation can be made. (1) if s < 0 (i.e. the A allele causes

lower fitness) then the probability of fixation decays exponentially in s. Therefore,
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for significantly deleterious mutations (those with |s| >> 1
2N ), such a mutation will

never get fixed. (2) Conversely, if s > 0 (i.e. the A allele is beneficial) then the

probability of fixation grows with s. (3) If |s| << 1
2N then the probability of fixation

is ≈ 1
2N as in the neutral case (when s = 0). Regions under purifying selection (those

where biological function is being conserved across related species) can then be found

because mutations are accumulating slower than they would under neutral evolution.

Conversely, regions under Darwinian selection (those where a new biological function

is acquired by one species) evolve more quickly than expected under a neutral model.

Both of these effects are thresholded, with the threshold set by the inverse popula-

tion size 1
2N . When population dynamics, such as bottlenecks, are considered the

population size needs to be replaced with an effective population size Ne that may

differ from the current size of the population of species, but the formulas above can

continue to be applied in most cases.

The work described in Section II of my thesis focuses on finding instances of short

motifs (microRNA seed sites) subject to purifying selection. In this case, the use of

equation 4.8 is largely reduced to ‘Conserved equals functional’, (with the additional

caveat that the level of function required to keep a feature from acquiring mutations

is defined by the inverse effective population size). Therefore, the problem reduces

to finding sequences that can be confidently scored as having mutated slower than

they would have by chance. While in principle one might like to have an explicit

model for neutral evolution and score features according to this model, in practice

it is usually far better to take a more empirical approach. When scoring whether

a class of features (such as instances of a sequence motif) is more conserved than

expected under a neutral model, the empirical approach is to form a background set

of features with similar sequence properties to the class under study (such as permuted

versions of the sequence motif) and compare the conservation of the feature to the
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conservation of the background set. The main advantage of this approach is that

it doesn’t make assumptions that (even when subtly wrong) could cause gross mis-

estimates of the expected conservation of a feature under a model of neutral evolution.

In particular, both subtle mutational biases as well as overlapping weak selection from

other functional features make it difficult to very accurately model the expected rate

of neutral evolution of a class of features from first principles. The work in Section

II takes such an empirical approach. For the work described in Section IV, there are

more subtle effects of equation 4.8 that need to be considered (such as the interaction

with nearby loci under selection). This will be further examined in that section.



Chapter 5

Target Prediction in ORFs

5.1 Motivation

In order to analyze miRNA targeting in ORFs, I sought to use a conservation-based

approach. The goals for this approach were two-fold: (i) to compare the extent of

conserved targeting in ORFs to that in 3’UTRs, and (ii) to provide a tool to guide

researchers in identifying the most likely ORF targets. Some preferential conservation

of miRNA seed sites has previously been observed in ORFs in both vertebrates [73]

and Drosophila [95], but it has been difficult to fully analyze the extent of conserved

ORF targeting and to provide confident predictions of individual ORF targets. The

main difficulty encountered in such an effort is that traditional techniques based on

conservation are not designed for application to coding DNA.

To assess the evidence for selection on putative miRNA binding sites within coding

regions, I developed an algorithm (called MinoTar) to score sequences within coding

DNA for evidence of preferential conservation. Searching for preferentially conserved

regulatory sequences within coding regions presents a unique challenge: coding DNA

is already highly conserved due to selective pressures at the protein level, and such
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selection may in general be far stronger than any additional selection at the nucleotide

level. Furthermore, selection at the protein level causes highly biased conservation

patterns, influenced both by the form of the genetic code and by codon bias.

Any method for locating preferentially conserved nucleotide sequences in coding

regions must therefore remove the level of baseline conservation due to selective pres-

sures at the amino acid level. In this work, a conservative approach (for lack of a

better term) was taken. An underlying assumption was made that selection at the

amino acid level dominates the conservation signal. According to this assumption,

the conservation of nucleotide sequences was scored in a model where the amino acid

sequence choices at all species in the alignment were fixed according to their observed

values. To score nucleotide conservation, a model for codon evolution was learned

for all branches in the phylogeny, and then random samples of codon evolution were

generated using this model while holding the amino acid evolution fixed as observed.

Such an approach not only accounts for non-uniform levels of amino acid con-

servation, but also for the average effects of codon bias because the rates of codon

evolution are measured empirically rather than assumed to follow a neutral model.

Alternative choices for the model were possible. One alternative was to attempt to

use knowledge of protein structure to directly model selection at the amino acid level.

There are three reasons why I believe such an approach is inferior (at least for the

clades considered in this work). (1) In Drosophila and (to a somewhat lesser ex-

tent) in vertebrates, conservation of amino acids beyond that expected under neutral

evolution is extensive. (2) The current knowledge of most proteins is low, and so

any model that attempted to capture the exact selective pressures on all amino acids

would surely be wrong in a number of places. (3) Perhaps most importantly, the con-

servative approach taken doesn’t result in the exclusion of most conserved sequences

from scoring highly. There is enough codon choice for most amino acids (only 2 out
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Figure 5-1: The stages of the algorithm for assessing nucleotide conservation in
protein-coding regions.

of 64 have no codon choice), and there are enough species under consideration, that

high confidence prediction of conserved nucleotide sequences is still possible under

such a model.

5.2 Algorithm for Scoring Conservation

The central component of the method is an algorithm for forming randomized align-

ments that preserve amino acid evolution but contain randomly sampled codons ac-

cording to an evolutionary model. These randomized alignments then form the basis

for the microRNA target predictions made in this section, and also for some of the

broader patterns of codon conservation studied in Section IV. A number of details of

the methods used to evaluate and score targets are given in Section A.1.
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The algorithm to generate these alignments proceeds in three main stages (Fig 5-

1). In the first stage, a model for codon evolution is learned (Fig 5-2). The algorithm

begins with a multiple species alignment of coding genes from which are removed all

overlapping non-coding features that could confound analysis (including overlapping

3’UTRs and 5’UTRs from any transcript). First, at avery amino acid position in

all alignments, the ancestral codons and amino acids are inferred using maximum

parsimony (in the case of ties, this can result in multiple maximum parsimony trees).

Then on every edge in the phylogeny, a 64 by 64 matrix is formed with all counts

of codon transitions from parent species to child species (in the case of multiple

maximum parsimony trees, counts from each possible tree are all given equal fractional

weights– i.e. with 2 trees, each transition has weight 1/2). These counts are then used

to form transition probabilities for codon evolution given fixed amino acid evolution.

These probabilities are formed in both directions (forward evolution from parent to

child and reverse evolution from child to parent) along all edges of the phylogeny. If

we take C1 and C2 as the codons for origin and ending species respectively, AA1 and

AA2 as their amino acids, and N(C1, C2) as the transition counts obtained, then the

probability is given by Pr(C1 → C2) = N(C1,C2)P
AA(C)=AA2

N(C1,C) . In order to avoid artifacts

from small counts in very rare amino acid transitions, counts are supplemented with

small numbers of pseudocounts.

In the next stage, the algorithm draws randomized codon alignments according to

the transition probabilities calculated in the first stage (Fig 5-3). The procedure is

simple. First, the maximum parsimony amino acid sequences inferred on the ancestral

species are retained (in the case of multiple maximum parsimony trees, one of these

best trees is chosen at random for each random alignment). Then the codon in the

reference species is fixed, and codons are drawn at random according to the previously

calculated transition probabilities. The tree structure allows for these draws to be
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Figure 5-2: In the first stage of the algorithm, a model is learned for codon evolution.
First amino acids and codons for ancestral species are inferred according to maximum
parsimony. Then counts for codon transitions given amino acid transitions are used
to define transition probabilities.

made independently (Fig 5-3). 1000 such random alignments are made for each

sequence.

In the final stage of the algorithm, the conservation of any arbitrary feature (such

as a sequence motif) can be scored (Fig 5-4). This is done by the following. First an

instance of a feature is scored by the number of species it is conserved to in the real

alignment Nreal. Then a score is calculated for all of the random alignments, given

again by the number of species the feature is conserved to in those alignments. Say

these are labeled Ni, where i is the index of the random alignment. These scores can

then be used to derive an empirical p-value: p =
P

i(Nreal≤Ni)
S , where S is the number

of sampled alignments. In addition to the p-value, a second score – the minimum

possible p-value – is calculated. This is calculated by first finding Nmax, the greatest

number of species the feature could have possibly been conserved to while retaining

the amino acid evolution, and then calculating the p-value as above with Nmax instead

of Nreal. This second score gives a measure of the limit of information that can be

inferred from conservation at that location, and allows for the exclusion of features
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Figure 5-3: In the second stage of the algorithm, codons are sampled according to the
transition probabilities learned in the first stage. The inferred amino acids are fixed
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where nothing can be inferred: for example when there is no freedom of codon choice

and nucleotide conservation is completely accounted for by amino acid conservation.

In such a case, a feature can be said to be neither conserved nor non-conserved. No

information can be extracted from its level of conservation.

The algorithm for sampling random alignments has a number of beneficial features:

1. It scales efficiently with the number of species. The sampling only requires

O(N) operations for N species (since all operations are proportional to the

number of edges on the phylogenetic tree and there are 2N − 1 edges).

2. Because the calculations are all made empirically according to the sample align-

ments, scoring of the conservation of any arbitrary motifs, including non-exact

motifs and structural motifs, is easy to perform. This would be both difficult

and computationally inefficient to calculate exactly.
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Figure 5-4: In the final stage of the algorithm, the conservation of a desired feature
is scored. The number of species a feature is conserved to in the real alignment is
compared to the number of species it is conserved to in the random alignments. A p
value can then be calculated, indicating the level of surprise that should be attributed
to the conservation of the feature.

3. It is easily extendible to more complicated models of codon evolution. While, as

currently implemented, the model of evolution treats codon positions separately,

the procedure could easily be generalized to allow for codon evolution to depend

on the flanking sequences, or other features, as well.

All of the code has been written in Python and is freely available.
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Chapter 6

Target Prediction Results

6.1 Computational Results

6.1.1 miRNA Seed Sites in ORFs Are Highly Conserved

To begin, I ran the MinoTar algorithm on every instance of all 8mers within Drosophila

protein coding genes, and found that miRNA seeds accounted for the majority of the

most highly conserved 8mers. To evaluate this, I formed a conservation score for each

8mer, given by the fraction of instances with p-value below 0.05. Most 8mers had

scores close to 0.05 expected by chance, but a small group showed significantly more

conservation (Fig 6-1). Grouping the top 26 most conserved 8mers into 10 motifs, it

was observed that 8 of these 10 motifs correspond to miRNA seeds and 2 to other

unknown motifs (Table 6.1).

Next, I verified that the increased conservation observed for miRNA seeds could

not be explained by other sequence characteristics of these seeds. To do this, five sets

of 8mers were formed: seeds for conserved miRNAs (those miRNAs largely present

across all 12 Drosophila species), and four control sets, (i) reverse complements of

these seeds, (ii) 8mers with identical dinucleotide content as these seeds, (iii) seeds

69
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Motif Annotation
AAGACTGA miR-14

AGACTGAA
CTGTGATA K-box (miR-2a/6/11/13/308)

TGTGATAC
ACTGTGAT
TCTGTGAT

TGTGATAT
TGTGATAA

TTGTGATA
ACATTCCA miR-1

CATTCCAA
AACATTCC
ATGAACAA unknown
ATGGACAA
ATGTACAA

TCTAGTCA miR-279/286/996
CTCTAGTC

TCTAGTCT
ACATATCA miR-190
ACCAAAGA miR-9
TGCATTTA miR-277
GCATTTAG

GTCAATTA unknown
CAGTATTA miR-8

AGTATTAA
AAGTATTA

Table 6.1: The top 26 most conserved 8mers form 10 motifs, 8 of which correspond
to miRNA seeds.
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Figure 6-1: Histogram of conservation scores for all 65,536 8mers. Nearly all of the
top conserved 8mers correspond to miRNA seed sites.

for non-conserved miRNAs (those not found beyond the melanogaster subgroup) and

(iv) seeds for human miRNAs. The cumulative distributions for these 5 sets, as

well as the set of all 8mers are plotted in Figure 6-2. While seeds for conserved

miRNAs showed a very significant bias to be highly conserved, the four control sets

all behaved similarly to the set of all 8mers, providing further evidence that the

increased conservation seen was indeed evidence of selection on miRNA target sites.

In addition, I found that the MinoTar algorithm could produce very high-confidence

target predictions. To test this, I investigated the effect of an increasingly stringent

cutoff on the confidence of predicted sites at that cutoff. I pooled seeds for all con-

served miRNAs together and calculated the fraction of instances of these seeds with

p-values below each cutoff, repeating the same for the 4 control sets of 8mers defined

above. For each cutoff, the signal-to-background ratio was calculated by dividing the

fraction of conserved instances in a given set by the background fraction of instances
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reaching that cutoff (Fig 6-3). At the most stringent cutoffs, a signal-to-background

ratio of over 10 (confidence > 90%) could be achieved, producing a set of hundreds of

very high confidence targets. The 4 control sets showed signal-to-background ratios

near 1 at all cutoffs.

Finally, I evaluated the evidence for increased functionality of miRNA seed sites,

when such sites were accompanied by additional 3’ pairing to the miRNA. Following

[38], I grouped seed sites according to the extent of additional 3’ pairing starting at

different positions within the miRNA and calculated the fraction of such sites with

p-value below a cutoff of 0.05. Signal to background was computed by comparing

this fraction to the expected fraction of seed sites reaching such a cutoff as explained

in the previous section. I found that while the majority of conserved seed sites are

not accompanied by extensive additional 3’ pairing, those sites with such pairing

showed some evidence of increased conservation (Fig 6-4). In particular, as has been

observed in 3’UTRs [38], those seed sites with contiguous 4mer or 5mer base-pairing

beginning at positions 1214 of the miRNA showed a statistically significant increase in

conservation (number conserved seed sites: 2094 total; 4mers: 178 vs. 145 expected,

p < 0.002; 5mers: 51 vs 38 expected, p < 0.01; Chi-Square test).

6.1.2 Extent of Targeting in ORFs, 3’UTRs and 5’UTRs

Next, I compared the extent of evidence for miRNA targeting in ORFs, 3’UTRs and

5’UTRs. For 3’UTRs and 5’UTRs, I performed an analysis similar to that done pre-

viously in 3’UTRs [65]: conservation of a miRNA seed site was judged by the number

of species within the alignment the site was conserved to, and background conserva-

tion rates were estimated by nucleotide-matched background sets. The 3’UTR sets

of conserved sites were nearly identical to those in [65], but repeating the analysis

allowed for an evaluation of the strength of selection separately for 8mers and 7mers
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Figure 6-4: Signal to background, giving conservation of seed sites accompanied by
3’ base-pairing to the miRNA, starting at different positions within the miRNA, as
compared to the background conservation of seed sites.

within each region (7mers excluded those contained within 8mers).

I characterized the level of conservation by the fraction of potentially conserved

sites that showed conservation above background level. The fraction of ORF sites

preferentially conserved was about 60% that in 3’UTRs, while the fraction of sites

in 5’UTRs was about 60% that in ORFs. Though miRNA seed sites are denser in

AT-rich 3’UTRs than in ORFs, because of the significantly larger size of ORFs and

smaller size of 5’UTRs (roughly 2 × 107 total bases in ORFs, 7 × 106 total bases in

3’UTRs and 2.5× 106 total bases in 5’UTRs), the number of preferentially conserved

sites in ORFs and 3’UTRs was very similar (∼ 7000 sites within 3’UTRs versus

∼ 6500 in ORFs), while the number in 5’UTRs was significantly smaller (∼ 700 sites)

(Fig 6-5).

The extent of conservation of miRNA seed sites in ORFs varied considerably be-

tween different miRNAs. Those with the most conserved sites tended to be well known
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Figure 6-5: The scale of conserved miRNA targeting in 3’UTRs, ORFs and 5’UTRs.
Top panel: Fraction of sites conserved above background for both 8mers and 7mers
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background for 8mers and 7mers in 3’UTRs, ORFs and 5’UTRs. Error bars show
standard deviation in the estimates obtained from sampling of background sets.
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and highly expressed miRNAs, while those with few conserved sites tended to be more

recently discovered and expressed at lower levels. This suggested that the levels of

conservation correlate with the number of targets each miRNA has acquired, with

more widely and highly expressed miRNAs tending to have acquired more targets.

To provide support for this, I compared the level of conservation of individual miRNA

seeds within ORFs, 3’UTRs and 5’UTRs. If conservation levels reflect the number of

acquired targets, then I surmised that the miRNAs with the most conserved targets

in each region should largely agree. I looked at 8mer seeds and chose a cutoff for

ORFs and 3’UTRs that gave predictions at 60% confidence (p = 0.05 for ORFs, con-

servation to 8 out of 12 species for 3’UTRs). For 5’UTRs I used the same cutoff as for

3’UTRs, as 60% confidence was not possible to achieve. For each seed, I compared

the fraction of instances with conservation above background in the different regions

(Fig 6-6). The level of conservation in ORFs and 5’UTRs were both highly correlated

to those in 3’UTRs: mean conservation above background in ORFs and 5’UTRs was

significantly higher for the top 50% most conserved miRNA seeds in the 3’UTR than

for the bottom 50% (ORFs: 0.14 versus 0.02, p < 10−7; 5’UTRs: 0.10 versus 0.01,

p < 3 × 10−4; Mann-Whitney test). To ensure that I was not observing biases in

conservation independent of selection due to miRNA targeting or conservation due

to overlap with un-annotated 3’UTRs, I repeated the same procedure with promoter

sequences (500 nucleotides upstream of the transcription start site). Within promot-

ers, miRNA seed sites overall showed no preferential conservation and the top 50%

most highly conserved seeds in the 3’UTR showed no tendency to be more conserved

than the bottom 50% (−0.01 versus −0.014, p = 0.32; Mann-Whitney test).

To further analyze the set of predicted ORF targets, I formed a set of genes

for each miRNA that had either a 7mer or 8mer conserved to the 60% confidence

level. I compared these target lists to the set of predicted 3’UTR targets from the
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Figure 6-6: MicroRNA seeds showing the highest level of conservation in 3’UTRs
tend also to be the most conserved in ORFs and in 5’UTRs, but not in promoter
regions. Shown are the fractions of 8mer sites conserved above background at 60%
confidence compared between 3’UTRs and ORFs (top panel), 3’UTRs and 5’UTRs
(middle panel), and 3’UTRs and promoters (bottom panel). Dotted lines show the
cutoff for conservation above background equal to the maximal amount by which any
miRNA was conserved below background.
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TargetScan website [65]. While most (> 97%) of the predicted ORF target genes

were not predicted by TargetScan to be targeted in their 3’UTR by the same miRNA,

genes with a predicted ORF target for one miRNA were significantly more likely to

contain a predicted site in their 3’UTR for that miRNA than for any other miRNA

(1.7 fold more likely, p < 2 × 10−7, Chi-Square test), providing evidence for some

degree of simultaneous targeting by sites in both the 3’UTR and ORF. For each of

the predicted ORF target sets, I searched for significantly enriched GO terms using

Amigo Term Enrichment software [14]. I found that 37 out of 94 miRNAs had target

sets with significantly enriched terms (versus 70 out of 94 for 3’UTRs), including 21

of the top 25 miRNAs with the most conserved ORF targets. Enrichment terms were

significantly more likely to be shared by predicted targets of the same miRNA in

ORFs and 3’UTRs, than by two different miRNAs (1.9 fold more likely, p < 10−12

Chi-Square test).

6.1.3 Extent of Conserved Targeting in Mammalian ORFs

To see if the same results extended to mammals, I applied the MinoTar algorithm to a

multiple alignment of vertebrate species with human. As in Drosophila, miRNA seed

sites in ORFs accounted for most of the top-conserved 8mers, were highly conserved

overall, and highly conserved sites could be discriminated above background with high

(> 90%) confidence, while control sets all behaved similarly to the set of all 8mers

(Fig 6-7, Fig 6-8, Fig 6-9; Table 6.2). I also compared the predicted conservation of

miRNA seed sites in human ORFs to the conservation observed in multiple species

alignments of human 3’UTRs and 5’UTRs (Fig 6-10). Interestingly, compared to

Drosophila, there was a larger dropoff in the level of conserved targeting between

3’UTRs and ORFs and between ORFs and 5’UTRs. The fraction of conserved sites

above background in ORFs was about 40% that in 3’UTRs while the fraction of
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Figure 6-7: Histogram of conservation scores for all 65,536 8mers. A majority of the
top conserved 8mers correspond to miRNA seed sites.

conserved sites above background in 5’UTRs was low, and not reliably above zero.

The level of conservation was again highly correlated between miRNA sites in 3’UTRs

and ORFs, and to a small extent between 3’UTRs and 5’UTRs, but sites in the

promoter region showed no similar relationship (Fig 6-11). (Fraction reaching 60%

confidence cutoff for the top 50% conserved miRNA seeds in 3’UTRs versus bottom

50%; ORFs: 0.10 versus 0.01, p < 5× 10−9; 5’UTRs: 0.05 versus −0.003, p < 0.003;

Promoters: 0.008 versus −0.003, p = 0.1; Mann-Whitney test).

The final target predictions from the MinoTar algorithm for both Drosophila and

mammals are available at [53].
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Figure 6-10: The scale of conserved miRNA targeting in 3’UTRs, ORFs and 5’UTRs
in humans. Top: Fraction of sites conserved above background for both 8mers and
7mers in 3’UTRs, ORFs and 5’UTRs. Bottom: Number of predicted sites above
background for 8mers and 7mers in 3’UTRs, ORFs and 5’UTRs. Error bars show
standard deviation in the estimates obtained from sampling of background sets.
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Figure 6-11: MicroRNA seeds showing the highest level of conservation in human
3’UTRs tend also to be the most conserved in ORFs and to a very small extent in
5’UTRs, but not in promoter regions. Shown are the fractions of sites conserved above
background at 60% confidence cutoff between 3’UTRs and ORFs (top panel), 3’UTRs
and 5’UTRs (middle panel), and 3’UTRs and promoters (bottom panel). Dotted
vertical and horizontal lines show the cutoff for conservation above background equal
to the maximal amount by which any miRNA was conserved below background.
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Motif Annotation
CTACCTCA let-7/98
TTACCTCA
CTACCTCC

ACTACCTC
CCTACCTC
GCTACCTC
TCTACCTC
CTACCTCG

TACCTCAG
TACCTCAT

ATGGCGGC unknown
ATGGCGGA

TGGCGGCG
GGCGGCGG
GGCGGCGC

AGGCGGCG
CGGCGGCG
GTGCCTTA miR-124
ATGCCTTA
GTGCCTTG

AGTGCCTT
AAGTGCCT

TGCCTTAA

Motif Ctd... Annotation
ACCAAAGA miR-9

AACCAAAG
TACCAAAG
GCACTTTA miR-17-5p/20/93
CGCCGCCG unknown

CCGCCGCC
GCCGCCGC

GCGCCGCT
GCCGTCGG

TTAGCTCG unknown
CTCAGGGA miR-125/351
GCGCGCTT unknown
TTTGATGA unknown
CGCACGCG unknown
CGCACTCG
GTGCCAAA miR-96/1271
TGTAAATA unknown
AAGCACAA miR-218
CTATGCAA miR-153
GAGGTAGG unknown
TCGCGCCG unknown
AGCAATAA miR-137

Table 6.2: A list of the top 18 highest scoring motifs in humans listed by descending
score. miRNA seeds account for 4 of the top 5 and 10 of the top 18 motifs.
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6.2 Experimental Results

6.2.1 Predictions Recover Targets with High Confidence

Having seen strong computational evidence for microRNA targeting in ORFs, I next

investigated this targeting experimentally. To test whether predicted ORF target sites

could confer substantial down-regulation, I selected 6 genes with highly conserved

seed sites for 3 different miRNAs: miR-1, miR-8 and miR-6 (a member of the K-

Box family). Since one of the genes, Arp87c was predicted to be targeted by both

miR-1 and miR-8, in total I tested 7 miRNA-target pairs. For each of these genes,

I cloned the ORF into a reporter plasmid and measured down-regulation upon co-

expression with the targeting miRNA in S2R+ cells. Briefly, each ORF was fused

with one of either a Myc or FLAG epitope tag, while the same ORF with synonymous

point mutations in the miRNA seed site was fused with the other tag (Fig 6-12).

This allowed for the ORF with wild type miRNA seed site (ORF-WT) and with

the mutated site (ORF-Mut) to be co-transfected and simultaneously visualized on

a western blot using 2 different secondary antibodies. For quantification, the ratio

of ORF-WT to ORF-Mut when transfected with miRNA was compared to the ratio

when transfected with a control plasmid. As an additional control, all ORFs were

co-transfected with non-targeting miRNAs. All experiments were repeated at least

twice under each epitope tag. More details on the experimental setup are given in

Section A.1.

Down-regulation was detectable in 5 out of 7 miRNA-target pairs while no non-

targeting miRNAs caused down-regulation of any of the genes. 4 out of 7 miRNA-

target pairs showed down-regulation greater than 25% and 2 out of 7 showed greater

than 50% down-regulation. The strongest effect was seen for one of the miR-1 targets

(CG8494) that contained three seed sites for miR-1 (one 8mer and two 7mers). In
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order to observe the effect of multiple sites within a single gene, I systematically

mutated away all 3 sites for this gene and tested the down-regulation for all 8 possible

mutated configurations. Regression on the observed log fold-change showed that

down-regulation was largely additive between the targeting sites (R2 = 0.91) with all

3 sites conferring significant down-regulation (Site 1: 13%±9%; Site 2: 36%±8%; Site

3: 45%± 6%; errors give 95% confidence intervals). This suggests that as in 3’UTRs,

genes with multiple sites are more likely to be strongly regulated by a miRNA.

6.2.2 Predicted Targets are Preferentially Down-regulated

In order to examine the scale of miRNA targeting in ORFs on endogenous targets, I

transfected S2R+ cells with either miR-1 or a control plasmid and compared expres-

sion levels using a whole genome microarray. While microarray analysis only allows

one to observe effects at the mRNA and not the protein level, recent results have

suggested that changes at the mRNA level may capture a significant portion of the

effects caused by miRNA targeting ([38], [29]). I looked at the effect of miR-1 over-

expression on 4 categories of genes: (i) genes with a miR-1 ORF site predicted by

the MinoTar algorithm, (ii) genes with any miR-1 seed site in the ORF, (iii) genes

predicted to be targeted by miR-1 in the 3’UTR by TargetScan, and (iv) genes with

any miR-1 seed site in the 3’UTR (Fig. 6-13). Predicted ORF targets were sig-

nificantly down-regulated versus the set of all genes (12%, p = 2× 10−16; K-S test),

significantly more down-regulated than genes with a non-conserved seed in their ORF

(12% versus 6%, p < 2 × 10−4; K-S test) and showed mean down-regulation about

half as strong as predicted 3’UTR sites (12% versus 24%). These results suggest

that while weaker than 3’UTR targeting, targeting in ORFs is widespread, and that

conservation can preferentially recover functional ORF sites. Additionally, I looked

at the down-regulation of genes with a miR-1 seed site in their 5’UTR. These genes
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Figure 6-12: Top panel: Illustration of the experiment. Each ORF with wild type
miRNA target site and the same ORF with mutated site were placed under different
epitope tags and co-expressed with either a control plasmid or miRNA, and then
run on Western blot. Quantification was made by comparing the ratio of the two
channels under miRNA versus under control plasmid. Shown are the bands from a
test of CG11178 targeting by miR-1. Middle panel: Down-regulation of target genes.
Shown are the fold changes of targets under targeting miRNAs (red bars) as well
as under miRNAs not predicted to target the genes (blue bars). Error bars show
standard deviation, asterisks denote p-values (Students t-test; **: p < 0.01, ***:
p < 0.001). Bottom panel: Effect of multiple target sites. Shown is down-regulation
of CG8494 by miR-1 with all 8 combinations of the 3 predicted sites (WT sites are
marked as + and mutated sites as -), averaged over 3 separate experiments. Error
bars give standard deviation.
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Figure 6-13: Cumulative distributions for genes of different categories. Genes with
predicted ORF sites show down-regulation about twice as strong as those with any
ORF site, and about half as strong as those with predicted 3’UTR sites.

showed mean down-regulation of a similar scale to those with non-conserved seed sites

in their ORF (6%, p < 4× 10−5; K-S test).
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Chapter 7

Importance of ORF Targeting

The results in this section show that conserved miRNA targeting in Drosophila ORFs

occurs at a similar scale to conserved targeting in 3’UTRs. As in 3’UTRs, not all

of the contextual features that make some target sites more effective than others are

known. However, by seeking highly conserved seed matches, the MinoTar algorithm

can recover functional ORF sites with high confidence. Additionally, the results sug-

gest that factors indicative of stronger targeting in 3’UTRs, particularly the presence

of multiple seed sites, should also be helpful in finding the most effective ORF sites.

And while most predicted ORF targets are not predicted to be 3’UTR targets, the

set of genes targeted in both regions show significantly more overlap than expected,

suggesting that simultaneous targeting of genes in both regions occurs in some cases.

In general, targeting in ORFs appears to be weaker than 3’UTR targeting. How-

ever, given the scale of conserved ORF targeting observed, it seems likely that a large

number of important ORF targets remain to be discovered. For both 3’UTR and

ORF targets, it remains an open question how to interpret the vast scale of conserved

miRNA targeting observed. With tens to hundreds of preferentially conserved targets

per miRNA in the 3’UTR alone, a similar number in ORFs, and the potential for
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species-specific [19] as well as non-canonical targets [69], the scale of targeting by

miRNAs is daunting. It has been suggested that a significant fraction of target sites

may impart only modest down-regulation, and exist merely to finely tune expression

levels [7]. Given the weaker strength of targeting in ORFs compared to 3’UTRs,

it seems possible that for ORFs an even greater fraction of sites may serve such a

purpose.

Interestingly, comparison of results in Drosophila and in human indicates that the

relative importance of targeting in ORFs and 5’UTRs to 3’UTRs may be stronger in

Drosophila. The discrepancy is particularly strong for 5’UTRs, where for humans the

fraction of miRNA seed sites conserved is quite small, while in Drosophila the fraction

is about 40% the fraction conserved in 3’UTRs. Indeed, in the miR-1 over-expression

microarray experiment, genes with a 5’UTR site for miR-1 showed significant down-

regulation, suggesting that many of these sites may be functional. One possibility is

that in Drosophila, where 3’UTRs are significantly shorter than in humans, microR-

NAs have been forced to make greater use of ORFs and 5’UTRs for targeting. Such an

interpretation must be taken with caution, however. Because of the far larger effective

population size in Drosophila than in humans (∼ 106 versus ∼ 104), features under far

smaller selective pressures will be conserved in Drosophila. Therefore, it is possible

that this difference merely reflects the difference in thresholding of conservation for

the two clades, rather than a difference in biological importance. As ORF targeting

in both species continues to be investigated, the answer should become clearer.

An interesting question is why targeting should be weaker in ORFs or 5’UTRs

than in 3’UTRs. A number of experiments have suggested an answer. According to

these results, the reduced efficacy of 5’UTR and ORF sites is attributed to displace-

ment of the miRNA silencing complex within the 5’UTR by the scanning machinery,

as it passes from the cap to the start codon, and within the coding region by translo-
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Figure 7-1: An intriguing possibility is that the strength of ORF targeting can be
modulated according to cellular conditions. While miRNA targeting in ORFs is nor-
mally partially repressed by the passage of ribosomes, under conditions with repressed
translation (such as starvation), this repression could be alleviated and the targeting
made stronger.

cating ribosomes [38, 39]. Supporting this model, 3’UTR sites that lie within ∼ 15

nucleotides of the stop codon are no more effective than ORF sites, as expected if

the silencing complex were displaced by the ribosome leading edge as the stop codon

approached the ribosome A site [38].

If this is the reason for ORF targeting being less effective, an intriguing possibility

is that the strength of ORF targeting could be modulated according to the global

level of translation in the cell. A number of cellular conditions, such as starvation,

are known to repress translation globally. Given this, it seems possible that ORF

targets that are of only modest effect under normal cellular conditions, could have a

significant regulatory role under such conditions (Fig 7-1). This could enable a whole

class of regulatory relationships to be revealed, allowing for large numbers of genes

to quickly be turned off under these conditions. I have made a significant effort to

test this in Drosophila S2R+ cells using starvation conditions (as well as stimulation
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of the insulin pathway which should have the opposite effect and make ORF targets

less effective), but have not been able to see a repeatable effect so far. I am currently

continuing to examine this possibility in humans in collaboration with the Bartel lab

at the Whitehead Institute.



Part III

Repeat-Mediated MicroRNA

Targeting

93



94



Chapter 8

Sequence Repeats

The human genome (like the genomes of most species), is filled with repeated se-

quences of various types [23]. These repeats range from multiple adjacent copies of

simple nucleotide sequences (such as the CAG/CTG tri-nucleotides in the case of

poly-Q repeats), to highly repeated protein domains, to sequences of several kilo-

bases associated with transposons. Many of these regions are subject to mutational

processes that can quickly change the number of repeats, leading to their rapid evolu-

tion [63]. As a result, these regions have particularly high variability between people,

a useful property that has led to the widespread use of some regions in forensic

tests [62], and which in the case of certain repeats can lead to important phenotypic

consequences, including a number of diseases [79, 100].

Sequence repeats can exert phenotypic consequences through a number of mech-

anisms. These include effects at the protein level as well as at the DNA or RNA

level. At the protein level, repeats can block the natural protein degradation process,

cause aberrant protein accumulations, or interfere with protein function [79, 100].

At the DNA level, repeats may cause epigenetic changes that result in widespread

changes in transcription, and can also function directly as promoter elements to re-
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cruit transcriptional activators and silencers [79, 100]. At the RNA level, repeats may

change RNA secondary structure, alter regulation of the translation rate through the

recruitment of proteins, or lead to the formation of short silencing RNAs through the

formation of double stranded RNA [79, 100].

In this section, I describe a novel relationship between repeated sequences and mi-

croRNA targeting (and most specifically targeting in ORFs). This relationship leads

to a new mechanism under which repeats can exert phenotypic effect, and suggests a

number of cases where microRNA targeting in ORFs can be far stronger than earlier

work has indicated was possible. As briefly described in Section II of this thesis, work

on microRNA targeting in mammalian ORFs has provided a mixed picture on the

importance of such targeting. Large-scale studies examining the effects of introducing

or deleting a miRNA have shown that sites in 3’UTRs generally are more effective

than those in either 5’UTRs or open reading frames (ORFs) [6]. However, although

ORF sites generally are less effective, enough ORF sites mediate repression to observe

a signal above background in large-scale functional studies [74, 38, 5, 90], and even

more sites appear to bind the silencing complex sufficiently to mediate enrichment

of the mRNA (or a cross-linked fragment of the mRNA) during immunoprecipitation

of the silencing complex [28, 46, 20, 41, 106]. Supporting the biological function of

some of these ORF sites, bioinformatic approaches (including the work in this thesis)

have shown that many ORF sites are preferentially conserved [73, 95, 33]. And re-

porter assays have also confirmed that sites in both 5’UTRs and ORFs can mediate

repression [28, 77, 27, 33, 80, 91, 97, 29, 56].

The efficacy of miRNA-mediated repression increases with the number of sites,

suggesting that targeting might be substantial if a gene contained many sites in its

coding region, as could arise from coding-sequence repeats. While simple classes of

repeats, such as microsatellites, are particularly widespread in the genome, of greater
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interest in this work are repeated sequences of greater complexity, a striking case of

which occurs within the C2H2 class of zinc-finger genes. C2H2 genes have undergone

extensive expansion over the course of vertebrate evolution and constitute the largest

group of human transcription factors [24]. Typically, C2H2 genes contain a significant

number of tandemly-repeated C2H2 amino-acid domains, each of which coordinates a

zinc ion and has the potential to bind DNA in a sequence-specific manner [105]. The

emergence of highly repeated amino-acid domains creates instances of highly repeated

short nucleotide sequences in a large fraction of such genes.

In this section of the thesis, I show that the ORFs of many repeat-rich genes

contain strikingly large numbers of target sites of particular miRNAs. Moreover,

these genes with many sites are frequently strongly repressed. For seven miRNA

families, this type of targeting appears to be extensive. In the most notable cases,

four miRNA families (miR-23, miR-181, miR-188 and miR-199) have seed sites that

match repeated sequences within C2H2 zinc-finger genes. Three others (miR-370,

miR-766 and miR-1248) have seed sites that match simpler repeats. Effective target-

ing of coding-region repeats is highly predictable, and, due to the large number of

target sites within a single ORF, down-regulation observed in reporter assays can be

stronger than that of many 3’UTR targets. For the C2H2 class of zinc-finger genes,

targeting is shared among paralogous genes, suggesting the potential for their coordi-

nate regulation. mRNAs of both RB1 and its accessory protein, RBAK, are targeted

by miR-181 primarily through ORF sites, suggesting an unappreciated role for miR-

181 in cancer development and underscoring the potential importance of ORF sites

in understanding miRNA biology
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Chapter 9

Repeat-Mediated MicroRNA

Targeting

9.1 miR-181 Represses mRNAs with ORF Repeats

The investigation in this section of the thesis was pursued after a re-analysis of previ-

ously published microarray data from miR-181a transfection in HeLa cells [5] yielded

a surprising result. In that experiment, some of the most strongly down-regulated

mRNAs contained miR-181 seed sites in their coding regions. This result was in-

triguing because, although miRNA targeting has been observed in ORFs, it usually

confers more subtle repression. Further investigation revealed that the strong down-

regulation was the result of a group of mRNAs containing numerous miR-181 sites

(Fig 9-1). Genes that contained a single 8mer site in their coding region were only

slightly, though statistically significantly, down-regulated (mean log2 fold-change:

−0.07; p < 2 × 10−4, Mann-Whitney U test) and significantly less so than those

with a single 8mer site in their 3’UTR (mean log2 fold-change: −0.07 vs. −0.17;

p < 0.01, Mann-Whitney U test). However, those genes with an increasing number
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of ORF sites showed increasingly strong down-regulation. In particular, the 52 genes

with at least four 8mer ORF sites were nearly all repressed and, even when restricted

to the subset of 18 of 52 genes with no 3’UTR sites, showed significantly stronger

repression than those genes with a single 8mer 3’UTR site (mean log2 fold-change:

−0.51 vs. −0.17; p < 5×10−3, Mann-Whitney U test). Many of these genes had even

more than four 8mers sites as well as equally large numbers of 7mer sites (Table B.2).

Perhaps most surprising, considering the strikingly large number of sites, was not

that such genes were strongly down-regulated, but that genes should have so many

sites to a single mRNA. Indeed, miR-181 was exceptional in this regard (Fig 9-2).

Whereas for most miRNAs few or no genes contained large numbers of 8mer sites,

for miR-181 there were many such genes.

After observing the impact of miR-181 on a large class of endogenous transcripts,

the first aim was to confirm the direct, miRNA-mediated repression of a number of

specific genes. To do so, reporter proteins were generated in which firefly luciferase

was fused in-frame to the C terminus of the protein product of each of five genes:

ZNF573, ZFP37, ZNF20, ZNF791 and RBAK. These genes contained (9, 8, 6, 5, 9)

miR-181 8mer sites and (2, 7, 2, 1, 10) miR-181 7mer sites, respectively. Repression

by miR-181a was evaluated by comparing normalized luciferase values from cells co-

transfected with miR-181a to those with miR-23a, a non-cognate miRNA. For each

gene tested, significant and robust repression by miR-181a was observed (Fig 9-3 top

panel; p < 10−6 Mann Whitney U Test). To confirm that the measured signal in

each case was coming from the full-length fusion proteins, the reading frame register

was disrupted by inserting or deleting one nucleotide early in the zinc finger coding

sequence of the mRNA. For all of the fusion constructs, these frame shift mutations

significantly reduced luciferase activity (Fig 9-3 bottom panel).

To confirm that the observed repression was directly mediated by the ORF sites,
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Figure 9-1: miR-181 targets genes with multiple coding-region sites. Top panel:
Response of mRNAs to the introduction of miR-181a into HeLa cells. Plotted are
cumulative distributions of fold changes for mRNAs with the indicated numbers and
types of sites. Except for the two categories indicated, categories with ORF sites
excluded mRNAs with 3’UTR sites, and those with 3’UTR sites excluded mRNAs
with ORF sites. Bottom panel: Mean fold changes for the same categories of genes.
Error bars show standard deviation from bootstrapping.
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Figure 9-2: The propensity of miR-181 to have many ORF sites. Plotted are numbers
of genes containing at least the indicated number of sites for either miR-181 (green)
or the median across all miRNAs (blue). Error bars show the interquartile range.

a ZNF20-luciferase mutant in which each of the six miR-181 8mer and two miR-181

7mer seed sites within the ORF were mutated with two synonymous point substitu-

tions was generated. Compared with this mutated construct, wildtype ZNF20 was

significantly and specifically repressed by miR-181a (Fig 9-4 top panel; p < 10−6).

The repression attributed to these sites increased from 2.5-fold to 6.3-fold when the

fragment containing the sites was incorporated as part of the reporter 3’UTR (Fig

9-5). This difference between the efficacy of ORF sites and 3’UTR sites was signif-

icant (p < 10−4) and consistent with the general observation of ORFs being more

refractory to miRNA targeting than are 3’UTRs [38].

Similarly, a test of whether the repression of RBAK, observed in the luciferase

assays (Fig 9-3) and in the previous microarray study [5], was directly mediated by

its miR-181 sites was performed. In addition to its nineteen ORF sites (nine 8mers
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Figure 9-3: Top panel: miR-181a mediated repression of reporters with miR-181 ORF
sites. Reporters included the luciferase ORF following the ORF of the indicated
mRNA. Fold repression was calculated relative to that of the non-cognate miRNA,
miR-23a. Plotted are the normalized values, with error bars representing the third
largest and third smallest values (n = 12; p < 10−6, except for the control, luciferase-
only reporter, for which p = 0.32). Bottom panel: Zinc-finger-luciferase constructs
as genuine fusion proteins. In order to verify that the ORF-luciferase proteins were
being appropriately expressed, firefly luciferase expression, normalized to the Renilla
luciferase transfection control, of wild-type constructs was compared with that of
mutant constructs (n ≤ 5; p < 0.005).
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and ten 7mers), the 3’UTR of RBAK contains a conserved 7mer-m8 site and a poorly

conserved 7mer-A1 site [34]. A panel of constructs was generated, expressing either

the RBAK ORF with a C-terminal luciferase tag or the RBAK 3’UTR following

the luciferase reporter (Fig 9-4 bottom left panel). Although the 3’UTR sites medi-

ated statistically significant repression (1.3-fold; p = 0.0009), the ORF sites gave far

stronger repression (3.2-fold repression; p < 10−6). When both the ORF and 3’UTR

sites were monitored in combination, 3.3-fold repression was observed (Fig 9-4 bottom

right panel; p < 10−6), which was not significantly different from that observed with

the ORF sites alone (p = 0.59). These data indicate that the repression of RBAK by

miR-181a was direct and that the majority of the miR-181a mediated repression of

RBAK was due to targeting through its ORF sites. Again, analogous to the results

on ZNF20, the repression attributed to the ORF sites increased from 3.2-fold to 11.2-

fold when the fragment containing the sites was incorporated as part of the reporter

3’UTR (Fig 9-5).

9.2 Additional miRNA Seeds Match ORF Repeats

To find other miRNAs that might affect ORF targets similarly, a search was performed

for all 8mers highly repeated within human ORFs. For each 8mer, the number of

non-overlapping occurrences within each ORF was counted. Because four ORF sites

mediated robust repression by miR-181, this was chosen as a threshold, and for each

8mer the number of genes with four or more instances of that 8mer was recorded (Fig

9-6). The majority (77%) of 8mers did not occur four or more times in any coding

region, and the vast majority (97%) occurred four or more times in only five or fewer

coding regions. At the tail of the distribution, 334 8mers appeared at least four times

in at least 25 genes, among which were seven miRNA 8mer seed matches (Table

9.1). For each of the seven corresponding miRNA seed families, potential target sets
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Family Seed Complement Conservation Number Targets Target Family
miR-23 AATGTGAA Vertebrates 43 C2H2 Zinc Fingers
miR-181 TGAATGTA Vertebrates 75 C2H2 Zinc Fingers

miR-188-3p TGTGGGAA Mammals 210 C2H2 Zinc Fingers
miR-199-5p ACACTGGA Vertebrates 82 C2H2 Zinc Fingers

miR-370 CAGCAGGA Mammals 25 Varied
miR-766 GCTGGAGA Human 27 Varied
miR-1248 AAGAAGGA Human 34 Varied

Table 9.1: Information on microRNAs with repeated coding-region sites in many
genes

containing genes with at least four 8mer sites were compiled (these are given in Table

B.1, Table B.2, Table B.3, Table B.4, Table B.5, Table B.6, and Table B.7).

Based on the sets of predicted targeted genes, these miRNA families split into two

main groups (Fig 9-6). For four of the miRNAs (miR-23, miR-181, miR-188 and miR-

199), the target sets were almost entirely C2H2 zinc-finger genes, and sites in these

genes mostly occurred within tandemly repeated C2H2 amino-acid domains. For the

other three annotated miRNAs (miR-370, miR-766, and miR-1248), the predicted

targets were more varied, and sites largely occurred within highly prevalent amino-

acid pairs or triplets, though in some cases they occurred within long stretches of

simple nucleotide repeats. Because of their limited conservation, low expression levels

and questionable status as authentic miRNAs, two of these three miRNAs (miR-766

and miR-1248) were not considered further.

The most common form of the C2H2 amino-acid domain is XCX2CX12HX3H

(where X represents any amino acid and the subscripts represent the number of amino

acids [31]). Typically, C2H2 zinc-finger genes contain many tandem repeats of the

zinc-finger motif (8.5 on average in humans), which are connected by a specific linker

sequence most commonly of the form TGEKPY [31]. The 8mer sites for the four

miRNA families each occurred within specific amino-acid realizations at specific lo-
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Figure 9-6: Potential targeting of frequent ORF repeats by additional miRNAs. Top
panel: Motifs frequently repeated in ORFs of many mRNAs. The histogram considers
all 65,536 possible 8mer motifs and plots the number of these 8mers that match the
indicated number of unique ORF at least four times. Also indicated are the seven
miRNAs with 8mer sites among the 334 motifs that appeared at least four times in
at least 25 genes. Bottom panel: The amino-acid sequence coded by regions flanking
8mer ORF sites corresponding to the miRNA indicated. Sites overlap codons 7–9.
Letter size indicates enrichment, visualized using WebLogo.
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Figure 9-7: Top panel: Locations of 8mer sites within the repeated C2H2 domain.
Bottom panel: Locations of C2H2 domains and miR-181 sites within the RBAK gene.
Two C2H2 domains in which one of the histidines has been lost are shown as non-
canonical zinc fingers. In cases where a single zinc finger contains both 8mer and
7mer sites, the 7mer overlaps the second cysteine in the motif

cations in this motif (Fig 9-7 top panel). Because of the large numbers of paralogous

motifs within a single gene, the number of seed sites can be large. A typical example

is the gene RBAK, which contains fourteen C2H2 domains, eight miR-181 8mers and

ten miR-181 7mers (Fig 9-7 bottom panel).

9.3 Predicted Targets are Repressed by miRNAs

From the list of predicted miR-23 targets (Table B.1), three genes (ZNF225, ZNF486

and ZNF85) were chosen for experimental follow-up. Fusion constructs with a C-
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Figure 9-8: ORF target predictions recover functional targets for additional miRNAs.
Left panel: miR-23a mediated repression of reporters with miR-23 ORF sites (n = 12;
p < 10−6). Middle panel: miR-370 mediated repression of reporters with miR-370
ORF sites (n = 15; p = 0.0009 and 10−8, for HDAC5 and IVL, respectively). Right
panel: miR-199a mediated repression of a reporter with miR-199 ORF sites (n = 12;
p = 2× 10−6 and 0.08, for ZNF791 and ZNF20, respectively).

terminal luciferase tag were made as before, and disruption of the reading frame by

a nucleotide insertion substantially decreased luciferase expression, confirming that

the majority of signal came from the full-length protein (Fig 9-3 bottom panel). The

constructs were transfected in the presence of miR-23a or a non-cognate miRNA,

miR-181a. For all three targets, normalized luciferase values were significantly re-

duced in the presence of miR-23a when compared with those with the non-cognate

miRNA (Fig 9-8 left panel; p < 10−6). The magnitudes of repression were particu-

larly notable because miR-23 has high target abundance and thus generally weaker

targeting efficacy [4].

This analysis was extended to predicted targets of both miR-370 and miR-199. In

the case of miR-370, the response of two targets was probed, IVL and HDAC5, both
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of which were significantly repressed (p < 10−7 and p = 0.009, respectively; Fig 9-8).

Similarly, ZNF20 and ZNF791, experimentally supported targets of miR-181, also

contained multiple seed matches to miR-199 and were examined for their response

to miR-199a (Fig 9-8). ZNF791, which contains six miR-199 8mer sites and one

7mer site, was significantly repressed (p < 10−5). In contrast, the luciferase control

was either unaffected by these miRNAs or, in the case of miR-199a, significantly less

repressed than the ZNF791-luciferase fusion (p = 0.0003). Taken together, although

individual ORF sites are less effective than 3’UTR sites [38], these results indicate

that highly repetitive ORFs containing many miRNA sites can generally be subject

to significant and, in some cases, substantial repression by the cognate miRNA.

9.4 Targets are Paralogous Families of C2H2 Genes

Having observed the extent and, in some cases, surprising magnitude of targeting

arising from ORF repeats, I next considered the evolutionary processes giving rise

to this phenomenon. The focus was on C2H2 zinc-finger genes because these formed

the most dramatic and frequent instances of this phenomenon. Among the predicted

targets, most C2H2 genes (>80%) contained the general transcriptional repressor

KRAB domain (Fig 9-9 top panel). KRAB-containing C2H2 genes display particu-

larly interesting patterns of evolution, having high rates of gene duplication and loss

as well as a dramatic expansion over the course of vertebrate and mammalian evolu-

tion [57]. To understand the role that these duplications played in forming miRNA

targets sets, I collected sequences of all KRAB domains annotated in human and used

these to create a multiple alignment of KRAB domains. From this alignment, the

inferred phylogeny of KRAB-containing genes provided a context for considering the

four miRNA target sets (Fig 9-10).

The inferred phylogeny revealed that each of the four miRNAs target multiple
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Figure 9-9: Top panel: Diagram of domain structure of C2H2 zinc-finger genes.
Bottom panel: Overlap between the predicted targets of the indicated miRNAs.
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families of genes that have undergone significant expansions through gene duplication.

Combined over the four miRNA families, the target sets covered the majority of

KRAB-containing C2H2 genes with varying amounts of overlap between each set (9-9

bottom panel). Whereas the miR-188 target set spanned nearly the entire phylogeny,

the other three miRNAs each targeted more specific families of genes. For instance,

the miR-23 targets were nearly all members of one family: the recently duplicated

ZNF91 family, which has undergone a significant expansion in the primate lineage

[42].

Sequence analysis suggested that two duplication processes contributed to the cre-

ation of such extensive repeat-containing families. First, individual C2H2 domains

were duplicated multiple times within a single zinc-finger gene. Next, the gene itself

was duplicated to form an extensive gene family, and this family underwent sub-

sequent diversification, with occasional intragenic domain duplication or loss. Due

to the initial intragenic duplication process, the sequences of individual zinc fingers

within a gene were far more similar to each other than expected by chance. To

verify the importance of this effect, I implemented a randomization procedure for

nucleotide sequences within C2H2 domains that preserved amino acid sequences and

average codon usage over all domain instances. Even when fixing the observed amino

acid sequences, real instances of C2H2 domains from within the same gene showed

significantly higher nucleotide similarity than expected by chance (Fig 9-11). When

C2H2 domains with randomized sequences were mapped back to genes, far fewer of

these genes contained large numbers of miRNA sites than did the real genes (Fig

9-12). It was tempting to speculate that the similarity in nucleotide sequences across

C2H2 domains within a gene represented an additional selective pressure to maintain

miRNA seed sites in these genes. I observed marginal evidence for this model but

unfortunately could not detect such an effect at high confidence.
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Figure 9-11: Similarity of codons across C2H2 domains for real zinc-finger genes
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The initial intragenic duplication of individual C2H2 domains allowed for the

founding nucleotide-sequence choice to be amplified. After repeated duplication, a

gene would ultimately include either many sites or no sites at all, depending on the

presence or absence of a target site within a founding C2H2 domain. Such duplication

contributed to the modularity of miRNA target sets; even for families of genes with

C2H2 domains containing similar amino acid sequences, genes from one family often

contain many target sites, whereas those from another contain almost none. For

example, although miR-188 sites are prevalent throughout the set of KRAB genes,

they are almost entirely absent from the ZNF91 family of genes, despite these genes

encoding comparable numbers of instances of the amino acid triplet (CGK) within

which the miR-188 seed site appears.

The presence of large numbers of miRNA sites within coding regions also provided

an opportunity to gain miRNA sites in the 3’UTR through the acquisition of nonsense

mutations. For all four miRNAs, there was clear evidence of this process. For each

miRNA, the set of predicted target genes were far more likely to contain 3’UTR target

sites than were the overall set of genes (Fig 9-13; p < 10−7 for all comparisons except

miR-199 7mers; binomial test). Moreover, regions flanking 3’UTR sites of predicted

ORF targets had high similarity to the regions flanking the corresponding ORF sites,

which suggested that many of these 3’UTR sites resided in the remnants of zinc-finger

domains that had been lost to the 3’UTR (Fig 9-14). Although the average number of

3’UTR sites in these genes was modest compared to the number of ORF sites (mean

total number of 7mer and 8mer sites: miR-23, 2.7; miR-181, 1.2; miR-199, 0.6; miR-

188, 0.6), due to the greater efficacy of the 3’UTR sites, their presence presumably

enhances the targeting of some genes.
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Figure 9-13: Propensity of ORF targets to also be targeted in 3’UTRs. Shown are
fractions of genes containing either 8mer or 7mer sites for the indicated miRNA within
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bars show standard deviations from 100 bootstrapping trials.
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Figure 9-14: Evidence that 3’UTR sites derived from ORF sites. Shown are nucleotide
compositions flanking miRNA sites in both ORFs and 3’UTRs of mRNAs with ORF
sites.
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Chapter 10

Importance of Repeat-Mediated

Targeting

In animals, miRNAs target many genes through sites in their 3’UTRs but cause only

modest repression of most of these targets. Compared with this generally modest

targeting within 3’UTRs, most targeting within ORFs is substantially weaker still.

Nonetheless, the work in this section has demonstrated that significant numbers of

substantially repressed ORF targets exist and that such targets can be easily identi-

fied by the presence of large numbers of sites to the same miRNA. Recently, a similar

observation of ORF targeting was independently observed to occur in the case of a

single miRNA [56]. The work here, going significantly further, provides a system-

atic examination of this phenomenon and gives the first bioinformatic evidence and

experimental verification of the widespread nature of this type of targeting. Indeed,

this targeting involves multiple miRNAs and likely hundreds of genes. While some

of the target sites identified show the potential for supplemental 3’ base-pairing to

the miRNA, none exhibit the extensive complementarity required for cleavage of the

mRNA. It therefore appears likely that the mechanism of repression for these genes
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is identical to that for most 3’UTR targets.

Interestingly, although there are examples of both 5’- and 3’UTRs containing

repeats, none of the highly repeated motifs matched known miRNA seeds, which in-

dicates that repeat-mediated targeting is largely ORF specific. Moreover, although

repeats in coding regions are prevalent in numerous animal clades, the presence of

miRNA sites within these repeats appeared to be vertebrate-specific. This work fo-

cused on those miRNAs with at least four sites in large sets of genes, but there were

many other miRNAs with at least this many sites in a handful of genes. In addition,

many genes contained multiple ORF sites to multiple miRNAs. The eventual deter-

mination of expression patterns for these miRNAs at cellular resolution should enable

prediction of additional targets in which ORF sites combine to achieve substantial

repression.

The most striking cases of repeat-rich targeting occurred within the KRAB-

domain C2H2 zinc-finger genes, which constitute the largest collection of human tran-

scription factors. The results here indicate that a single miRNA can target entire fam-

ilies of these genes, thereby simultaneously regulating large numbers of evolutionarily-

related transcription factors. The targeting of such a large number of transcription

factors by a miRNA has the potential to cause significant and widespread down-

stream effects. Through phylogenetic analysis I have shown how repeat-mediated

targeting arises in these genes under an extensive evolutionary duplication process.

Analysis of KRAB-domain containing families indicates positive selection towards di-

versification of DNA-binding residues [31]. Hence, following duplication, individual

genes frequently gain new downstream regulatory roles, while most members of the

family retain the potential for upstream miRNA-mediated regulation. With a few

exceptions, the functions of KRAB-domain genes remain unknown [57]. While a few

show tissue-specific expression, most are widely expressed [101], and I have found
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Figure 10-1: Direct repression of RB1 ORF mediated by miR-181a, as assayed by
luciferase assays. Fold repression was calculated relative to that of the non-cognate
miRNA, miR-23a. Plotted are the normalized values where the repression of the
reporter with wild-type sites (WT) was normalized to that of the mutant reporter in
which the three ORF sites were mutated. Error bars represent the third largest and
third smallest values.

that most predicted target genes appear to have expression patterns overlapping that

of the corresponding miRNA, suggesting that the targeting described here is likely to

affect their in vivo expression.

One ORF target of miR-181, RBAK, is reported to function as an RB1-associated

transcriptional repressor [94]. Suggestive of coordinate regulation, RB1, which en-

codes the well-characterized tumor-suppressor protein [43, 22], also contains sites to

miR-181 in both its ORF (two 8mers and one 7mer) and 3’UTR (one nonconserved

7mer). Although no repression was observed for the 3’UTR site, significant repres-

sion by miR-181a was observed for the RB1 ORF-luciferase fusion (Fig 10-1; 1.4-fold

repression, p < 10−6). This newly recognized miR-181 targeting of RB1 and RBAK

had not been appreciated from previous analyses focusing only on 3’UTR sites and

is intriguing when considering that miR-181 is up-regulated in some cancers and is



122 CHAPTER 10. IMPORTANCE OF REPEAT-MEDIATED TARGETING

important for maintaining cancer stem cells in hepatocellular carcinoma [87, 15, 61].

Even transient induction of miR-181b is sufficient to mediate an epigenetic switch

to cancer, and inhibition of miR-181b reduces colony formation in several cancer cell

lines, observations proposed to result from direct targeting of the tumor-suppressor

CYLD [59]. Because both RB1 and RBAK repress activation of E2F-dependent

promoters and decrease DNA synthesis [94], the ability of miR-181 to repress RB1

and RBAK might provide an additional mechanism by which this miRNA mediates

transformation.

The work here also suggests a general role of coding-sequence repeats in post-

transcriptional regulation. For transcriptional regulation, the accumulation and clus-

tering of multiple transcription factor binding motifs has been used for some time

to predict functional regulatory relationships [44]. Given the large number of post-

transcriptional regulatory processes that exist beyond miRNAs [35, 82] and the vast

extent of sequence repeats within many protein-coding genes, miRNAs might not be

the only regulatory process utilizing this phenomenon.



Part IV

Widespread Non-Coding Function

in Coding DNA
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Chapter 11

Evolution of DNA in Coding

Regions

11.1 Selection on Synonymous Mutations

Due to the degeneracy of the genetic code, the same amino acid sequence can be en-

coded by many different nucleotide sequences. Classically, synonymous substitutions–

those nucleotide changes in a protein coding sequence that don’t change the amino

acid sequence– were viewed as having no functional significance. Such sites were

therefore thought to evolve neutrally [16], an assumption that continues to underly

many of the tests for selection at the amino acid level. However, as sequence data

became available, it became clear that codons are used in unequal frequencies in

many species, a phenomenon termed ‘codon bias’ [47]. This observation suggested

that many synonymous sites are not completely neutral, but are in fact under at least

weak purifying selection. While the full causes of codon bias still aren’t known, the

most common explanation is that the bias reflects pressure to reduce the depletion of

tRNAs [16]. One line of evidence supporting this explanation is that in most organ-
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isms, including Drosophila, the level of codon bias increases with gene expression [92].

In addition to the selective pressures that maintain codon bias, any functional

role at either the DNA or RNA level of a gene would be expected to cause selection

on synonymous sites. Indeed, specific instances of regulation within coding regions

have been previously identified. A number of studies (including the work described

in Section II of this thesis) have demonstrated that microRNAs can target sequences

in the open reading frame of genes, and cause a significant impact on the evolution of

such sequences in both Drosophila and mammals. In addition, sequence motifs have

been identified that either enhance or silence splicing [32] when found in exons near the

splice junction. Finally, a small number of transcriptional enhancers have been found

to be located within the coding regions of genes in mammalian Hox genes [70, 98].

These studies suggest that there may be a significant amount of non-coding regu-

lation in coding DNA that awaits discovery, and that a global analysis of conservation

in protein coding genes should help guide such discovery. In this section, I undertake

such an analysis in Drosophila melanogaster. My goals for this undertaking were

twofold. First, to estimate the extent of non-coding regulation within coding DNA

that appears to be under purifying selection in Drosophila. Second, to provide a

map of conservation across Drosophila protein coding genes that can be used by re-

searchers investigating regulatory elements within specific coding regions. Analogous

maps of conservation in non-coding regions have found widespread use in identifying

regulatory elements in non-coding DNA [93], and it is my hope that the results here

will prove similarly useful.

From this analysis, I have found evidence that non-coding selection on coding DNA

in Drosophila is widespread, with perhaps 10% of coding DNA under such selection

(beyond that expected due to codon bias). I have also found evidence suggesting

that regulation of a number of processes, particularly splicing and translation, are a
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substantial cause of such selection. Finally, I have identified a number of large regions

that exhibit particularly high conservation of their nucleotide sequences, suggesting

these regions may be particularly dense in regulatory signals.

11.2 The Effects of Background Selection

Much of the analyses in this section involve comparisons of conservation among re-

gions near different genomic features. The results of such analyses can be influenced

in subtle ways by an effect known as background selection. Under this effect, selec-

tion at one locus effects the evolution of other loci that are in linkage disequilibrium

(LD) with the locus. A substantial literature has been written on this subject, and it

remains an active area of investigation. For the purposes of this section, the effect is

largely an alternative interpretation for a number of results that must be ruled out.

I therefore give a brief description here of this phenomenon, and the impact it can

have on the evolution of a locus under selection.

Figure 11-1 gives a basic illustration of the effect in a simple two-locus model.

Consider multiple loci that are nearby on the genome and therefore under linkage

disequilibrium, where all the loci are under purifying selection. One of these (the

red locus in Fig 11-1) is the locus of interest, while the others are interfering loci. If

there were no other loci under selection, then the probability of fixation of a new allele

subject to selection coefficient s would be 1−e
−sNe

N

1−e−2Nes , where Ne is the effective population

size (N is the population size at the time the mutation occurs). However, with the

other loci present, a number of the alleles at the red locus are linked to deleterious

alleles at the other loci and therefore are bound to be lost from the population (save for

a recomination event). Because of this, there is a reduction in the effective population

size Ne. In the case of no recombination, this reduction is simply by a factor of 1− q,

where 1− q is the fraction of alleles that contain deleterious alleles at the other loci.
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Figure 11-1: An illustration of background selection. The effective population size
for the locus of interest (red) is reduced due to the presence of deleterious mutations
at linked loci.

This effect is important when comparing codon conservation within different ge-

nomic regions. In particular, a codon far from the boundary of an exon will on average

be in linkage disequilbrium with a greater number of amino acid loci than one lying

near the boundary. Therefore, such a codon will evolve as if there were a smaller

effective population size. And for a locus under weak selection (on the order of the

inverse of Ne, as many synonymous changes are thought to be) even a small local

change in Ne will have a noticeable effect in fixation probability.

A number of approximate models have been derived for quantifying the effect of

interacting loci on population size under different scenarios [17]. Under some sim-

plifying assumptions, it can be shown that for two loci with a recombination rate r

between them, the reduction in Ne is given by 1 − q (hs)2

(r+hs)2 , where s is the selective

coefficient at the linked locus and h the heterozygous effect [96]. The dynamics in

more complex cases have been worked out as well, but frequently simulations are

necessary. Of greatest importance for this section is whether position in an exon can
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have a significant influence on the evolution of a synonymous change under realistic

assumptions in Drosophila. The answer appears to be positive: under realistic as-

sumptions, purifying selection on codons near coding region boundaries can be more

effective and therefore lead to an increased conservation rate in such regions [75].

Further, a number of studies have shown empirical results that agree with such an

effect, such as a reduced rate of codon bias within long genes in Drosophila [78].

Therefore, in the results of the section below, I consider background selection as at

least a plausible alternative explanation that must be disproved.
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Chapter 12

Analysis of Conservation in Coding

Regions

12.1 Conservation in Feature Neighborhoods

In Section II, I showed how the MinoTar algorithm could be used to provide evidence

for widespread microRNA ORF targeting and to make high confidence predictions of

individual targets. In this chapter, I adapt the algorithm to search for more general

elements that are preferentially conserved within coding regions. The basic procedure

is similar to the analysis for miRNAs: the starting point for the analysis is the ran-

domized multiple-species coding region alignments simulated by the algorithm. These

alignments can be used to score the conservation of any general feature compared to

the level expected by chance. In this chapter, the analysis utilizes conservation scores

of individual codons and short motifs. In this case, the number of species a codon

(or motif) is conserved to in the real alignment Nreal is compared to the number of

species the same codon (or motif) is conserved to in each of S random alignments

Ni giving p =
P

i(Nreal≤Ni)
S . A low p means the codon (or motif) is highly conserved

131



132 CHAPTER 12. ANALYSIS OF CONSERVATION IN CODING REGIONS

compared to the conservation level expected by chance.

As a first application, I used this procedure to evaluate conservation levels in

the vicinity a number of genomic features, particularly splice sites and translation

start/end sites. Previous work has shown the importance of exonic splicing enhancers

(ESEs) and exonic splicing silencers (ESSs) in the regulation of splicing [32] in a

number of genes. And an analysis in Drosophila has also shown evidence for a trade-

off between codon usage and splice signals in the vicinity of splice junctions [104].

If such regions contain a greater fraction of functional sites, than a greater level of

conservation would also be expected in these regions.

A first step in this analysis was to produce annotations of overlapping genomic

features at all positions of all protein-coding transcripts. To do this, the genomic

coordinates of all protein coding transcripts were downloaded from FlyBase [99] and

compared against the genomic coordinates of other relevant features (Fig 12-1). Every

position in all protein coding genes was annotated for overlap with any 5’UTR, intron,

3’UTR, or ORF of another transcript. Additionally, every position was annotated by

its distance to the nearest transcription start and end sites, translation start and end

sites, and splice junctions. Distances to splice junctions were further characterized by

whether the splice junction was a 5’ or 3’ splice junction, and whether the junction

was constitutive or alternate. Definitions of constitutive or alternate depend on anno-

tations of transcripts in FlyBase and some fraction will be subject to change as either

new transcript variants are discovered or currently annotated transcript variants are

found to be spurious.

To judge preferential conservation in a particular class of sequences, the p-values

for these codons were grouped and compared to the grouped p-values of a background

set. The level of conservation above chance was judged by the height of the empirical

cumulative distribution of p-values for the group of codons above the cumulative
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Figure 12-1: An illustration of the annotation of features. Every position of every
protein coding transcript was annotated for overlap with and distance to a number of
genomic features, including those related to transcription, translation and splicing.

distribution of the background set. Specifically, the fraction of p-values preferentially

conserved was taken as the mean of the difference between these two curves between

p-values of 0 and 0.4. Results were independent of the choice of these exact values-

they were chosen simply to get a robust average over cutoffs where the codons were

more conserved than by chance.

As a test, I first ran this procedure on codons in regions where at least 2 ORFs

overlap in different reading frames (Fig 12-2). While known examples of this are rare

in Drosophila (making up only∼ 21, 000– about 0.1% – of protein coding nucleotides),

these regions provide a good test-case for the procedure, as such regions would likely

be under considerable additional pressure to conserve codons (a synonymous change

in one reading frame would frequently be a non-synonymous change in another frame).

The p-values for codons shared by transcripts in at least 2 different reading frames

were compared to those of codons in all regions of all transcripts. As expected, a

significant fraction of codons (∼ 30%) were preferentially conserved.
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Figure 12-2: An illustration of the procedure for estimating the fraction of sites under
preferential conservation for regions that encode proteins in at least 2 different reading
frames. Such regions show significant additional constraint, with an estimated 30%
of such bases under selection
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Having seen the power of the procedure, I next applied it to codons at different

distances from various genomic features. The p-values of codons were collected and

binned by their distances to a number of features. For each of these features and

all distances considered, a careful randomization procedure was followed to form a

suitable background set. For every codon a given distance away from a feature, 10

codons were chosen from the same transcript to be part of the background set. This

ensured that for every distance from a given feature, different transcripts were equally

represented in both the feature set and the background set. This is important for

controlling for conservation effects that occur on a transcript-wide basis, but are

correlated with the presence of certain features (for example, an increased nucleotide

conservation overall in transcripts with many splice junctions). Additionally, to avoid

seeing effects that result from the non-random co-location of multiple features, codons

from any one feature set (as well as it’s background set) only included those at least

200 nucleotides away from all other features.

The results demonstrated widespread preferential conservation of codons near all

features examined, but with highly varying effect strengths. Of weakest strength, were

the constituent splice junctions (Fig 12-3). The 5’ junctions showed high conservation

of the few nucleotides directly adjacent to the splice junction (consistent with the

highly biased nucleotide composition of these few nucleotides) but a quick dropoff in

preferential conservation after about 5 nucleotides from the junction. Results for 3’

junctions were similar but of even weaker effect. Of much stronger effect, however,

were the alternate splice junctions (Fig 12-4). These showed stronger conservation

extending over a longer range from the splice junction (the results are noisier due to

the smaller counts). The strongest effect seen was for codons near translation start

and ends.

In order to reduce noise and provide a comparison over longer distances, I redid
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Figure 12-3: Plots of estimated fraction of sites under additional selection by distance
to constitutive splice junctions. For constitutive splice junctions, the number of sites
under additional conservation is only strong in the first few bases from the junction.
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Figure 12-4: Plots of estimated fraction of sites under additional selection by distance
to alternate splice junctions. The regions around alternate splice junctions show
significantly higher conservation than those around constitutive splice junctions. This
is in agreement with the prediction of a model where alternate splice junctions are
under greater regulation than constitutive junctions.
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Figure 12-5: Plots of estimated fraction of sites under additional selection by distance
to translation start and end sites. Such regions show strong additional conservation
extending for 10s of bases from the site.

the analysis where codons were binned by distances of 20 from each feature, and

conservation above background was assessed within each bin (Fig 12-6; Fig 12-7; Fig

12-8). These plots show clearly the dropoff of the effect with distance from the feature

in each case. They also show clearly the stronger effect of preferential conservation in

alternative versus constitutive splice junctions. This effect is consistent with a model

in which alternate splice junctions are differentially regulated to a greater extent than

constitutive splice junctions, which seems highly plausible. Under such a model, the

regions near alternative splice junctions would be more likely to contain regulatory

sequences than those near constitutive splice juncitons, resulting in a higher level of

conservation.

12.2 Evidence against Background Selection

A potential concern with the above analysis is that all features considered are near

the edges protein coding region. Therefore, an alternative explanation for the results
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Figure 12-6: Plots of estimated fraction of sites under additional selection by distance
to constitutive splice junctions, binned in distances of 20 basepairs.
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Figure 12-7: Plots of estimated fraction of sites under additional selection by distance
to alternate splice junctions, binned in distances of 20 basepairs.
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Figure 12-8: Plots of estimated fraction of sites under additional selection by distance
to translation start and end sites, binned in distances of 20 basepairs.

is that preferential conservation in these regions isn’t due to an increase in selection,

but rather due to decreased background selection. Under such a model, if a codon is

near the edge of a protein coding region, it will experience linkage with fewer sites

under amino acid selection, and therefore be in a region of higher effective population

size. In the case of weak selection, such as that causing codon bias, the change of

thresholding due to such a change in population size can be important and result in

an increased fraction of preferentially conserved sites.

I put forward two arguments why the above model is unlikely to explain the effects

near different edges described above. First, I examined the conservation of codons

that lay on the intronic (rather than exonic) side of an alternate splice junction (Fig

12-9). Again, excess conservation was seen in the regions around the splice junction,

extending for many tens of nucleotides out from each junction. These results are

consistent with selection on intronic splicing regulatory signals. And because there is

no reduction in interference near the boundaries, the results cannot be explained by

a decrease in background selection.
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Figure 12-9: Plots of estimated fraction of sites under additional selection by distance
to alternate splice junctions, binned in distances of 20 basepairs. Here, the codons in
question lie on the intronic side of the splice junction in question. Unlike codons on
the exonic side of genomic features, these codons wouldn’t be expected to be show
greater conservation due to reduced background. The conservation seen provides
evidence that results aren’t a result of background selection.

Second, if the increased conservation were the result of a decrease in background

selection alone, one would expect an increased in optimal codon usage in these regions.

However, exactly the opposite effect is seen. In all of the regions examined, codon

usage was less optimal in the immediate vicinity of the feature. This suggests that

the same selective pressure causing increased conservation in these regions competes

with selection on codon choice, resulting in a reduction in the use of optimal codons.

Additionally, I examined evidence for region-specific conservation of motifs, which

would indicate selection for sequences particular to each region. I looked at conserva-

tion of 6mers within neighborhoods of each of the different features. Each 6mer was

evaluated both overall (in all regions) as well as within 25 nucleotides within trans-

lation starts/ends and 5’ and 3’ constitutive splice junctions. These neighborhoods

were mutually exclusive: any sequence within 50 nucleotides of more than one ge-

nomic feature was excluded from the analysis. 6mers were chosen because they were
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long enough to allow for conservation to be differentiated among different motifs, but

short enough to allow for sufficient counts for accurate assessment of conservation of

each 6mer. Similarly, constitutive rather than alternate splice junctions were used

because there was only enough sequence to get sufficiently accurate conservation es-

timates for the constitutive junctions. In order to evaluate the conservation specific

to each region, a region-specific conservation score was formed for all 6mers in each

different region. This was given by the fraction of 6mers with p-value below a given

cutoff (results shown are for p = 0.1) when in a given region minus the fraction over-

all. The sequences for each region were repeatedly randomly divided into 2 equal sets

and the region-specific motif conservation was scored for each 6mer in each of these

sets.

The results provided some evidence for the existence of region-specific conservation

patterns, though of modest and varying strengths in the different regions. The regions

that had the most consistently identified motifs were those near translation ends

followed by those near 5’ splice junctions. High-scoring motifs near translation starts

also showed some self-consistency, but those near 3’ splice junctions were around as

consistent as expected by chance. However, it was difficult to completely remove all

sources of bias from this analysis or to obtain high-confidence specifically conserved

motifs from any of the regions.

12.3 Many Genes Contain Ultraconserved Regions

In the course of the above investigations, I observed a number of large regions with

nearly complete codon conservation across all 12 Drosophila species. Here, I show that

such regions are surprisingly prevalent. In order to compare conservation in larger

regions, I first devised a simple way of scoring larger windows by their conservation.

Conservation in a window of codons W was scored as the mean of the p vales for the
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Window Size FDR = 0.001 FDR = 0.01 FDR = 0.05
30 888 2218 3686
60 1422 2194 3377
120 1191 1976 2618
300 698 1232 1757

Table 12.1: Number of genes with at least one region of the given length (in nu-
cleotides) and false-discovery rate. Thousands of genes have highly-conserved regions
at very high confidence.

codons contained in that window: pW = 1
N

∑N
i=1 pi. If large regions of conservation

didn’t exist and codon conservation was largely independent, such scores would be

centered around 0.5 with a roughly normal distribution.

Instead of this distribution, the distribution of scores had a heavy left tail, indi-

cating a significant number of regions with much higher conservation than expected

by chance. This was evaluated for all non-overlaping windows of size 30, 60, 120 and

300 nucleotides (Fig 12-10). Scores above the median were well fit by a normal distri-

bution, but those below the median weren’t (Fig 12-11). The normal distribution fit

on the scores above the median was used to determine a false discovery rate (FDR)

for scores below the median. For each score the FDR was estimated by comparing

the fraction of real scores below a given cutoff to the fraction expected given the fit

distribution. Using this, it was possible to estimate the total number of windows

conserved above chance for each of the different window sizes. This gave a relatively

consistent but growing estimate of the number of windows with conservation greater

than expected by chance (6%, 8%, 9% and 11% for 30, 60, 120 and 300 nucleotide

windows, respectively). These windows occurred in many different genes and so thou-

sands (∼ 25%) of genes contained at least one window with high conservation (Table

12.1).

In order to illustrate the striking conservation of some of the genes with the
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Figure 12-10: Histograms of mean p-value in windows of increasing sizes. All windows
show a heavy left-tail of regions with higher than expected conservation.
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Figure 12-11: Cumulative distribution of mean p-values in windows of increasing
sizes. Blue curves show the real distributions and red show a normal distribution
fitted on the right side of the distribution. The area above the red curve and below
the blue represents regions conserved beyond that expected by chance.
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Gene Ultraconserved Region Overall Gene
Name Length Mean p-value Mean Codon Cons Length Mean p-value Mean Codon Cons

Sh 342 0.07 10.8772 1716 0.148 10.8112
exba 144 0.078 11.5625 1269 0.3254 9.3239
kuz 138 0.0798 11.6957 3717 0.3882 8.6223
SK 132 0.0811 10 1575 0.2223 9.8267

bru-3 132 0.0814 11.8409 1269 0.2574 10.4539
A2bp1 174 0.0823 11.7069 2598 0.3826 8.0439
tutl 135 0.0824 11.7778 2709 0.3995 8.6633
mmd 75 0.0831 11.72 2514 0.5343 7.9833

Ca-beta 129 0.0835 11.7442 1593 0.3285 9.3804
orb 135 0.0852 11.6 2748 0.5038 6.9061
para 177 0.0855 11.7119 6396 0.2756 9.7223
slo 156 0.0856 11.8846 3552 0.285 10.1672

Arf79F 135 0.0868 11.8222 549 0.2946 10.2131
CG34400 141 0.0884 10.2979 2973 0.3316 8.8789

Ih 144 0.0886 11.8958 3873 0.3376 9.1325

Table 12.2: Features of the genes containing the top 15 ultraconserved windows of
length 120 nucleotides. Listed lengths indicate the largest region that contains a mean
p-value smaller than the cutoff (here a cutoff of 0.15 was used).

most conserved windows, Table 12.2 shows a list of 15 genes with the most conserved

windows of 120 nucleotides. A number of these genes, such as orb (oo18 RNA-binding

protein), mmd (mind-meld) and tutl (turtle) show only specific exons or portions

of exons that are very highly conserved (Fig 12-12). Others, such as Arf79F (ADP

ribosylation factor 79F) show more extensive conservation with regions of particularly

high conservation, and still others such as sh (short winged) show very high nucleotide

conservation across almost the entire gene (Fig 12-13).

12.4 The Function of Ultraconserved Regions

Having seen the large number of regions with extensive nucleotide conservation, I next

sought to investigate the characteristics of these regions. As a first step, I examined

the expression of those genes with highly conserved regions of different lengths. If

ultraconserved regions were due to the same selective pressures leading to codon bias,

one would expect such regions to be enriched for highly expressed genes. Indeed, genes
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Figure 12-12: Conservation plots for orb, mmd and tutl genes. Top: Average number
of species a feature is conserved to (red: amino acid, blue: codon) in a sliding window
of 120 nucleotides. Bottom: average p-values in a sliding window of 120 nucleotides.
These genes show only modest codon conservation overall but contain regions of
exceptionally high codon conservation. Black dashed-lines show exon boundaries.
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Figure 12-13: Conservation plots for Arf79F and Sh genes. Top: Average number of
species a feature is conserved to (red: amino acid, blue: codon) in a sliding window
of 120 nucleotides. Bottom: average p-values in a sliding window of 120 nucleotides.
Arf79F shows high conservation overall, but contains a single region of exceptionally
high conservation. Sh shows exceptionally high conservation along almost the entire
gene. Black dashed-lines show exon boundaries.
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Figure 12-14: Cumulative distribution for expression of genes with the highest codon
conservation overall. Highly conserved genes overall show a strong preference to be
highly expressed.

with high overall codon conservation (low overall mean p-value) showed significantly

elevated expression levels (Fig 12-14). In contrast, genes containing ultraconserved

regions show showed little or only modest enrichment for high expression (Fig 12-15).

Expression values for all genes were derived from the developmental expression survey

conducted in [37]. An overall expression value for all genes was derived by summing

expression across all developmental time points measured.

This was further confirmed by an analysis of GO term enrichment [14]. Enrichment

was evaluated for sets of genes with both overall high conservation and with the most

conserved regions of size 120 nucleotides. In order not to confound the analysis

by any correlation with amino acid conservation, genes were restricted to those with

average amino acid conservation across the whole gene of at least 11 out of 12 species.

The background set consisted of all genes with average amino acid conservation of

11 out of 12 species. The set of genes with highest conservation overall were only

enriched for terms related to highly expressed genes: largely ribosomal proteins and
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Figure 12-15: Cumulative distribution for expression of genes with the highest codon
conservation in windows of different sizes. Expression levels for genes are similar to
those for genes overall.
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components of the cytoskeleton (Table 12.3). In contrast, terms for the genes with

the most conserved 120 nucleotide windows showed enrichment for a variety of terms,

particularly a number of developmental terms, and a number of neural processes

(Table 12.4). Post-transcriptional regulation, including extensive alternate splicing

and sub-cellular localization, is known to be particularly widespread in neurons [76].

Because the list of genes containing ultraconserved windows was slightly biased toward

those with greater length (as it would be for genes chosen containing any feature),

I conducted a test to make sure this bias couldn’t account for the enrichment of

GO terms seen. When examining a list of genes chosen to have the same length

distribution and constraint of average amino acid conservation of at least 11 out of

12 species, no GO terms were found to be significantly enriched.

An investigation into features of the ultraconserved regions suggested that a sig-

nificant fraction of them may be involved in splicing (Fig 12-16). When compared to

all regions, ultraconserved regions were signficantly more likely to be close to splice

junctions, particularly alternate splice junctions (within 100 nucleotides: 5’ constitu-

tive: 0.41± 0.02 vs 0.17; 3’ constitutive: 0.36± 0.02 vs 0.16; 5’ alternate: 0.16± 0.02

vs 0.02; 3’ alternate: 0.16 ± 0.02 vs 0.02, all p-values < 10−16 binomial test). In

contrast, ultraconserved regions were little or no more likely to be close to transla-

tion start or end sites. In addition, genes with ultraoconserved sites were far more

likely to be highly spliced (average number of coding region exons: 9.2 ± 0.3 vs 3.9,

p < 10−100 Mann-Whitney U Test), and the exons within which the ultraconserved

regions lay were significantly smaller (530± 110 vs 1220, p < 10−100 Mann-Whitney

U Test). Ultraconserved regions showed evidence of being involved in other functions

as well. For example, ultraconserved regions were far more likely to contain a region

under multiple reading frames (0.04 ± 0.01 vs 0.001, p < 10−16 binomial test). It

seems likely that more unannotated regions under multiple reading frames may be
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GO Term P Value
Biological Processes
GO:0006412 translation 9.62e-15

GO:0051231 spindle elongation 4.81e-09
GO:0000022 mitotic spindle elongation 4.81e-09

GO:0044267 cellular protein metabolic process 3.88e-08
GO:0007010 cytoskeleton organization 2.96e-07

GO:0007052 mitotic spindle organization 1.87e-06
GO:0034645 cellular macromolecule biosynthetic process 4.72e-06

GO:0019538 protein metabolic process 4.75e-06
GO:0009059 macromolecule biosynthetic process 5.23e-06

GO:0007051 spindle organization 5.45e-06
GO:0044249 cellular biosynthetic process 1.26e-05

GO:0000279 M phase 1.99e-05
GO:0000226 microtubule cytoskeleton organization 3.11e-05

GO:0000278 mitotic cell cycle 3.19e-05
GO:0009058 biosynthetic process 4.82e-05

GO:0022402 cell cycle process 7.77e-05
GO:0022403 cell cycle phase 7.82e-05
GO:0010467 gene expression 3.57e-04

GO:0007049 cell cycle 4.80e-04
GO:0007017 microtubule-based process 5.35e-03

GO:0044260 cellular macromolecule metabolic process 6.54e-03
Cellular Components

GO:0022626 cytosolic ribosome 3.39e-24
GO:0044445 cytosolic part 2.21e-21

GO:0005840 ribosome 1.16e-19
GO:0005829 cytosol 2.38e-18

GO:0022627 cytosolic small ribosomal subunit 1.08e-11
GO:0022625 cytosolic large ribosomal subunit 1.01e-09

GO:0015935 small ribosomal subunit 1.01e-09
GO:0030529 ribonucleoprotein complex 1.72e-09

GO:0044444 cytoplasmic part 6.21e-09
GO:0015934 large ribosomal subunit 4.93e-08

GO:0043228 non-membrane-bounded organelle 5.81e-08
GO:0043232 intracellular non-membrane-bounded organelle 5.81e-08

GO:0005737 cytoplasm 1.91e-06
GO:0043292 contractile fiber 6.40e-04

GO:0044449 contractile fiber part 4.78e-03
GO:0005811 lipid particle 6.26e-03
Molecular Functions

GO:0003735 structural constituent of ribosome 4.52e-20
GO:0005198 structural molecule activity 3.60e-18

Table 12.3: The enriched GO terms for genes with highest overall codon conservation
reflect genes of high expression level.
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GO Term P Value
Biological Processes

GO:0009605 response to external stimulus 4.57e-08
GO:0032501 multicellular organismal process 6.99e-07

GO:0050896 response to stimulus 2.84e-06
GO:0007275 multicellular organismal development 1.53e-05

GO:0030154 cell differentiation 2.18e-05
GO:0048869 cellular developmental process 6.39e-05
GO:0042221 response to chemical stimulus 1.28e-04

GO:0032502 developmental process 1.47e-04
GO:0042330 taxis 2.29e-04

GO:0048468 cell development 3.97e-04
GO:0006811 ion transport 4.73e-04
GO:0006935 chemotaxis 5.95e-04

GO:0007411 axon guidance 5.95e-04
GO:0048731 system development 8.20e-04

GO:0040011 locomotion 8.36e-04
GO:0007610 behavior 1.41e-03

GO:0007399 nervous system development 3.10e-03
GO:0032989 cellular component morphogenesis 3.18e-03

GO:0008037 cell recognition 3.20e-03
GO:0008038 neuron recognition 3.20e-03

GO:0007409 axonogenesis 3.58e-03
GO:0048856 anatomical structure development 4.76e-03

GO:0008344 adult locomotory behavior 4.89e-03
GO:0048589 developmental growth 5.79e-03

GO:0003008 system process 8.90e-03
GO:0030030 cell projection organization 8.98e-03

Cellular Components
GO:0071944 cell periphery 8.75e-09

GO:0005886 plasma membrane 1.76e-07
GO:0034702 ion channel complex 2.50e-07

GO:0044459 plasma membrane part 1.41e-06
GO:0031226 intrinsic to plasma membrane 1.09e-04
GO:0005887 integral to plasma membrane 1.09e-04

GO:0016020 membrane 3.80e-04
GO:0034703 cation channel complex 7.60e-04
GO:0016021 integral to membrane 4.60e-03
GO:0031224 intrinsic to membrane 5.86e-03

Molecular Functions
GO:0022836 gated channel activity 5.51e-09
GO:0005216 ion channel activity 3.28e-07

GO:0022838 substrate-specific channel activity 3.28e-07
GO:0022803 passive transmembrane transporter activity 7.36e-07

GO:0015267 channel activity 7.36e-07
GO:0005230 extracellular ligand-gated ion channel activity 3.75e-05

GO:0005231 excitatory extracellular ligand-gated ion channel activity 1.25e-04
GO:0015075 ion transmembrane transporter activity 1.05e-03

GO:0005261 cation channel activity 1.46e-03
GO:0022834 ligand-gated channel activity 1.61e-03

GO:0015276 ligand-gated ion channel activity 1.61e-03
GO:0022891 substrate-specific transmembrane transporter activity 2.35e-03

GO:0022857 transmembrane transporter activity 2.80e-03
GO:0060089 molecular transducer activity 4.51e-03

GO:0004871 signal transducer activity 4.51e-03

Table 12.4: The enriched GO terms for genes with highest window codon conserva-
tion (window size of 120 nucleotides) represent diverse processes, particularly those
involved in neural development and function.
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Figure 12-16: Ultraconserved regions are far more likely to be near splice junctions
than expected by chance. The effect is stronger for alternate than for constitutive
splice junctions. Ultraconserved regions are no more likely to lie near translation start
or end sites.

represented within the ultraconserved regions. However, it was not possible to iden-

tify any high confidence candidates from the sequence alone. Similarly, an attempt

was made to look for additional secondary structure in ultraconserved regions, but

was unsuccessful in finding such a signal.

As with conservation in feature neighborhoods, an alternative explanation for

ultraconserved regions is that these regions are merely under reduced background

selection due to lying within shorter exons, and so weak selection towards optimal

codons is more effective in these regions. To show that this isn’t the case, I evaluated

the codon frequency usage in ultraconserved regions. For each codon C, I defined a

codon bias score by BC = MAA(C)
NC

NAA(C)
, where AA(C) is the amino acid encoded

by C, MAA(C) is the multiplicity of the amino acid (the number of codons encoding

that amino acid), and NC and NAA(C) give the number of counts over all genes for
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the codon and its associated amino acid. A codon bias score higher than 1 means a

codon tends to be favored overall, and a score lower than 1 means that a codon tends

to be disfavored. Codon bias in a region was taken as the mean of the codon bias

scores for all codons in that region.

I first verified that codon usage bias increases with gene expression, as has been

previously observed [92]. Then I looked at the codon bias of 120 nucleotide regions

ranked by their conservation. These regions were binned into groups of 50, and the

codon bias score for each bin was taken as the mean over all regions included in each

bin. In all cases, only regions with average amino acid conservation greater than 11

were considered in order to prevent any confounding of the results.

While codon bias rose at first with rising conservation, the regions with the high-

est conservation actually had lower codon bias than average (Fig 12-17). In contrast

to the result expected under decreased background selection, this suggested that such

regions are under additional selection that interferes with the selection to maintain

optimal codon choice. Because lower frequency codons would be more surprising

when highly conserved, it was possible that this observation merely reflected the fact

that the most surprisingly conserved regions would consist of low-frequency codons.

Therefore, I repeated the analysis using average number of species of codon conser-

vation as the measure of conservation (rather than p-values) and verified that the

effect was the same (Fig 12-17). Additionally, the results were the same when re-

stricted to the Sopophora clade, among which codon bias is highly consistent, and

when restricting to four-fold degnerate sites.

12.5 Open Questions

Traditionally, genomes have been largely viewed as divided into coding and non-

coding DNA and, with a small number of exceptions (for example [18], [68]), most
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Figure 12-17: The use of preferred codons is greater for regions with moderately
elevated conservation but not for those with very high conservation. Shown are
the mean codon frequency ratios versus conservation (Left: mean p-value; Right:
mean number of species of codon conservation) for windows 120 nucleotides in length.
This result suggests highly conserved regions are under selection that interferes with
selection on codon usage.

computational tools for analyzing regulatory signals in DNA have been designed to

work only within non-coding DNA. Such tools will frequently fail to work within

coding DNA. The techniques developed in this section, however, have been expressly

derived for application to coding DNA. The results derived under these techniques

have shown that a surprisingly large fraction of coding DNA appears to be under

selection for additional function. It appears that regulatory signals are denser in

coding DNA than has previously been appreciated. Indeed, it has recently been

suggested that the genetic code is, in fact, optimal for encoding additional non-coding

information [60].

The work described here is only a first step, and while it has been possible to

show that conserved regulatory signals appear common, it is unknown what most of

the regulatory signals do. A large number of regulatory events happen in the lifetime
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of a gene, from the recruitment of transcription factors and chromatin modifications

at the DNA level to regulation of splicing, degradation, localization and translation

at the RNA level. It seems likely that different regulatory regions in coding DNA are

involved in many of these processes. As more detailed hypotheses about addtional

regulatory processes are developed, it will become possible to test these specific hy-

potheses using the tools developed in this section.
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Chapter 13

The Future

Where do we go from here? In this section, I attempt an answer. First, I describe

the implications of a number of results from Sections II - IV along with a number of

open questions stemming from that work. Then I take a step back and offer a view

on what the future holds for the broader field of comparative genomics.

One of the major results presented in this thesis is that non-coding regulation

within coding regions is widespread. Further, much of this regulation can be predicted

with high confidence, even for short signals such as microRNA binding sites. (This

is perhaps surprising as the number of synonymous sites that are free to mutate

within such regulatory elements is small– in some cases only 2 or 3 bases. This

demonstrates the importance of having genomic sequences for a large number of

related species. With a sufficient number of species, high power can be achieved even

on elements with limited evolutionary freedom.) The evidence presented here suggests

that greater attention should be paid to regulation within coding regions. Such

regulation, while often neglected, has the potential to cause important phenotypic

consequences. Indeed, in a handful of recent studies, synonymous mutations have

been implicated in diseases [16]. In one, a microRNA binding site in the coding

159
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region of the IRGM gene has been suggested to play a role in Crohn’s disease [58, 10].

Tools such as those developed here may prove pivotal in guiding the search for other

cases of such regulatory relationships.

A number of questions remain in the study of regulation in coding regions. First,

while this thesis has implicated specific regulatory processes in the function of some

conserved elements, the function of most regions remains unknown. Of perhaps great-

est interest are the ultraconserved elements in Drosophila– it is still unknown what

precise function the vast majority of these serve. Building off of the work in this

thesis, a number of experiments could be done to investigate these regions. The

simplest would be to introduce new versions of the genes containing these regions

mutagenized to change the nucleotide sequence while leaving the protein sequences

unchanged. Then changes in the processing (for example, changes in the splicing or

localization) of the mutant versions of such genes could be studied.

The results in Section III demonstrate a novel role for sequence repeats in mi-

croRNA regulation. An open question is the extent to which such an effect may oc-

cur for other regulatory processes as well. Given the extent of repeats in the genome

and the large number of regulatory processes utilizing short motifs, it seems likely

that other instances of such an effect exist outside of microRNA regulation. As more

instances of regulatory motifs are discovered for these processes, it will be interesting

to investigate if this is the case.

A more general question concerns the relative advantages and disadvantages for a

gene to harbor regulatory signals within coding rather than non-coding DNA. Coding

DNA is already under strong selective pressure at the protein level, which should make

it more difficult to quickly evolve regulatory signals within such DNA. Additionally,

coding regions may provide additional restrictions on regulation. This appears to be

the case for microRNA targeting, where regulation can be inhibited by translating
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ribosomes. On the other hand, as discussed in Section II, this restriction suggests the

possibility for unique and exciting regulatory relationships (such as the induction of

ORF targeting under starvation conditions). Additionally, regulation in coding DNA

may provide other advantages as well. Many genes contain alternative exons with

functional domains only included in certain variants of the protein. By harboring a

regulatory element within an alternate exon, a regulatory relationship can be confined

to act only on the variants of the protein containing that domain.

Additionally, the prevalence of conserved non-coding elements in coding DNA

suggests an interesting problem that has, to my knowledge, not been adequately ad-

dressed. A number of the tests for positive selection at the amino acid level (as well

as many techniques in population genetics) depend on the assumption that synony-

mous changes are neutral [86]. However, it isn’t clear how such tests will perform

when this assumption breaks down. In regions where a large fraction of synonymous

changes are under purifying selection, it’s possible that the results of such tests will

be significantly distorted.

All of this work has been done within the early years of comparative genomics.

Many of the results presented here were only possible given the relatively large num-

bers of sequenced species genomes. However, the number of species already sequenced

pales in comparison with the number that remain. While there are currently 12

Drosophila and 29 mammalian sequenced genomes, there are thousands of species in

both clades that can eventually be sequenced. What kinds of analysis can be done

with thousands of species that can’t be done with ten of species? I won’t claim to have

a complete answer. However, it seems clear that many of the problems that people

work on today (such as motif discovery) will not require anything near thousands of

species before techniques are no longer gaining anything from more species.

I suggest that one way to identify fruitful avenues for such research will be to
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look for areas where one must choose from among many multiple hypotheses. In such

situations, multiple hypothesis correction would make it impossible to identify the

true hypothesis without a large number of independent evolutionary time points. I

see potential for this in any application where there is interaction between multiple

loci, and compensatory mutations can occur. One example is the identification of the

detailed rules of cis-regulatory modules, where multiple transcription factors interact

both with DNA and each other in order to activate or repress transcription. Another

is the identification of pairs of interacting proteins (and nucleic acids) as well as the

identification of the particular residues involved in mediating an interaction. These

suggestions likely only hint at what will be possible. As our effort to record and map

out the biological world continues, many capabilities will likely arise that we can’t

even imagine today.
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Appendix A

Additional Methods

A.1 Methods in Drosophila Studies

This section describes a number of both the computational and experimental tech-

niques used in Section II more detail.

A.1.1 Binning Gene Regions by Conservation Level

In order to also account for and remove gene-region specific variations in codon conser-

vation rates, the MinoTar algorithm first bins regions of coding DNA by conservation

level and learns a different background model for each bin. A background model for

codon conservation was first trained on all ORF sequences, which was used to pro-

duce a p-value at every codon instance in all genes. Every codon instance was then

assigned a region conservation score given by the mean of the p-values in a window of

120 nucleotides (40 amino acids) centered at that codon. Codons were then sorted by

their region conservation scores, and placed according to these scores into 5 equally

spaced bins. A new background model was learned separately for each of these bins.

When evaluating k-mer conservation, a region conservation score was evaluated for
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the 120 nucleotides centered at that k-mer, and the bin corresponding to that score

was used as the background model.

A.1.2 Alignments and miRNA Sequences

Multiple species alignments and genome annotations for Drosophila (12-way) and

Human (17-way) were downloaded from the UCSC genome browser [50]. Three fish

species were excluded from analysis because of significant non-aligned sequence. For

coding regions, genome annotations were used to exclude all regions overlapping a

3’UTR or 5’UTR for any transcript. In all statistical calculations, regions overlapping

more than one transcript were only used once to avoid over-counting. For analysis of

5’UTRs, annotations were used to remove all regions overlapping ORFs or 3’UTRs.

Alignments of 3’UTRs for both Drosophila and Humans were taken from the Tar-

getScan website [55]. Alignments of promoters (taken as the 500 bp upstream of

Transcription Start Sites) were downloaded from UCSC genome browser. Regions

overlapping ORFs, 3’UTRs or 5’UTRs of any transcripts were removed. Mature

miRNA sequences as well as annotations of miRNA conservation were downloaded

from the TargetScan website.

A.1.3 Assessing Motif Conservation

In ORFs, the conservation rate of a set of k-mers for a given cutoff value pcutoff was

determined by the fraction of instances achieving p < pcutoff among those instances

with pmin < pcutoff . Similarly, in non-coding regions the conservation rate of a set of k-

mers was assessed by the fraction of instances conserved to at least M out of N species

among those instances with aligned sequence in at least M out of N species. In both

cases, background sets of k-mers, consisting of all k-mers with identical nucleotide

content as each of the k-mers in the true set, were used to judge expected background
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levels of conservation. Conservation above background was measured by the signal-

to-background ratio, defined by SB = Fraction Conserved True Set
Fraction Conserved Background Set . Confidence at a

given cutoff was calculated as SB−1
SB . Errors for fractions and numbers of sites above

background were estimated by repeating the analysis 50 times with background sets

of size equal to the set of miRNA seeds.

A.1.4 3’ Binding to miRNAs

miRNA seed sites were grouped based on their potential binding to the 3’ end of

corresponding miRNAs following (13) (defined by contiguous base-pairing starting at

positions 9 –16 within the miRNA, and allowing for shifts of up to 2 nucleotides of

such matches within the mRNA). In cases of seed families with multiple miRNAs,

the member with greatest potential base-pairing was chosen. Signal to background

was defined as the fraction of seed sites with given 3’ binding conserved to the 60%

confidence threshold divided by the expected fraction conserved to this threshold.

Expected conservation was found by repeating the above procedure while swapping

miRNA seed sites with the 3 ends of all other miRNAs.

A.1.5 Final Target Prediction

For each of the microRNAs, a set of target predictions was made for both 8mers

and 7mers by using p-value cutoffs derived on all microRNAs that gave predictions

at 60% confidence. In addition, following a procedure first developed by [34] an

additional confidence score was predicted for each individual site, the pct (probability

of conserved targeting). This score reflects the Bayesian posterior probability that

a target was preferentially conserved given its conservation level. This score was

derived by the following procedure. First, microRNAs were binned into 10 groups

according to their conservation levels. Then within each of these bins, the confidence
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was assessed within windows of p-value scores. For a given site, the pct was calculated

by averaging the confidence scores derived for the two neighboring p-value windows.

For a transcript, an aggregate probability of conserved targeting qct was calculated

according to the following formula: qct = 1 −
∏

(1 − pct), where the product is over

all of the sites in the transcript.

A.1.6 GO-term Enrichment

The AmiGO GO-term enrichment tool [49] was used to search for statistically enriched

GO terms in sets of genes. Thresholds were: corrected p-value of 0.05, minimum of

2 gene products.

A.1.7 Cell Transfections

S2R+ cells were maintained in Schneiders medium (Invitrogen), supplemented with

10% FBS and 1% pen-strep. Cells were transfected in 12-well plates using the Ef-

fectene Transfection Kit (Qiagen) according to the manufacturers instructions. For

each ORF, cells were co-transfected with 3 plasmids: (i) ORF-WT fused to a Myc

tag (or FLAG tag in tag-swap), (ii) ORF-MUT fused to a FLAG tag (or Myc tag

in tag-swap), and (iii) either mCherry (Control) or mCherry-microRNA, all under

the Actin promoter. Cells were cultured for 3 days, lysed and analyzed by Western

Blot using LI-COR reagents. Imaging and quantification were performed using the

LI-COR Aerius Infrared Imaging System.

A.1.8 Microarrays

S2R+ cells were transfected with either mCherry (Control) or mCherry-miR-1, both

under the Actin promoter. Cells were cultured for two days before harvest and total
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RNA was extracted using TriZol reagent (Invitrogen) and further purified using Qia-

gen RNeasy column. Recovered RNA was quantified using a Nanodrop ND-1000 spec-

trophotometer (Nanodrop Technology). RNA integrity was assessed using an Agilent

2100 bioanalyzer. Samples were labeled following Agilents Two-color microarray-

based gene expression analysis (Quick Amp labeling) protocol. Gene expression pro-

files were generated using a customized Agilent 8 x 15k whole Drosophila Genome

Microarray, processed in duplicate, and expression levels were extracted using Agilent

Feature Extraction software. Log-ratios were averaged over multiple probes and over

technical replicates. Only probes with signal above the median were included in the

analysis.

A.1.9 Mutagenesis

Mutagenesis was carried out with the QuikChange II Site-Directed Mutagenesis Kit

(Stratagene). All miRNA seed sites were disrupted with 2 synonymous point muta-

tions. Below I show the microRNA seed sites in their context and the mutagenesis

primers used. All nucleotide sequences displayed begin in-frame.

1. Jaguar (FBgn0011225)

(i) K Box 8-mer site:

WT: TCCTGTGATATT

AA: Ser Cys Asp Ile

Mut: TCCTGCGACATT

Forward primer:

GATGCTATCAACACGTCCTGCGACATTGAGCTGCTGGAGGCCTG

Reverse primer:
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CAGGCCTCCAGCAGCTCAATGTCGCAGGACGTGTTGATAGCATC

2. CG11178 (FBgn0030499)

(i) Mir-1 8-mer site:

WT: ACATTCCAG

AA: Thr Phe Gln

Mut: ACTTTTCAG

Forward primer:

CAGCCCAAGAGATCTCAGTTACTTTTCAGAATCATAAGGACGTCGAAG

Reverse primer:

CTTCGACGTCCTTATGATTCTGAAAAGTAACTGAGATCTCTTGGGCTG

3. CG8494 (FBgn0033916)

(i) Mir-1 8-mer site:

WT: ACATTCCAG

AA: Thr Phe Gln

Mut: ACTTTTCAG

Forward primer:

GTCCACACGCGAGGAAACTTTTCAGGATCTCTCGCTGCCC

Reverse primer:

GGGCAGCGAGAGATCCTGAAAAGTTTCCTCGCGTGTGGAC

(ii) Mir-1 7-mer site 1:

WT: CATTCCAAG
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AA: His Ser Lys

Mut: CACTCGAAG

Forward primer:

CCCATGGTGGGATTTTGCACTCGAAGGCGGACGTAATCAGC

Reverse primer:

GCTGATTACGTCCGCCTTCGAGTGCAAAATCCCACCATGGG

(iii) Mir-1 7-mer site 2:

WT: CCATTCCAA

AA: Pro Phe Gln

Mut: CCCTTTCAA

Forward primer:

CAGCTTACCCATTTCGATACCCTTTCAAAGCGACAATTTCCAGGTG

Reverse primer:

CACCTGGAAATTGTCGCTTTGAAAGGGTATCGAAATGGGTAAGCTG

4. Smaug (FBgn0016070)

(i) K Box 8-mer site:

WT: CTCTGTGATAAT

AA: Leu Cys Asp Asn

Mut: CTCTGCGACAAT

Forward primer:

GGGTCGATCAATCCACTCTGCGACAATCTTAATGGTATTACCC
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Reverse primer:

GGGTAATACCATTAAGATTGTCGCAGAGTGGATTGATCGACCC

5. Arp87C (FBgn0011745)

(i) Mir-1 8-mer site:

WT: CACATTCCA

AA: His Ile Pro

Mut: CATATCCCA

Forward primer:

CCGGCTTTGCTGGTGAGCATATCCCAAAATGCAGGTTTCCC

Reverse primer:

GGGAAACCTGCATTTTGGGATATGCTCACCAGCAAAGCCGG

(ii) Mir-8 8-mer site:

WT: CACAGTATTATG

AA: His Ser Ile Met

Mut: CACAGCATCATG

Forward primer:

GATTCGCCATGCCTCACAGCATCATGCGCGTGGACATCGCC

Reverse primer:

GGCGATGTCCACGCGCATGATGCTGTGAGGCATGGCGAATC

6. Act88F (FBgn0000047)

(i) Mir-8 8-mer site:
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WT: CCAGTATTA

AA: Pro Val Leu

Mut: CCCGTTTTA

Forward primer:

GTGGCCCCCGAGGAGCATCCCGTTTTATTGACCGAGGCTCCACTG

Reverse primer:

CAGTGGAGCCTCGGTCAATAAAACGGGATGCTCCTCGGGGGCCAC

A.2 Methods in Mammalian Studies

This section describes a number of both the computational and experimental tech-

niques used in Section III more detail.

A.2.1 Luciferase Assays

HEK293 cells (ATCC) were plated in 24-well plates and transfected 24 hours later

using Lipofectamine 2000 (Invitrogen) and Opti-MEM (Sigma) with 50 ng Renilla

luciferase control reporter plasmid pIS1 [38], 400 ng firefly luciferase reporter plas-

mid and 25 nM miRNA duplex (Supplemental Table 9) per well. After 12 hours,

transfection media was replaced with DMEM containing 10% fetal bovine serum and

penicillin-streptomycin. Cells were harvested 48 hours post transfection. Luciferase

activities were measuring using dual-luciferase assays (Promega), as described by

the manufacturer. 4-5 biological replicates, each with 3 technical replicates, were

performed. Firefly activity was first normalized to Renilla activity to control for

transfection efficiency, and then normalized values were analyzed as described in [38].
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Briefly, fold-repression was calculated relative to that of the non-cognate miRNA.

When applicable, repression of the reporter with wild-type sites was additionally nor-

malized to that of a reporter in which the miRNA sites were mutated. Statistical

significance was determined using the Mann-Whitney U Test. Plasmids (deposited

at Addgene) were constructed as described below.

A.2.2 Gene Sequences

RefSeq sequences for human ORFs were downloaded from the UCSC genome browser [50],

version: hg19, Feb 2009. In cases of multiple transcript variants for a single gene,

one variant was chosen at random as a representative. 3’UTR sequences were down-

loaded from the TargetScan website [55], version 5.1. For analysis of k-mers and

generation of target sets, only non-overlapping k-mer instances were considered, and

all transcripts with coding region length greater than 10 kilobases were excluded.

A.2.3 Microarray Data

The microarray data examining the response of introducing miR-181a into HeLa

cells [5] (GSM302995) were analyzed using Agilent Feature Extraction Software. Log2

fold-change values for genes were obtained by taking the median value of log2 fold-

change for all probes against that gene (excluding any probes not flagged by the

Feature Extraction Software as Well Above Background). Down-regulation of a group

of genes was taken as the mean of log2 fold-changes across the genes, with errors in

these means estimated using 100 bootstrap trials.
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A.2.4 Phylogenetic Reconstruction

The sequences of all KRAB-A domain instances as well as the UniProt identifier for

the protein in which each domain occurred were downloaded from Pfam website [54],

version 24: October 2009. UniProt identifiers were mapped to the corresponding

genes using conversion files from the HUGO Gene Nomenclature Committee [51]. Of

the resulting 311 genes containing KRAB-A domains, all but 4 (ZNF862, ZNF560,

ZNF333, ZFP28) contained a single copy of the domain. For those 4 genes, a single

instance of the domain was chosen at random to use in the phylogenetic analysis.

A multiple alignment was inferred on the amino acid sequences of the 311 KRAB-A

domains, based on which a phylogenetic tree of the corresponding genes was recon-

structed, using ClustalX software [71] (version 2.0.12) under default parameter set-

tings. Visualization of the tree and overlap with miRNA target sets was done using

the Interactive Tree of Life software tool [52].

A.2.5 Randomization of C2H2-domain Sequences

Instances of a C2H2 domain of the form XCX2CX12HX3H, as well as the six residues

N-teriminal of this motif (to capture the linker sequence) were recorded from within

all KRAB-containing genes. For each position in this 28 amino-acid motif, and each

possible amino acid within this position, empirical codon frequencies were recorded.

Motifs with randomized nucleotides were generated by maintaining the amino-acid

sequences but randomly sampling with replacement from the empirical codon fre-

quencies for each amino acid at each position in the domain. Genes with randomized

sequences were generated by mapping randomized C2H2 domains back to the original

gene sequences.
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A.2.6 List of DNA Oligonucleotides Used

LinkerInsertF

CTAGCTGATGGGTACCGGCGGTTCTGGAGGG

LinkerInsertR

GTGACCCCTCCAGAACCGCCGGTACCCATCAG

ControlPrimerF

ATAGGCTAGCCACCATGGTCACCGACGCCAAAAACATAAAG

ControlPrimerR

TGTTGAGCTCATTACACGGCGATCTTTCCGCC

Znf573 Fw

GTTGAGCTAGCCACCATGACCTGTTTTCAGGAATTAG

Znf573 Rev

CTTGAGGTACCCACTTTTATGCTCCTATGAATTC

Zfp37 Fw

GTTGAGCTAGCCACCATGTCGGTCTCCAGCGGC

Zfp37 Rev

CTTGAGGTACCCTCATGAGATTTATCTTCTGAATGAG

Znf20 Fw

GTTGAGCTAGCCACCATGATGTTTCAGGATTCAGTGG

Znf20 Rev

CTTGAGGTACCTCTATTAATGGTATGAGTTCTTTCA

Znf791 Fw

GTTGAGCTAGCCACCATGGACTCAGTGGCTTTTGAGG

Znf791 Rev

CTTGAGGTACCTCGATTGTGCATTCTCATATG

RBAK Fw
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GTTGAGCTAGCCACCATGAACACATTGCAGGGGC

RBAK Rev

CTTGAGGTACCGAGATTTTCCACATCAAGTACATTC

Znf225 Fw

GTTGAGCTAGCCACCATGACCACGTTGAAGGAGG

Znf225 Rev

CTTGAGGTACCTGTGTCATTTAAAAATAATGACAAA

Znf486 Fw

GTTGAGCTAGCCACCATGCCGGGACCCCTTAGAA

Znf486 Rev

CTTGAGGTACCCGTTCTTGGTTTCTGTCCAA

Znf85 Fw

GTTGAGCTAGCCACCATGAGCCTCAGCGCCCAG

Znf85 Rev

CTTGAGGTACCTATTTGTAATTTTTCTCCGGTATGA

Znf573 ins 1nt after 622

CCCTAATCAGAGGGACTTATACACGGGATGTGATGT

Znf573 ins 1nt after 622-antisense

ACATCACATCCCGTGTATAAGTCCCTCTGATTAGGG

Zfp37 ins 1nt after 622

CGGGCGACCACTGGAGACTGGCTGTGT

Zfp37 ins 1nt after 622-antisense

ACACAGCCAGTCTCCAGTGGTCGCCCG

Znf20 ins 1nt after 622

GAAGAATCTCTACAGGGCATGTGATGCAGGAAACC

Znf20 ins 1nt after 622-antisense
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GGTTTCCTGCATCACATGCCCTGTAGAGATTCTTC

Znf791 ins 1nt after 622

CTCTACAGAGATGTGATGCCAGGAAACATTCAAGAACCT

Znf791 ins 1nt after 622-antisense

AGGTTCTTGAATGTTTCCTGGCATCACATCTCTGTAGAG

RBAK ins 1nt after 622

GACCCTGATGAGAAGATAACTTACACGGGATGTGATGTT

RBAK ins 1nt after 622-antisense

AACATCACATCCCGTGTAAGTTATCTTCTCATCAGGGTC

Znf85 ins 1nt after 754

GTAATGGACTTAACCAATCGTCTCACAGCTACCCAG

Znf85 ins 1nt after 754-antisense

CTGGGTAGCTGTGAGACGATTGGTTAAGTCCATTAC

Znf20 a963g t966c

AGAGAATCCATATAGAAATAAGGAGTGCAAGAAAGCCTTCAGTTATCTTGAC

Znf20 a1047g t1050c

CTAAAGAGAAACCCTATGATGGTAAAGAGTGCACAGAAACCTTCATTTCC

HDAC5 Forward

GTTGAGCTAGCCACCATGTCCCAGCAACACACACTG

HDAC5 Reverse

CTTGAGGTACCTTTATGTTTGGGTGGCCACTGC

IVL Forward

GTTGAGCTAGCCACCATGAACTCTCCCAACGAGTCG

IVL Reverse

CTTGAGGTACCCAGGGCAGGCTCCTGCTC

RBAK 3’UTR Fw
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CTTGAACCGGTAGTCAGATCTCAATTTTTAGAAAACTCTCTGAA

RBAK 3’UTR Rev

GTTGGCGGCCGCTCCAGCAAGAAATGGAGCGAG

RBAK UTR site 1

CACAGAGAAGAATCCCGAAGTTTGTAACAAGAAGCAAAGCCT

RBAK UTR site 2

CAAAGGCAAAATCTGTCAATATGGTGTTTGTGGAAAATATATTGTCTTGGAAAT

Znf20 Into3UTR Forward

GTTGATCTAGAATGATGTTTCAGGATTCAGTGG

Znf20 Into3UTR Reverse

CTTGAGCGGCCGCTCTATTAATGGTATGAGTTCTTTCA

RB1 ORF For

GTTGAACTAGTCACCATGCCGCCCAAAACCCC

RB1 ORF Rev

CTTGAGGTACCTTTCTCTTCCTTGTTTGAGGTATCCAT

RB1 UTR For

CTTGAACCGGTGGATCTCAGGACCTTGGTGGA

RB1 UTR Rev

GTTGGCGGCCGCTTGTAGAAAATAGTAACATAGCAATTTTAAATGTACAGTT

RB1 a1368g t1371c

AATTATTGAAGTTCTCTGTAAAGAACATGAGTGCAATATAGATGAGGTGAAAAATGTTTATTTC

RB1 g1620c t1623c

GTAACCTTGATGAAGAGGTCAACGTAATTCCTCCACACACTC

RB1 g2076c t2079c

AGATTTGTCTTTCCCATGGATTCTCAACGTGCTTAATTTAAAAGCCTTTGAT

RB1 a5691g t5694c
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CTACTGAAACAGATTTCATACCTCAGAGTGCAAAAGAACTTACTGATTATTTTCTTCA

RB1 a5691g t5694c antisense

TGAAGAAAATAATCAGTAAGTTCTTTTGCACTCTGAGGTATGAAATCTGTTTCAGTAG

RBAK a4543g t4546c

GGACAAAACCTGATGAGTGTAATGAGTGCGGGAAAACATATCATGGAG

RBAK a4837g t4840c

GAAATGAAGCCCTTTGAATGCAGTGAGTGCGGAAAATCCTTCTGTAAA

RBAK a5005g t5008c

TAGAGGAGAAGCCCTATAAATGTAATGAGTGCGGGAAAACCTTTTGTC

RBAK a4912g t4915c

CACAGGAGAGAAACCTTATGAGTGCAATGTATGTGGGAAATCCTTC

RBAK a5080g t5083c

CATTCAGGAGAGAAACCCTACGAGTGCAGCGAATGTGGG

A.2.7 List of RNA Oligonucleotides Used

miR-23a

AUCACAUUGCCAGGGAUUUCC

miR-23a Passenger Strand

AAAUCCCUGGGGAUGGGAUUU

miR-124

UAAGGCACGCGGUGAAUGCCA

miR-124 Passenger Strand

GCAUUCACCGCGUGCCUUAAU

miR-181a

AACAUUCAACGCUGUCGGUGAGU
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miR-181a Passenger Strand

UCACCGACAGCGUUGAAUGAUAU

miR-199a

CCCAGUGUUCAGACUACCUGUUC

miR-199a Passenger Strand

ACAGGUAGUCUGAACACUGGGUU

miR-370

GCCUGCUGGGGUGGAACCUGGU

miR-370 Passenger Strand

CAGGUUCCACCCCAGCAGGCUU

A.2.8 List of Plasmids Used

pIS1

Control Renilla luciferase construct

pIS7L

Empty vector firefly luciferase construct

pIS7L-Znf573

ZNF573-luciferase fusion construct

pIS7L-Zfp37

ZFP37-luciferase fusion construct

pIS7L-Znf20

ZNF20-luciferase fusion construct

pIS7L-Znf791

ZNF791-luciferase fusion construct

pIS7L-RBAK
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RBAK ORF-luciferase fusion construct

pIDTSMART-mZnf20

Minigene construct with half of Znf20 mutated

pIS7L-mZnf20

ZNF20-luciferase fusion construct with miR-181 sites mutated

pIS7L-Znf20-in-UTR

Luciferase followed by ZNF20 in 3’UTR

pIS7L-mZnf20-UTR

Luciferae followed by ZNF20 in 3’UTR with miR-181 sites mutated

pIS7L-fs Znf573

ZNF573-luciferase fusion construct with frame-shift

pIS7L-fs Zfp37

ZFP37-luciferase fusion construct with frame-shift

pIS7L-fs Znf20

ZNF20-luciferase fusion construct with frame-shift

pIS7L-fs Znf791

ZNF791-luciferase fusion construct with frame-shift

pIS7L-fs RBAK

RBAK ORF-luciferase fusion construct with frame-shift

pIS7L-Znf225

ZNF225-luciferase fusion construct

pIS7L-Znf486

ZNF486-luciferase fusion construct

pIS7L-Znf85

ZNF85-luciferase fusion construct

pIS7L-fs Znf85



A.2. METHODS IN MAMMALIAN STUDIES 183

ZNF85-luciferase fusion construct with frame-shift

pIS7L-HDAC5

HDAC5-luciferase fusion construct

pIS7L-IVL

IVL-luciferase fusion construct

pIDTSMART-mRBAK

Minigene construct with half of RBAK mutated

pIS7L-mRBAK

RBAK ORF-luciferase fusion construct with miR-181 sites mutated

pIS7L-RBAK UTR

Luciferase followed by RBAK 3’UTR construct

pIS7L-RBAK mUTR

Luciferase followed by RBAK 3’UTR construct with miR-181 sites mutated

pIS7L-RBAK O+U

RBAK-luciferase fusion followed by RBAK 3’UTR construct

pIS7L-RBAK mO+U

RBAK-luciferase fusion followed by RBAK 3’UTR construct with miR-181 sites mutated

pIS7L-Rb1

RB1-luciferase fusion construct

pIS7L-mRb1

RB1-luciferase fusion construct with miR-181 sites mutated

pIS7L-Rb1 UTR

Luciferase followed by RB1 3’UTR construct

pIS7L-Rb1 mUTR

Luciferase followed by RB1 3’UTR construct with miR-181 sites mutated
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A.2.9 Plasmid Construction

pIS7L In order to generate the control empty vector luciferase plasmid, we first

amplified the firefly luciferase from pSP-luc+NF fusion vector (Promega) with Con-

trolPrimerF and ControlPrimerR. The resulting product and pIS1 (Grimson et al.

2007) was with NheI and SacI and ligated to create pIS7. This construct was then

digested with NheI and BstEII and ligated with an annealed duplex of LinkerInsertF

and LinkerInsertR to generate pIS7L.

C-Terminal Luciferase Fusions. In order to generate C-terminal luciferase fusions,

the following ORFs (ZNF573, ZFP37, ZNF20, ZNF791, RBAK, ZNF225, ZNF486,

ZNF85, HDAC5 and IVL) were amplified from cDNA clones (BC042170, BC126390,

BC036714, BC106938, BC136676, BC108912, BC117268, BC051824 and BC046391,

respectively) with the following oligounucleotides: Znf573 Fw, Znf573 Rev; Zfp37 Fw,

Zfp37 Rev; Znf20 Fw, Znf20 Rev; Znf791 Fw, Znf791 Rev; RBAK Fw, RBAK Rev;

Znf225 Fw, Znf225 Rev; Znf486 Fw, Znf486 Rev; Znf85 Fw, Znf85 Rev; HDAC5 Forward,

HDAC5 Reverse; IVL Forward, IVL Reverse. The resulting products and pIS7L were

digested with Kpn1 and NheI in order to generate the luciferase fusion constructs. To

generate pIS7L-RB1, the RB1 ORF was amplified from the cDNA clone BC039060

genomic DNA with RB1 ORF Fw and RB1 ORF Rev. The resulting product was

digested with KpnI and SpI and ligated into pIS7L, which had been digested with

KpnI and NheI.

Frame-shift mutant luciferase fusions. In order to generate frame-shifts (1

nucleotide insertion about 100 bp downstream of the start codon), QuikChange

II (Stratagene) was used, following the manufacturers instructions and the follow-

ing oligonucleotides: ZNF573: Znf573 ins 1nt after 622; Znf573 ins 1nt after 622-
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antisense ZFP37: Zfp37 ins 1nt after 622; Zfp37 ins 1nt after 622-antisense ZNF20:

Znf20 ins 1nt after 622; Znf20 ins 1nt after 622-antisense ZNF791: Znf791 ins 1nt after 622;

Znf791 ins 1nt after 622-antisense RBAK: RBAK ins 1nt after 622; RBAK ins 1nt after 622-

antisense ZNF85: Znf85 ins 1nt after 622; Znf85 ins 1nt after 622-antisense

ZNF20 mutant ORF luciferase fusion. Using QuikChange-Multi kit (Strata-

gene) and two oligonucleotides (Znf20 a963g t966c, Znf20 a1047g t1050c), two 7mers

were mutated to generate pIS7L-Znf20int. The ZNF20 minigene (see below) was

excised from pIDTSMART-mZnf20 by StuI digested. This was ligated into pIS7L-

Znf20int, which had also been digested by StuI, to generate pIS7L-mZnf20.

ZNF20 into 3’UTR luciferase construct. Wild-type or mutant ZNF20 was am-

plified with Znf20 Into3UTR Forward and Znf20 Into3UTR Reverse. The resulting

product as well as pIS7L was digested with XbaI an NotI to generate pIS7L-Znf20-

in-UTR and pIS7L-mZnf20-in-UTR, respectively.

RBAK mutant ORF luciferase fusion. The N-terminal section of RBAK was

excised from pIS7L-RBAK using HindIII. This fragment was ligated into digested

pIS0 (Grimson et al. 2007) to generate pRBAKPreMutate. To generate pRBAKMu-

tate1, pRBAKPreMutate was then mutated using QuikChange-Multi (Stratagene)

and the following oligonucleotides: RBAK a4543g t4546c, RBAK a4837g t4840c and

RBAK a5005g t5008c. To generate pRBAKMutate2, pRBAKMutate1 was mutated

using QuikChange Multi and the following oligonucleotides: RBAK a4912g t4915c

and RBAK a5080g t5083c. In order to generate pRBAKInterim, the RBAK mini-

gene (see below) was excised using HindIII and KpnI and ligated into pIS7L-RBAK,

also digested with HindIII and KpnI. Finally, to generate pIS7L-mRBAK, the mu-
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tated N-terminal half of RBAK was excised from pRBAKMutate2 with HindIII and

ligated into pRBAKInterim, which had also been digested with HindIII.

RB1 mutant ORF luciferase fusion. pIS7L-Rb1 was mutated using QuikChange

Multi kit (Stratagene), according to manufacturers instructions, and the following

oligonucleotides: RB1 a1368g t1371c, RB1 g1620c t1623c and RB1 g2076c t2079c.

3’UTR Luciferase Constructs. The RBAK 3’UTR was amplified from the cDNA

clone BC136676 using the oligonucleotides RBAK 3’UTR Fw/Rev. The resulting

product was digested with AgeI and NotI and ligated into digested pIS7L or pIS7L-

RBAK in order to generate pIS7L-RBAK UTR or pIS7L-RBAK O+U, respectively.

In order to generate pIS7L RBAK mUTR, QuikChange Multi kit (Stratagene) was

used to mutate the original, wild-type plasmid with the oligonucleotides RBAK

UTR site 1 and RBAK UTR site 2. The resulting mutant UTR was excised with

AgeI and NotI and ligated into digest pIS7L-mRBAK in order to generate pIS7L-

RBAK mO+U. The RB1 3’ UTR was amplified from the cDNA clone BC039060

using the oligonucleotides RB1 UTR For and RB1 UTR Rev. The resulting prod-

uct was digested with AgeI and NotI. In order to mutate the single miR-181 site,

QuikChangeII mutagenesis kit was used and the oligonucleotides RB1 a5691g t5694c

and RB1 a5691g t5694c antisense.

Minigenes

ZNF20. Generated in pIDTSMART (IDT Technologies) and flanked by StuI restric-

tion sites. Mutated sites are in lower-case.

TTACTCGTTCCACTACCCTTCCAGTACATGAAAGAACTCACACAGGAGTGAA

TGCCGAtgagtgcaAAGAATGTGGGAATGCATTCAGTTTTCCTAGTGAAATTCGT
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AGACATAAAAGGTCTCACACTGGAGAAAAACCCTATGAGTGTAAGCAATGTG

GGAAAGTCTTCATTTCTTTCAGTTCCATTCAGTATCATAAGATGACTCACACT

GGAGAGAAACCCTAtgagtgcaAGCAGTGTGGGAAAGCCTTTAGATGTGGCTC

ACACCTTCAAAAGCATGGAAGGACTCACACTGGAGAGAAACCCTAtgagtgca

GGCAATGTGGTAAAGCCTTCAGATGTACCTCGGACCTTCAAAGGCATGAAA

AGACACACACTGAGGATAAACCCTATGGATGTAAGCAGTGTGGGAAAGGCT

TTAGATGTGCTTCACAACTTCAAATTCATGAAAGGACGCACAGTGGAGAGAA

ACCCCAtgagtgcaAGGAATGTGGAAAAGTATTCAAGTATTTTTCTTCCTTGCGT

ATACATGAAAGGACGCACACTGGAGAGAAGCCCCAtgagtgcaAGCAATGTGG

AAAAGCATTCAGGTATTTCTCTTCCTTGCATATACATGAAAGGACACACACTG

GAGATAAGCCATATGAGTGTAAGGTATGTGGCAAAGCCTTCACTTGTTCCAG

TTCCATTCGATATCATGAAAGGACTCACACTGGAGAGAAACCCTAtgagtgcaAG

CACTGTGGTA

RBAK. Generated in pIDTSMART (IDT Technologies) and flanked by HindIII (5’

side) and KpnI (3’ side). Mutated sites are in lower-case.

TATAAATGTAATGAgTGcGGGAAATCCTACTACCGAAAGTCTACTCTGATTACA

CATCAGAGAACACACACAGGAGAGAAGCCCTATCAGTGTAGCGAGTGTGGGA

AATTCTTTTCTCGGGTGTCATACCTCACTATACATTATAGAAGTCATTTAGAAGA

GAAACCCTATGAgTGcAATGAgTGcGGCAAAACCTTCAATTTAAATTCAGCCTTC

ATTAGACATCGGAAAGTACACACAGAAGAGAAATCCCATGAgTGcAGTGAgTG

cGGAAAGTTCTCTCAGTTGTATCTCACCGACCATCATACAGCTCATTTAGAAGA

GAAACCCTATGAgTGcAATGAgTGcGGGAAAACCTTCCTTGTAAATTCAGCCTTC

GATGGGCACCAGCCACTTCCAAAAGGGGAGAAATCCTATGAgTGcAATGTATG

TGGAAAGTTATTCAATGAGTTGTCATACTATACTGAACATTATAGAAGTCATTCA

GAAGAGAAACCTTATGGATGTAGCGAATGTGGGAAAACCTTTTCCCATAATTCA
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TCCCTCTTCAGACATCAAAGAGTACACACAGGCGAGAAACCCTATGAgTGcTAC

GAATGTGGAAAATTCTTCTCTCAGAAATCATATCTCACTATACATCATCGAATTC

ATTCAGGAGAGAAACCCTATGAgTGcAGTAAATGTGGAAAAGTCTTCTCTCGGAT

GTCAAACCTCACTGTCCACTACAGAAGCCATTCAGGAGAGAAACCCTATGAgT

GcAATGAgTGcGGGAAAGTCTTTTCTCAGAAGTCATACCTCACTGTACACTATAG

AACTCATTCAGGAGAGAAACCCTATGAgTGcAATGAGTGTGGGAAAAAATTCCA

CCACAGATCAGCCTTCAATAGCCATCAGAGAATTCATAGAAGAGGAAATATGAA

cGTcCTTGATGTGGAAAATCTC



Appendix B

Repeat Rich Target Gene Lists

Table B.1: Genes containing at least four miR-23 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF208 NM 007153 chr19 - 22148898 3843 32 3 0

ZNF91 NM 003430 chr19 - 23540498 3576 17 5 0

ZNF107 NM 001013746 chr7 + 64126510 2352 15 4 1

ZNF43 NM 003423 chr19 - 21987752 2430 15 1 2

ZNF676 NM 001001411 chr19 - 22361902 1767 13 0 0

ZNF714 NM 182515 chr19 + 21264952 1665 12 4 1

ZNF626 NM 001076675 chr19 - 20802744 1587 12 3 1

ZNF92 NM 007139 chr7 + 64838767 1554 11 2 1

ZNF257 NM 033468 chr19 + 22235265 1692 11 2 0

ZNF737 NM 001159293 chr19 - 20720798 1611 11 1 1

ZNF431 NM 133473 chr19 + 21324839 1731 10 4 2

ZNF90 NM 007138 chr19 + 20188802 1806 10 3 1

ZNF85 NM 003429 chr19 + 21106058 1788 10 3 1

ZNF254 NM 203282 chr19 + 24269975 1980 10 2 0

ZNF708 NM 021269 chr19 - 21473962 1692 10 0 0

ZNF681 NM 138286 chr19 - 23921998 1938 9 3 3

ZNF98 NM 001098626 chr19 - 22573898 1719 9 2 1

ZNF675 NM 138330 chr19 - 23835708 1707 8 5 2

ZNF430 NM 025189 chr19 + 21203425 1713 8 3 3

ZNF492 NM 020855 chr19 + 22817125 1596 8 2 2

ZNF721 NM 133474 chr4 - 433780 2772 8 0 5

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF680 NM 178558 chr7 - 63980254 1593 7 6 0

ZNF429 NM 001001415 chr19 + 21688436 2025 7 3 1

ZNF93 NM 031218 chr19 + 20011721 1863 7 3 0

ZNF117 NM 015852 chr7 - 64434829 1452 7 3 0

ZNF273 NM 021148 chr7 + 64363619 1710 7 2 0

ZNF682 NM 001077349 chr19 - 20115228 1401 7 1 1

ZNF100 NM 173531 chr19 - 21906843 1629 6 4 1

ZNF678 NM 178549 chr1 + 227751219 1578 6 3 1

ZNF225 NM 013362 chr19 + 44617547 2121 5 6 0

ZNF845 NM 138374 chr19 + 53837001 2913 5 6 0

FBN1 NM 000138 chr15 - 48700503 8616 5 5 6

ZNF28 NM 006969 chr19 - 53300661 1998 5 4 0

ZNF253 NM 021047 chr19 + 19976713 1500 5 3 2

ZNF479 NM 033273 chr7 - 57187327 1575 5 1 2

ZNF486 NM 052852 chr19 + 20278082 1392 5 1 1

ZNF267 NM 003414 chr16 + 31885078 2232 5 1 0

TEX15 NM 031271 chr8 - 30689061 8370 5 0 2

FBN2 NM 001999 chr5 - 127593601 8739 4 5 2

ZNF235 NM 004234 chr19 - 44790501 2217 4 4 0

ZNF141 NM 003441 chr4 + 331595 1425 4 2 2

ZNF716 NM 001159279 chr7 + 57509882 1488 4 1 3

ZNF826 NM 001039884 chr19 - 20574520 534 4 0 0

Table B.2: Genes containing at least four miR-181 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF780B NM 001005851 chr19 - 40534167 2502 16 0 0

ZNF658 NM 033160 chr9 - 40771401 3180 14 14 1

ZNF699 NM 198535 chr19 - 9405985 1929 11 3 1

ZNF709 NM 152601 chr19 - 12571998 1926 11 0 0

ZNF14 NM 021030 chr19 - 19821280 1929 10 0 0

ZNF12 NM 006956 chr7 - 6728063 1980 9 9 2

ZNF546 NM 178544 chr19 + 40502942 2511 9 3 3

ZNF573 NM 152360 chr19 - 38229202 1824 9 2 0

ZNF420 NM 144689 chr19 + 37569381 2067 9 1 3

ZNF607 NM 032689 chr19 - 38187264 2091 9 1 2

ZNF700 NM 144566 chr19 + 12035899 2229 9 0 0

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF283 NM 181845 chr19 + 44331472 2040 9 0 0

RBAK NM 021163 chr7 + 5085552 2145 8 9 1

ZNF470 NM 001001668 chr19 + 57078889 2154 8 7 2

ZFP37 NM 003408 chr9 - 115804173 1893 8 7 0

ZNF334 NM 018102 chr20 - 45129708 2043 8 6 1

ZNF180 NM 013256 chr19 - 44979859 2079 8 3 0

ZFP14 NM 020917 chr19 - 36827161 1602 8 1 2

ZNF345 NM 003419 chr19 + 37341266 1467 8 1 1

ZNF790 NM 206894 chr19 - 37308332 1911 8 1 0

ZNF594 NM 032530 chr17 - 5082830 2424 7 10 0

ZNF461 NM 153257 chr19 - 37128283 1692 7 3 0

ZNF383 NM 152604 chr19 + 37717365 1428 7 3 0

ZNF570 NM 144694 chr19 + 37959981 1611 7 1 3

ZNF30 NM 001099437 chr19 + 35417806 1875 7 1 0

ZFP82 NM 133466 chr19 - 36882860 1599 7 0 3

ZFP30 NM 014898 chr19 - 38123388 1560 7 0 1

ZNF844 NM 001136501 chr19 + 12175545 2001 7 0 0

ZNF44 NM 001164276 chr19 - 12382626 1992 7 0 0

ZNF571 NM 016536 chr19 - 38055155 1830 7 0 0

ZNF829 NM 001037232 chr19 - 37379026 1299 6 2 2

ZNF564 NM 144976 chr19 - 12636184 1662 6 2 0

ZNF433 NM 001080411 chr19 - 12125531 2022 6 1 0

ZNF20 NM 021143 chr19 - 12242802 1599 6 0 2

ZNF778 NM 182531 chr16 + 89284110 2190 6 0 1

ZNF33B NM 006955 chr10 - 43084554 2337 5 13 0

ZNF569 NM 152484 chr19 - 37902061 2061 5 8 0

ZNF471 NM 020813 chr19 + 57019211 1881 5 6 2

ZNF568 NM 198539 chr19 + 37407233 1935 5 6 1

ZNF527 NM 032453 chr19 + 37862058 1830 5 5 2

ZNF260 NM 001012756 chr19 - 37001589 1239 5 5 0

ZNF583 NM 001159860 chr19 + 56915382 1710 5 3 6

ZFP90 NM 133458 chr16 + 68573660 1911 5 2 0

ZNF443 NM 005815 chr19 - 12540520 2016 5 2 0

ZNF25 NM 145011 chr10 - 38238794 1371 5 1 2

ZNF558 NM 144693 chr19 - 8920381 1209 5 1 0

ZNF560 NM 152476 chr19 - 9577030 2373 5 1 0

ZNF823 NM 001080493 chr19 - 11832079 1833 5 1 0

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF442 NM 030824 chr19 - 12460184 1884 5 1 0

ZNF566 NM 032838 chr19 - 36936021 1257 5 0 2

ZNF791 NM 153358 chr19 + 12721731 1731 5 0 1

ZNF491 NM 152356 chr19 + 11909390 1314 5 0 0

ZNF878 NM 001080404 chr19 - 12154619 1737 5 0 0

ZNF33A NM 006954 chr10 + 38299577 2436 4 14 0

FBN2 NM 001999 chr5 - 127593601 8739 4 14 0

ZNF157 NM 003446 chrX + 47229998 1521 4 11 2

ZNF182 NM 001007088 chrX - 47834250 1863 4 8 0

ZNF397OS NM 001112734 chr18 - 32831022 1485 4 5 0

ZFP3 NM 153018 chr17 + 4981753 1509 4 4 0

ZFP28 NM 020828 chr19 + 57050316 2607 4 3 1

ZNF439 NM 152262 chr19 + 11976843 1500 4 2 0

ZKSCAN1 NM 003439 chr7 + 99613218 1692 4 2 0

ZNF540 NM 152606 chr19 + 38042307 1983 4 1 2

ZNF763 NM 001012753 chr19 + 12075868 1194 4 1 1

ZNF799 NM 001080821 chr19 - 12500828 1932 4 1 0

ZNF620 NM 175888 chr3 + 40547529 1269 4 1 0

ZNF490 NM 020714 chr19 - 12686919 1590 4 0 1

ZNF121 NM 001008727 chr19 - 9676291 1173 4 0 1

ZNF670 NM 033213 chr1 - 247199699 1170 4 0 0

ZNF440 NM 152357 chr19 + 11925106 1788 4 0 0

ZNF529 NM 001145649 chr19 - 37034517 1692 4 0 0

ZNF846 NM 001077624 chr19 - 9868150 1602 4 0 0

ZNF625 NM 145233 chr19 - 12255710 921 4 0 0

ZNF582 NM 144690 chr19 - 56894647 1554 4 0 0

ZNF621 NM 001098414 chr3 + 40566375 1320 4 0 0

Table B.3: Genes containing at least four miR-188 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF814 NM 001144989 chr19 - 58380746 2568 16 0 1

ZNF594 NM 032530 chr17 - 5082830 2424 15 1 1

ZFP62 NM 152283 chr5 - 180274610 2523 15 0 0

ZNF780B NM 001005851 chr19 - 40534167 2502 14 1 1

ZNF546 NM 178544 chr19 + 40502942 2511 13 0 0

ZNF658 NM 033160 chr9 - 40771401 3180 12 3 0

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF17 NM 006959 chr19 + 57922528 1989 12 1 0

ZNF699 NM 198535 chr19 - 9405985 1929 12 0 1

ZNF283 NM 181845 chr19 + 44331472 2040 12 0 1

ZNF585A NM 199126 chr19 - 37641000 2145 12 0 0

ZNF225 NM 013362 chr19 + 44617547 2121 12 0 0

ZNF623 NM 001082480 chr8 + 144718372 1491 12 0 0

ZNF585B NM 152279 chr19 - 37672481 2310 11 2 0

RBAK NM 021163 chr7 + 5085552 2145 11 1 0

ZNF268 NM 001165881 chr12 + 133758059 2844 11 0 1

ZNF799 NM 001080821 chr19 - 12500828 1932 11 0 1

ZNF443 NM 005815 chr19 - 12540520 2016 11 0 1

ZNF749 NM 001023561 chr19 + 57946692 2337 11 0 1

ZNF555 NM 152791 chr19 + 2841432 1887 11 0 0

ZNF418 NM 133460 chr19 - 58433251 2031 11 0 0

ZNF16 NM 001029976 chr8 - 146155745 2049 11 0 0

ZNF573 NM 152360 chr19 - 38229202 1824 10 1 1

ZNF441 NM 152355 chr19 + 11877814 2082 10 1 0

ZNF33B NM 006955 chr10 - 43084554 2337 10 0 1

ZNF33A NM 006954 chr10 + 38299577 2436 10 0 1

ZNF607 NM 032689 chr19 - 38187264 2091 10 0 1

ZNF549 NM 153263 chr19 + 58038692 1884 10 0 1

ZNF778 NM 182531 chr16 + 89284110 2190 10 0 0

ZNF700 NM 144566 chr19 + 12035899 2229 10 0 0

ZNF44 NM 001164276 chr19 - 12382626 1992 10 0 0

ZNF224 NM 013398 chr19 + 44598481 2124 10 0 0

ZNF12 NM 006956 chr7 - 6728063 1980 10 0 0

ZNF84 NM 003428 chrUn gl000223 - 42779 2217 9 1 0

ZNF433 NM 001080411 chr19 - 12125531 2022 9 1 0

ZNF442 NM 030824 chr19 - 12460184 1884 9 1 0

ZNF540 NM 152606 chr19 + 38042307 1983 9 1 0

ZNF823 NM 001080493 chr19 - 11832079 1833 9 0 1

ZNF792 NM 175872 chr19 - 35447257 1899 9 0 1

ZNF345 NM 003419 chr19 + 37341266 1467 9 0 0

ZNF491 NM 152356 chr19 + 11909390 1314 9 0 0

ZNF331 NM 018555 chr19 + 54024176 1392 9 0 0

ZNF470 NM 001001668 chr19 + 57078889 2154 9 0 0

ZNF416 NM 017879 chr19 - 58082934 1785 9 0 0

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF530 NM 020880 chr19 + 58111252 1800 9 0 0

ZNF154 NM 001085384 chr19 - 58211810 1314 9 0 0

ZNF484 NM 031486 chr9 - 95608350 2559 9 0 0

ZNF157 NM 003446 chrX + 47229998 1521 9 0 0

ZNF420 NM 144689 chr19 + 37569381 2067 8 1 1

ZNF229 NM 014518 chr19 - 44930425 2478 8 1 1

ZNF564 NM 144976 chr19 - 12636184 1662 8 1 0

ZNF45 NM 003425 chr19 - 44416776 2049 8 1 0

ZNF547 NM 173631 chr19 + 57874890 1209 8 1 0

ZNF304 NM 020657 chr19 + 57862644 1980 8 0 1

ZNF239 NM 005674 chr10 - 44051794 1377 8 0 0

ZNF26 NM 019591 chrUn gl000223 - 93510 1602 8 0 0

ZNF287 NM 020653 chr17 - 16453630 2286 8 0 0

ZNF440 NM 152357 chr19 + 11925106 1788 8 0 0

ZNF256 NM 005773 chr19 - 58452202 1884 8 0 0

ZNF77 NM 021217 chr19 - 2933216 1638 8 0 0

ZNF560 NM 152476 chr19 - 9577030 2373 8 0 0

ZNF136 NM 003437 chr19 + 12273871 1623 8 0 0

ZNF30 NM 001099437 chr19 + 35417806 1875 8 0 0

ZNF284 NM 001037813 chr19 + 44576296 1782 8 0 0

ZNF211 NM 006385 chr19 + 58144534 1734 8 0 0

ZNF587 NM 032828 chr19 + 58361268 1728 8 0 0

ZNF35 NM 003420 chr3 + 44690232 1584 8 0 0

ZNF445 NM 181489 chr3 - 44481261 3096 8 0 0

ZNF660 NM 173658 chr3 + 44626455 996 8 0 0

ZNF197 NM 006991 chr3 + 44666510 3090 8 0 0

ZNF596 NM 173539 chr8 + 182199 1515 8 0 0

ZNF132 NM 003433 chr19 - 58944181 2121 7 2 1

ZNF624 NM 020787 chr17 - 16524047 2598 7 1 0

ZNF772 NM 001024596 chr19 - 57980954 1470 7 1 0

ZNF134 NM 003435 chr19 + 58125829 1284 7 1 0

ZNF81 NM 007137 chrX + 47696300 1986 7 1 0

ZNF556 NM 024967 chr19 + 2867332 1371 7 0 1

ZNF563 NM 145276 chr19 - 12428305 1431 7 0 1

ZNF544 NM 014480 chr19 + 58740069 2148 7 0 1

ZNF311 NM 001010877 chr6 ssto hap7 - 303579 2001 7 0 1

ZNF37A NM 001007094 chr10 + 38383263 1686 7 0 0

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF25 NM 145011 chr10 - 38238794 1371 7 0 0

ZNF426 NM 024106 chr19 - 9638682 1665 7 0 0

ZNF846 NM 001077624 chr19 - 9868150 1602 7 0 0

ZNF627 NM 145295 chr19 + 11708234 1386 7 0 0

ZNF439 NM 152262 chr19 + 11976843 1500 7 0 0

ZNF878 NM 001080404 chr19 - 12154619 1737 7 0 0

ZNF844 NM 001136501 chr19 + 12175545 2001 7 0 0

ZNF791 NM 153358 chr19 + 12721731 1731 7 0 0

ZNF181 NM 001029997 chr19 + 35225479 1716 7 0 0

ZNF382 NM 032825 chr19 + 37096220 1653 7 0 0

ZNF461 NM 153257 chr19 - 37128283 1692 7 0 0

ZNF567 NM 152603 chr19 + 37180301 1851 7 0 0

ZNF790 NM 206894 chr19 - 37308332 1911 7 0 0

ZNF180 NM 013256 chr19 - 44979859 2079 7 0 0

ZNF175 NM 007147 chr19 + 52074530 2136 7 0 0

ZNF548 NM 152909 chr19 + 57901217 1602 7 0 0

ZIK1 NM 001010879 chr19 + 58095627 1464 7 0 0

ZNF671 NM 024833 chr19 - 58231119 1605 7 0 0

ZNF250 NM 001109689 chr8 - 146102337 1668 7 0 0

ZNF79 NM 007135 chr9 + 130186652 1497 7 0 0

ZFP90 NM 133458 chr16 + 68573660 1911 6 3 0

ZNF485 NM 145312 chr10 + 44101854 1326 6 2 0

ZNF57 NM 173480 chr19 + 2900895 1668 6 2 0

ZNF667 NM 022103 chr19 - 56950693 1833 6 1 1

ZNF121 NM 001008727 chr19 - 9676291 1173 6 1 0

ZNF571 NM 016536 chr19 - 38055155 1830 6 1 0

ZNF334 NM 018102 chr20 - 45129708 2043 6 1 0

ZNF879 NM 001136116 chr5 + 178450775 1692 6 1 0

ZNF192 NM 006298 chr6 + 28109715 1737 6 1 0

ZFP37 NM 003408 chr9 - 115804173 1893 6 1 0

ZNF527 NM 032453 chr19 + 37862058 1830 6 0 1

ZNF502 NM 001134440 chr3 + 44754134 1635 6 0 1

ZNF251 NM 138367 chr8 - 145946294 2016 6 0 1

ZNF674 NM 001039891 chrX - 46357160 1746 6 0 1

ZNF559 NM 032497 chr19 + 9434927 1617 6 0 0

ZNF565 NM 152477 chr19 - 36673187 1500 6 0 0

ZNF551 NM 138347 chr19 + 58193356 1965 6 0 0

Continued. . .



196 APPENDIX B. REPEAT RICH TARGET GENE LISTS

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF561 NM 152289 chr19 - 9718002 1461 6 0 0

ZNF568 NM 198539 chr19 + 37407233 1935 6 0 0

ZNF235 NM 004234 chr19 - 44790501 2217 6 0 0

ZNF613 NM 024840 chr19 + 52430687 1746 6 0 0

ZNF615 NM 198480 chr19 - 52494587 2196 6 0 0

ZNF264 NM 003417 chr19 + 57702867 1884 6 0 0

ZNF805 NM 001023563 chr19 + 57752052 1884 6 0 0

ZNF543 NM 213598 chr19 + 57831864 1803 6 0 0

ZNF417 NM 152475 chr19 - 58417142 1728 6 0 0

ZNF584 NM 173548 chr19 + 58920062 1266 6 0 0

ZNF662 NM 207404 chr3 + 42947401 1281 6 0 0

ZKSCAN5 NM 145102 chr7 + 99102272 2520 6 0 0

ZNF34 NM 030580 chr8 - 145998502 1683 6 0 0

ZNF510 NM 014930 chr9 - 99518146 2052 6 0 0

ZNF189 NM 003452 chr9 + 104161162 1881 6 0 0

ZNF41 NM 007130 chrX - 47305561 2340 6 0 0

ZNF223 NM 013361 chr19 + 44556163 1449 5 2 0

ZNF419 NM 001098491 chr19 + 57999078 1536 5 2 0

ZNF630 NM 001037735 chrX - 47917568 1974 5 2 0

ZNF155 NM 003445 chr19 + 44488354 1617 5 1 1

ZNF605 NM 183238 chr12 - 133498018 1926 5 1 0

ZNF23 NM 145911 chr16 - 71481512 1932 5 1 0

ZFP3 NM 153018 chr17 + 4981753 1509 5 1 0

ZNF221 NM 013359 chr19 + 44455396 1854 5 1 0

ZNF230 NM 006300 chr19 + 44507076 1425 5 1 0

ZNF649 NM 023074 chr19 - 52392488 1518 5 1 0

ZNF586 NM 017652 chr19 + 58281024 1209 5 1 0

ZNF8 NM 021089 chr19 + 58790317 1728 5 1 0

ZNF167 NM 018651 chr3 + 44596712 2265 5 1 0

ZNF184 NM 007149 chr6 - 27418521 2256 5 1 0

ZNF473 NM 001006656 chr19 + 50529211 2616 5 0 2

ZNF460 NM 006635 chr19 + 57791852 1689 5 0 1

ZNF14 NM 021030 chr19 - 19821280 1929 5 0 1

ZSCAN20 NM 145238 chr1 + 33938231 3132 5 0 0

ZNF436 NM 030634 chr1 - 23685941 1413 5 0 0

ZNF248 NM 021045 chr10 - 38117898 1740 5 0 0

ZNF286A NM 001130842 chr17 + 15602890 1566 5 0 0
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF286B NM 001145045 chr17 - 18561741 1569 5 0 0

ZNF709 NM 152601 chr19 - 12571998 1926 5 0 0

ZNF599 NM 001007248 chr19 - 35248978 1767 5 0 0

ZNF529 NM 001145649 chr19 - 37034517 1692 5 0 0

ZNF793 NM 001013659 chr19 + 37997840 1221 5 0 0

ZFP30 NM 014898 chr19 - 38123388 1560 5 0 0

ZNF550 NM 001039654 chr19 - 58058342 1146 5 0 0

ZNF558 NM 144693 chr19 - 8920381 1209 5 0 0

ZNF20 NM 021143 chr19 - 12242802 1599 5 0 0

ZNF260 NM 001012756 chr19 - 37001589 1239 5 0 0

ZNF383 NM 152604 chr19 + 37717365 1428 5 0 0

ZNF222 NM 001129996 chr19 + 44529493 1476 5 0 0

ZNF234 NM 001144824 chr19 + 44645709 2103 5 0 0

ZNF432 NM 014650 chr19 - 52536677 1959 5 0 0

ZNF471 NM 020813 chr19 + 57019211 1881 5 0 0

ZNF776 NM 173632 chr19 + 58258163 1557 5 0 0

ZNF70 NM 021916 chr22 - 24083772 1341 5 0 0

ZNF572 NM 152412 chr8 + 125985538 1590 5 0 0

ZNF7 NM 003416 chr8 + 146052902 2061 5 0 0

ZNF266 NM 006631 chr19 - 9523271 1650 4 3 0

ZNF354A NM 005649 chr5 - 178138530 1818 4 2 0

ZNF552 NM 024762 chr19 - 58318451 1224 4 1 1

ZNF557 NM 001044387 chr19 + 7069470 1293 4 1 0

ZNF554 NM 001102651 chr19 + 2819871 1617 4 1 0

ZNF773 NM 198542 chr19 + 58011308 1329 4 1 0

ZNF606 NM 025027 chr19 - 58488446 2379 4 1 0

ZNF354C NM 014594 chr5 + 178487606 1665 4 1 0

ZSCAN22 NM 181846 chr19 + 58838384 1476 4 0 1

ZNF781 NM 152605 chr19 - 38158649 984 4 0 1

ZNF347 NM 032584 chr19 - 53641957 2520 4 0 1

ZNF449 NM 152695 chrX + 134478695 1557 4 0 1

ZNF124 NM 003431 chr1 - 247319202 870 4 0 0

ZNF684 NM 152373 chr1 + 40997232 1137 4 0 0

ZNF434 NM 017810 chr16 - 3432085 1458 4 0 0

ZNF232 NM 014519 chr17 - 5009032 1335 4 0 0

VEZF1 NM 007146 chr17 - 56048909 1566 4 0 0

ZNF397 NM 001135178 chr18 + 32820993 1605 4 0 0

Continued. . .
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF333 NM 032433 chr19 + 14800869 1998 4 0 0

ZNF562 NM 001130031 chr19 - 9759350 1281 4 0 0

ZNF625 NM 145233 chr19 - 12255710 921 4 0 0

ZNF302 NM 001012320 chr19 + 35168566 1200 4 0 0

ZNF570 NM 144694 chr19 + 37959981 1611 4 0 0

ZNF227 NM 182490 chr19 + 44716690 2400 4 0 0

ZNF233 NM 181756 chr19 + 44764075 2013 4 0 0

ZFP112 NM 001083335 chr19 - 44830706 2742 4 0 0

ZNF160 NM 001102603 chr19 - 53569867 2457 4 0 0

ZNF582 NM 144690 chr19 - 56894647 1554 4 0 0

ZNF583 NM 001159860 chr19 + 56915382 1710 4 0 0

ZFP28 NM 020828 chr19 + 57050316 2607 4 0 0

ZNF2 NM 001017396 chr2 + 95831182 1155 4 0 0

ZNF619 NM 001145083 chr3 + 40518632 1599 4 0 0

ZNF454 NM 182594 chr5 + 178368193 1569 4 0 0

ZNF300 NM 052860 chr5 - 150273953 1815 4 0 0

ZNF323 NM 145909 chr6 - 28292516 1221 4 0 0

ZNF193 NM 006299 chr6 + 28193072 1185 4 0 0

ZSCAN12 NM 001163391 chr6 - 28356728 1836 4 0 0

Table B.4: Genes containing at least four miR-199 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF442 NM 030824 chr19 - 12460184 1884 12 1 1

ZNF709 NM 152601 chr19 - 12571998 1926 11 2 0

ZNF433 NM 001080411 chr19 - 12125531 2022 11 2 0

ZNF700 NM 144566 chr19 + 12035899 2229 11 1 0

ZNF844 NM 001136501 chr19 + 12175545 2001 11 0 0

ZNF44 NM 001164276 chr19 - 12382626 1992 10 1 0

ZNF14 NM 021030 chr19 - 19821280 1929 10 1 0

ZNF441 NM 152355 chr19 + 11877814 2082 9 2 0

ZNF551 NM 138347 chr19 + 58193356 1965 9 1 0

ZNF791 NM 153358 chr19 + 12721731 1731 9 1 0

ZNF823 NM 001080493 chr19 - 11832079 1833 9 0 1

ZNF530 NM 020880 chr19 + 58111252 1800 9 0 1

ZNF814 NM 001144989 chr19 - 58380746 2568 8 4 0

ZNF544 NM 014480 chr19 + 58740069 2148 8 2 0

Continued. . .



199

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF20 NM 021143 chr19 - 12242802 1599 8 1 0

ZNF773 NM 198542 chr19 + 58011308 1329 8 1 0

ZNF443 NM 005815 chr19 - 12540520 2016 8 0 1

ZNF304 NM 020657 chr19 + 57862644 1980 8 0 1

ZNF419 NM 001098491 chr19 + 57999078 1536 8 0 0

ZNF418 NM 133460 chr19 - 58433251 2031 7 3 0

ZNF136 NM 003437 chr19 + 12273871 1623 7 2 0

ZNF564 NM 144976 chr19 - 12636184 1662 7 2 0

ZNF878 NM 001080404 chr19 - 12154619 1737 7 1 0

ZNF587 NM 032828 chr19 + 58361268 1728 7 1 0

ZNF417 NM 152475 chr19 - 58417142 1728 7 1 0

ZNF440 NM 152357 chr19 + 11925106 1788 7 0 0

ZNF266 NM 006631 chr19 - 9523271 1650 7 0 0

ZNF91 NM 003430 chr19 - 23540498 3576 7 0 0

ZNF491 NM 152356 chr19 + 11909390 1314 6 2 0

ZNF625 NM 145233 chr19 - 12255710 921 6 2 0

ZNF132 NM 003433 chr19 - 58944181 2121 6 1 3

ZNF563 NM 145276 chr19 - 12428305 1431 6 1 1

ZNF555 NM 152791 chr19 + 2841432 1887 6 1 0

ZNF699 NM 198535 chr19 - 9405985 1929 6 1 0

ZNF627 NM 145295 chr19 + 11708234 1386 6 1 0

ZNF235 NM 004234 chr19 - 44790501 2217 6 1 0

ZNF799 NM 001080821 chr19 - 12500828 1932 6 0 1

ZNF776 NM 173632 chr19 + 58258163 1557 6 0 1

ZNF439 NM 152262 chr19 + 11976843 1500 6 0 0

ZNF547 NM 173631 chr19 + 57874890 1209 6 0 0

ZIK1 NM 001010879 chr19 + 58095627 1464 6 0 0

ZNF211 NM 006385 chr19 + 58144534 1734 6 0 0

ZNF596 NM 173539 chr8 + 182199 1515 6 0 0

ZNF251 NM 138367 chr8 - 145946294 2016 5 4 1

ZNF543 NM 213598 chr19 + 57831864 1803 5 3 0

ZNF45 NM 003425 chr19 - 44416776 2049 5 2 1

ZNF264 NM 003417 chr19 + 57702867 1884 5 2 0

ZNF805 NM 001023563 chr19 + 57752052 1884 5 2 0

ZNF57 NM 173480 chr19 + 2900895 1668 5 1 0

ZNF227 NM 182490 chr19 + 44716690 2400 5 1 0

ZNF17 NM 006959 chr19 + 57922528 1989 5 1 0
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF772 NM 001024596 chr19 - 57980954 1470 5 0 1

ZNF416 NM 017879 chr19 - 58082934 1785 5 0 1

ZNF77 NM 021217 chr19 - 2933216 1638 5 0 0

ZNF502 NM 001134440 chr3 + 44754134 1635 4 4 0

ZNF550 NM 001039654 chr19 - 58058342 1146 4 2 0

ZNF7 NM 003416 chr8 + 146052902 2061 4 2 0

ZNF16 NM 001029976 chr8 - 146155745 2049 4 2 0

ZNF778 NM 182531 chr16 + 89284110 2190 4 1 1

ZNF599 NM 001007248 chr19 - 35248978 1767 4 1 1

ZNF671 NM 024833 chr19 - 58231119 1605 4 1 1

ZNF10 NM 015394 chr12 + 133707213 1722 4 1 0

ZNF490 NM 020714 chr19 - 12686919 1590 4 1 0

ZNF177 NM 003451 chr19 + 9473695 966 4 1 0

ZNF560 NM 152476 chr19 - 9577030 2373 4 1 0

ZNF426 NM 024106 chr19 - 9638682 1665 4 1 0

ZNF749 NM 001023561 chr19 + 57946692 2337 4 1 0

ZNF549 NM 153263 chr19 + 58038692 1884 4 1 0

ZNF80 NM 007136 chr3 - 113953480 822 4 1 0

ZNF83 NM 001105549 chr19 - 53115619 1551 4 0 2

PIKFYVE NM 015040 chr2 + 209130990 6297 4 0 2

ZSCAN20 NM 145238 chr1 + 33938231 3132 4 0 1

ZNF436 NM 030634 chr1 - 23685941 1413 4 0 0

ZNF397OS NM 001112734 chr18 - 32831022 1485 4 0 0

ZNF121 NM 001008727 chr19 - 9676291 1173 4 0 0

ZNF846 NM 001077624 chr19 - 9868150 1602 4 0 0

ZNF101 NM 033204 chr19 + 19779662 1311 4 0 0

ZNF585A NM 199126 chr19 - 37641000 2145 4 0 0

ZNF585B NM 152279 chr19 - 37672481 2310 4 0 0

ZFP112 NM 001083335 chr19 - 44830706 2742 4 0 0

ZNF548 NM 152909 chr19 + 57901217 1602 4 0 0

ZNF623 NM 001082480 chr8 + 144718372 1491 4 0 0

Table B.5: Genes containing at least four miR-370 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

IVL NM 005547 chr1 + 152881038 1758 22 6 7

TCHH NM 007113 chr1 - 152078792 5832 14 1 18
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF853 NM 017560 chr7 + 6655526 1980 11 3 1

MKI67 NM 001145966 chr10 - 129894926 8691 7 8 3

CEP250 NM 007186 chr20 + 34043222 7329 6 4 7

NUMA1 NM 006185 chr11 - 71713910 6348 6 3 2

HDAC5 NM 001015053 chr17 - 42154120 3372 6 1 1

LRRC37A3 NM 199340 chr17 - 62850487 4905 6 1 0

LRRC37A NM 014834 chr17 ctg5 hap1 - 415626 5103 6 1 0

LRRC37A2 NM 001006607 chr17 ctg5 hap1 - 197705 5103 6 1 0

TRIOBP NM 001039141 chr22 + 38092994 7098 5 5 4

CSPG4 NM 001897 chr15 - 75966663 6969 5 2 0

SYNE1 NM 015293 chr6 - 152442822 9966 5 1 0

EVPL NM 001988 chr17 - 74002926 6102 4 3 3

CROCC NM 014675 chr1 + 17248444 6054 4 2 7

MYH9 NM 002473 chr22 - 36677323 5883 4 2 3

AMBRA1 NM 017749 chr11 - 46417963 3627 4 2 1

GOLGA3 NM 005895 chr12 - 133345494 4497 4 2 1

CCHCR1 NM 001105563 chr6 mann hap4 - 2458574 2508 4 2 1

GRIPAP1 NM 020137 chrX - 48830133 2526 4 2 1

BTBD12 NM 032444 chr16 - 3631183 5505 4 1 2

MYO10 NM 012334 chr5 - 16662016 6177 4 1 1

GIGYF1 NM 022574 chr7 - 100277129 3108 4 1 1

NCOR1 NM 006311 chr17 - 15933409 7323 4 0 3

DMBT1 NM 004406 chr10 + 124320180 5358 4 0 1

Table B.6: Genes containing at least four miR-766 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

ZNF208 NM 007153 chr19 - 22148898 3843 9 0 23

CCDC88C NM 001080414 chr14 - 91737668 6087 7 14 5

SPTBN2 NM 006946 chr11 - 66452720 7173 7 4 3

MYH9 NM 002473 chr22 - 36677323 5883 6 15 3

SPTBN4 NM 020971 chr19 + 40973125 7695 6 12 2

MYO18B NM 032608 chr22 + 26138119 7704 6 7 5

MYH14 NM 001077186 chr19 + 50706884 6012 5 19 3

CCDC88B NM 032251 chr11 + 64107689 4431 5 19 1

CEP250 NM 007186 chr20 + 34043222 7329 5 10 8

MYO9B NM 001130065 chr19 + 17186590 6069 5 9 2
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

LMTK3 NM 001080434 chr19 - 48988529 4470 5 1 2

GOLGA6L10 NM 001164465 chr15 - 83009408 1422 5 1 1

SHROOM3 NM 020859 chr4 + 77356252 5991 5 0 0

MYH7 NM 000257 chr14 - 23881947 5808 4 19 4

MYH6 NM 002471 chr14 - 23851198 5820 4 19 3

EVPL NM 001988 chr17 - 74002926 6102 4 10 3

CGN NM 020770 chr1 + 151483861 3612 4 10 1

MYH3 NM 002470 chr17 - 10531842 5823 4 9 4

OBSL1 NM 015311 chr2 - 220415450 5691 4 6 0

BZRAP1 NM 004758 chr17 - 56378595 5574 4 5 2

MAD1L1 NM 001013836 chr7 - 1855427 2157 4 5 1

KIF1A NM 004321 chr2 - 241653184 5073 4 4 0

PREX1 NM 020820 chr20 - 47240792 4980 4 3 2

WWC1 NM 001161661 chr5 + 167719064 3360 4 2 1

ABCF3 NM 018358 chr3 + 183903862 2130 4 2 0

GOLGA6L9 NM 198181 chr15 + 82722184 1299 4 1 1

COL12A1 NM 004370 chr6 - 75794042 9192 4 0 4

Table B.7: Genes containing at least four miR-1248 8mers

Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

CYLC2 NM 001340 chr9 + 105757592 1047 7 2 1

BOD1L NM 148894 chr4 - 13570365 9156 6 7 2

NEFH NM 021076 chr22 + 29876180 3063 6 3 8

CYLC1 NM 021118 chrX + 83116169 1956 6 2 0

MAP1B NM 005909 chr5 + 71403117 7407 6 1 2

KNTC1 NM 014708 chr12 + 123011808 6630 6 0 3

BRD3 NM 007371 chr9 - 136895453 2181 5 4 3

MYH8 NM 002472 chr17 - 10293641 5814 5 3 3

MAP1A NM 002373 chr15 + 43809805 8412 5 2 11

MYH6 NM 002471 chr14 - 23851198 5820 5 2 7

RANBP2 NM 006267 chr2 + 109335936 9675 5 2 1

ANKRD11 NM 013275 chr16 - 89334034 7992 5 1 11

C1orf173 NM 001002912 chr1 - 75033795 4593 4 4 2

MYH13 NM 003802 chr17 - 10204182 5817 4 3 6

SRRM1 NM 005839 chr1 + 24969593 2715 4 3 2

SH3PXD2A NM 014631 chr10 - 105353783 3318 4 3 2
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Symbol Refseq ID Chrom Strand Location Length 8mer 7mer(m8) 7mer(1A)

MYH7 NM 000257 chr14 - 23881947 5808 4 2 7

TOP1 NM 003286 chr20 + 39657461 2298 4 2 4

MYO18B NM 032608 chr22 + 26138119 7704 4 2 4

BDP1 NM 018429 chr5 + 70751441 7875 4 2 1

TRDN NM 006073 chr6 - 123537482 2190 4 2 1

AIM1 NM 001624 chr6 + 106959729 5172 4 2 1

SMC1A NM 006306 chrX - 53401071 3702 4 1 5

CENPF NM 016343 chr1 + 214776531 9345 4 1 3

FAM9A NM 174951 chrX - 8758838 999 4 1 2

SAFB2 NM 014649 chr19 - 5587010 2862 4 1 1

MICAL3 NM 015241 chr22 - 18270417 6009 4 1 1

LOXHD1 NM 144612 chr18 - 44057216 6636 4 0 2

LONP1 NM 004793 chr19 - 5691845 2880 4 0 2

RAB11FIP1 NM 001002814 chr8 - 37716465 3852 4 0 2

JAK1 NM 002227 chr1 - 65298905 3465 4 0 0

PDHX NM 001135024 chr11 + 34937676 1461 4 0 0

PPP1R12A NM 001143886 chr12 - 80167343 2832 4 0 0

DNAJC2 NM 001129887 chr7 - 102952921 1707 4 0 0
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