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I don't know that the aforementioned would
appreciate these ideas or their execution. The
simplicity of the abstraction and errors in my
understanding of form is sure to disappoint
any designer and thinker of their caliber. But
what we've in common I think more deep than
the differences are numerous. And that is the
position that architecture is an empirical art
and science, one which admits to empirical
facts and belongs as much to the human intel-
lect as spirit

if there a difference.
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CHAPTER 1

|N T R O D U C T 1 O N

.what did you do after

you'd made certain that

you'd done nothing at

all?...

-Sherlock Holmes to Inspector Hop-
kins after the latter's investigation in
The Case of the Golden Pince-Nez
(as told by M K Smith to dskincaid
apropos...)

1.1 Abstract

Architecture practices its art and craft in the articulation of space.

Building elements are necessary components of its efforts. These ele-

ments may be columns, beams, walls, screens, light and assemblies of

the same. Their physical attributes include dimension, colour, mate-

rial, use, and tectonics.

Certain of these attributes admit to formalisation. Indeed, computer

based formalisations of some already exist: CAD encodes geometric

descriptions, raytracing/texture mapping encodes the interaction of

light with geometry/material, structural analysis software encodes

the performance of loaded members.

What remains lacking, however, is a formalisation of the architectural

behaviour of these properties. By architectural we mean spatial or terri-

torial. How might structure, material, light and dimension contribute
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1.1 ABSTRACT

severally and in combination to the definition of territories? What

structure is exhibited by the territories so defined? Might there exist a

mapping from the class of uses to these spatial structures?

This research programme should be of some interest for two reasons.

The first is epistemological. The resulting formalisation may be

thought as a set of axioms from which theorems describing territory

are derived. As such, the calculus embodies a theory of architectural

form which is testable in the built environment-scientific method is

given its due in architectural discourse. This programme should also

be of interest to those engaged in knowledge-based architectural

design systems-for one cannot reason intelligently about architec-

tural form if ignorant of the spatial commitments which lie in that

form.

Towards these ends, this work begins to identify and formalise the

manner in which physical and organisational properties of architec-

tural elements build territory. It also describes some properties of the

territories themselves.
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1.2 RELATED WORK

1.2 Related work

1.2.1 Past formalisations of spatial definition

Architecture has not been without its treatises. Vitruvius, Vasari, Pal-

ladio, the Spanish Crown, the Ecole de Beaux Arts, Durand, and

countless others have offered their theories of architectural form.

Most all these, however, have written prescriptive rules for parti gen-

eration which amount to rules of composition.

This is most unfortunate. If considered more closely, these works

reveal shortcomings such as to compromise their worth. For the most

part, attention is restricted to the shape of form and shape of its

arrangement.1 Shape in itself is arguably the least interesting prop-

erty of architectural form. It is uninteresting as it is a property shared

with every other object in the physical world. Further, an architect

doesn't design with shapes but with materials and their structural

properties, with light, access, spatial definition, tectonic expression,

and uses.

The prescriptive rules of these treatises are also lacking in architec-

tural substance. One would expect these to address the material and

formal behaviours of the architectural entities upon which they oper-

ate. Rather than define rules to flag redundancies in spatial defini-

1. The Leyes de Indias of 1635 may be an exception to this, as consider-
able attention was given to use organisation (Kincaid 1997).
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1.2 RELATED WORK

tions, suggest access given a set of architectural conditions (such as

light, public/private zones and section, among others), the rules may

simply mirror or rotate a shape.

What architectural knowledge is captured by these formalisations?

That bilateral symmetry rules the day, that voids are always built

from a module of thus and such ratio, that perforations are axially

placed? Again, these address the geometry, not architecture of the

piece. They could be describing a tablecloth pattern, a waffle iron or

sheet of stamps.

Of course there is much written on the subject of architectural form

and space which resists formalisation. 2 A number of these works are

in the manner of Ramussen (1964) and Arnheim (1977) who write of

architecture's experiential qualities. These at least acknowledge space

and use and credit physical form as their partial determinant. Norb-

erg-Schulz (1986) has concerned himself with phenomenological

aspects of architectural form, at times relegating physical space for a

speculative 'existential space.'

Other works have concentrated on the sociological nature of space as

in Hall (1966) and Newman (1973). Herzberger (1993), Alexander

(1977) and recent thesis work at MIT address territory explicitly.

Herzberger and Alexander promote an architecture of association

predicated upon coherent use territory. Chong (1992) identifies terri-

2. As there is which resists comprehension, to wit Heidegger.
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1.2 RELATED WORK

tories in Schindler's work, but like Herzberger and Alexander, fails

explicitly to identify the means by which these are built. Reifenstein

(1992) investigates 'positioning rules' which build territory and spa-

tial structure. These rules beg the question, however, as they operate

on territories whose definition remains unanswered. None of the

aforementioned speak directly as to how physical form builds spatial

definitions, nor do they formalise their findings.

1.2.2 Formalisations of spatial definition in knowledge-based systems

Computer-based systems for evaluating aspects of architectural form

are many. One may partition the class into those which do not evalu-

ate design with respect to geometric representations of physical form

and those which do. The former would include systems reasoning on

topological models for adjacency, say, or even systems representing

experiential qualities but not relating them to physical form (Mortola

1991).The latter would include systems such as (Carrara 1994) and

(Dave 1994) wherein design characteristics are dynamically calcu-

lated on the basis of physical form representation.

Those knowledge-based systems which acknowledge physical form

would surely appear better equipped. As discussed in (Koile 1997) a

physical form model would facilitate computation of circulation

paths, enable the computation of visual barriers (Hanson 1994) and

allow for designer interaction in a mode with which he is already

familiar (Gross 1996). They would be better equipped for an even

more fundamental reason, however; a physical form model allows, at
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1.2 RELATED WORK

least in principle, for a spatial definition model. As architects reason

with spatial definitions-their dimensions, qualia, degree of defini-

tion, organisation, and supported uses-so too should a computa-

tion-based system purporting design intelligence.

Evaluative reasoning on experiential qualities such as private or open,

and use ascriptions such as bedroom or entrance, say, can only fully be

made in the presence of territories which support them. Likewise,

ascriptions made of territories-such as dimension or degree of pri-

vacy-can best be made in the presence of the physical form which

builds them.

Most evaluative systems have either ignored or misused a physical

form component. None have made use of a territory model. This is

likely a result of not knowing how physical form builds spatial form.

This work may aid in correcting the deficiency.3

3. Kimberle Koile of the MIT Artificial Intelligence Laboratory, with
assistance of this author, is implementing some of these ideas (Koile
1997). Physical form is paramount in this work. From it is built a terri-
tory model which in turn supports a use-space model and connectiv-
ity model. A considerable, if not essential, part of evaluative
reasoning takes place at the level of territory. The territory model is
constantly updated as changes are made by the user to the physical
form model.
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1.3 DISCLAIMER

1.3 Disclaimer

The work contained herein might best be considered an hypothesis.

As with most hypotheses, it is likely wrong and certainly incomplete.

There is no excuse for the former. As for the latter, it may well be the

case that architecture's infinitudes will always outnumber any for-

malisation's.

This model of spatial definition makes a number of simplifying

assumptions and abstractions, to be sure, though none are thought to

compromise the enquiry. The greatest of these is the primacy given to

form's spatial extents. 4 Though other attributes of form such as mate-

rial and tectonics participate in the definition of territory, it is thought

that they do so in a manner subsumed by spatial extents. Specifically,

these secondary properties are believed to build ensembles of form

which in turn induce territory as a function of the ensembles' extents.

There is considerable evidence to suggest this reasonable as seen in

later chapters.

For some time now the subjective and whimsical have found many

champions in architectural education and practice. Though one can-

not condemn a priori the subjective and whimsical, one can condemn

the ignorance with which it is often practiced. This ignorance is not of

4. Spatial extents are not to be confused with material extents. A struc-
tural bay, for instance, will exhibit the spatial extents of a box. These
extents are composed of planes, not surfaces. Only in the trivial case of
a single entity such as a column are the spatial extents coincident with
the material extents and the faces rendered as surfaces.
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the latest French literary theory, German Phenomenologie, or the latest

Wonder of the World Wide Web, but an ignorance of the spatial and

organisational commitments which lie in architectural form. It is

hoped this work may reinforce the position that architecture operates

in the objective, physical world and not in that of invented discourse

nor that of cyberspacial fancy.
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CHAPTER 2

SP ATIAL MOD EL

The spatial extents of

physicalform induce terri-

tory, a model of which is

given.

Spatial definition or territory is built principally through the spatial

extents of physical form. This does not discount the many other prop-

erties of form which contribute to spatial definition such as material

and tectonic character. As shall be argued elsewhere, these properties

perform in a manner encompassed by spatial extents.

2.1 Territory

Spatial definition is recognised as an alteration in the isotropy of

Space ((). Alterations appear as organisational or structural perturba-

tions.

Two such structures are considered below. The first describes a spa-

tial structure induced by registration from aform's spatial extents. The

second describes a directionalfield structure induced by spatial extents. In

both, territory or spatial definition is specified through organisation,

much as a mathematical space may be specified by a metric.

Both models are experientially based, which is to say the organisa-

tions described are readable in one's experience of architectural form.

Further empirical work might well suggest adjustments in the mod-

els' particularities.
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2.1 TERRITORY

2.1.1 Registration model

Consider the spatial extents a of some physical demarcation A. Asso-

ciated with a is a measure of registration described in plan in

Figure 2.1.

(0,0 ,z)

(0 y 0O)
(0,0,0) X

Figure 2-1

The intensity of registration from a diminishes with distance from a.

It diminishes even more rapidly outside the projection of a, shown by

dotted lines. As this behaviour holds uniformly for every face of a,

the following discussion focuses on a single face.
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2.1 TERRITORY

Intensity of registration can be described as a step function:

Ir| % 3 9 1

Ir(X, Y, Z) = 0 & x & h, -h! x 0

ir/2 h<x<2h,-2h!x<-h

=ir/4 2h<x 3h,-3h! x <-2h

= 0 (3h <x<-3h

y,<y or y<O
z,<z or z<O

for some constant ir

Registration Ir halves with every displacement h from a. For dis-

tances greater than 3h, Ir is small as to be discounted. Which is to say

the registration, hence territorial definition, vanishes to zero outside

the projection of a. This does not accord exactly with facts, but should

prove serviceable.

What is important in this description is that the y and z values can

zero the function, but do not otherwise figure in the value of

Ir(X, y, z). Indeed, non-zero territorial definition is controlled by h,

the extent's height. It follows that a plan representation of architec-

tural form does not adequately reveal territory.

As desired, territories are identified with non-zero values for Ir . They

may be understood as a disruption in the isotropy of (, where I is

everywhere 0. Territory is bounded by the projection of the form's

spatial extents and diminishes with distance from the same.
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2.1 TERRITORY

2.1.2 Field model

Spatial extents as those considered above may be said to induce

another type of rent in isotropic (. The width and height of a intro-

duce directional biases in ( as shown for a single face in Figure 2-2.

vertical

(j) horizontal

,t~.

44

Figure 2-2

Both directional fields $ and $aho,,zon,,, weaken as they extend

beyond the width and height of the extents, as they do with increas-

ing distance from the extents. Only one field is realised in experi-

ence-the field coincident with direction of movement. As a result, all

treatment of territory assumes a single, well-defined direction.

AN ARITHMETICAL MODEL OF SPATIAL DEFINITION
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2.1 TERRITORY

This field behaviour can be described at every point by a direction

given by the orientation of the inducing extent and an intensity If

given by the step function below:

if 91- 91

If(x,y,z) = i; O5x5h, -h!x0

= if/ 2  h< x 2h,-2h < x < -h

= i;/ 4  2h < x 5 3h, -3h! x <-2h

= i18 3h< x< 4h, -4h! x<--3h

= 0 (4h<x<-4h

2y,<y or y<-yi

2z, < z or z<-z1
for some constant if

It is significant again to note that If is largely controlled by h; side

effects at the projection's extents are small, hence ignored.

2.1.3 Equivalency of the two models

Claim: The registration model given in 2.1.1 and field model given in

2.1.2 are scalar-wise equivalent.

Argument: It need be shown that Ir and If are in effect equivalent.

With domains restricted to I 13 Ir(X, y, z) w 0,

If(x, y, z) = k - Ir(x, y, z) = k - ir k = constant

if = kir

Equivalency correlates a field's intensity with the intensity of regis-

tration. Field intensity, however, runs parallel with the face which
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2.1 TERRITORY

induces it whilst registration intensity is normal to the same face. This

is an important observation and may stated as a theorem: registration

is always normal to the associated field(s) and is of like scalar value.

In what follows, preference is given to the field definition model as it

subsumes the registration model, i.e. field values bear direction as well

as degree of intensity. Spatial definition, or territory, induced by

extents a may then be given by

I'x = (A, $a(A))

where A denotes the set of points within the projection of ax and

(a,(A) denotes the field intensity at these points.

2.1.4 General observations

Several important observations can be made of the spatial model

described above. These observations are treated in greater depth in

ensuing sections.

e It is evident that spatial extents' faces induce territory. These

faces are described geometrically as planes. This greatly facili-

tates the model's application to spatial extents more complex

than those considered thus far. This is done in Section 2.2 below.

e The territory associated with physical form A is described wholly

in terms of A's spatial extents a. Outside of these spatial extents,
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2.2 APPLICABILITY OF SPATIAL MODEL TO ALL SPATIAL EXTENTS

no more is said of A. The implications are great. For one, the

model applies to the full range of physical form, independent of

size, material, orientation and complexity. For instance the spatial

extents described by the extruded parallelogram in Figure 2-2

might well accommodate a structural bay, a piece of section, a

screen or a simple wall.

e The model also allows for physical form to operate territorially at

different sizes and as a part of different extents concurrently. For

example, the columns which build a structural bay claim territory

at the size of their own extents (material size), whilst also contrib-

uting to the spatial extents of the bay (which claims territory at

the size of its extents, i.e. room size).1

2.2 Applicability of spatial model to all spatial extents

It is argued below that the territory model accommodates all spatial

extents as it accommodates all planar and curved extents.

2.2.1 Planar spatial extents

Claim: All planar spatial extents may be described by a finite number

of planes.

1. An ensemble is formed by shared control of its constituents' territory.
Control is discussed in Chapter 3. Ensembles are treated in detail in
Appendix A.
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2.2 APPLICABILITY OF SPATIAL MODEL TO ALL SPATIAL EXTENTS

Argument: Planar spatial extents, by definition, are comprised of a

finite number of planar faces (i.e. planes).

/

4-
/

'4

AN4 ARITf*&T1CAL MOEL OF SpATnA1 DEFOSTION

Figure 2-3a/2-3b

Figures 2-3a and 2-3b illustrate the spatial extents and induced terri-

tories given by 3 and 5 planar faces respectively. Note that territories

overlap within the extents. An addition defined on territory in Chap-

ter 3 shows these to be zones of field intensification. Considered as

footprints of buildings, one can readily see why entries should not be

placed at corners; there is no territorial demarcation at corners.
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2.2 APPLICABILITY OF SPATIAL MODEL TO ALL SPATIAL EXTENTS

2.2.2 Curved spatial extents

Claim: Curved spatial extents can be described adequately as a sum of

planes.

Argument: Curved spatial extents of any degree can be described ade-

quately as a sum of arbitrarily small tangent planes given by the set

of tangent vectors at any point.

1AA

Figure 2-4a/2-4b/2-4c

Consider a simple curvilinear form (Figure 2-4a) with the gross pla-

nar approximation of Figure 2-4b. Treating planar segments severally,

the territory map is that of Figure 2-4c.
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2.2 APPLICABILITY OF SPATIAL MODEL TO ALL SPATIAL EXTENTS

As the planar approximation improves, there is a propensity for the

arc shaped territory to complete itself as a circle. Of course the degree

to which this phenomenon occurs depends on the ratio of height and

diameter of the inducing extents.

The field description of curved territory is a little more complex.

Assuming uniformity in height for the concave extent (which has

been the case throughout), field lines stitch themselves into concen-

tric arcs. Some ratios of height to diameter allow the arcs to complete

as circles with varying If. The portion of the circle in closest proxim-

ity to the extent bears a greater If than that portion furthest from the

extent. This is in accord with experience; spatial definition is palpably

greater within the bounds of the curvilinear form than without.

With assistance from field arithmetic, Section 3.5.2 demonstrates why

convex extents refuse to build a unified and inclusive territorial defi-

nition, whilst concave extents do.

2.2.3 All spatial extents

Claim: Territory is a necessary consequence of physical form.

Argument: All form bears spatial extents which at the minimum may

be identified with its material extents. Spatial extents generate terri-

tory. Therefore, territory is always induced by physical form.

AN ARITHMETICAL MODEL OF SPATIAL DEFINITION



CHAPTER 3

ARITH M ETIC MODEL

An arithmetic is defined

for both orthogonal and

non-orthogonal overlap-

ping territories.

A spatial model has been sketched in Chapter 2 in which minimally

convex form elicits overlapping territories-as does compound

assemblies of form of which architecture is usually comprised.

There is no a priori reason for overlapping territories to be of any spe-

cial interest or consequence. However experience suggests otherwise

as does the spatial model in which every (x, y, z) in an overlap bears

an i value from more than one inducer.

3.1 Addition on territory

Definition: Addition on territory

Let F. and FP denote the territories built by demarcations A, B with

spatial extents c and $ respectively. As per Chapter 2, these territories

are described by

ra - (A, $a(A))

Fp (B, $p(B))

where A and B denote the set of points in the projection of ca and ,

and 0$a(A) and $p(B) denote directional field definition at points in

A and B.

Let ( denote the set of all territories.
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3.1 ADDITION ON TERRITORY

The addition of IF, and F0 denoted by the symbol rV e p is defined as a

mapping

(D | 1-a, rs = Fa e p = ((A G B), $ p(A G) B))

This arithmetic maps two territories to a third such that the third is

comprised of points A ® B and directional field definition

p(A B). The function ® is described in section 3.1.1 whilst

$ is described in Section 3.1.2.

3.1.1 Determinationof D

Definition: Addition of A and B

Let

H denote the set of all subsets of 93

A denote the set of points in F(
B denote the set of points in rp

The addition of A and B, denoted by the symbol A B B is defined as a

mapping

® |IH, H->H

@ A,B = (AnB)

AN ARITHMETICAL MODEL OF SPATIAL DEFINITION



3.1 ADDITION ON TERRITORY

3.1.1.1 Properties of @ :

for VA, B, C E f:

1. closure

A, B e H, 3(A @ B) = (A r B) E H

2. commutative

A@B = (AnB) = (BnA) = B@A

3. associative

(A@B)@C = (A@B)n

4. unit

ADH =1GA = A

5. zero

((A rB)nC)

(A n (B n C))

(An(BDC))
(A @(B (@ C))

A@0=0EDA=0

6. no inverse

-,3 A AA = A- IA = n

If there were an inverse defined for D then ( @ , H) would have

formed an abelian group. As it stands, ( , H) forms an abelian

semi-group.
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3.1 ADDITION ON TERRITORY

3.1.2 Determination of $a @ p

Every element in $a can be treated as a vector with a direction that of

its inducer a and with magnitude If as described by the step func-

tion in Section 2.1.2. Adding directional fields $a, $s -as required by

the definition of ra e p -should then amount to vector addition on

the shared elements of 0a and $p.

Definition: Let d be a vector in $a. The norm or length of d is denoted

by ||d|| and is valued at If,.

Definition: Addition of $a and $p
Let

$a denote the field associated with F,

$p denote the field associated with Eg
d and 3 be vectors in $a and $p respectively

for some shared (x, y, z)

0 denote the angle d makes with 3

The addition of $ and Op denoted by the symbol a e is defined as

a mapping

E| = $a E p

= vector of norm I

and relative direction 9
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3.1 ADDITION ON TERRITORY

where

f Ildt + 01= (l|dII2 + 1|2+2d )12

= (|a||2 +||I1|2 + 2| |d 1$ cos 1/2

and

9 = asin lall sin 0

Figure 3.1 shows examples of territory addition. Note that Ia e p is

defined for that region formed by the intersection of A's and B's pro-

jected extents. (In the interests of clarity, only that territory associated

with the largest extents is drawn.)

r

S5

p

Figure 3-1
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3.1 ADDITION ON TERRITORY

3.1.2.1 Properties of a e P

for Va, p, yP E :

1. closure

2. commutative

0 =)=ep

3. associative

$<(csey = p+ =( +)

= d+cx($pey)$a (p & y)

4. unit

$a ( = $ D where 0 is the 0-vector

5. no inverse

as 0a P is always normalised to 0 < 9, P < 7

( , $) forms an abelian semi-group.
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3.2 Additional field structure

Analysis of ae p reveals additional information as to the field struc-

ture of Fa p -

3.2.1 Degree of definition

Definition: The degree of definition for any territory is the number of

overlapping territories which build it. Degrees of definition add as

one would expect, i.e.

degree-defa e p = degree-defa + degree-defg.

3.2.2 Field bias

Definition: Afield bias for any territory 1a @ p is that field associated

with (max ||d|| d|ll ). Intuitively, a field bias is evident when fields are

disproportionately strong, thereby favouring association with one

inducer over another.

Definition: Afield bias value for any territory 'a e is given by

||1d| - ||$1|. This value is an abstraction with no real world counter-

part. It gives some indication as to the strength of the field bias.
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3.2 ADDITIONAL FIELD STRUCTURE

Definition: When two fields add, each makes a contribution to the

other's If . Field gain describes this amount and is given by $a-gain

and $p-gain below.

$a-gain projection of $ along d

_ || ll1cos 9
_ dilcose

$p-gain projection of df along $
_ ||d|cos 9

Definition: Let 9 be the angle between d and 1 and e be

the angle (d + 0) makes with d. $p is said to interfere with Oa reduc-
0

tively when 0 > . Otherwise $p interferes constructively
(d +0), d 2

with Oa . Similarly for $a interfering with $pg.

Though $,-gain and $p-gain are always positive by definition, the

net contribution of components can favour one inducer over another.

This leads to the constructive and reductive interference signalled by

0 above.

AN ARITHMETICAL MODEL OF SPATIAL DEFINITION



3.3 CONTROL

3.3 Control

Planar and curvilinear extents were shown to be reducible to a sum of

planes in Chapter 2. There remains, all the same, a fundamental dif-

ference in their respective territory. This difference lies in the manner

in which the territory is controlled.

Definition: A territory Ia e p is said to be controlled where If is an

absolute maximum in the region Fa u IF .

Planar extents control their territory with their inducing faces, whilst

curvilinear extents often have territory controlled outside the extents,

as seen in Example lb of Section 3.5.2.

For gentle curvature with respect to height, the curvilinear form

behaves much as do simple planar extents; the face of the curvilinear

form controls the territory with geometry outside the extents. This

may be seen in Example la of Section 3.5.1.

Definition: Territory which is controlled by inducing extents is said to

be intrinsic.

Definition: Territory which is controlled by geometry outside the

extents is said to be extrinsic.
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3.4 UNION OF TERRITORIES

Claim: Intrinsic and extrinsic properties partition the class of territo-

ries.

Argument: Every territory bears a maximum If value somewhere.

This value obtains either at the inducer's extents (intrinsic) or else-

where (extrinsic).

3.4 Union of territories

Sections 3.1.1 and 3.1.2 showed that intersecting territories build

additional territories. A union of territories does not produce any

additional field intensification, hence does not build any additional

territory. This is confirmed by the arithmetic defined on $.
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3.5 EXAMPLES

3.5 Examples

3.5.1 Example la: Curved spatial extents: intrinsic control

3V5',

kV.if 'If

0'

Figure 3-2

h = 4' , 0 = 200 between each approximating element a, P, y

1. Approximating territories a', IF, ry fail to overlap owing to a

height of only 4 feet for the element.

2. Territorial control remains intrinsic, and the curved extents behave

much as a simple planar extent.
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3.5 EXAMPLES

3.5.2 Example 1b: Curved spatial extents: extrinsic control

Aa

14--

Figure 3-3

h = 10', 0 = 200 between each approximating element a, $, y

1. Approximating territories F,, Fo, FY overlap owing to a height of

10 feet.

2. Maximal If in region A, hence control is extrinsic.

Values are documented in Table 3-1.
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B 3 1/4 1/4 1/4 .72 - -

C 1 1 - - 1

D 1 - 1 - 1

E 1 - - 1 1 - -

Table 3-1: Calculated values for Figure 3-3

Notes:

1. Region A displays the greatest degree of definition and i value. As a
result, it is said to control that territory generated by the concave face. As
region A lies outside the extents of the curvilinear form, the control is said
to be extrinsic.
2. As the planar approximation to the curvilinear form improves, region A
approaches a line in 3-space.
3. Regions C, D, E do not intersect (as told by degree-def = 1). There is no
possibility for field intensification with convex form. Control is strictly
intrinsic.

1/2 1/2 1/2 1.44



3.5 EXAMPLES

3.5.3 Example 2: Rectilinear extents

P

/
I

Figure 3-4

0 = 60 ',ha = 16', hp = 8'

1. Ie P is represented by the shaded region.

2. If values vary within F, e as it varies within IF and V,.
3. Regions A, B, C, D denote those areas of [a e p bearing discrete I

values.

These and other related values are documented in Table 3-2.
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B 2 1 1/2 7 41' 1/2 1/4 1
2

C 2 1/2 1/2 30' - 0 1/2 1/2
2

D 2 1/2 1 19*$p 1/2 1 1/4

Table 3-2: Calculated values for Figure 3-4

Notes:

1. Region C field-bias-value is 0 as both d and f are of the same magnitude.
2. $a-gain = $p-gain in Region C as each field reinforces the other equally for
reasons given above.

1/82 2-
4

3/41/4



3.5 EXAMPLES
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CHAPTER 4

USE MODEL

Use ascriptions are made As seen in Chapter 2, fields interfere with one another. An arithmetic

to territories on the basis was defined on these fields in Chapter 3. This arithmetic tells either of

of theirfield structure. constructive or reductive interference. As shown below, it also sug-

gests an assignment of use to certain field definitions.

Field structure is partitioned in three: go or directional structure, stop

or bi-directional structure and slack. A directional field structure is

termed a go structure as it reinforces direction and movement in that

direction. A stop on the other hand is built by reductive field interfer-

ence-no or little directional field bias is evident within the compos-

ite field. Stops and gos are always relative to one another. A slack

structure describes a relaxation in the degree of definition and rein-

forces neither go nor stop.

Every elemental action is a go. As a result, designing use territories

amounts to orchestrating field definitions; at times reinforcing gos

with physical form, at other times building disjunctions in go systems

for the purpose of stops or even slack.

This correlation of use and field structure is well defined. With the

partition of the class of uses in three-access, relative privacy and col-

lective-a mapping may be defined from use to field structure. 1

1. The design of buildings as fish or binoculars may frustrate this claim.
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4.1 ACCESS/GO DEFINITIONS

4.1 Access/go definitions

Access definitions are built with directional demarcations such that a

principal field direction is reinforced. For instance, spatial extents X, P

whose territories intersect and whose fields are parallel will strongly

build access. Access need always be larger than its relative privacies.

4.1.1 Necessary and sufficient conditions for access/go field

1. ||di + 01| > 1

2. 300 > 600

4.1.2 General conditions
1. See Table 4-1.

A D H

CF

Figure 4-1
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A 1 1 0 1 -- $a 1 0 - go/access

B 2 1 1/2 3/2 0 $a 1/2 1/2 2 go/access

C 1 0 1/2 1/2 - OP 1/2 - 0 go/access

D 1 1/2 0 1/2 -a 1/2 0 - go/access

E 2 1/2 1 3/2 0' $0 1/2 2 1/2 go/access

F 1 0 1 1 - $0 1 - 0 go/access

G 2 1/4 1 14' $P 3/4 0 0 go/access
4

H 0 0 0 0 - - - go/access

Table 4-1: Conditions for Figure 4-1

Notes:

1. Regions B and E display mirrored values for ||dl1, ||$||, field-bias, $ -gain
and $p -gain. There are also large field intensification values in F, These
conditions are typical of parallelform. Passingform requires one additional con-
dition: $,, , c ($, or $p).
2. Passing form can generate access or slack depending on the placement and
height of a and P. In region BE it is access as $ ( is uniformly 3/2i. If a and
@ were further from one another or their height were less, then slack might
ensue (cf Section 4.3).
3. Region G displays afield reversal (cf Section 4.2).



4.2 PRIVACY/STOP DEFINITIONS

4.2 Privacy/stop definitions

Privacy definitions are built with directional demarcations such that

one of two conditions obtains: there is no dominant field direction for

Va e P, (i.e. fields interfere destructively or are zeroed,) or there is a

field reversal within 1a o P -

4.2.1 Necessary and sufficient conditions for privacy/ stop field
1. Zeros: (field-bias-value Fa op) :) i/4, 600 > 1 >300

2. Reversal: (field-bias Fp) # (field-bias Va s

4.2.2 General conditions
1. See Table 4-2.

E A B F

C D

Figure 4-2
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B 2 1/2 1 26'$p 1/2 0 0 go/access
2

C 2 1 1 f2 45* - 0 0 0 stop/privacy

D 2 1/2 1 26' 1/2 0 0 go/access
2

E 1 1 0 1 90* 1 0 - go/access

F 1 1/2 0 1/2 90' Oa 1/2 0 - go/access

Table 4-2: Conditions for Figure 4-2

Notes:

1. Regions B, D are identical in all respects. This is characteristic of Tform, as
is the field reversal across regions BF, DR (Field reversal occur when field-
bias-values change across contiguous territories.) As 0 moves further from
a, the reversal diminishes. As s moves closer to a, the reversal may be
replaced by a zeroing, wherein the field-bias is nil. The same reasoning
applies for a with respect to P.
2. Regions A, C are also identical in all respects as expected of Tform. They
both display a field-bias of 0, and requisite 0 + ) value.
3. All regions exhibit 0 valued field intensifications. This occurs if and only
if $a and $p are normal to one another as in this example.

2 stop/privacyI



4.3 COLLECTIVE/SLACK DEFINITIONS

4.3 Collective/slack definitions

Field definitions may vary in their degree of definition. Where there

is a relaxation in the degree of definition, one finds slack. Slack

regions support collective uses and even the encroachment of neigh-

bouring uses without forfeiture of overall organisation.

4.3.1 Necessary and sufficient conditions for collective/ slackfield
1. fields with degree-def > n flank some definition of

degree-def = n

2. size of the slack zone is at least that of its flanking territories.

4.3.2 General Conditions
1. See Table 4-3.

S

A
C)

Figure 4-3
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z
o

UA 1

LI-

C0

Redi on + + + field-bias field-bias-value $.-gain $Zgain a

L
A 1 1/4 0 1/4 0 0a 1/4 0

B 1 0 1/4 1/4 0" 0p 1/4 - 0 -a

C 0 0 0 0 - - - - - slack
_-J

Table 4-3: Conditions for Figure 4-3

i-J

Notes:

1. Figure 4-3 shows F, and IF disjoint and of degree-def = 1. Between them Z
is a zone of degree-def zero-hence an alternation in definitions. This slack
zone is not, strictly speaking, a territory as there is no field definition.2

2. Regions A, B are neither stops nor gos. The field definition is too weak for a
go and 0 is too small for a stop.
3. As slac is df a lesser degree of definition it most often belongs to a larger
sized territory which a and $ have partially intensified. As a vestige of the
larger definition, slack plays an important role; it allows concurrent territorial
associations across sizes.

2. This is not entirely true. Appendix A shows that cc and 0 induce a territory owing
to dimensional stability.



4.4 CASE STUDIES

4.4 Case Studies

4.4.1 Access/Go

4.4.1.1 Bazaar Road: Chitral, Northwest Frontier Province, Pakistan

Figure 4-4

A

Figure 4-5

Parallel shop fronts produce a strong directional field occupied by

access. This field, $,, is further intensified by a covered walk. The

shops themselves reverse $a owing to their great depth. This results

in relative privacies or stops. See Table 4-4 for computed values.
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A 2 1 1/2 3/2 0' $a 1/2 2 go/access

B 2 1 1 2 - 1 1 go/access

Region *-def ||(d + )| |01 |1(d + 0)+ + 8ge ( + field-bias $a-gain $5-gain field/use

C 4 3/2 2 5/2 37' $6 0 0 stop/privacy

Table 4-4: Conditions for Figure 4-4 and 4-5

Notes:

1. Very large Id + 0|| suggests access in region B.
2. Region A also displays large If and serves pedestrian access.
3. Region C shows a stop. This corresponds with the anteroom of stores.
4. Region D displays a field reversal in $a . This area forms the back rooms
for shops.



4.4 CASE STUDIES

4.4.1.2 Gale House: Frank Lloyd Wright

Figure 4-6a/4-6b

Walls a and p reinforce the building sized field <p and build an access

zone I' 6 . Note that s passes a, thus simultaneously contributing to

the stop definition I0 *

See Table 4-5 for computed values.
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A 2 1 1 2 0" - 0 1 1 go/accessI

2 1 1 f2 45' 0 0 0 stop/privacy

Table 4-5: Conditions for Figure 4-6

Notes:

1. No field bias in region B is indicative of a stop in the larger building-sized
field $. Closer inspection reveals that all use territories are generated as stops
(lateral displacements) in $.

B



4.4 CASE STUDIES

4.4.2 Privacy/Stop

4.4.2.1 Verandah, Village of Taqma, Salang Mountains, Afghanistan

otx

Figure 4-7

Wall element a induces a strong directional field to which access has

been assigned. This direction is reinforced by P and sectional access S.

The lateral displacement of P weakens *a e p allowing for y to gener-

ate a full stop, , 9 (a a P) . As expected of field stops, a relative privacy

is built-in this case a summer kitchen.

See Table 4-6 for computed values.
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w

5Z
Region t-def dId + field-bias field-bias-value $a-gain $-gain use class

C/) Zk

A 2 1 1 2 '- 0 1 1 go/access

-j

Region 0-def ll it| +|d +| + ), field-bias field-bias-value $a-gain $,-gain use class
a-
C')
L-

B 3 1 1 f2 45' - 0 0 0 stop/privacy 0

w
Table 4-6: Conditions for Figure 4-7 0

|-

w

Notes:

1. Region A: large intensity value, large field-gain and 0 equal to zero sig- Z

nals severe access
2. Region B: values specify necessary and sufficient conditions for the stron-
gest field interference.



4.4 CASE STUDIES

4.4.2.2 Gale House: Frank Lloyd Wright

Figure 4-8a/4-8b

Walls a and y, build a go definition Fa e y. Fireplace s and closure 8

introduce T, 9 8 with $p 9 8 normal to $a e y . These opposing fields

lead to a zeroing at r(s a ) a (a ) y) -sufficient to build a privacy

which is clearly in evidence by use. Note that slack is built between

territories ABCD and I, denoted by EFGH.

See Table 4-7 for computed values.
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5/4 5/4 52

B 4 1 5/4 38' 1/4 stop/privacy

C 4 5/4 5/4 52 * - 0 stop/privacy

D 4 1 5/4 38" 00+8 1/4 stop/privacy

E 3 1 1/2 65* $4,9 1/2 go/access

F 3 5/4 1/2 68* 3/4 go/access

G 3 1 1 1 90' - 0 go/access

H 3 5/4 1 51* 1/4 stop/privacy

I 4 5/4 0 J5 90' 5/4 go/access

Table 4-7: Conditions for Figure 4-8

Notes:

1. Region EFGH is slack as it is flanked by territories of greater degree-def.
2. Region EFGH is also rendered as access.

stop/privacy

CO)w
5

w

...............



4.4 CASE STUDIES

4.4.3 Collective/Slack

4.4.3.1 Hysolar Institute, Universitdt Stuttgart: Ginter Behnisch

-0E

Figure 4-9

Between Fa and 15 exists a territory of roughly equal size and of

degree-def less than both F, and F,. As expected, this slack zone

accommodates collective use, and allows for association with larger

sized definitions (site and landscape).
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4.4 CASE STUDIES

4.4.3.2 Village of Kolalan, Koh Daman Valley, Afghanistan

Figure 4-10

Slack zones are dearly in evidence at varying sizes. The uses ascribed

to these are always public.
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4.4.3.3 Fallingwater (ground floor): Frank Lloyd Wright

Figure 4-11

The site's directional field is built by the sectional element a and Bear

Run Creek. Wright reinforces this directional field through the regis-

tration of elements shown by horizontal bands. Those elements

shown by vertical bands build an opposing directional field which

forms variable zeros and reversals. The territories exhibiting these

zeros and reversals are occupied as relative privacies. Note the slack

in zone H, thus reinforcing association at the largest (landscape) size.

AN ARITHMETICAL MODEL OF SPATIAL DEFINITION
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A' 2 1.45 20' vertical band go/access

B 2 2.00 0' vertical band go/access

C 3 1.60 38* horizontal band stop/privacy

D 4 1.41 45' - stop/privacy

E 4 1.95 56* horizontal band stop/privacy

F 4 1.95 56' horizontal band stop/privacy

G 4 1.6 39' horizontal band stop/privacy

H 2 1.25 0' - go/access/slack

I 4 4.00 45' - stop/privacy

Table 4-8

Notes:

1. An important component in the generation of the slack zone H is the screen
assembled from two principle columns. Appendix A illustrates the manner in
which territorial control assembles these columns into the larger sized defini-
tion of a screen.

1.90 go/access



4.5 SIZE

4.5 Size

Very little mention has been made of particular use sizes. This has

been deliberate as go, stop and slack behaviours can be found at all

sizes. They operate across sizes as well, though these are limited to

interactions with the next larger and smaller size.

The foregoing has been content to describe privacy, access and collec-

tive in purely relative terms. Of course in the full determination of

use, reference must be made to size. Introducing size as an additional

condition to those of Sections 4.1, 4.2 and 4.3 is sufficient for this pur-

pose.

Table 4-4 ranks the seven major sizes within which architectural form

most commonly operates. Each size accommodates access at that size.

material < 3'

personal 3-8'

room 8-14'

collective 14-25'

building 25-100'

site 100'+

landscape 200'+

access at each of the sizes above

Table 4-9
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CHAPTER 5

CONCLUDING REMARKS

The arithmetical model sketched in Chapters 2 and 3 found applica-

tion in the use model of Chapter 4. Other investigations of architec-

tural form lend themselves to the model. Several are suggested

below.

5.1 Other applications

5.1.1 Form families and organisations

Some generic form organisations such as the Tform, parallelform and

passingform were identified in terms of their shared territories' field

structure (Tables 4-1, 4-2). Other form families should be as easy to

describe. One advantage of describing these in terms of their territory

is that the particularities of the physical form (outside of the determi-

nation of its spatial extents) need never be addressed. Form is under-

stood as an organisation, not shape.

5.1.2 Containment

Containment can be expressed as a function of degree of definition

and field intensity. The greater the number of inducers and intensity

of their resulting territories, the greater the containment.
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5.1 OTHER APPLICATIONS

5.1.3 Light

Just as territories have been said to be built by physical demarcations,

so too is light. The definition of spatial extents, particularly as applied

to ensembles, describes the building of light. (See Section 4.4.3.3 and

Appendix A.)

5.1.4 Computational model

The spatial model's scope of applicability and mathematical formali-

sation invites computational implementation.' Analytical engines

might map the territorial commitments of any architectural form.

Knowledge-based systems such as that proposed by Koile (1997) may

reason with these computed territories.

Alternatively, application programs may allow for user interaction at

the level of territory; given a desired territorial definition, the applica-

tion informs the user of those physical form properties necessary for

its inducement. Note that in this last case the mapping from territory

to physical form is not injective; uncountably many instances of

physical form can build a particular territory.2

1. Appendix B diagrams a set of Classes and Methods for the arithmeti-
cal model of spatial definition presented herein.

2. The interest in building application programs to generate physical
form is wrong-headed. At best its results will remain uninteresting as
arbitrary rules of shape are introduced to limit that which is
unbounded. The far more interesting and difficult question is: what
spatial understanding gives rise to desired properties of physical
form, and how does the latter accommodate the former.
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5.2 CONCLUDING REMARKS

5.2 Concluding remarks

Spatial definition admits to an infinitude of articulations; material,

light, use, dimension, tectonics and sundry combine in rendering ter-

ritory. Given the many properties of which it is comprised-and pre-

sumably manners in which it is defined-there would appear little

hope of saying much more (or less) than has been said by countless

others.

In response, this model of spatial definition reduces the aforemen-

tioned infinitudes to a modest three: dimension, direction and inten-

sity. Those manners by which territory is induced are reduced to one:

the projection of physical form's spatial extents. Though the abstrac-

tion dispenses with much of the phenomenological, it remains firmly

rooted in experience-not as a model of experience, but one informed

by the same.

The arithmetical model of spatial definition presented herein makes

precise hypotheses of the empirical world. No doubt these will soon

shipwreck upon the large and dispassionate world of empirical fact,

and take with them these 82 pages. However the method which

invited the formalisation-one which Jerome Wiener had once

described as 'represent[ing] nothing less than the good manners of
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5.2 CONCLUDING REMARKS

the mind' 3-will survive the errors of this work; as it will survive the

charlatans of Heidelberg; as it will the sophists heralding 'new archi-

tectural promenades.'

May architecture, and those whom it is to serve, fare as well.

3. Communicated to the Department of Architecture on February 14,
1963 when serving on the MIT Visiting Committee to the School of
Architecture and Planning. (Told the author by M K Smith).
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APPENDIX A

E N S E M B L E S

Necessary and sufficient The spatial and arithmetic models of Chapters 2 and 3 accommo-

conditions are considered dated ensembles as though they were any other form of like spatial

for the determination of extents.

ensembles.

In experiencing architecture our understanding takes seemingly dis-

parate elements and fashions them into coherent assemblies-much

as does the mind with discrete notes of music, building harmonic,

melodic and contrapuntal assemblies from them. What properties of

form are addressed in constructing these architectural assemblies?

There are any number, to be sure. One class may be described as

physical attributes, which includes material, colour, dimension and

tectonic type. Another class of properties may be termed formal,

which includes spatial organisation. These are present at all sizes.

Physical attributes build ensembles through association; elements are

grouped on the basis of shared properties. Elements in concrete may

be deployed in such a way that the material builds associations at the

building size. A secondary structure, if made legible, would consti-

tute an association at a smaller size than the primary structure.

Repeated use of dimension, or material might allow for the assembly

of a screen, a structural bay or village and so on. For the most part, a

class as this would tie the elements together by virtue of shared

intrinsic properties, and cast the ensemble as the extents of those ele-

ments.
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Spatial organisation performs somewhat differently. The association

built is not through a shared physical property, but a spatial organisa-

tion in which each element is a necessary part. For instance a set of

columns may be read or assembled as a bay by virtue of the columns'

spacing and height. Similarly, a piece of landscape may be claimed

through a dimensional displacement at a building size. This appen-

dix considers only those ensembles built from spatial organisation. It

describes necessary and sufficient conditions for an organisationally

built ensemble.

Evidence of spatial organisation can be found in the constituent ele-

ments' mutual control of shared territory. If Fa e s exists for some ele-

ments A and B, then A and B control one another as each intensifies

the other's territory in IF e p . Spatial organisation can also be found

in the consistent dimensional deployment of elements. If an element's

dimensions are also recorded in its placement vis-a-vis other ele-

ments, then a recognisable association is made, one which is termed

self-stability. Each will be treated in turn.

Definition: Consider elements A and B and their respective territories

Fa and TF p. An ensemble built from territorial control is the set of induc-

ers for a e p such that:

1.T 0p#

2. i ||d|| 2 i/2 in region (A ( B)

i 1 ||| 1 i/2 in region (A ( B)
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(min (size a)(size p)) (size r ) (-(min (size a)(size P))1)

4. ||d||= 11 ||

The rationale for the definition is as follows:

Condition 1 ensures that p exists. Recall that a necessary con-

dition of an ensemble is that its constituents participate in the

control of one-another's territory.

Condition 2 ensures that Ia p occurs where Fa and Fp are

strongly defined. If ra e p were elsewhere in F and I7p, the

mutual territorial control would be too weak to register expe-

rientially.

Condition 3 ensures that Fa D P is not trivially small nor large.

Condition 4 ensures that a and P are roughly equal in their control

of the other's territory.

In sum, one might claim that our reading of Fa e p acknowledges the

inducers and joins them in experience. Examples are given in

Sections A.0.1 and A.0.2.

Definition: An ensemble built from dimensional stability is one in which

for elements A, B the element A is displaced its own dimension from

B. An example is given in Section A.0.3.

It is important to note again the manner in which these ensembles

generate their territory as ensembles. The territory generated by these

ensembles is simply that given by the projection of their extents. The
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only quantitative difference between the territory associated with a

structural bay element and a wall element, say, is that the bay's pro-

jection of extents renders a footprint of usable territory, whilst the

wall yields a footprint occupied by material.

A.0.1 Study: Ensemble built from territorial control: screen definition in
Fallingwater (ground floor)

Figure A-1

Figure A-1 depicts F,,, ]F and Fa e p. The following conditions

obtain:

1. Fae, is non empty and occurs where I fa and If, are greatest.

2. Region M assumes the maximum If value for ra u Vp. Hence

Fa e P is extrinsically controlled.
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3. M is at least of size a and p.
4. ||d|| lIll in region M.

All four conditions obtain for a and P to build an ensemble a. In

Figure A-2 below, the spatial extents and resulting territories for ap

are drawn. Note that these extents partake in slack and stop defini-

tions described in Chapter 4, Section 4.4.3.3.

Figure A-2

It should be noted that column a and the fireplace do not form an

ensemble as condition 3 fails.
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A.0.2 Study: Ensemble built from territorial control: the Ha of Hunza Val-
ley, Northern Areas, Pakistan

The ha is the most important room in the domestic architecture of the

Hindu Kush and Karakoram of Central Asia. A room of approxi-

mately 20' x 17' need accommodate: women's sleeping quarters,

men's sleeping quarters, a place for musicians, a kitchen and storage.

Figure A-3

Outside of its four walls, the only physical form present is that of four

posts. Because of their height and spacing, an organisation obtains

which is akin to that seen in Fallingwater. Applied four times over,

the requisite spatial definitions are made. These are illustrated in

Figure A-4.
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Figure A-4

Regions M, S, T, Y boast the largest If values for their respective col-

umns. As conditions for an ensemble are met for each pairing, four

ensembles are built. (In point of fact, these very ensembles build a

fifth ensemble which is that of the four column bay.) NEW Territories

are built with every ensemble.

Note that the columns do not form diagonal pairings. This is a result

of their geometry (their spatial extents do not project diagonally) and

height and spacing (conditions 2 and 3 above fail).
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A.0.3 Study: Ensemble built from dimensional stability: Parliament Build-
ing, Bonn, Deutschland, Gunter Behnisch

Figure A-5

Lines denote dimensions of various elements. Note that the elements

responsible for these dimensions are in turn displaced from other

physical demarcations by the same dimension. Territory is built with-

out resort to a strict, hierarchically arranged plan.
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APPENDIx B

CLASSES AND METHODS

wall
partition

r screen
column
ensemble

slots: component-elements

'architectural-element
slots: physical-form

territory-form

'geometric-form
slots: geornetry-object
methods: direction

centre of gravity
size-label

'geometry-object
slots points

height

'use-form
slots:
methods:

'field-form
slots
methods:

edesign-obje

slots:

methods:

physical-form
slots:

t

territory-form
slots. i

material
colour
ectonics

nducers
field-form

methods: degree-def
control

territories
size-label
use-label

inducers
direction
bias
bias-value
intensity-value

architectural-elements
use-forms
territory-forms (note: collected from architectural elements)
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