
Sensor-Based Organizational Design and Engineering

by

Daniel Olgúın Olgúın
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Abstract

We propose a sensor-based organizational design and engineering approach that combines
behavioral sensor data with other sources of information such as e-mail, surveys, and per-

formance data in order to design interventions aimed at improving organizational outcomes.
The proposed system combines sensor measurements, pattern recognition algorithms, simu-

lation and optimization techniques, social network analysis, and feedback mechanisms that
aim at continuously monitoring and improving individual and group performance. We de-

scribe the system’s general specifications and discuss several studies that we conducted
in different organizations using the sociometric badge experimental sensing platform. We

have deployed such system under naturalistic settings in more than ten organizations up to
this date. We show that it is possible to automatically capture group dynamics, and an-

alyze the relationship between organizational behaviors and both subjective and objective
outcomes (such as job satisfaction, quality of group interaction, stress, productivity, and

group performance). We propose the use of static and dynamic simulation models of group
behavior captured by sensors, in order to optimize group configurations that maximize indi-
vidual and group outcomes, both in terms of job quality characteristics and organizational

performance.
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Chapter 1

Introduction

Recently, organizations have started mining data from e-mail, web pages, and other digital

media for clues that will help them manage their knowledge-based systems in a more effec-

tive way. Studies of office interactions indicate that as much as 80 percent of work time is

sometimes spent in spoken conversation (Allen 1997), and that critical pieces of informa-

tion are transmitted by word of mouth in a serendipitous fashion (Pentland et al. 2004).

Fortunately, the data infrastructure for mining real-world interactions is already in place.

Most working professionals already carry electronic badges and mobile phones that can be

enhanced with a few sensors and computational power.

This capability can be an extraordinary resource for capturing interaction patterns and

modeling group behavior. The technology of Reality Mining allows one to cluster people on

the basis of profiles generated from an aggregate of conversation, e-mail, location, and web

data (Eagle & Pentland 2005). This clustering, in turn, enables one to identify collaboration

or the lack thereof. For instance, if the members of two groups working on similar tasks

never talk face-to-face, this suggests that they are not coordinating their efforts.

By leveraging recent advances in human behavior sensing, pattern recognition, and

social network analysis, computational models that simulate the effects of organizational

disruptions in existing social networks can be built. One could, for example, predict the

organizational effects of merging two departments. Such data-driven models help transcend

the traditional organizational chart, allowing organizations to form groups on the basis

of communication behavior rather than hierarchy. In previous work, we have shown that
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active analysis of interactions within the workplace can radically improve the functioning

of an organization. By aggregating this information, interpreting it in terms of work tasks,

and modeling the dynamics of the interactions, a better understanding and management of

complex organizations may be achieved.

In this thesis, we propose a sensor-based organizational design and engineering approach

that combines sensor measurements, pattern recognition algorithms, simulation and opti-

mization techniques, social network analysis, and feedback mechanisms that aim at contin-

uously modeling and improving individual and group performance. We describe the specifi-

cations for a sensor-based organizational engineering system and discuss preliminary studies

that we have conducted in several organizations using such platform to study communica-

tion patterns, task efficiency, productivity outcomes, and simulate optimal configurations

of groups.

1.1 Research Question

How can behavioral sensor data be used to enhance organizational performance?

Organizational Data Mining (ODM) leverages data mining tools and techniques to en-

hance the decision-making process by transforming data into valuable and actionable knowl-

edge to gain a competitive advantage (Nemati & Barko 2004). Advances in ODM technology

have helped organizations optimize internal resource allocations while better understanding

and responding to the needs of their customers. By applying ODM techniques and simula-

tion algorithms to behavioral sensor data, we will show that it is possible to recognize social

patterns, infer relationships, model organizational dynamics, and enhance organizational

performance.

1.2 Motivation

Human sensing refers to the use of sensors to capture human behavioral signals includ-

ing facial expressions, body gestures, nonlinguistic vocalizations, and vocal intonations

(Pantic et al. 2007). Context sensing also plays an important role in understanding hu-
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man behavior. Its goal is to characterize the situation in which specific behaviors are

displayed. There is a large body of research in context sensing using wearable and environ-

mental sensors (Gellersen et al. 2002, Harter et al. 1999, Jones & Brown 2002, Mantyjarvi

et al. 2004, Van Laerhoven et al. 2002). The ultimate goal of human and context sensing

is to automatically interpret the sensed behavioral signals to understand and describe the

observed behaviors.

Our research group has developed several tools for analyzing voice patterns and quan-

tifying social context in human interaction, as well as several socially aware platforms that

objectively measure different aspects of social context, including non-linguistic social sig-

nals measured by a person’s tone of voice, movements or gestures. We have found that

nonlinguistic social signals are particularly powerful for analyzing and predicting human

behavior, sometimes exceeding even expert human capabilities (Pentland 2005).

To the best of our knowledge, however, organizational studies have not yet incorporated

data from social interactions in the workplace collected using electronic sensors. We pro-

pose the use of sensors capable of automatically identifying, quantifying and characterizing

social interactions in order to incorporate this rich and untapped information (which was

not possible to measure with such detail before) into formal organizational models. Our

proposed approach augments traditional methods of gathering social interaction data such

as surveys or ethnographic studies and incorporates behavioral sensor data into current

Organizational Design and Engineering (ODE) practices.

1.3 Main Hypothesis

By combining behavioral sensor data with other information such as text documents, e-

mail, surveys, and performance data; and using data mining and simulation techniques, it

is possible to model human social behavior and enhance organizational performance.

In order to test this hypothesis, we developed a sensor-based organizational engineering

system that uses wearable and environmental sensors to automatically quantify certain

aspects of human social behavior such as non-linguistic social signals (contained in speech

and body movement), face-to-face interaction, proximity and displacement.
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1.4 Research Approach

Our goal is to design organizational interventions aimed at enhancing individual and group

performance by applying a number of statistical analysis and simulation techniques to be-

havioral sensor data. With this in mind, we have devised a sensor-based organizational de-

sign and engineering approach to study the relationship between social signaling behavior,

face-to-face communication patterns and social network characteristics, with organizational

performance metrics such as task efficiency, productivity and job satisfaction. We have

deployed our experimental research platform under naturalistic settings. Our approach is

based upon the following propositions:

Proposition 1. Social signaling behavior and face-to-face interaction networks can be

automatically captured using electronic sensors.

Proposition 2. Social signaling behavior is correlated with a variety of organizationally

relevant outcomes such as performance and job satisfaction.

Proposition 3. Face-to-face interaction network characteristics are predictive of indi-

vidual and group performance.

This approach to measure human behavior has several advantages over existing methods

such as direct observation by humans, the use of pervasive cameras to videotape social

interactions, or the use of surveys. Direct observation of humans by humans is expensive

and limited to a few people per observer, and observers do not always agree. Deploying

pervasive cameras is extremely expensive and their range of measurement is constrained to

a particular place. The use of surveys is often subjective, inaccurate, and time consuming.

In contrast, it would be a great advantage to be able to automatically capture the behavior

of hundreds of people at the same time with unobtrusive sensors. The use of pervasive

sensors allows us to study human behavior with unprecedented levels of detail. By capturing

individual behaviors such as the amount of face-to-face interaction, speaking patterns, and

non-linguistic social signals; and aggregating them at the group level, we show that it

is possible to assess group performance and design organizational interventions aimed at

improving organizational performance.

We present the results from several case studies where we have instrumented several

participants with sociometric badges capable of measuring social signals (i.e. non-verbal
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cues extracted from speech and body movement), face-to-face interaction, and physical

proximity. Each of the case studies are different in nature due to the difficulty in obtaining

access to organizational performance data and digital communication records, as well as

the complexity involved in deploying an experimental research platform under naturalistic

settings in real organizations. The data that were made available to us by each organization

were also slightly different in nature, therefore each case study addresses one or more hy-

potheses (specified in the corresponding sections) that support the abovementioned research

propositions.

1.5 Outline

We begin chapter 2 with a brief review of organizational design and engineering theory.

Next, we describe our proposed sensor-based organizational design and engineering ap-

proach in chapter 3. In chapter 4, we present an overview of the technologies and method-

ologies for sensing human behavior. In chapter 5, we describe the modeling and simulation

techniques that were used to analyze the behavioral sensor data and optimize organizational

performance. In chapter 6 we describe several case studies and discuss experimental results.

Finally, we conclude and discuss further implications of the proposed approach in chapter

7.
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Chapter 2

Organizational Research

Background

2.1 Organizational Design

The basic goal of organizational research is to study what kinds of organizational designs

or structures are most effective in different situations, as well as to identify variables that

enable researchers to make consistent and valid predictions of such organizational structures

(Tushman & Nadler 1978).

Organizational behavior is the systematic study of the actions and attributes that peo-

ple exhibit within organizations. It seeks to replace intuitive explanations with systematic

study, that is, the use of scientific evidence gathered under controlled conditions and mea-

sured and interpreted in a rigorous manner to attribute cause and effect (Robbins 2005).

Analists of this field attempt to help managers understand people better so that productiv-

ity improvements, customer satisfaction, and a better competitive position can be achieved

through better management practices (Gibson et al. 2009).

A recent approach that brings together organization and information systems research

and that focuses on building and deploying computer-based tools for organizational design

was proposed by Magalhães & Rito Silva (2009). They address the need to bring together

the engineering and the design of organizations and define Organizational Design and En-

gineering (ODE) as “the application of social science and computer science research and

23



practice to the study and implementation of new organizational designs, including the inte-

grated structuring, modeling, development and deployment of artifacts and people”. They

draw a parallel with the agile software development process and suggest a combination of

short observation stage, where the relevant parts of the organization’s design are observed,

followed by a rapid intervention design and deployment stage. This process would go on

continuously as a sequence of short observation steps, followed by short intervention steps.

This approach can be applied in sensor-based organizational design systems.

To understand how individual behavior affects performance, it is necessary to take into

consideration several variables that directly influence individual behavior, such as abilities

and skills, personality, perception, attitudes, values, and experience among others (Bowditch

& Buono 2005). Behavior is also affected by a number of environmental variables such as the

organizational structure, policies and rules, resources, and job design. While the individual

variables are most likely fixed and do not change much over time, the environmental vari-

ables can be continuously manipulated in order to modify individual behavior and promote

a desired outcome.

2.2 Organizational Engineering

Research in organizational theory and organizational behavior has contributed to the cre-

ation of a new field known as organizational engineering, whose focus is:

“...to increase the efficiency, productivity, communication, and coordination of

groups of people. These may include teams, departments, divisions, commit-

tees and many other forms of goal directed organizations. Focusing on how

relationships and information are structured allows groups to be engineered

to produce superior results on a consistent basis” (Organizational-Engineering-

Institute 2007).

Tourish & Hargie (2009) argue that modern research on organizational communication

must turn its efforts to exploring the in-situ, moment-to-moment, everyday communication

practices of organization members. This means extending communication research beyond
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self-report techniques that rarely capture the full complexities of observed behavior in real-

world organizations.

There exist several relatively disconnected perspectives within the field of organizational

engineering (Castro Melo Godinho de Matos 2007): (i) Business Engineering is concerned

with automation, elimination of bureaucracy, simplification of work flows, refinement of in-

formation infrastructure, and elimination of unnecessary work (Martin 1995); (ii) Enterprise

Architecture is concerned with the role that information technology plays in organizations

and with the adaptation that most enterprises have to face in order to remain competi-

tive in the process of change (Winter & Fisher 2007); (iii) Language Action Perspective

sees communication as a form of action and considers that people act through language

(Dietz 2002, Reijswound & Lind 1998, Winograd 1986); and (iv) Computational Organiza-

tion Theory studies organizations as computational entities (Carley 1995).

The work of Carley (2002) at Carnegie Melon University is particularly relevant to the

design of organizational engineering systems. She has proposed that the same techniques

used to engineer a product to meet some set of specifications can be applied to organizations

and that it should be possible to design an organization, group, or team, so that it is

“optimal” given some set of criteria (Carley & Kamneva 2004). Her research group has

focused on several computational simulation tools for organizational design: (i) agent-based

models that simulate the behaviors of the actors who make up a social system, and where the

behavior of the social system is not modeled directly, rather the systems behavior emerges

from the interaction of its agents; (ii) systems dynamics models that focus on modeling the

behavior of the system as a whole; and (iii) cellular automata models for studying local

interactions (Harrison et al. 2007). We believe this approach could be complemented with

sensor data from social interactions in order to initialize simulation parameters and solve

optimization problems.

2.3 Organizational Intervention Theory

Cummings & Worley (2009) define Organizational Development as “a process that applies a

broad range of behavioral-science knowledge and practices to help organizations build their

25



capacity to change and to achieve greater effectiveness, including increased financial per-

formance, customer satisfaction, and organization member engagement”. Organizational

interventions are change processes that imply an intentional entry into an ongoing system

of relationships (Rothwell et al. 2010). There are many possible ways to engineer organiza-

tional interventions, therefore we will only describe some background theory related to the

proposed interventions that are presented in chapter 6.

2.3.1 Physical Environment

Proximity among people within an organization is known to exert considerable influence

on face-to-face communication, coordination, balance of members’ contribution, mutual

support, effort, and cohesion (Hoegl & Proserpio 2004). The seminal work of Allen (1971)

uses a dyadic measure of physical distance in terms of feet or meters that refers to pairs of

physical locations that do not vary in reciprocal distance over time. Monge et al. (1985)

define organizational proximity as “the extent to which people in an organization share

the same physical locations at the same time providing an opportunity or psychological

obligation to engage in face-to-face communication”. They observed daily variations in

organizational proximity as well as day-to-day regularities by asking employees from a

software systems firm to indicate, in 15-minute intervals, where they spent their time during

all five days of a typical work week. Their research suggests that the expected level of

organizational proximity at any point in time and the patterns across time is a function of the

nature of the physical facilities, the nature of the work, and the reporting relations. Several

organizational interventions that rely on the modification of the physical environment to

promote face-to-face interaction in the workplace (e.g. office layout redesign and office

renovation) have been studied (Heubach et al. 1995, Shpuza 2006, Zagenczyk et al. 2007).

2.3.2 Feedback Intervention Theory

According to Alder (2007), performance feedback has been a topic of interest to organiza-

tional behavior and organizational-psychology researchers for over a century due to the fact

that feedback affects numerous organizationally-relevant outcomes such as employees’ job

motivation, satisfaction, absenteeism and turnover. Kluger & DeNisi (1998) proposed the
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first comprehensive theory of feedback. Their Feedback Intervention Theory (FIT) states

that behavior is regulated by comparisons to standards or goals and that feedback inter-

ventions affect behavior by changing individuals’ locus of attention. Alder (2007) examined

the effect of Computer Performance Monitoring (CPM)-based feedback on individual’s task

performance and found that allowing participants to control the amount and frequency of

feedback they received enhanced their desire to respond to their feedback with improved

performance.

Coaching can help individual learning and development. Individual feedback may help to

understand the effects of one’s own behavior on others. Individual feedback can take many

forms, such as personal feedback, norm-based assessments, surveys, 360◦ feedback, and

tests (Boonstra 2004). Recent research on real-time feedback interventions has shown that

it is possible to modify group’s behavior by displaying information about group interaction

dynamics in real time (DiMicco et al. 2004, Kim & Pentland 2009). Laboratory study results

show that sociometric feedback helps groups achieve higher interactivity levels and better

communication (Kim et al. 2008). In a recent study, Kim et al. (2010) found that when given

feedback on their communication patterns, individuals became more cooperative, increasing

the overall performance of the group. These results suggest that real-time sociometric

feedback can indeed change group dynamics and enhance group performance.

2.3.3 Continuous Change

There are two different kinds of organizational change: “episodic change”, which is dis-

continuous and intermittent; and “continuous change”, which is ongoing, evolving and

incremental (Weick & Quinn 2004). The distinctive quality of continuous change is the idea

that small continuous adjustments, created simultaneously across units, can cumulate and

create substantial change.

One focal point of organizational development is organizational culture change (Rothwell

et al. 2010). Intervention methods based on culture are mainly in the form of large-scale

training and communication programs. According to Boonstra (2004), the first step in cul-

tural change is to assess the organizational culture by using survey feedback or by bringing

groups together to identify values and underlying assumptions. The next step is to identify
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cultural assumptions that aid to or prevent from getting to shared goals. After a reflective

diagnosis, an action plan is developed to determine what steps might be appropriate. Fi-

nally, the execution of the action plan is monitored by members of the organization with

the help of a facilitator. Culture change is a continuous change process.

2.4 Organizational Performance

Organizational performance cannot be measured using a single method or metric. There

are many different ways of interpreting, defining and assessing organizational performance,

as well as a wide range of stake-holders involved. Richard et al. (2008) make a distinction

between “organizational performance” and “organizational effectiveness”:

Organizational performance encompasses three specific areas of firm out-

comes: (1) financial performance (profits, return on assets, return on investment,

etc.); (2) market performance (sales, market share, etc.); and (3) shareholder

return (total shareholder return, economic value added, etc.).

Organizational effectiveness is broader and captures organizational perfor-

mance plus the plethora of internal performance outcomes normally associated

with more efficient or effective operations and other external measures that relate

to considerations that are broader than those simply associated with economic

valuation.

In this thesis we use both subjective and objective measures of individual and group

performance related to both organizational performance and organizational effectiveness.

Business firms are usually compared in terms of profits, sales, market share, productivity,

debt ratios, and stock prices. Hospitals use cost of recovery time, mortality rates, and

occupancy rates. Universities use research productivity, faculty prestige, test scores of stu-

dents, and rankings by popular magazines (March & Sutton 1997). Chapter 3 describes our

proposed approach, and we argue that it can be applied to multiple performance measures

as it will be shown in chapter 6.
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Chapter 3

Proposed Sensor-Based

Organizational Design and

Engineering Approach

3.1 Proposed System

We have developed a set of tools and methods to automatically capture, measure, and

analyze human behavior in organizational settings in order to improve performance and

optimize organizational structures and decisions, e.g. office layout, team formation, and

organizational structure (Olgúın-Olgúın, Waber, Kim, Mohan, Ara & Pentland 2009). Our

goal is to be able to map behavioral patterns to quantifiable outcomes and provide employees

and managers with feedback that allows them to adjust their behavior in order to optimize

a desired outcome. Our proposed approach includes the following steps:

1. Capturing the interactions and social behavior of employees, managers and customers

using wearable and/or environmental sensors. Other sources of information that can

be incorporated into the system are any form of digital records (e.g. e-mail, chat,

phone logs).

2. Performing data mining and pattern recognition to extract meaningful information

from these data.
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3. Combining the extracted information with performance data (e.g. sales, tasks, timing)

and finding relationships between objective measurements and performance outcomes.

4. Behavior modeling and simulation.

5. Organizational intervention design.

6. Intervention implementation by means of generating feedback in the form of graphs,

interactive visualizations, reports, or real-time audio-visual feedback for employees,

managers and/or customers.

7. Continuous measurement and performance assessment.

A sensor-based system for organizational design consists of environmental and wearable

sensors, computers, and software that continuously and automatically measure individual

and collective patterns of behavior, identifies organizational structures, quantifies group

dynamics, and provides feedback to its users. The purpose of such system is to improve

productivity, efficiency, and/or communication patterns within an organization. The pro-

posed system is composed of one or more wearable sensing devices functioning in a wireless

sensor network, one or more radio base stations, a computer system, and several data

processing algorithms. The system may include some of the following:

• Environmental sensors that monitor the current conditions of the workplace (temper-

ature, light, movement, activity, sound, video, etc.).

• Wearable sensors that employees carry around and that measure human behavior

(social interaction, activities, location, etc.). These can be mobile devices such as cell

phones, PDAs, or electronic badges that collect data, communicate with a database

(via Ethernet or wirelessly) to retrieve information, and provide feedback to their

users.

• Software that automatically identifies relevant keywords in documents, web pages,

e-mail, and instant messaging communication.

• A database that stores all the information collected by the environmental, wearable

and software sensors (who-knows-what, who-knows-who, and where-is-who).
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• Simulation and data mining algorithms.

• Feedback and visualization mechanisms.

3.2 Environmental Sensors

In addition to the wearable sensors, base stations can be placed in fixed locations inside a

building in order to track the location of interaction events as well as subjects. A central

computer can be used for data collection. Data from the wearable sensors is transferred

wirelessly to the base stations and then uploaded to a server. The base stations may contain

environmental sensors (temperature, light, sound, movement, activity, etc.) that capture

the current conditions in an office environment, such as the number of people walking by,

ambient noise, temperature and lighting conditions.

3.3 Wearable Sensors

Wearable sensing devices may include electronic badges, mobile phones, wrist-mounted de-

vices, head-mounted devices, and electronic textiles, among others. These wearable devices

could function as self-contained monitoring devices or communicate with each other and

with fixed radio base stations in a wireless sensor network. The wearable sensing devices

should have a small form factor, be comfortable to wear over long periods of time, and have

a long battery life. A behavioral wearable sensor should be able to:

• Recognize common daily human activities (such as sitting, standing, walking, and

running) in real time.

• Extract speech features in real time to capture non-linguistic social signals such as

interest and excitement, and unconscious back-and-forth interjections, while ignoring

the words in order to assuage privacy concerns.

• Communicate with base stations over radio and measure the radio signal strength (to

estimate proximity and location).
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• Perform indoor user localization by measuring received signal strength and imple-

menting triangulation algorithms.

• Capture face-to-face interactions.

The wearable sensing device may include one or more of the following modules:

Table 3.1: Sensors and measurements for wearable sensing device.
Module Sensors Measurements

Audio Electret or MEMS-type micro-
phone.

Speech detection and segmen-
tation, speaking time, speech

features (e.g. energy, pitch,
speaking rate, etc.), non-

linguistic signals (e.g. activ-
ity, consistency, mirroring, in-

fluence).

Motion Accelerometers, inclinometers,
gyroscopes, piezoelectric vi-

bration sensors.

Body movement detection,
body energy level, body pos-

tures and physical activities.

Face-to-face interaction Infrared transceivers, CMOS
cameras.

Time spent in face-to-face in-
teractions.

Proximity Ultrasonic sensors, sonar, ra-

dio transceivers (e.g. ZigBee,
WiFi, Bluetooth).

Proximity to other people and

base stations (from radio sig-
nal strength).

Location Radio transceivers (e.g. Zig-

Bee, WiFi, Bluetooth).

Triangulation (using radio sig-

nal strength).

Input interface Buttons, keyboard, touch-

screen, haptic interface

Output interface Speaker, LCD, light emitting
diodes.

Memory Flash, RAM, SD card inter-

face.

Processor Micro-controller / DSP.

Power Battery and power manage-
ment circuitry.

3.4 Database

A database containing individual attributes (values, attitudes, self-concept, abilities, person-

ality, job satisfaction, etc.); sociometric data captured from sensors (speaking state, speak-

ing style, motion state, location, face-to-face interaction, proximity, etc.); group attributes
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(team assignment, communication frequency, social network features derived from the so-

ciometric data); and performance data (projects or tasks, completion time, success/failure,

resources, follow-ups, etc.) from each person in an organization must be maintained in

order to manage the vast amounts of information generated by the system. Database soft-

ware includes: MySQL, Microsoft SQL Server, Oracle, and IBM DB2. Analysis software

includes: Matlab, Microsoft Visual Studio, UCINET, among others.

3.5 Feedback and Visualization Software

By aggregating information from sensor data, interpreting it, and modeling the dynam-

ics of human interactions, one can create sensor-based feedback systems that help better

understand and manage complex organizations. Performance dashboards are becoming in-

creasingly popular, but how to structure this feedback, particularly when it comes from

sensor data, is an unanswered question. Feedback on group dynamics has been proven to

help with the performance of small group collaboration (Kim & Pentland 2009). Kim et al.

(2009) have proposed a system to detect group dynamics and provide feedback according

to a group’s goals. By synchronizing multiple wearers’ sociometric data, it is possible get

information such as turn-taking, influence, body movement mimicry, and similarities in be-

havior. This information is then visualized in order to provide real-time feedback on group

dynamics.

3.6 Organizational Re-engineering Process

Once the system has been put in place and sociometric data has been collected, the following

steps would constitute an organizational re-engineering cycle:

1. Access personal attributes, sociometric data, and performance data.

2. Apply data mining and data processing algorithms.

3. Find relationship between desired/undesired performance outcomes and sociometric

data.
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4. Find relationship between personal attributes and sociometric data.

5. Set individual and group performance goals.

6. Design and perform an organizational intervention.

7. Provide users with feedback in order to induce behavioral changes and achieve the

desired goals.

8. Deploy the data collection system again. If the performance goals have not been

reached, predict future performance outcomes based on the sociometric data, and

start organizational re-engineering cycle again.

We envision short cycles of measurement-feedback-intervention-measurement until sig-

nificant improvements have been reached. The first measurement phase may last a few

weeks or up to a few months. The feedback phase can happen in real time (while socio-

metric data is being collected), or after the first measurement phase. Interventions have to

be implemented soon after the feedback phase and the second measurement phase has to

be carried out a few weeks after the intervention has been put into practice. The second

measurement phase is confirmatory step and the entire cycle can be repeated again.
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Chapter 4

Sensing Human Behavior and

Social Interactions

To date, research on human interactions has relied mainly on one-time, self-reported data

on relationships. New technologies, such as video surveillance, e-mail, and mobile phones,

offer an uninterrupted stream of interaction data over extended periods of time, providing

information about both the structure and content of relationships. This has given rise to the

emerging field of “Computational Social Science” that leverages the capacity to collect and

analyze data with an unprecedented breadth and scale (Lazer et al. 2009). Vast amounts of

data are created everyday from the use of personal electronic devices such as mobile phones

and RFID cards. This calls for the use of pattern recognition and data mining techniques

to uncover hidden structures of human behavior and social interactions.

In this section we present an overview of the state of the art in individual behavior

recognition from sensor data including motor activities and social signaling behavior. We

then move on to discuss the latest developments in group behavior recognition, such as face-

to-face interaction, conversation detection and conversation dynamics. We also present a

brief overview of pattern recognition methods in social network analysis for the automatic

identification of groups and the study of social network evolution.
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4.1 Individual Behavior

We are interested in recognizing human behavior from sensor data at the individual and

group levels, as well as combining pattern recognition methods with dynamic social network

analysis, with the goal of creating a general framework for modeling group dynamics.

At the individual level, several researchers have applied pattern recognition methods

to sensor data that capture different aspects of human behavior such as primitive motor

activities, e.g. standing, walking, running, etc. (Kern & Schiele 2003, Lee & Mase 2002,

Mantyjarvi et al. 2001, Van Laerhoven & Cakmakci 2000); as well as complex or high-

level activities, e.g. working on computer, having a phone conversation, etc. (Bao &

Intille 2004); and body posture, facial expressions, hand gestures, and displacement patterns

(e.g. location tracking).

Another aspect of individual behavior is the unconscious or “honest” signaling dis-

played during social interactions. According to Pentland (2008), these honest signals can

be measured by analyzing the timing, energy, and variability of speech and body move-

ment patterns. He describes four different types of honest signals in humans: influence (the

extent to which one person causes the other person’s pattern of speaking to match their

own pattern), mimicry (the reflexive copying of one person by another during a conversa-

tion), activity (speaking time and energy), and consistency (low variability in the speech

signal). The pattern of signaling behavior and social roles largely determines the pattern

of communication within an organization. Consequently, the dynamics of group interaction

can be inferred from the pattern of communication. For instance, dominant, high-influence

individuals cause the pattern of communication to flow through them, making them more

central in the organization.

Dong et al. (n.d.) use an “influence model” to represent the group discussion dynamics

as interacting stochastic processes, in which each participant is represented by a single

process. Their method identifies the different functional roles that the participants take at

each time in a group discussion and evaluates the discussion efficiency within the framework

of the stochastic process.
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4.2 Group Behavior

At the group level, we are interested in automatically identifying face-to-face interactions,

conversations, and conversation dynamics. Studies have shown that hand-coded analyses of

communication in teams can predict performance (Foltz & Martin 2009). These studies have

looked at the frequency, patterns and content of communication. For instance, an analysis of

the communication patterns of air-crews in flight simulation experiments revealed significant

differences between successful and unsuccessful crews (Bowers et al. 1998). In some cases,

high-performing teams communicate with higher overall frequency than low-performing

teams, but in other cases, this finding has not been supported.

According to Foltz & Martin (2009), to develop a human performance model, one needs

to find out if, and the degree to which, a relationship between communication and perfor-

mance exists. Computational models must accurately measure features in communication

that relate to measures of team performance. To create such model, recent advances in

the fields of computational cognitive models (e.g. latent semantic analysis, or LSA, so-

cial network analysis, and pattern recognition techniques (e.g. clustering, classification,

generalization) can be leveraged.

More recently, there has been increasing interest on modeling more complex patterns of

behavior over extended periods of time. Oliver et al. (2004) proposed the use of Layered

Hidden Markov Models (LHMMs) to classify different office activities (e.g. phone conver-

sation, face-to-face conversation, distant conversation, presentation, etc.). In their model,

there is a hierarchy with multiple HMMs, each corresponding to a certain concept (for ex-

ample, audio signals). These HMMs take as observations either the features computed from

the raw signals or the inferential results from the previous level. In LHMMs, each layer of

the architecture is connected to the next layer via its inferential results.

Gatica-Perez (2006) discusses some work on automatic analysis of face-to-face multi-

party conversations from multi-sensory data that has appeared in the literature spread over

several communities, including signal processing, computer vision, multi-modal processing,

machine learning, human-computer interaction, and ubiquitous computing. The author

proposes a categorization of conversational group activities on the basis of temporal scale

and group size. The proposed categories are: addressing (e.g., who speaks to whom at
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every time), turn-taking patterns (e.g. floor control, discussions, monologues), and group

trends (e.g. interest levels, dominance, and influence). Gatica-Perez (2009) later extended

his review to more than a hundred different works addressing the computational model-

ing of interaction management, internal states, personality traits, and social relationships

in small group conversations. His review focuses on small groups, non-verbal behavior,

computational models, and face-to-face conversations.

4.3 Social Signaling

As argued before, honest signals are unconscious indicators displayed during social inter-

actions. People display combinations of honest signals when they assume different social

roles such as: exploring, listening, teaming, and leading. For instance, the social role of

exploring combines low consistency and high activity. The role of active listening displays

low consistency and low activity. The teaming role requires a combination of high influ-

ence, high mimicry, and high consistency. When adopting the role of leading there is high

levels of influence, high activity, and high consistency. The pattern of signaling behavior

and social roles largely determines the pattern of communication within an organization.

Consequently, the dynamics of group interaction can be inferred from the pattern of com-

munication.

In this section we describe the social signals that we implemented and used in the case

studies discussed in chapter 6.

4.3.1 Physical Activity

A 3-axis accelerometer signal should be sampled at fs ≥ 30 Hz in order to capture the range

of human movement since 99% of the acceleration power during daily human activities is

contained below 15 Hz (Mathie et al. 2004). The acceleration signal vector magnitude (|~a′i|)

provides a measure of the degree of movement intensity that includes the effect of signal

variations in the three axes of acceleration (Karantonis et al. 2006). |~a′i| is calculated on

the normalized ith acceleration sample as follows:
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|~a′i| =
√

a′2
xi
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+ a′2
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(4.1)

The mean accelerometer signal magnitude is indicative of an individual’s “physical ac-

tivity level” and is calculated as follows:

F 1(k) =
1

fsT

fsTk
∑

i=1+fsT (k−1)

|~a′i| (4.2)

where T = 60 seconds, fs is the accelerometer sampling frequency, and k is the kth minute.

The standard deviation of the accelerometer signal magnitude is calculated as follows:

F 2(k) =

√

√

√

√

√

1

fsT

fsTk
∑

i=1+fsT (k−1)

[|~a′i| − F 1(k)]2 (4.3)

This feature is indicative of an individual’s “consistency of body movement” (1−F 2(k)).

The signal power or energy per minute is calculated as follows:

F 3(k) =
1

fsT

fsTk
∑

i=1+fsT (k−1)

|~a′i|
2 (4.4)

4.3.2 Speech Activity

The speech signal must be sampled at fs ≥ 8000 Hz since the voice frequency band ranges

from 300 to 3400 Hz approximately. The voiced speech of a typical adult male has a

fundamental frequency between 85 and 155 Hz, and that of a typical adult female between

165 and 255 Hz. (Baken 1987). Several speech enhancement and speech recognition front-

end systems based on band-pass filter banks have been shown to be effective in detecting

speech (Ellis et al. 2002, Mouchtaris et al. 2005). A band-pass filter bank that divides the

speech frequency spectrum [85, 4000] Hz into four (or more) frequency bands (e.g. f1 from

85 to 222 Hz, f2 from 222 to 583 Hz, f3 from 583 to 1527 Hz, and f4 from 1527 to 4000 Hz)

can be used to detect speech.

We can compute the speech volume modulation from the output of filter 1, since that

is where the majority of the speaking energy resides:
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v(i) = |(f1(i) + f1(i− 1))− (f1(i− 2) + f1(i− 3))| (4.5)

Feature F 4(k) (mean volume modulation per minute, or “speech activity”) is then ob-

tained as:

F 4(k) =
1

fsT

fsTk
∑

i=1+fsT (k−1)

v(i) (4.6)

The standard deviation of volume modulation per minute is calculated as:

F 5(k) =

√

√

√

√

√

1

fsT

fsTk
∑

i=1+fsT (k−1)

[v(i)− F 4(k)]2 (4.7)

“Speech consistency” can then be calculated as 1−F 5(k). The amount of speaking time

per minute is simply calculated by counting the number of samples in one minute where

the volume modulation is v(i) > 0:

F 6(k) =
1

fsT

fsTk
∑

i=1+fsT (k−1)

v(i)h(i) (4.8)

where h(i) is the step function:

h(i) =







1 if v(i) > 0 (speaking)

0 if v(i) = 0 (not speaking)

An experimental threshold value for each of the band-pass filters can be determined in

order to detect voiced and unvoiced speech. These threshold values can be coded using a

bit mask and the amount of voiced speech per minute can be obtained as:

F 7(k) =
1

fsT

fsTk
∑

i=1+fsT (k−1)

v(i)b(i) (4.9)
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4.3.3 Face-to-face (f2f) Interaction

Infrared (IR) transmissions can be used as a proxy for the detection of face-to-face interac-

tion between people (Choudhury & Pentland 2003). In order for one person to be detected

through IR, two IR transceivers must have a direct line of sight and the receiving sensor

must be within the transmitter’s IR signal cone of height h and radius r ≤ h tan θ.

We define the amount of face-to-face interaction F 8(k) as the total number of IR detec-

tions per minute divided by the IR transmission rate (TRir). Feature F 9(k) is simply the

number of different IDs detected every minute.

4.3.4 Proximity

The Radio Signal Strength Indicator (RSSI) is a measure of the signal strength between

transmitting and receiving devices. An average threshold can be determined experimentally

in order to detect when two people are in close proximity to each other by collecting RSSI

measurements over an extended period of time under different environmental conditions.

The time spent in close proximity to another person F 10(k) is calculated by dividing the

number of radio packets with RSSI > RSSIth by the radio transmission rate (TRradio).

4.3.5 Social Network

Social network attributes can be calculated using the number of IR and radio detections as

the link strength between two actors. We have used conventional social network analysis

as described by Wasserman & Faust (2005). In particular, we have used individual and

group degree and betweenness centrality as well as contribution index (Gloor et al. 2003).

Betweenness centrality is a measure of power and influence within a group. Degree centrality

measures the number of direct interaction partners. Contribution index measures how much

of a sender or a receiver within a group somebody is.
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4.4 Sociometric Badges

4.4.1 Previous Work

The first electronic ID badge was developed at Xerox PARC as a solution to the problem

of efficient location and coordination of staff in large organizations (Want et al. 1992). The

electronic tag was designed as an Active Badge that emitted a unique code every 15 seconds.

These signals were then picked up by other infrared sensors placed around a building. The

size of the badge was roughly 55 x 55 x 7 mm and weighted 40 g. The design of this first

badge was very simple: it consisted of a commercial remote controller encoder, an infrared

emitter driver, a timing circuit, and a test button.

More complex badge platforms have been developed after the Active Badge. In 1996,

the Thinking Tags (Borovoy et al. 1996) were the first computationally augmented name

tags that were capable of displaying how much two people at a conference or meeting had in

common, simply by lighting LEDs of different colors depending on how many questions the

participants had previously answered the same. Two years later they evolved into the so-

called Meme Tags (Borovoy et al. 1998), allowing conference participants to electronically

share brief ideas or opinions through a large LCD screen. This system further evolved into

the nTAG System, a commercial system to improve, measure, and automate meetings and

events (Ntag Interactive n.d.).

The Wearable Sensor Badge developed at Philips Research Labs in 1999 (Farringdon

et al. 1999) was capable of detecting simple pre-ambulatory activities using an accelerom-

eter. The iBadge (Park et al. 2002) was designed to be worn by children to capture in-

teractions with teachers and common classroom objects. The UbER Badge developed at

the MIT Media Laboratory in 2006 was a research platform for facilitating interaction in

large professional or social events (Laibowitz et al. 2006). These badges were equipped

with a large LED display, wireless infrared and radio frequency networking, and a host of

other sensors used to develop features and algorithms aimed at classifying and predicting

individual and group behavior (Paradiso et al. 2010). It measures 110 x 120 x 20 mm and

weighs 170 grams.

A PDA-based system that allowed users to automatically collect pictures into a contin-
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ually growing and adapting multimedia diary was developed at the MIT Media Laboratory

(Blum et al. 2006). It used patterns in sensor readings from a camera, microphone, and

accelerometers to classify the user’s activities and automatically collect multimedia clips

when the user was in an interesting situation. Microsoft Research developed SenseCam, a

sensor augmented wearable still camera designed to compile a digital record of the user’s

day, by recording a series of images and capturing a log of sensor data without user inter-

vention (Hodges 2006). It was built around a PIC micro-controller and contained several

sensors such as a VGA camera module, a 3-axis digital accelerometer, a temperature sensor,

a passive IR sensor, audio recording, and a standard SD card. It has been used in several

memory recall research projects since then.

The Mobile Sensing Platform (MSP) 2.0, developed at Intel Research in 2008, is a

wearable device specifically designed for embedded activity recognition and context aware

applications (Choudhury 2008). It is based on Intel’s iMote2 board containing one XScale

processor and one ATMega128 micro-controller, measures 60 x 60 x 50 mm, and weighs 115

g. It was designed to be worn with a belt clip. This device includes several sensors such as

an electret microphone, a light sensor, a 3-axis digital accelerometer, a digital barometer,

and a digital temperature sensor, among others. One featured application was for on-body

sensing, real-time activity inference, and a mobile ambient display to encourage individuals

to be physically active.

The first sociometric sensor developed at the MIT Media Laboratory was called the

SocioMeter. It was a wearable sensor package designed to measure face-to-face interactions

between people with an IR transceiver, a microphone, and two accelerometers (Choudhury

2004). These early prototypes were used in a group study involving 25 participants wearing

the badges for two weeks. The low-level sensor data were used to learn and model the

structure and dynamics of the social network (e.g. who was talking to whom and how

someone’s turn-taking patterns influenced the other person’s interaction style) (Choudhury

2004). However, due to its size and weight, users reported feeling somewhat uncomfortable

while wearing it.

In order to test our proposed system, we developed the Sociometric Badges, wearable

electronic sensors capable of detecting face-to-face interactions, conversations, body move-
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ment, and proximity to others (Olgúın-Olgúın 2007). The sociometric badges are capable

of extracting speech features without recording the content of conversations (in order to

preserve privacy), and of wirelessly transferring data to a central server. We have used

them in several organizations to capture face-to-face communication patterns and study

the relationship between collective behavior and performance outcomes, such as produc-

tivity and job satisfaction (Olgúın-Olgúın, Gloor & Pentland 2009, Olgúın-Olgúın, Waber,

Kim, Mohan, Ara & Pentland 2009, Wu et al. 2008).

The design of the sociometric badges was motivated by the fact that a large number

of organizations already require employees to wear RFID name tags that identify them

and grant them access to several locations and resources. These traditional RFID name

tags are usually worn around the neck or clipped to the users clothing. With the rapid

miniaturization of electronics, it is now possible to augment RFID badges with more sensors

and computational power that allow measuring human behavior without requiring any

additional effort on the user’s side. By capturing individual and collective patterns of human

behavior with sociometric badges and correlating these behaviors with individual and group

performance, it is possible to identify successful vs. unsuccessful teams, high performing

teams, and predict group outcomes. The added value for the users is the feedback that

they can receive about their daily behaviors and interactions with others, and how these

behaviors affect their individual and group performance.

The following is a list of some of the social signals that have been implemented for the

sociometric badges:

1. Body movement activity. Minute-by-minute body energy (motion sensor).

2. Consistency of body movement. Negatively proportional to the minute-by-minute

variation in body energy (motion sensor).

3. Speech activity. Minute-by-minute speech energy (microphone).

4. Consistency of speech. Negatively proportional to the minute-by-minute variation in

speech energy (microphone).

5. Speaking time. Minute-by-minute percentage of speaking time (microphone).
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6. Other speech features such as mirroring and turn-taking patterns (microphone).

7. Face-to-face (f2f) time. Minute-by-minute number of infrared detections divided by

the maximum transmission rate (infrared sensor).

8. Proximity time. Minute-by-minute number of radio detections divided by the max-

imum transmission rate and minute-by-minute average radio signal strength (radio

transceiver).

9. Degree. Number of different participants with whom there was face-to-face interac-

tion, normalized by the maximum number of participants (calculated from the f2f

network).

10. Centrality. It indicates to what extent an actor has a central position in the organi-

zation (calculated from the f2f network).

11. Cohesion. It is a measure of how well connected an actor’s acquaintances are connected

to each other.

We have manufactured several hundred sociometric badges and used them in organiza-

tions to automatically measure individual and collective patterns of behavior, and help or-

ganizations maximize their groups’ performance through specialized software that analyses

behavioral patterns and generates automatic feedback reports and dynamic visualizations.

It is possible to design organizational interventions based on these measurements and feed-

back mechanisms. In the following section we discuss four different case studies and several

proposed organizational interventions.

Based on the first version of the badges and with some major hardware and firmware

improvements, a second version of the badges was designed (Olgúın-Olgúın 2007). More

than 600 prototypes were built and used under naturalistic and laboratory settings in several

research projects that we will briefly describe next:

• Face-to-face communication vs. e-mail. We instrumented a group of 22 employ-

ees of a marketing division in a German bank for 20 working days (Olgúın-Olgúın,

Waber, Kim, Mohan, Ara & Pentland 2009). Face-to-face communication patterns
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were compared with e-mail exchange patterns. Based on our findings we suggested

as a possible intervention to modify the employees’ team configuration and seating

arrangement in order to minimize the physical distance among members of each team,

as well as the distance between teams that interacted the most. This would ideally

promote more face-to-face interaction and reduce the amount of e-mail, resulting in

less communication overload.

• Task performance. Sociometric badges were deployed for 20 working days at a

Chicago-area data server configuration firm that consisted of 28 employees (Waber

et al. 2008). The analysis examined employee behavior at the task level rather than

at the individual level. Results indicate that there are behavioral clusters that exhibit

completion times and number of follow-ups that vary according to physical activity

levels and speaking time. It was also found that in the face-to-face network, network

cohesion is positively correlated with higher worker productivity (Wu et al. 2008).

• Nurse behavior.We instrumented a group of 67 nurses working in the Post-Anesthesia

Care Unit (PACU) of a Boston area hospital with sociometric badges (Olgúın-Olgúın,

Gloor & Pentland 2009). Each nurse wore a sociometric badge for 27 days. Reduc-

ing the patient’s length of stay (LOS) within the PACU would help lower costs. We

found that the nurses’ social signaling behavior and face-to-face interaction patterns

captured with the badges were predictive of patients’ LOS, having a direct effect on

cost savings.

• Bank sales. A sociometric badge study was carried out in three branches of a bank in

the Czech Republic (Olgúın-Olgúın & Pentland 2010b). 52 employees and 6 managers

participated in the study and wore the badges for 20 working days. We studied the

relationship between several behavioral features captured by the sociometric badges,

and employee self-perceptions (from surveys) and productivity data. Several features

from the face-to-face social network that were captured by the badges were predictive

of sales performance in the three branches.

• Call center.We deployed our system at a bank’s call center, where a group of 80

employees and managers used sociometric badges for 30 days (Kim et al. 2009). Pre-
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liminary results indicate that cohesion in the face-to-face social network captured by

the badges is negatively correlated with the average phone call handle time. Our sug-

gested intervention was to change the way employee’s breaks are currently scheduled

so that more people working in the same team can take a break at the same time.

This would allow members of the teams to form more cohesive ties over time.

• Team performance. We used sociometric badges during the Entrepreneurship De-

velopment Program (EDP) at MIT in January of 2009 to capture the participants’

social interactions and predict team performance (Olgúın-Olgúın & Pentland 2010a).

109 participants used a sociometric badge during the first day of the program. There

were 17 different teams and three of them were judged as winners in an elevator pitch

contest. We used logistic regression and bootstrapping to predict the winning teams

from the badge features averaged across members of each team with 90% accuracy.

• Real-time feedback. The badges have also been used in conjunction with mobile

phones to create a real time group feedback system for meetings (Kim et al. 2008).

This system, called “Meeting Mediator”, attempts to bridge the communication gap

in distributed groups by detecting and reincorporating lost social signals. More than

120 4-person teams have been studied in-lab so far. Results from these studies show

that the system effectively reduces the dynamical difference between co-located and

distributed collaboration as well as the behavioral difference between dominant and

non-dominant people.

• One-on-one interaction. Ten cohabiting couples shopping for furniture were stud-

ied with sociometric badges to test if the interaction patterns among shoppers convey

their interest level and predict the probability of purchase (Kim & Pentland 2009).

Sensible differences in customer behavior depending on their interest level were ob-

served. When couples were interested in an item they discussed it for a longer period

of time and had a more balanced speaking style.

• Collective intelligence. In a recent study with more than 600 participants working

in groups, evidence of a general collective intelligence factor that explains a group’s

performance on a wide variety of tasks was found (Williams-Woolley et al. 2010).
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Sociometric badges were used in a subset of these participants and the collective

intelligence factor was found to be correlated with the equality in distribution of

conversational turn-taking.

• Personality traits. Personality tests have been applied to the participants in some

of the studies described above. It has been found that several personality traits

(e.g. extroversion, neuroticism, openness, and agreeability) can be estimated from

the sociometric badge measurements (Olgúın-Olgúın, Gloor & Pentland 2009), (Gloor

et al. 2010).

• Software programming teams. There is a pilot study currently going on in three

industrial software development teams in two multinational software companies in

Finland (Niinimaki et al. 2009). Sociometric badges are being used to capture face-

to-face interaction patterns, in addition to collecting electronic communication logs

across different media. The goal of the study is to establish data collection and

analysis methods to empirically evaluate and verify the claims made by agile software

development practices.

Due to the encouraging results obtained in the studies carried out with the previous

version of the badges, and the increasing interest of researchers from several research com-

munities in using the badges for multiple applications, we decided to design and build a third

generation that would make it easier for others to collect and analyze their own sociometric

data.

4.4.2 Lessons Learned

Having deployed and used the sociometric badges 2.0 in a variety of settings and applications

has allowed us to learn from their shortcomings and common deployment mistakes.

• Real-time clock. One of the first hardware limitations that we encountered with

the sociometric badge 2.0 was the lack of a real-time clock. Without it, data synchro-

nization was quite challenging and required the use of one or several “global” base

stations (badges placed in fixed locations and turned on at a precise date and time).
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Each badge kept track of its own global time in micro-controller clock-ticks that could

be later on converted into the total amount of elapsed time since the badge was turned

on. However, each time the badge was turned off the clock-tick counter was reset to

zero and therefore several algorithms had to be implemented in order to synchronize

each badge’s data and obtain real time-stamps. A real-time clock is essential for large

data collection studies.

• Storage. Another limitation was the 1 GB storage limit of the microSD cards (due

to compatibility issues with the micro-controller). This capacity was enough to store

minute-by-minute features for a few months or even a year but it was a limitation in

case the raw data (audio, accelerometer, etc.) had to be stored. We usually solved

this problem by replacing the microSD cards once they were full. Being able to use

higher capacity microSD cards would be highly beneficial.

• Lack of operating system and file system. The lack of an embedded operating

system running on the badges made it more difficult to deploy new applications and

modify the data collection settings. The lack of a file system also made it difficult to

store data in known file formats. A parsing script had to be run off-line in order to

create separate text files.

• Programming connector. The only way the badges could be programmed was

using a custom-made JTAG connector that required a careful assembly process and

could not be purchased or made by others. This made it almost impossible for other

researchers to compile and run their own code in the badges. Furthermore, the JTAG

connector was not easily accessible through the plastic enclosure and the badges had

to be opened each time they had to be re-programmed. This made re-programming

the badges with new firmware a very time-consuming process.

• USB compatibility. The USB data transfer protocol and drivers only worked with

Linux or Mac systems but not with Windows. Several libraries and scripts had to be

compiled and installed before users could easily download data from the badges.
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• Enclosure. The plastic enclosure was very sturdy but not water resistant. This limits

it’s usability in certain case scenarios. A waterproof enclosure might be eventually

required.

• Battery life. No power saving modes were implemented in the second version of the

badges, therefore the microprocessor and peripherals were continuously running when

the badge was turned on. This limited the battery life to approximately 12 hours of

continuous data collection. A larger battery or backup battery had to be used when

24-hour data collection was necessary. Implementing several power saving modes and

automatically detecting when a person is wearing a badge would greatly improve the

battery life.

• Common deployment mistakes. Some users forgot to re-charge their badges at

the end of the day. This would cause the battery to get completely depleted (since

there was no under-voltage protection) and some of the batteries had to be replaced

after some use. Adding a battery charge indicator and a protection circuit would solve

this problem. Another common mistake was forgetting to turn the badges on at the

beginning of each day (which would cause no data to be collected at all), or forgetting

to turn the badges off at the end of the day (resulting in large amounts of useless

data).

4.4.3 System Requirements

Based on our previous experience using sociometric badges we defined the following mea-

surement requirements, which in turn led to the hardware architecture described in section

4.4.4.

Sensors and Measurements

Face-to-face interaction detection. One or more infrared transceivers or directional

sensors are required in order to detect when two users wearing a badge are facing each other.

An IrDA compliant transceiver with an extended low power range was selected because of

its low-profile size, power consumption, transmission range (typ. 1 m) and direct interface.
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Audio capture and speech processing. One or more electret- or MEMS-type mi-

crophone(s) are required for capturing speech. A digital MEMs microphone and audio

codec were selected for audio capture and playback. MEMs microphones are the latest

low-power technology used in mobile phones. The badge also has digital signal processing

(DSP) capabilities in order to implement digital filters and speech processing algorithms

that automatically extract social signals contained in speech.

Motion capture and body movement processing. One or more motion sensor(s)

including accelerometers, inclinometers, gyroscopes, piezoelectric vibration sensors, are re-

quired for capturing motion. The badge is capable of measuring body movement energy

and activity levels (i.e. standing still, walking, running, etc.). An ultra-low power digital

3-axis accelerometer capable of measuring ±16 g was selected.

Proximity and location detection. One or more wireless radio transceivers such as

Bluetooth, ZigBee or any other radio frequency transceiver operating in the ISM (Industrial,

Scientific, and Medical) and SRD (Short Radio Device) frequency bands are required for

sending/receiving information to other badges, base stations, mobile phones or computers.

Radio signal strength indicator (RSSI) measurements can be used to estimate proximity

and location. An ultra-compact, low-power, high-sensitivity 2.4 GHz Bluetooth module

designed for wireless sensing, control and data acquisition applications was selected because

it eliminate the need for costly and time-consuming development.

Data transfer and storage. One or more storage media (on-board flash memory,

removable memory cards such as SD or microSD, etc.) are required for storing data. On-

board SRAM and NAND flash memory were selected for storing and running the firmware.

A microSD card is used for storing the raw and pre-processed data since it is the smallest

and highest capacity available memory option. USB and wireless data transfer are possible

as well.

Micro-processor. A micro-processor with DSP capability, capable of running Linux,

enough peripherals for all required sensors, and low-power consumption is needed. The

AT91SAM9G20 micro-processor was chosen based on the integration of an ARM926EJ-S

processor with fast ROM and RAM memories and a wide range of peripherals. It embeds

an Ethernet MAC, one USB Device Port, and a USB Host controller. It also integrates
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several standard peripherals, such as the USART, SPI, TWI, Timer Counters, Synchronous

Serial Controller, ADC and MultiMedia Card Interface.

Power. The total power consumption for the badge running at full speed has been

estimated at < 100 mA. The thinnest available lithium-polymer rechargeable battery with

a 2600 mAh capacity was selected for 24 hours of continuous data collection. It can be

re-charged over USB or AC adapter. A battery charger, voltage regulator, and power

management module will also be included.

4.4.4 Hardware Architecture

The sociometric badge 3.0 hardware was designed with energy and space requirements in

mind. The printed circuit board (PCB) measures 90 x 55 x 7 mm. This size was deter-

mined by the size of standard lithium-polymer batteries (85 x 55 mm at various thicknesses

depending on battery capacity) and the number of components on the PCB. The main

capabilities of the third generation of sociometric badges are:

• CPU: Atmel AT91SAM9G20 ARM Thumb processor with DSP instruction exten-

sions and CPU frequency of 400 MHz.

• Memory:

– One 64-KB internal ROM.

– Two 16-KB internal SRAM.

– 8-bit or 16-bit bus 64 MB SDRAM (up to 128 MB).

– 32-bit bus 512 MB NAND Flash Memory (up to 1 GB).

– Removable microSD HC memory card (up to 32 GB).

• Sensors:

– Digital MEMs microphone (to capture non-linguistic social signals) and audio

codec (to record and play back audio through headphones).

– Digital 3-axis accelerometer (to capture body movement social signals).

– ZigBee module (wireless data transfer and proximity detection).
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– IrDA transceiver (face-to-face interaction detection).

– CMOS image sensor interface (footprint for future implementation).

• USB Interfaces:

– microUSB 2.0 full speed (12 Mbits per second) device port for data transfer and

badge programming.

– microUSB 2.0 full speed (12 Mbits per second) host port for external USB WiFi

module (base stations), and battery charging.

• Miscellaneous:

– 2 LEDs + 1 LED (charging status indicator).

– 1 tri-directional scan/select push button.

– Real time clock with rechargeable manganesum lithium battery.

– Rechargeable lithium polymer battery (option 1: 3-mm thick 1600 mAh capacity,

option 2: 5-mm thick 2600 mAh capacity).

– Maximum badge enclosure dimensions: 94 x 59 x 11 mm with battery option 1,

or 94 x 59 x 13 mm with battery option 2.

– Total current consumption (running at full speed): < 100 mA. Battery option 2

will provide at least 24 hours of continuous use.

Figure 4-1 shows the block diagram for the hardware architecture. Figure 4-2 shows the

front and back views of the badge’s printed circuit board. Figure 4-3 shows the evolution

of the sociometric badges.

4.4.5 Firmware and Software Architectures

The firmware stack for the third generation of sociometric badges is based on embedded

Linux. The firmware stack consists of a bootstrap, device firmware uploaders, a boot loader

and the Linux kernel. The bootstrap is responsible for configuring the low-level settings

of the hardware platform for the use of other components. Device firmware uploaders will

be used to upload firmware code to sensor modules requiring custom firmware. The boot
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Figure 4-1: Hardware architecture block diagram
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Figure 4-2: Sociometric badge printed circuit board

loader will load, configure and start up the Linux kernel. The Linux kernel will then set

up the actual device drivers and interfaces, as well as start up the main application for

the system. The software will be composed of a main application and a varying number of

standalone modules. The main application is responsible for managing the overall system

configuration, starting up and monitoring the status of other modules in the system, and

maintaining a directory of communication interfaces provided by each module in the system.
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(a) Version 1.0 (b) Version 2.0

(c) Version 3.0

Figure 4-3: Sociometric badge evolution
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Table 4.1: Sociometric badge comparison

Capabilities Badges 1.0 Badges 2.0 Badges 3.0

Processor 20 Mhz

PIC16F877

55 MHz

AT91SAM7S256

400 MHz

AT91SAM9G20
Operating System C-code C-code Linux

Memory 256 MB Up to 1 GB
microSD

Up to 32 GB
microSD

f2f detection
module

4 IR transmitters
(1.8-m range)

IrDA transceiver
(1-m range)

IrDA transceiver
(1-m range)

Speech module Electret
microphone

MEMs analog
microphone and

4 analog band
pass filters

MEMs digital
microphone and

codec

Body movement
module

2-axis analog
accel

3-axis analog
accel

3-axis digital
accel

Proximity module 433 MHz FM ra-
dio

Bluetooth and
2.4 GHz

Bluetooth
module

Battery life 4 AAA batteries 10 hours (1000

mAh li-ion)

24 hours (2600

mAh li-pol)
Data transfer Compact flash

card

USB, Bluetooth,

2.4 GHz

USB, microSD,

ZigBee, WiFi
Dimensions 130 x 90 x 24 mm 82 x 50 x 20 mm 94 x 59 x 11 mm

Weight 150 g 110 g 80 g
Subjects studied 23 > 500 -
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Chapter 5

Social Network Simulation and

Optimization

5.1 Social Network Analysis

A social network is formed by a set of actors (or nodes) and the relations (or ties) between

these actors. Actors may be individuals, groups, organizations, or entire communities, and

relations may span across or within levels of analysis. Relational variables are defined and

measured at the dyadic level and can include a wide variety of social and physical ties, each

of which may have a number of different basic properties (Wasserman & Faust 1994).

Social network analysis is a collection of techniques for identifying, describing, and

explaining various kinds of structures among individuals, groups, and organizations:

“It is a set of tools used to help account for the relationships or interactions

of individuals who interact within a given social context. Specially, network

methods can be used to describe the often complex web of ties between people

in a group. These relations can be examined at many different levels, revealing

information about the network as a whole as well as about individual actors

within the network” (Slaughter et al. 2009).

Social networks, in which people build relationships with others through some common

interest, can be visualized as a large graph with people as nodes and connections as links
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between the nodes. Social network analysis examines the structure of the graph and extracts

meaningful organizational data out of the graph (Krebs n.d.). Complete network data is

difficult to collect. Four primary data collection techniques are the use of questionnaires,

interviews, observations, and archives. In (Olgúın-Olgúın & Pentland 2008) we propose the

use of electronic data collection methods that use wearable sensors to capture face-to-face

interactions.

Pattern recognition methods have also been applied to social network analysis. Clus-

tering techniques have been used to identify communities and study their evolution over

time (Mishra et al. 2007). An important property found in many networks is community

structure, in which network nodes are joined together in tightly knit groups, between which

there are only looser connections. Girvan & Newman (2002) proposed a method for detect-

ing such communities, built around the idea of using centrality indices to find community

boundaries. Palla et al. (2007) developed a new algorithm based on clique percolation that

allows to investigate the time dependence of overlapping communities on a large scale and

to uncover basic relationships characterizing community evolution.

Some of the most recent analytical developments are exponential random graph models

(Robins et al. 2007), which allow modeling complex patterns of dependencies at different

levels of analysis. These models allow for simple inquiries, such as whether there are ho-

mophily effects in networks; or more complex research questions like whether the tendency

toward various hierarchy-related structures differ across groups that use different strategies

to complete a team task (Slaughter et al. 2009). Recent developments in modeling longitu-

dinal social networks (Snijders 2001, Snijders et al. 2006, Snijders et al. 2010) would allow

the use of fine-grained social interaction data in organizational design systems.

5.2 Social Network Properties

There are many different measures that describe the structural properties of social networks.

The first level of analysis is usually the individual. At this level, measures are mainly used to

describe the positions of individual actors in the social structure, such as the degree to which

they are embedded or share similar roles with others in the network. The second level of
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analysis is the dyad. At this level, there are measures that describe ties that exist between

pairs of individuals, for example, whether or not social relationships are reciprocated or

how important certain ties are for connecting the network. Examples of common structural

features of interest are: individual location or importance (centrality), roles, homophily,

reciprocity, multiplexity, type and degree of hierarchy, clustering, size and diameter of the

network, and density, among others (Slaughter et al. 2009).

The extent to which individuals are embedded in a social structure is one of the most

basic relational properties of individuals in a network. The most common way of defining

this is through measures of centrality. Centrality indices provide a way of quantifying the

extent to which a given individual is connected to the rest of the network and is often inter-

preted as a measure of structural importance. For directed relations, centrality indices focus

on the actors as senders of relational ties (Slaughter et al. 2009). There are many centrality

and prestige measures in the literature, we summarize the most commonly encountered

measures next:

5.2.1 Degree Centrality and Prestige

Degree centrality (or the number of ties an individual has) is one of the most simple and

frequently used measures of structural importance. Slaughter et al. (2009) argue that:

“for non-directional relations, degree centrality provides an index of the number

of direct network partners for each individual in the network. For directional

relations, ties can be partitioned into incoming or outgoing ties, representing

indegree and outdegree respectively. Indegree has been referred to as an index

of prestige and is sometimes interpreted as the popularity of a given actor.

Outdegree is less frequently used than indegree centrality but may still provide

an important measure of individual activity”.

Wasserman & Faust (1994) define CD(ni) as an actor-level degree centrality index:

CD(ni) = d(ni) =
∑

j

xij =
∑

j

xji (5.1)
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One problem with this measure is that it depends on the group size g. The degree

centrality of a node is then standardized as CD(ni) = d(ni)/(g− 1), so that it ranges from

0 to 1 and indicates how well a node is connected in terms of direct connections.

5.2.2 Closeness Centrality and Proximity Prestige

Closeness centrality is defined as an index of actors’ average distances to others in the

network, and is another common measure of centrality. Slaughter et al. (2009) point out

that:

“in many settings, the distance between actors may represent important fea-

tures of communication or interaction. For example, actors who are very far

away from others in the communication network will tend to be the last to re-

ceive information. Thus, actors for whom it requires very few hops through the

network to reach all other actors will have a high closeness centrality. Close-

ness centrality is sometimes interpreted as a measure of access to information

or other resources. For directional relations, closeness centrality focuses on the

distance from a given actor to others in the network, whereas proximity prestige

represents the closeness of other network members to a given actor” .

This closeness-based measure can be calculated as the inverse of the average distance

between node i and any other node j:

CC(ni) =
n− 1

∑n
j=1 l(ni, nj)

, (5.2)

where l(ni, nj) is the number of links in the shortest path (geodesic) between nodes i and

j. A richer way of measuring centrality based on closeness is to consider a decay parameter

δ, where 0 < δ < 1 and then consider the proximity between a given node and every other

node weighted by the decay (Jackson 2008). In particular, the decay centrality of a node is

defined as:

∑

j 6=i

δl(ni,nj ), (5.3)
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where l(ni, nj) is set to infinity if i and j are not path-connected. As δ approaches 0,

then decay centrality gives infinitely more weight to closer nodes than farther ones and it

becomes proportional to degree centrality.

5.2.3 Betweenness Centrality

A measure of centrality that is based on how well situated a node is in terms of the paths

that it lies on, was first proposed by Freeman (1978). He introduced a set of measures that

define centrality in terms of the degree to which a point falls on the shortest path between

others and therefore has a potential for control of communication. Slaughter et al. (2009)

write about this third type of centrality that frequently appears in the literature:

“for information or work to move from one individual to another, it must of-

ten pass through a number of intermediaries or facilitators. In many settings,

being the intermediary (or broker) is said to provide a measure of control or

power. Betweenness centrality provides an index of the extent to which a given

individual falls along the shortest paths (or geodesics) connecting pairs of other

actors”.

The betweenness centrality of a node is calculated as:

CB(ni) =

∑

j<k gjk(ni)/gjk

(n− 1)(n− 2)/2
, (5.4)

where gjk(ni) denotes the number of geodesics (shortest paths) between j and k that i

lies on, and gjk is the total number of geodesics between j and k. This index is standardized

by (n− 1)(n− 2)/2 (the number of pairs of actors not including ni).

5.2.4 Status or Rank Prestige

A fourth major indicator of centrality is known as status or rank prestige. In words of

Slaughter et al. (2009):

“although most types of centrality and prestige are based on an individual’s

position in the network, rank prestige also takes into account the position of
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individuals to which a given actor is tied. For example, in some situations,

characteristics such as status or prestige may be a function of characteristics of

the actors to whom an individual is tied. Having a relationship to a prestigious

actor may itself improve an actor’s prestige”.

The Kats prestige of a node i is the sum of the prestige of its neighbors divided by their

respective degrees (Jackson 2008). It is also a measure of centrality. Node i gains prestige

from having a neighbor j who has high prestige. However, this measure is corrected by how

many neighbors j has, so that if j has more relationships then i obtains less prestige from

being connected to j. The Kats prestige of a node is calculated as:

PK(ni) =
∑

j 6=i

nij

PK(nj)

d(nj)
(5.5)

5.2.5 Eigenvector Centrality

This measure was proposed by Bonacich (1987) and does not normalize the network of

relations in order to avoid reduction to degree centrality. Let CE(A) denote the eigenvector

centrality associated with a networkA (whereA is the adjacency matrix). The centrality of a

node is proportional to the sum of the centrality of its neighbors λCE(A) = ACE(A), where

λ is a proportionality factor. Thus CE(A) is an eigenvector of A, and λ is its corresponding

eigenvalue. The jth component of the related eigenvector then gives the centrality score of

the jth node in the network. The definition of eigenvector centrality also works for weighted

and/or directed networks (Jackson 2008).

5.3 Social Network Simulation

Simulation of social networks in the social sciences is a relatively recent development. Social

network simulation research is useful in testing current theory and exploring new possibil-

ities where real-life experimentation is impossible (Stocker et al. 2001). Even though sim-

ulation modeling is a powerful methodology for advancing theory and research on complex

behaviors and systems, it has been embraced more slowly in management than in social

science (Harrison et al. 2007). Simulation models of social networks can be used for both
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explanatory and predictive purposes. Such models can be based on cellular automata (CA),

agent-based models (ABMs), exponential random graph models (ERGMs), actor-based lon-

gitudinal models, among others. In this section we describe some of the basic methods used

for social network simulation.

5.3.1 Agent-based Models

Agent-based modeling (ABM) involves simulation of large numbers of autonomous agents

that interact with each other and with a simulated environment, as well as the observation

of emergent patterns from their interactions (Smith & Conrey 2007). In most models

related to social psychology, an agent is a simplified abstract version of a human being and

has a number of important characteristics, among them: being a self contained individual,

existing in and interacting with an environment, being embodied (as a robot or as a purely

software-simulated entity, being active, having limited information, having its own internal

goals, having bounded rationality, and being capable of adaptation.

Sycara & Lewis (2008) characterize current knowledge of teamwork and factors that need

to be included in a comprehensive simulation of team behavior. They review several agent-

based models (ABM) of teamwork describing work involving both teamwork approaches

to the design of multi-agent systems and agent-based representations of human behavior.

Out of 29 models reviewed, 20 include communication as a necessary behavior. According

to the authors, teamwork has typically been characterized by an Input-Process-Output

(IPO) model consisting of inputs (such as team composition or personalities of the team

members), a process in which the inputs are combined to determine team behavior, and

output defined in terms of team performance or team effectiveness. There are several

individual and group attributes that are a desirable part of a team simulation. Individual

differences may include general mental ability of team members, personality traits, task

knowledge and skills. Fundamental group attributes include cohesiveness (or the degree to

which team members identify with the team and the team goals), organizational climate,

team efficacy (or the team’s belief in its abilities to perform a task), and team potency

(or the team’s confidence in its general abilities). Because of the difficulty in validation,

ABM has been used primarily as a confirmatory method to demonstrate the feasibility of
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producing an observed result from a hypothesized mechanism.

There are two key issues in team formation: team member selection and task assignment.

Both issues are tightly connected and shall be addressed if the ultimate goal is to optimize

team performance (Sycara & Lewis 2008). Team assignment can be either static (neither

the team members nor their tasks will change once the team has been formed) or dynamic

(new team members may join and some existing members may leave, or their tasks may also

change over time). Static team assignment can be solved as a typical assignment problem

studied in Operations Research, in which a mathematical program determines the optimal

assignment of the agents to a given set of tasks to either maximize the total payoff, or

minimize the total cost (Kuhn 1955). Similarly, generalized assignment problems (GAP)

can be used to minimize the cost of assigning the tasks. Dynamic programming (DP) can

be used when there are multiple periods in which decisions need to be made on task and

agent assignment, and the goal is to optimize the aggregated performance over time.

Using graph based models, Stocker et al. (2001) simulate individual influence and the

communication of ideas in a population. Simulations of Dunbar’s hypothesis that natural

group size in apes and humans arises from the transition from grooming behavior to language

or gossip (Dunbar 2003), indicate that transmission rate and neighborhood size accompany

critical transitions. They demonstrate that critical levels of connectivity are required to

achieve consensus in models that simulate individual influence.

5.3.2 NK Models

Even though the NK model was initially conceived by Kauffman (1993) for understanding

biological systems, it has been extensively applied in many other domains including com-

putational organization theory. An organization is conceptualized as a system of activities.

It makes decisions concerning N activities where each activity can take on two states, 0 or

1, so that, referring back to the general model, A = {0, 1}N. A particular configuration of

activity is then described by a binary vector of length N . The distance between two such

vectors, x = (x1, . . . , xN) and y = (y1, . . . , yN), is captured by the Hamming distance. As

part of the NK model, the mapping v from the activity vector to the level of performance is

a primitive. v is set to depend on the performance contributions that these activities make
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individually, where the contribution of each activity depends on the interactions among a

subset of activities. The degree of interdependence among activities is captured by a pa-

rameter K which is the number of other activities that directly affect the contribution of a

given activity. Many organizational models using the NK framework choose the interaction

pattern so as to explore how different architectures influence performance (Chang 2006).

Using NK models, Fang et al. (2010) argue that an organization divided into semi-

isolated groups may help reach a balance between exploration and exploitation in organi-

zational learning. They simulated such organization by varying the interaction patterns

between individuals to explore how the degree of subgroup isolation and intergroup con-

nectivity influences organizational learning, and found that moderate levels of cross-group

linking led to the highest equilibrium performance. To study how interpersonal network

structure affects organizational learning, they varied the form of subgroup structure by ran-

domly re-wiring some of the existing links in the structure with probability β. The bigger

the value of β, the greater the percentage of random cross-group links.

Carrol & Burton (2001) introduce NK models as theoretical frameworks that offer an

explanation for group performance. They seek to develop a better understanding of the

relationship of group structure and the level of interdependency between individuals on

group performance under various task complexities. They find that structures that are

highly connected (actors communicating with all others) perform much worse than those

with a lower level of connection. Further experiments varying both the number of actors

and the degree of interdependence between them find evidence of the “edge of chaos”. The

authors suggest that there is an optimal range of interconnectedness between actors or tasks

that explains the variation in performance. An interesting result is that this optimal level

of interdependence is fairly low, regardless of the size of the group. Similarly, Lazer &

Friedman (2007) used an NK model to simulate how the communication pattern among

actors engaged in a broad class of human collective behaviors conceived as parallel problem

solving, affected their collective performance.
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5.3.3 Exponential Random Graph Models (ERGMs)

Some of the most recent analytical developments are in the form of exponential random

graph models (ERGMs), which allow for modeling of complex patterns of dependencies

at different levels of analysis. Exponential random graph models define the probability of

an observed network as a function of different structural characteristics such as density,

reciprocity, or cliquing (Robins et al. 2007).

ERGMs, also referred as p* models, are a generalization of Markov graphs and were orig-

inally described by Wasserman & Faust (1994). The probability distribution of a network

is given by

Pr{Y = y} = exp [θᵀu(y)− ψ(θ)] (5.6)

where u(y) is a vector of network statistics, and ψ(θ) is a normalizing constant.

Monte Carlo Markov Chain (MCMC) likelihood estimation is the preferred estimation

procedure and it is based on refining approximate parameter estimates by comparing the

observed graphs against a distribution of random graphs generated by a stochastic simu-

lation using the approximate parameter values. If the parameter estimates never stabilize

(converge), the model is likely to be degenerate (Robins et al. 2007).

5.3.4 Longitudinal Social Network Models

A recent development in social network analysis is the stochastic actor-based model for

network dynamics developed by Snijders et al. (2010). This model can represent a wide

variety of influences on network change, and allow to estimate parameters expressing such

influences, and test corresponding hypotheses. It assumes that the network evolves as

a stochastic process driven by the actors. The probabilities of tie changes are in part

endogenously determined, i.e., as a function of the current network structure itself, and in

part exogenously, as a function of characteristics of the nodes (“actor covariates”) and of

characteristics of pairs of nodes (‘dyadic covariates”). Stochastic actor-based models can

be used to analyze longitudinal data on social networks jointly with changing attributes of

the actors (Snijders et al. 2010). The basic assumptions (some of which are limitations) of

the model are:
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1. The time parameter is continuous. The process unfolds in time steps of varying length,

which could be arbitrarily small. The parameter estimation procedure, however, as-

sumes that the network is observed only at two or more discrete points in time.

2. The changing network is the outcome of a Markov process.

3. Actors control their outgoing ties.

4. At any given moment one actor may get the opportunity to change one outgoing tie.

5. Tie change rates may depend on the network positions of the actors (e.g. centrality)

and on actor covariates (e.g. age, sex, etc.).

6. The change determination process, modeling the precise tie changes made when an

actor has the opportunity to make a change, may depend on the network positions,

as well as covariates.

In the end, the actor-based model can be regarded as an agent-based simulation model

used for statistical inference and has been applied to multiple datasets. Van de Bunt &

Groenewegen (2007) applied this model to longitudinal data about collaborative agree-

ments within the genomics industry, and studied how firms choose collaborative partners

given their present network configuration, their goals, and characteristics to get a strategic

network position. Burk et al. (2007) used this model and provided an empirical example

investigating the co-evolution of friendship networks and delinquent behaviors in a longitu-

dinal sample of adolescents with the goal of simultaneously assessing selection and influence

processes. According to Van de Bunt & Groenewegen (2007), some drawbacks of this model

are the fact that it is currently restricted to binary network data; the model still lacks easy-

to-understand and easy-to-use procedures to calculate or approximate goodness-of-fit tests;

and actors can only change their network choices with respect to one kind of network. Re-

gardless of these drawbacks, this model seems quite promising in the study and simulation of

longitudinal network data. Other promising methods for longitudinal social network anal-

ysis include discrete temporal models (Hanneke et al. 2010), dyadic event models (Brandes

et al. 2009), and hidden temporal exponential random graph models (htERGMs) (Guo

et al. 2007).
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5.4 Social Network Optimization

The idea of optimizing a social network based on its properties and their relationship to

performance comes from the organizational literature. For example, Gabbai et al. (2003)

explored performance, cost, and structure trade-offs from social network simulations. They

observed the emergence of organization classes and identified optimal organizational struc-

tures that met specified constraints and tasks. They used several network properties such

as centrality, degree hierarchy, specialization, heterogeneity, and several performance met-

rics. Using a Pareto curve to appreciate the relationship between degree hierarchy and

performance, an optimal point along that curve was determined.

The study of complex systems has recently gained momentum in management science,

as simulation and optimization tools, originally developed in biology and physics, have been

applied to organizational, social, and technological settings (Rivkin & Siggelkow 2007). As

an example, Rivkin & Siggelkow (2007) studied how much exploration was necessary to

discover a good network configuration. They embedded social network patterns such as

centralization, small-world connections, power-law distributions, hierarchy, and preferential

attachment into an NK simulation model and found that by holding fixed the total number

of interactions among decisions, a shift in the pattern of interaction could alter the number

of local optima by more than an order of magnitude.

5.5 Proposed Simulation and Optimization Methodology

Given several observed network snapshots or panels, we can calculate network features us-

ing static or dynamic network models (e.g. centrality, degree, clustering, rate of change,

etc.). In chapter 6 we will show that network properties are related to performance metrics

(e.g. productivity, job satisfaction, stress, among others). By using multiple polynomial

regression to estimate the network’s performance, and applying the bootstrap method and

the response surface methodology described in sections 5.5.1 and 5.5.2 respectively, it is

possible to find an operational region that optimizes multiple performance metrics. This

simulation and optimization methodology facilitates the design of organizational interven-

tions that promote an optimal network configuration. Chapter 6 presents the experimental
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results after applying this methodology to several case studies.

5.5.1 Bootstrapping Regression Models

There are two general applications of multiple regression: explanation and prediction. When

multiple regression is used for explanatory purposes, one seeks to explore relationships

between multiple variables in a sample to shed light on a phenomenon, with the goal of

generalizing this new understanding to a population. When multiple regression is used

for prediction, one is using a sample to create a regression equation that would optimally

predict a particular phenomenon within a particular population (Osborne 2000). In general,

multiple regression can be an effective tool for creating prediction equations, provided that

certain assumptions are met, particularly: adequate measurement, large enough samples,

and care is taken to evaluate the regression equations for generalizability (Osborne 2000).

There are usually two approaches for bootstrapping regression models. When the re-

gressors are fixed, the bootstrap uses re-sampling of the error term. If the regressors are

random, the bootstrap uses re-sampling of the observation sets. We follow the bootstrap

methodology described by Sahinler & Topuz (2007):

1. Let the (k + 1) × 1 vector wi = (yi, x
′
ji)

′ denote the values associated with the ith

observation.

2. Draw an n sized bootstrap sample (w
(b)
1 , w

(b)
2 , . . . , w

(b)
n ) with replacement from the

observations, giving 1/n probability to each wi value, and labeling the elements of

each vector w
(b)
i = (y

(b)
i , x

(b)
ji )′, where j = 1, 2, . . . , k, and i = 1, 2, . . . , n.

3. Form the vector Y
(b)
i = (y

(b)
1 , y

(b)
2 , . . . , y

(b)
n )′ and the matrixX

(b)
ji = (x

(b)
j1 , x

(b)
j2 , . . . , x

(b)
jn )′.

4. Calculate the ordinary least squares (OLS) coefficients from the bootstrap sample:

β̂b1 = (X (b)′X (b))−1X (b)′Y (b).

5. Repeat steps 2,3, and 4 for r = 1, 2, . . . , B, where B is the number of iterations.

6. Obtain the probability distribution F (β̂(b)) for the bootstrap estimates and use it to

estimate the regression coefficients, variances, and confidence intervals. The bootstrap

estimate of the regression coefficients is the mean of the distribution F (β̂(b)).
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Thus, the bootstrapped regression equation is:

Ŷ = Xβ̂(b) + ε. (5.7)

5.5.2 Response Surface Methodology

Response surface methodology (RSM) is a collection of statistical and mathematical tech-

niques useful for developing, improving, and optimizing processes. As described by Myers

et al. (2009), the most important applications of RSM are in the industrial world, where

several input variables potentially influence some performance measure or quality charac-

teristic of the product or process. This performance measure or quality characteristic is

called the response, and the input variables are usually called independent variables. Once

the factors or variables that are likely to be important in a response surface study are de-

termined, an experiment is designed to investigate these factors. The objective of a first

screening experiment is to reduce the list of candidate variables to a relative few. Once the

important variables are identified, the objective is to establish whether the current levels

or settings of the independent variables result in a value of the response that is near the

optimum. If the current settings are not consistent with optimum performance, then a set

of adjustments to the process variables that will move the process toward the optimum has

to be determined. The second phase of a response surface study begin when the process

is near the optimum. At this point, a model that will accurately approximate the true re-

sponse within a relatively small region around the optimum (usually a second-order model)

will be used. Once an appropriate model has been found, a sequential experimental process

is performed within a region of the independent variable space called “operational region”,

to determine the optimum conditions for the process.

Most multiple-response optimization methods concentrate on the estimation of a single

set of optimal parameters. In order to find an optimal operational region for the set of

network parameters that maximize/minimize multiple responses (i.e. organizational perfor-

mance and job quality characteristics) at the same time, we propose to use a new method-

ology derived from that described by Jiang et al. (2009) which includes the following steps:

1. Design an experiment for data collection. An experimental design is used to deter-
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mine an optimal operational region. Factorial designs are widely used in experiments

involving several factors where it is necessary to investigate the joint effects of the

factors on a response variable (main effects and interactions). The central composite

design (CCD) is one of the most important designs for fitting second-order response

surface models (Myers et al. 2009).

2. Fit a regression model. A high R2 regression model is required in order to avoid large

variance in the estimated regression coefficients. A quadratic model is required for

optimization purposes.

3. Obtain multiple sets of simulated regression coefficients for the multiple responses.

This can be done using the Monte Carlo simulation technique or the bootstrap method.

If there are r quality characteristics, the r regression models are obtained as follows:

ŷ1 = β0,1 + β1,1x1 + β2,1x2 + . . .βi,1xi + β11,1x
2
1 + . . .

βii,1x
2
i + β12,1x1x2 + . . . βij,1xixj

ŷ2 = β0,2 + β1,2x1 + β2,2x2 + . . .βi,2xi + β11,2x
2
1 + . . .

βii,2x
2
i + β12,2x1x2 + . . . βij,2xixj

...

ŷr = β0,r + β1,rx1 + β2,rx2 + . . .βi,rxi + β11,rx
2
1 + . . .

βii,rx
2
i + β12,rx1x2 + . . .βij,rxixj

(5.8)

4. Obtain one set of operational regions. A desirability function and the trust region

approach can be applied to generate a set of optimal operational conditions. Accord-

ing to the single-side or double-side natures of a quality characteristic yi, it can be

transformed into a desirability function di. The overall desirability index D can then

be obtained to combine multiple di using the geometric average:

D = k
√

d1 × d2 · · · × dk (5.9)

The set of X with the maximum D value is the optimal operational condition set

that satisfies the multiple-quality characteristics. The set of one-sided desirability
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functions proposed by Derringer & Suich (1980) are:

di =



















0 ŷi ≤ ymin
i

[

ŷi−ymin
i

ymax
i −ymin

i

]r

ymin
i < ŷi < ymax

i

1 ŷi ≥ ymax
i

(5.10)

and the set of double-sided desirability functions are:

di =



















[

ŷi−ymin
i

ci−ymin
i

]s

ymin
i ≤ ŷi ≤ ci

[

ŷi−ymax
i

ci−ymax
i

]t

ci < ŷi ≤ ymax
i

0 ŷi < ymin
i or ŷi > ymax

i

(5.11)

where ymin
i is the minimum acceptable value for the ith quality characteristic and

ymax
i is the maximum acceptable value for the ith quality characteristic. The r, s, and

t parameters are set based on the selected desirability function. In order to solve this

constrained non-linear optimization problem, the trust region approach is used.

5. Determine the optimal operational region. By repeating steps 3 and 4 b times, b sets

of operational conditions can be obtained. With b sets of such relations, the upper

and lower limits of each quality characteristic determine the overall best operational

condition.
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Chapter 6

Experimental Results

6.1 Case Study 1: Retail Bank

6.1.1 Introduction

An old question in organizational and management research is how to obtain the best

performance from individuals in an organization. A small number of psychological char-

acteristics have robust, though oftentimes small, predictive validity at the individual level,

such as general intelligence (Hunter & Schmidt 1996), job satisfaction (Judge et al. 2001),

personality traits (Barrick & Mount 1994, Mount & Barrick 1998), and stress (Jamal 1984),

among others. However, the degree to which team dynamics and team structure contribute

to performance is more difficult to measure, model, and test.

The study of social networks has grown very rapidly in the last three decades. Even

though it is not a formal theory in sociology, it is a strategy for investigating social structures

that can be applied to many fields (Otte & Rousseau 2002). Traditional social theory con-

siders the behavior of individual actors and groups (where individuals usually have similar

attributes). In social network analysis (SNA) the relationships between actors are the main

focus of attention, while individual attributes are secondary. In reality, individuals within

groups react in different ways and socialize at different frequencies within an organization.

This research acknowledges such differences and focuses on their effects on performance.

One of the basic elements of cooperation in groups is face-to-face interaction. Individu-

75



als promote each other’s success by helping and encouraging each other’s efforts. It is well

known that accountability to peers, the ability to influence each other’s reasoning, social

modeling, social support, and interpersonal rewards, all increase as the face-to-face inter-

actions among the group members increase (Johnson & Johnson 1999). Nevertheless, too

much face-to-face interaction might lead to information overload and have negative effects

on individual performance (Eppler & Mengis 2004).

This study is an attempt to uncover some of the important social dynamic mechanisms

driving an individual’s performance by looking at individual centrality and face-to-face in-

teraction strength in the context of distributed knowledge (i.e. transactive memory systems)

and information overload theory. We explore the effect of individual centrality and face-

to-face interaction strength on individual sales performance in three branches of a bank in

the Czech Republic. We used sociometric badges, to quantify the amount of face-to-face

interaction of 52 employees and 6 managers for a period of 20 working days.

6.1.2 Background

Face-to-face Interaction Tie Strength

Granovetter’s (1973) theory of “the strength of weak ties” argues that job search is embed-

ded in social relations which he defined as strong or weak ties. Tie strength is a function

of time, intimacy, emotional intensity (mutual confiding), and reciprocity. Strong ties are

often characterized as friends and family; weak ties are acquaintances. Granovetter found

that the weak ties were more often the source of helpful job information than strong ties

(Brass 2011).

Similarly, Tushman & Nadler (1997) found that strong ties (or “embedded ties”) were

characterized by higher levels of trust, richer transfers of information and greater problem

solving capabilities. On the other hand, these stronger ties require more time and energy to

maintain. Consequently, building strong ties to lots of people might be inefficient. Rather,

having weak ties to a limited set of actors may be a better strategy. People with whom

one has weak ties are likely to have few ties among themselves and, therefore, are likely to

provide diverse non-redundant information (Kilduff & Brass 2010).

It appears that in the context of the workplace, the advantage of weak ties would be
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greater for the efficient transfer of information than the benefits of strong ties. That is, this

body of research leads us to predict that in some cases, less face-to-face interaction time

could enhance the effective and efficient transfer of information, necessary for good team

performance, while stronger ties might have a negative impact on performance.

Information Overload

The term “information overload” is often used to convey the simple notion of receiving too

much information. Researchers across various disciplines have found that the performance

of an individual correlates positively with the amount of information he or she receives up to

a certain point. If further information is provided beyond this point, the performance of the

individual will rapidly decline and information overload will be the result (Eppler & Mengis

2004). This is usually represented with an inverted U-curve relationship. Research indicates

that too much face-to-face communication also leads to information overload (Sparrowe

et al. 2001)

According to Hunter & Schmidt (1996), strategies of sales force specialization imply that

too much information can reduce sales performance, yet theoretical and practical guidance

regarding when information becomes detrimental to sales performance is sparse. The author

presents results that offer preliminary evidence that a self-report measure of information

overload can offer guidance to sales managers in identifying when information becomes

detrimental to sales force performance.

Centrality and Performance

We outline some studies that demonstrate that greater centrality across a variety of task

domains can either enhance or impair performance depending on the nature of the tasks

and networks. For example, Yang & Tang (2003) investigated the effects of social net-

work centrality on students performance in online education. They used data from a

40-student course and tested how individual degree centrality affected individual perfor-

mance in friendship, advise, and adversarial networks. They found a significant positive

relationship between centrality in the advice network and academic performance (scores in

classroom participation but not on final exam scores); and a negative relationship between
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centrality in the adversarial network and all academic indicators.

Ahuja et al. (2003) studied the effects of functional role, status, communication, and

individual centrality, on individual performance of virtual R&D groups. They found that

centrality mediated the effects of functional role, status, and communication on individual

performance. They also showed that centrality was a stronger direct predictor of perfor-

mance than the individual characteristics considered in the study. The authors used degree

centrality to quantify the degree of involvement of a person in the group and found that

central individuals were higher performers.

Greve et al. (2010) investigated how social capital (measured by degree centrality) con-

tributes to individual productivity in organizations. They measured performance as the

number of projects completed and used online questionnaires and interviews to map the

social networks of the participants in three organizations. They found that social capital

was the most important factor to determine productivity, with degree centrality having a

curvilinear relationship, using a third degree polynomial fit.

Some implications of this final research are that social metrics should not be assumed

to be linear, although higher degree polynomial models are not an obvious mechanism to

explain social phenomena.

Distributed Knowledge and Transactive Memory Systems

Transactive memory “refers to knowledge of information distribution within a team (i.e.,

knowledge of who knows what)” (Kozlowski & Ilgen 2006). Due to the increasing implau-

sibility of knowing everything relevant to one’s job tasks, and the difficulty of having all

the skills and competencies required to carry out those tasks, resourcing others’ skills and

knowledge is becoming increasingly important in the dynamic modern workplace, especially

outside of repetitive jobs. To maintain transactive memory, individuals within a team must

update each other on members’ new areas of expertise, facilitating the efficient tracking of

information as it is required.

When the memory system is both compatible and distributed (i.e., individual team

members are experts in different areas of knowledge and skill), advantages are likely to

be conferred in more than one way. First, the cognitive efficiency with which individuals
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within a team can source relevant information is likely to be greater, resulting in fewer

unnecessary interactions between individuals. Second, times to complete tasks that use

distributed knowledge will be shorter because information is transmitted more efficiently

among members of the team. Third, with distributed knowledge, transactive memory al-

lows high specialization and reduced risk of information overload (i.e., greater collective

capacity).

Transactive memory is likely to involve the accurate encoding of others’ knowledge and

skill bases, as well as the accurate retrieval of information. With sufficient transactive

memory, greater interactions are likely to bring about better performance because those

interactions will more likely be efficiently targeting the right source for specific information.

Yuan et al. (2010) are among the first to study the relationship between social network

properties and transactive memory-related processes. They argue that basic transactive

memory processes (i.e. individual directory development and expertise exchange) are more

likely to occur under high shared task interdependence and strong communication ties.

They studied 218 people in 18 teams and computed individual expertise exchange by asking

participants to record whether they had allocated information to or retrieved information

from each team member. Individual communication tie strength was measured by asking

respondents to report how frequently they had communicated with each member of the

team. They found that expertise exchange was influenced not only by the strength of

individual communication ties with others, but also the overall strength of communication

ties within a team.

In an earlier publication, Yuan et al. (2007) argue that the most important factor in-

fluencing the development of individual expertise directories is neither tie strength, nor

structural holes, but rather network “reachability”, defined as having connections to many

different people in the network through both strong and weak ties, and both bridging

and non-bridging links. Network reachability can facilitate the development of individual

knowledge directories by (a) allowing people to have multiple sources to cross-validate the

accuracy of the information, and (b) allowing people to reach the other actors in the network

via a minimum number of steps.

Rulke & Galaskiewicz (2000) hypothesized that groups that have knowledge broadly
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distributed across group members (i.e. groups with lower centrality) will outperform groups

that have unique knowledge concentrated in different group members (groups consisting

with higher centrality). Similarly, groups that have narrowly distributed knowledge will

perform as well as groups that have broadly distributed knowledge if group structures are

more decentralized.

Based on these theories (transactive memory and information overload), we make the

assumption that better transactive memory in a system is characterized by individuals with

lower centrality (i.e. less information channels going through them, and rather, more direct

communication with the right person). Groups with low centrality and greater face-to-face

interaction will have better performance, whereas greater face-to-face interaction in groups

with high centrality will lead to communication overload and be detrimental to performance.

6.1.3 Hypotheses

We studied the relationship between several behavioral features captured by the sociomet-

ric badges, employee self-perceptions (from surveys) and productivity data. In this study

we focused on two of the four social signals described by Pentland (2008): activity and

consistency of speech and body movement. The activity level signals interest, and consis-

tency signals mental focus and determination. We also studied the relationship between

several social network features (degree, centrality, and cohesion) and subjective (survey)

and objective data.

Transactive memory is used to describe team processes and invokes the idea that having

good communication channels and knowledge of where the expertise sits in a team facilitates

better performance. Underlying these premises is the notion of distributed knowledge.

Distributed knowledge occurs when individual team members are experts in different areas

of knowledge and skill, saving every individual from having to master all aspects of a family

of tasks. However, distributed knowledge can only function effectively if individuals know

how and where to obtain any knowledge or skill gaps that they do not possess. This theory

would predict that higher face-to-face interaction strength with the right individuals (those

who have the right knowledge) is conducive to higher performance.

On the other hand, information-overload theory provides robust and reliable data show-
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ing that tasks that require a person to manipulate too many pieces of information can

impair a their ability to use that information effectively. For example, too many one-on-one

or group interactions are likely to present too many inputs into an individual’s cognitive sys-

tem impairing performance in the workplace. As a consequence, this theory would predict

that higher face-to-face interaction strength is conducive to lower performance.

Even though there are only a limited number of network studies addressing the rela-

tionship between network measures and job satisfaction, results suggest there may be an

optimal degree of centrality in a social network that is neither too little, nor too great, and

that the degree of network centrality mediates individual variables such as job satisfaction

(Brass, 2009). We propose to reconcile the tension between the two theories (transactive

memory and information overload) by suggesting that the relationship between face-to-face

interaction strength and performance is non-linear, but changing with the distribution of

individual centrality in the network.

Hypothesis H1-1

Centrality in the f2f interaction network moderates the effect of tie strength on performance.

Hypothesis H1-1a

For low-centrality networks, greater f2f tie strength has a positive effect on performance, be-

cause greater f2f tie strength increases the efficiency of distributed cognition and transactive

memory.

Hypothesis H1-1b

For high-centrality networks, in which information tends to be relayed through central

agents, greater f2f tie strength is inefficient and has a negative effect on performance, because

of increased overloading of central individuals.

Hypothesis H1-2

It is possible to find a network configuration within an optimal range of network proper-

ties (e.g. centrality and tie strength) that maximize performance and optimize other job
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characteristics (such as job satisfaction and stress) at the same time.

6.1.4 Experimental Setting

Participants. We carried out a study in three branches of a bank in the Czech Republic.

52 employees and 6 managers participated in the study and used sociometric badges for

20 working days. In total, we collected 4800 hours of sensor data. Branch 1 was of small

physical size (5 participants working in the same floor); branch 2 was of large physical

size (31 participants distributed across two floors); and branch 3 was of medium size (16

participants in the same floor). Each participant was part of one of 6 teams: management

team, three retail teams, and two small and medium enterprise (SME) teams. 53% percent

of the participants were female and 47% male. The average age was 37.8 years (std = 9.9

years) and the average tenure was 8.6 years (std = 7.4 years)

Each of the teams was characterized by individuals with (i) a variety of positions from

the front-line to senior management, and (ii) a variety of clients, e.g. personal retail bankers

serving individuals, small-to-medium enterprises (SME), and (iii) specializing in a variety

of products such as investment portfolios and credit accounts. While participation in the

study was encouraged, no employee refused to participate. In return for participation,

participants were promised a presentation of team-level feedback with respect to social

networking patterns, as well as identity-protected individual-level feedback regarding their

individual position within the social network. To protect identities, sealed envelopes were

given to individuals containing their individual level data, coded by a randomly assigned

employee number so that names were never attached to personal data.

6.1.5 Measures

Daily surveys including items such as job satisfaction, stress, optimism, trust, and risk-

taking were administered every day of the study. Each question could be answered on a 1-7

scale and the answers to the daily surveys were averaged across days in order to obtain a

single measure for each participant.

Productivity data including information about the total number of meetings with clients,

number of phone calls with clients, and number of sales were made available to us. We
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focused on the total number of individual sales that occurred during the 20-day study

period.

Face to face interaction (f2f) was automatically measured using sociometric badges.

Each badge broadcasts its unique ID through an infrared transceiver located on its front

side every two seconds. Whenever two people wearing badges are facing each other (within

a distance of one meter and a 30-degree cone) their IDs are exchanged through the infrared

transceiver, recorded in local memory, and time-stamped. From the infrared face-to-face

detections we created an adjacency matrix representing the frequency of face-to-face commu-

nication. Several social network features can be calculated from this f2f adjacency matrix.

We calculated the amount of face-to-face interaction during the study by adding the val-

ues in each column (representing the total number of times each badge detected all other

badges) and normalizing it by the total number of hours each person was wearing a socio-

metric badge to control for the fact that individuals wore the badges for varying amounts of

time (e.g., part-time versus full-time). The average amount of face-to-face interaction was

18.71 f2f interactions per hour (standard deviation, std = 10.80).

We calculated the normalized degree by binarizing and symmetrizing the f2f adjacency

matrix, counting the number of different people that each person interacted with, and

normalizing this value by the maximum number of people wearing a badge in each branch.

The average normalized degree was 0.33 (std = 0.22).

The average face-to-face tie strength was calculated by dividing the amount of f2f in-

teraction by number of different people that each person interacted with (i.e. un-normalized

degree). The average individual tie strength was 4.21 interactions per hour per interacting

partner (std=5.59).

We calculated Freeman’s betweenness centrality from the f2f adjacency matrix using

UCINET 6.0. This metric indicates the extent to which an actor has a central position in

the organization’s face-to-face network. For the remainder of this chapter we will refer to

betweenness centrality just as “centrality”. The average centrality of the network was 6.42

(std = 5.60).

In our regression analysis, we controlled for age (in years), sex (0 male, 1 female), tenure

(years working for the bank) and team (0 retail, 1 SME or small-medium enterprise).
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6.1.6 Analysis

In the following subsection we present the results from a correlation analysis, an analysis of

variance (ANOVA), and a moderation analysis (to measure interacting effects of centrality

and face to face tie strength on sales performance). We also used social network analysis

to calculate several features on the face-to-face social network. We followed the moderated

regression procedure proposed by Peters and Champoux (1979) since it is an analytical

procedure that avoids an arbitrary division of the data at the median or some other point

such as upper and lower quartiles, and makes a more complete use of the data.

6.1.7 Findings

A one-way analysis of variance revealed significant differences (p < 0.05) among the three

branches. Branch 2 (large physical size) was significantly different from the other two

branches in that it had the highest ratings of optimism, trust, acceptance, and limitless-

ness. Along with this difference in attitude was a difference in behavior, with their badge

measurements showing a significantly lower consistency of body movement, lower degree,

and lower centrality compared to the other two branches. There were no significant dif-

ferences in the average number of sales across the three branches. These different group

dynamics were correlated with very different attitudes about their job and their outlook on

the future. All three branches had very similar overall average performance despite having

very different group dynamics. From a social network perspective, branches 1 and 3 were

organized around dominance and influence, whereas branch 2 was organized around team-

ing behavior. This difference in social dynamics has its largest effect on the attitude and

expectations of the employees, which in turn determine organizational resilience, employee

turn-over, and similar bottom-line issues.

Even though the average number of sales was not significantly different across the three

branches, it is clear that employees in branches 1 and 3 have different f2f communication

patterns and job attitudes from employees in branch 2. Therefore, we grouped employees

in branches 1 (small size) and 3 (medium size) and created an ordinary least squares (OLS)

regression model to estimate the individual number of monthly sales using the f2f social

network features as predictors and controlling for team (0 for retail, 1 for SME), sex (0 for
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Table 6.1: Significant differences across the three branches in terms of job attitudes and f2f

social network features (ANOVA), N = 41 employees.
Variable Branch 1 Branch 2 Branch 3 F-value p-value

Optimism µo = 4.28 µo = 5.48 µo = 5.10 F = 4.42 p < 0.05
Trust µt = 3.38 µt = 4.67 µt = 3.85 F = 4.59 p < 0.05
Acceptance µa = 4.29 µa = 5.27 µa = 4.45 F = 3.82 p < 0.05
Limitlessness µl = 3.94 µl = 4.95 µl = 4.30 F = 3.47 p < 0.05

Degree (x8) x8 = 0.63 x8 = 0.16 x8 = 0.38 F = 45.09 p < 0.00001
Centrality (x9) x9 = 13.9 x9 = 2.24 x9 = 7.56 F = 26.45 p < 0.00001

male, 1 for female), age, and tenure. Table 6.2 shows the regression model obtained for

employees in branches 1 and 3:

Table 6.2: Model 1. Prediction of monthly sales for branches 1 and 3 using monthly f2f

social network features as predictor variables (R2 = 0.68, adjusted R2 = 0.46, F = 3.12,
∗ = p < 0.05, N = 21 employees).

Predictors Coefficient

Intercept β0 = 109.00
Team (0 retail, 1 SME) βt = −13.36
Sex (0 male, 1 female) βs = 3.56
Age βa = −0.66
Tenure βn = 0.31
f2f time x6 β6 = −1.30
Degree x8 (*) β8 = 115.13
Centrality x9 (*) β9 = −3.33

In this model, the most significant predictors are degree and centrality. Having a higher

number of f2f interacting co-workers (x8), and lower centrality (x9) predicted higher sales.

The control variables were not significant, which indicates that team, age, sex, and tenure

do not have an effect on the number of sales. Adjusting for the number of covariates, this

model explains 46% of the variation in sales. Even though the average sales performance is

similar to that of branch 2, these behaviors occurred in an environment of lower optimism,

trust, acceptance, and limitlessness.

Table 6.3 shows the linear regression model obtained for the individual number of

monthly sales for employees in branch 2 using the same predictor variables:

This model explains 57% of the variation in sales when controlling for team, sex, age,

and tenure. The most significant predictor was the amount of f2f interaction time with

co-workers. Having a higher amount of time spent in f2f interaction with co-workers (x6),
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Table 6.3: Model 2. Prediction of monthly sales for branch 2 using monthly f2f social

network features as predictor variables (R2 = 0.72, adjusted R2 = 0.57, F = 4.61, ∗ = p <
0.01, N = 23 employees).

Predictors Coefficient

Intercept β0 = 59.32
Team (0 retail, 1 SME) βt = −4.94
Sex (0 male, 1 female) βs = −21.26
Age βa = −0.76
Tenure βn = 0.77
f2f time x6 (*) β6 = 0.85
Degree x8 β8 = 25.58
Centrality x9 β9 = −0.69

higher number of f2f interacting co-workers (x8), and lower centrality (x9) predicted higher

sales. Even though the average sales performance was similar to that of branches 1 and

3, employees’ self-perceptions were higher in terms of optimism, trust, acceptance, and

limitlessness.

Whereas f2f interaction time x6 is not significant in model 1, it is significant and has

a positive sign in model 2. This means that while the time employees in branches 1 and

3 spent interacting f2f with co-workers is not associated with the number of sales, it was

observed that the more time employees spent interacting f2f with other co-workers in branch

2, the higher the number of sales. While one should take these results with caution, given

the sample size and the specification of the model, similar social network characteristics are

related to performance. In general, higher degree (or number of f2f interacting partners)

and lower centrality were predictive of higher sales across the three branches. These results

provide support for our third research proposition: Social signaling behavior and f2f network

characteristics are predictive of individual and group performance.

Next, we decided to explore the moderating effect of centrality and tie strength on the

average number of sales across branches. Table 6.4 shows the linear regression coefficients

for three different models in which the dependent variable is the individual monthly number

of sales.

Model 3 shows the effect of using the control variables only. The only significant coef-

ficient is the binary variable controlling for team, indicating that members of SME teams

in this study usually obtained a lower number of sales. Using this variable only, we can
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explain 23% of the variance in the monthly number of sales. Model 4 uses tie strength and

centrality as predictor variables in addition to the control variables; however these predictor

variables are not statistically significant by themselves.

An interesting finding comes from model 5, which adds the interaction term (tie strength

× centrality) as a predictor variable. Adding this term causes the regression coefficients for

the three predictor variables to become significant and increase the percentage of explained

variance to 48% (p < 0.0001).

Table 6.4: Regression models for the individual number of monthly sales (N = 41)
Variable Model 3 Model 4 Model 5

β t-value p-value β t-value p-value β t-value p-value

Intercept 27.72 27.72 a=27.72
Team -11.52 -3.28 0.002 -10.82 -2.73 0.0098 -8.32 -2.56 0.015

Sex -3.43 -0.98 0.34 -3.85 -1.02 0.31 -0.91 -0.29 0.77
Age -1.21 -0.28 0.78 -1.04 -0.23 0.82 -2.25 -0.61 0.55

Tenure 1.38 0.32 0.75 1.86 0.41 0.68 0.28 0.08 0.94

Tie strength (x) -1.01 -0.28 0.78 b=28.57 3.97 0.0003
Centrality (z) 1.46 0.39 0.7 c=37.34 4.39 0.0001

Centrality * Tie

strength (xz)

d=-43.77 -4.51 0.0001

R2 0.3 0.31 0.56
adjusted R2 0.23 0.19 0.48

F 4.16 2.69 6.44
p 0.007 0.03 0.00007

RMSE 20.67 21.16 17.07

In addition, we introduce a second variable (z) believed to moderate the influence of the

original predictor (x) on the criterion variable (y). The moderated regression model can be

expressed as:

ŷ = a+ bx+ cz + d(xz) (6.1)

This model can be restated as:

ŷ = (a+ cz) + (b+ dz)x (6.2)

Substituting the linear regression coefficients from table 3 on equation 6.2 we obtain:

ŷ = (27.72 + 37.34z) + (28.57− 43.77z)x (6.3)
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We can find the critical value of z for which the moderating effect of centrality changes

from positive to negative by:

zcritical = b/|d|

zcritical = 28.57/43.77 = 0.6527
(6.4)

From equation 6.3 it is straightforward to see that for values z < 0.6527 (low centrality),

the effect of f2f tie strength on sales will be positive, while for values z > 0.6527 (high

centrality), the effect of f2f tie strength on sales will be negative. This means that high

f2f interaction tie strength is associated with better performance in low centrality networks

(where information is more evenly distributed).

6.1.8 Social Network Optimization

To demonstrate the social network simulation and optimization methodology proposed in

section 5.5 we will attempt to find the optimal operational region for tie strength (x1)

and centrality (x2) that maximize performance (y1) and minimize individual stress ratings

(y2). Table 6.5 shows the quality characteristics (performance and stress) and their optimal

specifications. Note that we have specified a 10% increase in the average number of sales

(currently 32.32) as the performance target value, and a 10% decrease in stress ratings

(currently 3.63) as the target value for stress. The minimum acceptable value is the current

average, and the maximum acceptable value is twice the optimal change from the current

value. This allows to constrain the search space for an optimal operational region.

Table 6.5: Optimal quality characteristics
Quality characteristics Specification Target value

Performance (y1) 32.32 ≤ y1 ≤ 38.79 ytarget
1 = 35.56

Stress (y2) 2.91 ≤ y2 ≤ 3.63 ytarget
2 = 3.27

Step 1: Experimental design

The central composite design is generally used to design an experiment that measures the

response variables at specific values of the predictors. However in the proposed methodology

it is not possible to fine-tune the network properties (predictors) in everyday organizational

88



settings in order to measure the responses (e.g. performance). On the other hand, it

is possible to observe the network properties and associated responses under naturalistic

settings and code these values so that they fall within a specific range. We chose to normalize

the predictor values within the range [−1, 1] in order to constrain the search space.

Step 2: Regression model

A quadratic regression model is fit using the predictor variables and response variables and

a unique set of regression coefficients is obtained. The desirability function di is calculated

for every set of operational conditions X (b).

Step 3: Bootstrap

In order to obtain multiple sets of simulated regression coefficients for the multiple re-

sponses, the bootstrap method is used. At each iteration, a unique set of operational

conditions is obtained with its corresponding desirability functions. The maximum D with

its corresponding operational condition can then be selected.

The bootstrapped regression coefficients are:

ŷ1 = 35.91− 55.87x1 − 14.89x2 − 57.49x1x2 − 3.86x2
1 − 28.35x2

2

ŷ2 = 3.31− 1.22x1 + 1.94x2 − 2.38x1x2 + 2.07x2
1 + 1.96x2

2

(6.5)

Step 4: Optimal operational region

The desirability functions d1 and d2 for every set of operational condition during the boot-

strap method are calculated. At each iteration b, the trust-region method was used to solve

the non-linear programming equation:

Maximize D(b) = 2

√

d1(b)× d2(b), (6.6)

where
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Table 6.6: Optimal operational regions (OOR) from simulation
Variable OOR (coded units) OOR(original units)

Tie strength (x1) [−0.65,−0.07] [5.55, 15.84]

Centrality (x2) [−0.81, 0.11] [2.90, 15.82]
D value [0.58, 1]

Performance (y1) [32.36, 38.20]
Stress level(y2) [3.05, 3.60]

d1(b) =



















[

ŷ1−32.32
35.56−32.32

]

32.32 ≤ ŷ1 ≤ 35.56
[

ŷ1−38.79
35.56−38.79

]

35.56 < ŷ1 ≤ 38.79

0 ŷ1 < 32.32 or ŷ1 > 38.79

(6.7)

d2(b) =



















[

ŷ2−2.91
3.27−2.91

]

2.91 ≤ ŷ2 ≤ 3.27
[

ŷ2−3.63
3.27−3.63

]

3.27 < ŷ2 ≤ 3.63

0 ŷ2 < 2.91 or ŷ2 > 3.63

(6.8)

subject to the following constraints:

0 < d1(b), d2(b) < 1,

−1 < xj(b) < 1, j = 1, 2
(6.9)

in order to find the optimal set of operational conditions for the network properties.

Step 5: Upper and lower limits

Table 6.6 shows the results that were obtained after 1000 iterations of the bootstrap method.

Figure 6-1 shows a contour plot for response variable y1 (performance), while figure 6-2

shows the contour plot for response variable y2 (stress level). A dotted rectangle shows the

optimal operational region (OOR) that maximizes performance (assuming a 10% increase

from the current average value) and minimizes stress levels (10% decrease from the current

average value) at the same time. Contour plots provide one of the most visually useful ways

to interpret the response surface system. The contour plot is merely a two-dimensional

graph that shows contours of constant response with the axis system being a specific set of

design variables, while the other design variables are held constant.
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Figure 6-1: Contour plot displaying areas filled with constant colors between isolines for
response variable y1 (performance)

6.1.9 Discussion

In this study we found that greater centrality can produce inefficient f2f communication

networks, both because of overloading of the central individuals, and because of loss of in-

formation due to messages that are not directly delivered. Lower centrality reduces overload

and indirect information paths, but may require greater reliance on transactive memory and

knowing who knows what. This result supports our hypothesis H0.

Consequently, the relationship between face-to-face time and sales depends on the con-

figuration of the f2f network (we find support for H1-1a and H1-1b). The more one commu-

nicates with others the better, but only if those interactions with others are with the right

people (i.e. not through unnecessary agents in the network). Observe in figure 6-1 that

when centrality is high, higher tie strength (more face to face interactions) will be a hin-

drance to performance because of overloading of the central individual. On the other hand,

when centrality is low, higher tie strength is more likely to increase performance because it

allows individuals to more accurately know who knows what. Indeed, marrying individual
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Figure 6-2: Contour plot displaying areas filled with constant colors between isolines for
response variable y2 (stress level)

and team characteristics is likely to be a cornerstone in the quest to explain variability in

performance across organizations and industries, with obvious advantages for individuals

and teams, human resource management, and organizational design.

An optimal operational region for the two network properties of interest (centrality and

tie strength) that achieves a 10% increase in performance (average number of sales) and

a 10% decrease in stress ratings was found, as hypothesized in H1-2. This optimal region

depicted in figures 6-1 and 6-2 as a dotted rectangle suggests that the best performance

could be achieved by promoting lower centrality and lower tie strength in this particular

organizational setting. This region would also achieve lower stress ratings, as shown in

figure 6-2. Using a similar approach, a different set of network operational conditions can be

obtained that optimizes more than two quality characteristics (e.g. maximize performance,

maximize job satisfaction, and minimize stress).

92



6.1.10 Proposed Organizational Intervention

A longer time-frame study would probably have revealed significant differences in perfor-

mance across the three branches, with branch 2 having a higher performance and being

more resilient over the long term. One possible intervention to increase the overall level of

satisfaction would be to promote a teaming culture similar to that of branch 2 in the other

two branches by implementing a training program that would try to reproduce the work

environment, communication patterns and interaction behaviors that occur in the branch

where the best job attitudes were observed.

6.2 Case Study 2: Hospital Post-Anesthesia Care Unit

6.2.1 Introduction

Reducing patients’ length of stay (LOS) within Post-Anesthesia Care Units (PACU) can

control or even lower costs. The length of time a patient remains in the PACU is medically

attributed to the anesthetic drugs used during the operation and additional side effects

that may occur, such as nausea and vomiting (Zollinger & Saywell 1999). Previous studies

demonstrate that as many as 20% of patients experience delayed discharge from the PACU

and over half of the delays may be personnel-related or due to personnel shortages and

inefficiencies (Meyer 2006).

We instrumented a group of 67 nurses working in the Post Anesthesia Care Unit (PACU)

of a Boston area hospital with sociometric badges. Using the data collected with these sen-

sors we were able to identify different personality traits and estimate the overall group’s

perception of workload, difficulty to obtain information, quality of group interaction, pro-

ductivity and stress, as well as the average patient length of stay and daily number of

patient transfer delays.
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6.2.2 Background

Personality

Over time researchers have tried to describe and measure personality traits (individual

tendencies to react emotionally or behaviorally in a specific way) using various tests. The

most popular model is the “Big Five” model that describes five personality traits (Tosi

et al. 2000):

• (N) Neuroticism. Being highly emotional, tense, insecure, suffering from depression,

and easily upset, suspicious and having low self confidence.

• (E) Extroversion. Tendency to be sociable, liking to be with others, energetic and

forceful.

• (O) Openness. Being imaginative, curious, cultured, broad minded, having broad

interests and tending to be self-sufficient.

• (A) Agreeableness. Tendency to be more tolerant, trusting, generous, warm, kind,

good-natured, and less likely to be aggressive, rude and thoughtless.

• (C) Conscientiousness. Being responsible, dependable, persistent, punctual, hard

working, and oriented toward work.

Group Behavior

The study of groups has been a focus across the social and behavioral sciences for over

50 years. Poole et al. (2004) have described nine different interdisciplinary perspectives

on small groups. We are particularly interested in two of these nine perspectives: the

social-evolutionary perspective, which posits that group structure and interaction reflect

evolutionary forces that have shaped human social behaviors over thousands of years, and

the social network perspective, which considers groups as interlinked structures embedded

in larger social networks. The social-evolutionary perspective treats groups as aggregates of

individuals and views group behavior as the product of individual behaviors that scale up to

the group level, whereas the social network perspective uses members attributes and social
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network properties as inputs and treats performance, efficiency, cohesiveness, attitude, and

belief convergence as the model outputs.

6.2.3 Hypotheses

Hypothesis H2-1

Personality traits manifest themselves in the way individuals speak, move, and interact

with others. Therefore it is possible to identify personality traits from individual behavioral

sensor data.

Hypothesis H2-2

Aggregate individual behaviors described in terms of physical activity, speech activity, face-

to-face interaction, physical proximity, and social network attributes are predictive of group

performance.

Hypothesis H2-3

It is possible to find an optimal range of individual and group properties (e.g. physical activ-

ity level and face-to-face interaction time) that optimize several job quality characteristics

(e.g. performance, job satisfaction, stress, etc.) at the same time.

6.2.4 Experimental Setting

The hospital has 50 Operation Rooms (OR). After surgery is completed, patients are taken

to the PACU, where they are kept under supervision until they recover from anesthesia.

Thereafter they are admitted to the floor units where they convalesce before being dis-

charged. Patients without assigned beds on the floors are kept in the PACU until vacancies

on the floors can be found. The PACU is a critical intermediary step in the surgical patient

throughput system and it consistently experiences delays of various kinds. These delays

cause hold ups in the OR resulting in schedule disruptions, overtime work and productivity

losses. This translates into loss of revenue for the hospital since the health-care system re-

imburses a fixed sum for a particular surgical procedure irrespective of the patient’s length
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of stay in the hospital (Samarth 2007).

We placed base stations next to each bed and phone in the PACU in order to detect

when the nurses were in close proximity to a bed or a phone and track their location and

displacement patterns. There were 37 beds in the PACU, with only 30 being used during

the study and 12 phones distributed around the room for patient scheduling.

The sociometric badges and base stations broadcasted their ID every 5 seconds using a

2.4 GHz transceiver and each time another badge or base station received a radio packet it

logged the sender’s ID and the radio signal strength. This allowed us to track the location

of the nurses and detect when they were in close proximity to other nurses, beds or phones.

The sociometric badges also transmitted their ID every 2 seconds using an infrared (IR)

transceiver.

Participants

The sample was composed of 67 nurses who worked in the PACU of a Boston-area hospital.

Each nurse wore a sociometric badge during 27 days. In total we collected 3,906 hours of

data. The mean number of hours each participant wore a badge was 7.18 hours per day

(std = ±4.17).

At the end of each day the participants were asked to answer a job performance survey

that included the following questions:

• Q1. How would you rate your workload today?

• Q2. How hard was it to obtain the information that you needed to do your job?

• Q3. How would you rate the quality of your work group interaction today?

• Q4. How satisfied do you feel with your job performance today?

• Q5. How productive do you think you were today?

• Q6. How much stress were you under today?

Each question could be answered according to the following 5-point likert scale: (1 =

very low) (2 = low) (3 = average) (4 = high) (5 = very high). In total we collected 226
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valid surveys. At the end of the study 39 participants also answered a NEO-FFI (NEO Five

Factor Inventory) questionnaire (Costa & McCrae 2008) that contains 60 questions and is

designed to measure the five personality traits described in the background section.

6.2.5 Measures

Table 6.7 shows the list of features that were calculated on a per-minute basis from the sensor

data grouped by behavior description. The daily average and standard deviation of the per-

minute features were calculated for each participant. Table 6.8 shows the notation that we

use when we refer to the daily features. We used correlation analysis to identify personality

traits from the individual daily features, and stepwise multiple linear regression analysis to

predict the overall perception of workload, difficulty to obtain information, quality of work

group interaction, job performance, productivity, and stress, as well as the average patient

recovery time and number of delays from the daily features aggregated across subjects.

6.2.6 Findings

A correlation analysis of the daily badge features with each subject’s answers to the daily

job performance survey revealed weak but significant correlations (r ≤ 0.2 with p ≤ 0.05).

However, when we aggregated the sensor features across subjects, the overall group per-

ception of job performance (average of daily surveys across subjects) was highly correlated

with the daily group behavior in the PACU. In order to do this, the answers to the daily

survey were standardized across participants and the mean and standard deviation across

subjects of the daily badge features described in table 6.8 were calculated. We will use the

following notation to distinguish between daily features calculated across days and daily

features calculated across subjects:

µ(Fn)D denotes the average of daily feature Fn across days for a particular subject.

σ(Fn)D denotes the standard deviation of daily feature Fn across days for a particular

subject.

µ(Fn)S denotes the average of daily feature Fn across subjects for a particular day.

σ(Fn)S denotes the standard deviation of daily feature Fn across subjects for a partic-

ular day.
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Table 6.7: Per-minute sensor features
Behavior De-

scription

Variable Sensor features calculated every

minute

Physical activity Intensity (F 1) Mean signal magnitude
(F 2) Standard deviation of signal magni-
tude
(F 3) Power or energy per minute

Speech activity Speech volume (F 4) Mean volume modulation
(F 5) Standard deviation of volume mod-
ulation

Speaking time (F 6) Speaking time in minutes
Voiced speaking time (F 7) Voiced speaking time in minutes

Face-to-face in-
teraction (f2f)

f2f time (F 8) f2f time in minutes

Number of people with
f2f

(F 9) Number of different people

Proximity Time in close proximity
to other people

(F 10) Time in minutes

Time in close proximity
to a bed

(F 11) Time in minutes

Time in close proximity
to a phone

(F 12) Time in minutes

Social network Degree centrality (F 13) Using f2f network
(F 14) Using proximity to bed network

Contribution index (F 15) Using f2f network
(F 16) Using proximity to bed network

Betweenness centrality (F 17) Using f2f network
(F 18) Using proximity to bed network

Table 6.9 shows the correlation coefficients found between the daily badge features (mean

and standard deviation across days) from each participant’s sensor data and the results of

their personality test grouped by behavior description.

These results support Hypothesis 1: Personality traits can be identified from behavioral

sensor data. The results can be interpreted in terms of each personality trait (without

implying causality) as follows:

• Neuroticism. The higher the daily percentage of f2f time, and the more variation

across days in the daily percentage of f2f time, the more neurotic. These results are in

accordance with (Hough 1992), who found that Emotional Stability (the opposite of

Neuroticism) is correlated with effective teamwork (balanced f2f time and low variation

over time).

• Extroversion. The lower the daily average time in close proximity to a bed the more
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Table 6.8: Daily sensor features, where h(k) = 1 if F 1(k) > 1 (when wearing the badge),

and h(k) = 0 if F 1(k) ≤ 1 (when not wearing the badge)
Daily feature Notation Calculation

Average F n
µ

1
P

K

k=1
h(k)

∑K

k=1 F
n(k)h(k)

Standard deviation F n
σ

√

1
P

K

k=1
h(k)

∑K
k=1 [F n(k)h(k) − F n

µ (k)]2

Percentage of time F n
%

1
P

K

k=1
h(k)

∑K
k=1 F

n(k) > 0

Table 6.9: Correlation coefficients between monthly badge features and personality traits.
∗ = p < 0.05, ∗∗ = p < 0.01.

Personality Dimension

N E O A C
Behavior Description Feature

Physical activity µ(F 2
σ)D -0.03 -0.07 0.37* -0.14 -0.09

Speech activity σ(F 5
µ)D 0.07 -0.16 -0.18 -0.43** -0.006

σ(F 5
σ)D 0.09 -0.13 -0.24 -0.41** 0.12

σ(F 6
σ)D 0.11 -0.006 -0.36* -0.18 0.02

Face-to-face µ(F 8
%)D 0.35* -0.08 0.004 0.06 -0.18

σ(F 8
%)D 0.41* -0.09 0.02 0.06 -0.26

Proximity σ(F 11
% )D 0.06 -0.18 -0.16 -0.34* 0.16

µ(F 11
µ )D -0.003 -0.36* 0.11 -0.26 0.18

Social Network σ(F 17
µ )D 0.30 -0.07 0.46** -0.16 -0.42**

µ(F 18
µ )D 0.18 0.01 0.26 -0.28 -0.37*

σ(F 18
µ )D 0.13 -0.0008 0.20 -0.28 -0.36*

extrovert. One could interpret these results as the nurses having more time to interact

and talk with others when they are not in close proximity to a bed looking after a

patient therefore being more sociable (or extrovert).

• Openness. The higher the daily variation in physical activity, the less variation across

days in daily variation in speaking time, and the more variation across days in the

daily average betweenness centrality (f2f network) across days, the more open. There

is evidence for the benefit of physical activity on cognitive performance (openness

to experience being a trait-based contributor to predicting cognitive performance)

(Lochbaum et al. 2002). The betweenness centrality correlation coincides with that

obtained by (Gloor et al. 2010), who used our sensing platform in a bank and found

that people who exhibit more fluctuating betweenness centrality also tend to exhibit
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higher levels of openness.

• Agreeability. The less variation across days in the daily average speech volume mod-

ulation, the less variation across days in the daily variation in speech volume modula-

tion, and the less variation across days in the daily percentage of time in close proxim-

ity to a bed, the more agreeable. Previous research indicates that speech is perceived

as more agreeable or accommodating when it is well modulated (Pentland 2007).

• Conscientiousness. The less variation across days in the daily average betweenness

(f2f network), the lower the daily average betweenness (f2f network), and the less

variation across days in the daily average betweenness (bed proximity network), the

more conscientious. These results seem to be in accordance with those found by

(Wehrli 2008): Conscientiousness is negatively correlated with betweenness centrality.

Tables 6.10 to 6.14 show the results of the multiple linear regression analysis for the

overall group perception of workload (R2 = 0.49), difficulty to obtain information (R2 =

0.42), quality of group interaction (R2 = 0.69), productivity (R2 = 0.63), and stress (R2 =

0.77) from the aggregated daily features across subjects.

Table 6.10: Group’s perception of workload (Q1) using badge features across subjects
Predictors R R2 adj R2 F p RMSE β

σ(F 3
σ )S −0.61 0.37 0.30 10.16 0.005 0.39 4.54

σ(F 7
µ)S 0.47 0.49 0.40 7.71 0.004 0.37 −3.54

Table 6.11: Group’s perception of difficulty to obtain information (Q2) using badge features
across subjects

Predictors R R2 adj R2 F p RMSE β
µ(F 3

µ)S 0.50 0.25 0.16 5.62 0.03 0.28 −15.82
σ(F 11

µ )S −0.51 0.42 0.32 5.87 0.01 0.25 5.90

In the case of workload, the variation across subjects in physical activity and in speech

activity were statistically significant. Likewise, in the case of difficulty to obtain information,

the average physical activity intensity, and the variation across subjects in the time in close

proximity to a bed were statistically robust. For quality of group interaction, the group’s

physical activity, speech activity, proximity to other people, proximity to a bed, and social
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Table 6.12: Group’s perception of quality of group interaction (Q3) using badge features
across subjects

Predictors R R2 adj R2 F p RMSE β
µ(F 1

µ)S −0.52 0.27 0.18 6.21 0.02 0.37 91.44
µ(F 3

µ)S −0.50 0.35 0.22 4.22 0.03 0.36 −34.55
σ(F 10

σ )S −0.51 0.61 0.51 7.88 0.002 0.28 6.15
σ(F 11

µ )S 0.47 0.66 0.52 6.67 0.003 0.28 −5.14
µ(F 15

µ )S 0.56 0.67 0.52 5.24 0.007 0.28 −0.66
µ(F 16

µ )S 0.48 0.69 0.52 4.55 0.01 0.28 0.52

Table 6.13: Group’s perception of productivity (Q5) using badge features across subjects
Predictors R R2 adj R2 F p RMSE β
σ(F 7

µ)S 0.71 0.50 0.44 16.84 0.0007 0.17 −1.84
µ(F 7

σ)S 0.74 0.63 0.56 13.58 0.0003 0.15 −2.25

Table 6.14: Group’s perception of stress (Q6) using badge features across subjects
Predictors R R2 adj R2 F p RMSE β
µ(F 1

µ)S 0.67 0.45 0.38 13.82 0.002 0.44 −218.247
σ(F 1

µ)S −0.55 0.45 0.34 6.50 0.008 0.45 −22.10
µ(F 3

µ)S 0.65 0.61 0.51 7.93 0.002 0.39 77.78
µ(F 7

%)S 0.46 0.64 0.51 6.15 0.004 0.39 417.85
σ(F 7

µ)S 0.49 0.75 0.63 7.80 0.001 0.34 −5.78
µ(F 9

µ)S 0.58 0.76 0.63 6.45 0.003 0.34 −0.03
σ(F 12

µ )S 0.46 0.77 0.63 5.38 0.007 0.34 −7.02

network attributes were highly significant. Voiced speech activity seemed to be strongly

associated with group’s perception of productivity. Finally, several attributes seemed to

play an important role in determining the group’s stress level: physical activity, speech

activity, face-to-face interaction, and proximity to a phone.

Tables 6.15 and 6.16 show that it is possible to explain the variation in the daily average

LOS in minutes (R2 = 0.79) and the daily average number of outgoing delays (R2 = 0.56)

from the aggregated features across subjects. In the case of LOS, the variation in physical

activity intensity, face-to-face interaction time, and time in close proximity to a phone across

subjects played an important role. Low variation across the nurses’ level of physical activity

(either all nurses having high levels of activity or low levels of activity) and high variation

across the nurses’ face-to-face interaction time was an indication of extended LOS. In the

context of the PACU these results can be interpreted as either most PACU nurses being

busy (high activity levels) or waiting for bed availability (low activity levels). The variation
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across the nurses’ face-to-face interaction time could be an indicator of poor communication

among nurses. The variation in the detection of nurses in close proximity to a phone could

be an indicator of lack of advanced notification to the receiving unit of an impending patient

transfer.

When estimating the daily number of delays the variation across subjects in their in-

dividual physical activity variation throughout the day and the average time they are in

close proximity to a phone (which could be related to phone call length) were the most

predictive features. This means that a high variation across the nurses’ daily activity levels

(having alternate periods of high activity and low activity during the day), coupled with the

variation in the time they spend in close proximity to a phone, is an indication of increased

number of delays in the PACU.

Table 6.15: Daily average LOS in minutes using badge features across subjects (p < 0.005)
Predictors R R2 F RMSE β
σ(F 1

µ)S −0.72 0.52 18.11 36.32 −1387.52
σ(F 8

%)S 0.53 0.71 19.39 29.07 2909.17
σ(F 12

% )S 0.16 0.79 19.21 25.24 −53.5

Table 6.16: Daily average number of delays (going out of the PACU) using badge features
across subjects (p < 0.05)

Predictors R R2 F RMSE β

σ(F 2
µ)S 0.46 0.21 4.48 3.95 −189.53

σ(F 12
µ )S −0.60 0.56 10.37 3.02 206.63

These results favor Hypothesis 2: Aggregate group behavior is predictive of group per-

formance (subjective in the case of the job performance survey, and objective if we consider

the patient’s length of stay and the daily number of outgoing delays in the PACU as the

group’s outcome).

6.2.7 Social Network Optimization

To demonstrate the social network simulation and optimization methodology proposed in

section 5.5 we will attempt to find the optimal operational region for the group-level pre-

dictor variables tie strength (x1 = F 8/F 9) and betweenness centrality (x2 = F 17) that

minimize the daily average patient LOS (y1) and at the same time minimize daily nurse
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stress ratings (y2). Table 6.17 shows the quality characteristics (patient LOS and nurse

stress ratings) and their optimal specifications. Note that we again have specified a 10%

decrease in the average patient LOS (currently 231 minutes) as the performance target

value, and a 10% decrease in stress ratings (currently 3.21 on a scale from 1 to 5) as the

target value for stress. The maximum acceptable value is the current average, and the

minimum acceptable value is twice the optimal increase/decrease from the current value.

This allows us to constrain the search space for a optimal operational region.

Table 6.17: Optimal quality characteristics
Quality characteristics Specification Target value

Patient LOS (y1) 184.77 ≤ y1 ≤ 230.96 ytarget
1 = 207.87

Nurses’ stress (y2) 2.56 ≤ y2 ≤ 3.21 ytarget
2 = 2.88

In order to obtain multiple sets of simulated regression coefficients for the multiple

responses, the bootstrap method was used. At each iteration, a unique set of operational

conditions was obtained with its corresponding desirability functions. The maximum D

with its corresponding operational condition was selected.

The bootstrapped regression coefficients are:

ŷ1 = 248.97 + 26.20x1 + 23.19x2 + 19.01x1x2 + 6.19x2
1 + 6.39x2

2

ŷ2 = 3.36− 0.19x1 + 0.45x2 + 0.83x1x2 − 0.621x2
1 − 0.07x2

2

(6.10)

The desirability functions d1 and d2 for every set of operational condition during the

bootstrap method were calculated. At each iteration b, the trust-region method was used

to solve the non-linear programming equation:

Maximize D(b) = 2

√

d1(b)× d2(b), (6.11)

where

d1(b) =



















[

ŷ1−184.77
207.87−184.77

]

184.77 ≤ ŷ1 ≤ 207.87
[

ŷ1−230.96
207.87−230.96

]

207.87 < ŷ1 ≤ 230.96

0 ŷ1 < 184.77 or ŷ1 > 230.96

(6.12)
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Table 6.18: Optimal operational regions (OOR) from simulation.
Variable OOR (coded units) OOR(original units)

Tie strength (x1) [−0.99,−0.75] [0.31, 0.49]

Centrality (x2) [−0.58, 0.29] [0.05, 0.10]
D value [0.54, 1]

Patient LOS (y1) [207.87, 226.82]
Nurses’ stress level (y2) [2.88, 3.05]

d2(b) =



















[

ŷ2−2.56
2.88−2.56

]

2.56 ≤ ŷ2 ≤ 2.88
[

ŷ2−3.21
2.88−3.21

]

2.88 < ŷ2 ≤ 3.21

0 ŷ2 < 2.56 or ŷ2 > 3.21

(6.13)

subject to the following constraints:

0 < d1(b), d2(b) < 1,

−1 < xj(b) < 1, j = 1, 2
(6.14)

in order to find the optimal set of operational conditions for the network properties.

Table 6.18 shows the results that were obtained after 1000 iterations of the bootstrap

method.

Figure 6-3 shows a contour plot for response variable y1 (patient LOS), while figure 6-4

shows the contour plot for response variable y2 (nurses’ stress level). A dotted rectangle

shows the optimal operational region (OOR) that maximizes performance (by 10% of the

current average value) and minimizes stress levels (by 10% of the current average value) at

the same time.

6.2.8 Discussion

We have shown how to obtain high level descriptions of human behavior in terms of physical

activity, speech activity, face-to-face interaction, proximity and social network attributes

from sensor data. We presented experimental results that show that it is possible to identify

individual personality traits as well as subjective and objective group performance metrics

from low level sensor data. While we could not estimate the individual perception of job

performance from sensor data for each individual, we were able to estimate the overall group
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Figure 6-3: Contour plot displaying areas filled with constant colors between isolines for
response variable y1 (patient LOS)

performance by aggregating the daily sensor features across subjects. This is a first attempt

to measure and model organizational behavior at the individual and group levels.

The use of pervasive technology in healthcare management has the potential to improve

organizational performance by allowing healthcare providers to identify bottlenecks and

ineffective behaviors. Our results argue in favor of using wearable sensors to study group

behavior, and incorporating behavioral data into patient scheduling systems to reduce the

patient’s LOS and save costs by minimizing the number of delays. We plan to extend

this research to multiple groups and entire organizations. Future work includes modeling,

simulation and optimization of individual and group behavior from sensor data.

An optimal operational region for two network properties (daily average tie strength and

daily average centrality across nurses) that achieves a 10% increase in performance (or 10%

decrease in the average patient LOS), and a 10% decrease in nurse stress ratings was found,

offering support for hypothesis H2-3. Two clear regions in both figures 6-3 and 6-4 can be

distinguished. The lower left corner (low centrality and low tie strength) which results in

lower patient LOS and lower stress, and the upper right corner (high centrality and high
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Figure 6-4: Contour plot displaying areas filled with constant colors between isolines for
response variable y2 (nurses’ stress level)

tie strength) which results in higher patient LOS and higher stress. As both centrality and

tie strength across nurses increase, the average daily patient LOS also increases. Another

interesting region in figure 6-4 is the lower right corner which achieves the lowest stress

levels. A more decentralized network with high tie strength would reduce the nurses’ stress

levels and achieve a moderate patient LOS. This shows that it is possible to find a trade-off

between performance and job quality characteristics by exploring surface response plots.

6.2.9 Proposed Organizational Intervention

In the context of the PACU these results can be interpreted as either most PACU nurses

being busy (high activity levels) or waiting for bed availability (low activity levels). The

variation across the nurses’ face-to-face interaction time could be an indicator of poor com-

munication among nurses, slowing down patient transfer. A possible organizational design

intervention would be to incorporate behavioral sensor data from the nurses’ activity lev-

els, face-to-face interaction, and time they spend in close proximity to beds into existing

patient scheduling systems. This could potentially save costs to the hospital by minimizing
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the number of delays, reducing the patients’ LOS, and providing better care to the patients.

Another potential intervention would be to install a display that shows a map of the PACU

and overlays information about the nurses’ location, displacement patterns, activity levels,

and beds with patients, in real-time. This would give instantaneous feedback to the nurses

and PACU managers about the current activity and stress levels in the PACU, and help

them manage their capacity in a more efficient way.

6.3 Case Study 3: Call Center

6.3.1 Introduction

A two-phase study at a call center with over 3,000 employees from a major North American

bank was carried out. We deployed our organizational-engineering system at the bank’s call

center, where a group of 80 employees (working in four different teams) and managers used

sociometric badges for 6 weeks. The purpose of this phase of the study was to identify social

behaviors that could lead to a behavioral intervention that would enhance productivity.

The executives in charge of the call center unit of this bank had the intuition that limiting

interaction for the call center employees during break periods had negative effects on the

mental well being of the employees and may lead to higher turnover (Waber et al. 2010).

6.3.2 Hypotheses

For the first phase of this study, we wanted to discover whether or not face-to-face inter-

actions had any affect on productivity or stress levels. The objective of the study was

to use data collected using the sociometric badges to correlate temporal changes in social

interaction patterns with performance of individual actors and groups.

Hypothesis H3-1

Face-to-face network attributes (e.g. centrality, cohesion, and f2f time) are correlated with

individual performance.
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Hypothesis H3-2

It is possible to find an optimal range of network properties (e.g. centrality and face-to-face

interaction time) that optimizes several job quality characteristics (e.g. performance and

stress) at the same time.

6.3.3 Experimental Setting

During the first phase of the study, four teams consisting of 20 employees each used so-

ciometric badges all day while they were at the call center for a period of six weeks. On

average we collected more than 9,500 hours of data. We placed base stations in the hallways

in order to detect when the employees were in close proximity to their work station and

track their location and displacement patterns. There were approximately 12 base stations

in total, which allowed us to map the four team areas. The four teams were each headed

by a single manager, who had a desk in the group area. Employees sat in cubicles in front

of a computer terminal taking customer calls on a variety of banking issues. The break

structure for these employees, as in many call centers, was designed to reduce as much as

possible the overlap between breaks for people on the same team. Each employee was given

one 15-minute break per day in addition to a 30 minute lunch break (Waber et al. 2010).

6.3.4 Measures

In addition to the sociometric badge data, several daily productivity metrics were made

available to us, including number of phone calls handled, average call handle time (AHT),

speaking time, and system use time, among others. The bank also gave the employees

surveys as part of their regular monthly employee assessment, and we were also able to

obtain them as part of the case study.

6.3.5 Analysis

A linear correlation analysis to determine the relationship between badge features and per-

formance was performed. Multiple linear regression was also used to estimate the variation

in average handle time using correlated badge features as predictor variables.
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6.3.6 Findings

Preliminary results seem to indicate that cohesion in the face-to-face social network is

negatively correlated with the average handle time (r = −0.61, p < 0.001). This has

several implications for the call center’s operations, as we will discuss later. Stress was also

negatively correlated with cohesion and betweenness centrality, but these results were not

statistically significant.

6.3.7 Social Network Optimization

To demonstrate the social network simulation and optimization methodology proposed in

section 5.5 we find the optimal operational region for the predictor variables tie strength

(x1) and betweenness centrality (x2) that minimize the daily average handle time (y1)

and at the same time minimize daily stress ratings (y2). Table 6.19 shows the quality

characteristics (AHT and stress ratings) and their optimal specifications. Note that we

specified a 10% decrease in the AHT (currently 268 seconds) as the performance target

value, and a 10% decrease in stress ratings (currently 3.26 on a scale from 1 to 5) as the

target value for stress. Once again, the maximum acceptable value is the current average,

and the minimum acceptable value is twice the optimal increase/decrease from the current

value. This allows to constrain the search space for a optimal operational region.

Table 6.19: Optimal quality characteristics
Quality characteristics Specification Target value

Average Handle Time (AHT) (y1) 214.5 ≤ y1 ≤ 268.13 ytarget
1 = 241.31

Stress Level (y2) 2.61 ≤ y2 ≤ 3.26 ytarget
2 = 2.94

In order to obtain multiple sets of simulated regression coefficients for the multiple

responses, the bootstrap method was used. At each iteration, a unique set of operational

conditions was obtained with its corresponding desirability functions. The maximum D

with its corresponding operational condition was selected.

The bootstrapped regression coefficients are:
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ŷ1 = 223.91− 51.98x1 − 25.19x2 − 102.96x1x2 + 60.94x2
1 + 11.49x2

2

ŷ2 = 2.77 + 0.53x1 + 0.12x2 − 0.14x1x2 + 1.61x2
1 + 0.16x2

2

(6.15)

The desirability functions d1 and d2 for every set of operational condition during the

bootstrap method were calculated. At each iteration b, the trust-region method was used

to solve the non-linear programming equation:

Maximize D(b) = 2

√

d1(b)× d2(b), (6.16)

where

d1(b) =



















[

ŷ1−214.5
241.31−214.5

]

214.5 ≤ ŷ1 ≤ 241.31
[

ŷ1−268.13
241.31−268.13

]

241.31 < ŷ1 ≤ 268.13

0 ŷ1 < 214.5 or ŷ1 > 268.13

(6.17)

d2(b) =



















[

ŷ2−2.61
2.94−2.61

]

2.61 ≤ ŷ2 ≤ 2.94
[

ŷ2−3.26
2.94−3.26

]

2.94 < ŷ2 ≤ 3.26

0 ŷ2 < 2.61 or ŷ2 > 3.26

(6.18)

subject to the following constraints:

0 < d1(b), d2(b) < 1,

−1 < xj(b) < 1, j = 1, 2
(6.19)

in order to find the optimal set of operational conditions for the network properties.

Table 6.20 shows the results that were obtained after 1,000 iterations of the bootstrap

method.

Figure 6-5 shows a contour plot for response variable y1 (AHT), while figure 6-6 shows

the contour plot for response variable y2 (stress level). A dotted rectangle shows the opti-

mal operational region (OOR) that jointly maximizes performance (10% increase from the

current average value) and minimizes stress levels (10% decrease from the current average

value).
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Table 6.20: Optimal operational regions (OOR) from simulation
Variable OOR (coded units) OOR(original units)

Tie strength (x1) [−0.66, 0.35] [0.30, 1.15]

Centrality (x2) [−0.99, 0.99] [0.04, 4.57]
D value [0.56, 1]

AHT (y1) [223.85, 258.23]
Stress Level (y2) [2.83, 3.10]
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Figure 6-5: Contour plot displaying areas filled with constant colors between isolines for

response variable y1 (AHT)

6.3.8 Discussion

By looking at figures 6-5 and 6-6, one can observe that centrality does not play a major

role in determining performance and stress levels in the call center. The rectangle enclosing

the optimal operational region includes the whole range of observed centrality values. On

the other hand, there is an optimal range of tie strength values that minimizes both the

average handle time (AHT) and the call center’s stress levels.
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Figure 6-6: Contour plot displaying areas filled with constant colors between isolines for
response variable y2 (stress level)

6.3.9 Proposed Organizational Intervention

Feedback systems that present real-time information to managers could be used to improve

the performance of the call center. One suggested intervention was to change the way

employee’s breaks were scheduled. Instead of minimizing the number of people taking a

break at the same time, changing the break structure so that more people working in the

same team could take a break at the same time would allow members of the teams to form

more cohesive ties over time. This would also allow more knowledge sharing, which in turn

would lead to a reduction in the average call handle time.

112



Chapter 7

Conclusions and Future Work

We have discussed several technologies for sensing and modeling human behavior, and pro-

posed a sensor-based organizational design and engineering approach. By bringing together

computational models, human sensing, data mining, and social network analysis, we believe

it is possible to create a closed loop system that uses digital information, sensor data, perfor-

mance and productivity data as inputs. Data mining algorithms and social network analysis

can be applied to these inputs, and computational models created from the results of the

data analysis. Simulations and feedback mechanisms would be reported to the users of the

system in order to design interventions aimed at improving organizational outcomes. These

changes may include: restructuring the organizational chart, restructuring teams, changing

the physical office layout in order to facilitate communication and mobility patterns, or

promoting specific behaviors.

Our proposed approach to measure human behavior has several advantages over existing

methods such as direct observation by humans, the use of pervasive cameras to videotape

social interactions, or the use of surveys. Direct observation of humans by humans is expen-

sive and limited to a few people per observer, and observers do not always agree. Deploying

pervasive cameras is generally expensive and their range of measurement is constrained to

a particular place. Surveys may be subjective, inaccurate, and time consuming, especially

in situations when particular aspects of social interactions are trying to be measured. In

contrast, it is a great advantage to be able to automatically capture the behavior of hun-

dreds of people at the same time with unobtrusive sensors. The use of pervasive sensors
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has allowed us to study human behavior with unprecedented levels of detail. By captur-

ing individual behaviors such as the amount of face-to-face interaction, speaking patterns,

and non-linguistic social signals; and aggregating them at the group level, it is possible

to assess group performance and design organizational interventions aimed at improving

performance.

We presented results from several case studies in which we looked at face-to-face com-

munication patterns and found correlations between behavioral sensor data, performance

outcomes and several job quality characteristics such as job satisfaction and stress. We

proposed a social-network simulation and optimization technique based on the response

surface methodology and the bootstrap method and we showed that it is possible to obtain

an operational region that optimizes several job quality characteristics simultaneously. We

discussed several organizational interventions to promote face-to-face interaction and re-

duce communication overload for each case study. In the first study we were able to observe

different group dynamics and job attitudes in three branches of a retail bank and estimate

the monthly number of sales from the f2f network features. The results from the second

study showed that it was possible to assess the overall performance of a post-anesthesia care

unit by analyzing aggregated behavioral features across all nurses working in the unit as a

group. Finally, the third study looked at group configurations that maximize performance

and minimize stress levels in a call center.

Even though we have only discussed a few application scenarios, we believe the possibil-

ities for the proposed sensor-based approach are much broader. A few limitations of these

case studies along with questions for future research should be noted. Even though the case

studies demonstrate associations between variables, they cannot fully establish causality.

We have only described some potential organizational interventions that could be designed

for each of the discussed scenarios. Simulating and implementing the proposed organiza-

tional interventions using the proposed method may give us a better understanding and

knowledge about the causality of the relationships.

There is an enormous potential in applying data mining techniques to the domain of

organizational design. People working in large companies usually find it difficult to identify

other people working on similar projects or with specific skills or knowledge. Text mining of
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digital documents (websites, profiles, working papers, reading papers, e-mail) would make

it possible to update or automatically create a users profile based on mined expertise from

the text contained in these documents. Information obtained in this way could be combined

with information from sensor data and allow people to connect with others who have the

required know-how to help them solve a specific problem. Individuals should be able to set

their own privacy rules and specify which documents can be used for text mining by storing

them in a specific directory for example.

7.1 Contributions

Among the contributions of this thesis are:

• The conceptualization, design and implementation of a sensor-based organizational

engineering approach.

• The sociometric badge research platform and required infrastructure to study human

behavior in organizations.

• Several behavioral datasets collected in collaboration with my colleagues in real orga-

nizations.

• A Simulation and optimization methodology that uses behavioral sensor data.

• The design of organizational interventions based on behavioral sensor data and sim-

ulation models.

• The possibility to confirm social-science theories based on human observation using

automatic tools and methods on larger populations.

• The possibility to create feedback and visualization tools based on behavioral sensor

data and simulation models for organizational performance.

7.2 Future Work

Future work includes designing, simulating and implementing organizational interventions,

as well as validating them in a second sociometric measurement phase. Applying longitu-
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dinal social network analysis and simulation techniques would allow analysts to take into

account the time dependencies inherent to social interactions. Further extensions of this

work include automatic clustering of people to maximize team performance as well as dy-

namic visualizations of team processes. Some implications that this work has for future

studies and future technologies for organizational design and engineering are:

• The emergence of new collaboration tools and technologies that make use of behavioral

sensor data to promote collective intelligence in organizations.

• A deeper understanding of human behavior within organizations. Most of the required

infrastructure and sensors are already in place (sensors, location, software, etc.) and

eventually will be exploited.

• An awareness that users should have the right to manage their privacy settings, have

access to their data, know what kind of data is being collected, and decide how their

data will be utilized.

• Privacy concerns, which will be overcome by the potential benefits for the users and

the organizations.
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Kim, T., Olgúın-Olgúın, D., Waber, B. N. & Pentland, A. (2009), Sensor-based feedback
systems in organizational computing, in ‘Proc. of the Workshop on Social Comput-

ing with Mobile Phones and Sensors at the IEEE International Conference on Social
Computing’, pp. 1–4.

Kim, T. & Pentland, A. (2009), Understanding effects of feedback on group collaboration,

in ‘Proc. of the AAAI Spring Symposium on Human Behavior Modeling’, pp. 1–6.

Kluger, A. N. & DeNisi, A. (1998), ‘Feedback interventions: Toward the understanding of
a double-edged sword’, Current Directions in Psychological Science 7(3), 67–72.

Kozlowski, S. W. J. & Ilgen, D. R. (2006), ‘Enhancing the effectiveness of work groups and

teams’, Psychological Science in the Public Interest 7(3), 77–124.

Krebs, V. (n.d.), ‘Social network analysis’, Retrieved on April 26, 2008 from:

¡http://www.orgnet.com/sna.html¿.

Kuhn, H. (1955), ‘The hungarian method for the assignment problem’, Naval Research
Logistics Quarterly 2(1/2), 83–97.

Laibowitz, M., Gips, J., Aylward, R., Pentland, A. & Paradiso, J. A. (2006), A sensor

network for social dynamics, in ‘Proceedings of the 5th International Conference on
Information Processing in Sensor Networks’, pp. 483–491.

Lazer, D. & Friedman, A. (2007), ‘The network structure of exploration and exploitation’,

Administrative Science Quarterly 52, 667–694.

Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabási, A.-L., Brewer, D. & et al. (2009),
‘Computational social science’, Science pp. 721–723.

Lee, S. W. & Mase, K. (2002), ‘Activity and location recognition using wearable sensors’,
Pervasive Computing 1(3), 24–32.

Lochbaum, M. R., Karoly, P. & Landers, D. M. (2002), ‘Evidence for the importance of

openness to experience on performance of a fluid intelligence task by physically active
and inactive participants’, Research Quarterly for Exercise and Sport pp. 1–12.
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