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Abstract

This thesis focuses on object recognition and tracking from three dimensional point
cloud renderings of dense range and bearing data. Sensors like laser rangefinders and
depth cameras have become increasingly popular in autonomous robotic applications.
A common task is to locate and track specific objects of interest located somewhere in
the point cloud. This often introduces a tedious network of heuristics to build objects
from identified primitives or an intractable high dimensional search space. Through
a parameterized object model and certain relaxation functions, a likelihood based
view of the data can be used to accomplish these goals with increased performance
and reliability. Improvements in mathematics and convergence properties have shown
that this method can be realized in real time.
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Chapter 1

Introduction

A key component of robotic systems is sensing and interpreting the world. Industrial

robotics has shown extraordinary ability to manipulate objects once knowledge of

their position and orientation has been determined. This is usually accomplished by

tightly structuring the environment. In many circumstances robots have no sensing

of their world. This forces robots to be inflexible and unable to handle unexpected

events or objects. Current research focuses on giving robots more flexibility to deal

with more general situations and unstructured environments. The major challenge

for robotics is to take noisy, uncertain measurements of the world and translate them

into a model sufficient to carry out a task.

An example of this can be seen in a robotic porter built for Agile Robotics at

MIT seen in figure 1-1. This robot's task was to locate a stack of boxes on a provided

pallet, select and grasp those available, and stack them in another location without

human intervention. It used a nodding laser scanner and force sensors in its arms to

accomplish this task. While existing methods performed well for sparse cases, it was

found that occlusions and closely stack boxes presented difficulties. For this reason,

the ideas presented in this thesis were developed to increase the performance and

reliability of the robot[32, 35].

Point clouds have become the major sensory input for perceiving complicated

environments. Sensors that produce ranges and bearings to points throughout the

environment can stitch together their data into a large representation of surfaces in the



Figure 1-1: Scenario in which a robot must estimate the pose and shape of modeled
objects with high confidence.

environment, called point clouds. By processing these data, robot can avoid obstacles,

determine surface normals and curvature, and identify objects. Point clouds are

commonly produced from scanning laser range finders, though recently the Microsoft

Kinect sensor offers dense fast point clouds at a low cost. This suggests that point

cloud based algorithms will become more important as this technology spreads.

Current methods for processing point cloud data focus on a bottom up approach.

Since point clouds can contain tens of thousands of points, it is desirable to break up

the problem of identification of objects into a hierarchy of primitives. The general

approach is to first extract low level information in addition to range and bearing,

including local surface normals and clusters. These are then formed into object prim-

itives like planes, spheres, and cylinders. These primitives can then be assembled into

simple objects, e.g. cuboids or tables, which can then be interpreted into the robotic

task. This system of information processing gradually reduces the sensor complexity

while increasing usefulness. Unfortunately, each of these steps requires tuning of spe-

cial parameters and heuristics for proper function. If an algorithm fails to successfully

locate boxes in a scene, it is difficult to determine if the issue lies with the computa-

tion of surface normals, over accommodating primitive fitting, or a low threshold on



how perpendicular planes must be to constitute a box. While this method is useful

in its flexibility and generality, it is desirable to use another method when performing

certain high level object identification and manipulation tasks.

Object identification and manipulation on a mobile robotic platform is desirable

but difficult task for a robot, while comparatively easy for a human. The first thing to

do would be to enter a room and locate all objects of interest. Once this information

is in hand, many solutions exist to successfully manipulate the object to carry out a

task. A bottom up approach may work, but it would be more desirable to use the

knowledge of what the objects of interest look like to inform how to use the point

cloud data. A good algorithm will also have a low number of parameters to tune and

be robust to clutter and obstruction of other objects in the environment.

This thesis will demonstrate a method that will localize and track objects in in-

terest inside point clouds. This method will have several key advantages over existing

methods. It will use geometric knowledge of the objects of interest to inform its

search, significantly reduce the number of parameters to tune, and be more robust

to noise and occlusions in the environment. After localization and tracking, many

solutions exist to manipulate objects or determine their dynamic characteristics. This

will help allow robots to autonomously interact with their environment to perform

desired tasks. This thesis will have the following structure:

Chapter 2 explores previous work and background in the object detection and

robotic manipulation literature.

Chapter 3 describes the mathematical framework of the object detection and lo-

calization problem. It will also develop the models and algorithms used to

accomplish an object localization task.

Chapter 4 presents the results from several experiments and simulations demon-

strating the effectiveness and advantages present in the method presented over

the current state of the art method.

Chapter 5 concludes and summarizes the information presented in this thesis, as

well as discuss applications and future work.
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Chapter 2

Background

Point cloud depth maps have become the sensory input of choice for robotics in un-

structured environments. Sensor systems including nodding LIDARs, time-of-flight

cameras, and stereo cameras provide rich three dimensional data without the ambi-

guity that comes with bearing only systems like ordinary cameras. Using these data

is the focus of current research in the robotics field. A common task for a robot is

manipulation: locating objects of interest and interacting with them. As industrial

robotics has shown over the past decades, the interaction step is well explored prob-

lem, and many methods exist to accomplish a manipulation task once the object's

pose is known. However, determining where an object of interest is remains a difficult

problem.

The problem associated with manipulation is slightly different than the general

problem of perception. For manipulation, it is not necessary to characterize and label

every part of a sensor scan. It is sufficient merely to identify the location and orien-

tation, or pose, of particular objects of interest. Therefore, a good algorithm will find

these objects while ignoring unmodeled aspects and be robust to noise and occluding

obstacles. Once the object knowledge is in hand, other manipulation algorithms can

take over. In addition, the goal of a good algorithm will be to rely as little as possible

on many complicated parameters or heuristics.

This chapter will explore the literature for object detection and tracking. This

can be broken down into three mains sections: approaches based on robot vision,



reconstruction from range data, and perception methods for autonomous robotics.

2.1 Vision Based Object Detection

Early object detection explored the more difficult problem of producing three di-

mensional reconstructions from camera based data. This addressed the more diffi-

cult problem of forming a representation of the environment from the bearing only

data cameras provide. Horn and Brooks determined shape from light intensity val-

ues in camera images and building up continuous surfaces and using variational

approaches[7, 18]. Horn's book Robot Vision also describes several methods for using

cameras to describe the environment. He uses photometric methods for shape detec-

tion and surface determination. He also develops optical flow methods for developing

structure from motion, building a picture of a static environment from a series of

moving camera images. The main method used in this book for object detection

and identification is using extended Gaussian images which use a kind of histogram

of object surface normals to uniquely identify classes of objects.[17] A more recent

survey of these methods and several comparative results can be found in a paper

by Zhang et. al.[39]. Other methods determine shape from images through texture

[21, 22, 15] or shape through changing the focal length [13, 9]. Many of these methods

require sophisticated mathematical approaches, are slow to converge, and still result

in output data equivalent to modern depth sensors. The desire to focus on a hierar-

chy of increasing data sophistication may come from work in this area, where simply

arriving at a depth map required a significant amount of work. Now that these data

are easily obtained, other algorithms become more feasible and useful.

Much work has explored identifying and tracking humans in visual and range data.

The most visible result of this work has been motion capture technology employed

by the entertainment industry to record the movements of actors and transmit them

to animated characters. The literature in this area is exhaustive. Some good starting

points include survey papers by Forsyth et. al. [14] and Moeslund et. al. [27]. Many

examples in the area strongly supports the model specific approach. One approach



models people in images as two dimensional models, so called "cardboard" people

which breaks each independently moving limb into a rectangle to track. Others use a

more accurate three dimensional model of a human built from cylinders and spheroids

connected with joints. Measured data are then used to determine the inverse kinemat-

ics of the human. Many of these methods focus on subtracting the background from

an image and using the model to determine where edges and occlusions lie. Others

use probabilistic models to track humans by building a shape database, initializing

models with images, then simulating how most humans move to select the best guesses

supported by subsequent data. More recent methods have used deformable models

of humans to better refine their estimates. [1] The SCAPE (Shape Completion and

Animation for PEople) system scans people under various poses to learn how muscles

and joints change under different motions[2]. This gives strong support for an ob-

ject of interest model fitting approach to detection and tracking. While this closely

resembles the main idea of this thesis, these particular approaches are meant to be

used offline with careful human supervision. The issues necessary to integrate these

methods into an autonomous robotic situation have not been explored. This thesis

will adapt these ideas for mobile robots to locate and interact with objects if interest.

2.2 Reconstruction from Range Data

There are many examples of using three dimensional range data in the literature. Key

examples include work by Besl and Jain[3, 4], who developed techniques for object

recognition from range images, creating a system that analyzed surface curvature

and classified critical points; (2) Viola and Wells, who developed gradient descent

techniques for alignment of 3D models with 2D and 3D data sets based on maximiz-

ing the mutual information; and (3) Besl and McKay, who developed a method for

registration of 3-D shapes based on iterative closest point (ICP) matching[35].

Other research has focused on merging multiple sets of range data into a single

coherent frame. Many approaches have sought to first find an underlying model,

then fit the data provided from multiple vantage points onto their surfaces. Early



approaches focused on generalized cylinders [8, 24], superquadrics [33, 31], and physi-

cally based models [26, 11). These references are much more relevant since they match

range and bearing data to models of the environment. Many of these use iterative

closest point to match two data frames or a single data frame to an estimated model,

similar to the approach used in this thesis. However, these methods tackle the larger

problem representing everything in the environment. They seek a total reconstruc-

tion through these simple models. In mobile robotics and robot manipulation, this

step is wasteful and unnecessary. This thesis has a more focused approach, applying

theses ideas exclusively to objects of interest, seeking to reinforce those that match

the object well and reject those that do not fit. This requires less processing and

improved performance by throwing away irrelevant information.

2.3 Autonomous Manipulation and Perception

One of the most basic tasks for mobile robotics is obstacle avoidance. A great deal of

research has been conducted determining what areas a robot may and may not enter

without collision. Most recently, occupancy grids or maps like the OctoMap by Wurm

et. al. which label each volume piece of space as either occupied or unoccupied have

become more efficient and useful[38]. They have proven to be effective in mapping

and navigation of autonomous robots in several papers[10, 12]. These have a main

advantage of being completely general and able to model arbitrary environments.

However, they do not extract any meaning from filled and unfilled voxels. Alternate

methods must be used on these occupancy grids to determine which pertain to objects

of interest. The data from these maps are easily converted point clouds by extracting

those points that lie on the surface between occupied and unoccupied cells.

Some of the most recent and extensive point cloud processing software has been

designed with autonomous robotics in mind. The most common strategy that has

been developed is a bottom-up approach. Planes or curves are determined from indi-

vidual points in the data first, and then the planes or curves are fit to known models.

For example, Vosselman et al. adopt this approach for reconstructing ground planes



based on aerial point cloud data. After extracting roof planes using a combination of

a 3-D Hough transform and least squares plane estimation, the resulting planes are

fit to a priori roof models[37, 36]. Liu et al. take a similar approach to model the

objects encountered by a mobile robot: EM is used to locate planes in the scene and

the planes are mapped onto a known set of polygons [20]. Rusu et al. apply a similar

approach for the task of locating objects in a household kitchen environment. Planes

in the scene are found using MLESAC [34]. Plane parameters are estimated using

regression, neighboring planes are merged, and the resulting planes are matched to a

given polyhedral model [28].

Rather than matching point data to models known a priori, an alternative ap-

proach is to reconstruct object models directly from point data. If only primitive

planes or curves are of interest, then RANSAC-based methods have been demon-

strated to be very effective [34, 30]. If more complex objects are to be modeled,

RANSAC methods can be used to find the subset of points that match a desired

object. Given these points, a superquadric can be used to model the geometry of

the object surface [5]. Alternatively, Marton et al. propose using RANSAC methods

to identify shape primitives and then modeling objects as arbitrary constellations of

primitives [25]. The return to these simple primitives from the models listed above

indicate the need for a simplified representation of the environment so that autonomy

can be more easily programmed. Fitting approaches followed by heuristic building of

objects allow for human-free operation while providing a wealth of parameters to tune

to improve robotic performance. However, the complicated and resource intensive al-

gorithms described earlier are ill-suited to the limited resources and time available

for autonomous robotic tasks.

A key difficulty with the compositional methods described above is that while

shape primitives are used to locate complex objects, there is no flow of information in

the other direction: object information does not inform the search for primitives. In

manipulation, we are often interested in deciding which grasp action has the greatest

chance of succeeding. If object models are given, then we must decide which modeled

object in the scene is most likely: our objective is to find the object model(s) that



maximize the likelihood of the point cloud data. However, in order to maximize

the likelihood of matching points in the cloud to object surfaces, it is necessary to

associate each hypothesized object with a subset of points. For example, Liu et

al. solve the data association and the optimization problems simultaneously using

expectation maximization (EM) [20]. The need to associate points with objects makes

object localization more complex because a bad association will cause localization to

fail[35].

The algorithms developed by Rusu are the most easily accessible due to his recent

development of the Point Cloud Library[29]. The wide distribution, open source

format, and good documentation suggest that this will become a popular toolbox

for research robotics. This has allowed for easy comparison and integration with

the software written for this thesis. Therefore, this class of algorithms based on

compositional methods will be the primary point of comparison for performance,

since it represents the state of the art.

This chapter has shown the previous work in the object detection literature, in-

cluding early vision approaches, three dimensional reconstruction with range data,

and perception methods for use in autonomous robotic platforms. The next chap-

ter will outline the method proposed in this thesis to solve the object detection and

tracking problem.



Chapter 3

Parameterized Model Method for

Point Clouds

This chapter will outline the algorithm proposed in this thesis. It will first define the

problem mathematically, then develop the relaxation function used, and end with a

discussion of implementation details.

3.1 Problem Statement

This algorithm will localize and track objects of interest in range and bearing data

from common robotics sensors. These include scanning laser range finders, or LI-

DARs, time-of-flight cameras, or stereo camera platforms including the Microsoft

Kinect. A common method is to assemble collections of the measurements into point

clouds.

Z = ~ Z1, Ziz2, ... zN1 (3.1)

zi= {xi, yi, zi} (3.2)

A point cloud Z is a collection of individual range and bearing measurements zi

which are usually represented in a Cartesian coordinate system {x, y, z}. Each of

these points are measurements of surfaces in the environment, a subset of which are



objects of interest, though many are environmental clutter. For the moment, consider

only those points which result from objects of interest: Z0 C Z. From these points,

the goal is to maximize the likelihood of a set of objects with flexible parameters

given this point cloud.

Cmax = arg max Pr(ClZO) (3.3)
C

C = {oi, 02,...} (3.4)

o = O(P) (3.5)

C is a collection of objects o which can be described from a parameter list P through

an object generation function 0. For example, a cuboid can be represented from

a parameter list with a translation in R3, a rotation in SO(3), and the lengths of

its three sides in R3, resulting in nine parameters. Unfortunately, the preprocessing

step to label each measurement point is nearly as difficult as finding all objects of

interest, and therefore does not help. A way to address this issue is to represent the

environment generalized as a collection composed entirely of objects of interest so

every measurement can be used:

Hmax = argimaxPr(H IZ) (3.6)
H

where H is a larger collection of objects representing the whole environment up to a

maximum number. This is also an unsatisfactory solution because the dimensionality

of the problem has grown significantly. To adequately represent the environment, it is

likely many more objects will be necessary. This significantly increases the difficulty

in optimization. One might hope that H could be broken down into individual objects

and each object could be optimized separately. First, in can be show using Bayes'

rule that solving equation 3.6 is equivalent to solving:

Hmax= argmaxPr(ZIH) (3.7)
H



Assuming each measurement is independent of each other, this can now be broken

into a form using individual objects.

Izi
Pr(Z|H) = 7Pr(zi C S(H)) (3.8)

Iz
= J[1 - Pr(zi ( S(H))] (3.9)

Iz
=1[1 - ]7 Pr(zi ( S(o)] (3.10)

i oeH

This shows that the probability of a measurement being on a surface in H is di-

rectly related to the measurement not being on any of the surfaces. Therefore, a

straightforward separation of the problem is not possible.

3.2 Relaxation Function

To make the problem more tractable, it is desirable to use a relaxation function to

approximate 3.6 while requiring few parameters and does not require a preprocessing

step. This will lead to a function whose maxima are near the maxima of equation

3.6, but may have spurious local maxima that do not correspond.

A key fact to notice is that when H has reached its maximum with respect to the

measurements in equation 3.6, each object inside H will be maximized with respect

to the points around it:

Omax= arg max Pr(Zolo) (3.11)
0

where o is a candidate object and Zo is the subset of points in Z which result from

measurements on the real object. In the case of laser scanners, depth cameras, or

other range and bearing measurements, it is common to model sensor errors with a

normal Gaussian distribution. While errors in range exhibit different characteristics

from errors in bearing, this thesis will assume a simplified measurement model:

Pr(zilo) = N(d, o-) (3.12)



The probability of an individual measurement zi given an object o is a zero mean

Gaussian distribution with error d and standard deviation o. d is the distance from

the measurement point in Cartesian coordinates to the object surfaces visible from the

sensors origin. This assumes that errors are equally likely in all Cartesian directions,

and show no difference in the range or bearing directions. By using this model

for equation 3.11, each point zi will be assigned to its closest object. However, the

relaxation function should be separable into individual objects so the entire collection

need not be considered at once and no preprocessing assignment is required. The

function should match equation 3.12 when measurement points are nearby, but little

or no effect otherwise:

Pr(zilo) = A(d, a) for d < dma (3.13)
N (dmax o-) for d > dmax

This successfully integrates the requirements necessary for the relaxation function.

Points nearby a candidate object have an ordinary measurement effect, and points

farther than dmax have a uniform low probability and will have little effect on the

object probability. This function requires no preprocessing of assignments of points

and can be separated for every candidate object considered. dmax can be chosen

based on properties of the sensor noise such that an actual measurement outside

dmax is highly unlikely. 3cr is a common choice, but could change depending on the

quality of the sensors. Unfortunately, this function does not correspond to an actual

probability distribution since the integral is infinite instead of one. However, this

functions will find the configurations sought for H, and similar assumptions for the

measurement model have been successfully used by Blake and Zisserman.[6]

There is a special case for the sensors used. Points that are far away from the

candidate object, but inside the shadow cast by the object from the sensor origin,

are highly unlikely and should be somehow penalized in equation 3.13. In this case,

the distance d to the object should instead be distance to the shadow region: d, =

D(zi, o, s) where s is the location of the sensor. An example can be seen in figure 3-1.



Figure 3-1: Calculation of the distance, D(zi, o, s), of point zi from the
occluded by the object. The object hypothesis is illustrated in green;
occluded by the object with respect to the source is shaded.

region not
the region

Therefore, equation 3.13 can be expanded to:

rAr(ds, o) if zi in shadow
Pr(zilo) A(d, o) if outside shadow and d < dmax

A(dmax, -) otherwise

(3.14)

The final probability of a candidate object for all measurement points is therefore:

Pr(Zlo) = 1i Pr(zilo)
ziEZ

(3.15)

By sampling the space around the sensor with candidate objects, then ascend-

ing the gradient of equation 3.14 for each object for a given measurement set, each

candidate with find a local maximum. Several of these will be spurious, but many

should correspond to correct configurations of objects in the space. This is the main

algorithm of this thesis.



3.3 Other Relaxation Functions

Previous work on this problem shown in chapter 4 did not follow the same relax-

ation functions as above.[35] The functions used for these results are similar, but

less efficient. Instead of combining the inside shadow case with outside shadow case

as in equation 3.14, a hierarchy was used. First, candidate objects were evaluated

based on the shadow case, ignoring other cases. Then, the outside shadow case would

be projected into the null space of the shadow case. This put the first priority on

objects having no measurements in their shadow, then slowly fitting points around

it afterward. This often extended the convergence time necessary for objects, since

candidates frequently sought to move points out of their shadow in one step, then

immediately brought them back inside for a better fit the next step to repeat the

process. This is why the new relaxation function shown in 3.14 was developed.

The last difference was in how the individual measurements are combined. In equa-

tion 3.14, the cases far away are handled by thresholding the probability distribution.

This allows the joint probability to be calculated with an intuitive multiplication.

Previous work sought to preserve a true probability function applying the Gaussian

distribution measurement model to all points. To combat far points having a huge

effect on the gradient of an object, individual measurement probabilities were not

multiplied as in equation 3.15. Instead, the function maximized the number of high

probability points on the object's surface, and therefore added them together.

Though these previous examples are different from the algorithm described in

the previous section, they share similar characteristics, and help to illustrate the

performance of this method, especially when compared to other solutions.

3.4 Implementation Details

Several details should be more closely examined to successfully implement this al-

gorithm. A good parameterization of the object should be determined, recomputed

terms should be recognized and preserved in future calculation, and a suitable opti-



mization method should be found.

The parameters chosen for the object can greatly affect the outcome of the con-

vergence. An early parameterization of the cuboids used in this thesis was poorly

chosen. An particular corner of the cuboid was selected as the origin. The transla-

tion, rotation, and side lengths of the cuboid were defined around this point. This

had the advantage of simplifying several terms when calculating the derivatives of

the distance function. If a measurement point was closest to the origin point instead

of a point on the opposite side, the box rotation and side lengths had no effect since

variations in these parameters did not move the origin point. Unfortunately, this also

introduces an asymmetry in the object which skews the convergence properties when

the cuboid is in a particular rotation. Since measurement points in certain areas had

no effect on certain directions in the gradient, they did not affect the object as much

as other points leading to poor convergence. A symmetric parameterization was then

chosen, with the origin being the center of the cuboid. This ensured that no part of

the cuboid was favored over another.

Rotation representation should also be chosen carefully. The parameterization

should be continuous and differentiable throughout all rotations so the gradient can

always be calculated, and should have only three degrees of freedom, so standard

optimization tools may be utilized. Euler rotations are common, but are not differ-

entiable at certain key points. This is commonly referred to as gimbal lock. Unit

quaternion representations solve the gimbal lock problem and are continuously and

differentiable, but generally have four degrees of freedom with one constraint of unit

size. This could be used, but would require a constrained optimization algorithm to

account for the superfluous degrees of freedom which is more difficult to implement.

However, an axis-angle formulation, with an extension of an exponential map, can

solve all these issues.

Rotations may be parameterized by three axis-angle variables: v {rr, ry, rz}.

The axis of rotation is a unit vector in the direction of v and the rotation in radians

is the size of v. A size of zero corresponds to the identity rotation. This has the

minimum parameters necessary for rotations, which makes it ideal for optimization,



Algorithm 1 Overview of implementation of thesis.

for b C B do
repeat

for p E Z do
r +- D(p, b)

j +- rab
R -r
J j

end for
b +- b + [JTJ + Adiag(JTJ)]-[JTR

until converged
end for

but is not useful in this form. The most useful representation for rotating vectors and

differentiation is a 3 x 3 rotation matrix. This may be obtained by first converting to a

unit quaternion from the axis-angle, then converting to a rotation matrix. Each step is

easily computable and differentiable. The conversion from a quaternion to a rotation

matrix is differentiable for all rotations, but redundant on variables. However, the

first conversion solves the problem by using axis angle. The differentiation on this

step is less straightforward, but through an appropriate exponential map described

by Grassia[16] this too is easily determined. This combination allows for an good

parameterization for rotation.

An outline of the implementation is provided for a reference in algorithm 1. The

algorithm first goes through each box parameter vector b in a collection of hypothe-

ses B and processes the point cloud Z for every point p until the parameter updates

converge. A distance r to the box as described in equation 3.14 is first computed.

Then the Jacobian of r is found with respect to the box parameters b. These are ap-

pended into matrices R and J until each point has been processed. Then a Levenberg-

Marquardt optimization is performed with an appropriately chosen A. The parameter

vector is updated and the process is repeated until the optimization reaches conver-

gence. For this thesis, a trust region approach was chosen. If an update to a box

parameter vector result in a better cost, A was halved, resulting in a more quadratic

Gauss-Newton optimization. Otherwise, A was double, resulting in a more fixed step

gradient descent[23, 19]. Notice that solving the maximum probability in equation



3.14 is equivalent to solving a least squares distance problem for the measurement

points and the object surfaces. This simplifies the calculation necessary to determine

r and j.

It is important to note that the inner for loop will reuse a great deal of information

about the parameters and derivatives relating to the box. Taking care to store these

common terms appropriately can significantly reduce the computational load. Indeed,

it reduced processing time from several minutes for the initial static cases shown to

real time operation of moving boxes in dynamic cases.

For static cases, B was usually initialized by a uniform distribution of small,

unrotated boxes throughout the area of interest. For dynamic cases, a static case

was first performed to provide good initial estimates of objects in the environment.

Each iteration of the algorithm performed for a new point cloud frame used the

previous parameter estimates to initialize B. This was sufficient since frames were

captured fast enough that the change in box parameters did not bring it outside of

the area of convergence of the previous estimate. Though it was not explored in this

thesis, a motion model updated with a simple Kalman filter could use successive box

estimates as positional measurements and better predict where the box will be in the

next time frame. This would improve convergence time and be more robust to fast

moving objects. In fact, once successive pose estimates have been found, any dynamic

property of interest can be found through well known methods.

This chapter has described the algorithm proposed in this thesis. The next chap-

ter will demonstrate the effectiveness and performance of this algorithm on several

experiments and simulations.
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Chapter 4

Experiments and Results

The algorithms described in chapter 3 have been implemented for several example

and test cases. Early examples derive from a previous implementations of an earlier

algorithm, while later examples demonstrate the current algorithm on more diffi-

cult problems. While these first examples are not implementations of the proposed

algorithm, they exhibit nearly the same properties and are therefore useful in under-

standing the algorithm's mechanics and performance.

4.1 Planar Illustration

Figure 4-1 illustrates the localization process in the plane. The point cloud (the

green circles in Figure 4-1) was collected indoors using a Hokuyo UTM laser scanner

mounted in a fixed configuration in front of a collection of three rectangular boxes.

The objective is to locate a maximum likelihood rectangular objects in the scene.

Since this is a planar problem, the hypothesis space for a single rectangle is five

dimensional (position in R2, orientation in SO(2), and the extents of the two sides in

R2),

z = (p2, py, dX, dy, 0) T

where px and py are the coordinates of the center of the rectangle, dx and dy are the

extents of the rectangle sides, and 0 is the orientation of the rectangle. This particular
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Figure 4-1: Illustration of localization in two dimensions for a collection of rectangles.
Green boxes represent hypotheses, laser return points are circles, and the laser source
is located at the star in the upper left corner.

implementation follows the gradient of the prioritized probability function with fixed

steps.

Figure 4-1 shows four frames from the planar localization example. The starting

sampling of hypothesis assumes nothing about the actual locations of the objects.

It begins with uniformly spaced samples of identical small size. As the iterations

progress, the high-priority relaxation of points in the shadow causes the hypotheses

to migrate toward regions within the occluded regions in the point cloud. Hypothe-

ses that do not migrate quickly enough shrink because the decreasing side extents

decreases the number of points in the hypotheses occlusion regions. Hypotheses are

removed if their likelihoods fall below a threshold. Once within the occluded regions

in the point cloud, hypotheses slowly migrate toward configurations that maximize

the number of points on their sides. After many steps, hypotheses stop moving in

any meaningful way but do not converge to the same state. This is due to the fixed

step gradient descent method of solving this function.

Notice that some of the hypotheses converge to maxima that do not correspond



to object locations. This reflects the fact that optimizations of the relaxed likelihood

functions can find any local minimum. Not all optima of the combined relaxations

correspond to objects in the scene. However, maxima that do not match the mea-

surements well are given a low likelihood and can be removed. [35]

4.2 Static Three Dimensional Case

To demonstrate the advantages of the relaxation function algorithm over other point

cloud tools developed by Rusu[29] based on RANSAC methods, a direct comparison

was conducted. A nodding Hokuyo UTM laser was used to take data from three

examples scenes containing objects of interest (boxes) and other occlusions (ground,

walls, and cylinders). Each "sweep" of the laser took approximately five seconds

and collected approximately 10' points. After restricting points to a bounding box

around the work area and subsampling so that no two points were closer than about

a centimeter, the point cloud was reduced to about 1800 points. While the algorithm

maintained its properties by including more points, these steps greatly reduced the

computational load.

In general, cuboids or boxes are described by a nine dimensional object configura-

tion space: a translation in R3, rotation in SO(3), and size in R3. in this experiment,

objects on interest are boxes lying flat on the ground or on other boxes. Therefore,

their states may be represented as:

X = (PzPyPz1dx, dy, dz,0z)

where {pX, Py, PZ} are the coordinates of the box center, {dX, dy, dz} are the extends

of the box along its principal axes, and Oz is the rotation of the box about the z axis.

Other rotations are not considered since they would results in boxes that did not lie

flat on the ground or on other boxes.

Figure 4-2 illustrates the process of localizing a pair of stacked boxes (shown in

Figure 4-2(a)) in the seven dimensional object configuration space. The process begins
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with 15 uniformly seeded object hypotheses. Figure 4-2(b) illustrates the hypotheses

(shown in black) in their final configuration after they have converged to the maxima

of the relaxed likelihood functions. Notice that the hypotheses cluster around the

true locations of the two boxes. Figure 4-2(c) illustrates the optimization process in

terms of hypothesis likelihood over time. Initially, all hypotheses have similarly low

likelihoods. Over time, the likelihood of the boxes rises and ultimately clusters in

two high-likelihood configurations. Once again, the hypotheses cluster but do not

converge to the same state due to the fixed step gradient descent used. This can also

be seen on the sawtooth patterns in the probability time history as the states step

across a local minimum, then head backward.

As discussed in chapter 1, the primary localization methods used in robotic ma-

nipulation scenarios are compositional methods where modeled objects are located by

first identifying shape primitives using methods such as RANSAC, Hough transforms,

EM, etc. and then identifying the objects in terms of those primitives. The general

approach is related to what is proposed proposed by Rusu [28]: a variant of RANSAC

is used to find planes in the image, the planes are merged and the overall parameters

of the plane are estimated using regression, and boxes are hypothesized to exist in

places where the appropriate combination of planes is found.

The particular object configurations were chosen to cause difficulties in conven-

tional methods by placing object planes near each other and covering key features

such as edges with occluding objects. Figures 4-3, 4-4, and 4-5 illustrates the compar-

ison. The three figures show an image of the scenario on the left, the box located by

the compositional method in the center (the green outline superimposed on the point

cloud), and the objects found by the relaxation method on the right. In Figure 4-3,

the compositional method is confounded by the cylinder that prevents the algorithm

from finding planes sufficiently nearby to be considered a box. In Figure 4-4, the

compositional method finds only a single box that extends to the floor because it

overestimates the size of the planes. Finally, in Figure 4-5, compositional methods

fail to find enough planes to locate all boxes.

One way to improve performance of the compositional method on the above might
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Figure 4-3: A single cylindrical obstacle in front of a box (a) causes a failure for the
RANSAC method (b) but is located in the relaxation method (c).
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Figure 4-4: Two boxes where one edge aligns with the face of another (a) causes a
bad hypothesis with the RANSAC method (b) but proper dimensions are found in
the relaxation method (c).
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Figure 4-5: A crowded scene with many boxes and obstacles (a) interferes with all but
one box in the RANSAC method (b) but poses minimal challenge to the relaxation
method (c).



be to modify the plane-finding parameters so that a larger number of planes are found.

However, this would risk finding boxes where none exist.

A potential failure of the relaxation approach in the scenarios above is that the

occluding poles in the image are misinterpreted as boxes. This is a consequence of

the optimization process. Since all points in the cloud are assumed to belong to a

modeled object, the poles are interpreted as boxes. Of course, since the poles are not

really boxes, they are given a low likelihood compared to other hypotheses and can

be identified as poor box candidates. [35]

4.3 Dynamic Case

The performance of the relaxation based method has been demonstrated for the local-

ization of objects in point clouds, but this section will demonstrate the performance

of a tracking task. In order to handle this more difficult case, a completely new

implementation was developed using the relaxation described in equation 3.14 and

for cuboids in the full nine dimensional configuration space. Speed was increased by

precomputing and storing common gradient terms and convergence was improved by

using Levenberg-Marquardt numerical optimization to find the best solution to 3.14.

This allowed for realtime processing of a single moving object.

Due to the higher required bandwidth for moving objects, the scanning laser used

in previous experiments does not have a high enough bandwidth to capture an object

moving at a reasonable speed. A Microsoft Kinect sensor was used instead. The

Kinect is a camera based sensor that correlates an infrared image of the environment

with a projected infrared "texture" imposed on the scene. This allows the sensor to

provide a dense depth field measurement at 30 Hz, fast enough to conduct a dynamic

experiment. A small box was taped to horizontally mounted wheel and spun by hand

at slow speed of about 1 rotation every five seconds. This was recorded by the Kinect

at 4 Hz to accommodate the write speed of the computer. The point cloud was

then subsampled to around 3600 points. An initial guess of the box was supplied to

mimic the guesses given by the static implementation of the algorithm. The results



of the algorithm can be seen in figure 4-6. This rotating box presents many problems

similar to those in the previous section. As it turns, edges become fuzzy and disappear

altogether, and new planes appear. A particularly challenging frame can be seen in

frame (n) with unusually high noise on the sides of the box. Compositional methods

would struggle to characterize these sides as planes as illustrate in the previous section.

The relaxation algorithm is robust to this noise, since the model of the object as a

whole is considered. A time history of the parameters can be seen in figure 4-7.

Figure 4-7 (a) shows the translational components of the box centroid. The slow

sine wave seen can be attributed to the fact that the box was not centered on the wheel

on which it was turning. This caused the centroid to move in a circle, producing the

rough shape shown. The noisy spikes shown in figure 4-7 (b) correspond to specific

rotational positions of the box when only two faces were visible. This introduced

greater uncertainty and error in length estimation. The final figure 4-7 (c) shows

rotational velocities of the box. Since these correspond to derivatives of the noisy

rotation position, and have been filtered for viewing clarity. Note that the total

rotational velocity remains nearly constant as well as it's components.

This chapter has demonstrated the effectiveness and performance of the algorithm

proposed in this thesis. The following chapter will summarize the thesis and discuss

applications and future work.
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Figure 4-6: A sample set of frames from a rotation box. These were taken at approx-
imately 4 Hz using a Microsoft Kinect. Notice that despite faces gaining and losing
visibility, the relaxation algorithm successfully tracks the box pose, represented by
the green cuboid.
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Chapter 5

Conclusions

This thesis has demonstrated a method for localizing and tracking parameterized ob-

jects in a point cloud sensor input for both static and dynamic cases. This algorithm

provides discrete state measurements for use by other methods to find more interest-

ing dynamic characteristics, including center of mass, ratios of moments of inertia,

and accelerations. While there are several adequate solutions available with the in-

formation in hand, first extracting this data from dense range and bearing sensors

inputs has been a difficult problem.

The main idea behind using a parameterized object is to avoid using complicated

and heuristic compositional methods for object localization. While these methods

have distinct advantages of generality, they become cumbersome when used for par-

ticular objects on interest. By parameterizing types of objects with simple generation

functions, many of the heuristic steps can be dropped. While this thesis mostly ex-

plored cuboids, any sufficiently parameterized object can be used. With a model in

hand, the only other parameters to tune are the expected noise of the sensor measure-

ments, and a threshold for how likely an object must be before it can be considered

a true object instead of a spurious local minimum. Compositional methods require

many more parameters. How perpendicular should planes be? How close? How

square should a detected plane be? As objects increase in complexity, the number of

parameters to tune increases greatly with compositional methods.

This method is significantly more robust to occlusion than other compositional



methods, as shown in a variety of static cases. Certain configurations of objects and

occluding obstacles break existing algorithms since their heuristics have not accounted

for the variety of cases that can arise and violate assumptions about the primitive

shapes. By using this model based approach, the point cloud as a whole can be

considered when analyzing a hypothesis. This captures more of the difficult cases

than are solvable with compositional methods.

The relaxation algorithm presented has another major advantage over composi-

tional methods for dynamic tracking. Compositional methods must recompute object

primitives and rebuild hypotheses with each frame. This wastes a significant amount

of processing power. The relaxation algorithm uses the previous state as a guess for

the next state, and quickly accommodates new data to update objects of interest in

real time. This allows for speed currently unachievable with compositional methods

at the high bandwidth rates required of 30 Hz Kinect sensors.

This algorithm may be applied to a variety of autonomous robotic tasks. The

robotic porter described in chapter 1 can use this algorithm to be more robust when

locating boxes to manipulate. It will allow its environment to become more cluttered

without forcing more computation, as required with a compositional method. The

robot will also be able to handle a wide range of box sizes, since each has a common

parameterization. The task could also expand to handle objects in motion since the

proposed algorithm can handle dynamic objects while compositional methods will

be too slow. This method would also apply to to any case where a robot would

wonder if an object of interest (a) was present and (b) where it was. For instance,

a robot could find all chairs and their locations in a building, then move them to a

predetermined pattern. Sensors placed on cars could locate and track all other car

and human shaped objects for safety. Since autonomous robotics tend to focus on

specific tasks and objects, this method could have wide applicability in the field.

Future work on this algorithm should first expand the complexity of objects pa-

rameterized. Boxes were chosen since they were too complicated to be found using

RANSAC, but simple for easier implementation and testing. Objects like chairs,

desks, or statues would more clearly demonstrate the superiority of parameterized



models over heuristic primitive assembly.
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