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Abstract

From naval operations to ocean science missions, the importance of autonomous
vehicles is increasing with the advances in underwater robotics technology. Due to
the dynamic and intermittent underwater environment and the physical limitations
of autonomous underwater vehicles, feasible and optimal path planning is crucial for
autonomous underwater operations. The objective of this thesis is to develop and
demonstrate an efficient underwater path planning algorithm based on the level set
method. Specifically, the goal is to compute the paths of autonomous vehicles which
minimize travel time in the presence of ocean currents. The approach is to either
utilize or avoid any type of ocean flows, while allowing for currents that are much
larger than the nominal vehicle speed and for three-dimensional currents which vary
with time. Existing path planning methods for the fields of ocean science and robotics
are first reviewed, and the advantages and disadvantages of each are discussed. The
underpinnings of the level set and fast marching methods are then reviewed, including
their new extension and application to underwater path planning. Finally, a new
feasible and optimal time-dependent underwater path planning algorithm is derived
and presented. In order to demonstrate the capabilities of the algorithm, a set of
idealized test-cases of increasing complexity are first presented and discussed. A real
three-dimensional path planning example, involving strong current conditions, is also
illustrated. This example utilizes four-dimensional ocean flows from a realistic ocean
prediction system which simulate the ocean response to the passage of a tropical
storm in the Middle Atlantic Bight region.

Thesis Supervisor: Pierre F.J. Lermusiaux
Title: Associate Professor



4



Acknowledgments

This thesis would not have been possible without the contributions and the help of

members of Multidisciplinary Simulation, Estimation, and Assimilation Systems(MSEAS)

group members who in one way or another contributed and extended their valuable

contributions in the completion of this study.

First and foremost, my utmost gratitude to Professor Pierre J. F. Lermusiaux

Doherty Associate Professor in Ocean Utilization whose sincerity and encouragement I

will never forget ! Literally speaking, he enabled me to develop wide perspective about

scientific and engineering problems. I will always remember the great atmosphere he

created in our research group ! I would also like to extend my special thanks to;

Dr. Patrick Haley, senior research scientist of MSEAS at MIT, who suprises me

with his ingenuity every time we talk. It was not possible to finish this thesis without

his clever contributions.

Dr. Themistoklis Sapsis, who is a post doctoral scientist of MSEAS at MIT, for

giving me the chance of having deep intellectual and scientific discussions with him,

and for his invaluable personal support.

Mattheus Ueckermann (S.M), who is a Ph.D Candidate of MSEAS at MIT, for

his great help, invaluable discussions about this thesis work, and his great friendship

during this study.

Dr. Wayne G. Leslie, who is a senior research scientist of MSEAS at MIT, for his

patience and great support to complete this study;

Thomas Sondergaard, who is a S.M. Candidate of MSEAS at MIT, for our discus-

sions, practical suggestions, and invaluable personal support.



Tapovan Lolla, who is a S.M. candidate of MSEAS at MIT, for his great help and

clever ideas.

Mark S. Welsh, who is the Professor of Naval Practice and the Captain of U.S.

Navy, for his great help and understanding.

Pete Small, who is the Associate Professor of Naval Practice and the Commander

of U.S. Navy, for his help and understanding.

Leslie Regan, who is the manager of the Graduate Office of Mechanical Engineering

Department at MIT, for her great understanding and help.

Ozge Karanfil, who is Ph.D candidate at Sloan School of Management of MIT, for

her invaluable discussion of the language of this thesis and for her personal support

and tolerance.

Oguzhan Uyar, who is S.M candidate of Electrical Engineering Department of MIT,

for his great support to document this thesis work.

Office of Naval Research of United States Navy, for enabling us to work on this

research project.

Turkish Navy, for enabling me to have this exciting research experience at MSEAS

group of MIT.



Contents

1 Introduction 13

2 Review of Existing Methodologies 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Review of Other Methods . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Level Set Method in Path Planning . . . . . . . . . . . . . . . . . . . 22

2.4 Underwater Path Planning with Level Set and Fast Marching Methods 25

3 Level Set Method Theory 33

3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Level Set M ethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Formulation of Time-Dependent Front Evolution in the Normal

D irection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Viscosity Solutions . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Numerical Discretization of the Front Evolution in the Normal

D irection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Front Evolution Due to Field Forces . . . . . . . . . . . . . . 42

3.2.5 Numerical Discretization of the Front Evolution due to Field

Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.6 Curvature-Driven Front Evolution . . . . . . . . . . . . . . . . 43

3.2.7 Putting Everything together . . . . . . . . . . . . . . . . . . . 44

3.2.8 Construction and Reinitialization of the Signed Distance Field 46

3.3 Fast Marching Method . . . . . . . . . . . . . . . . . . . . . . . . . . 47



3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Dijkstra Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.3 Fast Marching Algorithm . . . . . . . . . . . . . . . . . . . . . 49

3.3.4 Reinitialization of the Signed Distance Field with Fast Marching 51

3.4 Backward Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Underwater Path Planning 53

4.1 Introduction............ . . . . . . . . . . . . . . . . . . .. 53

4.2 Algorithm .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Applications and Test-Cases... . . . . . . . . . . . . . . . . . . . 55

4.4 Path Planning with Ocean Prediction System . . . . . . . . . . . . . 63

5 Conclusions 67

5.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2 Suggestions and Future Work. . . . . . . . . . . . . . . . . . . .. 69

A Description of Matlab Files 71

A.1 Matlab Scripts for Two Dimensional Calculations..... . . . . .. 71

A.2 Matlab Scripts for Three Dimensional Calculations . . . . . . . . . . 72



List of Figures

2-1 Geodesic Path Planning (reprinted from (Sethian, 1999)) . . . . . . . 23

2-2 Robotic path planning with differential constraints (reprinted from

(Kimmel and Sethian, 2001)) . . . . . . . . . . . . . . . . . . . . . . 24

2-3 From left to right L1, L2, and L-infinity norms contours (reprinted

from (Alton and Mitchell, 2009)) . . . . . . . . . . . . . . . . . . . . 25

2-4 a) Isotropic b) Path planning in the presence of currents (reprinted

from (Petres et al., 2007)) . . . . . . . . . . . . . . . . . . . . . . . . 27

2-5 a) No field forces b) Path planing in the presence of currents (reprinted

from (Petres et al., 2007)) . . . . . . . . . . . . . . . . . . . . . . . . 28

2-6 Path planning with lifelong Fast Marching Method (reprinted from

(Evans et al., 2008)) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-7 Level set contours without obstacles (reprinted from (Xu et al., 2009)) 30

2-8 Path planning with detected obstacles (reprinted from (Xu et al., 2009)) 31

3-1 Evolving circle (reprinted from (Sethian, 1996b)) . . . . . . . . . . . 35

3-2 Super and Sub-Differential of # (reprinted from (Bressan and Piccoli,

2007)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3-3 Fast Marching Algorithm; red points represents set of accepted points,

blue Points represents set of trial points . . . . . . . . . . . . . . . . 50

4-1 Test-C ase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4-2 Test-C ase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4-3 Test-C ase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4-4 Test-C ase 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



4-5 Test-C ase 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4-6 Boundaries of Lid-Driven Cavity Flow Domain . . . . . . . . . . . . . 60

4-7 Time Dependent Lid-Driven Cavity Flow with front evolution . . . . 61

4-8 Test-C ase 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4-9 Test-C ase 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4-10 Ocean Flow Prediction on Near Surface level.. . . . . . . . . . . . 63

4-11 Ocean Flow Prediction on Near Bottom level . . . . . . . . . . . . . . 64

4-12 3D Path Planning, red curve represents 3D Trajectory and other curves

represent projections on cartesian planes..... . . . . . . . . . . . 65



Nomenclature

l Closed Interface Curve bounding a open region Q

rK Curvature of front

y Time of arrival function

V Gradient operator

Q Open region

r Normal vector

Velocity vector of the front motion due to the field forces

Velocity vector of the front motion due to the curvature

# Signed distance function

#t Derivative of # with respect to time

#, Derivative of # with respect to x

#, Derivative of # with respect to y

T Cost function

d Distance from zero level set

D+ Forward difference operator

D- Backward difference operator

V

Vc



Do Central difference operator

H Hamiltonian

p Gradient of <$

T Time of arrival function

V Speed of front in the normal direction

X Coordinate of point in domain Q



Chapter 1

Introduction

The ocean is subject to a large set of forcing including atmospheric forcing (winds,

sunlight, precipitation, etc), coastal forcing (rivers, glaciers, etc), and gravitational

and earth forcing (rotation, seabed, tides, etc). Once oceanic motions are taking

place, internal ocean dynamics lead to multiple features and possibly complex ocean

currents. In order to carry out efficient and to best utilize or avoid the ocean currents,

it is is crucial to utilize ocean prediction from ocean models to compute optimal path

for the ocean vehicles.

Ocean prediction and simulation systems are being used for ocean simulations and

real-time forecasts of the ocean regions in shallow water regions to deep ocean re-

gions, from the turbulent scales to climate scales. One of these ocean prediction

system for regional coastal dynamics is the MIT Multidisciplinary Simulation, Es-

timation and Assimilation System (MSEAS) (Web-MSEAS, 2011), which is based

on the Harvard Ocean Prediction System (HOPS) and includes many different com-

putational and methodological tools such as the two-way nesting with free-surface

dynamics and strong tidal forcing (Haley and Lermusiaux, 2010), the Error Sub-

space Statistical Estimation (ESSE) system for data assimilation (Lemusiaux, 1999),

Dynamically Orthogonal Field Equations (Sapsis and Lermusiaux, 2009), Adaptive

Sampling (Lermusiaux, 2007), Coupled Ocean-Acoustic Transmission Loss Prediction

System (Lermusiaux et al., 2010).



Because of its predicting, simulating and real-time capabilities, MSEAS can be

used as operational tool for underwater missions carried out by AUVs, such as adap-

tive sampling of the ocean variables, acoustic search missions for underwater war-

fare, underwater exploration and reconnaissance missions, One research project of

the Multidisciplinary Simulation, Estimation and Assimilation System group at MIT

is to develop new formalisms and methodologies for optimal marine sensing using col-

laborative swarms of autonomous platforms (AUVs, gliders, ships, moorings, remote

sensing) that are smart, i.e. knowledgeable about the predicted environment, acous-

tic performance and uncertainties, and about the predicted effects of their sensing.

This project is called A-MISSION - Autonomous Marine Intelligent Swarming Sys-

tems for Interdisciplinary Observing Networks. There is no doubt that path planning

algorithms, which have a capability of handling the highly dynamic ocean environ-

ment, utilizing ocean models, and producing feasible and time/energy optimal paths,

are very important part for the underwater missions. Investigating and employing

methodologies for such path planning of ocean vehicles is the subject of the present

research.

This thesis is focused on time optimal path planning problem of AUVs in dynamic

ocean environment. This problem is solved with a new level set method based path

planning algorithm. Together with the ocean predictions and simulations, this path

planning algorithm can also produce feasible time optimal paths for underwater mis-

sions. One important novelty of this algorithm is that there is no need to define special

anisotropic cost function for dynamic ocean environment as in (Petres et al., 2007).

In addition to stated capabilities, our path planning algorithm can handle obstacles

and bathymetry in the ocean environment without need of special implementation.

This thesis is organized as follows. Chapter 2 introduces the problem of path

planning in dynamic ocean environment and reviews existing methodologies for path

planning in dynamic ocean environments. Chapter 3 introduces the motivations for

using level set method in path planning, and gives detailed background about level



set method and fast marching method. Chapter 4 shows the applications of the path

planning algorithms. Examples test-case flows and MSEAS ocean model flows are

used in this examples. Finally, Chapter 5 discusses future work and suggestions for

path planning problem in dynamic ocean environments.
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Chapter 2

Review of Existing Methodologies

2.1 Introduction

Researchers who are working on autonomous underwater vehicles path planning

are increasingly addressing problems of insufficiency of path planning methods in the

presence of ocean currents. These problems do not only require the consideration of

energy or time optimal paths, but they also require the consideration of infeasible

paths. Even though there are well-worked path planning algorithms in robotics re-

search, assumptions that are necessary for incorporating the dynamic nature of the

ocean into the path planning algorithms can cause infeasible solutions. For exam-

ple, in the presence of strong currents, many path planning heuristics give infeasible

solutions. Until now, traditional robotics methods have only provided approximate

solutions which do not utilize the predictions of ocean currents in time and space..

In this thesis, we will show that new level set methods derived by our MSEAS group

are capable of accounting for these complex currents. Importantly, they can provide

exact solutions to the time-optimal path planning problem in a limited number of

computations that grow linearly with the number of vehicles and only geometrically

in space.

The level set method is a numerical technique to track and simulate any kind

of front and interface evolution. By using the level set method, one can perform



numerical analysis and simulations involving curves, surfaces, or higher dimensional

objects on a fixed Cartesian grid without having to parameterize these objects as in

Lagrangian approaches. (Osher and Fedkiw, 2001). In addition to that, the level set

and fast marching methods provide an efficient and tractable framework for solving

Eikonal and Hamilton Jacobi Equations by which time and energy optimal paths

are produced. However, much care must be taken to produce a feasible and optimal

path planning solution in the presence of time-dependent forces, such as currents or

moving obstacles. Applications to underwater vehicles, which are operated in the

time varying ocean flow field, are highly limited at present.

This chapter explores the existing path planning methodologies for autonomous

underwater vehicles. The main focus is on level set and fast marching method based

path planning algorithms. However, we will also concisely review the existing method-

ologies other than level set based approaches. The organization of this chapter is as

follows; Section 2.2 is a concise review of the existing methodologies of time/energy

optimal path planning in ocean environments. In section 2.3, we review the existing

level set and fast marching based ocean path planning algorithms. The reliability of

the methodologies is discussed, and approaches for incorporating ocean flow dynamics

into path planning algorithms are outlined.

2.2 Review of Other Methods

Path planning methods coupled with ocean prediction systems, which utilize the

search method based on the Darwinian theories of natural selection, are proposed in

(Alvarez et al., 2004), (Kanakakis and Tsourveloudis, 2007), and (Yang and Zhang,

2009). In the first study, which utilizes the method called genetic algorithms, feasi-

ble paths are iteratively transformed by evolutionary operators such as inheritance,

crossover, selection, and mutation. For the path planning in time-varying ocean envi-

ronment, they incorporate dynamic programming into their genetic algorithm based

approach and propose a hybrid model. The second study is focused on feasible and



safe trajectory generation, but the presence of strong ocean currents is not taken into

account. A fuzzy controller for the trajectory correction, which utilizes the measure-

ments taken by AUV, during the AUVs operation is proposed. In the third study, in

order to find energy optimal and feasible paths, the method called particle swarm op-

timization is adapted. A new algorithm, called adapted inertia-weight particle swarm

optimal algorithm, is proposed to speed up the process of convergence to the global

minimum.

Another approach for path planning coupled with relatively simple ocean predic-

tion, which utilizes graph search techniques, are proposed by (Carroll et al., 1992) ,

(Garau et al., 2005) . In the first study, an A* approach graph search technique is

utilized for path planning. The proposed algorithm is constrained with two dimen-

sional case, and no ocean prediction system data is incorporated into applications.

In the second study, path planning in terms of the spatial scales of ocean variability

is investigated. As in previous study, A* graph search technique is used. One advan-

tage comparing to the previous A* approach is that the performance is increased by

incorporating heuristics into the algorithm and the energy optimality is considered.

In order to achieve this goal, time optimal trajectories are computed by using ocean

basins simulations with different eddy sizes and current speeds. Therefore, the exis-

tence of a heuristic to guide the A* search procedure and its dependence on the ocean

current structure is analyzed. The main drawbacks of the second study are stated as

follows; in the second study, the currents are assumed to be time-independent and

two dimensional. The vehicle trajectories are constrained to grid points, and must be

in the direction of cartesian axes, and A* algorithm is highly susceptible to the curse

of dimensionality.

A different approach is proposed by (Soulignac et al., 2009) . This study is mainly

focused on path planning in the presence of strong ocean currents (Higher ocean

current speed than vehicle speed) and use the method called wavefront expansion

(Dorst and Trovato, 1988) . They defined a new cost function in order to find feasible



paths in the presence of strong ocean currents. The limitation of this approach is that

their cost function cannot handle the variable vehicle speed cases. Another approach,

which utilizes the potential field theory from robotics together with the evolutionary

optimization approach, is proposed by (Witt and Dunbabin, 2008). In this study, time

versus energy optimality tradeoff is made for the AUVs operations. Together with

the real-time experiments, local and global optimization methods are investigated.

However, the time-varying nature of the ocean flow is not considered, and ocean flow

speed is assumed to be time-independent.

An interesting approach proposed by (Vasudevan and Ganesan, 1996) which is

based on case-based reasoning and aims to produce feasible trajectories for AUVs.

Case-based reasoning is a computational method that utilizes the previous experi-

ences, gathered knowledge, and calculated data to produce solutions to the problems.

In this study, the proposed scheme produces trajectories by modifying old trajec-

tories or by synthesizing the acquired experiences with planned trajectories in the

operation region. Another approach using case-based reasoning, which is not directly

focused on underwater path planning, is proposed by (Kruusmaa, 2003) . In this

study, in addition to the previous study, time-optimal trajectories in the presence of

dynamic obstacles are also considered. Even though case-based reasoning approach

can be quite useful in known and well-studied regions, it can hardly be practical in

poorly-studied regions or in the presence of time-constraints, such as naval operation

conditions.

An elegant control theoretic approach for path planning problem for AUVs is pro-

posed by (Inanc et al., 2005). The basic idea of this study is to utilize lagrangian

coherent structures in the ocean currents to produce near-optimal paths for glid-

ers. The path planning problem is formulated as standard constrained (both in state

and control) optimal control problem, and the near-optimal trajectories are obtained

by transcribing the problem into nonlinear optimization problem (NLP), and then

solving it with NLP methods. Another control theoretic study, which is focused on



lagrangian coherent structures, is proposed by (Zhang et al., 2008). This study is

focused on 2 dimensional flows on ocean and the near optimal trajectory solutions

are produced by B-spline approach. B-splines are member of dynamic splines and

useful approach to produce solutions in control theory, especially in trajectory gener-

ation problems (Kano et al., 2003). An interesting control theoretic approach, which

presents feedback control strategy and utilizes lagrangian coherent structures, is pro-

posed by (Senatore and Ross, 2008). In this study, the energy optimal trajectories

are considered and 2 dimensional solutions are presented.

Application of well known robotics path planning algorithm, Rapid-Exploring Ran-

dom trees (RRTs), to the underwater path planning for feasible and obstacle free tra-

jectories is introduced by (Tan et al., 2004). RRTs has been widely used in robotic

path planning, and it can efficiently find obstacle free paths even in the presence

of dynamic obstacles (LaValle, 2006). A heuristic based approach, which is focused

on positional uncertainties during AUVs operations, is introduced by (Smith et al.,

2010). In this study, dead-reckoning error for Slocum gliders is calculated, and then

the mean positional error recorded from multiple deployments conducted previously

are compared with these calculations. Then, by using these experiences, a path plan-

ning algorithm is produced.

In this section, we have reviewed the different approaches for the path planning in

underwater environment. These approaches can produce solutions for many different

problems encountered by the underwater path planners. However, especially, because

of dynamic nature of the underwater environment and limited computational sources

in practical situations, it is difficult to present a full-fledged trajectory generation

algorithm for underwater path planning. Level set and fast marching methods, which

are main focus of this thesis, are two of the promising candidates that can cope

with these difficulties for AUVs operations. In the next sections, we will review the

approaches based on level set and fast marching methods.



2.3 Level Set Method in Path Planning

The level set method, which is introduced by (Osher and Sethian, 1988), is a

framework for the computation of evolving fronts using implicit functions. Its key idea

is to represent interfaces with continuous functions. The evolution of interfaces can be

formulated as a signed distance Hamilton-Jacobi equation and computed with level set

method. The first decade after its invention, with the invention of Dijkstra shortest

path like algorithm, which is called fast marching (Tsitsiklis, 1995), the level set and

the fast marching methods started to play a role in continuous time and space path

planning of autonomous vehicles. Especially, because of its built-in fast and optimal

computation time, fast marching method has gotten important role in autonomous

robotic path planning. Our research group has also recently developed new schemes

based on level set and fast marching methods for the mapping of gappy ocean data in

complex multiply-connected coastal regions (Agarwal, 2009) and (Lermusiaux et al.,

2011).

The Fast marching method is a numerical solution method for solving the Eikonal

equation on a cartesian orthogonal grid reference. The fast marching scheme hinges

on an upwind numerical approach to the gradient of the Eikonal equation. The fast

marching method is strongly connected to Fermat's principle of least time, which is

a construction through evolving wavefront, and Dijkstra's shortest path algorithm,

which is a computational method to calculate global optimum path in graphs or

cartesian orthogonal grid domains (Sethian, 1996b). The fast marching solutions

gives us optimal arrival times contours in the orthogonal domain from which time

optimal solution of paths are easily obtained. In this section, we discuss level set and

fast marching methods based path planning algorithms. First, we concisely discuss

path planning methods in the robotics area, and then we will focus on existing work

related to AUVs. The technical detailed information about level set method and fast

marching method is given in Chapter-3.



Fast marching algorithm for continuous trajectory optimization and planning is

first introduced by (Tsitsiklis, 1995). In his seminal paper, Tsitsiklis introduces a

continuous version of the Dijktsra-like algorithm and solves it with a semi-lagrangian

approach. He gives examples from obstacles avoidance and shortest path planning

in 2 dimensional static configuration spaces. One year later, in the seminal paper of

Sethian (Sethian, 1996a), it is shown that the fast marching algorithm together with

the upwind difference methods satisfies the viscosity solutions of the Eikonal equation.

In (Kimmel and Sethian, 1998), a different discretization approach is proposed, called

triangulated fast marching algorithm, for the fast marching algorithm which enables

the path planning on manifolds. Please see Figure 2-1 below. Therefore, thanks

to these two important studies, the fast marching and the level set methods became

important path planning tools in robotics path planning.

Figure 2-1: Geodesic Path Planning (reprinted from (Sethian, 1999))

Two years later, in the work of (Kimmel and Sethian, 2001), the robotics path

planning in the presence of differential constraints was introduced. Therefore, the

fast marching approach became no longer constrained to point body dynamics, and

it becomes practical tool in path planning for robotics. Please see Figure 2-2. Another

very important step in path planning by using anisotropic approach, based on fast

marching method, is proposed in (Sethian and Vladimirsky, 2000). This has special



importance for underwater path planning because no isotropic approach can represent

the nature of dynamic ocean environments.

Variational calculus based approaches in level set methods were first introduced by

(Zhao et al., 1996). The application of path planning based on variational level set

method is proposed in (Cecil and Marthaler, 2006). In this study, they consider the

problem of producing a search path for finding targets, in the presence of uncertainty.

The goal is to find a optimum (shortest) and confident trajectories for target search.

In their second paper (Cecil and Marthaler, 2006), they extend their previous 2 di-

mensional work to a 3 dimensional framework. They also use codimension-2 solutions

for level set evolution and reinitialization schemes.

Figure 2-2: Robotic path planning with differential constraints (reprinted from (Kim-
mel and Sethian, 2001))

A different perspective to anisotropic path planning problems is proposed by (Al-

ton and Mitchell, 2009). In this study, a new class of static Hamilton-Jacobi Partial

differential equation with axis-aligned anisotropy is described. On orthogonal grids,

this anisotropic static Hamilton-Jacobi equation satisfies the causality condition re-

quirement for standard finite-difference schemes and can therefore be solved using the

fast marching method. They also present variations of Eikonal equation which use



L1, L2, and L-infinity norms on orthogonal grid domains of varying node spacing and

arbitrary dimension. See Figure 2-3.

06 1/ 32

(t a Mi l 2000 9

0 0-

(Alto an Micel 20.9)

Today, researchers of robotics and image processing areas are increasingly incor-

porating level set and fast marching based approaches based approaches into path

planning algorithms. With the increasing developments in mathematical techniques

and computer technology, there is no doubt that these approaches will continue to

stay as one of the main focus of the researchers. Because of the huge potential of the

studies in robotics and image processing fields for the underwater path planning, the

researchers, who are working on underwater path planning, should carefully follow

developments in these fields. In the next section, we will review the path planning

algorithms for AUVs based on level set and fast marching methods.

2.4 Underwater Path Planning with Level Set and

Fast Marching Methods

Due to the highly dynamic nature of the sea, underwater path planning needs

anisotropic cost functions. An anisotropic approach for underwater path planning

using fast marching method was first introduced by (Petres et al., 2007) . The im-

portant aspects of this proposed anisotropic approach are that the curvature of the



final trajectory is constrained, which makes it possible to take differential constraints

into account; new quadratic upwind finite difference scheme is developed. Therefore,

directional constraints, such as ocean currents, can be taken into account. In order

to handle the real-time constraints of underwater path planning and to speed up

the computation time, multi-resolution grid system is applied to the new quadratic

upwind difference scheme.

Basically, the proposed algorithm of (Petres et al., 2007) hinges on solving the

Eikonal equation with anisotropic cost function T. The cost function r can be thought

as the slowness of the vehicle at each point in the domain. The Eikonal equation

together with the anisotropic cost function T is stated as follows;

||VP| = T (2.1)

where 2: 2 
- !R+ is distance function to minimize, and T is dependent on the field

force (currents) T.

In order to handle currents, anisotropic cost function T is split into two parts as

in Equation-2.2. The first right hand term of the Equation-2.2 handles the isotropic

constraints on the solution domain, and the second right hand term handles the

anisotropic cost function that handles forces of the solution domain, such as ocean

currents. T obst can be seen as standard isotropic cost function as in isotropic fast

marching method. The details about isotropic cost function in fast marching method

are given in Chapter-3. The anisotropic part of the cost function T proposed by Petres

et al is stated in Equation-2.3.

7 Tobst - Tvect (2.2)

Tvect(, j) =a - (VjI U-) (2.3)



where Qj = (abst(, J) + 2a)suplU| is a normalization term, and the a represents

the gain. Basically, the second term of the cost function Tvect means that fields forces,

such as the ocean currents, favor the vehicle propulsion when they are in the same

direction.

As it can be seen from Equation-2.3, the proposed cost function is insufficient to

handle nonlinear reaction of the underwater vehicles to ocean currents. Examples are

given only for the linear reaction cases. Please see Figure 2-4 and 2-5. Another

limitation of this approach is that it can not cope with ocean fields in which ocean

currents have higher velocity than underwater vehicle's velocity (Soulignac et al.,

2008). In addition to this, (Petres et al., 2007) mention neither any utilization of the

ocean prediction system nor the applicability of their approach to the ocean model

domains.

Figure 2-4: a) Isotropic b) Path planning in the presence of currents (reprinted from
(Petres et al., 2007))

Another approach, which focuses on collision avoidance and utilizes the work of

(Petres et al., 2007), is proposed by (Evans et al., 2008). This study is composed of

three parts (layers). These are the sensor layer, scenario layer, and reactive layer. The



Figure 2-5: a) No field forces b) Path planing in the presence of currents (reprinted
from (Petres et al., 2007))

main function of the sensor layer is to generate a local map of the operation field and

to feed the scenario layer. The Scenario layer takes these local maps and incorporate

these local maps in its previously programmed scenarios to produce feasible collision

free paths. The reactive layer utilizes the fuzzy information coming from sensor and

the scenario layers to generate safe paths in case of dire emergency conditions.

The gradient of the cost function is calculated by utilizing approach of (Petres et al.,

2007), and the cost function throughout the domain is defined as in Equation-2.4.

y= min r(C(s))ds (2.4)

where C represents all the trajectories that connect start point to destination point in

domain, and r is the cumulative cost of these trajectories with length L. Therefore,

the Eikonal equation relating to the cost function stated in Equation-2.4 is given as

in Equation-2.5.

|Vpl = T (2.5)

a)le itI1flu'
L42J



In the solution approach, (Evans et al., 2008) extended the fast marching algorithm

by incorporating heuristics from A* algorithm and incremental search methods from

lifelong planning adapted from (Koenig et al., 2004). This new extended algorithm

is called Lifelong Planning Fast Marching (LPFM*). One practical result produced

by this algorithm is that when the configuration space, which is mapped onto local

maps, is modified by the sensor layer, there is no need for re-calculation of the path

while AUV is operating. Trajectory generator of this approach re-utilizes previous

calculations, and calculations are needed to be carried out just for modified region.

Examples from (Evans et al., 2008) are given in Figure 2-6.

Figure 2-6: Path planning with lifelong Fast Marching Method (reprinted from (Evans
et al., 2008))

A level set based approach for the path planning is proposed by (Xu et al., 2009).

The aim of this proposed approach is to propose a minimum risk trajectory plan-

ning method that relaxes the computational cost of path planning based on level

set method in case of new obstacle detection while operating AUVs. This approach

does not consider dynamics of the vehicle. It is assumed that collision risks in the

operation region are detected by on-board limited range sensors. At every grid point,

the cost function, which drives motion of the front in the normal direction, is defined

according to the probability that indicates the risk of collision.



In this work, the computational cost of the path planning algorithm is reduced with

two ways. First, it is assumed that if there is no risk of collision, previously planned

trajectories remains optimal. Second, if an obstacle that creates risk of collision

is detected, level set solution is only re-produced for this portion of the domain,

and it is shown that this still gives optimal collision free trajectories. Underwater

environments, such as riverine systems, are the main motivation of this work, and

examples are given in Figure 2-7 and 2-8 .
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Figure 2-7: Level set contours without obstacles (reprinted from (Xu et al., 2009))

An elegant utilization of level set and fast marching methods for the objective anal-

ysis of ocean fields was developed by Multidisciplinary Simulation, Estimation and

Assimilation System group at MIT, and it is proposed in (Agarwal, 2009). Objective

analysis is a method to create a set of consistently gridded ocean fields from sparse

observations (Bretherton et al., 1976). In this study, fast marching and level set meth-

ods are utilized for the estimation of length of optimal shortest sea paths to develop

novel objective analysis scheme for complex coastal regions and archipelagos (chain

or cluster of islands). A novel fast marching method based approach for estimation of



Figure 2-8: Path planning with detected obstacles (reprinted from (Xu et al., 2009))

absolute velocity under geostrophic balance in complex, multiply-connected coastal

domains is presented. It is also demonstrated that proposed approach is more efficient

and accurate than stochastically forced differential equations approach.

This section has reviewed the existing art related to the underwater path planning

for AUVs. Underwater path planning other than level set based approaches and level

set based path planning approaches for robotics and image processing are introduced

in the sub-sections 2.2 and 2.3. The studies reviewed here were selected because of

their contributions to the underwater path planning and the fact that they exploit

the stated methods, such as genetics algorithms, etc., in an interesting and unique

way.

The writer of this thesis believes that level set framework for the path planning in

an ocean like environments has promising potential for the future. Even though the

introduced techniques for the level set based path planning in this section have some

important disadvantages, the level set based approach has a huge potential for being

one of the best methodology for the path planning in an ocean-like environments,

and as it is stated before, one objective of this thesis is to to contribute to this.



The future use of level set based path planning in control of autonomous underwater

vehicles is tied fundamentally to general advances in mathematical theory and com-

puter technology. Due to the large mathematical nature of the level set based path

planning, developments that arise in applied mathematics in one area are likely to

provide benefits to the level set based path planning. The continued progress in com-

puter technology and applied mathematical techniques will permit further realization

of the level set based path planning. A challenge in ocean-like 4D environments is

the large amount of computational-time required to reach a desired solution. On the

other hand, the increasing availability of cheap, high-performance computing tools,

coupled with advancements in mathematical techniques, will undoubtedly provide

great benefit. In addition to increasing the effectiveness of the technique for level set

based path planning techniques, developments in the field of applied mathematics

should also make new level set based path planing methods for an ocean like environ-

ments possible, such as the narrow-band level set method (Adalsteinsson and Sethian,

1995), semi-lagrangian fast marching algorithms for optimal control , which is called

Buffered Fast Marching Method (Cristiani, 2009), and the stochastic formulation of

the level set method and its combination with filtering algorithms, such as (Osher

and Paragios, 2003), (Soner and Touzi, 2002), and (Paragios and Deriche, 2002).



Chapter 3

Level Set Method Theory

3.1 Introduction

The aim of this chapter is to provide an introduction to the theory used in this

thesis, and the theory of the level set method in particular. Level set method is a

computational technique to simulate the evolution of the interfaces and is an approx-

imation of solutions to the Hamilton-Jacobi type partial differential equations. It

was first introduced by Osher and Sethian (Osher and Sethian, 1988). It can easily

simulate the changing topology of the interfaces by parameterizing this interfaces in

a higher dimensional space. It has been applied to many different fields such as fluid

mechanics (Sussman and Puckett, 2000), computer graphics (Malladi et al., 1995),

applied physics (Ki et al., 2001), geosciences (Agarwal, 2009), (Lermusiaux et al.,

2011), and (Gout and Guyader, 2006), and robotics (Hassouna et al., 2005). In level

set context, there are two different formulation of interface evolution. First formula-

tion is the initial value formulation which is known as the classical level set method,

and the second formulation is boundary value formulation which is known as the fast

marching method. We will begin our discussion with classical level set method, and

then fast marching method will be discussed. The discussion in this chapter is based

on (Osher and Fedkiw, 2003)



3.2 Level Set Method

3.2.1 Formulation of Time-Dependent Front Evolution in the

Normal Direction

The Eulerian approach proposed by level set methodology is to embed evolving

fronts as zero level set of a N dimensional function # to represent the motion of N-1 (co-

dimension 1) dimensional hypersurface. For the 2 dimensional case, let #(x, y, t = 0),

where (x,y) defines the grid locations in 2 dimensional space.

#(x, y, t = 0) = td (3.1)

where d is the distance form zero level set F(t = 0). The sign in front of the d is

negative if the grid location (x,y) is inside the initial zero level set F(t = 0), and

opposite otherwise. Therefore, the initial function #(x, y, t = 0) : R 2 -+ R has a

property on the interface that

F (t) = (X, y) :(x, y, 0) = 0 (3.2)

where F represents the closed interface curve bounding a open region Q, # is

known as the signed distance function, and # is assumed to take negative values

inside the bounded region, and positive values outside the bounded region, and these

are represented by Q- and Q+ respectively. Therefore, the signed distance function

on the level set solution domain has the following properties.

#(x, y, t) < 0 f or(x, y) c Q

#(x, y, t) > 0 f or(x, y) E C+

#(x, y, t) = 0 for (x, y) c F(t)



Now, the goal is to come up with an equation to represent evolving function

#(x, y, t) which includes the embedded evolution of the F(t) as the zero level set of #.
In order to match the zero level set of the evolving function # with the propagating

front F, we must have

(x, y, t) = 0 (3.3)

and by the chain rule

#t + V#(x, y, t)- X' (t) = 0 (3.4)

where X(t)=(x(t),y(t)), Since unit normal vector to the evolving front is defined as

-i and V(X(t)) = Xt , given #(X,t = 0), the evolution equation, also

known as level set equation, can be written as

#t + V|V#I = 0 (3.5)

Since the domain coordinate system is fixed, this solution is known as the Eulerian

formulation of the front propagation. See Figure 3-1 for the demonstration evolving

circle.

-i;;. .-o

Figure 3-1: Evolving circle (reprinted from (Sethian, 1996b))
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The major advantages of the level set formulation can be stated as follows

* First, if V(X(t)) is a smooth function, the evolving function #(X, t) remains

signed distance function. In spite of this, as the zero level set evolves # 0 can

change its topology, form corners, etc.

" Second, since the evolving #(X, t) remains as a function, a finite difference

approximation can be used to compute the evolving 4.

" Third, the intrinsic properties of the evolving front can easily be calculated

using a level set function #. For instance, the normal vector to the evolving

front and curvature of the each level are respectively given by Equations 3.6

and 3.7.

" Fourth, the level set approach can easily be extended to represent evolving 3

dimensional fronts by just making straightforward extensions to gradient oper-

ators and the array structures.

-i Vq (3.6)
|v4|

V = (3.7)
|V#| (42 +0#2)2

3.2.2 Viscosity Solutions

Since the numerical solution techniques of the level set method are based on viscos-

ity solutions of Hamilton-Jacobi equations, we will briefly introduce viscosity solutions

before discussing numerical approximation for the normal motion of the fronts. The

viscosity solution concept was first proposed by (Crandall and Lions, 1983). The vis-

cosity solution concept is a mathematical approach to solve a certain class of PDEs,

which is of the form of F(x, #, V#, V 24) = 0, and the function # needs not be every-

where differentiable. Even if there are points where V# or V 2 #0 does not exist, the



viscosity solutions satisfy the given properties of the PDE, and it gives solution to the

given PDE. Therefore, uniqueness and existence theorems hold. In addition to that,

viscosity solution concept leads to stabile numerical solutions of the given PDE. It

has especially been applied to PDEs arising in optimal control and differential games,

where continuous solutions do not exist (Fleming and Soner, 2006). Since, in our

path planning framework, we are interested in solving the first order Hamilton-Jacobi

type equations, our objective PDE takes the form of Equation 3.8.

F(x, #, V4) = 0 xG Q C R7 (3.8)

One of the best known approaches to solve the PDEs of the form of Equation 3.8

is the method of characteristics. However, local smooth solutions produced by this

technique cannot be applied to whole solution domain Q. In fact, singularity occurs

if the two or more characteristic front coincide at the same point on the domain Q

(Giga, 2006)

Even though the function # is not continuous or differentiable over the entire do-

main, we can solve Equation 3.8 by utilizing the viscosity solution technique. Let

E - 0+. The idea of the viscosity solution technique is that the solutions #, of the

parabolic PDE problem of the form of the equation below converge to a unique limit

of # (Crandall et al., 1992).

F (x, us, V~e = cA 0 (3.9)

At each point on the domain where # exists, characterization of the limit function

can be made by applying certain inequalities on its super and sub-differentials. See

Figure 3.1. On the open set C R1, let #: - R be a scalar function and the p V#.

The super-differential and sub-differential sets of # at the point X is defined as in the

Equation 3.10 and 3.11 respectively (Bressan and Piccoli, 2007).



(3.10)e ~lim sup q$(Y) - $(X) - p - (Y - X)
Y-yx |Y-X -

D~#(X) -

Figure 3-2:
2007))

(p Rn; lim inf q(Y) - O(X) - p. (Y - X) > 0) (3.11)

Super and Sub-Differential of # (reprinted from (Bressan and Piccoli,

Namely, for every point X E Q and p E D+#((X), the function # is a viscosity

subsolution of the Equation 3.8 if F(X, #(X), p) < 0, and for every point X E Q

and p C D-#((X), the function # is a viscosity subsolution of the Equation 3.8 if

F(X, #(X), p) > 0.

Since we are interested in the time-dependent formulation of the front evolution,

we define Hamiltonian H = H(X, #, V#, t). Note that second term VTL|V# of the

Equation 3.5 is of this type.

#t + H(X, #(X), V#, t) = 0 (3.12)

Therefore, by applying similar definitions stated above to the Equation 3.12, we

obtain the following statements;



* If for every point X c Q, a function p = p(X, t) such that # - cp has a relative

minimum at (X,t), the function # is a viscosity super-solution of Equation 3.12.

Therefore, Equation 3.13 holds

cot + H(X, #, V, t) > 0 (3.13)

" If for every point X E Q, a function p = o(X, t) such that # - p has a relative

maximum at (X,t), the function # is a viscosity sub-solution of Equation 3.12.

Therefore, Equation 3.14 holds

wo + H(X, 4, Vo, t) < 0 (3.14)

Now, we will discuss the existing approaches to numerically characterize and dis-

cretize the viscosity solution approach. For references, we refer first to (Crandall and

Lions, 1984), where monotone first-order approach is proposed. Later, in the work of

(Osher and Sethian, 1988), higher order method was developed by utilizing the con-

nections between conversation laws and Hamilton-Jacobi type PDEs. In this thesis,

Godunov method, which is proposed in (Godunov, 1959), is used for the characteri-

zation of the motion in the normal direction. Despite the difficulties in implementing

this method, it can properly characterize and satisfy the viscosity solution approach.

3.2.3 Numerical Discretization of the Front Evolution in the

Normal Direction

In this thesis, we utilize the normal motion of the evolving front for representing

the AUVs motion (assuming that there is no field force) from a given starting point

on the #(X, t = 0) to the any point on the #(X, t = tf). We utilize the Godunov

method to characterize this front evolution in the normal direction.



The Godunov method is an exact numerical solution technique for the Riemann

problem. Before we give the multi-dimensional formulation of Gudonov method for

Hamilton-Jacobi type equations, definitions are given. Let D+, D-, and D' be first

order forward-difference, backward-difference, and the second order central-difference

operators respectively. Therefore, the forward and the backward finite difference

approximations for the differentiation of the signed distance function # is given as

a9s ~ Oi+1 - cb
Ox Ax

a#q # - #i - 1
a9x Ax

ax #i+1 - di - 1

ax 2 Ax

(3.15)

(3.16)

(3.17)

Let Ix and Iy be intervals such that Ix = [#0min, #nax) and IP = [#'i, #ax]' . Let also

define extxH and extyH as follows. For all #x E Ix

extxH {min(H)

max(H)

H

if D-#$ < D+

if D+#x < D-#x

otherwise

Similarly, for all #y E IY

extyH =

min(H)

max(H)

H

if D--# < D+Oy

if D+#$ < D-#y

otherwise

By using the definitions above, the Multi-dimensional (in 2 dimensions) formulation

of the Godunov scheme for Hamilton-Jacobi type equations can be written as

H = extzextyH(#2m, # (1(3.18)



Basically, the statement made by Equation 3.18 can be described as follows. For

the sake of brevity, we will consider one dimensional case. Assuming V, > 0, H

is minimized by extxH if D-#x , D+#5 are both positive and D-#2 < D+#2. H is

maximized by extxH if D-#2 , D+42 are both positive and D-#2 > D+#2. Similarly,

extxH if D-#2 , D+#5 are both negative and D-#2 < D+#$. H is maximized by

extxH if D-#2 , D+#2 are both positive and D-#x > D+#,. In the first case, we

choose D-#0, and in the second case, we choose D#, which are consistent with

upwinding, Now, consider the case that a kink occurs, H is minimized by extxH if

D-#2 < 0 , D+#5 > 0, and D-#$ < D+#$. This minimization is achieved by setting

D#2 = 0. H is maximized by extxH if D-#2 > 0 , D+#2 < 0, and D-#2 > D+Ox.

This minimization is achieved by taking the maximum magnitude of D-#3 and D+

Even though the Godunov method is difficult to implement, because of its success to

handle artificial dissipation and to characterize the viscosity solution of front evolution

problem, it was chosen for this thesis work. In summary, It can be summarized as

follows: for both positive or negative V,

D-#2 if VnD-#2 > 0 and VD+#2 > 0

D+#2 if VD-# < 0 and VD+# < 0

D#= 0 if VnD-#& < 0 and V,D+#2 > 0 (3.19)

max(|VD-#|, |VD+#q|) if VD-# ;> 0 and VD+#2 < 0

0 otherwise

In the paper "A Viscosity Solution to Shape from Shading", (Rouy and Tourin,

1992) proposed the scheme given in Equation 3.19 which elegantly characterizes the

Godunov method.



max(max(D-#2, 0)2, min(D+#2, 0)2) if V, > 0
D =2 )(3.20)

max(min(D-#, 0)2, max(D+#2, 0)2) if V, < 0

3.2.4 Front Evolution Due to Field Forces

In addition to our underwater vehicle speed which is characterized by front evolu-

tion in the normal direction, since underwater vehicles are subject to field forces such

as ocean currents, the zero level set front evolution can be affected by externally gen-

erated velocity field V = V(x, y, t). If there is no normal (vehicle in drift condition)

motion but external velocity on the interface, the motion of the interface is same as

external velocity field. For instance, if the velocity field on the interface is V = (0, 1)

, and the V = Vn(x, y) = 0, then the interface is only driven by external velocity field

and move up. We use the advection equation to simulate interface motion driven by

an externally generated velocity field. The advected front evolution equation is

#t + VV# = 0 (3.21)

Even though the velocity field V generally is defined on the whole domain Q,

it is better to use the field values in the band containing the zero level set of the

signed distance function #. One important advantage of band implementation is

that less steep gradients may occur far from the zero level set # = 0 on the domain

Q. Therefore, we need less reinitialization of our signed distance domain. For more

information, about reinitialization of the signed distance field, we refer to Subsection

3.2.8.

3.2.5 Numerical Discretization of the Front Evolution due to

Field Forces

Let's consider the Godunov method discussed in subsection 3.2.3 again. In contrast

to front motion in the normal direction, we have separate velocities u and v in every

cartesian direction. Therefore, we can separate Equation 3.18 as follows



extzexty H = ext2(u#2) + exty(#) (3

By using the Godunov method concept discussed in subsection 3.2.3, we can summa-

rize the the approach used in this thesis as

D#2x =

Doy =

(3.23)

0 if u = 0

> 0

< 0

= 0

D-0v

D+#o

0

(3.24)

Equations 3.23 and 3.24 are identical to standard Upwind Difference Method which

was introduced by (Courant et al., 1952). On our domain, upwind difference method

discretizes the signed distance domain by taking finite difference biased by the sign

of characteristic speed of the front. By using the Equations 3.23 and 3.24, upwind

difference scheme is summarized in Equation 3.25 and 3.26.

= max(u, 0)D

= max(v, 0)D

-x + min(u, 0)D+q5

q#y + min(v, 0)D +

(3.25)

3.2.6 Curvature-Driven Front Evolution

The last type of motion, which can be simulated by the level set method is curvature

driven flow which is known as mean curvature driven motion of the interface. In the

case of curvature driven motion of the interface, the interface moves in the normal

direction with velocity proportional to its curvature. In the level set setting, the

curvature dependent motion of the interface has only a component in the normal

D#2

D#5

(3.22)



direction. Therefore, the normal velocity can be defined as V = -bnN where b is a

constant and r is a curvature given in Equation 3.7. If b < 0, the interface moves in

the direction of concavity. If b > 0 , the interface moves to the direction of convexity.

The curvature driven interface motion equation can be given as

#t + VcV# = 0 (3.26)

In this thesis work, we dot not utilize the curvature-driven front evolution of the

signed distance function. Therefore, we just content ourselves with a brief discussion

of numerical characterization of the curvature-dependent signed distance function

evolution. Since the second term of the Equation 3.26 is parabolic, central finite

difference scheme is needed to characterize this equation (Malladi and Sethian, 1996),

or the second order scheme that is used in (Agarwal and Lermusiaux, 2011) can be

utilized. For the 2 dimensional case, the central difference scheme for the curvature-

dependent motion can be written as

D# = brs((D"#O2 (D #,2)2 2 (3.27)

3.2.7 Putting Everything together

In order to obtain general interface evolution, we put equations 3.5, 3.21, and 3.26

together. Therefore,

#t + VV4 + Vn|V5 - VcV4= 0 (3.28)

In our path planning setting, we are not interested in curvature dependent term of

the equation 3.28. Therefore, we are just interested in solving the first two terms of

the equation 3.28. Therefore, the Equation 3.28 is reduced to Hamilton-Jacobi type

PDE given in Equation 3.29, and the Equation 3.29 can be rewritten as in Equation

3.30.



#t + VV + V|V#|=0 (.9

4t + H(X, U, #, V#) = 0 (3.30)

Now, we are beginning discussion of discretization of the Equation 3.30. Let H1

and H 2 be Hi = u + Vn#2|V#|-1 and Hi = v + Vdy|V#|-1 respectively. If the

signs of u and V, are same for both D-#2 and D+42, the front moves in the same

direction with u and V,. Therefore, by referring the Equations 3.19 and 3.23, we set

Dox = D-#x.

Now, consider the case where u and V, do not have same sign. This means that the

normal motion and advected motion of the front are in opposite directions. In order

to satisfy upwinding requirements, one needs to determine the dominant motion of

the front. Therefore, by referring to the Equation 3.19 and 3.23, we can make our

characterization of the front evolution in 2 dimension, as follows:

D-#O

D+#2

max(ID-#2|, lD+#|)
-U

vn

0

D-#O

D+#O

max(ID-#yl, D+#yl)

-V

vn

0

if Hi > 0 for both D-#2 and D+,

if H1 < 0 for both D-#x and D+,

if HI > 0 for D-#x and Hi < 0 for D+Ox

if Hi < 0 for D-4x and Hi > 0 for D+5

otherwise
(3.31)

if H 2 > 0 for both D-#q, and D+5

if H2 < 0 for both D-#, and D+$

if H2 > 0 for D-#y and H 2 < 0 for D+

if H 2 < 0 for D-#y and H 2 > 0 for D+$

otherwise
(3.32)

(3.29)

D#X = <

Dou = <



Note that if Hi < 0 for D-#2 and Hi > OforD+#0, we set D#,, is equal to -u/V

because the Godunov method chooses the minimum value for H, and this relative

minimum occurs when H1 is equal to zero. This statement is also valid for H 2.

In this thesis work, the method Godunov method is utilized to characterize the

front evolution. We define the front zero level set of the signed distance function #.
Despite the success of Godunov method to characterize the front evolution, as the

front evolves, the signed distance function field generally looses its signed distance

property. In the next subsection, we will discuss this issue of the signed distance

function.

3.2.8 Construction and Reinitialization of the Signed Dis-

tance Field

As it is stated in the previous subsection, the signed distance function needs to be

initialized to start calculations and reinitialized during the run to avoid numerical

instabilities. In seminal work of (Osher and Sethian, 1988), the signed distance func-

tion is initialized by using # = 1 T- d2 where the distance function d takes the minus

sign in Q- and positive sign in Q+. In the work of (Mulder et al., 1992), it is shown

that # = Td is a better choice which gives better results than approach of (Mulder

et al., 1992).

In the work of (Chopp, 1993), the notion of reinitialization is introduced. In this

work, reinitialization is realized by stopping calculations at certain frequency and by

calculating distance of every point on the domain Q from the zero level set contour

# = 0. In this thesis work, reinitializations for 3 dimensional calculations is of this

type. In order to discretize and locate the zero level set of the function # during

the 3 dimensional calculations, we utilize crossing time approach proposed for the

image processing applications in the series of papers (Bruckstein, 1988), (Kimmel

and Bruckstein, 1992), and (Kimmel and Bruckstein, 1993).



In order to find the zero level set front of the signed distance function #, we find

isocontours of the crossing times. We utilize interpolation techniques to find the

crossing time isocontours if the zero level set front does not lie on the grid points.

Assume that we stop calculations at time T. This time T contour gives the zero level

set of the signed distance function #. Then, we calculate distance every point on the

domain from time T isocontour. If the grid point crossing time tgrid is less than T,

the distance takes negative sign. If the grid point crossing time (predefined) tgrid is

greater than T, the distance takes positive sign. Therefore, we can re-construct our

signed distance field again.

For the 2 dimensional calculations, instead of calculating every grid point distance

from the zero level set contour, we utilize fast marching approach which can accu-

rately calculate the signed distance field. More information regarding reinitialization

with the fast marching approach will be given in Section 3.3. Several reinitialization

approaches have been proposed to avoid numerical losses on the signed distance field.

For more information and recent advances about reinitialization of the level set cal-

culations, we refer the reader interested in reinitialization of the signed distance field

to (Russo and Smereka, 2000), (Sussman et al., 1994), and (Sussman and Fatemi,

1999).

3.3 Fast Marching Method

3.3.1 Introduction

Before introducing fast marching method, we should first consider Dijkstra algo-

rithm. The Dijkstra algorithm is closely related to the fast marching method. It can

be said that the fast marching method is a continuous formulation of the Dijkstra

algorithm(Sethian, 2001). Dijkstra's algorithm, first introduced by Edsger Dijkstra

in 1956 (Dijkstra, 1959), is a graph search algorithm that finds the shortest path

between given start and terminal points on the graph. This algorithm is widely used

in robotics, computer science, and several engineering disciplines.



3.3.2 Dijkstra Algorithm

Now, let us give the definition of the Dijkstra shortest path algorithm. Given

weighted graph G(V, E) , the shortest path between any 2 vertex on this graph can

be found by the algorithm given below.

1. At the beginning all nodes are marked as unvisited. Set start node as current

node

2. Compute temporary distance from current node to all neighbor nodes. For

example, if the recorded distance from any neighbor node to initial node is less

than the previously recorded distance from initial node to this neighbor node,

overwrite the previously recorded distance to this neighbor node. When we are

done with checking all neighbors of the current node, mark the current node as

visited. A visited node will never be visited again, and the recorded distance of

visited node is eventual and optimum.

3. If all the nodes have been marked as visited, finish the process. Otherwise,

continue with the smallest distance as the next "current node" and continue

from step-2.

The complexity of the Dijkstra's Algorithm is O(M log M) . The Dijkstras Algo-

rithm gives the solution to the discrete optimal path planning problem on a given

cartesian grid. Mathematically, the Dijkstra's Algorithm can be stated as follows

(Sethian and Vladimirsky, 2004); consider a cartesian grid domain with grid size Ah.

The cost for crossing each grid point Xjj = (iAh, jAh) in this domain is given as

Ji 3 > 0. Therefore, the optimum cost function for the neighbor point of Xjj, for

instance, for the point Xi+,, can be found as follows

J(X+1,j) = min(f (Xj.j)c(Xi+, 3 ) + J(Xi,)) (3.33)

where f is weight associated with the point Xi,j, c is cost to go from Xjj to Xi + 1,

and J(Xi,j) is minimum accumulated cost at the point Xj,.



3.3.3 Fast Marching Algorithm

Fast marching algorithm is a numerical method to solve the nonlinear Eikonal equa-

tion. On the rectilinear grid domain which has M grid points, analogously, the com-

plexity of the fast marching algorithm is O(M log M) (Sethian, 2001). Dijkstra-like

continuous viscosity solution formulation approach for solving the Eikonal equation

is proposed in the seminal papers of (Tsitsiklis, 1994) and (Tsitsiklis, 1995). Then,

in the paper of (Sethian, 1996a), the upwind difference method is proposed to char-

acterize viscosity solution approach proposed in (Tsitsiklis, 1995) and fast marching

idea is shown. For more information, we refer to (Sethian and Vladimirsky, 2004).

It can be said that fast marching is a stationary and continuous formulation of the

front evolution characterized by Eikonal Equation. See Equation 2.1. The term T in

the Equation 2.5 can be considered as the term f(X)c(X) in the equation 3.33. As

in Dijkstra algorithm, the upwind difference operator with signed distance function <;

decides which grid point to update first (Step-2 of Dijkstra Algorithm) by solving the

Eikonal Equation. This continuous update is realized by the viscosity solution which

is characterized by the upwind difference method. For the two dimensional case, the

upwind difference method used for the fast marching algorithm is given in Equation

3.34 (Sethian and Vladimirsky, 2000). Note that the yL becomes t T in this case.

max(D-T, -D+T,,0)
[rnx(h ~ ~ = 0) (3.34)max(D--T., -D+Ty, 0)

The algorithm for the fast marching method can be stated as follows

1. Mark all the neighbor points which are lies on and inside initial front as accepted,

and mark all the other points in the domain as considered. See Figure 3-3.

2. Mark all the points close to the front as trial. If the points in the trial set are



far from the front remove them and put them back to the set of considered,

form a narrow band as in the Figure 3-3.

3. Mark trial points to set of accepted points.

4. Recalculate the values of T at all neighbors of Trial points by using Equation

3.34.

5. Return to second step of the algorithm.
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Fast Marching Algorithm; red points represents set of accepted points,
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Fast marching algorithm has been used in many different areas such as geosciences

(Agarwal and Lermusiaux, 2011), medical imaging (Parker et al., 2002), etc. It is

faster than level set method, and implementation is not complicated. One drawback

of the fast marching algorithm is that it can only be used for fronts evolving in the

outward or inward, but not in the both direction. However, for the purpose of re-

constructing signed distance field, fast marching method is the accurate way of doing

it. Therefore, we utilize it for the reinitialization of the signed distance field of the

two dimensional path planning calculations.
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3.3.4 Reinitialization of the Signed Distance Field with Fast

Marching

Unfortunately, the signed distance function looses its signed distance property after

a certain time step. The frequency of reinitialization depends on calculation and are

determined by experience. The idea of reinitialization with fast marching algorithm

is stated as follows.

" At certain time steps, stop level set calculations

* Solve the Equation 3.35 and evolve front in the outward direction, using points

that lie on the zero level set # = 0 as the initial accepted points. Note that

interpolation is needed if the zero level set does not lie on the grid points.

|V =inil = 1 (3.35)

" Solve the Equation 3.35 and evolve front in the inward direction, using points

that lie on the zero level set # = 0 as the initial accepted points. Again,

interpolation is needed if the zero level set does not lie on the grid points.

" Set # = #ini

" Continue level set calculations.

3.4 Backward Calculations

In this section, since one of the steps of our path planning algorithm includes back-

wards computation for finding contour normal curves, We will discuss solution method

we used in this thesis. Along the level set calculations, we record history of level set

motion by recording crossing times. Therefore, at the end of the calculations we have

crossing time contours characterized by Tcross. This is a major new contribution of

this work. Examples of crossing time contours are given in Chapter 4 Section 4.3.



In order to find normal to these contours, we solve the following ordinary differential

equation (ODEs).

Xt = VTcross (3.36)

There are many different approach for integration of ODEs, such as the Runge-

Kutta method, Leapfrog integration for initial value problems, and collocation meth-

ods for boundary value problems (Hoffman, 2001). In this thesis work, we utilize the

Euler method to solve the Equation 3.36. The mathematical description of the Euler

method is given as follows (Ascher and Petzold, 1998). Given h' = F(h(t), t) and

h(to) = ho, the equation for Euler method

hn+1 = hA + AtF(h(tn), in) (3.37)

where At is time step. Note that the Equation 3.37 shows the forward solution, but

in our algorithm, we solve it backwards in time.

In this chapter, we have discussed all the necessary mathematical background to

produce our path planning solution. In the next chapter, we will begin presenting

our algorithm based on the information given in this chapter.



Chapter 4

Underwater Path Planning

4.1 Introduction

The aim of this chapter is to present the path planning algorithm based on the

theory given in Chapter 3 and its applications in computer. An advantage of this

algorithm is that there is no special implementation needed to handle strong or com-

plicated ocean currents. The path planning algorithm presented here can easily find

feasible trajectories in the presence of strong currents. It can easily characterize

non-linear response of AUVs to complicated ocean flows.

Another advantage of our algorithm is its tractability even for multi-agent based

settings. In case of AUVs deployment from different locations, the cost of the algo-

rithm increases linearly, and in case of same location deployment of AUVs, the cost is

just increased by the cost of backward calculation step of the algorithm. See Section

4.2 for backward calculation.

In this section first, we will present algorithm for the path planning. Then we

present the applications as test cases to demonstrate the abilities of our algorithm.



4.2 Algorithm

The basic idea of the algorithm is to represent vehicle motion by evolving a front

which is characterized by # = 0. One of the important differences of our path planning

algorithm is backward calculations for producing feasible and optimal trajectories.

In order to find feasible trajectories, we subtract the corresponding velocity from

trajectory given by crossing time contours. The idea of subtracting velocities from the

trajectory, which is normal to the crossing time contours, is introduced by Mattheus

Ueckermann (M.S) during the discussion of the path planning problem. The path

planning algorithm for AUVs, which is the core of this thesis work, can be stated as

follows

1. Initialize the signed distance domain Q Q as in stated in Subsection 3.2.8.

and set the vehicle speed V,. Note that the start point of our vehicle takes the

value of # = 0. If we work with ocean prediction system, proper scaling of the

domain Q must be done.

2. Solve Equation 3.30 for determined time step At by utilizing Equations 3.20

and 3.25 with considering Equations 3.31 and 3.32.

3. Record crossing time T of each point on the domain Q. Return to step-2 or

at every certain frequencies of the calculation time, stop calculations and go to

step-4. If the goal point is in the Q-, go to step-5.

4. Re-construct the signed distance field #. For the 2 dimensional case, use Equa-

tion 3.35, considering the information given in Subsection 3.3.4. For the 3 di-

mensional case re-construct the signed distance field as it is stated in Subsection

3.2.8. Return to step-2 of the algorithm.

5. Adapt Equation 3.37 to our domain and solve it backwards in time and subtract

corresponding velocity. Continue until reaching start point.



4.3 Applications and Test-Cases

Test-Casel: In Test-Case 1, our AUV is deployed from x = 0, y = 0 and the goal

point is at x = 0.8, y = 0.8. The speed of AUV is 1 m/s, The speed jet flow, which

is shown as a narrow band with black arrows, is constant u=0.5 and in the direction

of +x. As it can be seen from Figure 4-1, AUV changes its trajectory angle when

it reaches flow field and takes the advantage of the flow field to optimally reach goal

point.
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Figure 4-1: Test-Case 1

Test-Case2: In Test-Case 2, our AUV

goal point is at x = -0.75, y = 0.75. The

is deployed from x = 0, y = -0.3 and the

speed of AUV is 1 m/s, In contrast to the



Test-Case 1.The speed of jet flow, which is shown as narrow band with black arrows,

is higher than AUV speed and constant u=0.5 m/s, and it is in the direction of +x.

As it can be seen from Figure 4-2, AUV can find the feasible trajectory and take

advantage of the flow field even its speed is higher than AUV speed.
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Figure 4-2: Test-Case 2

Test-Case3: In Test-Case 3, our AUV is deployed from x = 0, y = -0.4 and the

goal point is at x = 0, y = 0..8. The speed of AUV is 1 m/s, In this case, we have

two different jet flow. The first jet flow, which is shown as narrow band with black

arrows on the left, has a speed higher than AUV speed and constant vi = 2m/s, and



it is in the direction of +y. The second jet flow, which is shown as narrow band with

red arrows on the right, has a speed equal to AUV speed and constant v2 = 1m/s,

and it is in the direction of +y. As it can be seen from Figure 4-3, AUV takes the

advantage of the higher jet flow on the right to optimally reach the goal point.
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Figure 4-3: Test-Case 3

Test-Case4: In Test-Case 4, our AUV is deployed from x -0.6, y = -0.6 and the

goal point is at x = 0.6, y - 0.6. The speed of AUV is 1 m/s, In this case, we have

two different jet flowing in the inverse directions. The first jet flow, which is shown

as narrow band above with black arrows, has a speed higher than AUV speed and



constant ui = 1.5m/s, and it is in the direction of -x. The second jet flow, which

is shown as narrow band below with red arrows, has a speed higher than AUV speed

and constant u2 =1.5m/s, and it is in the direction of +x. As it can be seen from

Figure 4-4, the AUV first finds feasible trajectory to cross jet flow below and takes

the advantage of this flow. Then, in order to optimally reach goal point, AUV takes

the advantage of the jet flow above.
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Figure 4-4: Test-Case 4

Test-Case5: In Test-Case 3, our AUV is deployed from x = -0.6, y = 0.6 and the

goal point is at x - -0.6, y = -0.6. The speed of AUV is 1 m/s, In this case, we

have two different jet flow. The first jet flow, which is shown as narrow band above

with red arrows, has a speed higher than AUV speed and constant vi = 1.5m/s, and



it is in the direction of +y. Therefore, it is infeasible to use any trajectory crossing

jet flow above. The second jet flow, which is shown as narrow band below with black

arrows, has a speed higher than AUV speed and constant U2 = 1.5m/s, and it is in

the direction of +x. As it can be seen from Figure 4-5, AUV first finds the optimal

trajectory, which is to flow on the right side of the narrow band above, then to cross

the jet flow below. Then, In order to optimally reach goal point, AUV takes the

advantage of the jet flow below.
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Figure 4-5: Test-Case 5

Test Case 6 In this test-case, we are interested in path planning in the presence

of complicated flows. lid-driven Cavity flow was chosen to simulate complicated flow

fields. The lid-driven cavity flow is a standard test or validation flow to test new



developed codes (Botella and Peyret, 1998). The lid-driven flow domain has simple

2 dimensional geometry. In this thesis work, we utilized the standard case where

flow field is restricted in a square domain. Dirichlet conditions are applied to three

stationary boundary and one moving boundary. See Figure 4-6. The resultant flow

with the zero level set of #, which is shown as turquoise curve, can be seen in Figure

4-7.
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Figure 4-6: Boundaries of Lid-Driven Cavity Flow Domain

In Test-Case 6, our AUV is deployed from x = 0.5, y = 0.5 and the goal point is

at x = 0.8, y = 0.5. The speed of AUV is 0.4 m/s. The maximum speed is realized

during the simulation time in the flow domain is 0.6 m/s, which is higher than AUV

speed. As it can be seen from Figure 4-8, AUV first finds the optimal trajectory to

reach the goal point



Figure 4-7: Time Dependent Lid-Driven Cavity Flow with front evolution

Figure 4-8: Test-Case 6



Test-Case 7 In Test-Case 7, we show how the AUV can take advantage of the com-

plicated flow fields by using our path planning algorithm. The flow data used in this

case is same as Test-Case 6. In this case, our AUV is deployed from x = 0.5, y = 0.3

and the goal point is at x = 0.5, y = 0.9. The speed of AUV is 0.4 m/s. The maxi-

mum speed realized along the simulation time in the flow domain is 0.6 m/s, which

is higher than AUV speed. As it can be seen from Figure 4-9, instead of moving in

straight route to goal point, our AUV follows curve trajectory which provides feasible

trajectory and advantage of the lid-driven cavity flow field.
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Figure 4-9: Test-Case 7



4.4 Path Planning with Ocean Prediction System

In this section, we show the path planning application combined with Ocean pre-

diction system. In our framework, the MSEAS ocean prediction system is used as

data provider for our path planning algorithm. The ocean prediction data is taken

from realistic ocean predictions based on the real-time AWACS and SW06 exercises

(Aug.Sep. 2006) in the New Jersey Shelf/Hudson Canyon region (Lermusiaux, 2006)

(Haley and Lermusiaux, 2010). The domain is a 172 155-km domain, with 1-km

resolution and 30 vertical levels. Objective analyses were used for estimation of the

initial conditions, using the data gathered by gliders, AUVs, ship deployed conduc-

tivity temperature depth (CTD) and the historical data taken from World Ocean

Database, Gulf Stream Feature analyses, National Marine Fisheries Service, etc. The

duration for this real-time ocean prediction simulation was 43.5 days. Here, we fo-

cus on the period during which Tropical Storm Ernesto passes by the region in late

August - early September, 2006.
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Figure 4-10: Ocean Flow Prediction on Near Surface level
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In order to simulate realistic and most practical conditions, we set our vehicle speed

to 0.25 m/s, which is most of the currently operated underwater gliders' maximum

speed. The goal of vehicle is to reach the goal location from start position which are

shown in Figure 4-10. In this simulation, we use ocean prediction data of Middle

Atlantic Bight region, which is subject to tropical storm Ernesto. Therefore, if the

glider use the straightforward trajectory from start location to goal location, it is

impossible to reach goal location because of the strong ocean currents in the region.

However, by using the algorithm presented in this thesis in 3D, our glider dive into

deep, near bottom levels (80 m) of the ocean, and it takes the advantage of the flow

field in the deep ocean region. See Figure 4-11 for the near bottom flow field. Note

that the colormap shown in Figures 4-10 and 4-11 are velocities(m/s) of ocean

currents.
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Figure 4-11: Ocean Flow Prediction on Near Bottom level

In this chapter, we have presented our new 3D path planning algorithm for AUVs.

As it is shown in Section 4.4, our path planning algorithm can be used in real-time



Yx

Figure 4-12: 3D Path Planning, red curve represents 3D Trajectory and other curves
represent projections on cartesian planes

operations carried out by underwater gliders and vehicles. On the other hand, the

capabilities of our path planning algorithm is not limited to underwater path planning.

It can also be used for autonomous sea surface vehicles, vehicles operated in the

atmosphere such as montgolfier balloons, or any environment that has a dynamic

flow. Other possible improvements for our path planning algorithm are discussed in

the next chapter.
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Chapter 5

Conclusions

From the naval operations to the scientific missions, the importance of autonomous

vehicles is increasing with the advancing underwater robotics technology. There is

no doubt that one crucial part of these autonomous underwater missions is to pro-

duce optimal and feasible paths. The goal of this thesis is to propose an optimal,

feasible, and tractable underwater path planning algorithm which can be utilized for

autonomous underwater vehicle operations. In order to fulfill this goal, a comprehen-

sive review of existing underwater path planning and related robotics path planning

algorithms together with the advantages and disadvantages of these methods were

discussed in Chapter 2. Then, the underpinning theory of the presented underwa-

ter path planning algorithm, which is level set method, was discussed in Chapter 3.

Detailed discussion of numerical and theoretical aspects of the level set method was

made. In Chapter 4, our path planning algorithm was presented. In order to show

the capabilities of presented algorithm, many realistic and non-realistic test cases are

demonstrated. Finally, to show the real-time capabilities of our algorithm, 3D path

planning together with the Multidisciplinary Simulation Estimation and Assimilation

System (MSEAS) data was demonstrated.

We believe that level set method is a promising framework to produce optimal,

feasible, and practical solutions for underwater path planning, and the presented path



planning algorithm can be developed and extended in many ways. The summary of

the results and the future work suggestions are stated as follows.

5.1 Summary of Results

One of the advantage of the presented algorithm is its capability and efficiency to

handle non-linear response of the underwater vehicles to complicated time-dependent

and intermittent ocean flows. It was demonstrated that even in fully chaotic flow

environment, our algorithm can work without any need of special implementation.

Second, in addition to built-in capability of handling complicated flows, our path

planning algorithm can easily produce feasible trajectories without need of special

implementation. If the algorithm cannot produce any feasible trajectory between start

and goal points, that means there is no feasible trajectory in the problem domain.

Third, since the ocean has complicated dynamics and analytically unpredictable

behaviors, ocean prediction and simulation models, such as MSEAS, must be used in

order to produce reasonable predictions of optimal paths.. The presented algorithm

can easily work with ocean prediction system with just making minor modifications,

such as scaling and smoothing of the fronts. This was completed for an example in

the Middle Atlantic Bight region in ocean conditions corresponding to the passage of

a tropical storm.

Fourth, a very important aspect of our algorithm is that its tractability and accu-

racy even for large ocean domains and data.

Finally, in case of multi-vehicle operations, if the vehicles are deployed from same

location, the cost of our algorithm is just increased by the cost of the backwards

solution needed for each vehicle. The level set framework is open to improvements,

and many modification can be made to improve the presented algorithm. On the



other hand, many exciting research questions are waiting to be explored. In the next

subsection, we will discuss these open research questions and suggestions.

5.2 Suggestions and Future Work

One important constraint of real-time underwater vehicle operations is that com-

putational cost of path planning algorithms. For our path planning algorithm, the

computational cost can be decreased by implementing well-defined level set solutions,

such as narrow band level set method (Adalsteinsson and Sethian, 1995), sparse field

level set method (Whitaker, 1998), sparse block grid level set method (Bridson, 2003),

octree level set method (Strain, 1999) and (Losasso et al., 2004), run-length encoded

level set method (Houston et al., 2006) and (Nielsen and Museth, 2006), and for non-

uniform ocean data, point based level set method (Corbett, 2005). For instance, one

improvement can be made by implementing narrow band level set method. In the

narrow band implementation of the level set method, since the calculations are car-

ried out in the small band around the zero level set, the computational cost decreases

considerably.

Considerable amount of computational cost of our path planning algorithm comes

from the reinitialization of the signed distance domain. Instead of implemented reini-

tialization approaches used for this thesis work, more efficient reinitialization schemes

can be used for decreasing the computational cost of our path planning algorithm,

such as method proposed in (Sussman et al., 1994). On the other hand, determining

the frequency of reinitialization during the path planning calculations is still open

research question. There is no doubt that if ideal forms of reinitialization are deter-

mined, this will lead to more efficient autonomous underwater vehicle operations.

Another open research question is to develop fully consistent level set numerical

scheme to combine path planning algorithm with the ocean prediction system. In ad-

dition to that, combining stochastic ocean predictions with our path planning schemes



remains as exciting research subject. Currently, The Multidisciplinary Simulation Es-

timation and Assimilation System Group of MIT is exploring this promising research

question.



Appendix A

Description of Matlab Files

A.1 Matlab Scripts for Two Dimensional Calcula-

tions

cavitypathplanning.m (Function) This matlab function conducts path plan-

ning in the presence of cavity flow. It uses cavity flow data supplied by the user. It can

also be used for other data without need of special implementation. Note that data

must be in the search directory of Matlab. The structure of cavitypathplanning.m

function is stated as follows.

cavitypathplanning.m(rx,ryO,rx,ry)

where rxO is cartesian x coordinate of start point, ryO is cartesian y coordinate of

start point, rx is cartesian x coordinate of goal point, and ry is cartesian y coordinate

of goal point.

pathplanning2d.m (Script) This Matlab script conducts two dimensional ide-

alized test cases. In order to make changes in flow field, code must be modified.



A.2 Matlab Scripts for Three Dimensional Calcu-

lations

readvelodata.m(Function) This Matlab function reads MSEAS data and puts

it into path, and it reads velocity components at every time step from given ocean

prediction data. The structure of this Matlab function is stated as follows.

[u, v, w, a] = readvelodata(xgridnumber, ygridnumber, zgridnumber, time, speed, recaum, ncid)

where xgridnumber is number of grid points in the cartesian x direction, ygridnumber

is number of grid points in the cartesian y direction, zgridnumber is number of grid

points in the cartesian z direction, time is number of ocean forecast step, speed is

the speed of AUV, ncid is the name of ocean prediction data formatted as netcdf.

The outputs of this functions are stated as follows. u is cartesian x component of the

velocity field, v is the cartesian y component of the velocity field, w is the cartesian

z component of the velocity field, a is the normal velocity field of the wave front.

vertface2obj.m (Function) : For visualization purposes, this function saves co-

ordinates of vertices of faces as a Wavefront (.Obj) file. The structure of this Matlab

function is stated as follows

vertf ace2obj(v, f, name)

where v is a N3 matrix of vertex coordinates, f is a Mx3 matrix of vertex indices,

and fname is the filename to save the obj file.

setdomain.m (Script) : This Matlab script initializes signed distance domain

required for level set path planning

setoperators.m (Script) This Matlab script initializes the differential operators

and field forces matrices.



mseaspathplanning3d.m (Function) : This Matlab function is the main func-

tion that carries out the path planning calculations. It conducts numerical calcula-

tions and reinitialization of the signed distance field. The structure of this function

is stated as follows.

mseaspathplanning3d(f low f ield, xgridnumber, ygridnumber, zgridnumber, recnum, speed, start,

where flow field is optional flow field structure, and by default it is input as "[]",

xgridnumber is number of grid points in the cartesian x direction, ygridnumber is

number of grid points in the cartesiany direction, zgridnumber is number of grid

points in the cartesian z direction, recnum is the number ocean forecast step, start is

the start point of underwater vehicle, target is the goal point of underwater vehicle,

saveobj is the name of the data file which is saved for the visualization purposes.

savevtkfile.m (Script) : This script creates animations file directory, and calls

vertface2obj function to create wavefront (.obj) data.

savevtkvector.m (Function) : savevtkvector.m function saves a 3-D vector of

any size to filename in VTK format. X, Y and Z should be arrays of the same size,

each storing speeds in the a single cartesian directions. The structure of this function

is stated as follows

savevtkvector (readfile,filename)

where readfile is the name of dat file in which we save three dimensional velocity data,

and filename is the name of vtk file we would like to save.

plotpath.m (Script) : This script plots the three dimensional paths. When this

script is used, four subplot are seen on screen. Three of these plots are projections

of three dimensional trajectory on to cartesian planes, and the fourth one is three

dimensional plot.



PlotPath (XX,YY,ZZ) (Function) : PlotPath function shows the cartesian

planes projections and three dimensional trajectory on the same plot window. The

structure of PlotPath function is stated as follows.

PlotPath (XX,YYZZ)

where XX is cartesian x coordinate of the trajectory, YY is cartesian y coordinate of

the trajectory, and ZZ is cartesian z coordinate of the trajectory.
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