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Abstract

This dissertation made three contributions to numerical simulation and borehole
acoustic logging.

The first one is a novel finite difference time domain algorithm that features non-
uniform grid, wavelet-based difference operator and anisotropic perfectly matched
layer. This algorithm reduces numerical reflections and wave distortions introduced
by grid change to a minimum by sampling the physical space with gradually varying
mesh. By coordinate stretching, the algorithm discretizes the physical space with vari-
able grid, while solving the wave equation on a uniform mesh. That approach helps
retain the advantages pertaining to uniform mesh. Further improvement in efficiency
is achieved without losing accuracy by the development of a wavelet-based difference
operator. By using a family of compactly supported wavelet function, the wavelet-
based finite difference time domain algorithm allows less grid point per wavelength.
Coordinate stretching is also employed in deriving an anisotropic perfectly matched
layer, superior to currently available perfectly matched layer formulation which re-
quires field splitting, a process that results in more computer memory requirement for
the storage of extra variables. Validations of the algorithm include comparison with
analytical solutions, uniform grid FDTD solutions and discrete wavenumber results.

The second contribution is a time domain investigation of wave propagations in
the logging while drilling situation. Logging while drilling is an emerging downhole
acoustic acquisition method. The investigation is focused on soft formations where
formation shear velocity is slower than borehole fluid velocity, because shear velocity
measurement, one of the key measurements that acoustic logging is designed to ac-
quire, is the most problematic in soft formations. Special attention is paid to mode
excitations, with respect to frequencies, tool positions and source types, in the hope
to shed some light on some highly debated questions regarding tool design and data
interpretation. The stretched grid finite difference algorithm is applied.

The third contribution is the development of an inversion method to estimate
stress magnitudes and directions from borehole acoustic measurements. It is predicted
in theory that a crossover in flexural dispersion is an indicator of stress-induced
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anisotropy dominating over other sources of intrinsic anisotropy. The prediction is
subsequently verified in a scaled-borehole experiment. We are the first ones that
observe flexural dispersion crossover in field data. Using the flexural crossover as a
stress signature on the borehole acoustic data, we are able to isolate stressed zones.
The maximum horizontal stress direction coincides with the polarization direction of
far field fast shear. The stress magnitude is related to velocity changes in the stressed
state from the zero stress or hydrostatically balanced state, through a perturbation
theory developed in the late 1990’s. Stress directions estimated in this dissertation
are consistent with focal mechanism and borehole breakout data present in the world
stress map database.

Thesis Supervisor: M. Nafi Toksöz
Title: Professor of Geophysics
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4-6 Dispersion of quadrupole modes. Solid line: with LWD tool; Dash line:

without LWD tool. Formation properties: vp=3000 m/s, vs=1200 m/s,

ρ=2200 m/s. Fluid properties: vp=1500 m/s, ρ=1000 kg/m3. Tool

properties: vp=5860 m/s, vs=3130 m/s and ρ=7800 kg/m3. . . . . . 124
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acteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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4-14 Waveforms plotted in the θ domain, with each line representing one

time sample. a. original waveform; b. amplitude at each time step is
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and the line width is proportional to the normalization factor. The

dipole characteristic holds in general. The lines that not fall on the

|cosθ| curve are of lower amplitudes. . . . . . . . . . . . . . . . . . . 133
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4-15 Multipole energy at each time step, frequency and azimuthal order,

for a dipole source in the borehole with the LWD tool. Source center

frequency is 2 kHz. Note that the odd modes are preferentially excited

by the dipole source (as expected), with the dipole component (n=1)

being the strongest. The next strongest mode n=3 is more than 10 dB

lower. Figure a and b show results at the first receiver only. Figure c
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is very consistent across the receiver array. . . . . . . . . . . . . . . 135
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4-17 Multipole energy at each time step, frequency and azimuthal order,
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mode is more than 2 orders higher than any other modes, indicating
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dispersion behavior: faster at higher frequencies and lower at low fre-

quencies. Formation compressional (3000 m/s), shear (1200 m/s) and
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4-20 Multipole energy at each time step, frequency and azimuthal order, for

a quadrupole source in the borehole with the LWD tool. Source center

frequency is 2 kHz. Note that the magnitude of quadrupole (n=2)

mode is more than 2 orders higher than any other modes, indicating

that the four point sources excite the quadrupole mode quite efficiently. 141
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to its dispersive behavior. . . . . . . . . . . . . . . . . . . . . . . . . 142
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used in the precessing. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4-23 Dipole results. The source center frequency is 15 kHz. Dipole wave-

forms are obtained by subtracting those at 180o from those at 0o. The

tool mode is faster and weaker than the low frequency case. Both

n=1 and n=3 modes are excited. n=3 mode shows better coherence

in semblance. Note both in the spectra and the dispersion that the

borehole dipole mode is excited at 2.5-6 kHz, though the source center

frequency is 15 kHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
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4-26 Dipole results. The source center frequency is 8 kHz. Dipole waveforms

are obtained by subtracting those at 180o from those at 0o. The tool

mode is faster and weaker than the low frequency case. Both n=1

and n=3 modes are excited. n=1 mode shows better coherence in

semblance. n=3 mode is almost not observable in semblance. . . . . 147

5-1 The reconstructed borehole cross-section with an off-centered tool. The

mesh is not shown for a better view of the model. the borehole diameter

is around 20 cm, the outer diameter of the tool is about 18 cm. The

fluid annulus could be as small as 6 millimeters. . . . . . . . . . . . . 162

5-2 Dipole source with the tool slightly off-centered (6.3 mm). The source

center frequency is 2 kHz. Waveforms received by groups of receivers at

various azimuthal locations plotted with common angle gather. Dash

line: receivers in the second quadrant; Solid line: receivers in the first

quadrant. Compared to the centered tool case in figure 4-12, wave-

forms at locations being 180o apart are no longer perfectly out of phase

because of wavefield asymmetry. . . . . . . . . . . . . . . . . . . . . 163

5-3 Dipole source (low frequency) slightly off-centered (6.3 mm). Wave-

forms received by groups of receivers at various azimuthal locations

plotted with common angle gather. Dash line: receivers in the sec-

ond quadrant; Solid line: receivers in the first quadrant. Compared

to the centered tool case in figure 4-12, waveforms at locations being

180o apart are no longer perfectly out of phase because of wavefield

asymmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5-4 Dipole source (low frequency) off-centered (10.95 mm). Snapshot of
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5-5 Dipole results with slightly off-centered tool (6.3 mm). The source

center frequency is 2 kHz. Waveforms at 0o, 900 and those obtained

from waveform subtraction are normalized by the maximum amplitude

at 0o. They are denoted with R0, R90, R180 and R0 − R180. R180 is

normalized by its maximum amplitude. The maximum amplitude of

R180 is 5 times larger than R0. The tool mode is weak in all waveforms.

The shear arrival is clearly observable in R0 and R0−R180. The bore-

hole flexural mode is the slowest one and the strongest in amplitude.

It is very dispersive at 180o. As the leaky shear is weak, the relatively

large amplitude in R0 indicates that shear arrival is due to the trapped

mode pole in the vicinity of the practical cutoff, i.e., the phase veloc-

ity of borehole flexural approaches the formation shear velocity at low

frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5-6 Dipole results with slightly off-centered (6.3 mm) tool. Semblance

result of waveforms R0, R90, R180 and R0 − R180. Figure e shows the

semblance of the dipole waveforms when the tool is at the center. . . 167

5-7 Dipole tool (low frequency) slightly off-centered (6.3 mm). Pressure

waveforms received at groups of receivers at various azimuthal loca-

tions plotted at common z gather (normalized by the same amplitude).
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ing a strong torsional mode. . . . . . . . . . . . . . . . . . . . . . . 168
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5-8 Dipole tool (low frequency) slightly off-centered (6.3 mm). Radial (thin

line) and azimuthal (thick line) particle velocities at all angles. Strong

azimuthal component is observed at angles roughly perpendicularly to
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in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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5-11 Dipole results with slightly off-centered (6.3 mm) tool. Dispersion anal-

ysis result of waveforms at 0o, , 900, 180o and subtraction between 00

and 180o. Figure e shows the dispersion of the dipole waveforms when

the tool is at the center. Solid lines represent theoretical dispersion

curves of models with centered LWD tool. . . . . . . . . . . . . . . . 171

5-12 Dipole results with slightly off-centered (6.3 mm) tool. The source
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5-13 Dipole tool (low frequency) off-centered (10.95 mm). Waveforms re-
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5-14 Dipole tool (low frequency) off-centered (10.95 mm). Waveforms re-

ceived by groups of receivers at various azimuthal locations plotted

with common angle gather. Dash line: receivers in the second quad-

rant; Solid line: receivers in the first quadrant. . . . . . . . . . . . . 174
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quency is 2 kHz. Waveforms at all locations are normalized by the
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5-21 Monopole source (low frequency) off-centered (10.95 mm). Waveforms

received by groups of receivers at various azimuthal locations plotted

with common angle gather. Dash line: receivers in the second quad-
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5-28 Quadrupole source (low frequency) off-centered (10.95 mm). Wave-

forms received by groups of receivers at various azimuthal locations

plotted with common angle gather. Dash line: receivers in the second

quadrant; Solid line: receivers in the first quadrant. . . . . . . . . . 188
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5-32 Quadrupole source (low frequency) off-centered (10.95 mm). Wave-

forms at 0o, 900, 180o and summation of waveforms at 0o and 180o

that subtracts waveforms at 90o and 270o. . . . . . . . . . . . . . . . 192

5-33 Quadrupole source (low frequency) off-centered (10.95 mm). Sem-

blance result of waveforms at 0o, 900, 180o and summation of waveforms

at 0o and 180o. The quadrupole mode is brought up by summation and

subtraction. Its phase velocity is at the formation shear velocity. . . 193

5-34 Quadrupole source (low frequency) off-centered (10.95 mm). Disper-

sion analysis result of waveforms at 0o, 900, 180o and summation of

waveforms at 0o and 180o. Solid lines represent borehole Stoneley,

flexural and quadrupole mode from analytical solutions with a cen-

tered LWD tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

5-35 Dipole source (high frequency) off-centered (10.95 mm). Waveforms

received by groups of receivers at various azimuthal locations plotted

with common angle gather. Dash line: receivers in the second quad-

rant; Solid line: receivers in the first quadrant. . . . . . . . . . . . . 195

5-36 Dipole source (high frequency) off-centered (10.95 mm). Waveforms

received by groups of receivers at various azimuthal locations plotted

with common angle gather. Dash line: receivers in the second quad-

rant; Solid line: receivers in the first quadrant. . . . . . . . . . . . . 196

5-37 Dipole source (high frequency) off-centered (10.95 mm). Waveforms

received at groups of receivers at various azimuthal locations plotted

as common z gather. . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

27
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Chapter 1

Introduction

The essence of geophysics is about acquiring data and extracting information from

data about the earth. The ever aggressive effort to explore the inner earth, together

with the advancement in areas like sensor technology, material science and information

technology, has brought geophysical data acquisition into an era of innovation. To

understand the data and extract meaningful information out of it, on the other hand,

still relies on the old wisdom: modeling and inversion. This study deals with modeling

and analysis of data acquired in boreholes through acoustic logging with wireline or

logging while drilling tools.

The dissertation starts with the development of a novel finite difference time do-

main approach that features non-uniform grid, wavelet-based difference operator and

anisotropic perfectly matched layers. It can be applied to simulate wave propagations

in a broad spectrum of earth models. With the finite difference algorithm, the disser-

tation then sets out to understand a novel downhole data acquisition system (logging

while drilling tool), specifically to identify modal arrivals in various logging situa-

tions. The dissertation closes with a novel inversion scheme for formation stresses

using borehole acoustic measurements.
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1.1 A Stretched Grid Finite Difference Time Do-

main Scheme

There have been two dominant approaches to investigate wave propagations in a

fluid-filled borehole: eigenvalue based wavenumber integral method and finite dif-

ference method. While it is fast and accurate, the wavenumber integration method

requires some form of symmetry in the physical model in order to solve the eigenvalue

problem (Kurkjian, 1985; Bouchon and Schmitt, 1989; Ellefsen, 1990; Randall, 1990,

1991a; Norris and Sinha, 1993). The finite difference method, on the other hand, is

able to handle fairly general spatial variations of elastic properties (Virieux, 1986;

Stephen et al., 1985; Randall, 1991b; Chen, 1994; Liu and Sinha, 2000). The main

approach that the dissertation takes to study wave propagations in the logging while

drilling (LWD) situation is the finite difference time domain (FDTD) method. Apart

from the normal criteria to satisfy a stable and accurate simulation, the nature of the

particular models discussed in the dissertation poses extra requirements: ability to

handle wave propagations in fluid, solid layers and multiple scales of physical dimen-

sion at reasonable computational costs. We address those requirements from three

perspectives: the mesh scheme, the difference operator and the numerical absorbing

boundary.

1.1.1 Variable Grid

To avoid excessive numbers of calculations, while still obtaining a high degree of

resolution in some particular regions, a non-uniform grid system may be used with

a fine grid in the borehole area with small features or large changes and coarse grid

over the rest of the areas that are smooth. To illustrate why it is necessary for a

highly efficient mesh in the LWD case, let’s suppose along one dimension, a is the

percentage of the region has small features that requires a fine grid size, ∆xmin, while

the rest can use a grid size of ∆xmax. Let α = ∆xmax/∆xmin. It can save memory by

(1- 1/α)(1-a/100) percent by using non-uniform grid as opposed to the uniform grid
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in one dimension. Memory saving grows geometrically as dimension goes from 1 to 3.

Figure 1-1 illustrate memory saving rate with respect to the grid ratio α for different

values of a. Figure 1-2 illustrates the cross-section of a fluid-filled borehole with an

LWD tool inside. The thin annulus between the steel pipe and the formation may be

as small as several millimeters, about 1/100 of the primary shear wavelength (for a 2

kHz source) in the formation. If the annulus is to be sampled with 3 grids, as the rule

of thumb normally requires, the formation is then at least 20 ∼ 30 times oversampled

in one coordinate dimension, which means we can chose the grid ratio to be at least

20. If the whole borehole area is sampled with small grid, which only makes up

around 1% ∼ 2% of the whole cross-section, at least 95% of memory saving can be

achieved by using non-uniform grid. A computer needs to have several hundreds giga

bytes of memory to deal with an LWD model using uniform grid. For that reason,

finite difference time domain study for the LWD situation has been a difficult task

due to the limitations of computer capacities.

While efficiency can be achieved by sampling the physical space adaptively with

variable grid, that benefit may be offset by other problems introduced by the change

in grid size. The formal truncation error and the stability of the system may be

adversely affected by the change in grid size (Crowder and Dalton, 1971). There may

also be wave distortion or numerical reflections due to a phase change at the interface

of two grids (Browning et al., 1973). Hayashi (1999) developed a 4th order 2D variable

grid FDTD algorithm by using discontinuous grids, which involves interpolation of

the wave field on more than one plane. Special formulae are used at the interface of

the two grids. Pitarka (1999) developed a 3D 4th order FDTD algorithm that uses

continuous non-uniform spacing grids. Pitarka’s approach reduces both numerical

reflection and wave distortion. However, memory overhead of this approach is high

and it requires solving a linear system before conducting the FDTD calculation. The

linear system has to be re-solved when the difference operator needs a change (e.g.

from 4th order to 8th order).

We apply coordinate stretching to discretize the physical space with gradually

varying grid, while solving the wave equation on a uniform mesh. That results in a
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significant improvement in efficiency while ensuring numerical advantages pertaining

to uniform mesh. Numerical reflection and wave distortion are reduced to the similar

level as Pitarka’s method. Its advantages over Pitarka’s approach include less memory

requirement (no overhead), no need to solve a linear system, flexibility with difference

operators and implementation friendly.

1.1.2 Wavelet-based Difference Operator

The difference operator that approximates the spatial derivatives also affects effi-

ciency and accuracy of an algorithm. By approximating derivatives with differences,

the finite difference scheme converts PDEs with linear algebraic equations. The dis-

crepancy between the finite difference solution and the PDE solution consists of two

contributions: the discretization error that causes grid dispersion and anisotropy, and

the error due to cutting the infinite long operator into a finite length. Techniques for

obtaining a more accurate numerical solution using FDTD has been focused on reduc-

ing those two effects, such as using higher-order difference approximations (Dablain,

1986) and staggered grids (Virieux, 1986). None conventional difference operators

were also proposed to improve reflection and transmission accuracy at sharp bound-

aries (Cunha, 1993).

In recent years, several successful applications are reported using wavelet-based

FDTD schemes in computing electrodynamics (Krumpholz and Katehi, 1996; Fu-

jii and Hoefer, 2001). Comparing to conventionally used Taylor’s expansion based

method, the wavelet-based algorithm approximates derivatives with a better inter-

polation function, thus it generates considerably less numerical dispersion than the

Taylor’s expansion based method.

The wavelet formulation of the FDTD method thus far has not been studied

solving the elastic wave equations. We formulate the wavelet based FDTD algorithm

for elastodynamics, and find it shows more linear dispersion property than the 4th and

the 2nd order schemes, allowing coarser sampling at a given accuracy. In addition,

the wavelet based scheme yields more accurate reflection and transmission coefficients

at a discontinuity, especially when combined with variable griding.
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1.1.3 Perfectly Matched Layer

In most cases, we need to simulate wave propagations in a boundless medium, hence

the medium is truncated into a finite size. This requires a numerical implementation

of an absorbing boundary layer surrounding the computational domain to reduce

reflections off the numerical boundary. An inefficient absorbing boundary layer results

in a less accurate or computationally more costly algorithm.

Berenger (1994) first proposed the perfectly matched layer (PML) concept for elec-

trodynamics using the FDTD method. Different from most traditional or differential

equation-based absorbing boundaries, the PML satisfies all continuity conditions at

the interface between the computational domain and the PML. Therefore, it has

proven to be the most efficient mechanism to absorb wave energies outside the com-

putational domain (Taflove, 1998). Liu formulated the PML for elastic waves using

the field-splitting method which requires 27 independent unknowns for a general 3-D

problem (9 velocity components and 18 stress components), three times the origi-

nal 9 variables in ordinary elastic wave equations (Liu, 1999). Zheng and Huang

formulated an anisotropic PML without using field splitting that only requires 12

independent unknowns for a general 3-D problem, and showed superior results us-

ing the finite element method (Zheng et al., 2002). In this study, we show that 18

independent unknowns are required for a stable FDTD PML, 1/3 less than that of

the field-splitting method. More importantly, our formulation unites the non-uniform

grid scheme with the non-splitting PML, allowing much simpler implementation.

1.1.4 2.5-D Formulation

3-D finite difference computations are often performed in the (x,y,z,t) domain. For the

particular problems that this dissertation is to address, namely, wave propagations in

a fluid-filled borehole, properties in the axial direction (z direction) are often assumed

homogeneous. That means a plane wave propagating in the z direction does not

change, therefore the wave equation can be Fourier transformed to and solved by a

finite difference approach in the (x,y,kz,t) domain to further increase computational
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efficiency, as model properties are assumed homogeneous along the z axis throughout

the dissertation. kz represents the axial wavenumber. The final solution of the 3-D

wave equation in the (x,y,z,t) domain is obtained by an inverse Fourier transform.

Such finite difference approach is referred as 2.5-D (Randall, 1991b). There are two

major benefits of using the 2.5-D formula over a 3-D formula for the applications in

the scope of the thesis: 1) significant memory saving; 2) can be completely parallelized

with respect to kz.

The resulting finite difference time domain algorithm developed in the dissertation

is able to finish most LWD simulations within a day on a 24-CPU PC cluster. Also

the mesh scheme and the difference operators proposed in the dissertation can be

adapted to solve other forms of partial differential equations. The method is described

in chapter2 and chapter 3.

1.2 Modal Excitations in LWD

A review of the borehole acoustic logging history would help understand the motiva-

tion and significance of the LWD study.

Borehole acoustic logging has been a highly specialized technology in exploration

for natural resources for decades. It works as an extension of surface seismology (i.e.,

check shots and depth calibration of travel times), and as a method for characterizing

lithologies in situ. It started as a simple device to measure the time required for

acoustic waves to travel along a given length of formation adjacent to the borehole,

and then invert for the in situ compressional velocity, vp (Summers and Broding,

1952). Figure 1-3 shows the schematic illustration of acoustic logging in a fluid-

filled borehole. More than a decade later, with the development of AD/DA (analog

to digital and digital to analog) technology, waveforms were digitized and recorded,

marking the start of full waveform acoustic logging era. Shear arrivals was subse-

quently detected in the waveform at times after the first compressional arrivals and

the formation shear velocity vs is then determined (Willis and Toksoz, 1983). Up

then, the source had a uniform radiation pattern and both compressional and shear
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formation

tool

borehole fluid

Figure 1-2: A cross-section of a fluid-filled borehole with an
LWD tool. The tool is off-centered. Typically, the borehole
diameter is around 20 cm, the outer diameter of the tool is
about 18 cm. The fluid annulus could be as small as several
millimeters.
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centralizer
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receiver array

Figure 1-3: A schematic illustration of acoustic logging in a
fluid-filled borehole.

measurements come from critically refracted head waves. Although ideas of using

multipole (mainly dipole and quadrupole) source and receivers in the acoustic log-

ging was proposed in the 1960’s (White, 1967), dipole logging did not get attention

until later. As demonstrated in later analysis, multipole shear logging tool is not mea-

suring the shear velocity directly, rather it is measuring the flexural mode, trapped by

the fluid-filled borehole (Kurkjian and Chang, 1986; Winbow, 1988; Schmitt, 1988).

Along the way, number of studies had shown that the fluid-filled borehole acts

as a waveguide, eigenvalues of which are determined by the specific borehole geome-

try, velocity contrasts between the borehole fluid and the formation, and frequencies

excited by the logging source (Biot, 1952; Peterson, 1974; Tsang and Rader, 1979;

Cheng and Toksoz, 1981). Each eigenvalue of the waveguide represents a mode and
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determines a certain dispersion relation (velocity vs frequency) of that mode. Modes

differ from each other by number of pressure (or velocity) nodes in both azimuthal

and radial direction. For identification purpose, a mode is labeled by (n, m), rep-

resenting the n-th order azimuthal variation (with 2n nodes azimuthally) and m-th

order radial variation (with m nodes radially). Monopole mode refers to any mode

that does not vary azimuthally, i.e. n=0, where (0,0) mode is conventionally named

as Stoneley mode. Dipole mode refers to any one in the (1,m) family, where (1,0)

mode is conventionally named as flexural mode. Figure 1-4 shows dispersion curves

of 8 modes in both hard and soft formations.

Up to the 1990’s, acoustic logging had been carried out after the borehole is

drilled. As the tool needs a cable to be sent down the hole, it is referred as wireline

tool. The radius of a typical wireline tool is at least half less than that of the borehole.

Effects of the tool on borehole modes are small so that they have been neglected or

adjusted with simple corrections in both modeling studies or data processings. The

list of formation properties that the acoustic logging is able to measure has been

progressively longer, from vp and vs values to formation anisotropy and permeability.

Logging while drilling (LWD) tools emerged in the 1990’s and are gaining momen-

tum due to their engineering and economical advantages (Minear et al., 1995, 1996;

Heysse et al., 1996; Tang et al., 2002). Formation properties are measured simulta-

neously while drilling avoiding problems such as “mud cake” and reducing the rig

time, compared to their wireline counterparts. LWD measurements may also enable

a real-time evaluation of formation properties which leads to significant potential for

“look-ahead of the bit” and better control of well trajectories.

LWD tool differs from its wireline counterpart only by geometry. Thus it looked

reasonable for LWD tool designers to borrow the wealth of wisdoms in the wireline

logging literature. However, with its sources and receivers more close to the borehole

wall and substantially larger cross-section of the tool taking up majority space in the

fluid-filled borehole, LWD is found to differ considerably from its wireline counterpart.

It has significant effects on borehole modes (Rao et al., 1999). That gives rise the

difficulties to identify modal arrivals, a crucial step to estimate formation vp and vs
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(a) hard formation

(b) soft formation

Figure 1-4: Dispersion curves of borehole modes (n=0-7, m=0)
of a 10-cm radius borehole in a hard and soft formation. Phase
velocities are normalized by the compressional velocity of the
borehole fluid. Curves are labeled by the azimuthal order n.
Dotted horizontal line is the formation shear velocity. .
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values.

In this thesis, the author conducts a comprehensive study of LWD with focus

on modal excitations with respect to frequencies, tool positions, source type and

formation type (chapter 4 and chapter 5). Its findings may lead to new designs that

take advantages of LWD situation. Also understanding characteristics of LWD will

provide some insights to data interpretion.

1.3 Measuring Formation Stress from Acoustic Log-

ging Data

The dissertation comes in the middle of another ongoing efforts in the borehole acous-

tic logging area, which is to extract formation stresses from acoustic logging data.

As lithospheric plates interact with each other, complicated stresses patterns de-

velop within each plate. Mapping formation stress may help understand plate tec-

tonics. To the petroleum industry, knowledge of formation stresses would aid in

enhanced recovery of hydrocarbons, prevention of sand production and borehole in-

stability (Gaarenstroom et al., 1993; Dore and Lundin, 1996; Finkbeiner et al., 1998;

Wiprut, 2001). Stresses in the earth also plays an important role in assessment of

long term stability of underground waste disposal. Currently, large scale stress orien-

tations are estimated from geological or geophysical data including earthquake focal

mechanisms, fault slips and volcanic alignments (Zoback, 1992). For exploration and

engineering purposes, earthquake and volcanic data lack the necessary resolution, not

mentioning the fact that they may not occur over the desired area. At local scale,

techniques like borehole breakouts and in-situ stress measurements such as hydraulic

fracturing and overcoring, are commonly used. Breakouts in vertical boreholes may

help locate stress orientations fairly accurately, but provide little information for es-

timating stress magnitudes (Zoback et al., 1985). By far the most accurate, also the

most expensive, technique to measure the formation stress is hydraulic fracturing,

where the formation stress is assumed to be completely balanced by a controlled
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water pressure when a shear failure happens to the borehole wall. However, that

assumption often breaks in realistic measurements (Haimson, 1988).

All the above mentioned stress estimating methods are under the framework of

static mechanics, where formation stresses are considered being balanced by other

processes or forces. Therefore, to accurately estimate formation stresses, an exhaus-

tive and accurate analysis of all processes and forces is essential. However in those

analysis often the number of unknowns is large.

We choose to estimate formation stresses indirectly from seismic or acoustic mea-

surements based on the belief that the problem may be better constrained. It has

been well established from experiments that stresses introduce anisotropy and ve-

locity changes to a formation (Nur and Simmons, 1969; Lo et al., 1986). While it

is difficult in seismic data to differentiate stress induced anisotropy from intrinsic

anisotropy caused by such things like fractures and thin-layered bedding, it is not so

in borehole acoustic data. To satisfy the boundary conditions at the circular wall,

an originally uniform stress field deforms and concentrates around a borehole. In a

vertical borehole, the maximum compressional stress around the borehole aligns with

the direction of the minimum regional horizontal stress. As borehole flexural mode

is sensitive to the far-field stress at low frequencies and to the near-field stress at

high frequencies, a crossover in borehole flexural dispersion occurs, indicating stress-

induced anisotropy dominating over other sources of intrinsic anisotropy. That was

predicted theoretically by Sinha and Kostek (1996). The prediction was subsequently

verified in a scaled-borehole experiment (Winkler et al., 1998).

In chapter 6, a multi-frequency inversion method is developed to estimate stress

magnitudes and directions from borehole acoustic measurements. We are the first

ones that observe flexural dispersion crossover in field data(Nolte et al., 1997; Huang

et al., 1999). Using the flexural crossover as a stress signature in the borehole acoustic

data, we are able to isolate stressed zones. The maximum horizontal stress direction

coincides with the polarization direction of far field fast shear. The stress magnitude is

related to velocity changes in the stressed state from the zero stress or hydrostatically

balanced state, through a perturbation theory, which is used in the multi-frequency
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inversion method developed here to estimate stress magnitude. Our method is applied

to a set of field data collected in an oil field near San Andreas fault. The estimated

stress directions are consistent with focal mechanism and borehole breakout data

present in the world stress map database (Zoback, 1992).

Chapter 7 summarizes the dissertation and outlines some future work.
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Chapter 2

A Stretched Coordinate

Formulation of Finite Difference

Time Domain Scheme with

Non-Uniform Spacing Grids and

Anisotropic Perfectly Matched

Layers

ABSTRACT

A novel finite difference time domain formulation is developed to solve the elastic wave

equations. By coordinate stretching, the algorithm discretizes the physical space with

gradually varying grid, while solving the wave equation on a uniform mesh. That

results in a significant improvement in efficiency while ensuring numerical advantages

pertaining to uniform mesh. Further improvement in efficiency is achieved without

losing accuracy by the development of a wavelet-based difference operator, allowing

less grid point per wavelength. Coordinate stretching is also employed in deriving an
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anisotropic perfectly matched layer, superior to currently available perfectly matched

layer formulation which requires field splitting, a process that results more computer

memory requirement for the storage of extra variables. Validations of the algorithm

include comparison with analytical solutions and uniform grid FDTD solutions.

2.1 Introduction

The FDTD method has been one of the most widely used tools to simulate wave

propagations in 2-D and 3-D elastic media with fairly general spatial variations of

elastic properties. In recent years, applications to highly inhomogeneous models have

made it necessary to sample the physical model adaptively with non-uniform grid.

While it is obvious that efficiency can be achieved by sampling the physical space

adaptively with variable grid, that benefit may be offset by other problems introduced

by the change in grid size. The formal truncation error and the stability of the system

may be adversely affected by the change in grid size (Crowder and Dalton, 1971).

There may also be wave distortion or numerical reflections due to a phase change

at the interface of two grids (Browning et al., 1973). Hayashi (1999) developed a

4th order 2D variable grid FDTD algorithm by using discontinuous grids, which

involves interpolation of the wave field on more than one plane. Special formulae

are used at the interface of the two grids. Pitarka (1999) developed a 3D 4th order

FDTD algorithm that uses continuous non-uniform spacing grids. Pitarka’s approach

reduces both numerical reflection and wave distortion. However, memory overhead

of this approach is high and it requires solving a linear system before conducting

the FDTD calculation. The linear system has to be re-solved when the difference

operator needs a change (e.g. from 4th order to 8th order).

We develop an FDTD scheme using non-uniform spacing grids. Numerical reflec-

tion and wave distortion are reduced to the similar level as Pitarka’s method. Its

advantages over Pitarka’s approach include less memory requirement (no overhead),

no need to solve a linear system, flexibility with difference operators and implementa-

tion friendly. More importantly, our formulation unites the non-uniform grid scheme
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with the non-splitting (anisotropic) perfectly matched layer (PML), a numerical ab-

sorbing mechanism proven to be the most effective of its kind (Berenger, 1994; Shlager

and Schneider, 1998). The key component in our formulation is a coordinate trans-

formation, or more specifically, stretching along both the real and imaginary of axes

of each coordinate directions. The stretching along the real axes in three coordinate

directions leads to an effective variable gridding in the physical domain while uniform

gridding in the transformed domain. An important benefit of doing so is that the

formal truncation error and the stability properties of the finite difference computa-

tion are preserved because the computation is carried out on a uniform grid. The

stretching along the imaginary axes in three coordinate directions introduces a highly

efficient attenuation in the absorbing layer.

The difference operator that approximate the spatial derivatives also affects effi-

ciency and accuracy of an algorithm. There have been several efforts of constructing

higher order or non-conventional difference operators to reduce numerical disper-

sion and improve accuracy, especially at discontinuities (Dablain, 1986; Cunha, 1993;

Vossen et al., 2002). In recent years, several successful applications have been reported

using wavelet-based FDTD schemes in computing electrodynamics (Krumpholz and

Katehi, 1996; Fujii and Hoefer, 2001). Unlike the conventionally used Taylor’s expan-

sion based method, wavelet-based algorithm approximate derivatives without trunca-

tion by using compactly supported wavelet-functions, and it generates considerably

less numerical dispersion than the Taylor’s expansion based method. The wavelet

formulation of the FDTD method thus far has not been studied solving the elastic

wave equations. We formulate the wavelet based FDTD algorithm for elastodynam-

ics and find it shows more linear dispersion property than the 4th and the 2nd order

schemes, allowing coarser sampling at a given accuracy. In addition, the wavelet based

scheme yields more accurate reflection and transmission coefficients at a discontinuity,

especially when combined with variable gridding.
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2.2 Coordinate Stretching

Equations governing the elastic wave propagation can be written as two coupled first

order equations 2.1 and 2.2, where cαjγβ denotes the elastic tensor and ρ the mass

density. Solving the wave equation numerically is to compute all three components

of particle velocities vj and all 6 components of stress tensors ταj at every time t and

spatial position ~r = [x1, x2, x3] = [x, y, z]. All indices (η, j, γ and β) take values of 1,

2 and 3, representing three orthogonal coordinate directions. Einstein’s summation

convention applies to the subscript indices.

ρvj,t = τηj,η, (2.1)

τηj,t = cηjγβvγ,β. (2.2)

We choose the grid size in the physical domain, ∆xi, equal to the grid size in the

transformed domain, ∆x̃i, times a smoothly varying function εi(x̃) that takes values

between 1 and αi, where αi can be any positive real number, i.e. αi ∈ R+,

∆xi = εi(x̃i)∆x̃i. (2.3)

εi(x̃i) can be functions of the user’s choice. We construct the smoothly varying

function in each of the coordinate directions, εi(x̃i), as the following

εi(x̃i) =



















1 x̃i 6 x̃0i

1 + (αi − 1) sin π
2Li

(x̃i − x̃0i ) x̃0i 6 x̃i 6 x̃0i + Li

αi x̃i > x̃0i + Li

(2.4)

Thus the grid size in the stretched domain is uniform, and varies gradually from ∆x̃i

to αi∆x̃i in the physical domain. αi controls the ratio of the grid size between the

coarsest and the finest ones in xi direction. It is called as the stretching factor. Notice

that εi(x̃i) is defined in the transformed domain. Figure 2-1(a) shows the shape of εi

with different αi, the corresponding grid spacing is shown in figure 2-1(b).

When the grid size is small enough, equation 2.3 also represents the relationship
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between the differential operations in the two domains, i.e., ∆xi → dxi and ∆x̃i →

dx̃i, the integration of which in three respective coordinate directions are the mapping

functions between the two domains, xi = fi(x̃i) shown in equation 2.5.

xi =



















x̃i x̃i 6 x̃0i

x̃i + (αi − 1)2L
i

π
{1− cos π

2Li
(x̃i − x̃0i )} x̃0i 6 x̃i 6 x̃0i + Li

(1− αi)(x̃0i + Li − 2Li

π
) + αix̃i x̃i > x̃0i + Li

(2.5)

Transforming all field variables from (x1, x2, x3, t) domain to (x̃1, x̃2, x̃3, t) domain by

mapping functions x̃i = f−1
i (x), the spatial derivative of a field variable, g(x1,x2,x3,t),

becomes,

∂xig(x1, x2, x3, t) =
∂x̃i
∂xi

∂x̃ig(x̃1, x̃2, x̃3, t) =
1

εi(x̃i)
∂x̃ig(x̃1, x̃2, x̃3, t) (2.6)

Equations 2.1 and 2.2 then become,

ρvj,t =
1

εη(x̃η)
τηj,η (2.7)

τηj,t = cηjγβ
1

εβ(x̃β)
vγ,β. (2.8)

Discretizing the above equations with uniform grid in the transformed domain is

equivalent to a non-uniform grid in the physical domain that has been stretched by a

factor of εi in each coordinate direction. Note that along each coordinate direction,

the elastic impedence remains unchanged after the coordinate stretching; therefore,

in theory, there should be no reflection introduced by stretching. Using a smooth

stretching function is to ensure low numerical reflection.

When implementing the stretched grid FDTD algorithm, positions of discontinu-

ous points, lines and surfaces as well as sources and receivers in the physical domain

are transformed to the stretched domain by the mapping functions before a uniform

discretization is performed in the transformed domain. Final results are then mapped

back to the physical domain.

Equation 2.4 is not a complete function that controls the coordinate stretching
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at the vicinity where the change in grid size takes place. Depending on the physical

model, a complete stretching function of the total physical domain requires piecing

together different versions of equation 2.4, either by being flipped or taking different

values of x̃0i , L
i or αi. Take a fluid-filled borehole as an example, finer sampling

is needed inside and at the neighborhood of the borehole wall. So both stretching

functions at the x1 and x2 directions may be built as shown in figure 2-2. The cross

section of the resulting gridding scheme is illustrated in figure 2-3 for the physical

domain and figure 2-4 for the transformed domain, respectively. In the transformed

domain where the FDTD computation is performed, the model size is smaller and

the grid size is uniform. The area reduction reflects the amount of memory saving

achieved by using the variable grid versus using the uniform grid where the grid size

equals to the smallest grid size in the variable grid.

2.3 Absorbing Boundary: Anisotropic Perfectly Matched

Layer (PML)

In most cases, we need to simulate wave propagations in an unbounded medium, hence

the medium is truncated into a finite size. This requires numerically implementing an

absorbing boundary layer surrounding the computational domain to reduce reflections

off the numerical boundary. An inefficient absorbing boundary layer results in a less

accurate and less efficient algorithm.

Berenger (1994) first proposed the perfectly matched layer (PML) concept for elec-

trodynamics using the FDTD method. Different from most traditional or differential

equation-based absorbing boundaries, the PML satisfies all continuity conditions at

the interface between the computational domain and the PML. Therefore, it has

proven to be the most efficient mechanism to absorb wave energies outside the com-

putational domain (Taflove, 1998). Liu formulated the PML for elastic waves using

the field-splitting method which requires 27 independent unknowns for a general 3-D

problem (9 velocity components and 18 stress components), three times the original
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coordinate in the transformed domain
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Figure 2-2: The complete stretching function ε1(x̃1) or ε2(x̃2).
All numerical examples in this paper use the same stretching
function. Only the stretching factor α and the transition length
L may vary from case to case.
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Figure 2-3: The variable gridding scheme of a fluid filled bore-
hole in the physical domain. The stretching ratio is 5.

Figure 2-4: Same model as shown in figure 2-3 in the trans-
formed domain with uniform gridding. Comparing to figure 2-3,
the model space becomes smaller, directly reflecting a saving in
memory.

57



9 variables in ordinary elastic wave equations (Liu, 1999).

Based on the concept of coordinate stretching along the imaginary axes, an anisotropic

PML without using field splitting is formulated which only requires 12 independent

unknowns for a general 3-D problem, and showed superior results using the finite ele-

ment method (Zheng, 2002). Further study shows that 18 independent unknowns are

required for a stable FDTD PML (Zheng et al., 2003), 1/3 less than the field-splitting

formulae. Besides the advantage of non-splitting and requiring less variables, Zheng’s

PML is stable and has the same format for both isotropic and anisotropic media. It

ultimately shares the same formulae as for the stretched grid approach describe in

the previous section. In the vector and tensor format, Zheng’s PML are expressed in

equation 2.9 and 2.10.

ρε1ε2ε3∂t~v = ∇ · τ (2.9)

e∂tτ = c : ε1ε2ε3e
−1∇~v (2.10)

where

e =











ε1 0 0

0 ε2 0

0 0 ε3











(2.11)

and vector ~v = [vx, vy, vz]
T = [v1, v2, v3]

T represents particle velocities, c is the elas-

ticity tensor and the stress tensor τ is defined as

τ =











τxx τxy τxz

τyx τyy τyz

τzx τzy τzz











(2.12)

εj in equations 2.9 and 2.10 controls the coordinate stretching along the imaginary

axes of three coordinate directions in the PML and is chosen as 1− i
βj
ω
, where ω is the

angular frequency. Fourier transforming equations 2.9 and 2.10 by replacing ∂t with

iω and substituting εj with 1− i
βj
ω
, then inverse Fourier transforming the equations
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back to the time domain, the general 3D wave equations in the PML that need to

be numerically solved in the stretched coordinate are obtained. Their individual

components are listed in the following where orthorhombic anisotropy is assumed for

the formation.

∂tBxx + βxBxx =
1

ρ
(

1

εx(x̃)
∂x̃τxx +

1

εy(ỹ)
∂ỹτyx +

1

εz(z̃)
∂z̃τzx) (2.13)

∂tBxy + βxBxy =
1

ρ
(

1

εx(x̃)
∂x̃τxy +

1

εy(ỹ)
∂ỹτyy +

1

εz(z̃)
∂z̃τzy) (2.14)
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∂tBxz + βxBxz =
1

ρ
(

1

εx(x̃)
∂x̃τxz +

1

εy(ỹ)
∂ỹτyz +

1

εz(z̃)
∂z̃τzz) (2.15)

∂tByx + βyByx =
1

ρ
(

1

εx(x̃)
∂x̃τxx +

1

εy(ỹ)
∂ỹτyx +

1

εz(z̃)
∂z̃τzx) (2.16)

∂tByy + βyByy =
1

ρ
(

1

εx(x̃)
∂x̃τxy +

1

εy(ỹ)
∂ỹτyy +

1

εz(z̃)
∂z̃τzy) (2.17)

∂tByz + βyByz =
1

ρ
(

1

εx(x̃)
∂x̃τxz +

1

εy(ỹ)
∂ỹτyz +

1

εz(z̃)
∂z̃τzz) (2.18)

∂tBzx + βzBzx =
1

ρ
(

1

εx(x̃)
∂x̃τxx +

1

εy(ỹ)
∂ỹτyx +

1

εz(z̃)
∂z̃τzx) (2.19)

∂tBzy + βzBzy =
1

ρ
(

1

εx(x̃)
∂x̃τxy +

1

εy(ỹ)
∂ỹτyy +

1

εz(z̃)
∂z̃τzy) (2.20)

∂tBzz + βzBzz =
1

ρ
(

1

εx(x̃)
∂x̃τxz +

1

εy(ỹ)
∂ỹτyz +

1

εz(z̃)
∂z̃τzz) (2.21)

∂tτxx + βxτxx = c11
1

εx(x̃)
∂x̃Bxx + c12

1

εy(ỹ)
∂ỹByy + c13

1

εz(z̃)
∂z̃Bzz (2.22)

∂tτxy + βxτxy = c66(
1

εx(x̃)
∂x̃Bxy +

1

εy(ỹ)
∂ỹByx) (2.23)

∂tτxz + βxτxz = c55(
1

εx(x̃)
∂x̃Bxz +

1

εz(z̃)
∂z̃Bzx) (2.24)

∂tτyx + βyτyx = c66(
1

εx(x̃)
∂x̃Bxy +

1

εy(ỹ)
∂ỹByx) (2.25)

∂tτyy + βyτyy = c12
1

εx(x̃)
∂x̃Bxx + c22

1

εy(ỹ)
∂ỹByy + c23

1

εz(z̃)
∂z̃Bzz (2.26)

∂tτyz + βyτyz = c44(
1

εy(ỹ)
∂ỹByz +

1

εz(z̃)
∂z̃Bzy) (2.27)

∂tτzx + βzτzx = c55(
1

εx(x̃)
∂x̃Bxz +

1

εz(z̃)
∂z̃Bzx) (2.28)

∂tτzy + βzτzy = c44(
1

εy(ỹ)
∂ỹByz +

1

εz(z̃)
∂z̃Bzy) (2.29)

∂tτzz + βzτzz = c13
1

εx(x̃)
∂x̃Bxx + c23

1

εy(ỹ)
∂ỹByy + c33

1

εz(z̃)
∂z̃Bzz (2.30)

where Bij represents modified particle velocity and defined as

Bxx = εyεzvx Bxy = εyεzvy Bxz = εyεzvz (2.31)

Byx = εxεzvx Byy = εxεzvy Byz = εxεzvz (2.32)

Bzx = εxεyvx Bzy = εxεyvy Bzz = εxεyvz (2.33)
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In the model domain where no absorption occurs, βj is set to be zero. Thus Bij

has only 3 independent components that equal to vx, vy and vz and in addition,

equations 2.13 dim 2.30 degenerate into normal wave equations without attenuation.

When it comes to implementation, there is no need to keep all 18 variables (Bij and

τij) inside the model domain, instead, only 9 (vx, vy, vz, τxx, τxy, τxz,τyy, τyz and τzz)

are necessary due to symmetry. Discretization of the full 3D wave equations in the

transformed domain and strategies to choose βj are discussed in chapter 3.

2.4 Discretization Using Taylor’s Expansion-Based

And Wavelet-based Difference Schemes

The most commonly used and studied FDTD schemes are formulated based on the

Taylor’s expansion. References on this subject may be found in a wealth of finite

difference literatures. The wavelet based formulae have been developed for electrody-

namics based on the method of moments (Harrington, 1993). This method projects

wave field components (particle velocities and stress components) to a complete set

of orthonormal basis functions, then solves the partial differential equation in the

projected domain iteratively. It was shown that the Taylor’s expansion based stag-

gered grid FDTD scheme can be derived using the method of moments with pulse

functions making up the orthonormal basis functions (Krumpholz and Russer, 1993,

1994). By choosing the Battle-Lemarie scaling and wavelet functions as basis func-

tions for spatial expansions and the Harr scaling functions for the temporal expansion,

the wavelet based FDTD scheme exhibits highly linear numerical dispersion charac-

teristics, allowing coarser grid spacing (Krumpholz and Katehi, 1996). Because the

Battle-Lemarie basis functions do not satisfy the interpolation property, the expan-

sion coefficients do not represent direct wave field values. Hence it becomes necessary

to reconstruct the physical field by taking a weighted sum of neighboring coefficients,

resulting in a complicated algorithm and a large computational overhead. Fujii and

Hoefer (2001) avoid the step of reconstruction by building the spatial basis functions
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2nd order 4th order 6th order 8th order
a1 1 9/8 75/64 1225/1024
a2 -1/24 -25/384 -245/3072
a3 3/640 49/5120
a4 -5/7168

discretization error O(∆x2) O(∆x4) O(∆x6) O(∆x8)

Table 2.1: Coefficients of the 2nd, 4th, 6th and 8th order finite
differencing operators.

with the Deslauriers-Dubuc interpolating functions (Dubuc, 1986; Deslauriers and

Dubuc, 1989).

Thus far the wavelet formulation of the FDTD scheme has not been studied solving

elastic wave equations. We derive the formulae, and as an initial investigation, limit

our discussion to the scaling functions of the Deslauriers-Dubuc interpolating func-

tions. Incorporating wavelet functions may possibly yield higher resolution schemes.

We employ staggered grid for the wavelet based FDTD as it proves to be more stable

and accurate (Virieux, 1986).

2.4.1 Taylor’s expansion based FDTD schemes

The order of a Taylor’s expansion based differencing operator, N , represents the

order of the inherent error (∆xN) of the difference approximation to derivatives. For

a 1-D case, the first order derivative of a continuous function f,x at x = x0 may be

approximated in the discreet format by the following differencing operation

f,x|x0 =
df

dx
|x0 = DN

x f |m +O(∆xN), (2.34)

where ∆x is the grid spacing and x0 = m∆x. The differencing operator, DN
x f |m is

defined as

DN
x f |m =

1

∆x

N/2
∑

l=1

al(fm+(l−1/2) − fm−(l−1/2)), (2.35)

where coefficients al are listed in table 2.1 for N equal to 2, 4, 6 and 8.
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Without losing generality, we show only FDTD formulae for 1-D case. Using

the 2nd order differencing operator explicitly to approximate temporal derivatives

and the N -th order for spatial derivatives, the 1-D wave equations in the stretched

coordinate domain, equations 2.7 and 2.8, can be solved numerically by the following

finite difference equations

vx̃i;n+1/2 = vx̃i;n−1/2 +
∆t

εiρi
DN
x̃ τ

x̃x̃|i;n, (2.36)

τ x̃x̃i+1/2;n+1 = τ x̃x̃i+1/2;n + c
i+1/2
11

∆t

εi+1/2
DN
x̃ v

x̃|i+1/2;n+1/2. (2.37)

2.4.2 A wavelet based FDTD scheme

To construct the wavelet based FDTD scheme, field components such as particle

velocities and stresses are expanded to the spatial and temporal functions basis. The

spatial function basis is composed of the Deslauriers-Dubuc interpolating functions

and the temporal function basis is composed of the Harr scaling functions.

The Deslauriers-Dubuc interpolating function φ(x) of order 2p − 1 is the auto-

correlation function of Daubechies compactly supported orthogonal scaling function

φ0(x) of p vanishing moments (Mallat, 1997),

φ(x) =

∫ ∞

−∞

φ0(u)φ0(u− x)du. (2.38)

φ is compactly supported, has a minimum support of [−2p+ 1, 2p− 1] and is able to

reproduce polynomials of order 2p−1. In addition, being an autocorrelation function,

φ(x) is symmetric. Figures 2-5 and 2-6 illustrate Daubechies scaling function and

Deslauriers-Dubuc interpolating function. Note that φ(x) is orthogonal to its integer

shift; functions being expanded to a family of φ(x) do not require extra computation

to be reconstructed, in other words, the expansion coefficients coincide with the field

values. φ(x) satisfies the so called two-scale relation or dilation relation which means
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Figure 2-5: Daubechies compactly supported scaling function φ0
of 2, 4, and 6 vanishing moments.
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Figure 2-6: Deslauriers-Dubuc compactly supported interpolat-
ing functions, DD2, DD4 and DD6. They are autocorrelation
functions of Daubechies compactly supported scaling function
of order 2, 4 and 6, respectively.
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k p=2 p=4 p=6
0 1.00000000 1.00000000 1.00000000
1 0.56250000 0.59814453 0.61016818
2 0.00000000 0.00000000 0.00000000
3 -0.06250000 -0.11962891 -0.14539719
4 0.00000000 0.00000000
5 0.02392578 0.04361916
6 0.00000000 0.00000000
7 -0.00244141 -0.01038551
8 0.00000000
9 0.00161552
10 0.00000000
11 -0.00012016

Table 2.2: Filter coefficients h∗k in equation 2.39.

that it can be written as a sum of scaled and translated copies of itself, i.e.,

φ(x) =
+∞
∑

k=−∞

h∗kφ(2x− k). (2.39)

Coefficients h∗k are obtained by taking the autocorrelation of Daubechies wavelet filter

hk (Daubechies, 1988). Values of h∗k for p = 2,4, and 6 are listed in table 2.2. In this

paper, because only the scaling functions are chosen as the basis function, hk is the

coefficient of the low-pass decomposition filter of Daubechies wavelet family. Results

of electrodynamics show that using merely the scaling function itself still leads to

savings in the number of grids due to the highly linear dispersion property of the

resulting scheme (Fujii and Hoefer, 2001).

Dirac delta function δ(x) is chosen to be the dual function of φ(x), as they satisfy

the biorthogonal relation in equation 2.41. Suppose f(x) represent φ(x) and its dual

function δ(x), the discretization of f(x) is obtained by

fj(x) = f(
x

∆x
− j), (2.40)

where ∆x is the grid spacing. Because f(x) is orthogonal to its integer shift, fj(x)
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Figure 2-7: Harr scaling function h(t).

is orthogonal to shifts equal to integer times of ∆x. The inner product of φi(x) and

δj(x) satisfies the following biorthogonal relation

< φi, δj >= δij (2.41)

where δij is the Kronecker delta function.

The Harr scaling function H(t) is illustrated in figure 2-7. It is also orthogonal to

its integer shift. In order to construct a staggered-grid scheme, the discretized Harr

scaling function is left shifted by 1
2
. The corresponding discretization is then defined

as

Hn(t) = H(
t

∆t
− n+

1

2
) (2.42)

where ∆t is the temporal spacing or time step. Similar to fj(x), Hn(t) is orthogonal

to shifts equal to integer times of ∆t. All orthogonality conditions are listed below
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l p=2 p=4
0 1.2291666667 1.3110340773
1 -0.0937500000 -0.1560100710
2 0.0104166667 0.0419957460
3 -0.0086543236
4 0.0008308695
5 0.0000108999
6 -0.0000000041

Table 2.3: al in equation 2.46. a−l = −al−1.

explicitly,

∫ +∞

x=−∞

φi(x)δi′(x)dx = δi,i′∆x, (2.43)

∫ +∞

t=−∞

Hn(t)Hn′(t)dt = δn,n′∆t, (2.44)

∫ +∞

t=−∞

∂tHn+1/2(t)Hn′(t)dt = δn,n′ − δn+1,n′ , (2.45)

∫ +∞

x=−∞

∂xφi+1/2(x)δi′(x)dx = dφ(x)
dx
|x=i′−i− 1

2
≡ al, l = i− i′. (2.46)

Coefficients al in equation 2.46 are evaluated numerically and are listed in Table 2.3

for p = 2 and 4.

Equations 2.47 and 2.48 show expansions of the normal stress τxx(x, t) and particle

velocity vx(x, t) with a family of discretized Deslauriers-Dubuc interpolating functions

φj(x) in space and Harr scaling functions Hn(t) in time:

τxx(x, t) =
+∞
∑

i,n=−∞

τxxi+1/2;nφi+1/2(x)Hn(t), (2.47)

v(x, t) =
+∞
∑

i,n=−∞

vxi;n+1/2φi(x)Hn+1/2(t). (2.48)

Substituting the expanded τxx(x, t) and vx(x, t) into the wave equations in the

stretched coordinate (Eqs 2.7 and 2.8), taking the inner product of both sides with

testing functions δi′(x̃) and Hn′(t), and applying the orthogonality conditions in equa-
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tions 2.43 ∼ 2.46, we obtain the wavelet based time domain formula, the 1-D case of

which is written in below,

vxi′;n′+1/2 = vxi′;n′−1/2 +
∆t

ρi′∆x

Ls−1
∑

l=0

al(τ
xx
i′+l−1/2;n′ − τxxi′−l+1/2;n′), (2.49)

τxxi′+1/2;n′+1 = τxxi′+1/2;n′ + c
i′+1/2
11

∆t

∆x

Ls−1
∑

l=0

al(v
x
i′+l;n′+1/2 − vxi′+1−l;n′+1/2). (2.50)

Where Ls = 2p− 1, the effective support of the basis function φ(x).

2.4.3 Numerical dispersion and stability condition

Due to the discretization in space and time, all FDTD schemes exhibits deviations

from the linear dispersion behavior as predicted by theory. Linear dispersion means

that both compressional and shear velocities are independent of frequency or wave-

length in a homogeneous medium. If numerical errors increase over time iteration,

the FDTD scheme is not stable. To apply an FDTD algorithm efficiently at a given

accuracy, it is important to analyze numerical dispersion and the stability condition.

Without losing generality, a 1-D scaler wave equation is solved by various FDTD

schemes and their accuracy and efficiency are compared with one another.

We define a generalized spatial differencing operator in the stretched coordinate

for all differencing schemes, Dx̃, for the convenience of easier and more structurized

numerical implementation as well as simpler mathematical expressions.

Dx̃f |m =
1

ε1m∆x̃

Qs
∑

l=0

al(fm+(l−1/2) − fm−(l−1/2)), (2.51)

where Qs = N/2 and al = 0 for Taylor’s expansion based formula of order N . For

the wavelet based formula, Qs = Ls − 1. Then all FDTD schemes mentioned in this

paper may be written in the following general form

vx̃i;n+1/2 = vx̃i;n−1/2 +
∆t

ρi
Dx̃τ

x̃x̃|i;n, (2.52)

τ x̃x̃i+1/2;n+1 = τ x̃x̃i+1/2;n + c
i+1/2
11 ∆tDx̃v

x̃|i+1/2;n+1/2. (2.53)
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We are interested in the numerical dispersion produced by various FDTD schemes,

i.e., the deviation of the numerical velocity from the true medium velocity at different

frequency. We set the grid size to be uniform, i.e., ε(x̃) = 1 so that x̃ = x.

Let Vp and V num
p denote the compressional velocity and the associated numerical

velocity, respectively, and λ the wavelength. For convenience, we define the following

three variables:qp = V num
p /Vp, ξ = Vp∆t/∆x and H = ∆x/λ, where ∆x and ∆t

represent spatial and temporal spacings.

Substituting the plane wave solution which is proportional to ei
2π
λ
(V num
p t−x) to the

difference equations 2.52 and 2.53, yields the numerical dispersion relation of all

FDTD schemes,
1

ξ
=

∑Qs
l=0 al sin[(2l − 1)πH]

sin(πHξqp)
. (2.54)

As | sin(πHξqp)| is no larger than 1, a sufficient stability condition is obtained from

the numerical dispersion relation above, when

ξ ≤
1

∑Qs
l=0 |al|

= ξmax. (2.55)

The stability condition puts an upper bound on ξ, which means the information

can not be propagated across the mesh faster than the mesh velocity ∆x̃/∆t. Note

that ξmax varies with different FDTD schemes, with ξ2ndmax the largest, followed in

order with ξ4thmax, ξ
6th
max, ξ

8th
max, ξ

DD2
max and ξDD4

max . DD2 and DD4 denote that the order of

Daubechies scaling function p is equal to 2 and 4, respectively. In general, the larger

ξ is chosen, the shorter the running time of any FDTD algorithm.

Figure 2-8 shows the normalized numerical dispersion relations of various FDTD

schemes when ξ of each scheme takes the same value that varies from ξDD4
max to 1%

of that value. In order to obtain a numerical solution without too much numerical

dispersion, the grid spacing ∆x and time step ∆t should be chosen such that the

numerical dispersion curve is inside the flat regime. The 6th and 8th order Taylor’s

expansion based FDTD schemes exhibit highly linear dispersion behavior compared

with others; therefore for the same accuracy, they allows at least twice coarser mesh

than the normally used 4th order scheme and that saves 8 times of memory and twice
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Figure 2-8: Numerical dispersion relations of various FDTD
schemes, including 2nd, 4th, 6th and 8th order Taylor’s expan-
sion based and wavelet based ones, with p = 2 and 4. ξ of each
scheme has been chosen from ξDD4

max to 1% of that value. In each
figure, the horizontal and the vertical axes denote the normal-
ized grid size H = ∆x/λ and the normalized numerical velocity
qp = V num

p /Vp.
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the running time as ∆t can be twice larger for a 3-D model. However, 4th order

scheme is the most efficient scheme when a solution with relatively low accuracy

is needed (ξ = ξmax). Numerical dispersion of DD2 and DD4 schemes are slightly

better than the 4th order scheme. For the 2nd order scheme, 15 to 20 grid points per

wavelength is required to suppress serious numerical dispersion.

2.4.4 Reflection and transmission at a sharp boundary

For modeling wave propagation in surface seismic exploration or acoustic logging con-

figurations, it is of significance to find a scheme that can handle wave reflections and

transmissions at sharp boundaries. We use each scheme to solve wave propagation

in a 1-D model. The model consists two layers with the impedance ratio of 1 : 2,

therefore the reflection and transmission coefficients should be 1/3 and 2/3, respec-

tively. We chose the following parameters for all the FDTD simulations: the center

frequency, 10 Hz; the grid spacing, 7, 10 and 20 grid points per smallest wavelength;

ξ, 0.4ξDD4
max . Numerical reflection and transmission coefficients are computed from

Fourier transformed waveforms obtained from FDTD computations. Errors in those

coefficients for each scheme are shown in figures 2-9∼ 2-11. For the 2nd order scheme,

there are some noticeable dispersions in the waveforms even with 20 grid points per

smallest wavelength. It produces the least accurate reflection and transmission at the

sharp boundary compared with results from higher order method, contrary to what

is discussed in previous work (Cunha, 1993). For the rest of the FDTD schemes, all

of them produce similar results with a fine grid, except that errors in the reflection

coefficients are much greater than in the transmission coefficients. With a coarse grid

(Fig 2-9), the DD2 method performs slightly better for reflections while much less

error for transmissions than the others. In order, the performance of DD4 follows that

of DD2, then is followed by that of 8th, 6th and 4th order schemes. Note that with 7

grid points per smallest wavelength, the 4th order scheme generates some noticeable

dispersion in the reflected waveform while higher order and wavelet based methods do

not. By reducing grid size 3 times, errors in reflection and transmission coefficients

for all schemes are reduced 5 to 10 times.
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Figure 2-9: The incident, reflected and transmitted waves that
propagate in a 2-layer model and are obtained from 6 FDTD
computations using uniform grid. The grid size is 1/7 of the
smallest wavelength. Both 2nd order and 4th order solutions
show noticeable numerical dispersions. The reflection and trans-
mission coefficients are computed from those waves. Their rela-
tive errors to the analytical answer are plotted in the frequency
domain.
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Figure 2-10: Same as figure 2-9 except that the grid size is 1/10
of the smallest wavelength.
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Figure 2-11: Same as figure 2-9 except that the grid size is about
3 times smaller while errors in reflection and transmission coeffi-
cients drop more than 5 times. With little numerical dispersion,
the 2nd order scheme does not produce the most accurate re-
flections and transmissions as some studies suggested.
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2.5 Numerical Results

To investigate if the stretched grid causes any artificial grid reflections or wave distor-

tions that are normally associated with variable grids, it is important to design the

test case such that few other numerical or physical effects are present and the case is

well understood. A 2-D homogeneous medium with a monopole source is ideal as a

test case for grid reflections and wave distortion.

2.5.1 2-D homogeneous medium

The model is 50 m X 50 m in dimension. The mesh grid is variable in both x1 and

x2 directions produced by using the stretching function shown in figure 2-2. Both

stretching ratios, α1 and α2, are chosen to be 2. The compressional velocity is 3000

m/s, the density 2000 kg/m3 and the center frequency 500 Hz. The smallest grid size

is equivalent to 12 grid points per smallest wavelength. The 8th order FDTD scheme

is selected as it has the most linear numerical dispersion relation which allows the

coarsest sampling among all aforementioned schemes. The source is put inside the

medium in a manner that it is not in the symmetry center of the grid. Figure 2-

12 shows a snapshot plotting on top of the mesh grid. At this time step, some

part of the wave is still inside the finer grid area, some part is at the transaction

zone between the fine and coarse grid and some part has already propagated into

the coarse grid area. The snapshot shows no numerical distortion as the wave front

remains the expected circular shape. There is no observable artificial reflections off

the grid boundary either. A series of snapshots show the progressive development of

the wave in figure 2-13. There is no sign of numerical reflection or distortion during

the numerical propagation of the wave. Figure 2-14 shows waveforms at 9 locations

from both FDTD and analytical solutions. All 9 receivers are evenly placed along the

line in x2 or y direction across the model, which is 20 meters away from the source.

The perfect match between the analytical and FDTD solution proves again there is

no wave distortion induced by the stretched grid, nor any observable reflections.
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Figure 2-12: One snapshot of a wave propagating in a homo-
geneous medium which is discretized with a variable grid. The
source is not in the symmetry center of the mesh which is shown
at the background. A dashed lined circle is plotted at the wave
end to benchmark the wavefront. The perfect circular shape
of the wavefront suggests little phase distortion introduced by
variable grids. No numerical reflection is observed either.
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nt=360 nt=420 nt=480 nt=540

nt=60 nt=120 nt=180 nt=240 nt=300

Figure 2-13: The progressive development of the wave shown
in figure 2-12. The wavefront keeps its circular shape, sug-
gesting no phase distortion, throughout its propagation across
the medium and there is no noticeable numerical reflections ob-
served.

2.5.2 1-D layered model

Surface seismology requires accurate amplitude and phase information of waves re-

flected from subsurface boundaries. It was shown in the previous section that reduc-

ing the grid size improves more effectively the accuracy of wave propagating across

a sharp boundary, as opposed to to selecting an operator out of the 4th, 6th, 8th

order or wavelet based schemes (Followed by the 8th order scheme, DD2 slightly out-

performs others). For efficiency, we only refine the grid size in the neighborhood of

the discontinuity using the proposed gridding scheme in this paper. Results of a 1-D

model with a sharp boundary illustrates the improvement in efficiency without much

a loss in accuracy by using the stretched grid. The wave equations are solved with

both DD2 and 8th order methods.

We conduct 4 numerical computations for the same 1-D model as in previous

section. The 4 computations include three cases using 8th order scheme: case I, a

fine uniform grid (40 grid points per smallest wavelength); case II, a coarse uniform
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Figure 2-14: Waveforms from both the FDTD and analytical
solution are plotted against one another. All 9 receivers are
placed inside the fine grid region, the transition zone between
fine and coarse grid, and the coarse grid region. The perfect
match between two solutions suggest there is no amplitude and
phase distortions introduced by the variable grid. No numeri-
cally reflected wave is recorded.
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grid (6 times coarser than the fine grid) and case III, a variable grid. The variable grid

is constructed using the stretching function shown in figure 2-2 with the stretching

ratio α equal to 6. Thus the size of the fine grid in the vicinity of the boundary

equals to the grid size of the fine uniform grid in case I while the coarse grid in the

homogeneous region equals to the grid size of the coarser uniform grid in case II. In

case III, both receivers for the reflected and the transmitted waves are put in the

coarse grid region. Case IV is the same as case III except that the FDTD scheme is

DD2.

The resulting errors in reflection and transmission coefficients of each case are

shown in figure 2-15. Two significant improvements are achieved by locally refining

the grid mesh in the neighborhood of the boundary: 1) both reflection and transmis-

sion coefficients decrease greatly; 2) those coefficients become much less frequency

dependent as should be the case by theory. Note that the reduction in error is more

so for the reflection coefficient so that errors in both coefficients are at the same level

as oppose to the uniform grid case. The DD2 solution for the stretched wave equation

is more accurate than the 8th order one as is in the uniform grid case.

2.5.3 2-D layered model

The dimension of the 2-D layered model is 7 m X 7 m, with an interface at x=4 m.

One layer is water, with the density being 1000 kg/m3 and compressional velocity

vp being 1500 m/s. The second layer is a soft formation, where the density is 2200

kg/m3, vp 3000 m/s and vs 1200 m/s. The source is a point source at location (3.2

m, 3.2 m) with a center frequency of 2000 Hz. ∆y is chosen to be 0.04 m, and ∆x̃ is

0.01 m and the stretching factor α1=4. The model and the variable mesh is shown

in figure 2-16. 10 grid points are used for PML. For the uniform grid, ∆y=∆x=0.01

m, so that the number of grid points is 13 times more than that of the variable grid.

Figures 2-17 ∼ 2-22 show snapshots of the wave field computed by the variable

grid and the uniform grid. The same color scale is applied to all figures. Both the

stretched grid and uniform grid solutions match with each other very well. From

the last snapshot where part of wave front is outside the computational domain 2-
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Figure 2-15: The incident, reflected and transmitted waves that
propagate in the same 2-layer model as in figure 2-9. The model
is discretized by 3 scenarios: A. uniform coarse grids with the
grid size small enough to suppress numerical dispersion; B. uni-
form fine grids with the grid size 6 times smaller than the coarse
grids; C. variable grids with the grid size in the neighborhood of
the boundary equal to the grid size in scenario B and the grid
size in the rest areas equal to that in scenario A. At a computa-
tional cost slightly higher than in scenario A, scenario C gives
the results with an accuracy close to that of scenario B which is
at least 6 times more costly than scenario A for 1D case. DD2

outperforms 8th order method in reflection while ties with 8th
order method in transmission. Incorporating the wavelet func-
tions may improve the accuracy of DD2 further.
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(a) survey layout

(b) mesh

Figure 2-16: The 2-D layered model and the variable mesh. Ef-
ficiency is improved 13 times. The source is located at (x,y)=
(3.2, 3.2). Eight receivers are placed at (0.8, 0.8), (0.8, 1.6),
(0.8, 2.4), (0.8, 3.2), (0.8, 4.0), (0.8, 4.8), (0.8, 5.6), (0.8, 6.4).
All values are in meters.
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22, two slices are taken to evaluate the performance of the PML. The numerical

reflection off the PML boundary is less than 0.4%, indicating a super performance

of the PML. Figures 2-24, 2-25 and 2-26 show the trace by trace comparison of

the pressure, x direction particle velocity and y direction particle velocity at different

receiver locations, between the oversampled uniform grid case and the variable grid

case. The agreement between the two cases is good.

2.6 Discussions and Conclusions

Simulating wave propagation in the earth with the FDTD method is a common

practice among the geophysics community. However, it is important to do it in an

accurate and efficient fashion as the models that we are dealing with become more

and more complex. The paper shows two effective ways to achieve this goal. One is to

discretize the model space adaptively, namely, to employ a variable gridding scheme.

The other way is to use higher order (6th or 8th) or wavelet based difference schemes.

Variable grids samples the model with finer grids only at places where it is nec-

essary to save computational cost while retaining accuracy in the solution. The

proposed stretched grid scheme in this paper samples the physical space with gradu-

ally varying grid while solving the wave equations in the transformed domain where

the grid size is uniform. Benefits of our method include 1) reducing numerical re-

flections which are often associated with abrupt changes in grid size; 2) eliminating

wave distortions and preserving the formal truncation error and the stability of the

system; 3) easy numerical implementation. The second and third benefit are hard to

accomplish if the FDTD solution is directly computed in the physical domain that is

discretized with a variable mesh. Numerical results from different models show that

the proposed stretched grid approach works quite well.

We also formulate a wavelet based FDTD algorithm for elastodynamics with

Deslauriers- Dubuc interpolating functions, avoiding reconstruction of the wave field,

a problem associated with many other wavelet based formulae. The dispersion analy-

sis shows that at same accuracy, using wavelet based or higher order Taylor’s expan-
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(a) uniform grid

(b) stretched grid

Figure 2-17: Snapshots of the wave field in the 2-layer model.
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(a) uniform grid

(b) stretched grid

Figure 2-18: Snapshots of the wave field in the 2-layer model.
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(a) uniform grid

(b) stretched grid

Figure 2-19: Snapshots of the wave field in the 2-layer model.
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(a) uniform grid

(b) stretched grid

Figure 2-20: Snapshots of the wave field in the 2-layer model.
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(a) uniform grid

(b) stretched grid

Figure 2-21: Snapshots of the wave field in the 2-layer model.
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(a) uniform grid

(b) stretched grid

Figure 2-22: Snapshots of the wave field in the 2-layer model.
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Figure 2-23: From the last snapshot where part of wave front
is outside the computational domain 2-22, two slices are taken
to evaluate the performance of the PML. One is taken at y=3.5
m where the wave front is already outside the computational
domain so that the remaining energy is caused by numerical
reflection off the PML; the other is taken at y=6.76 m where
the wave front energy is a good estimate of the incident energy.
The numerical reflection off the PML boundary is less than 0.4%,
indicating a super performance of the PML.
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Figure 2-24: Trace by trace comparison of the pressure compo-
nent, τxx, between the oversampled uniform grid solution and
the variable grid solution of the 2-D layered model. Solid line:
uniform grid; Dash line: variable grid.
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Figure 2-25: Trace by trace comparison of the particle velocity
component, vx, between the oversampled uniform grid solution
and the variable grid solution of the 2-D layered model. Solid
line: uniform grid; Dash line: variable grid.
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Figure 2-26: Trace by trace comparison of the particle velocity
component, vy, between the oversampled uniform grid solution
and the variable grid solution of the 2-D layered model. Solid
line: uniform grid; Dash line: variable grid.
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sion based differencing schemes for spatial derivatives reduces the universal sampling

rate in one coordinate direction by a factor of 2, comparing to the widely applied

4th order method. That reduces 8 times the memory requirements for 3D applica-

tions. The reason for the saving is that these schemes produce much less numerical

dispersions. The wavelet basedDD2 scheme yields more accurate reflection and trans-

mission coefficients at sharp boundaries, specially when combined with variable grids

in the neighborhood of a discontinuity. Only the scaling functions of the Deslauriers-

Dubuc interpolating family has been used in this paper. Further accuracy/efficiency

may be obtained by incorporating the wavelet functions.
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Chapter 3

2.5-D Stretched Grid FDTD

Formula and A Non-splitting

Perfectly Matched Layer

3.1 Introduction

3-D finite difference computations are often performed in the (x,y,z,t) domain. For

the particular problems that this dissertation is to address, namely, LWD tool effects

on wave propagations along a fluid-filled borehole, properties in the axial direction (z

direction) are assumed homogeneous to avoid additional complexity and to further

save computational cost. Whne the model property is invariant in the axial direction,

a plane wave propagating in the z direction does not change, therefore the wave

equation can be Fourier transformed to and solved by a finite difference approach in

the (x,y,kz,t) domain to further increase computational efficiency, as model properties

are assumed homogeneous along the z axis throughout the dissertation. kz represents

the axial wavenumber. The final solution of the 3-D wave equation in the (x,y,z,t)

domain is obtained by an inverse Fourier transform. Such finite difference approach

is referred as 2.5-D (Randall, 1991b). There are two major benefits of using the

2.5-D formula over a 3-D formula for the applications in the scope of the thesis: 1)
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significant memory saving; 2) can be completely parallelized with respect to kz.

The non-split perfectly matched layer (PML), anisotropic PML, developed in

chapter 2 is used to minimize the reflection at boarders of the computational do-

main. Advantages of the anisotropic PML includes high absorbing rate, less memory

requirement and universal formulation for both isotropic and anisotropic media, as

well as the variable grid scheme in chapter 2.

The 2.5-D stretched grid FDTD algorithm is tested by a 3-D homogeneous model

and a fluid-filled borehole with a monopole source.

3.2 Staggered Grid FDTD Formula with General

Spatial Difference Operator on A Stretched

Mesh

Wave equations 2.13 ∼ 2.30 are the general wave equation in the stretched coordinate

both for the computational and PML regimes. They are Fourier transformed from

the (x̃, ỹ, z, t) domain into the (x̃, ỹ, kz, t) domain. Note that there is no need

to stretch the z coordinate in this case. The finite difference solution of the wave

equation is obtained in the (x̃,ỹ,kz,t) domain and transformed back to the (x,y,z,t)

domain in the end. Derivatives with respect to z, ∂z, are then replaced by −ikz

(equation 3.3), instead of using finite difference approximation. Because only ∂x̃ and

∂ỹ are computed using finite difference, this type of solution is called 2.5 dimensional

solution. As less grid points are needed in the kz domain than in the z domain, the

2.5-D FDTD formulation results in a reduction in memory requirement by several

times. Since solutions for each kz are independent, efficient parallelization can be

achieved trivially.

The 3-D wave equations in the transformed domain are discretized in a 2-D

staggered-grid (Figure 3-1). To avoid confusions in notations, Fourier and its inverse

transformations are explicitly written in equations 3.1 and 3.2.
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Figure 3-1: Schematics of staggered-grids for 2.5D schemes.
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f̃(kz) =
1

2π

∫ +∞

−∞

f(z)eikzzdz, (3.1)

f(z) =

∫ +∞

−∞

f̃(kz)e
−ikzzdkz (3.2)

Fourier Transform{∂zf(x̃, ỹ, z)} = −ikzf̃(x̃, ỹ, kz) (3.3)

The first order temporal derivative is approximated by the 2nd order center differ-

ence operator for Taylor’s expansion based method or the Harr scaling function for

the wavelet-based method. Spatial derivatives are approximated by a generalized

operator representing the 2nd, 4th, 6th and 8th Taylor’s expansion based and the

wavelet based differencing operator (chapter 2). With reference to equation 2.51,

generalized spatial differencing operators in the 2.5-D stretched coordinate, Dx̃f |m,j,k

and Dỹf |m,j,k, representing numerical evaluations at location (m∆x̃, j∆ỹ, k∆kz), of

the first order derivatives of f̃ with respect to x̃ and ỹ, are defined as follows:

Dx̃f |m,j,k =
1

ε1(m, :)∆x̃

Qs
∑

l=0

a(l)(fm+(l−1/2),j,k − fm−(l−1/2),j,k) (3.4)

Dỹf |m,j,k =
1

ε2(:, j)∆ỹ

Qs−1
∑

l=0

a(l)(fm,j+(l−1/2),k − fm,j−(l−1/2),k) (3.5)

where ε1(m, :) represents discretized the stretching function in the x direction for all

possible values of j.

Wave equations 2.13 ∼ 2.30 are discretized after being Fourier transformed into

the kz domain. Take Bxx component as an example (equation 2.13), the discretized

expression is

ρm,j+1/2
Bxx
m,j+1/2,k;n+1/2 −Bxx

m,j+1/2,k;n−1/2

∆t

+ β1m,j+1/2
Bxx
m,j+1/2,k;n+1/2 +Bxx

m,j+1/2,k;n−1/2

2

= Dx̃τ
xx|m,j+1/2,k;n +Dỹτ

yx|m,j+1/2,k;n − ik∆kzτ
zx
m,j+1/2,k;n. (3.6)

Solving for Bxx
m,j+1/2,k;n+1/2 from equation 3.6, we obtain the time iteration formula

(equation 3.9) to update Bxx(m∆x̃,(j + 1/2)∆ỹ,k∆kz), at time step n + 1/2, i.e.
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t = (n+ 1/2)∆t, from their previous time step values. γ i+m,j and γi−m,j are defined as

γi+m,j =
1

∆t
+
βim,j
2

(3.7)

γi−m,j =
1

∆t
−
βim,j
2

(3.8)

Bxx
m,j+1/2,k;n+1/2 =

1

γ1+m,j+1/2
{γ1−m,j+1/2B

xx
m,j+1/2,k;n−1/2

+
1

ρm,j+1/2
(Dx̃τ

xx|m,j+1/2,k;n +Dỹτ
yx|m,j+1/2,k;n

− ik∆kzτ
zx
m,j+1/2,k;n)} (3.9)

Similarly, particle velocities can be updated from their previous time step values by

equations 3.10 ∼ 3.17, respectively.

Bxy
m+1/2,j,k;n+1/2 =

1

γ1+m+1/2,j
{γ1−m+1/2,jB

xy
m+1/2,j,k;n−1/2

+
1

ρm+1/2,j
(Dx̃τ

xy|m+1/2,j,k;n +Dỹτ
yy|m+1/2,j,k;n

− ik∆kzτ
zy
m+1/2,j,k;n)} (3.10)

Bxz
m+1/2,j+1/2,k;n+1/2 =

1

γ1+m+1/2,j+1/2
{γ1−m+1/2,j+1/2B

xz
m+1/2,j+1/2,k;n−1/2

+
1

ρm+1/2,j+1/2
(Dx̃τ

xz|m+1/2,j+1/2,k;n +Dỹτ
yz|m+1/2,j+1/2,k;n

− ik∆kzτ
zz
m+1/2,j+1/2,k;n)} (3.11)

Byx
m,j+1/2,k;n+1/2 =

1

γ2+m,j+1/2
{γ2−m,j+1/2B

yx
m,j+1/2,k;n−1/2

+
1

ρm,j+1/2
(Dx̃τ

xx|m,j+1/2,k;n +Dỹτ
yx|m,j+1/2,k;n

− ik∆kzτ
zx
m,j+1/2,k;n)} (3.12)
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Byy
m+1/2,j,k;n+1/2 =

1

γ2+m+1/2,j
{γ2−m+1/2,jB

yy
m+1/2,j,k;n−1/2

+
1

ρm+1/2,j
(Dx̃τ

xy|m+1/2,j,k;n +Dỹτ
yy|m+1/2,j,k;n

− ik∆kzτ
zy
m+1/2,j,k;n)} (3.13)

Byz
m+1/2,j+1/2,k;n+1/2 =

1

γ2+m+1/2,j+1/2
{γ2−m+1/2,j+1/2B

yz
m+1/2,j+1/2,k;n−1/2

+
1

ρm+1/2,j+1/2
(Dx̃τ

xz|m+1/2,j+1/2,k;n +Dỹτ
yz|m+1/2,j+1/2,k;n

− ik∆kzτ
zz
m+1/2,j+1/2,k;n)} (3.14)

Bzx
m,j+1/2,k;n+1/2 =

1

γ3+m,j+1/2
{γ3−m,j+1/2B

zx
m,j+1/2,k;n−1/2

+
1

ρm,j+1/2
(Dx̃τ

xx|m,j+1/2,k;n +Dỹτ
yx|m,j+1/2,k;n

− ik∆kzτ
zx
m,j+1/2,k;n)} (3.15)

Bzy
m+1/2,j,k;n+1/2 =

1

γ3+m+1/2,j
{γ3−m+1/2,jB

zy
m+1/2,j,k;n−1/2

+
1

ρm+1/2,j
(Dx̃τ

xy|m+1/2,j,k;n +Dỹτ
yy|m+1/2,j,k;n

− ik∆kzτ
zy
m+1/2,j,k;n)} (3.16)

Bzz
m+1/2,j+1/2,k;n+1/2 =

1

γ3+m+1/2,j+1/2
{γ3−m+1/2,j+1/2B

zz
m+1/2,j+1/2,k;n−1/2

+
1

ρm+1/2,j+1/2
(Dx̃τ

xz|m+1/2,j+1/2,k;n +Dỹτ
yz|m+1/2,j+1/2,k;n

− ik∆kzτ
zz
m+1/2,j+1/2,k;n)} (3.17)

Inside the computational regime, βi are set to be zero and only three Bij, e.g. Bxx =

vx, Bxy = vy and Bxz = vz need to be computed and stored in the memory as the

rest are equal to one of them (equation 2.31 ∼ 2.33). As the PML is very efficient

in absorption, small number of grid points are required for the PML; therefore the
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increment in memory requirement by the introduction of 6 more variables in the

PML regime is negligible. Typically 10 PML grid points can reduce the numerical

reflection to 0.1%. Also working in the discrete kz domain, periodicity is assume in

the z direction, therefore numerical absorbing is not necessary along the z direction.

β3 is set to zero.

Discretizing equations 2.22 ∼ 2.30 in the stretching coordinate leads to the time

iteration equations to update each stress component.

τxxm+1/2,j+1/2,k;n+1 =
1

γ1+m+1/2,j+1/2
(γ1−m+1/2,j+1/2τ

xx
m+1/2,j+1/2,k;n

+ d11m+1/2,j+1/2Dx̃v
x|m+1/2,j+1/2,k;n+1/2

+ d12m+1/2,j+1/2Dỹv
y|m+1/2,j+1/2,k;n+1/2

− d13m+1/2,j+1/2ik∆kzv
z
m+1/2,j+1/2,k;n+1/2) (3.18)

τxym,j,k;n+1 =
1

γ1+m,j
(γ1−m,jτ

xy
m,j,k;n

+ d41m,jDỹv
x|m,j,k;n+1/2

+ d42m+1/2,j+1/2Dx̃v
y|m,j,k;n+1/2) (3.19)

τxzm,j+1/2,k;n+1 =
1

γ1+m,j+1/2
(γ1−m,j+1/2τ

xz
m,j+1/2,k;n

− d61m,j+1/2ik∆kzv
x
m,j+1/2,k;n+1/2

+ d63m,j+1/2Dx̃v
z|m,j+1/2,k;n+1/2) (3.20)

τ yxm,j,k;n+1 =
1

γ2+m,j
(γ2−m,jτ

yx
m,j,k;n

+ d51m,jDỹv
x|m,j,k;n+1/2

+ d52m+1/2,j+1/2Dx̃v
y|m,j,k;n+1/2) (3.21)
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τ yym+1/2,j+1/2,k;n+1 =
1

γ2+m+1/2,j+1/2
(γ2−m+1/2,j+1/2τ

yy
m+1/2,j+1/2,k;n

+ d21m+1/2,j+1/2Dx̃v
x|m+1/2,j+1/2,k;n+1/2

+ d22m+1/2,j+1/2Dỹv
y|m+1/2,j+1/2,k;n+1/2

− d23m+1/2,j+1/2ik∆kzv
z
m+1/2,j+1/2,k;n+1/2) (3.22)

τ yzm+1/2,j,k;n+1 =
1

γ2+m+1/2,j
(γ2−m+1/2,jτ

yz
m+1/2,j,k;n

− d82m+1/2,jik∆kzv
y
m+1/2,j,k;n+1/2

+ d83m+1/2,jDỹv
z|m+1/2,j,k;n+1/2) (3.23)

τ zxm,j+1/2,k;n+1 = τ zxm,j+1/2,k;n

+ ∆t(−d71m,j+1/2ik∆kzv
x
m,j+1/2,k;n+1/2

+ d73m,j+1/2Dx̃v
z|m,j+1/2,k;n+1/2) (3.24)

τ zym+1/2,j,k;n+1 = τ zym+1/2,j,k;n

+ ∆t(−d92m+1/2,jik∆kzv
y
m+1/2,j,k;n+1/2

+ d93m+1/2,jDỹv
z|m+1/2,j,k;n+1/2) (3.25)

τ zzm+1/2,j+1/2,k;n+1 = τ zzm+1/2,j+1/2,k;n

+ ∆t(d31m+1/2,j+1/2Dx̃v
x|m+1/2,j+1/2,k;n+1/2

+ d32m+1/2,j+1/2Dỹv
y|m+1/2,j+1/2,k;n+1/2

− d33m+1/2,j+1/2ik∆kzv
z
m+1/2,j+1/2,k;n+1/2) (3.26)

In the PML regime, Tij 6= Tji, introducing 3 extra variables. Again they only need to

be computed and restored in the PML regime, resulting little increment in memory

requirement. Also note that the spatial difference operator can be chosen at the
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user’s choice, including the wavelet based scheme and the 2nd, 4th, 6th and 8th order

Taylor’s expansion based ones. Definition of spatial difference operators are defined

in chapter 2.

When considering wave propagation in an elastic medium without residual stresses,

the stress tensor is symmetric, i.e., ταβ = τβα and dpα denotes the elasticity of the

medium. It is widely acknowledged that orthorhombic anisotropy is sufficient to de-

scribe the general anisotropy for the solid earth. For orthorhombic anisotropy, the

elasticity matrix of the medium is

[dpα] =















































c11 c12 c13

c12 c22 c23

c13 c23 c33

c66 c66 0

c66 c66 0

c55 0 c55

c55 0 c55

0 c44 c44

0 c44 c44















































(3.27)

Material properties (density and elasticity) are defined at (m+1/2,j+1/2), properties

at (m+1/2,j), (m, j+1/2) and (m, j) are obtained through the following averaging
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formulae:

ρm+1/2,j =
1

2
(ρm+1/2,j−1/2 + ρm+1/2,j+1/2) (3.28)

ρm,j+1/2 =
1

2
(ρm−1/2,j+1/2 + ρm+1/2,j+1/2) (3.29)

ρm,j =
1

4
(ρm−1/2,j+1/2 + ρm+1/2,j+1/2

+ ρm−1/2,j−1/2 + ρm+1/2,j−1/2) (3.30)

dpαm+1/2,j = 2/(1/dpαm+1/2,j−1/2 + 1/dpαm+1/2,j+1/2) (3.31)

dpαm,j+1/2 = 2/(1/dpαm−1/2,j+1/2 + 1/dpαm+1/2,j+1/2) (3.32)

dpαm,j = 4/(1/dpαm−1/2,j+1/2 + 1/dpαm+1/2,j+1/2

+ 1/dpαm−1/2,j−1/2 + 1/dpαm+1/2,j−1/2) (3.33)

All FDTD equations are derived in the stretching coordinate. Depending on the shape

of stretching functions ε1(x̃) and ε2(ỹ), grid size in the physical domain is variable.

Following the same approach as for the 1-D case in chapter 2, we may obtain the

stability condition for the variable grid 2.5-D FDTD scheme,

ξ ≤
1

∑Qs
l=0 |a(l)|

(2 +
k2zmax

∆2

4
)−

1
2 (3.34)

For simplicity, let ∆x̃ = ∆ỹ = ∆.

The upper limit of axial wavenumber, kmaxz , is chosen as

kmaxz = 1.5
ωmax
vminz

(3.35)

where vminz represents the slowest phase velocity in the axial direction. kmaxz also

implies the resolution in the z direction, i.e., ∆z = 2π
kmax
z

. The spacing in kz direc-

tion, ∆kz, is determined by the desired computational dimension in the z direction.

Suppose the computational range in the z direction is [−Lz, Lz], then ∆kz =
π
Lz
.

The numerical source can be one or many point or dipole sources. The source

time function is a Kelly wavelet (Stephen et al., 1985).
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3.3 WorkingWith the Anisotropic Perfectly Matched

Layer

Let the stretching parameter along the imaginary axes, βj in equations 2.9 and 2.10

vary gradually in the xj direction, otherwise a reflection may happen at the boarder

of the computational domain due to a sudden change in βj. Figure 3-2 illustrates

how β1 and β2 are arranged for the 2.5D algorithm. βj is zero in the computational

domain and quadratically increasing toward the outer boundary inside the PML. x1,

x2 and x3 denote x, y and z directions, respectively.

(a) β1 (b) β2

Figure 3-2: Distribution of the absorbing parameter β1 and β2 for a 2-D computation.
βj is zero in the computational domain and quadratically increasing toward the outer
boundary inside the PML.

3.4 Numerical Results

The variable grid scheme and the performance of PML in 2-D case has been tested in

chapter 2. Here the numerical test is focused on the 2.5-D algorithm and the PML in

the 2.5-D situation. Both kinematics and amplitudes of the numerical solution are to

be compared with analytical solutions. The artifacts of the 2.5-D algorithm (Randall,

1991b; Liu and Sinha, 2000) and ways to get rid of them are shown. The remaining
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energy due to the imperfection of the PML is calculated. Because the FDTD algo-

rithm will be used to simualate wave propagations in a fluid-filled borehole in the

following chapters, the stretched grid 2.5-D FDTD solution is compared with those

from a discrete wavenumber computation and a uniform grid algorithm.

3.4.1 3-D Homogeneous Model

The testing model is 50 m by 50 m by 50 m in size with a compressional velocity equal

to 3000 m/s. Being discrete in the kz domain implies the 2.5D solution is periodic

with respect to x3 or the z direction. The period is equal to 2π/∆kz. Therefore ∆kz

should not exceed 2π/50 = π/25. In this case, ∆kz is chosen to be π/50. A point

source with a center frequency of 500 Hz is placed at (25, 25, 0). The upper half-

power frequency of the source is 678 Hz (Stephen et al., 1985), thus the maximum

kz is chosen to be 2.8. The 2.5-D scheme in this case requires less than half the grid

points of a 3-D scheme for the same resolution. The DD2 is selected as the spatial

differencing operator. A 10 point PML is placed around the computational domain,

with the maximum β1 and β2 being 20000. Further investigation shows that with the

same number of PML grid points and absorbing rate, βj should be increased with

the increment of the source center frequency and the highest velocity of the physical

model.

Figure 3-7 shows 3-D snapshots of the spherical wave propagating in the homo-

geneous medium at various time steps. The PML works very well. The maximum

amplitude in figure 3-7(l) is 0.2% that in figure 3-7(j). The wavefront is able to main-

tain its spherical shape, except a strong artifact along the z direction at or nearly

the source location at initial time steps. The artificial disturbance propagates only in

the x1 and x2 plane, not along the x3 or the z direction. The cause of this artifact is

that the inverse Fourier transform in equation 3.2 does not converge when kz is zero.

As the artifact does not propagate in the x3 direction, which means it is constant

along the x3 direction, a pure artifact at each time step can be recorded far from

the wavefront and be taken away from the wavefield completely. Figure 3-8 shows

snapshots of the spherical wave after the artifact is taken out.
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Figure 3-9(b) shows both FDTD and analytical waveforms recorded by a receiver

array (figure 3-9(a)) along the x2 direction. The FDTD solution agrees extremely

well with the analytical solution both in kinematics and amplitude. Figure 3-9(b)

also demonstrates that PML absorbs most of the propagating energy, because the

recording time is long enough for the reflected wave to show up if they have not been

absorbed by the PML.

For the receiver array along the x3 direction (figure 3-10(a)), comparison of wave-

forms of both the FDTD and the analytical solutions is shown in figure 3-10. As the

receiver array is close to the source location in the x1 and x2 plane, there are artifacts

prior to the wave arrivals in figure 3-10(b). They can be taken away by subtracting

a well isolated artifact (such as the one at the far end receiver) from the waveforms.

The waveforms without artifacts are shown in figure 3-10(c). Again the FDTD so-

lution agrees extremely well with its analytical counterpart both in kinematics and

amplitudes.

3.4.2 A monopole source in a fluid-filled borehole

To show that variable grids are able to represent more efficiently an inhomogeneous

model, such as a fluid-filled borehole, the model is discretized as shown in figure 2-

3. The stretched wave equations (Eq 2.7 and 2.8) are solved with the 2.5-D FDTD

algorithm. As we are interested in possible improvement in the numerical computation

by representing the circular borehole more smoothly, we only show simulations for a

monopole source and 8 monopole receivers at the center of the borehole. Parameters

for the simulation are listed in Table 3.1. Results from the stretched grid FDTD

computation are compared with those from a discrete wavenumber computation and

a uniform grid algorithm. The cross section of the uniformly discretized model is

illustrated in figure 3-3, where the grid size of equals to the coarse grid size in the

stretched mesh.

The cross section slice of snapshots computed by the 2.5-D FDTD algorithm

on a uniform grid and a stretched grid at a similar time are shown in figures 3-4

and 3-5, respectively. In the uniform grid case, the wavefront can hardly hold its
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Figure 3-3: The same borehole as in figure 2-3 except being
discretized using a uniform grid. The grid size equals to the
coarse grid size in the stretched mesh.

ρ 1000
water Vp 1500

ρ 2000
formation Vp 3000

Vs 2000
borehole radius r 0.1

source 1st receiver offset z0 3.3528
receiver spacing dz 0.1524

number of receivers nrec 8
source center frequency fc (Hz) 8000

grid size in the stretched domain ∆x̃ 0.007
stretching factor α1 & α2 3

differencing scheme DD2

Table 3.1: Model parameters for FDTD simulations. All in S.I.
units.
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circular shape due to the poor representation of the circular borehole. That is in

sharp contrast to its counterpart in the case of the stretched grid. Waveforms at all

8 receivers from both FDTD computation are plotted against results from a discrete

wavenumber algorithm (Bouchon and Schmitt, 1989) in figure 3-6. The stretched

grid FDTD result agrees with the discrete wave number result very well, given the

different nature of the two method; whereas both the phase and amplitude of the

uniform grid FDTD waveform deviates from the discrete wave number solution from

early on.

Figure 3-4: A cross-section slice of the snapshot computed on
the uniform grid. The wave front loses its circular shape due to
poor representation of the circular borehole.

3.5 Discussions and Conclusions

A 2.5-D variable grid FDTD algorithm has been implemented with the anisotropic

PML. It has options of choosing between the 2nd, 4th, 6th, 8th and the wavelet based

(DD2 and DD4) differencing operators.

The non-splitting anisotropic PML is able to absorb as much as 99.8% of the total

wave energy with 10 grid points. The proposed PML shares the same formula as the
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Figure 3-5: A cross-section slice of the snapshot computed on
the stretched grid. The wave front keeps a better circular shape
comparing the uniform grid case.

variable grid scheme introduced in chapter 2, allowing an easy and modular imple-

mentation for both isotropic and anisotropic media. The anisotropic PML requires

less field variables than the formula that employs field splitting.

Although introducing some strong artifacts near the source location, the 2.5D

solution yields accurate results in both kinematics and amplitudes. Artifacts can be

easily removed as they do not vary in the x3 direction.

Numerical simulations of wave propagating along a fluid-filled borehole demon-

strate considerable improvement in the solution by refining grid size around the bore-

hole.

To illustrate the amount of computational savings made by the variable mesh

and 2.5D implementation, we can take a logging while drilling model as an example.

Model parameters are listed in table 3.2. The center frequency is 2 kHz. The model

dimension is 4.6 m by 4.6 m by 3.8910 m. When the tool is off-centered, the annulus

between the formation and the tool can be as thin as 0.006 m. At least 4 points

are needed inside the annulus and that requires a grid size as small as 0.0015 m.

If a 3-D uniform grid FDTD is applied, the model requires a total of 2.5 × 1010
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Figure 3-6: Waveforms received at axial locations in a fluid-
filled borehole.
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density (kg/m3) vp (m/s) vs (m/s)
borehole fluid 1000 1500 0
steel tool 7800 5860 3130

formation (soft) 2200 3000 1200

Table 3.2: Model parameters of a fluid-filled borehole with a steel tool.

grid points which leads to a minimum (isotropic case) memory requirement of 2500

Gbytes, far beyond the capacity of a normal parallel supercomputer or cluster, not

mentioning the significant delay caused by massive communication required between

nodes. Applying the variable grid scheme, the grid size inside the formation can

be 26 times that inside the borehole, plus a coarser sampling rate in the kz domain

when using the 2.5-D formula, a total number of grid points now reduces to 107,

2500 times less. The memory requirement now reduces to 1 or a couple of Gbytes,

enabling a desktop computer or multiple nodes cluster to compute. Moreover, the 2.5-

D solution in kz domain needs no communication between nodes, allowing a complete

parallelization with no communication induced latency.
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(a) nt=1 (b) nt=51 (c) nt=101

(d) nt=151 (e) nt=201 (f) nt=251

(g) nt=301 (h) nt=351 (i) nt=401

(j) nt=451 (k) nt=501 (l) nt=551

Figure 3-7: 3-D snapshots of a spherical wave, generated by a point source, propa-
gating in a homogeneous medium.
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(a) nt=1 (b) nt=51 (c) nt=101

(d) nt=151 (e) nt=201 (f) nt=251

(g) nt=301 (h) nt=351 (i) nt=401

(j) nt=451 (k) nt=501 (l) nt=551

Figure 3-8: 3-D snapshots of the same spherical wave as in figure 3-7 after the artifact
is taken out.
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(b) Waveform comparison

Figure 3-9: FDTD and analytical waveforms recorded by a receiver array (figure 3-9(a)
along the y direction. The FDTD solution agrees extremely well with the analytical
solution. Figure 3-9(b) also demonstrates that PML absorbs most of the propagating
energy, because the recording time is long enough for the reflected wave to show up
had they not been absorbed by the PML.
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(b) Waveform comparison (with artifacts)
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(c) Waveform comparison (without arti-
facts)

Figure 3-10: Waveforms of both the FDTD and the analytical solutions for the re-
ceiver array shown in figure 3-10(a). There are artifacts prior to the wave arrivals in
figure 3-10(b). Same artifacts are found in the snapshots of figure 3-7. As artifacts do
not vary along the z direction, they can be taken away by subtracting a well isolated
artifact (such as the one at the far end receiver) from the waveforms. The waveforms
without artifacts are shown in figure 3-10(c).
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Chapter 4

Wave Propagation Studies on

Acoustic Logging While Drilling –

Centered Tool

ABSTRACT

Acoustic waveforms recorded in a fluid-filled borehole in soft formation with a logging

while drilling tool are computed by a non-uniform grid finite difference algorithm. The

tool is at the center of the fluid-filled borehole. At low frequencies (the source center

frequency is chosen to be 2 kHz), monopole, dipole and quadrupole LWD logging tools

are simulated. A clear direct shear arrival is observed in the dipole and monopole

case, providing a good cross-check for modal based shear measurements. Quadrupole

mode asymptotically approaches formation shear velocity at low frequencies, which

may serve as a good candidate to measure formation shear velocity. Dipole, monopole

and quadrupole excitations are efficiently achieved by two out of phase point sources,

four in phase point sources and four alternate phase point sources. Dipole logging

operating at higher frequencies (the source center frequency is chosen to be 8 kHz

and 15 kHz) is also investigated. At higher frequencies, the borehole flexural arrival is

well separated from the tool flexural arrival, and it is less dispersive. However, higher
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mode (e.g. n=3) is excited, which may complicate data interpretation. To identify

and take higher mode into account in data processing, frequency domain dispersion

analysis is essential. Numerical results agrees with eigenvalue based solutions.

4.1 Introduction

Logging while drilling (LWD) tools emerged in the 1990’s and are gaining momentum

due to their engineering and economical advantages (Aron et al., 1994; Minear et al.,

1995, 1996; Heysse et al., 1996; Market et al., 2002; Tang et al., 2002). Formation

properties are measured simultaneously while drilling avoiding problems such as “mud

cake” and reducing the rig time, compared to their wireline counterparts. LWD

measurements may also enable a real-time evaluation of formation properties which

leads to significant potential for “look-ahead of the bit” and better control of well

trajectories.

LWD tool differs from its wireline counterpart only by geometry. Thus it looked

reasonable for LWD tool designers to borrow the wealth of wisdom in the wireline

logging literature. However, with its sources and receivers closer to the borehole wall

and substantially larger cross-section of the tool taking up majority space in the fluid-

filled borehole, LWD is found to differ considerably from its wireline counterpart. It

has significant effects on borehole modes. That gives rise to difficulties to identify

modal arrivals, a crucial step to estimate formation vp and vs values.

Current LWD tools can measure shear velocity in hard formation and compres-

sional velocity in both hard and soft formation with some level of confidence. Shear

velocity measurements in soft formations could be problematic. In order to improve

ways to measure formation shear velocity in soft formations, it is essential to under-

stand modal excitations and wave propagation characteristics in the LWD situation.

A frequency domain modal study has shown that tool modes affect dispersion proper-

ties of important borehole modes like the flexural (1,0) mode that is used to measure

formation shear velocity in the wireline case (Rao et al., 1999). Time domain inves-

tigation, will complement the frequency domain analysis and understand amplitude
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responses of all arrivals, guided modes, refracted arrivals and even leaky modes.

Finite difference time domain method has been extensively used to study time

domain wave propagations in the wireline situation (Stephen et al., 1985; Chen, 1994;

Randall, 1991b; Liu and Sinha, 2000), for its flexibility to handle not only symmetric

borehole model, but also asymmetric ones such as off-centered tool and non-circular

borehole shapes which are otherwise difficult to solve with wavenumber integral meth-

ods (Kurkjian, 1985; Bouchon and Schmitt, 1989; Ellefsen, 1990; Randall, 1990, 1991a;

Norris and Sinha, 1993). Time domain studies in LWD have been hampered because

of the large memory requirements for a typical model using uniform grid spacing.

With the development of the stretched grid FDTD algorithm (chapter 2 and 3), wave

propagation in the LWD can be simulated even with mid-sized PC-clusters.

Numerical results are limited to soft formation, as shear velocity measurement

is the most problematic in soft formations. Discussions include modal excitations

with respect to various sources types (such as monopole, dipole and quadrupole) and

source frequencies. In this chapter, discussions are limited to centered tools.

4.2 Dispersion Curves of Various

Borehole Modes in LWD

Both wireline and LWD acoustic logging tools consist a steel pipe with one or a

pair of sources and several pairs of receivers mounted to it. Typical offset between

the source and the first receiver pair is about 11 ft for wireline and 4.5 ft for LWD

tools. Receivers always align with the source in both radial and azimuthal positions.

Figure 4-1 shows a schematic diagram of an LWD tool. Both the fluid-filled

borehole and the LWD tool pipe act as waveguides. At a certain frequency, only waves

traveling with certain phase velocities propagate efficiently along the axial direction.

Those waves are known as borehole modes. While their dispersion properties had

been investigated (Rao et al., 1999), a brief discussion of various borehole modes

in a typical LWD tool is useful to establish a context for the time domain study.
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Figure 4-1: A schematic diagram of an LWD tool.

Discussion is limited to azimuthal orders of 0, 1,and 2, referred as the monopole,

dipole and quadrupole cases. The frequency range is 0-20 kHz. Formation and tool

properties are listed in Table 4.1.

4.2.1 Monopole Modes (n=0)

In the frequency range of 0-20 kHz, Stoneley wave is the only borehole mode in the

monopole case. It is trapped in the fluid annulus between the steel pipe and the

formation. The dispersion curves of Stoneley mode with and without the LWD tool

are shown in figure 4-2. The Stoneley mode becomes localized at the borehole wall

as frequency increases, and its phase velocity approaches that of the Schölte fluid-

solid interface wave. Without the LWD tool, the low-frequency limit of the Stoneley

phase velocity is the “tube wave” speed given by cT = cf (1 + B/µ), where cf is the

fluid p velocity, B the bulk modulus of the fluid and µ the shear modulus of the

formation (Paillet and Cheng, 1991). The introduction of a steel pipe in the borehole

120



fluid reduces the low-frequency limit of the Stoneley phase velocity considerably.

Figure 4-3 shows both phase and group velocities of the borehole Stoeneley in the

LWD situation.

4.2.2 Dipole Modes (n=1)

The dispersion curves for the dipole case are shown in figure 4-4. Only the tool and

borehole flexural modes are shown, because other modes are of little consequence in

the LWD operation. Without the LWD tool, the borehole flexural mode asymptoti-

cally approaches the formation shear velocity at low-frequency limit. When the tool

is inside an infinite fluid volume, the tool flexural phase velocity approaches to 0 at

low-frequency limit. It increases with frequency. When the LWD tool is inside the

fluid-filled borehole, the tool flexural mode interacts with the borehole flexural mode

at low frequencies. As a result, the borehole flexural mode keeps its dispersion prop-

erty at high frequencies and exchanges dispersion property at low frequencies with

the tool flexural mode. The low-frequency limit of the phase velocity of the borehole

flexural mode is no longer the formation shear velocity. Figure 4-5 shows both phase

and group velocities of borehole and tool flexural modes.

4.2.3 Quadrupole Modes (n=2)

The dispersion curves for the quadrupole case are shown in figure 4-6. The borehole

quadrupole mode asymptotically approaches the formation shear at low frequencies

regardless of the existence of an LWD tool. Because of this property, Tang et al.

(2002) reported using the quadrupole mode to measure formation shear velocities.

Figure 4-5 shows both phase and group velocities of borehole quadrupole modes.

On top of the aforementioned borehole modes, it is well established that compressional

velocities in both formations and shear velocities in hard formation can be measured

by refracted arrivals.
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Figure 4-2: Dispersion of borehole Stoneley modes (monopole)
with or without the LWD tool. Solid line: with LWD tool; Dash
line: without LWD tool.
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Figure 4-3: Phase and group velocities of the borehole Stoneley
mode. Solid line: phase velocity; Dash line: group velocity. For-
mation properties: vp=3000 m/s, vs=1200 m/s, ρ=2200 kg/m3.
Fluid properties: vp=1500 m/s, ρ=1000 kg/m3. Tool properties:
vp=5860 m/s, vs=3130 m/s and ρ=7800 kg/m3.
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Figure 4-4: Dispersion of dipole modes. The faster mode is the
tool flexural. The dash line represents tool flexural mode when
the tool is in an infinite fluid volume. The solid line represents
the tool flexural mode when the tool is inside a fluid-filled bore-
hole. They lay on top of each other at higher frequencies. The
slower mode is the borehole flexural. The dash line shows its
dispersion behavior without the LWD tool. The solid line shows
the borehole flexural dispersion that has interacted with the tool
flexural mode at low frequencies.
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Figure 4-5: Phase and group velocities of borehole and tool
flexural modes. Solid line: phase velocity; Dash line: group
velocity. Formation properties: vp=3000 m/s, vs=1200 m/s,
ρ=2200 kg/m3. Fluid properties: vp=1500 m/s, ρ=1000 kg/m3.
Tool properties: vp=5860 m/s, vs=3130 m/s and ρ=7800 kg/m3.
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Figure 4-6: Dispersion of quadrupole modes. Solid line: with
LWD tool; Dash line: without LWD tool. Formation proper-
ties: vp=3000 m/s, vs=1200 m/s, ρ=2200 m/s. Fluid proper-
ties: vp=1500 m/s, ρ=1000 kg/m3. Tool properties: vp=5860
m/s, vs=3130 m/s and ρ=7800 kg/m3.
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Figure 4-7: Phase and group velocities of the borehole
quadrupole mode. Solid line: phase velocity; Dash line: group
velocity.
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formation tool borehole fluid
vp (m/s) 3000 5860 1500
vs (m/s) 1200 3130 0
ρ (kg/m3) 2200 7800 1000

a (tool inner radius) (m) 0.02413
b (tool outer radius) (m) 0.092075
c (borehole radius) (m) 0.109375

Table 4.1: Model parameters of a fluid-filled borehole with a steel tool.

4.3 Wave Propagations in Logging While Drilling

Situation

In this section, the stretched grid FDTD algorithm is used to study characteristics

of wave propagations in the LWD situation. We shall discuss monopole, dipole and

quadrupole loggings at low frequencies (0-5 kHz) and dipole logging at high frequen-

cies (0-30 kHz).

The dominant wavelengths in the formation are λp = vp/fc and λs = vs/fc,

where fc is the source center frequency. To reduce boundary effects, dimension of the

numerical model is chosen to be 2λp by 2λp in x and y, because the radial penetration

depth into the formation of each mode is around one wavelength(Paillet and Cheng,

1991). kzmax is determined by equation 3.35. ∆x̃ and ∆ỹ are chosen such that the

smallest structure in the model, which is the thin annulus between the steel pipe

and the formation, can have at least 4 sampling grid points. Stretching factors α1

and α2 are determined by the criteria that the maximum grid sizes, α1∆x̃ and α2∆ỹ,

will guarantee 8 sampling points per smallest wavelength in the formation. 10 grid

points are used for PML. The absorption parameter, β1 and β2, are chosen to ensure

the numerical reflections at the outer boundaries of the computational domain are

less than 0.4% (80000 for low frequency excitation and 800000 for high frequency

excitation). Figure 4-8 shows the mesh scheme of the borehole cross-section with

an LWD tool at the center of the borehole. The monopole, dipole and quadrupole

sources consist two or four point sources (figure 4-9). A dipole ring source that consists
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Figure 4-8: The mesh scheme of the borehole cross-section with
a centered tool.
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(a) monopole
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(b) dipole

-

-
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(c) quadrupole

Figure 4-9: A schematic diagram of a monopole, dipole and
quadrupole source of LWD tool. It is made of two or four point
sources. Plus and minus signs illustrate opposite phase.

of 72 point sources around a circle (figure 4-10) is also used. All point sources are

placed inside the annulus, 5 mm away from the steel pipe. The source function is a

Kelly wavelet (Stephen et al., 1985), shown in figure 4-11(a). Three center frequencies,

2 kHz, 8 kHz and 15 kHz, are chosen for the Kelly wavelet. Figure 4-11 shows source

spectra.

4.4 Numerical Results

Numerical results are presented in the sequence of dipole, monopole and quadrupole

logging with low frequency excitations, and dipole logging with high frequency exci-

tation.
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Figure 4-10: The fluid-filled borehole cross-section with a dipole
ring source. Each * represents a point source. The magnitude of
each point source is proportional to cosθ, and θ is the azimuthal
angle with respect to the x axis.
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(b) fc=2 kHz
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(c) fc=8 kHz
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(d) fc=15 kHz

Figure 4-11: Source time function and spectra with different
center frequencies (fc).
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Figure 4-8 shows the zoomed in cross-section of the borehole model (x-y plane)

and the numerical mesh. The annulus between the formation and the pipe is 17.3

mm. The smallest grid is chosen to be 4 mm. The grid stretching factor in both x and

y direction is 10 for low frequency excitation and 1.5 for high frequency excitation.

Dipole Source (n=1)– Two Point Sources

Dispersion curves in figure 4-4 show that the borehole flexural mode and the tool

flexural mode exchange dispersion properties at low frequencies, with the tool flexural

asymptotes to formation shear velocity at low frequencies. So we fire the source at

low frequency in the hope to excite a mode that propagates with a speed close to

formation shear velocity.

Like a real LWD tool, two point sources are put in the fluid annulus at 0o (front)

and 180o (back) with respect to the x axis and at z=0, to simulate a dipole source.

The source is described in figure 4-9(b). In order to study azimuthal variations

or modal orders, receivers are placed in the annulus at 8 axial (from zmin=1.44876

m to zmax=2.51724 m with dz=0.15264) and 10 azimuthal (θ=0o ∼ 180o, ∆θ=20o)

positions. The model is perfectly axial symmetric about the x axis, and so is the

wavefield.

Pressure waveforms are plotted in figures 4-12 by common θ gather. Amplitude

in each individual figure is normalized by the maximum amplitude recorded at the

first axial receivers with θ = 0o, 20o, 40o, 60o and 80o, respectively. For a pure dipole

excitation, waveform pairs recorded at θ and 180o + θ should be identical to each

other except 180o shift in phase. Waveforms show that the dipole assumption holds

quite well in this case.

In the real logging situation, dipole mode is obtained by subtracting the two out

of phase waveforms recorded at θ = 0o (front) and 180o (back) receivers. Figure 4-

13(a) and 4-13(b) shows the resulting waveforms and spectra. Energy span in the

frequency domain is 0-5 kHz. The waveform shows there are three distinctive arrivals

traveling roughly at 1600 m/s, 1200 m/s and 1000 m/s, respectively, each with dif-

ferent frequency content. Accurate velocity of each arrival is analyzed by semblance,
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Figure 4-12: Dipole result. The center frequency is 2 kHz. Com-
mon θ gather of waveforms recorded at different axial positions
(τxx component). Solid lines represent receivers at the 0o ∼
90o quadrant and the dash lines represent receivers at 180o ∼
270o quadrant. Waveforms at locations being 180o apart show
perfectly out of phase, indicating dipole characteristics.
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a process that separates each arrivals in the velocity-time domain. Semblance was

originally used for velocity estimation from seismic reflection data (Yilmaz, 1987).

The underlining procedure includes two steps. First, assume a velocity and correct

the travel time of waveforms at each receiver back to a reference receiver (the first

one in this thesis) ; the second step is to stack across receivers. Figure 4-13(c) shows

the normalized semblance energy. Velocities of the three arrivals are 1560 m/s, 1200

m/s and 990 m/s. In order to pinpoint each arrivals, the group and phase velocity

curves of tool and borehole flexural modes in figure 4-5 are mapped to the semblance

image. Time delay is obtained by dividing the source-receiver offset (1.44876 m) with

the group velocity. The three arrivals are then identified as the tool mode arrival, the

leaky shear arrival and the borehole flexural arrival. Both source and receivers are

placed in the fluid, in other words, they are completely decoupled from the tool. So

it is not surprising that the tool mode is weak. In reality, the source and receivers

are mounted to the steel pipe with some attenuating materials to decouple them from

the tool. Therefore, the numerical results presented here represent the results that

one can expect with the ideal technical implementations.

The second arrival travels at the shear velocity and is known as leaky shear

(Kurkjian, 1985). In the wireline case, leaky shear is so weak in soft formation that

it is often times drowned out by noise or other arrivals. Dipole acoustic logging was

developed to measure shear velocities using borehole flexural mode in soft formation

because of that in the first place. The shear arrival in the LWD case is still weak, but

much more observable. It may serve as a cross check for modal arrival based shear

measurement.

Next, the dispersion curve is extracted from the waveform data so as to compare

with the analytical solutions (Rao et al., 1999). One commonly used technique to

accomplish this task is Prony’s method (Lang et al., 1987). A disadvantage of this

method is that it often generates spurious estimates (Ellefsen et al., 1993). We in-

troduced a simple, yet efficient technique that does not suffer the disadvantage of

Prony’s method and is referred to as back-propagation method in this thesis (Nolte

et al., 1997). The technique is outlined briefly in Appendix A.
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The dispersion curve of the dipole waveform is shown in figure 4-13(d) and it is

plotted against the analytical solution of the flexural mode. The extracted dispersion

curve agrees with the analytical result very well, especially at 2.5-5 kHz.

Similar to real LWD source, the dipole source used in the above simulation consists

two out of phase sources. The quality of a dipole source simulated by a two-point-

source system is determined by kδ, where k is the wavenumber in the borehole fluid

and δ the distance between the two point sources, which is more than the outer

diameter of the LWD tool. The smaller the kδ value is, the better the dipole quality

is (Kurkjian and Chang, 1986). In the LWD case, kδ is at least twice larger than it

is in the wireline case. When the dipole quality is low, borehole modes with other

azimuthal orders will be excited. A pure dipole excitation means that at any time,

amplitude of the wave field at angle θ is proportional to cosθ. Figure 4-14(a) shows

the recorded waveforms (at z = zmin) in the θ domain, with each line representing one

time sample. Figure 4-14(b) shows the same figure, except amplitude at each time

step is normalized by the maximum amplitude along the azimuthal direction, and the

line width is proportional to the normalization factor. The dashed lines are what it

should be for a pure dipole excitation. Now it can be seen that the dipole excitation

is not pure and other modes must have been excited.

Although in the above case, the dipole mode is efficiently obtained by subtracting

waveforms received at 0o and 180o from each other, evidenced by both the dispersion

curve (figure 4-13(d)) and opposite phase waveform pairs (figure 4-12), quantifying

multipole excitations may help estimate signal to noise ratio, with the noise being non-

dipole modes here. To accomplish that, wave field is decomposed into the cylindrical

coordinates. For the pressure component p(r, θ, z, t) inside the annulus, a complete

decomposition is

p(r, θ, z, t) =

∫ ∞

−∞

S(ω)
∞

∑

n=0

[AnZn(k
(f)
r r) +BnWn(k

(f)
r r)]cos[n(θ − θ0)]e

i(ωt−kzz)dkzdω

(4.1)

where kz and k
(f)
r are the axial and radial component of the total fluid wavenumber kf ,

and k2f = ω2/v2f = k2z+k
(f)2

r . ω is the angular frequency and vf the fluid compressional
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Figure 4-13: Dipole results. Source center frequency is 2 kHz.
There are three distinctive arrivals (from fast to slow): Tool
flexural mode, leaky shear arrival and borehole flexural mode.
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Figure 4-14: Waveforms plotted in the θ domain, with each line
representing one time sample. a. original waveform; b. ampli-
tude at each time step is normalized by the maximum amplitude
along the azimuthal direction, and the line width is proportional
to the normalization factor. The dipole characteristic holds in
general. The lines that not fall on the |cosθ| curve are of lower
amplitudes.

velocity. θ0 is the source orientation. In our case, it is zero. Zn and Wn denote the

Bessel and Hankel functions. S(ω) is the source spectrum. The amplitude of the n-th

order mode that is excited in the simulation can be be computed from the waveforms

received at the same axial and radial location,

pn(z, t) =

∫ 2π

θ=0

p(r0, θ, z, t)cos(nθ)dθ (4.2)

We use summation instead of integration as we only have discretized data samples

along the azimuthal direction. For an azimuthal resolution of 20o, the highest mode

order that can be estimated without aliasing is n=9. Figure 4-15(a) and 4-15(b) shows

the energy of decomposed modes in the time and frequency domain for receivers at

zmin. Integration over time or frequency for each mode can provide the total energy

of the mode. The energy allocation between different modes for all 8 axial locations

is shown in figure 4-15(c). It is clear that multipole modes are generated, while the

good news is that, the dipole mode is more than 1 order of magnitude larger than
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even modes (n=even number), more than 2 orders of magnitude larger than n=0

mode (primarily Stoneley wave), and more than 4 orders of magnitude larger than

odd modes (n=odd number). Decomposing waveforms received at all 80 locations (10

azimuthal and 8 axial) into dipole mode (n=1) and conducting the semblance and

dispersion analysis, results are the same to those in which waveforms are taken from

the receivers at 0o only or obtained by subtracting two out of phase waveforms. It is

then proved that at the frequency range of 0-5 kHz, two out of phase point sources

do produce dipole mode with so little contamination from other order modes that

neither the semblance nor the dispersion analysis is affected.

Dipole Source – Ring Source

As the dipole mode is proportional to cosθ, it is natural to think of using a ring

source with the amplitude also proportional to cosθ to further suppress other non-

dipole modes. A dipole ring source is simulated by 72 point sources around a circle

(figure 4-10), with each source magnitude proportional to cosθ. The energy allocation

between different modes for all 8 axial locations is shown in figure 4-16. Compared

to the two-point-source case 4-15(c), it is clear that non-dipole modes are further

suppressed by at least 1 order of magnitude, except for the Stoneley mode. On the

other hand, waveforms, semblance and dispersion analysis of the dipole mode (n=1)

show results similar to those obtained with two point sources, further indicating that

the two-point-source simulates a dipole source very efficiently at low frequencies (0-5

kHz).

Monopole Source (n=0)– Four Point Sources

Four point sources with the same phase are used to mimic a monopole source (figure 4-

9(a)). In order to increase the number of azimuthal orders that can be resolved from

received waveforms, a dense azimuthal sampling is applied. From 0o ∼ 180o, receivers

spacing is 2o, which leads to a total of 728 receivers at all 8 axial locations. The

maximum order that can be resolved with this sampling rate is 91.

Figure 4-17(a) and 4-17(b) shows the energy of decomposed modes in the time

134



0 1 2 3 4 5
−150

−100

−50

0

50

Time (ms)

10
lo

g 10
(N

or
m

al
iz

ed
 e

ne
rg

y)
 (

dB
)

dipole mode

n=0
n=odd number
n=even number

(a) time domain

0 2 4 6 8 10
−60

−40

−20

0

20

40

60

Frequency (kHz)

10
lo

g 10
(N

or
m

al
iz

ed
 e

ne
rg

y)
 (

dB
)

dipole mode

n=0
n=odd number
n=even number

(b) frequency domain

0 2 4 6 8 10
−50

−40

−30

−20

−10

0

Azimuthal order n

10
lo

g 10
(N

or
m

al
iz

ed
 e

ne
rg

y)
 (

dB
)

(c) azimuthal order domain

Figure 4-15: Multipole energy at each time step, frequency and
azimuthal order, for a dipole source in the borehole with the
LWD tool. Source center frequency is 2 kHz. Note that the
odd modes are preferentially excited by the dipole source (as
expected), with the dipole component (n=1) being the strongest.
The next strongest mode n=3 is more than 10 dB lower. Figure
a and b show results at the first receiver only. Figure c shows
results at all 8 receivers and energy allocation for various modes
is very consistent across the receiver array.
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Figure 4-16: Ring source results. Energy allocation between
multipole modes at all 8 axial locations. Comparing to the
two-point-source case 4-15(c), non-dipole modes are further sup-
pressed by at least 1 order of magnitude, except the Stoneley
mode.

and frequency domain for receivers at zmin. The energy allocation between different

modes for all 8 axial locations is shown in figure 4-17(c). The magnitude of monopole

(n=0) mode is more than 2 orders higher than any other modes, indicating that

the four point sources excite the monopole mode quite efficiently. In other words,

contamination from other modes is very low. Summing up waveforms received at 0o,

90o, 180o and 270o is normally the practice in real LWD logging. Figure 4-18(a) and 4-

18(b) shows the monopole waveforms and their spectra across 8 axial locations. Same

waveforms are plotted again in figure 4-19 with early arrivals amplified. Semblance

and dispersion analysis results are plotted in figure 4-18(c), and 4-18(d). There are

clearly three arrivals: 3000 m/s at around 1 ms, 1200 m/s at around 1.5 ms and

950 m/s at 1.6 ms, corresponding to formation compressional, shear and borehole

Stoneley mode. Dispersion of Stoneley mode agrees with analytical solution very

well.
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Figure 4-17: Multipole energy at each time step, frequency and
azimuthal order, for a monopole source in the borehole with
the LWD tool. Source center frequency is 2 kHz. Note that the
magnitude of monopole (n=0) mode is more than 2 orders higher
than any other modes, indicating that the four point sources
excite the monopole mode quite efficiently: contamination from
other modes is low.
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Figure 4-18: Monopole results. Waveforms are obtained by
adding four receiver arrays at 0o, 90o, 180o and 270o. Source cen-
ter frequency is 2 kHz. Large amplitude corresponds to Stone-
ley mode, which has a signature dispersion behavior: faster at
higher frequencies and lower at low frequencies. Formation com-
pressional (3000 m/s), shear (1200 m/s) and borehole Stoneley
mode (950 m/s) are observed.
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Figure 4-19: Monopole waveforms (same as figure 4-18(a), ex-
cept arrivals before the Stoneley mode are amplified). Formation
compressional and shear arrivals are observed around 1 ms and
1.5 ms.

Quadrupole Source (n=2)– Four Point Sources

Frequency analysis (figure 4-6) predicts that the phase velocity of borehole quadrupole

mode approaches to the formation shear at the cut-off frequency. Tang et al. (2002)

reported measuring formation shear velocities using a quadrupole ring source. Here

the quadrupole is simulated by four point sources (figure 4-9(c)).

Figures 4-20(a) and 4-20(b) show the energy of decomposed modes in the time

and frequency domain for receivers at zmin. The energy allocation between different

modes for all 8 axial locations is shown in figure 4-20(c). The magnitude of quadrupole

(n=2) mode is more than 2 orders higher than any other modes, indicating that the

four point sources excite the quadrupole mode quite efficiently.

As the model is completely axi-symmetric, waveforms at any two positions with

180o apart should be exactly the same. Figure 4-21(a) shows the quadrupole wave-

forms at 0o and 180o, confirming the axi-symmetric prediction. Spectra of the wave-

forms at 0o is plotted in figure 4-21(b). Their semblance and dispersion analysis results

are plotted in figure 4-21(c), and 4-21(d). The quadrupole mode arrives around 1.8
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ms. Its phase velocity is close to the formation shear velocity (1200 m/s) at low fre-

quencies, and becomes slower at higher frequencies. Dispersion analysis shows good

agreement with theory.

4.4.1 Centered Tool with High Frequency Dipole Source

Figure 4-4 shows at higher frequencies, borehole flexural mode is well separated from

the tool flexural. The phase velocity of the borehole flexural mode is about 20%

slower than the formation shear. In the current practice, formation shear velocity

is computed from borehole flexural velocity using the theoretical dispersion relation.

The theoretical dispersion relation of the borehole flexural mode can be completely

determined by formation shear, formation compressional, fluid compressional, fluid

density, formation density and borehole radius. All informations except formation

shear can be obtained from other measurements. As the borehole flexural mode is

less dispersive above 8 kHz, the dipole LWD tool is simulated to operate at two higher

frequencies: 8 kHz and 15 kHz.

Two out of phase sources are placed at 0o and 180o like the low frequency firing

case, except now the center frequency of the source is 15 kHz. The frequency band

is 0-30 kHz. Compared to previous calculation, the center frequency is increased by

more than 7 times. So is kδ. Non-dipole excitation should be more serious. Therefore,

energy allocation between multipole modes is investigated first (figure 4-22(c), 4-22(a)

and 4-22(b)). Not surprisingly this time, the energy of dipole mode is only 5 dB

higher than other odd modes. As major wave energy has not arrived at the last 6

receivers yet (figure 4-23(a)), waveforms at those receivers have significantly lower

energy. Thus waveforms at the first 10 axial locations are used in the precessing.

Figure 4-23(a) shows the dipole waveforms obtained by subtracting waveforms

received at 180o from those received at 0o (current LWD dipole logging practice).

Tool mode is weaker than it is in the low frequency case, and it is well ahead of the

borehole flexural mode. Figure 4-23(b) shows the spectra of the dipole mode.

Figure 4-23(c) shows semblance results of dipole waveforms. The direct shear is

too weak to be visible at this frequency range. Extracted dispersion of the subtracted

140



0 1 2 3 4 5 6
−150

−100

−50

0

50

Time (ms)

20
*l

og
10

(a
m

pl
itu

de
)

n=0
n=odd number
n=even number

(a) time domain

0 5 10 15 20
−80

−60

−40

−20

0

20

40

60

80

Frequency (kHz)

10
lo

g 10
(N

or
m

al
iz

ed
 e

ne
rg

y)
 (

dB
)

n=0
n=odd number
n=even number

(b) frequency domain

0 10 20 30 40 50 60 70 80 90
−70

−60

−50

−40

−30

−20

−10

0

Azimuthal order n

10
lo

g 10
(N

or
m

al
iz

ed
 e

ne
rg

y)
 (

dB
)

(c) azimuthal order domain

Figure 4-20: Multipole energy at each time step, frequency and
azimuthal order, for a quadrupole source in the borehole with
the LWD tool. Source center frequency is 2 kHz. Note that
the magnitude of quadrupole (n=2) mode is more than 2 orders
higher than any other modes, indicating that the four point
sources excite the quadrupole mode quite efficiently.
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Figure 4-21: Quadrupole results. The source center frequency is
2 kHz. Waveforms are obtained by adding receiver arrays at 0o

and 180o and subtracting receiver arrays at 90o and 270o. The
quadrupole mode travels at the formation shear velocity at early
times, and becomes slower later due to its dispersive behavior.
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waveforms shows good agreement with analytical results. Note that at high frequency

excitation, the dominant mode (figure 4-23(c) and 4-24) between 800 m/s to 1200 m/s

is n=3, with velocity higher than the borehole flexural mode. Note that the theoretical

dispersion curve of n=3 mode is above the formation shear at the frequency range

of 2.5-6 kHz. At those frequencies, the n=3 is highly leaky. That is clearly shown

in the dispersion analysis in figure 4-23(d) and 4-25. The borehole flexural mode

is excited in the frequency range of 2.5-6 kHz, corresponding to the first peak in

the spectra (figure 4-23(b)). If n=3 mode is taken as the borehole flexural mode,

the estimated formation shear velocity will be higher than the actual one. As time

domain semblance do not provide frequency dependence directly, it is important to

conduct both time domain semblance and frequency dispersion analysis to identity

modal arrivals.

When the center frequency is 15 kHz, the borehole flexural responded at lower

frequencies (2.5-6 kHz), indicating an inefficient excitation. To make the result even

less desirable, higher mode (n=3) is excited which could potentially add complications

in data interpretation.

Next we reduce the source frequency to 8 kHz. Results show that although there

are some n=3 energy in the dispersion analysis, most coherent semblance energy be-

longs to the borehole flexural mode. The tool mode remains weak and well separated

from the borehole flexural mode. The leaky shear is not observable.

4.4.2 Leaky Shear Arrival

Direct shear arrival is observed in both the monopole and dipole case. It is stronger at

low frequencies, consistent with wireline observations (Kurkjian, 1985). While shear

arrival in soft formation is too weak in the wireline situation to provide little help in

measuring shear velocity, it certainly is strong enough in the LWD to serve as a cross

check for modal based measurements, due to the fact that the source and receivers are

close to the formation. A numerical experiment is conducted in a two half space fluid-

solid model to confirm that direct shear is observable in slow formation (Appendix

B).
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Figure 4-22: Multipole energy at each time step, frequency and
azimuthal order, for a dipole source in the borehole with the
LWD tool. Source center frequency is 15 kHz. The magnitude
of dipole (n=0) mode is 3dB or less higher than n=3 mode,
therefore higher modes are likely to be excited. As major wave
energy has not arrived at the last 6 receivers yet (figure 4-23(a)),
waveforms at those receivers have significantly lower energy in
figure (c). Thus waveforms at the first 10 axial locations are
used in the precessing.
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Figure 4-23: Dipole results. The source center frequency is 15
kHz. Dipole waveforms are obtained by subtracting those at
180o from those at 0o. The tool mode is faster and weaker than
the low frequency case. Both n=1 and n=3 modes are excited.
n=3 mode shows better coherence in semblance. Note both in
the spectra and the dispersion that the borehole dipole mode is
excited at 2.5-6 kHz, though the source center frequency is 15
kHz.
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Figure 4-24: A close look of figure 4-23(c).

Figure 4-25: The non-normalized version of figure 4-23(d). The
borehole flexural mode is mainly at 2.5-6 kHz.
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Figure 4-26: Dipole results. The source center frequency is 8
kHz. Dipole waveforms are obtained by subtracting those at
180o from those at 0o. The tool mode is faster and weaker than
the low frequency case. Both n=1 and n=3 modes are excited.
n=1 mode shows better coherence in semblance. n=3 mode is
almost not observable in semblance.
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4.5 Conclusion

Up to now, characteristics of wave propagations along a fluid-filled borehole in soft

formation with a centered LWD tool have been investigated for monopole, dipole and

quadrupole sources.

Wireline monopole tools usually operate at high frequencies (around 15 kHz)

to obtain formation compressional velocities (Winbow, 1988; Kurkjian, 1985). This

study shows that in soft formation, compressional velocity can be logged at low fre-

quencies (0-5 kHz) with LWD tool. In addition, a coherent shear arrival is also

observed which can serve as a cross-check for other type of shear measurements, such

as wireline dipole logging. The dispersion curves extracted from waveforms agrees

with eigenvalue based solution very well at frequencies above 2.5 kHz.

Particular attention is paid to the LWD dipole logging, because dipole logging

has been used to measure formation shear velocities in the wireline case for many

years. The dipole LWD tool is simulated to operate at three center frequencies: 2

kHz, 8 kHz and 15 kHz. The tool flexural mode is weak in all three cases with the

receivers in the fluid annulus. As borehole flexural mode is sensitive to formation

shear velocity, measurements of borehole flexural speed can be compensated to the

formation shear velocity using the analytical dispersion curve. Good agreement be-

tween the numerical and analytical results in all three cases provides confidence in

this type of data interpretation. Waveforms at three frequency range show different

characteristics. At low frequencies (source center frequency is 2 kHz), a direct shear

arrival comes between the weak tool flexural mode and the strong borehole flexural

mode, a pattern that can be used to identify borehole flexural mode. At intermediate

frequencies (source center frequency is 8 kHz), the direct shear arrival is weak. The

tool mode has much higher phase velocity than the borehole flexural mode, so it is

well separated from the borehole flexural mode. Compared with the low frequency

case, the flexural mode is less dispersive, thus its velocity is more accurately deter-

mined. At even high frequencies (source center frequency is 15 kHz), although tool

mode remains weak and well separated from borehole modes, higher borehole mode

148



(n=3) is excited and has better coherence in the semblance image than the flexural

mode. Dispersion analysis is then necessary to identify each excited borehole mode.

In all three cases, frequency responses of the borehole flexural mode are all at 2-6

kHz. Therefore, operating at lower frequencies is more efficient. Considering both

excitation efficiency and the accuracy of velocity analysis, the intermediate frequency

range ( 3 - 8 kHz) is a good choice.

Quadrupole mode asymptotically approaches formation shear velocity at low fre-

quencies, which may serve as a good candidate to measurement formation shear.

Dipole, monopole and quadrupole excitations are efficiently achieved by two out of

phase point sources, four identical point sources and four point sources with alternate

phases at low frequencies where kδ is small. At higher frequencies (source center

frequency around 8 kHz and 15 kHz), non-dipole modes are excited with relatively

higher energy with the two out of phase point sources, now that kδ is more than 4

or 7 times larger than that of the low frequency case. The dipole mode is only less

than 3 dB higher than the next highest mode (n=3), compared with 15 dB in the

low frequency case. Those modes affect the quality of velocity analysis. To identify

them, frequency domain dispersion analysis is essential.
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Chapter 5

Wave Propagation Studies on

Acoustic Logging While Drilling

Eccentric Tool

Abstract

Effects of eccentric LWD tool on borehole acoustic measurements are investigated us-

ing the stretched grid finite difference algorithm (chapter 2 and 3). Monopole, dipole

and quadrupole tools are discussed. Eccentric tool generates multipole modes and

strong circumferential motions. Appropriate data processing may reduce or eliminate

effects of tool eccentricity on the borehole flexural or quadrupole mode. In the dipole

logging, for waveforms received at the side where the fluid annulus is the largest, the

coupling between the tool flexural mode and the borehole flexural mode is weaker

than that in the centered tool case. The phase velocity of the borehole flexural mode

is consequently closer to the formation shear velocity at low frequencies, especially

when the tool is extremely off-centered. In the monopole case, dipole mode is strong.

The direct shear and compressional remain observable in the semblance domain. In

the quadrupole case, dipole mode is also strong. The current practice of combining

waveforms at four azimuthal locations is necessary to bring up the quadrupole mode.
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For the dipole logging at high frequencies (source center frequency of 8 kHz), higher

modes (n=2 and 3) are excited. Phase velocities of those multipole modes differ only

by several percent, thus identifying the right mode is crucial to measure the shear

velocity correctly.

5.1 Introduction

In most studies it is assumed that the LWD tool is at the center of the fluid-filled

borehole Rao et al. (1999); Tang et al. (2002). In real LWD situations, however, the

tool may be off-centered. With off-centered tool, borehole modes are expected to be

different. It is therefore important to understand effects of tool eccentricity on LWD

measurements for data interpretation purpose.

The cross-section of the borehole and the tool is shown in figure 5-1. All sources

and receivers are shifted together with the tool, or in another word, they do not move

relative to the tool. The source center frequency is chosen to be 2 kHz for monopole,

dipole and quadrupole sources. For dipole logging, high frequency operation (source

center frequency of 8 kHz) is also investigated. Formation and tool properties remain

the same as in the centered tool case (Table 4.1).

5.2 Low Frequency Source

5.2.1 Dipole Source – Off Center by 6.3 mm

The center of the tool can be anywhere inside the borehole. The discussion starts

with a model of slightly off-centered tool. The tool center is shifted to the negative x

direction by 6.3 mm. The resulting fluid annulus is 23.3 mm at 0o, the largest one, and

is labeled with LA. The smallest fluid annulus is 10.7 mm, at 180o side and labeled

with SA. The wave field remains axi-symmetric with respect to x axis. Figure 5-2

and 5-3 shows waveforms received by groups of receivers at various azimuthal locations

plotted with common angle gather. The waveforms show motions with opposite phase

at most receiver positions 180o apart, attesting to the dipole characteristics of the

152



wavefield. This is also evidenced by the wavefield (τxx component) snapshot at 2.3

ms (figure 5-4).

Waveforms at 0o (large annulus side), 900, 180o (small annulus side) and those

obtained by subtraction waveforms between 00 and 180o are shown in figure 5-5.

They are denoted with R0, R90, R180 and R0 − R180. The amplitude of R180 is 5

times that of R0. The tool mode is barely visible in all waveforms. The shear arrival

is clearly observed in R0 and R0 − R180. The borehole flexural mode is the slowest

one and the strongest. Studies show that leaky shear is weak (Kurkjian, 1985), the

relatively large amplitude in R0 indicates that shear arrival is due to the trapped

mode pole in the vicinity of the practical cutoff, i.e., the phase velocity of borehole

flexural approaches the formation shear velocity at low frequencies. The shear arrival

in R180 is weak, implying a leaky mode. Semblance results of each set of waveforms

are shown in figure 5-6. It is clearly shown that the aforementioned three modes exist

in all waveforms. As the amplitude of R180 is stronger, it is not surprising that the

semblance of R0−R180 resembles more that of R180. Compared to the semblance result

of the centered-tool case, tool eccentricity causes the flexural arrival in subtracted

waveforms to be slightly dispersive (1.9-2.9 ms, figure 5-6(d)), which may slightly

reduce the measurement resolution of the flexural velocity thus the formation shear

velocity. However, applying a simple window to cut out semblance energy above 2.3

ms, the resulting shear measurement is little affected by tool eccentricity.

Figure 5-7 shows the same waveforms but in the common z gather. As the az-

imuthal distribution of pressure field becomes asymmetric, significant energy propa-

gates circumferentially from 180o, the smaller annulus side to 0o, the larger annulus

side, as the wave field propagates along the borehole axis. This indicates a strong

torsional mode. It is more clearly shown in the particle velocity plot (figure 5-8),

where strong azimuthal component is observed at angles roughly perpendicularly to

the dipole polarization, the interface between the positive and negative pressure field.

It can be clearly seen by visualizing the particle motions that at every axial location

z, disturbance starts at both 0o and 180o, and it is stronger at 180o. Then a pure

circumferential motion follows to mix the uneven disturbance around the borehole

153



before the radial motion finally kicks in. As long as the borehole fluid is inviscid,

as it is assumed in the FDTD computation, there should be no coupling between

the tool and borehole through circumferential motion. The coupling mostly happens

through radial motions. Borehole flexural mode (dipole) couples with tool flexural

mode because they have strong radial motion components.

The existence of the circumferential motion reduces the unevenness around the

borehole, it can be predicted that the off-centered tool has little effect on the Schölte

fluid-solid interface velocity, thus the higher frequency portion of the borehole flexural

mode. Same argument holds for the tool flexural at higher frequencies. At low

frequencies on the other hand, the radial motion is stronger at the side where the

source is closer to the borehole, and stronger coupling between the borehole flexural

and tool flexural is expected than it is in the centered tool situation.

Extracting dispersion curves from the waveforms may reveal more physical in-

formation about the waveform characteristics with an off-centered tool. Figure 5-10

and 5-9 shows theoretical dispersion curves of borehole flexural mode with a centered

LWD tool when the fluid annulus equals to 10.7 mm and 23.3 mm, in accordance

with the smallest and the largest annulus in the off-centered case. The annulus is

changed either by reducing (enlarging) the borehole size or by enlarging (reducing)

the outer diameter of the steel pipe. Increase in the fluid annulus reduces the cou-

pling between the tool flexural mode and the borehole flexural mode. Therefore the

resulting borehole flexural dispersion is closer to that without the tool. A decrease in

the fluid annulus enhances the coupling between the tool flexural mode and borehole

flexural mode. The resulting borehole flexural dispersion has lower phase velocity at

low frequencies where the coupling is the strongest.

Dispersion curves exacted from the four set of waveforms are shown in figure 5-

11. Spectra of waveforms are shown in figure 5-12. Dispersion curves at frequencies

where the spectra are of low energy or coherence should be read with caution. At

0o where the fluid annulus is the largest, the extracted dispersion curve is plotted

against two theoretical curves. Those curves are computed by assuming a centered

tool, one of which uses the original borehole size, and the other uses a bigger borehole
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size so that the fluid annulus equals 23.3 mm, the size of the fluid annulus at 0o with

the eccetric tool. The extracted dispersion curve agrees with the theoretical curves.

At low frequencies (below 2.5 kHz), it agrees with the one of bigger borehole size

and at high frequencies, it agrees with the one of original borehole size. Possible

reason for this is that at low frequencies where the tool flexural mode is coupled with

the borehole flexural mode, the size of the fluid annulus determines the strength of

the coupling thus the resulting dispersion behavior of the borehole flexural mode; at

high frequencies where the borehole flexural mode is little affected by the tool flexural

mode, tool eccentricity has little effect on the dispersion curve of the borehole flexural

mode. At 90o, dispersion analysis shows the primary energy in the waveforms goes to

Stoneley wave (n=0 mode). The extracted dispersion curve agrees with the theoretical

one (original borehole size). At 180o, the radial motion is the strongest, so is the

coupling between the tool flexural and the borehole flexural. The dispersion curve

of the borehole flexural mode at low frequencies (below 2.5 kHz) is not surprisingly

affected by the strength of the coupling, which is determined by the size of the fluid

annulus. The extracted dispersion curve therefore agrees with the theoretical curve

that is computed by assuming the borehole size is smaller so that the fluid annulus

equals to 10.7 mm, the size of the fluid annulus at 180o with the eccentric tool. The

dispersion analysis result of the subtracted waveforms (R0 − R180) shows that the

resulting dispersion curve agrees with the theoretical curve of the original borehole

size very well. It indicates that the tool eccentricity affects little on the borehole

flexural mode in the current practice where the subtracted waveforms (R0−R180) are

used in the data processing.

5.2.2 Dipole Source - Off Center by 10.95 mm

In real LWD situation, the tool can be at any position. It is thus important to

understand how the wave properties change as the tool moves at different off-centered

locations. In this section, the tool is pushed even further off-center toward the negative

x direction, the smallest and largest annulus being 6 mm, and 28 mm, respectively.

The coupling between the tool flexural and borehole flexural is expected to be even
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stronger at 180o, while at 0o and 90o, everything is expected to be more or less the

same as in the less off-centered case.

Figure 5-13 and 5-14 shows waveforms received at receivers at various azimuthal

locations plotted with common angle gather. The waveforms show motions with

opposite phase at most receiver positions 180o apart, though the amplitude at the

smaller annulus side is even more stronger. The wavefield primarily remains char-

acteristics of dipole(see figure 5-4. Waveforms at 0o (large annulus side), 900, 180o

(small annulus side) and subtraction between 00 and 180o are shown in figure 5-15.

The tool flexural is stronger at 180o then at 0o as the source is much closer to

the borehole. The azimuthal pressure distribution shown by waveforms plotted in

common z gathers (figure 5-16), indicates even more asymmetry and stronger cir-

cumferential motions.

Semblance and dispersion analysis results are shown in figure 5-17 and 5-18 for

waveforms, R0, , R90, R180 and R0 and R180. Compared with the case of slightly

off-centered tool, they show little change at 0o, except that the phase velocity of the

borehole flexural mode is even closer to the formation shear velocity at low frequencies

due to a further weaken coupling with the tool flexural mode. At 90o, in addition to

the Stoneley mode, the borehole flexural mode is recorded due to higher asymmetry

of the wavefield. At 180o where the coupling between the tool flexural mode and the

borehole flexural mode is even stronger, the phase velocity of the borehole flexural

mode is even slower at low frequencies (below 2.5 kHz). The extracted dispersion

curve agrees with the theoretical one (centered tool model) that is computed by

assuming a reduced borehole size (the fluid annulus equals to the smallest annulus in

this eccentric tool case). Dispersion analysis of R0−R180 shows that those waveforms

contain multipole modes. Applying a time window to the waveforms in figure 5-15(d)

to keep the first large amplitude ripple for each receivers (e.g. in receiver 1, keeping

signals before 2.6 ms) before the dispersion analysis, the resulting dispersion curve

of R0 − R180 is shown in figure 5-19. It agrees with the theoretical dispersion curve

of the model with centered tool and original borehole size. This result implies that

through appropriate data processing, the effect of tool eccentricity may be reduced
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or eliminated in dipole logging even when the tool is extremely off-centered.

5.2.3 Monopole Source - Off Center by 10.95 mm

Monopole logging traditionally provides formation compressional velocity and Stone-

ley mode for permeability analysis. In chapter 4, direct shear in the soft formation is

clearly shown in the monopole data. It is of interest to investigate how that changes

with off-centered tool.

Figures 5-20 and 5-14 show waveforms received at various azimuthal locations

plotted with common angle gather. Unlike in the centered tool case where waveforms

are of the same phase at locations 180o apart, torsional motion is introduced by the

off-centered tool. The snapshot of the wavefield at 2.3 ms shows both dipole and

monopole characteristics. Strong dipole motion indicates a weak monopole excita-

tion. Waveforms plotted in common z gather shows asymmetric azimuthal pressure

distribution and torsional motions (figure 5-23).

Figure 5-24 shows waveforms, R0, R90, R180 and R0 + R180 + R90 + R270. They

exhibit complicated patterns due to the excitation of multipole modes. Semblance

results show clear compressional arrivals at all angles, which is a good news, as com-

pressional velocity is mainly measured by monopole tools (figure 5-26). With the

help of dispersion analysis (figure 5-27, strong borehole flexural mode is observed

at 0o, 90o and 180o, except the coupling between the tool and the borehole flexural

is strong at 90o and 180o, while little coupling happens at 0o. Dispersion curve of

R0 + R180 + R90 + R270 resembles that of R180. That is not surprising because the

amplitude of R180 is more than 7 times and 3 times larger than that of R0 and R90,

respectively. The remaining shear arrival in the summation waveforms is the leaky

refracted shear.

The monopole LWD tool in both the centered and off-centered case show it can

provide shear measurement as a cross-check for modal based measurements.
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5.2.4 Quadrupole Source - Off Center by 10.95 mm

In the centered tool case, quadrupole mode appeared to be a good candidates for

measuring shear velocity in soft formation. It is important to evaluate its behavior

when the tool is off centered.

Figure 5-28 ∼ 5-29 shows waveforms received at various azimuthal locations plot-

ted with common angle gather. The waveforms at 0o and 180o are not completely

in phase. Snapshots of the wavefield at 2.1 ms (figure 5-30) shows monopole, dipole,

quadrupole and higher order modes are excited when the tool is off-centered. Strong

tortional motion exists due to strong azimuthal pressure gradient (figure 5-31). As

many modes co-exists in the borehole, waveforms, semblance and dispersion results

are complex(figures 5-32, 5-33 and 5-34). At 0o (large annulus side), Stoneley, bore-

hole flexural and quadrupole modes are excited. The borehole flexural mode is strong.

Its dispersion curve agrees with the theoretical one with bigger borehole. Dispersion

curves of Stoneley and the quadrupole mode agree with their theoretical counterparts

with original borehole size. At 90o, the quadrupole mode is stronger. The dispersion

curve of the borehole flexural mode agrees with the theoretical one with a smaller

borehole. At 180o, the borehole flexural mode is stronger, again its dispersion curve

agrees the theoretical one of smaller borehole size. The quadrupole mode is observ-

able. When summing waveforms at 0o and 180o and subtracting those at 90o and

270o, the flexural mode energy is suppressed and the quadrupole mode is brought up

very clearly (figure 5-33(d) and 5-34(d)). Its phase velocity is exactly the formation

shear velocity at low frequencies.

So for the quadrupole LWD logging, the current practice of summing up waveforms

at 0o and 180o is a good way to enhance the quadrupole mode in both the centered

and off-centered tool cases.
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5.3 High Frequency Dipole Source

Off Center by 10.95 mm

(fc= 8 kHz)

It was pointed out in chapter 4 that LWD tools working at higher frequencies have

some engineering advantage. There are interests of using high frequency sources

for measuring formation shear velocity. It is then of importance to discuss wave

propagation behavior when the tool is off-centered at high frequency. The frequency

spectra of the source with a center frequency of 8 kHz is shown in figure 4-11(c).

Figure 5-35 and 5-36 shows waveforms at various azimuthal angles. Waveforms

maintains out of phase motion when being 180o apart. Magnitudes are substantially

higher at places with smaller annulus for all major arrivals. It is not surprising that

the azimuthal pressure distribution now is more polarized than the low frequency

(figure 5-37). There still exists torsional motion.

It was established previously that the off-centered LWD tool affects modal dis-

persions only at low frequencies where borehole modes couples with tool modes. At

high frequencies, all modes are localized and approaches to the fluid-solid interface

velocity. It then can be expected that the off-centered tool at high frequency firing

has little effect on the shape of dispersion curves.

Figure 5-38 shows waveforms R0, R90, R180 and R0 − R180. The corresponding

spectra are shown in figure 5-39(c). At 0o where the annulus is the largest, in addition

to the borehole flexural mode (n=1), n=3 mode is excited (figures 5-40(a), 5-41 and

5-43(a)). As its phase velocity approaches the shear velocity at low frequencies, n=3

mode has an arrival close to the formation shear in the semblance domain (figure 5-

40). It is not direct shear because the frequency is too high to have strong leaky shear.

At 90o, n=3 mode is not as strong as it is at 0o. More higher modes are excited (e.g.

n=2 mode), but the borehole flexural is the strongest and show the best coherence

in the time domain semblance(figure 5-40(b) and 5-43(b)). At 180o where the fluid

annulus is the smallest, there are two distinct arrivals with phase velocities between
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800 m/s and 1200 m/s (figure 5-40(c)). The theoretical dispersion curves that fit the

two arrivals best in both dispersion and semblance domain is the borehole flexural

mode with the original borehole size and the borehole quadrupole mode with smaller

borehole size (figures 5-42, 5-43(c) and 5-44). Note that n=3 mode shown at 180o is

weaker. Subtracting waveforms at 180o from 0o, all three modes, the borehole flexural

mode, the n=3 mode and borehole quadrupole mode show up in the semblance and

dispersion curves (figures 5-40(d), 5-43(d) and 5-45). Note that at low frequencies

(below 5 kHz), there is a rather pure borehole flexural mode (see figure 5-45(a)). The

phase velocity of the borehole flexural mode is between the n=3 mode and quadrupole

mode. In field operation, shear velocity is computed from the phase velocity borehole

flexural mode. It is then important to identify the right arrivals.

5.4 Conclusions

Effects of eccentric LWD tool on borehole acoustic measurements are investigated.

For all source types, when the LWD tool works at low frequencies (center frequency is

2 kHz), substantial torsional or circumferential motions are observed and asymmetric

or odd numbered order modes are more efficiently excited, regardless of the source

type. The eccentric tool affects dispersion behaviors of asymmetric modes through

tool-borehole mode coupling at the frequency range of 0-2 kHz for an 8.5 inch borehole.

For dipole logging, waveforms at the side with the largest fluid annulus, where the

coupling between the tool and the borehole modes becomes weak, shear arrival is

strong. The large shear arrival amplitude indicates the shear arrival is due to the

trapped mode pole in the vicinity of the practical cutoff. It means that the phase

velocity of borehole flexural mode approaches to the formation shear at low frequency

limit. At the side where the fluid annulus is the smallest, waveforms are strongly

affected by the tool through borehole and tool flexural mode coupling, causing phase

velocities of the borehole flexural mode at low frequencies to be even slower at lower

frequencies (below 2.5 kHz). The closer the tool is to the borehole wall, the stronger

the coupling is at the side with small fluid annulus. Appropriate data processing may

160



reduce or eliminate the effect of tool eccentricity on the dipole waveforms (R0−R180.

For the monopole logging, eccentric tool generates strong flexural modes. Both

direct compressional and shear arrivals of the formation appear in the semblance.

For quadrupole logging, strong odd numbered modes (n=1,3) are generated, it is

necessary to sum up waveforms at 0o and 180o and subtracting waveforms at 90o and

270o to eliminate odd numbered modes and bring up the quadrupole. Altogether, for

the low frequency source case, tool eccentricity has little effect on shear measurement.

When the dipole LWD tool is designed to work at a center frequency of 8 kHz,

besides the borehole flexural mode, n=3 and quadrupole mode are excited. The phase

velocity of the flexural mode is between that of the n=3 mode and the quadrupole

mode. With multipole modes having phase velocities different by several percent,

identifying the right mode is crucial to obtain the right shear velocity. Cross-check

between the semblance and dispersion results is an effective way to locate the borehole

flexural mode.
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Figure 5-1: The reconstructed borehole cross-section with an
off-centered tool. The mesh is not shown for a better view of
the model. the borehole diameter is around 20 cm, the outer
diameter of the tool is about 18 cm. The fluid annulus could be
as small as 6 millimeters.
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Figure 5-2: Dipole source with the tool slightly off-centered (6.3 mm). The source
center frequency is 2 kHz. Waveforms received by groups of receivers at various
azimuthal locations plotted with common angle gather. Dash line: receivers in the
second quadrant; Solid line: receivers in the first quadrant. Compared to the centered
tool case in figure 4-12, waveforms at locations being 180o apart are no longer perfectly
out of phase because of wavefield asymmetry.
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Figure 5-3: Dipole source (low frequency) slightly off-centered (6.3 mm). Waveforms
received by groups of receivers at various azimuthal locations plotted with common
angle gather. Dash line: receivers in the second quadrant; Solid line: receivers in
the first quadrant. Compared to the centered tool case in figure 4-12, waveforms at
locations being 180o apart are no longer perfectly out of phase because of wavefield
asymmetry.
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Figure 5-4: Dipole source (low frequency) off-centered (10.95
mm). Snapshot of wavefield (τxx component) at the first receiver
location (t=2.3 ms). The wavefield remains dipole characteris-
tics, though not symmetric.
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Figure 5-5: Dipole results with slightly off-centered tool (6.3
mm). The source center frequency is 2 kHz. Waveforms at 0o,
900 and those obtained from waveform subtraction are normal-
ized by the maximum amplitude at 0o. They are denoted with
R0, R90, R180 and R0−R180. R180 is normalized by its maximum
amplitude. The maximum amplitude of R180 is 5 times larger
than R0. The tool mode is weak in all waveforms. The shear
arrival is clearly observable in R0 and R0 − R180. The borehole
flexural mode is the slowest one and the strongest in amplitude.
It is very dispersive at 180o. As the leaky shear is weak, the
relatively large amplitude in R0 indicates that shear arrival is
due to the trapped mode pole in the vicinity of the practical
cutoff, i.e., the phase velocity of borehole flexural approaches
the formation shear velocity at low frequencies.
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Figure 5-6: Dipole results with slightly off-centered (6.3 mm)
tool. Semblance result of waveforms R0, R90, R180 and R0−R180.
Figure e shows the semblance of the dipole waveforms when the
tool is at the center.
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Figure 5-7: Dipole tool (low frequency) slightly off-centered (6.3 mm). Pressure
waveforms received at groups of receivers at various azimuthal locations plotted at
common z gather (normalized by the same amplitude). The smallest annulus side is
at 0o, the right side (SA) and the largest annulus side is at 180o, the left side (LA).
As the radiation pattern becomes asymmetric, significant energy propagates circum-
ferentially from SA to LA, as wave propagating along the borehole axis, indicating a
strong torsional mode.
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Figure 5-8: Dipole tool (low frequency) slightly off-centered (6.3
mm). Radial (thin line) and azimuthal (thick line) particle ve-
locities at all angles. Strong azimuthal component is observed
at angles roughly perpendicularly to the dipole polarization, the
interface between the positive and negative pressure field. At
every axial location z, disturbance starts at both SA and LA,
while it is stronger as the source is closer to the borehole at SA.
Then a pure circumferential motion follows to mix the uneven
disturbance around the borehole before the radial motion finally
kicks in.
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Figure 5-9: Dispersion curves of borehole flexural mode. De-
creasing in the fluid annulus enhances the coupling between the
tool flexural mode and borehole flexural mode. The resulting
borehole flexural dispersion has much lower phase velocity at
low frequencies where the coupling is the strongest.
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Figure 5-10: Dispersion curves of borehole flexural mode. Incre-
ment in the fluid annulus reduces the coupling between the tool
flexural mode and the borehole flexural mode. Therefore the
resulting borehole flexural dispersion is closer to that without
the tool.
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(a) R0 smallest annulus side (b) R90

(c) R180 largest annulus side (d) R0 −R180

(e) centered tool

Figure 5-11: Dipole results with slightly off-centered (6.3 mm) tool. Dispersion analy-
sis result of waveforms at 0o, , 900, 180o and subtraction between 00 and 180o. Figure
e shows the dispersion of the dipole waveforms when the tool is at the center. Solid
lines represent theoretical dispersion curves of models with centered LWD tool.
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Figure 5-12: Dipole results with slightly off-centered (6.3 mm)
tool. The source center frequency is 2 kHz. Spectra of waveforms
at 0o, 900, 180o and subtraction between 00 and 180o.
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Figure 5-13: Dipole tool (low frequency) off-centered (10.95
mm). Waveforms received by groups of receivers at various az-
imuthal locations plotted with common angle gather. Dash line:
receivers in the second quadrant; Solid line: receivers in the first
quadrant.
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Figure 5-14: Dipole tool (low frequency) off-centered (10.95
mm). Waveforms received by groups of receivers at various az-
imuthal locations plotted with common angle gather. Dash line:
receivers in the second quadrant; Solid line: receivers in the first
quadrant.
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Figure 5-15: Dipole results with off-centered tool (10.95 mm).
Source center frequency is 2 kHz. Waveforms at all locations are
normalized by the maximum amplitude at 0o. The tool mode
is weak at all locations. Shear arrival is clearly observable in
waveforms at 0o and from subtraction. The borehole flexural
mode is the slowest one and the strongest in amplitude. At
the largest annulus side, the phase velocity of borehole flexural
approaches the formation shear velocity at low frequencies.
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Figure 5-16: Dipole source (low frequency) off-centered (10.95
mm). Waveforms received at receivers at various azimuthal lo-
cations plotted as common z gather.
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Figure 5-17: Dipole tool (low frequency) off-centered (10.95
mm). Semblance result of waveforms at 0o, 900, 180o and sub-
traction between 00 and 180o.
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(a) R0 largest annulus (b) R90

(c) R180 smallest annulus (d) R0 −R180

Figure 5-18: Dipole tool (low frequency) off-centered (10.95
mm). Dispersion analysis result of waveforms at 0o, , 900, 180o

and subtraction between 00 and 180o. Solid lines represent the-
oretical dispersion curves of centered tool case.
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Figure 5-19: The dispersion curve of R0 −R180. Before the dis-
persion analysis, a time window is applied to the waveforms in
figure 5-15(d) to keep the first large amplitude ripple for each
receivers (e.g. in receiver 1, keeping signals before 2.6 ms). The
solid line is the theoretical dispersion curve of the borehole flex-
ural mode with centered tool and original borehole size.
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Figure 5-20: Monopole source (low frequency) off-centered
(10.95 mm). Waveforms received by groups of receivers at var-
ious azimuthal locations plotted with common angle gather.
Dash line: receivers in the second quadrant; Solid line: receivers
in the first quadrant.

180



0 1 2 3 4 5 6
−5

0

5

10

15

20

25

Time (ms)

(a) 50o and 230o

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

Time (ms)

(b) 60o and 240o

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

Time (ms)

(c) 70o and 250o

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

Time (ms)

(d) 80o and 260o

0 1 2 3 4 5 6
−5

0

5

10

15

20

25

Time (ms)

(e) 90o

Figure 5-21: Monopole source (low frequency) off-centered
(10.95 mm). Waveforms received by groups of receivers at var-
ious azimuthal locations plotted with common angle gather.
Dash line: receivers in the second quadrant; Solid line: receivers
in the first quadrant.
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(a) 3D snapshot

(b) cross section slice z1 (c) cross section slice z2

Figure 5-22: Monopole source (low frequency) off-centered
(10.95 mm). Snapshot of wavefield (τxx component) at 2.3 ms.
In figure a, each slice is at the receiver position.
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Figure 5-23: Monopole source (low frequency) off-centered
(10.95 mm). Waveforms received at groups of receivers at vari-
ous azimuthal locations plotted as common z gather.
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Figure 5-24: Monopole source (low frequency) off-centered
(10.95 mm). Waveforms at 0o, 90o, 180o and summation of
waveforms at 0o, 180o, 90o and 270o.
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Figure 5-25: Monopole source (low frequency) off-centered
(10.95 mm). Spectra of waveforms R0, R90, R180 and R0 +
R180 +R90 +R270.
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Figure 5-26: Monopole source (low frequency) off-centered
(10.95 mm). Semblance results of waveforms at 0o, 90o, 180o

and summation of waveforms at 0o and 180o, as well as the sem-
blance result from the centered tool case.
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(a) R0 largest annulus (b) R90

(c) R180 smallest annulus (d) R0 + R180 + R90 + R270

(e) centered tool

Figure 5-27: Monopole source (low frequency) off-centered (10.95 mm). Dispersion
results of waveforms at 0o, 90o, 180o and summation of waveforms at 0o and 180o, as
well as dispersion result from the centered tool case. Solid lines represent borehole
Stoneley (n=0) and the flexural mode (n=1) from analytical solutions with a centered
LWD tool.
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Figure 5-28: Quadrupole source (low frequency) off-centered
(10.95 mm). Waveforms received by groups of receivers at var-
ious azimuthal locations plotted with common angle gather.
Dash line: receivers in the second quadrant; Solid line: receivers
in the first quadrant.
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Figure 5-29: Quadrupole source (low frequency) off-centered
(10.95 mm). Waveforms received by groups of receivers at var-
ious azimuthal locations plotted with common angle gather.
Dash line: receivers in the second quadrant; Solid line: receivers
in the first quadrant.
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(a) 3D snapshot

(b) cross section slice z1 (c) cross section slice z2

Figure 5-30: Quadrupole source (low frequency) off-centered
(10.95 mm). Snapshot of wavefield (τxx component) at 2.3 ms.
In figure a, each slice is at the receiver position.
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Figure 5-31: Quadrupole source (low frequency) off-centered
(10.95 mm). Waveforms received at groups of receivers at vari-
ous azimuthal locations plotted as common z gather.
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Figure 5-32: Quadrupole source (low frequency) off-centered
(10.95 mm). Waveforms at 0o, 900, 180o and summation of
waveforms at 0o and 180o that subtracts waveforms at 90o and
270o.
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Figure 5-33: Quadrupole source (low frequency) off-centered
(10.95 mm). Semblance result of waveforms at 0o, 900, 180o

and summation of waveforms at 0o and 180o. The quadrupole
mode is brought up by summation and subtraction. Its phase
velocity is at the formation shear velocity.
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(a) R0 large annulus side (b) R90

(c) R180 small annulus side (d) R0 + R180 −R90 −R270

Figure 5-34: Quadrupole source (low frequency) off-centered
(10.95 mm). Dispersion analysis result of waveforms at 0o, 900,
180o and summation of waveforms at 0o and 180o. Solid lines
represent borehole Stoneley, flexural and quadrupole mode from
analytical solutions with a centered LWD tool.
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Figure 5-35: Dipole source (high frequency) off-centered (10.95
mm). Waveforms received by groups of receivers at various az-
imuthal locations plotted with common angle gather. Dash line:
receivers in the second quadrant; Solid line: receivers in the first
quadrant.
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Figure 5-36: Dipole source (high frequency) off-centered (10.95
mm). Waveforms received by groups of receivers at various az-
imuthal locations plotted with common angle gather. Dash line:
receivers in the second quadrant; Solid line: receivers in the first
quadrant.
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Figure 5-37: Dipole source (high frequency) off-centered (10.95
mm). Waveforms received at groups of receivers at various az-
imuthal locations plotted as common z gather.
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Figure 5-38: Dipole source (high frequency) off-centered (10.95
mm). Waveforms at 0o, 900, 180o and subtraction of waveforms
at 0o and 180o.
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Figure 5-39: Dipole source (high frequency) off-centered (10.95
mm). Spectra of waveforms at 0o, 900, 180o and subtraction of
waveforms at 0o and 180o.
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Figure 5-40: Dipole source (high frequency) off-centered (10.95
mm). Semblance of waveforms at 0o, 900, 180o and subtraction
of waveforms at 0o and 180o.
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Figure 5-41: Dipole source (high frequency) off-centered (10.95
mm). Zoom-in results of waveforms at 0o, the large annulus side.
They are plotted against theoretical phase velocity v.s group
delay curves of borehole flexural mode and borehole n=3 mode.
These two modes fit the arrivals the best both in semblance and
dispersion.
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Figure 5-42: Dipole source (high frequency) off-centered (10.95
mm). Zoom-in results of waveforms at 180o, the small annulus
side. They are piloted against theoretical phase velocity v.s
group delay curves of borehole flexural mode and borehole n=2
mode with enlarged borehole size. These modes fit the arrivals
the best both in semblance and dispersion.
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(a) R0 large annulus side (b) R90

(c) R180 small annulus side (d) R0 −R180

Figure 5-43: Dipole source (high frequency) off-centered (10.95
mm). Dispersion result of waveforms at 0o, 900, 180o and sub-
traction of waveforms at 0o and 180o, plotted against analytical
solutions with original borehole size.
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Figure 5-44: The same extracted dispersion as figure 5-43(c).
The solid line is the quadrupole mode with centered LWD tool
and smaller borehole size.
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(a) Low Frequency ( 0 - 5 kHz) (b) High Frequency (7 - 15 kHz)

Figure 5-45: Dipole source (high frequency) off-centered (10.95
mm). Same dispersion curves extracted from the subtracted
waveforms as in figure 5-43(d). a. A closer look at low frequen-
cies. The extracted curve agrees with the theoretical curve of
the borehole flexural mode of original borehole size; b. A closer
look at high frequencies. There are three modes and each is
plotted against with theoretical curves that fit them the best:
borehole flexural mode with original borehole size, borehole n=3
mode with original borehole size and borehole quadrupole mode
(n=2) with smaller borehole size.
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Chapter 6

Estimating Formation Stress

Profiles from Acoustic

Measurements

Abstract

In-situ formation stress directions and magnitudes are estimated by inverting the

borehole flexural and Stoneley dispersions obtained from standard acoustic logging

data (dipole and monopole logs). The underlying procedure consists of the following

steps: first, we locate stressed zones in the formation by searching for crossovers in

flexural dispersions. Second, the fast shear direction is estimated from the cross-dipole

waveforms. It corresponds to the direction of the maximum horizontal stress (SH).

Finally, a multi-frequency inversion of both the Stoneley and flexural dispersions

yields the maximum (SH) and minimum (Sh) horizontal stress magnitudes together

with the three formation third-order elastic (TOE) constants, c111, c112 and c123, de-

fined about the selected reference (isotropic) state. The inversion method is based on

equations that relate SH and Sh with variations in phase velocities of the borehole

flexural and Stoneley waves in the stressed state from those in the assumed reference

state, the state that is hydrostatically loaded and isotropic. Phase velocities of the
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flexural and Stoneley modes as a function of frequency can be obtained from pro-

cessing the cross-dipole and monopole waveforms, respectively. The borehole flexural

and Stoneley dispersions in the assumed reference (isotropic) state are obtained from

the solution of a standard boundary-value problem. The sensitivity functions for the

inversion model are obtained from the eigenfunctions of the boundary-value problem

in the reference state. Results for the stress directions and magnitudes obtained from

the inversion of the Stoneley and flexural dispersions over a selected bandwidth are

consistent with focal mechanism and borehole breakout data present in the world

map database Zoback (1992).

6.1 Introduction

As lithospheric plates interact with each other, complicated stresses patterns develop

within each plate. Knowledge of formation stresses would aid in enhanced recovery

of hydrocarbons, prevention of sand production and borehole instability (Gaaren-

stroom et al., 1993; Dore and Lundin, 1996; Finkbeiner et al., 1998; Wiprut, 2001).

The formation stress state at a given location can be completely characterized by

magnitudes and directions of three principal stresses, Sv, SH , and Sh, denoting the

vertical, maximum horizontal and minimum horizontal stresses, respectively (Zoback

and Zoback, 1980; Zoback, 1992). Currently, large scale stress orientations are es-

timated from geological or geophysical data including earthquake focal mechanisms,

fault slips and volcanic alignments (Zoback, 1992). For exploration and engineering

purposes, earthquake and volcanic data lack the necessary resolution, not mentioning

the fact that they may not occur over the desired area. At local scale, techniques

like borehole breakouts and in-situ stress measurements, such as hydraulic fracturing

and overcoring, are commonly used. In vertical boreholes, breakouts represent shear

failure of the borehole wall centered in the Sh direction, the azimuth of the maximum

circumferential compressive or the hoop stress (Gough and Bell, 1982; Zoback et al.,

1985). They may help locate horizontal stress orientations fairly accurately, but pro-

vide little information for estimating stress magnitudes (Zoback et al., 1985). By
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far the most accurate, also the most expensive, technique to measure the formation

stress is hydraulic fracturing, where the formation stress is assumed to be completely

balanced by a controlled fluid pressure when a shear failure happens to the borehole

wall. However, that assumption often breaks down in realistic measurements (Haim-

son, 1988). Besides, controlled fracturing is a costly and destructive process.

In this paper a non-destructive technique is developed to estimate in-situ stresses

indirectly from borehole acoustic measurements. Stresses induce anisotropy and ve-

locity changes in a formation (Nur and Simmons, 1969; Lo et al., 1986). While it

may be difficult in seismic data to differentiate stress induced anisotropy from in-

trinsic anisotropy caused by such things like depositional patterns and thin-layered

bedding, this is not the case for borehole acoustic data. To satisfy the boundary

conditions at the circular wall, an originally uniform stress field deforms and con-

centrates around a borehole. For example, in a vertical borehole, the maximum

compressional stress around the borehole aligns with the direction of the minimum

regional horizontal stress. Borehole flexural mode is sensitive to the far-field stress

at low frequencies and to the near-field stress at high frequencies. As a result, a

crossover occurs in borehole flexural dispersion, indicating stress-induced anisotropy

dominating over other sources of intrinsic anisotropy. This behavior was theoretically

predicted by Sinha and Kostek (1996). The prediction was subsequently verified in

a laboratory scaled-borehole experiment (Winkler et al., 1998).

This study is the first example that show the flexural dispersion crossover in field

data. Using the flexural crossover as a stress signature in the borehole acoustic data,

we are able to isolate stressed zones. In a stressed zone, the polarization direction of

fast shear wave, estimated from cross-dipole waveforms, corresponds to the direction

of the maximum horizontal stress. The direction of minimum horizontal stress is

perpendicular to the fast shear direction.

In the presence of horizontal stresses, SH and Sh, changes in the Stoneley and

flexural dispersions from a nearby reference state can be described by a linear per-

turbation model (Sinha and Kostek, 1996). This perturbation model is used as the

basis for the inversion of borehole dispersions for the stress magnitudes. Following
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the theorem of linear superposition, we derive equations that relate SH , Sh, and the

formation non-linear elastic constants c111, c112 and c123 to variations in flexural and

Stoneley dispersions. A multi-frequency inversion technique based on these equa-

tions yields the deviatoric stress magnitudes (SH and Sh) from those assumed in the

reference state.

6.2 Stress Magnitude Estimation

In order to evaluate magnitudes of horizontal stresses, a perturbation model is applied

that quantitatively describes how the magnitude of horizontal stresses is related to

borehole flexural dispersions (Tiersten, 1978; Norris et al., 1994; Sinha and Kostek,

1996).

Before we outline the perturbation derivation for a small dynamic field superim-

posed on a pres-tress, we briefly introduce some preliminary terminology and notation.

A detailed version of the underlining theoretical framework and the test of its appli-

cability to real rocks in described in Appendix C. The kinematics of deformation of

a material point associated with a propagating wave in a stressed medium can be

described in terms of three different configurations of the solid: the reference, inter-

mediate, and current configurations of material points. These configurations denote

the undeformed state, statically deformed biasing state, and the state of elastic wave-

induced deformation superimposed on the bias, respectively. We first note that under

the static bias the material points move from the reference coordinates XL to the in-

termediate coordinates ξα, and we can map points from the reference coordinates to

the intermediate coordinates by

ξα = ξα(XL). (6.1)

Then, for the superposed small dynamic motion, the material points move from the

intermediate coordinates ξα to the present coordinates yi, and we have

yi = yi(ξα, t) = ŷi(XL, t). (6.2)
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All notations follow the convention that capital Latin indices, lower-case Greek in-

dices, and lower-case Latin indices, refer to the Cartesian components of the reference

coordinates, intermediate coordinates, and present coordinates of material points, re-

spectively. A comma followed by an index denotes partial differentiation with respect

to a geometric coordinate. Also, the summation convention for repeated tensor indices

and the dot notation for differentiation with respect to time hold. The coordinate

system is set up as X1 along borehole axis, and X2 and X3 in the plane perpendicular

to X1. Equations 6.1 and 6.2 are mapping functions that relate three configurations

of the solid. In this paper, the density, linear moduli and third-order moduli of the

material refer to a specific reference state.

In a reference state, the equations of motion for a borehole mode can be expressed

as

KLm
Lγ,L + ρoω

2
mu

m
γ = 0 (6.3)

where KLm
Lγ is the Piola-Kirchhoff stress tensor in linear elasticity that defines stresses

in the intermediate and reference configurations (Truesdell and Noll, 1992), ρ0 is the

density in the reference configuration, and umγ denotes a small amplitude dynamic

solution to the wave equation of a fluid-filled borehole surrounded by an isotropic

and homogeneous formation (reference state) at an eigen-frequency, ωm (Biot, 1952).

Referring to the reference state, the equation of motion in the presence of initial

stresses in the medium (i.e., a static bias) may be written in terms of Piola-Kirchhoff

stress tensor as

KL
Lγ,L +KNL

Lγ,L + ρ0ω
2uγ = 0 (6.4)

where KNL
Lγ is the nonlinear portion of the Piola-Kirchhoff stress tensor that denotes

the perturbation from the linear portion, KL
Lγ . K

L
Lγ and KNL

Lγ may be expressed as

KL
Lγ = cLγMνuν,M (6.5)

and

KNL
Lγ = ĉLγMνuν,M (6.6)
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where

ĉLγMν = TLMδγν + cLγMνABEAB + cLγKMwν,K + cLKMνwγ,K (6.7)

with

TLM = cLMRSwR,S (6.8)

and

EAB =
1

2
(wA,B + wB,A). (6.9)

In equation 6.4, uγ denotes the small-amplitude dynamic solution at a frequency of

ω in the presence of a static bias. cLγMν and cLγMνAB are the second and third-order

elastic constants, respectively (Thurston and Brugger, 1964). In equations 6.7, 6.8

and 6.9, TLM , EAB and wγ,K denote the biasing stresses, strains and (static) displace-

ment gradients, respectively. Note that the biasing stresses, strains and displacement

gradients are spatially varying due to borehole stress concentration. Therefore, KL
Lγ,L

andKNL
Lγ,L are position dependent and a direct solution of the boundary-value problem

is not possible.

Equations 6.3 and 6.4 can be combined to form an integral equation valid for a

continuum of arbitrary volume V0 in the reference configuration:

∫

V0

dV0[(K
L
Lγ,L +KNL

Lγ,L + ρ0ω
2uγ)u

m∗
γ − (KLm

Lγ,L + ρ0ω
2
mu

m
γ )u

∗
γ] = 0 (6.10)

where * denotes complex conjugate. According to Gauss’s theorem of divergence,

equation 6.10 can be re-cast into a form that is convenient for calculating a small

perturbation at the frequency ωm:

∫

V0

dV0ρ0(ω
2uγu

m∗
γ − ω2mu

m
γ u

∗
γ) =

∮

S0

NL[K
Lm
Lγ u

∗
γ −KL

Lγu
m∗
γ ]

−

∫

V0

dV0K
NL
Lγ,Lu

m∗
γ (6.11)

where NL is the outward unit normal in the reference or undeformed configuration.

S0 is the surface surrounding V0. The quantities in the perturbed state (i.e. in the

presence of biasing stresses and strains) are related to those in the unperturbed state
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by assuming the linear relationships

uγ = umγ + εuγ, (6.12)

u∗γ = u∗γ + εu∗γ (6.13)

and

ω = ωm +∆ωm (6.14)

where ε is an arbitrary small number. Substituting equation 6.12, 6.13 and 6.14 into

equation 6.11 and neglecting quadratic or higher terms of ε and ∆ωm yields a general

form of the perturbation integral for calculating changes in the eigen frequency ωm

caused by the biasing stresses and strains:

∆ωm =

∮

S0
dS0NL[K

Lm
Lγ u

∗
γ −KL

Lγu
m∗
γ ]−

∫

V0
dV0K

NL
Lγ,Lu

m∗
γ

2ωm
∫

V0
ρ0umγ u

m∗
γ dV0

. (6.15)

The boundary surface S0 is at the borehole wall; therefore, NL denotes the negative

radial direction, and NLKLγu
∗
γ represents the energy flux in the negative radial direc-

tion. There is no energy flow in the radial direction for any guided mode that decays

away from the borehole in both the unperturbed and perturbed states. Consequently,

we have

NLK
Lm
Lγ u

m∗
γ = 0, (6.16)

and in the perturbed state we have

NL(K
L
Lγ +KNL

Lγ )u∗γ = 0. (6.17)

Applying Gauss’s theorem of divergence to the volume integral in the numerator of

equation 6.15 and incorporating equations 6.16 and 6.17, the first-order perturbation

in the eigen-frequency ωm is obtained as

∆ωm =

∫

V0
KNL
Lγ u

m∗
γ,LdV0

2ωm
∫

V0
ρ0umγ u

m∗
γ dV0

. (6.18)

211



Note that elements of the nonlinear part of the Piola-Kirchhoff stress tensor KNL
Lγ in

equation 6.18 are known in terms of the second- and third-order elastic constants and

biasing stresses in the statically deformed state as given by equations 6.7, 6.8 and

6.9. The index m refers to the family of normal modes for a borehole in the reference

state. Eigen-frequencies of each normal mode, ωm are solved previously (Biot, 1952;

Peterson, 1974; Tsang and Rader, 1979; Cheng and Toksoz, 1981). For each of the

modes that are sensitive to stress application, such as the flexural mode and Stoneley

mode, at a given wavenumber kz, the first-order perturbation in the eigen-frequency

ωm at each wavenumber kz, is obtained by ωm +∆ωm.

Without reducing generality, let us assume SH is applied in the X2-direction while

Sh is applied in the X3-direction. First, let us take Sh = 0. Thus, the borehole is

subject to a uniaxial stress SH . For a given wavenumber kz, the first-order perturba-

tion in eigen-frequencies of the Stoneley and flexural modes, ω2, ω3 and ωSt, may be

given by (Sinha, 1997)

∆ωH2
kz

= C01SH + C02SH
c111
c66

+ C03SH
c112
c66

+ C04SH
c123
c66

, (6.19)

∆ωH3
kz

= C901 SH + C902 SH
c111
c66

+ C903 SH
c112
c66

+ C904 SH
c123
c66

, (6.20)

and

∆ωSt
kz

= C1SH + C2SH
c111
c66

+ C3SH
c112
c66

+ C4SH
c123
c66

, (6.21)

where ∆ωHSt, ∆ω
H
2 and ∆ωH3 denote first-order frequency perturbations for the Stone-

ley wave and flexural waves polarized in the X2- and X3-directions, respectively. Co-

efficients C0i , C
90
i , and Ci, with i = 1, 2, 3 and 4, are frequency dependent integrals
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that can be evaluated in terms of the known flexural wave solution in the reference

state and biasing stresses of unit-magnitude and corresponding strains in the forma-

tion (see Appendix D). The superscript 0 denotes flexural wave polarization along

the far-field uniaxial stress direction, while 90 denotes flexural wave polarization in

the perpendicular direction.

Similarly, if SH=0 and only Sh is applied, the corresponding first-order perturba-

tions in respective eigen-frequencies ω2, ω3 and ωSt are

∆ωh2
kz

= C901 Sh + C902 Sh
c111
c66

+ C903 Sh
c112
c66

+ C904 Sh
c123
c66

, (6.22)

∆ωh3
kz

= C01Sh + C02Sh
c111
c66

+ C03Sh
c112
c66

+ C04Sh
c123
c66

, (6.23)

and

∆ωhSt
kz

= C1Sh + C2Sh
c111
c66

+ C3Sh
c112
c66

+ C4Sh
c123
c66

. (6.24)

Note that Sh is in the X3-direction; thus flexural wave polarization oriented in the

X2-direction is perpendicular to the far-field uniaxial stress direction. Also first-order

perturbations of the respective eigen-frequencies are function of stress magnitude.

The total first-order frequency perturbations due to the application of the two uniaxial

stresses of SH and Sh are linear combinations of ∆ωHm and ∆ωhm, i.e., ∆ωm = ∆ωHm +

∆ωhm, with m = 2, 3 and St, respectively. Frequency perturbations ∆ωm are added

to their respective eigen-frequencies ωm for various values of the wavenumber along

the borehole axis, kz, to obtain changes in phase velocities of two principal flexural
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waves and the Stoneley wave at a given frequency,

v2 − vR
vR

= SH(C
0
1 + C02

c111
c66

+ C03
c112
c66

+ C04
c123
c66

)

+Sh(C
90
1 + C902

c111
c66

+ C903
c112
c66

+ C904
c123
c66

), (6.25)

v3 − vR
vR

= Sh(C
0
1 + C02

c111
c66

+ C03
c112
c66

+ C04
c123
c66

)

+SH(C
90
1 + C902

c111
c66

+ C903
c112
c66

+ C904
c123
c66

), (6.26)

and
vSt − vStR

vStR
= (SH + Sh)(C1 + C2

c111
c66

+ C3
c112
c66

+ C4
c123
c66

), (6.27)

where vR and vStR are the flexural and Stoneley phase velocities in the reference state.

Equations 6.25, 6.26 and 6.27 are used as the the forward modeling in the inversion

for SH , Sh, c111, c112, and c123. Phase velocities of the Stoneley wave, vSt, and flexural

waves, v2 and v3 in equations 6.25, 6.26 and 6.27, are determined from the monopole

and cross-dipole waveforms, respectively. Phase velocities in the reference state can

be computed numerically by solving an eigenvalue problem of a fluid-filled borehole

surrounded by an isotropic formation. Note that except for the five unknowns SH ,

Sh, c111, c112, and c123, and the formation elastic constant in the reference state c66, all

quantities in equations 6.25, 6.26 and 6.27 are frequency dependent. Consequently,

phase velocities of v2, v3, v
St, vR and vStR at multipole wavenumbers (kz) are selected

to construct the inversion scheme. Nonlinear lest square approach is used for the

inversion.

6.3 Results from Cross-dipole and Monopole Logs

in California

We analyze a set of cross-dipole and monopole waveforms acquired by a wireline

acoustic tool in a vertical well for the estimation of stress directions and magnitudes.
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The well is located in the southwestern San Joaquin basin in California, about 60 km

from the San Andreas fault(figure 6-1).

The data were acquired every 15 cm (6 inches) from 479 m (1571.5 feet) in depth

up to 131.5 m (431.5 feet). The cross-dipole tool consists of one pair of dipole sources

with orthogonal polarizations and eight pairs of dipole receivers polarized in the

same directions with the dipole sources. Figure 6-2 shows a diagram of a cross-dipole

logging tool. The receiver pairs are 15 cm (6.0 inches) apart. The nearest receiver

pair is 3.35 m (11 ft) away from the sources. Each receiver records waveforms that

are excited by both sources, resulting 8 four-component waveforms. Denoting one

dipole orientation as x and the other as y, the four-component waveforms can be

labeled as dxx, dxy, dyx and dyy. dxy represents waveforms excited by the dipole

source polarized in the x direction and received by the dipole receiver polarized in

the y direction. Monopole data, containing both the compressional headwave and

the borehole Stoneley mode were acquired with a monopole tool that consists of one

monopole source and eight monopole receivers with 15 cm (6 inches spacing). The

four-component crossdipole waveforms and monopole waveforms at 1370.5 feet are

plotted in figure 6-3. Tectonic stresses can cause stress-induced shear anisotropy in

such vertical wells. Our investigation of formation stresses consists of the following

steps:

1. Low-pass filtering and time windowing of cross-dipole waveforms. First, we use

a short Fourier transform, a technique that estimates time-localized frequency

contents of a waveform and generates a time-frequency domain figure that is

called a spectrogram, to analyze various wave modes generated in the bore-

hole by dipole sources. Figure 6-4a shows a typical spectrogram of waveforms

recorded by a cross-dipole log. Note the earliest arrival around 15 kHz is the tool

mode followed by a compressional headwave around 5 kHz. The flexural mode

is a high amplitude signal around 1.5 kHz with the lowest velocity around 600

m/s. Figure 6-4b shows velocities of all the modes in their respective frequency

ranges. These results show the presence of a weak compressional mode around

5 kHz; a borehole flexural mode around 1.5 kHz; and a tool arrival around 15
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Figure 6-1: The field data is acquired in a well located in the
southwestern San Joaquin basin in California, about 60 km from
the San Andreas fault, as shown on a topographic map obtained
from the USGS web site.
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Figure 6-2: Diagram of a cross-dipole logging tool. It consists
of one pair of dipole source with orthogonal polarizations and
eight pairs of dipole receivers polarized in the same direction
with one of the dipole sources.
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Figure 6-3: Waveforms recorded in the field at depth 1370.5 feet.
a. four-component cross-dipole data. b. monopole data.
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kHz. Since a borehole flexural wave consists of low-frequency components and

propagates the slowest among all the generated waves, low-pass filtering and

time windowing the recorded waveforms help to obtain relatively pure flexural

waves.

2. Fast shear azimuth estimation and rotation of recorded dipole waveforms to the

fast and slow shear directions. The orientation of the fast shear or flexural

wave polarization in the far field is obtained by using the low frequency part

of cross-dipole flexural waveforms with the modified Alford rotation technique

that takes into account the signature mismatch of sources and receivers (Huang

et al., 1998). Waveforms at each depth are then rotated so that the sources

and receivers are aligned with the principal flexural wave polarizations. As a

result, the rotated waveforms contain largely pure principal flexural waves and

are ready for further processing.

3. Dispersion analysis. In order to locate depths where crossovers in flexural dis-

persions or stress-induced anisotropy occurs, flexural dispersions are extracted

from the data using one mode method (Nolte et al., 1997), which is outlined in

Appendix A. Dipole dispersion crossover is continuously observed in the depth

range of 390 m to 430 m (1279.5 ft to 1411 ft). Figure 6-5A presents a typ-

ical dispersion crossover for the two principal flexural waves in the stressed

zone. Figure 6-5B shows the compressional headwave and the dispersive Stone-

ley wave from monopole logging data in the same well at the same depth. The

compressional wave velocity is around 1600 m/s, the same value as in figure 6-4.

The presence of crossovers indicates horizontal formation stresses on a weakly

anisotropic or isotropic formation at those depths where the polarization direc-

tion of the fast flexural wave corresponds to the direction of formation maximum

horizontal stress. Figure 6-6 shows the maximum horizontal formation stress

directions in the stressed zone. By computing the cross-correlation of the low-

frequency part of the fast and slow flexural waveforms, we obtain the group

delays between the slow and fast flexural waves (Figure 6-6). The delays in-
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dicate the amount of stress-induced anisotropy in the formation. The shear

velocity anisotropy can be expressed as

V2 − V3
V3

=
V2∆t

L
, (6.28)

where V2 and V3 are the fast and slow shear velocities, respectively; and ∆t is

the group delay at a given depth as shown in the second panel of Figure 6-6.

Typically, we observe a group delay ∆t=1 ms, and an average shear velocity

V2=620 m/s (2034 ft/s) in this depth interval. These values yield an average

shear anisotropy of about 16%. Note that the entire depth interval in Figure 6-

6 shows dipole dispersion crossovers and a significant amount of stress-induced

shear anisotropy. The maximum horizontal formation stress direction is oriented

at 30o to 50o east from north.

4. Stress magnitude estimation. The dotted lines in Figure 6-8 represent disper-

sions measured from logs. From each of the dispersion curves of flexural waves

and the Stoneley wave, five frequency points from the frequency band 1 kHz to

2 kHz with 250 Hz spacing are selected for inversion. Borehole parameters and

the reference state in the inversion are listed below.

Formation compressional velocity : V1 = 1693m/s,

Formation shear velocity : V2 = 570m/s,

Formation mass density : ρ = 2400kg/m3,

Borehole radius : R = 0.2m,

Fluid compressional velocity : Vf = 1500m/s,

Fluid mass density : ρf = 1000kg/m3.

Magnitudes of the maximum and minimum horizontal formation stresses as

well as three formation nonlinear elastic constants are obtained by inverting

phase velocity changes in the fast and slow borehole flexural wave as well as the
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Stoneley wave using equations 6.25, 6.26 and 6.27. The results are as follows:

SH = −40MPa, Sh = −12MPa,

c111 = −608.6GPa, c112 = 25.4GPa,

c123 = 201.2GPa.

Theoretical dispersion curves are calculated by substituting the above results

into equations 6.25, 6.26 and 6.27. Good agreement between measured and the-

oretical dispersion curves indicates that the mean-square errors of the inversion

are small.

From the dispersion curves of flexural waves (Figure 6-8), it is obvious that

the formation is very “soft”, i.e., has very low shear velocity, around 610 m/s.

Formation overburden can be a good approximation of the vertical stress, Sv.

Assuming that the average formation density from the surface to the depth of

400 m is 2300 kg/m3, the vertical stress in the depth range of the stressed zone

is on the order of 8.8 to 9.7 MPa. This value is slightly smaller than Sh. The

stress field of the area of this study is of the form SH À Sh ≈ Sv, producing

a combination of strike-slip and thrust faulting. These results are consistent

with results from borehole breakout studies (Mount and Suppe, 1992) and with

focal mechanism and borehole breakout data presented in the world stress map

database (Zoback, 1992), shown in figure 6-7.

6.4 Discussion

The existence of a borehole alters the stress field in the formation. The stress field

distribution around a borehole caused by a far-field compressive stress S is given by
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Timoshenko and Goodier (1982)

TRR =
S

2
(1−

a2

R2
) +

S

2
(1 +

3a4

R4
−

4a2

R2
)cos2Φ,

TΦΦ =
S

2
(1 +

a2

R2
)−

S

2
(1 +

3a4

R4
)cos2Φ,

TRΦ = −
S

2
(1−

3a4

R4
+

2a2

R2
)sin2Φ, (6.29)

TZZ = µ(TRR + TΦΦ),

TZR = 0,

TZΦ = 0

where a is borehole radius, µ is the formation Poisson’s ratio, R is the radial distance

from the borehole axis, and Φ is the azimuth angle that is measured relative to the

far-field uniaxial stress direction. Figure 6-9 shows radial (TRR), circumferential(TΦΦ)

and radial-azimuthal shear (TRΦ) stress variations away from the borehole surface

along various azimuthal directions from the stress axis (Φ = 0o, 30o, 60o, and 90o).

All stresses are normalized with respect to the far-field stress, S. When the radial

distance, R is over 2 to 3 times the borehole radius, the stress field is very close to

that of the far-field. Borehole guided waves can penetrate the formation up to a radial

distance of about one wavelength (Cheng and Toksoz, 1981). The center frequency of

Stoneley and borehole flexural waves that are used in the stress magnitude inversion

is 1 kHz. Velocities of Stoneley wave and both flexural waves are over 600 m/s.

Therefore, Stoneley wave and flexural waves are sensitive to formation properties up

to 60 cm from the center of the borehole, or over 3 times of the borehole radius.

Therefore, the estimated stress magnitudes represent the far-field formation stress

quite well.

6.5 Conclusions

Techniques presented in this paper for studying in-situ formation stresses are non-

destructive using the standard acoustic logging data, and are reasonably reliable in
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estimating absolute stress magnitudes. Inversions for stress directions and magnitudes

are simple, efficient and well-conditioned.

Anisotropy in rocks can be characterized as either intrinsic or stress-induced. It

is possible to have a mixture of these two types of anisotropy in the earth. The

stress magnitude inversion scheme presented in this paper requires observations of

stress-induced anisotropy dominating intrinsic anisotropy. In general, the azimuthal

anisotropy in the shallow crust is due to differences in horizontal stresses. The method

developed in this study can determine the directions and magnitudes of maximum

and minimum horizontal stresses.
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Figure 6-7: Orientation of the maximum horizontal stress in the
world stress map (Zoback, 1992). The circled area is where the
field data were acquired.
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Chapter 7

Conclusions and Future Work

Making measurements of formation properties while drilling (LWD) is becoming an

important procedure in the petroleum industry. In LWD, the drill collar serves as

the “logging tool”. This in turn introduces a large diameter mandrel into the bore-

hole and it produces a thin annulus of fluid between the tool and the formation.

Numerical modeling of seismic waves in such systems, with highly contrasting mate-

rial properties and layers pose a challenge that traditional finite difference and finite

element algorithm become computationally costly. A novel finite difference time do-

main algorithm has been developed that features non-uniform grid, wavelet-based

difference operator and anisotropic perfectly matched layer. This algorithm reduces

numerical reflections and wave distortions introduced by grid change to a minimum.

Using coordinate stretching, the algorithm discretizes the physical space with variable

grid, while solving the wave equation on a uniform mesh. That approach helps to

retain the advantages of an uniform mesh. Further improvement in efficiency was

achieved through the development of a wavelet-based difference operator. Unlike the

conventional Taylor’s expansion based method, the wavelet-based by using a family

of compactly supported wavelet function represents the derivative operator without

truncation and allows less grid point per wavelength. The wavelet-based scheme

also yields more accurate reflection and transmission coefficients at sharp boundaries,

especially when combined with finer grids in the neighborhood of a discontinuity.

Coordinate stretching is also employed in deriving an anisotropic perfectly matched
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layer, superior to the currently available perfectly matched layer formulation which

requires field splitting, a process that requires more computer memory for the storage

of extra variables. When the medium is homogeneous in z direction, further saving

in computational cost is obtained since the finite difference algorithm solves the wave

equation in (x,y,kz,t) domain before taking inverse Fourier transformation of the so-

lution back to (x,y,z,t) domain. The main objective of this thesis was to calculate

the response of an LWD acoustic tool by developing an appropriate finite difference

algorithm. The overall saving in computer memory for most LWD models could be

in the order of several hundred times.

The stretched grid finite difference algorithm is used for a comprehensive investi-

gation of wave propagations in the logging while drilling. The investigation is focused

on soft formations where formation shear velocity is slower than borehole fluid veloc-

ity, because shear velocity measurement, one of the key measurements that acoustic

logging is designed to acquire, is the most problematic in soft formations. The key

questions include: What are the best source type and frequency range for measuring

shear velocity? What is the influence of LWD tool position (centered or off-centered)

on the received waveforms? Do monopole, dipole and quadrupole sources, made of

point sources, produce pure mode? If not, what is the resulting effect is on velocity

analysis. In answering these questions, the following conclusions were reached for

measurements in soft formation:

• Frequency range is the key factor to obtain reliable shear velocity measurement.

The system should be designed at low frequencies to make measurements in slow

formation (below 6 kHz). For a broadband or high frequency system, multipole

modes are excited. To identify borehole modes, it is necessary to combine time

domain semblance and frequency dispersion analysis.

• Shear waves are observed in dipole logging and monopole logging at low fre-

quencies. These are “leaky” refracted waves. They can be used as a cross-check

for shear velocity measurements.

• All these sources, monopole, dipole and quadrupole sources are suitable for
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shear velocity measurement. The monopole source produces direct shear when

the tool is centered, and strong flexural mode that approaches to the formation

shear velocity at low frequency limit when the tool is off-centered. The dipole

source produces a weak yet visible shear arrival when the tool is centered, and

a much stronger one when the tool is off-centered. The shear arrival in the

off-centered case is believed to be associated with the flexural mode. The phase

velocity of the flexural mode is slower at low frequencies (0-2.5 kHz) when the

tool is centered. The quadrupole source produces a clean quadrupole mode. Its

phase velocity approaches the formation shear velocity at low frequency limit

for both centered and off-centered tool.

• In addition to modes decribed above, a torsional mode is generated when the

tool is off-centered.

• Dipole, monopole and quadruple excitations are efficiently achieved by two point

sources with opposite phase, four point sources all in phase, and four point

sources at with alternate phases.

Cross-dipole logs (wireline) can be used to determine azimuthal anisotropy and to

estimate stress magnitudes and directions from borehole acoustic measurements. We

developed an inversion method to obtain the directions and magnitude of formation

stresses. We applied this method to data from California. The estimated stress

directions are consistent with those obtained from earthquake focal mechanism and

borehole breakout data given in the world stress map database (Zoback, 1992).

7.1 Future Work

The FDTD algorithm developed in this dissertation is a stand alone tool able to

handle a variety of models from fluid-filled borehole to layered media. Besides ef-

ficient mesh and low numerical reflection from the absorbing layer, it produces the

most accurate reflection and transmission at sharp boundaries by using wavelet-based

difference operator. There are several directions to further the functionality of the
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FDTD algorithm. Currently the algorithm is in 2.5D, requiring homogeneous prop-

erty in one of the dimensions. For broader applications, the next step is to extend

it from 2.5D to 3D and add message passing interface (MPI) for parallel computing.

Another direction is to add intrinsic attenuation to the wave equation by introduc-

ing viscoelasticity to the algorithm (Robertsson et al., 1994; Hestholm, 1999). The

wavelet-based difference operator in the current FDTD algorithm only uses the scale

functions. Higher accuracy may be obtained by incorporate the wavelet functions.

The stress inversion scheme discussed in the dissertation is successful in obtaining

stress information from the particular acoustic logging data and consistent to previous

investigations. Because in-situ stresses are at the average level of 20 to 80 MPa, some

rocks may undergo plastic deformations. At those stress levels, elastic moduli may

no longer be a linear function of formation stresses as assumed in the dissertation.

The key step to further the study of stress inversion is therefore to build realistic

constitutive relationship into the calculation.
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Appendix A

Extracting Dispersion Curve From

Waveforms: A Back Propagation

Based Formula

Under the assumption that the formation properties do not vary axially over the

receiver array, the propagation of a borehole wave along the axis of a fluid-filled

borehole can be described by the equation (Biot, 1952; Tsang and Rader, 1979)

u(z, t) =

∫ ∞

−∞

∫ ∞

−∞

S(ω)R(ω)G̃(k, ω)e−jωtejkzdkdω, (A.1)

where u(z, t) denotes the pressure variation on the borehole axis as a function of

distance z and time t. G̃(k, ω) denotes the spatial and time Fourier transform of the

borehole excitation function. k is the vertical wavenumber. The excitation function

of borehole waves can be expressed by an unique linear combination of a group of

orthogonal functions with each function representing a single borehole mode. Equa-

tion A.1 works well for a single borehole mode. S(ω) and R(ω) denote the Fourier

transform of the source signature and the receiver response, respectively. As our in-

terest is in the frequency dependence of the phase velocities, or the dispersion of one
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borehole mode, we can take the Fourier transform of u(z, t) over time,

U(z, ω) = S(ω)R(ω)

∫ ∞

−∞

G̃(k, ω)ejkzdk. (A.2)

Elementary concepts from complex-variable analysis can be used to rewrite the con-

tinuous integral in equation A.2 as a sum of contributions from the singularities of G̃

(Roever et al., 1974; Peterson, 1974; Tsang and Rader, 1979; Kurkjian, 1985). Gen-

erally, if U(z, ω) is the recorded waveform that includes all types of borehole waves

(guided and head waves), two types of singularities will contribute to the integral in

equation A.2: poles and branch points. The pole contributions are associated with

guided modes, while the branch points are due to body waves in the formation (Lang

et al., 1987). In our case, U(z, ω) represents the waveform of a single pure bore-

hole guided wave mode, thus only one pole contributes to the integral in equation

A.2. For a pole located at k = kp(ω), the residue of the pole will be of the form

1/(2πj)gp(ω)e
jkp(ω)z. Thus an alternative representation, which is exact, of equation

A.2 is

U(z, ω) = S(ω)R(ω)gp(ω)e
jkp(ω)z. (A.3)

The waveform at each receiver, u(z, t), containing one single borehole mode is ob-

tained by filtering and time-windowing the recorded full waveform. In the dipole

case, we rotate the filtered and time-windowed waveforms. For convenience, we de-

note u(z, t) at i-th receiver as ui(t) and Fourier transform ui(t) to Ui(ω). The first

receiver is the one that is the closest to the source. According to equation A.3, Ui(ω)

can be represented as

Ui(ω) = S(ω)R(ω)gp(ω)e
−kip[z0+(i−1)∆z]e

j ω

v0z(ω)
[(i−1)∆z+z0]

(A.4)

where kip is the imaginary part of kp, representing the attenuation coefficient of

the borehole mode, and krp = ω/v0z(ω) is the real part of kp, denoting the vertical

wavenumber of the borehole mode. z0 is the distance from the source to the first

receiver, and ∆z is receiver spacing. We now rewrite equation A.4 in terms of U1(ω),
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the wave spectrum at the first receiver:

Ui(ω) = U1(ω)e
−kip(i−1)∆ze

j ω

v0z(ω)
(i−1)∆z

. (A.5)

For each frequency ω, we define a vector, U(ω), as

U(ω) =























U1(ω)

U2(ω)

U3(ω)
...

UN(ω)























(A.6)

where N denotes number of receivers. Waves at each receiver are propagated back

to the location of the first receiver by compensating the phase changes from the

first receiver location to their current location. As for small amplitude waves, the

attenuation term is not dependent on velocity; therefore, there is no need to adjust the

attenuation term during the back propagation. We then sum up the back propagated

waves as

e(ω, vz) =
|U∗(ω)Φ(ω, vz)|
√

U∗(ω)U(ω)
. (A.7)

e(ω, vz) is the amplitude of the normalized summation of waves that are back propa-

gated to the position of the first receiver. Φ(ω) denotes the phase term that propagates

N waves back to the first receiver.

Φ(ω) =























φ1(ω, vz)

φ2(ω, vz)

φ3(ω, vz)
...

φN(ω, vz)























(A.8)

where

φi(ω, vz) = ej
ω
vz
(i−1)∆z. (A.9)
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Figure A-1: Synthetic borehole flexural waveforms obtained by
a Finite Difference algorithm.

At each frequency, if the phase velocity vz, that we use to back propagate waves at

N receivers, equals the true phase velocity, e(ω, vz) reaches its maximum. Ideally, if

there is no noise, e(ω, vz) will be 1 at its maximum.

Figure A-1 shows a set of synthetic borehole flexural waves at eight receivers

obtained by a finite difference algorithm. Figure A-2A shows the dispersion curve

estimated using one mode method and the analytical dispersion curve for the same

formation properties. They agree very well. To show that both the dispersion extrac-

tion technique and the FDTD algorithm developed in this thesis is accurate for the

frequency domain analysis, dispersions curves are extracted from the waveforms com-

puted in chapter 2, where the model is a fluid-filled borehole without the LWD tool.

Figure A-3 shows the resulting dispersion curves that are plotted against theoretical

solutions. They agree with each other very well.
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Figure A-2: Estimated dispersion curves of the flexural wave in
Figure A-1 and analytical dispersion curve for same formation
properties.

239



Fluid−Filled Borehole, n=0

P
ha

se
 V

el
oc

ity
 (

m
/s

)

Frequency (Hz)
2000 4000 6000 8000 10000 12000

500

1000

1500

2000

2500

3000

3500

4000

Figure A-3: Dispersion curves in a fluid-filled borehole with
monopole source without the LWD tool. circle: extracted from
waveforms computed in chapter 2; colormap: zero map of the
analytical eigenvalue equations, dark lines representing analyt-
ical solutions of borehole modes. The numerical results agree
with the analytical solution very well.
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Appendix B

Leaky Shear

Direct shear arrival is observed in both the monopole and dipole case in chapter 4

and 5. It is stronger at low frequencies. While the shear arrival in soft formation is

too weak in the wireline situation to provide little help in measuring shear velocity,

it certainly is strong enough in the LWD to serve as a cross check for modal based

measurements, due to the fact that the source and receivers are close to the formation.

To confirm it is the direct shear, a numerical experiment is conducted in a two half

space fluid-solid model. The fluid is water and the solid has the same property as the

soft formation. The source is 6 mm away from the interface in the water and receiver

arrays are placed according to figure B-1. The center frequency of the source is 2

kHz. Figure B-2 and B-4 shows waveforms and spectra recorded by the receiver array

that is 6 mm away from the interface. CA closer look at the waveforms are shown in

figure B-3. Semblance and dispersion analysis results are shown in figure B-5 and B-6.

Although the Stoneley wave is strong, the leaky shear is strong enough to show

in the waveform as the first arrival. Its energy decays as a function of 1/R3, where R

is the receiver offset. It is of higher frequency content than the Stoneley wave. The

leaky shear dies out 9 cm away from the interface.
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Figure B-1: Schematic illustration of source and receiver posi-
tions. The FDTD computation is conducted in 3D.
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Figure B-2: Waveforms recorded by the receiver array that is 6
mm away from the interface.
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Figure B-3: A closer look at waveforms in figure B-2.
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Figure B-4: Spectra of waveforms in figure B-2.
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Figure B-6: Dispersion analysis result of waveforms in figure B-
2.
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Appendix C

Effects of Stresses on Elastic

Velocities of Rocks:

Theory of Acoustoelasticity

and Experimental Measurements

ABSTRACT

The theory of acoustoelasticity, having been developed for polycrystalline materials,

provides direct link between the change of elastic wave velocities and static stresses in

solids. It is the theoretical foundation for studying stress effects on wave propagation

along a fluid-filled borehole in the rest of the thesis. The objective of this appendix

is to review the theory and its applicability to rocks.

C.1 Introduction

The phenomenon of stress-induced velocity change in rocks, referred as acoustoelastic-

ity, is a well-established observation (Nur and Simmons, 1969; Lo et al., 1986; Johnson

and Christensen, 1993). It is classically modeled by a change in alignments and den-

sity of cracks or any other alignment of micro-structural flaws or defects, caused by

249



a changing stress(e.g. Sayers et al. (1990)). Theory of acoustoelasticity, having been

developed under the framework of continuum mechanics, describes a small dynamic

perturbation superimposed on a predeformed medium due to the presence of a static

stress.

The theory of acoustoelasticity invokes third-order elastic (TOE) constants to

account for the nonlinear strain response to stresses of finite magnitude (Thurston

and Brugger, 1964). Note that the nonlinearity is referred to the fact that wave

velocity is a function of applied stresses, not that the dynamic field is nonlinear. On

the contrary, the dynamic motion is infinitesimally small thus linear. A full review of

the derivation of this theory can be found in (Pao et al., 1984)

Development of the theory has been stimulated by the interest of measuring ap-

plied or residual stresses in polycrystalline materials. Due to the presence of compliant

mechanical defects (cracks, micro-fractures, grain joints, etc), rocks in general show

stronger nonlinear elastic behavior, i.e. stronger dependency of compressional and

shear velocities on static stresses, than crystals or polycrystalline materials (Mee-

gan et al., 1993; Johnson et al., 1993; Johnson and McCall, 1994). The theory of

acoustoelasticity had not been popular in the geophysical community until recently

when it is employed in estimating in-situ stresses, for it provides efficient and direct

quantitative links of the change of velocities to static stresses, both to their direc-

tions and magnitudes. Recently a number of studies have been reported using the

acoustoelasticity theory to compute TOE constants of various types of rocks from

laboratory measurements (Johnson and Rasolofosaon, 1996; Winkler and Liu, 1996;

Sarkar et al., 2002).

In this appendix, I shall first review the general theory of acoustoelasticity, and

derive formulae of velocity change as a function of static stresses. I then apply those

formulae to several published experimental measurements of various types of rocks.

A connection between Sayer’s microcrack model and the theory of acoustoelasticity

is made afterwords. Note that the micro-crack model, relating velocity changes with

static stresses through opens and closes of micro-cracks, does not establish the direct

quantitative dependency of velocities on stress magnitudes. The goal here is not to
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present an exhaustive analysis of the experimental data available from the literature,

but to illustrate the applicability of the theory of acoustoelasticity to rocks. First

I shall analyze a set of high precision velocity v.s. stress data of dry Colton Sand-

stone Dillen (2000), then investigate velocity changes with confining pressures on

Chelmsford Granite, Chicopee Shale and Berea Sandstone (Johnson et al., 1993; Lo

et al., 1986). Velocity change as a function of uniaxial stresses is also investigated (Nur

and Simmons, 1969).

C.2 Theory of Acoustoelasticity

The theory of acoustoelasticity was developed in the 1960s by introducing third-order

elastic constants and separating dynamic motions from the large, static deformation

caused by static stresses (Pao et al., 1984).

To understand the theory, it is essential to know three material configurations: the

natural, the initial and the final states. The natural and initial configurations refer to

states when the material is free of stresses and statically deformed, respectively. The

final configuration denotes the material state with wave-induced dynamic deformation

superimposed on the static load (Fig C-1). A physical variable in the natural, initial,

or final state is designated by a superscript label 0, i, or f , respectively. The positions

of a particle in the body at natural, initial, and final states are measured by position

vectors ξ, X, and x, respectively, all directed from the origin of a common Cartesian

coordinate system. The components of ξ and other physical quantities which refer

to the natural configuration are denoted by Greek subscripts; those of X and others

refer to the initial configuration by upper case Roman subscripts; and those of x and

others refer to the final configuration by lower case Roman subscripts. Thus ξα, XJ ,

and xj (α, J , j = 1, 2, 3) are the components of position vectors in three respective

configurations (Fig C-1).

The static deformation and the driven stress, which can be denoted with the

initial Kirchhoff (the second Piola-Kirchhoff) stress tensor referring to the natural

configuration Ti or the Cauchy stress tensor referring the initial state ti, must satisfy
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Figure C-1: Coordinates for a material point at the natural (ξ),
initial (X) and final (x) configurations of a statically deformed
body subject to a dynamics wave field (Pao et al., 1984).

252



the equations of equilibrium, i.e.

∂

∂ξβ
[T i

βγ(δαγ +
∂uiα
∂ξγ

)] = 0,

∂tiJK
∂XK

= 0. (C.1)

The dynamic wave propagating across the statically deformed body is governed by the

following equation of motion referring to the natural and initial states, respectively,

∂

∂ξβ
(T f

βα + T f
βγ

∂ufα
∂ξγ

) = ρ0
∂2ufα
∂t2

,

∂

∂XK

(T f
KJ + T f

KL

∂ufJ
∂XL

) = ρi
∂2ufJ
∂t2

. (C.2)

where Tf and ti are stress tensors at the final state referring to the natural and the

initial configurations, respectively. ρ0 and ρi are the corresponding mass densities.

Subtracting equation C.1 from equation C.2, the equation of motion is obtained for the

incremental displacement in natural coordinates u(ξ, t) and in the initial coordinate

u(X, t),

∂

∂ξβ
[Tαβ + T i

βγ

∂uα
∂ξγ

+ Tβγ
∂uiα
∂ξγ

] = ρ0
∂2uα
∂t2

, (C.3)

∂

∂XJ

[TIJ + tiJK
∂uI
∂XK

] = ρi
∂2uI
∂t2

. (C.4)

So far the only assumptions made in the derivation are that the initial deformation

is static and that the dynamic disturbance is small. We have not asked how the

particles are carried from the position ξ to X, nor have we imposed restrictions on

the constitutive property of the material. Thus the equations of motion equation C.2

are applicable to waves propagating in a medium undergone general form of static

deformation, finite or infinitesimal, elastic or inelastic.

Now we introduce the constitutive relationship in the context of acoustoelasticity.

One basic assumption in the theory is that the material is hyperelastic, i.e. the

material remains elastic throughout the deformation without going into plasticity. A
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deformation in a medium is accompanied with a change of internal energy W (per

unit mass) or free energy F (per unit mass). The law of energy conservation states:

dW = θdS + TαβdEαβ/ρ
0, dF = −Sdθ + TαβdEαβ/ρ

0, (C.5)

where θ is the temperature, S the entropy, and F = W −θS. For a hyperelastic body,

W is a function of strain E and S, and F is a function of E and θ. Therefore, we

have

Tαβ = ρ0(
∂W

∂Eαβ

)S = ρ0(
∂F

∂Eαβ

)θ. (C.6)

The subscript S indicates an adiabatic thermodynamic process, and θ an isothermal

process.

The function W (E) may be expanded about the state of zero strain,

ρ0W (E) =
1

2
cαβγδEαβEγδ +

1

6
cαβγδεηEαβEγδEεη + · · · . (C.7)

Combining equations C.6 and C.7, a constitutive equation for T i
αβ or T f

αβ is thus

obtained by neglecting the higher order terms:

T i
αβ = cαβγδE

i
γδ +

1

2
cαβγδεηE

i
γδE

i
εη, (C.8)

T f
αβ = cαβγδE

f
γδ +

1

2
cαβγδεηE

f
γδE

f
εη. (C.9)

From the difference of these two equations, a constitutive equation for the incremental

stress tensor Tαβ is derived,

Tαβ = cαβγδEγδ + cαβγδεηe
i
γδeεη, (C.10)

where the infinitesimal strain tensor ei and e are used. eαβ = (∂uα
∂ξβ

+
∂uβ
∂ξα

)/2 and

eiαβ = (∂u
i
α

∂ξβ
+

∂uiβ
∂ξα

)/2.

The difference of the Lagrangian strain tensor in the final and initial states Ef
αβ
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and Ei
αβ, is given approximately by

Eαβ = Ef
αβ − Ei

αβ =
1

2
(
∂uα
∂ξβ

+
∂uβ
∂ξα

+
∂uiλ
∂ξα

∂uλ
∂ξβ

+
∂uiλ
∂ξβ

∂uλ
∂ξα

). (C.11)

In terms of displacement gradients, the constitutive equation is

Tαβ = cαβγδ(δργ +
∂uiρ
∂ξγ

)
∂uρ
∂ξδ

+ cαβγδεη
∂uiγ
∂ξδ

∂uε
∂ξη

. (C.12)

where only terms linear in ∂u
∂ξ

or ∂ui

∂ξ
are retained. Substituting the constitutive

equations for Tαβ into equation C.3, we obtain the equation of motion in term of

u(ξ, t), the incremental displacement introduced by the dynamic field,

∂

∂ξβ
[T i

γβ

∂uα
∂ξγ

+ Γαβγδ
∂uγ
∂ξδ

] = ρ0
∂2uα
∂t2

. (C.13)

This is the equation describing the dynamic field with reference to the natural coor-

dinates. The initial stress can be arbitrarily distributed and the material can have

intrinsic anisotropy. The coefficient Γαβγδ = Γγδαβ is of lower order symmetry than

cαβγδ. It is the effective elastic moduli of the material after static deformation.

Γαβγδ = cαβγδ + cαβρδ
∂uiγ
∂ξρ

+ cρβγδ
∂uiα
∂ξρ

+ cαβγδεηe
i
εη (C.14)

Einstein summation convention applies in all derivations.

For a homogeneously predeformed medium, i.e. T i and ∂ui/∂ξ are constant

throughout the body, the equation of motion [equation C.13] is reduced to

Aαβγδ
∂2uγ
∂ξβ∂ξδ

= ρ0
∂2uα
∂t2

, (C.15)

where

Aαβγδ = T i
βδδαγ + Γαβγδ (C.16)

are constant coefficients.
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A plane sinusoidal wave is represented by

uα = Uαexp[i(κνβξβ − ωt)], (C.17)

where U is a constant complex vector, ω the angular frequency, κ(= 2π/wavelength)

the wave number, and ν (a unit vector) the wave normal. The wave speed is given

by v = ω/κ. On substituting equation C.17 into equation C.15, we obtain a system

of equations for the amplitude vector U:

[Aαβγδνβνδ − ρ0v2δαγ ]Uγ = 0. (C.18)

The associated characteristic equation is

|Aαβγδνβνδ − ρ0v2δαγ| = 0. (C.19)

Once the initial stress and initial displacement gradients are specified, and the values

of ρ0, cαβγδ, and cαβγδεη in a medium are given, the eigenvalues (wave velocities) and

eigenvectors (polarization directions) of equation C.18 can be solved for each direction

ν of propagation.

The above equation of motion refers to the natural state, the state without static

deformations. It is appropriate to apply those equations to laboratory measurements

where the rock is initially unstressed. However, to describe wave propagations in the

solid earth, it is more appropriate to work with formulae referring to the statically

loaded state, i.e. the initial state, as all measured properties are made after the earth

is stressed by tectonic movements.

The constitutive equation for the incremental stress with reference to the initial

state, TJK , is obtained by transforming Tαβ by equation C.21.

TIJ = CIJKL
∂uK
∂XL

(C.20)

TJK = |
∂X

∂ξ
|−1

∂XJ

∂ξα

∂XK

∂ξβ
Tαβ. (C.21)
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The equation of motion in terms of the displacement referring to the initial state,

u(X, t), is derived by substituting the constitutive equation C.20 into equation C.4,

∂

∂XJ

[(δIJt
i
JL + CIJKL)

∂uK
∂XL

] = ρi
∂2uI
∂t2

. (C.22)

where

CIJKL = cIJKL(1− eiNN) + cIJKLMNe
i
MN + cMJKL

∂uiI
∂XM

+ cIMKL
∂uiJ
∂XM

+ cIJML
∂uiK
∂XM

+ cIJKM
∂uiL
∂XM

(C.23)

where eNN is the bulk dilation. For consistency of first-order approximation, the mass

density in the initial state ρi is converted to ρ0 by the following approximation:

ρi u ρ0(1 + ei11 + ei22 + ei33). (C.24)

Within the framework of the aforementioned theory, the assumptions that lead to

equations C.3 and C.4 are

• The initial deformation is static and the body is at equilibrium in the initial

state.

• The superposed dynamic motion is small.

C.3 Colton Sandstone

In his study, Dillen (2000) carried out series of ultrasonic experiment on a cubic block

of Colton sandstone. The sample consists of lithic quartz and feldspar. It is fairly

homogeneous and has a porosity of about 3%. At zero stress state, the measured

P-wave velocities in the X− and Z−directions are approximately equal and differ by

5% from the velocity in the Y−direction. We assume that the Colton sandstone is

transversely isotropic with the symmetry axis in the Y−direction. Figure C-2 shows

the load cycle ABCD as a function of experiment time. The entire ABCD stress path
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has equal normal stresses in the X− and Z−directions.

Figure C-2: Loading cycle ABCD of the tri-axial pressure machine. To preserve the
intrinsic transverse isotropy of the sample, the stress in the X−direction is equal to
the stress in the Z−direction (Dillen, 2000).

According to the characteristic equation (Eq C.19), when a plane wave is propa-

gating in the X−direction, ν1 = 1, ν2 = 0 and ν3 = 0; therefore, Eq C.19 becomes

|Aα1γ1 − ρ0v2δαγ| = 0. (C.25)

In matrix form, it is

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 − ρ0v2 A16 A15

A61 A66 − ρ0v2 A65

A51 A56 A55 − ρ0v2

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (C.26)

where

A11 = c11 + T i
11 + (2c11 + c111)e

i
11 + c112e

i
22 + c113e

i
33, (C.27)

A55 = c55 + T i
33 + (2c55 + c155)e

i
11 + c144e

i
22 + c344e

i
33, (C.28)

A66 = c66 + T i
22 + (2c66 + c166)e

i
11 + c266e

i
22 + c366e

i
33. (C.29)
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In Dillen’s experiment, one of the principal initial strains is in the X−direction;

therefore, ei31 = ei21 = 0, thus A51 = A15 = A16 = A61 = 0. From Eq C.26 we may

obtain the compressional velocity propagating in X−direction as follows

v2px =
A11
ρ0

. (C.30)

A11 is determined in Eq C.27. According to the acoustoelasticity theory, initial strains

ei11, e
i
22 and ei33 are linearly related with applied stresses T i

11, T
i
22 and T i

33 through

Hook’s Law. Let E = [ei
11
ei
22
ei
33
]T and T = [Ti

11
Ti

11
Ti

33
]T, we have E = C−1T.

Note that T i
11 = T i

22 in the experiment. C is the matrix of elastic stiffnesses,

C =

∣

∣

∣

∣

∣

∣

∣

∣

∣

c11 c12 c13

c12 c22 c12

c13 c12 c11

∣

∣

∣

∣

∣

∣

∣

∣

∣

(C.31)

Substituting the initial strains as a function of applied stresses into Eq C.27 and then

substituting Eq C.27 into Eq C.30, we find that the square of compressional velocity

propagating in X−direction is a linear function of applied stresses T11 and T22:

v2px = (vpx)
2
0 + AT i

11 +BT i
22, (C.32)

where (vpx)0 denotes the compressional wave propagating in the X−direction in the

natural state. A and B are constants that are completely determined by elastic

moduli and TOE constants of the rock.

T i
22 is constant in loading period B and C, thus v2px is a linear function of T i

11. In

period A, the normal stresses in the X and Z−directions T i
11 raise from 5 MPa to 7

MPa, and for the same period of time, T i
22 decreases from 5 MPa to 1 MPa. We may

work out the relation between T i
11 and T i

22 in period A as

T i
22 = 5− 2T i

11. (C.33)

Substituting Eq C.33 into Eq C.32, we may also find that v2px is a linear function of
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T i
11 in loading period A, only with a different slope from that in periods B and C.

Similar dependence of v2px on T i
11 is found in load period D with yet another slope.

Similar analysis holds for dependence of P wave propagating in the Y−direction

and for shear waves.

Figures C-3, C-4, C-5 and C-6 show both experimental and theoretical results of

compressional and shear velocities versus the normal stress in the X−direction during

cycle ABCD. The fact that very small root mean square errors between theory and

experiments suggests that the theory of acoustoelasticity holds for rocks in the stress

range of the experiment. We may infer that in the regime of small stresses which is

below 10 MPa in the above experiment, there is no permanent deformation in the

rock, i.e., cracks will reopen when stresses are removed. This satisfied the assumption

associated with the theory of acoustoelasticity which requires the rock to be elastic.

C.4 Chelmsford Granite, Chicopee Shale and Berea

Sandstone

A second experimental data set is analyzed for the following reason. The stress range

up to 10 MPa to which the Colton sandstone was subjected, as described above, is too

low to encompass in-situ stresses that occur in a hydrocarbon reservoir. An exception

is overpressured reservoirs, showing anomalously high pore fluid pressures, resulting in

correspondingly low effective stresses. Therefore, Johnson and Christensen (1993) and

Lo’s (1986) experimental data with confining pressures up to 200 MPa on Millboro

and Braillier shales and up to 100 MPa on Berea sandstone, Chicopee shale and

Chelmsford granite are analyzed in the following.

In both Johnson and Lo’s experiments, three compressional and six shear velocities

are measured for each of the rock samples under vacuum dry condition (Johnson et al.,

1993) and Lo et al. (1986). Figure C-7 illustrates velocities measured and symmetry

planes of rock samples each of which is measured transversely isotropic in the natural
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Figure C-3: Theoretical and experimental results of velocity of the compressional
wave propagating in the X−direction versus the normal stress in the X−direction
during the cycle ABCD (Dillen, 2000).
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Figure C-4: Theoretical and experimental results of velocity of the compressional
wave propagating in the Y−direction versus the normal stress in the X−direction
during the cycle ABCD.
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Figure C-5: Theoretical and experimental results of velocity of the shear wave prop-
agating in the X−direction and polarizing in the Z−direction versus the normal in
the X−direction during the cycle ABCD (experiment by Dillen).
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Figure C-6: Theoretical and experimental results of velocity of the shear wave prop-
agating in the X−direction and polarizing in the Y−direction versus the normal in
the X−direction during the cycle ABCD (experiment by Dillen).

264



state.

Figure C-7: Velocities measured and symmetry planes of rock samples each of which
is measured transversely isotropic in the natural state (both Johnson and Lo’s exper-
iments).

Figures C-8, C-9 and C-10 show that root mean square errors between experiments

and theoretical predictions are below 1% for every shale sample at all confining pres-

sures. The excellent agreement between theory and experiment is not surprising, for

all shale samples have very low porosities thus crack growth and coalescence, pri-

mary factors attributing to the highly nonlinear and inelastic behavior in rocks, are

very inactive. For the Berea sandstone sample, experiments and theory show sound

agreement at confining pressure levels that are higher than 30 MPa (Figure C-12).

A significant portion of cracks in this rock are closed at the confining pressure of

30 MPa therefore the rock starts to have a similiar behavior to shales. The corre-

sponding error between experiments and theory is also winthin 1%. For the granite

sample, the required confining pressure to close the majority of cracks is 40 MPa

(Figure C-11). When stresses are applied to a rock, elastic and inelastic deformations

are competing with each other. The inelastic deformation includes permenant closure

of cracks, development of new cracks that results from local failures and permenant

relative movement between rock grains. In order to account for inelastic deformation,

the theory of acoustoelasticity has to be modified. From the above analysis, we find
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that the theory of acoustoelasticity applies to all shale samples of low porosity. For

the sandstone and granite samples, in the intermediate stress regime which is about

10 MPa to 30 or 40 PMa, they undergo primarily inelastic deformations. When the

stress level is 30 or 40 MPa higher, the theory of acoustoelasticity works well with

all types of rocks that are studied in this paper, because most cracks are closed at

that confining pressure level and thus elastic deformation becomes primary. Rocks

are under high confining pressures when they are kilometers beneath the surface of

the earth where we are interested to measure in-situ stresses. So for the purpose of

estimating in-situ stresses, the theory of acoustoelasticity is applicable to all types of

rocks.
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Figure C-8: Theoretical and experimental results for Braillier shale (experiment by
Johnson and Christensen (1993). ∆: experiment; solid line: theory. RMSE denotes
root mean square error between theory and experiment.
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Figure C-9: Theoretical and experimental results for Millboro shale (experiment by
Johnson and Christensen (1993). ∆: experiment; solid line: theory.
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Figure C-10: Theoretical and experimental results for Chicopee Shale (experiment by
Lo et al (1986). ∆: experiment; solid line: theory.
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Figure C-11: Theoretical and experimental results and their relative errors for
Chelmsford granite (experiment by Lo et al (1986). ∆: experiment; solid line: theory.
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Figure C-12: Theoretical and experimental results and their relative errors for Berea
sandstone (experiment by Lo et al (1986). ∆: experiment; solid line: theory.
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C.5 Barre Granite

Nur and Simmons (1969) measured compressional velocities at various radial direc-

tions of a cylindrical sample of Barre granite subject to an uniaxial compressive stress

normal to the axis of the cylinder.

It is more convenient to work with cylindrical coordinates given the geometry

of the experimental setup. Note that in cylindrical coordinates, the stress tensor

T = [Ti

11
Ti

22
Ti

33
]T = [Ti

rr
Ti

ββT
i

zz
]T, and the strain tensor E = [ei

11
ei
22
ei
33
]T =

[ei
rr
eiββe

i

zz
]T. The initial strain E is linearly related to the initial stress T through

elastic moduli as mentioned previously. Components of E and T in equation C.27 can

be those in cylindrical coordinates as defined above. Suppose the applied uniaxial

stress, σ, coincides with β = 0o; therefore, at angle β, the three normal stresses

components of T in cylindrical coordinates are

T =











σcos2β

σsin2β

0











. (C.34)

Substituting the radial component in equation C.34 into equation C.30, we obtain

the compressional wave velocity as a function of applied stress σ and the angle β,

v2p = (vp)
2
0 + Aσ +Bσcos2β, (C.35)

where A and B are constants determined by elastic moduli and TOE constants of the

rock. (vp)0 is the compressional velocity in the natural state. We choose the average

stress-free velocity (vp)0 at all angles to be 3.79 km/s, and then invert Nur’s data (10

MPa, 20 MPa and 30 MPa) for constants A and B. The results are A = 0.008 and

B = 0.0225.

An alternative way of analyzing stress-induced velocity changes in rocks is to think

microscopically which has long been well received in geophysical community(e.g.Sayers

(1988a), Sayers et al. (1990)). Because the theory of acoustoelasticity, using a macro-
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scopic approach, also works reasonably well with rocks, as shown in (Johnson and

Rasolofosaon, 1996; Winkler and Liu, 1996), we shall make comparison between the

two approaches.

Sayers applied the micro-crack theory to the measurements of Nur and Simmons

(Sayers, 1988b). His formula for the compressional velocity at angle β is

vp = A+Bcos2β, (C.36)

where A and B are unknown variables that depend not only on the elastic proper-

ties of the rock, but also the applied stress. He evaluated A and B by fitting the

measurements of Nur and Simmons with the following results:

Stress (MPa) A B

10 4.052 0.199

20 4.271 0.301

30 4.414 0.322

Figure C-13 exhibits compressional wave velocity measurements of Nur and Simmons

for Barre granite compared with the acoustoelastic theory and micro-crack model

prediction. An error analysis shows errors between experiment measurements and

both models are mostly below 2% (Figure C-14). Relative errors between the two

models also suggest the two models agree with each other quite well (Figure C-15).

The micro-crack model implicitly deals with the velocity dependence on the ap-

plied stress. A and B are inverted for each applied stress level and thus are dependents

of applied stress. On the other hand, in the acoustoelastic approach, A and B are

constants that depend only on the elastic properties of the rock. So it is not surpris-

ing that micro-crack model fits the experiments slightly better than acoustoelastic

model. However, for the ultimate purpose of inverting measured velocity changes for

formation stresses, it is a disadvantage of the micro-crack model not to work explicitly

with the velocity dependence on the applied stress.

272



0 10 20 30 40 50 60 70 80 90
3.5

4

4.5

5

β (degrees)

co
m

pr
es

si
on

al
 w

av
e 

ve
lo

ci
ty

 (
km

/s
)

10 MPa

20 MPa

30 MPa

Figure C-13: Compressional wave velocity measurements of Nur and Simmons (Nur
and Simmons, 1969) for Barre granite compared with the acoustoelastic theory and
micro-crack model prediction (Sayers, 1988b). Solid line: acoustoelasticity, Dash line:
micro-crack model.
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Barre granite.
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C.6 Conclusion

Rocks in general exhibit strong nonlinear stress-strain behavior. As a result, ap-

plied or residual stresses in rocks affect sound velocity considerably. The micro-crack

model explains this phenomenon from a microscopic point view, i.e., relating velocity

changes to crack closures and reopenings caused by applied stresses. However the

direct dependence of velocity changes on stresses, the relationship necessary to invert

sound velocity change for formation stresses, is not established in this model whereas

it is in theory of acoustoelasticity, a model that explains the nonlinear behavior from

a macroscopic point of view. In the past 40 years, the theory of acoustoelasticity

has been confirmed and widely employed to evaluate applied or residual stresses in

polycrystalline materials. It is only in recent years that the theory is applied to rock

measurements. Its applicability to rocks have been confirmed by two independent

research efforts (Johnson and Rasolofosaon, 1996; Winkler and Liu, 1996). Using

the various measurements on different types of rocks by various people, we compared

acoustoelastic theory with the micrography model and found they agree with each

other within 2% of error.

It is also worth of noting that the current theory of acoustoelasticity is based

on the first two none zero terms of the Taylor’s expansion of the internal energy,

which leads to the second order elastic and TOE constants. Dry rocks however

show stronger nonlinearity than polycrystalline materials. That means higher order

terms are needed to account for the stronger nonlinearity. In the situation of in-situ

borehole measurement, the rocks are subjected to some amount of confining pressure,

the nonlinear behavior in the rock is reduced greatly. So for wave propagation in

a fluid-filled borehole for logging, the current theory of acoustoelasticity is able to

account for the dominant characteristics of the statically stressed formation.
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Appendix D

Sensitivity coefficients for borehole

guided wave dispersions to the

formation stress and third-order

elastic constants

In chapter 6, details about coefficients C0
i , C

90
i , and Ci, with i = 1, 2, 3 and 4, are left

out. Those coefficients are computed from the perturbation theory outlined in chapter

6. They frequency dependent integrals that can be evaluated in terms of the known

flexural wave solution in the reference state and biasing stresses of unit-magnitude

and corresponding strains in the formation. The superscript 0 denotes flexural wave

polarization along the far-field uniaxial stress direction, while 90 denotes flexural wave

polarization in the perpendicular direction.

D.1 Flexural Mode

The sensitivity coefficients C01 , C
0
2 , C

0
3 , C

0
4 , are given by the following integrals

C01 =
I1

2ω2mIN
, (D.1)
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C02 =
c66I2
2ω2mIN

, (D.2)

C03 =
c66I3
2ω2mIN

, (D.3)

C04 =
c66I4
2ω2mIN

. (D.4)

Since the integral I1 consists of several lengthy expressions, we express this integral

as a sum of 9 terms as shown below:

I1 =
9

∑

Q=1

I1Q, (D.5)

where

I11 =

∫ ∞

a

rdr

∫ 2π

0

dφ[TZZuz,z + c12[ERRur,r + EΦΦ(
uφ,φ
r

+
ur
r
)]

+ c12ERΦ(
ur,φ
r
−
uφ
r

+ uφ,r)]u
∗
z,z, (D.6)

I12 =

∫ ∞

a

rdr

∫ 2π

0

dφ[c12ERRuz,z + 2c11ERRur,r + TRRur,r

+ c12(ERR + EΦΦ)(
uφ,φ
r

+
ur
r
) + c66ERZ(

ur,φ
r
−
uφ
r

+ uφ,r)

+ (TRΦ + c12ERΦ)ur,φ + c11ERΦuφ,r]u
∗
r,r, (D.7)

I13 =

∫ ∞

a

rdr

∫ 2π

0

dφ[c12EΦΦuz,z + c12(ERR + EΦΦ)ur,r

+ (2c11EΦΦ + TΦΦ)(
uφ,φ
r

+
ur
r
) + c66ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)

+ (TRΦ + c12ERΦ)uφ,r + c11ERΦ(
ur,φ
r
−
uφ
r
)](
u∗φ,φ
r

+
u∗r
r
), (D.8)

I14 =

∫ ∞

a

rdr

∫ 2π

0

dφ[TRRuz,r + TRΦ
uz,φ
r

+ c66(ERRur,z + ERΦuφ,z)]u
∗
z,r, (D.9)
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I15 =

∫ ∞

a

rdr

∫ 2π

0

dφ[c66ERR(uz,r + ur,z) + c66ERΦ(
uz,φ
r

+ uφ,z)

+ (TZZ + c66ERR)ur,z + c66ERΦuφ,z]u
∗
r,z, (D.10)

I16 =

∫ ∞

a

rdr

∫ 2π

0

dφ[TZZuφ,z + c66(ERΦur,z + EΦΦuφ,z)

+ c66ERΦ(uz,r + ur,z) + c66EΦΦ(
uz,φ
r

+ uφ,z)]u
∗
φ,z, (D.11)

I17 =

∫ ∞

a

rdr

∫ 2π

0

dφ[TRΦuz,r + TΦΦ
uz,φ
r

+ c66(ERΦur,z + EΦΦuφ,z)]
u∗z,φ
r
, (D.12)

I18 =

∫ ∞

a

rdr

∫ 2π

0

dφ[c12ERΦuz,z + (c11 + c66)ERΦur,r + c66ERR(
ur,φ
r
−
uφ
r
)

+ (TRΦ + (c66 + c12)ERΦ)(
uφ,φ
r

+
ur
r
)

+ (TRR + c66EΦΦ)uφ,r + c66EΦΦ(
ur,φ
r
−
uφ
r

+ uφ,r)]u
∗
φ,r, (D.13)

I19 =

∫ ∞

a

rdr

∫ 2π

0

dφ[c12ERΦuz,z + (c11 + c66)ERΦ(
uφ,φ
r

+
ur
r
) + c66EΦΦuφ,r

+ (TRΦ + (c66 + c12)ERΦ)ur,r

+ (TΦΦ + c66ERR)(
ur,φ
r
−
uφ
r
)

+ c66ERR(
ur,φ
r
−
uφ
r

+ uφ,r)](
u∗r,φ
r
−
u∗φ
r
). (D.14)
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The remaining integrals I2, I3, I4 and IN take the following forms

I2 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[ERRur,r +
1

2
ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)]u
∗
r,r

+ [EΦΦuφ,φ +
1

2
ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)](
u∗φ,φ
r

+
u∗r
r
)

+
1

4
[ERR(ur,z + uz,r) + ERΦ(

uz,φ
r

+ uφ,z)](u
∗
z,r + u∗r,z)

+
1

4
[ERΦ(ur,z + uz,r) + EΦΦ(

uz,φ
r

+ uφ,z)](u
∗
φ,z +

u∗z,φ
r

)

+
1

4
[(ERR + EΦΦ)(

ur,φ
r
−
uφ
r

+ uφ,r)

+ 2ERΦ(ur,r +
uφ,φ
r

+
ur
r
)](u∗φ,r + u∗r,φ)], (D.15)

I3 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[(ERR + EΦΦ)uz,z

+ ERRur,r + EΦΦ(
uφ,φ
r

+
ur
r
) + ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)]u
∗
z,z

+ [ERRuz,z + EΦΦur,r + (ERR + EΦΦ)(
uφ,φ
r

+
ur
r
)−

1

2
ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)]u
∗
r,r

+ [EΦΦuz,z + (ERR + EΦΦ)ur,r + ERR(
uφ,φ
r

+
ur
r
)−

1

2
ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)](
u∗φ,φ
r

+
u∗r
r
)

+
1

4
[(2EΦΦ − ERR)(ur,z + uz,r)− 3ERΦ(

uz,φ
r

+ uφ,z)](u
∗
z,r + u∗r,z)

+
1

4
[(2ERR − EΦΦ)(

uz,φ
r

+ uφ,z)− 3ERΦ(uz,r + ur,z)](u
∗
φ,z + u∗z,φ)

+
1

2
(2ERΦuz,z − ERΦ)(ur,r +

uφ,φ
r

+
ur
r
)(u∗φ,r + u∗r,φ)

−
1

2
(ERR + EΦΦ)(

ur,φ
r
−
uφ
r

+ uφ,r)(u
∗
φ,r + u∗r,φ)], (D.16)

I4 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[EΦΦur,r + ERR(
uφ,φ
r

+
ur
r
)− ERΦ(

ur,φ
r
−
uφ
r

+ uφ,r)]u
∗
z,z

+ EΦΦuz,zu
∗
r,r + ERRuz,z(

u∗φ,φ
r

+
u∗r
r
)

+
1

2
[ERΦ(

uz,φ
r

+ uφ,z)− EΦΦ(uz,r + ur,z)](u
∗
z,r + u∗r,z)

+
1

2
[ERΦ(ur,z + uz,r)− ERR(

uz,φ
r

+ uφ,z)](u
∗
φ,z + u∗z,φ)

− ERΦuz,z(u
∗
φ,r +

u∗r,φ
r
−
u∗φ
r
)], (D.17)
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IN =

∫ a

0

rdr

∫ 2π

0

dφρf [u
f
ru

f∗
r + ufφu

f∗
φ + ufzu

f∗
z ]

+

∫ ∞

a

rdr

∫ 2π

0

dφρs[uru
∗
r + uφu

∗
φ + uzu

∗
z], (D.18)

where TZZ is the axial stress in the formation; ERR, EΦΦ and ERΦ are the static strains

in the formation written in cylindrical-polar coordinates; c11, c12 and c66 are the linear

elastic constants of the formation in the reference state; ufr , u
f
φ and ufz denote flexural

wave solutions in the fluid; and, ur, uφ and uz are flexural wave solutions in the

formation with radial polarization parallel to the far-field stress direction.

The sensitivity coefficients C901 , C902 , C903 and C904 are given by the same expressions

as for C01 , C
0
2 , C

0
3 and C04 , except for the important difference that all of the biasing

stresses and strains are rotated by 90o from before so that the far-field stress direction

is now perpendicular to the flexural wave radial polarization direction.

D.2 Stoneley Mode

The sensitivity coefficients C1, C2, C3 and C4 are given by the following integrals

C1 =
J1

2ω2mJN
, (D.19)

C2 =
c66J2
2ω2mJN

, (D.20)

C3 =
c66J3
2ω2mJN

, (D.21)

C4 =
c66J4
2ω2mJN

(D.22)
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where J1, J2, J3 and J4 are expressed in terms of surface integrals as shown below:

J1 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[TZZuz,z + c12(ERRur,r + EΦΦ
ur
r
)]u∗z,z

+ [c12ERRuz,z + (TRR + 2c11ERR)ur,r + c12(ERR + EΦΦ)
ur
r
]u∗r,r

+ [c12EΦΦuz,z + (TΦΦ + 2c11EΦΦ)
ur
r

+ c12(ERR + EΦΦ)ur,r]
u∗r
r

+ [TRRuz,r + c66ERRur,z]u
∗
z,r

+ [c66ERR(uz,r + ur,z) + (TZZ + c66ERR)ur,z]u
∗
r,z], (D.23)

J2 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[ERRur,r]u
∗
r,r + [EΦΦ

ur
r
]
u∗r
r

+
1

4
[ERR(uz,r + ur,z)](u

∗
z,r + u∗r,z)], (D.24)

J3 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[ERR + EΦΦ)uz,z + EΦΦ
ur
r

+ ERRur,r]u
∗
z,z

+ [ERRuz,z + EΦΦur,r + (ERR + EΦΦ)
ur
r
]u∗r,r

+ [EΦΦuz,z + ERR
ur
r

+ (ERR + EΦΦ)ur,r]
u∗r
r

+
1

4
[(2EΦΦ − ERR)(uz,r + ur,z)](u

∗
z,r + u∗r,z)], (D.25)

J4 =

∫ ∞

a

rdr

∫ 2π

0

dφ[[EΦΦur,r + ERR
ur
r
]u∗z,z

+ EΦΦuz,zu
∗
r,r + ERRuz,z

u∗r
r

−
1

2
[EΦΦ(uz,r + ur,z)](u

∗
z,r + u∗r,z)], (D.26)

JN =

∫ a

0

rdr

∫ 2π

0

dφρf (u
f
ru

f∗
r + ufzu

f∗
z )

+

∫ ∞

a

rdr

∫ 2π

0

dφρs(uru
∗
r + uzu

∗
z), (D.27)
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where ufr and ufz denote the Stoneley wave solution in the borehole fluid; and, ur and

uz are the corresponding solution in the formation.
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