$$\begin{array}{ll} \text{minimize} & (\mathbf{c} + \theta \mathbf{d})' \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} > \mathbf{0}, \end{array}$$

Solve for every value of θ

Example:

minimize $(-3+2\theta)x_1 + (3-\theta)x_2 + x_3$ subject to $x_1 + 2x_2 - 3x_3 + x_4 = 5$ $2x_1 + x_2 - 4x_3 + x_5 = 7$ $x \ge 0$

Optimal cost:

$$g(\theta) = \min_{i=1,\dots,N} (\mathbf{c} + \theta \mathbf{d})' \mathbf{x}^i,$$

 $\mathbf{x}^1,\ldots,\mathbf{x}^N$ are the extreme points of the feasible set

(Parametric) simplex tableau

0	$-3+2\theta$	$3 - \theta$	1	0	0
5	1	2	-3	1	0
7	2	1	-4	0	1

• If $-3 + 2\theta \ge 0$ and $3 - \theta \ge 0$, all reduced costs are non-negative and we have an optimal basic feasible solution.

$$g(\theta) = 0, \qquad \frac{3}{2} \le \theta \le 3.$$

- For $\theta > 3$, have x_2 enter the basis
- \bullet New tableau:

$-7.5 + 2.5\theta$	$-4.5 + 2.5\theta$	0	$5.5 - 1.5\theta$	$-1.5+0.5\theta$	0
2.5	0.5	1	-1.5	0.5	0
4.5	1.5	0	-2.5	-0.5	1

- All reduced costs nonnegative if $3 \le \theta \le 5.5/1.5$
- \bullet Optimal cost

$$g(\theta) = 7.5 - 2.5\theta, \qquad 3 \le \theta \le \frac{5.5}{1.5}$$

- For $\theta > 5.5/1.5$, reduced cost of x_3 is negative.
- No positive pivot element
- For $\theta > 5.5/1.5$, $g(\theta) = -\infty$
- Proceed similarly for $\theta < 3/2$

Parametric programming more generally

- Reduced costs depend linearly on θ
- Bfs and basis matrix **B**, optimal for $\theta_1 \leq \theta \leq \theta_2$
- Reduced cost of x_j negative for $\theta > \theta_2$. - Reduced cost is zero for $\theta = \theta_2$
- If $\mathbf{B}^{-1}\mathbf{A}_j \leq \mathbf{0}, \ g(\theta) = -\infty \text{ for } \theta > \theta_2.$
- Otherwise, bring x_i into basis
- Still have optimal solution at $\theta = \theta_2$.
- Range of θ under which new basis is optimal $[\theta_2, \theta_3]$
- If $\theta_i < \theta_{i+1}$, no basis repeated twice
- \bullet Change of basis: breakpoints of $g(\theta)$
- If $\theta_i = \theta_{i+1}$, method may cycle

Dual parametric programming

- \bullet Keep ${\bf c}$ fixed
- Right–hand side $\mathbf{b} + \theta \mathbf{d}$
- \bullet If increasing θ makes a basic variable negative, do a dual simplex iteration

Delayed column generation

- A has a huge number of columns Can't form A explicitly
- All that simplex needs is to discover i with $\overline{c}_i < 0$ when one exists
- Assume we can solve the problem:

minimize $c_i - \mathbf{p}' \mathbf{A}_i$ $(= \overline{c}_i)$

where $\mathbf{p}' = \mathbf{c}'_B \mathbf{B}^{-1}$

- Find j such that $\overline{c}_j \leq \overline{c}_i$ for all i
- Run revised simplex

- If $\overline{c}_j \ge 0$, have optimal solution

- If $\overline{c}_j < 0$, \mathbf{A}_j enters the basis
- Method terminates in the absence of degeneracy

Cutting stock problem

- \bullet Fabric rolls of width r
- Sizes of interest w_1, \ldots, w_m
 - Example: r = 10 and $w_1 = 5$, $w_2 = 4$, $w_3 = 3$.
- Demand b_i for each size w_i
- Minimize the number of rolls needed to satisfy demand

Cutting stock (ctd)

- Each roll is cut according to a certain pattern
- Example: r = 10 and $w_1 = 5$, $w_2 = 4$, $w_3 = 3$.
- Allowed patterns:

$$\mathbf{A}_1 = \begin{bmatrix} 2\\0\\0 \end{bmatrix} \qquad \mathbf{A}_2 = \begin{bmatrix} 1\\1\\0 \end{bmatrix} \qquad \mathbf{A}_3 = \begin{bmatrix} 0\\2\\0 \end{bmatrix} \qquad \mathbf{A}_4 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$$

• A vector

$$\mathbf{A}_j = \begin{bmatrix} a_1 \\ \vdots \\ a_m \end{bmatrix}$$

is an allowed pattern if:

$$\sum_{i=1}^{m} a_i w_i \le r$$
$$a_i \text{ integer}, \quad a_i \ge$$

0

• Let x_j = number of rolls cut according to pattern A_j

$$\begin{array}{ll} \text{minimize} & \sum\limits_{j} x_{j} \\ \text{subject to} & \sum\limits_{j} A_{j} x_{j} = b \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

Cutting stock (ctd)

minimize
$$\sum_{j} x_{j}$$

subject to $\sum_{j} \mathbf{A}_{j} x_{j} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$

- 1. Optimal solution need not be integer
- \bullet 2. Number of possible patterns is huge
- 1. Solve LP and round each x_i upwards
- 2. Use delayed column generation
- At each iteration, minimize $\overline{c}_j = 1 \mathbf{p}' \mathbf{A}_j$ - maximize $\mathbf{p}' \mathbf{A}_j$

maximize
$$\sum_{i=1}^{m} p_i a_i$$

subject to
$$\sum_{i=1}^{m} w_i a_i \le r$$

 $a_i \ge 0, \quad a_i \text{ integer}$

- "Knapsack" problem $(p_i = \text{value}, w_i = \text{weight})$
- Despite integrality constraints, can be solved fairly efficiently

Variant with retained columns

- Keep some columns \mathbf{A}_i , $i \in I$, in memory (The basic columns plus, possibly, more)
- Look for j with $\overline{c}_j < 0$
 - Look only inside the set I
 - Same as solving restricted problem:

minimize $\mathbf{c'x}$ subject to $\sum_{i \in I} \mathbf{A}_i x_i = \mathbf{b}$ $\mathbf{x} \ge \mathbf{0}$

- When at optimal of restricted problem, look outside the set I for j with $\overline{c}_j < 0$
- Form new set I (that includes j) and restart
- Extreme variants:
 - -I = set of basic indices
 - -I = indices of all columns generated in the past
- All variants terminate under nondegeneracy

Cutting plane methods

• Dual of standard form problem:

maximize $\mathbf{p'b}$ subject to $\mathbf{p'A}_i \leq c_i, \quad i = 1, \dots, n,$

- Large number n of constraints
- Let $I \subset \{1, \ldots, n\}$
- \bullet Solve $\mathbf{relaxed}$ dual problem

maximize $\mathbf{p'b}$ subject to $\mathbf{p'A}_i \leq c_i, \quad i \in I,$

• If optimal solution of relaxed problem satisfies **all** constraints of original problem, then it is optimal for the latter

Cutting planes (continued)

- \bullet If optimal solution of relaxed problem is infeasible, bring a violated constraint into I
- Method needs:
 - A way of checking feasibility
 - A way of identifying violated constraints
- One possibility

minimize $c_i - (\mathbf{p}^*)' \mathbf{A}_i$

- \bullet Cutting planes for dual = Column generation for primal
- Options:
 - Retain old constraints
 - Discard (some) inactive constraints