
Parametric programming:Week 8 Lecture Notes

minimize (c + θd)′ x

subject to Ax = b

x ≥ 0,

Solve for every value of θ
Example:

minimize (−3 + 2θ)x1 + (3 − θ)x2 + x3

subject to	 x1 + 2x2 − 3x3 + x4 = 5

2x1 + x2 − 4x3 + x5 = 7

x ≥ 0

Optimal cost:

min i g(θ) =
i=1,...,N

(c + θd)′ x ,

x1 , . . . , xN are the extreme points of the feasible set

(Parametric) simplex tableau

0 −3 + 2θ 3 − θ 1 0 0
5 1 −3 1 0
7 2 −4 0 1

2
1

• If −3 + 2θ ≥ 0 and 3 − θ ≥ 0, all reduced costs are non-
negative and we have an optimal basic feasible solution.

g(θ) = 0,

3

2

≤ θ ≤ 3.

• For θ > 3, have x2 enter the basis

• New tableau:

−7.5 + 2.5θ −4.5 + 2.5θ 0 5.5 − 1.5θ −1.5 + 0.5θ 0
2.5 0.5 −1.5 .5
4.5 1.5 −2.5 −0.5

1 0 0
0 1

• All reduced costs nonnegative if 3 ≤ θ ≤ 5.5/1.5

• Optimal cost

5.5
g(θ) = 7.5 − 2.5θ, 3 ≤ θ ≤

1.5

• For θ > 5.5/1.5, reduced cost of x3 is negative.

• No positive pivot element

• For θ > 5.5/1.5, g(θ) = −∞

• Proceed similarly for θ < 3/2

Parametric programming more generally

• Reduced costs depend linearly on θ

• Bfs and basis matrix B, optimal for θ1 ≤ θ ≤ θ2

• Reduced cost of xj negative for θ > θ2.

– Reduced cost is zero for θ = θ2

• If B−1Aj ≤ 0, g(θ) = −∞ for θ > θ2.

• Otherwise, bring xj into basis

• Still have optimal solution at θ = θ2.

• Range of θ under which new basis is optimal [θ2, θ3]

• If θi < θi+1, no basis repeated twice

• Change of basis: breakpoints of g(θ)

• If θi = θi+1, method may cycle

Dual parametric programming

• Keep c fixed

• Right–hand side b + θd

• If increasing θ makes a basic variable negative, do a dual
simplex iteration

Delayed column generation

minimize c ′ x

subject to	 Ax = b

x ≥ 0

• A has a huge number of columns
Can’t form A explicitly

• All that simplex needs is to discover i with ci < 0 when one
exists

• Assume we can solve the problem:

minimize ci − p ′Ai

where p′ = c′ BB−1

– Find j such that cj ≤ ci for all i

• Run revised simplex

– If cj ≥ 0, have optimal solution

– If cj < 0, Aj enters the basis

(= ci)

• Method terminates in the absence of degeneracy

Cutting stock problem

• Fabric rolls of width r

• Sizes of interest w1, . . . , wm

– Example: r = 10 and w1 = 5, w2 = 4, w3 = 3.

• Demand bi for each size wi

• Minimize the number of rolls needed to satisfy demand

∑

∑

∑

∑

∑

∑

∑

Cutting stock (ctd)

• Each roll is cut according to a certain pattern

• Example: r = 10 and w1 = 5, w2 = 4, w3 = 3.

• Allowed patterns:
       
 2   1   0   0                         A1 =  0  A2 =  1  A3 =  2  A4 =  1                 
0 0 0 2

• A vector  
 a1     .  Aj =  ..     
am

is an allowed pattern if:
m

aiwi ≤ r
i=1

ai integer, ai ≥ 0

• Let xj = number of rolls cut according to pattern Aj

minimize xj
j

subject to Ajxj = b
j

x ≥ 0

Cutting stock (ctd)

minimize xj
j

subject to Ajxj = b
j

x ≥ 0

• 1. Optimal solution need not be integer

• 2. Number of possible patterns is huge

• 1. Solve LP and round each xj upwards

• 2. Use delayed column generation

• At each iteration, minimize cj = 1 − p′Aj

– maximize p′Aj

m
maximize piai

i=1
m

subject to wiai ≤ r
i=1

ai ≥ 0, ai integer

• “Knapsack” problem (pi =value, wi=weight)

• Despite integrality constraints, can be solved fairly efficiently

∑

Variant with retained columns

• Keep some columns Ai, i ∈ I , in memory
(The basic columns plus, possibly, more)

• Look for j with cj < 0

– Look only inside the set I

– Same as solving restricted problem:

minimize c ′ x

subject to Aixi = b
i∈I
x ≥ 0

• When at optimal of restricted problem,
look outside the set I for j with cj < 0

• Form new set I (that includes j) and restart

• Extreme variants:

– I= set of basic indices

– I= indices of all columns generated in the past

• All variants terminate under nondegeneracy

Cutting plane methods

• Dual of standard form problem:

maximize p ′b

subject to p ′Ai ≤ ci,

• Large number n of constraints

• Let I ⊂ {1, . . . , n}

• Solve relaxed dual problem

maximize p ′b

subject to p ′Ai ≤ ci,

i = 1, . . . , n,

i ∈ I,

• If optimal solution of relaxed problem
satisfies all constraints of original problem,
then it is optimal for the latter

Cutting planes (continued)

• If optimal solution of relaxed problem is infeasible,
bring a violated constraint into I

• Method needs:

– A way of checking feasibility

– A way of identifying violated constraints

• One possibility

minimize ci − (p ∗)′Ai

• Cutting planes for dual = Column generation for primal

• Options:

– Retain old constraints

– Discard (some) inactive constraints

