
Parametric programming:Week 8 Lecture Notes 

minimize (c + θd)′ x 

subject to Ax = b 

x ≥ 0, 

Solve for every value of θ 
Example: 

minimize (−3 + 2θ)x1 + (3 − θ)x2 + x3 

subject to	 x1 + 2x2 − 3x3 + x4 = 5  

2x1 + x2 − 4x3 + x5 = 7  

x ≥ 0 

Optimal cost: 

min i g(θ) =  
i=1,...,N 

(c + θd)′ x , 

x1 , . . . ,  xN are the extreme points of the feasible set 

(Parametric) simplex tableau 

0 −3 + 2θ 3 − θ 1 0  0 
5 1 −3 1 0  
7 2 −4 0 1  
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• If −3 + 2θ ≥ 0 and 3 − θ ≥ 0, all reduced costs are non-
negative and we have an optimal basic feasible solution. 

g(θ) = 0,

3


2

≤ θ ≤ 3.


• For θ >  3, have x2 enter the basis 

• New tableau: 

−7.5 + 2.5θ −4.5 + 2.5θ 0 5.5 − 1.5θ −1.5 + 0.5θ 0 
2.5 0.5 −1.5 .5 
4.5 1.5 −2.5 −0.5 

1 0 0 
0 1 

• All reduced costs nonnegative if 3 ≤ θ ≤ 5.5/1.5 

• Optimal cost 

5.5 
g(θ) = 7.5 − 2.5θ, 3 ≤ θ ≤ 

1.5 

• For θ >  5.5/1.5, reduced cost of x3 is negative. 

• No positive pivot element 

• For θ >  5.5/1.5, g(θ) =  −∞ 

• Proceed similarly for θ <  3/2 



Parametric programming more generally 

• Reduced costs depend linearly on θ 

• Bfs and basis matrix B, optimal for θ1 ≤ θ ≤ θ2 

• Reduced cost of xj negative for θ > θ2. 

– Reduced cost is zero for θ = θ2 

• If B−1Aj ≤ 0, g(θ) =  −∞ for θ > θ2. 

• Otherwise, bring xj into basis 

• Still have optimal solution at θ = θ2. 

• Range of θ under which new basis is optimal [θ2, θ3] 

• If θi < θi+1, no basis repeated twice 

• Change of basis: breakpoints of g(θ) 

• If θi = θi+1, method may cycle 

Dual parametric programming 

• Keep c fixed 

• Right–hand side b + θd 

• If increasing θ makes a basic variable negative, do a dual 
simplex iteration 



Delayed column generation 

minimize c ′ x 

subject to	 Ax = b 

x ≥ 0 

• A has a huge number of columns 
Can’t form A explicitly 

• All that simplex needs is to discover i with ci < 0 when one 
exists 

• Assume we can solve the problem: 

minimize ci − p ′Ai 

where p′ = c′ BB−1 

– Find j such that cj ≤ ci for all i 

• Run revised simplex 

– If cj ≥ 0, have optimal solution 

– If cj < 0, Aj enters the basis 

(= ci) 

• Method terminates in the absence of degeneracy 

Cutting stock problem 

• Fabric rolls of width r 

• Sizes of interest w1, . . . , wm 

– Example: r = 10 and w1 = 5, w2 = 4, w3 = 3. 

• Demand bi for each size wi 

• Minimize the number of rolls needed to satisfy demand 
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Cutting stock (ctd) 

• Each roll is cut according to a certain pattern 

• Example: r = 10 and w1 = 5, w2 = 4, w3 = 3. 

• Allowed patterns: 
        
 2   1   0   0                         A1 =  0  A2 =  1  A3 =  2  A4 =  1                 
0 0 0 2 

• A vector   
 a1     .  Aj =  ..      
am 

is an allowed pattern if: 
m 

aiwi ≤ r 
i=1 

ai integer, ai ≥ 0 

• Let xj = number of rolls cut according to pattern Aj 

minimize xj
j 

subject to Ajxj = b 
j 

x ≥ 0 

Cutting stock (ctd) 

minimize xj
j 

subject to Ajxj = b 
j 

x ≥ 0 

• 1. Optimal solution need not be integer 

• 2. Number of possible patterns is huge 

• 1. Solve LP and round each xj upwards 

• 2. Use delayed column generation 

• At each iteration, minimize cj = 1  − p′Aj 

– maximize p′Aj 

m 
maximize piai 

i=1 
m 

subject to wiai ≤ r 
i=1 

ai ≥ 0, ai integer 

• “Knapsack” problem (pi =value, wi=weight) 

• Despite integrality constraints, can be solved fairly efficiently 



∑ 

Variant with retained columns


• Keep some columns Ai, i ∈ I , in memory 
(The basic columns plus, possibly, more) 

• Look for j with cj < 0 

– Look only inside the set I 

– Same as solving restricted problem: 

minimize c ′ x 

subject to Aixi = b 
i∈I 
x ≥ 0 

• When at optimal of restricted problem, 
look outside the set I for j with cj < 0 

• Form new set I (that includes j) and restart 

• Extreme variants: 

– I= set of basic indices 

– I= indices of all columns generated in the past 

• All variants terminate under nondegeneracy 

Cutting plane methods 

• Dual of standard form problem: 

maximize p ′b 

subject to p ′Ai ≤ ci, 

• Large number n of constraints 

• Let I ⊂ {1, . . . , n} 

• Solve relaxed dual problem 

maximize p ′b 

subject to p ′Ai ≤ ci, 

i = 1, . . . , n, 

i ∈ I,  

• If optimal solution of relaxed problem 
satisfies all constraints of original problem, 
then it is optimal for the latter 



Cutting planes (continued) 

• If optimal solution of relaxed problem is infeasible, 
bring a violated constraint into I 

• Method needs: 

– A way of checking feasibility 

– A way of identifying violated constraints 

• One possibility 

minimize ci − (p ∗ )′Ai 

• Cutting planes for dual = Column generation for primal 

• Options: 

– Retain old constraints 

– Discard (some) inactive constraints 


