
Outline:Week 10 Lecture Notes

• Finish uncapacitated simplex method

• Negative cost cycle algorithm

• The max-flow problem

• Max-flow min-cut theorem

Uncapacitated Networks: Basic primal and dual

solutions

• Flow conservation constraints Af = b
(rows ↔ nodes; columns ↔ arcs)

˜ ˜ • delete last row: Af = b

• basic (feasible) solution ↔ (feasible) tree solution
n − 1 basic variables: flows that lie on the tree
(easy to calculate given the tree)

• Calculation of dual basic solution p (one variable per node)
  | |       ˜ ˜ [p1 · · · pn−1]  AB(1) · · · AB(n−1)  = [cB(1) · · · cB(n−1)]    | |

 
| |       [p1 · · · pn−1 0]  AB(1) · · · AB(n−1)  = [cB(1) · · · cB(n−1)]    | |

i.e., use original columns (dimension n), but set pn = 0

• if (i, j) ∈tree, i.e., fij is basic, pi − pj = cij
solve by starting at “root” node n, move down the tree

• pi − pj = cost of path from i to j along the tree

• for (i, j) outside the tree:
cij = cij − (pi − pj)= cost of cycle created by arc (i, j).

/

Uncapacitated Network Simplex Algorithm

• Algorithm:
Start with a tree T , and flows fij , (i, j) ∈ T

– pn = 0; solve pi − pj = cij , (i, j) ∈ T

– For (i, j) ∈ T , let cij = cij − (pi − pj)

– If all cij ≥ 0, then optimal,
and the pi are a dual optimal solution

– Else pick (i, j) with cij < 0

– Consider cycle created by arc (i, j)

– “Push” flow around that cycle, until some arc flow is
zeroed

– Zeroed arc exits the tree/basis

• If all bi are integer, basic (or optimal) f is integer

• If all cij are integer, basic (or optimal) p is integer

• How to start the algorithm?

– Assume single source, single sink

– Auxiliary arc from source to sink, with high cost.

– Let that arc be in the tree, all flow goes through it.

The capacitated case

• Tree solution:
Pick a tree. For (i, j) ∈ T , set fij either to 0 or to uij

• Calculate pi and cij as before.

• If cij < 0 and fij = 0, push flow around the cycle, in the
direction of (i, j).

• If cij > 0 and fij = uij , push flow in the opposite direction.

Optimality conditions

• Def: Pushing flow around a cycle:
fij → fij + δ for forward arcs
fij → fij − δ for backward arcs
(flow conservation equation is respected)

• Def: A cycle is unsaturated if we can push some flow
around it.
fij < uij for forward arcs
fij > 0 for backward arcs

• Def: Cost of a cycle:
Sum of the cij , with minus sign for backward arcs.

• Theorem: Optimal flow iff there is no unsaturated cycle
with negative cost.

• Easy direction:
If ∃ negative cost unsaturated cycle,
can push some flow along that cycle
cost reduction
flow is not optimal

• Converse direction: proof is more involved

Negative Cost Cycle Algorithm

• Algorithm:
1. Start with a feasible flow f .
2. Search for an unsaturated cycle C with negative cost.
3. If none, stop (optimal)
4. Else, push as much flow as possible along C
(if can push an infinite amount, optimal cost is −∞)

• Assume bi integer, and uij integer or infinite
Assume integer initial flow

• Integrality maintained throughout

• If the optimal cost is finite,
terminates with integer optimal solution

• In noninteger case, not guaranteed to terminate!

– Number of iterations can be large

• Algorithm can be made efficient under special rules
for choosing among negative cost cycles

• Searching for negative cost cycles can be done in O(n3) time

The Maximum Flow problem

• Given capacities uij ; no costs
maximize flow from source s to destination t

• Equivalent min-cost flow problem:

cts = − 1 uts =
 8

s t

• Negative cost cycle:
artificial arc and “unsaturated” path from s to t
(“augmenting path”)
along which flow can be pushed

Augmenting paths

• Arcs that can be used:

– can use arc (i, j) in forward direction if fij < uij

– can use arc (i, j) in backward direction if fij > 0

s

1

1

2

t
1

1
0

0

(all capacities are 1)

  
minflow pushed : min 

(i,j)∈F
(uij − fij), min fij  (i,j)∈B

• Ford-Fulkerson algorithm:
search for augmenting path and push flow

  
 

Searching for an augmenting path

• Labeled node i: have determined that ∃path from s to i,
with
fij < uij on forward arcs
fij > 0 on backard arcs

• Scanned node i: have looked at all neighbors of i and
attempted to label them

• Labeling algorithm:

– Initialize: label s

– select labeled but unscanned node

– scan it, and label its neighbors, if possible

– repeat

• If t labeled, have found augmenting path

• If stuck, with t unlabeled, no augmenting path exists.

• Work: O(m)

Labeling algorithm example

s t

1

3

4

2

f = 5

u = 6

f = 2

f = 2

f = 1

f = 3

f = 1 f = 1

f = 3

u = 1

u = 3
u = 1

u = 1

u = 3

f = 3

u = 4

u = 5

u = 3

Comments on overall algorithm

• Not guaranteed to terminate!

• Works with primal feasible solutions

• Max-flow is infinite iff ∃ path from s to t with infinite ca­
pacities
(check ahead of time)

• Guaranteed to terminate if:
max-flow is finite and uij are all integer (or rational)

• Complexity (in integer case): [let U = max uij]

nU · O(m)

/

∑

Max-flow min-cut theorem

• Cut S: s ∈ S, t /∈ S.

cut capacity = C(S) =

{(i,j)∈A | i∈S, j∈S}

uij

• max-flow ≤ minS C(S)

• Start algorithm with optimal flow.

• Fails to find augmenting path, algorithm terminates

• Consider set S of labeled nodes

s

i j

kl

tS S

fij = uij, fkl = 0

current flow= capacity C(S) of this cut

• Therefore:
current flow is optimal
this cut is minimal
max-flow value = min-cut capacity

• Smacks of duality

Comments

• Size of problem: O(m log U)

• Ford-Fulkerson algorithm: O(mnU): “exponential”

• Can be modified to polunomial(m,n, log U) (Exercise 7.25)

• Better algorithms:
look for “shortest” augmenting path
augment flow on many paths simultaneously
etc. etc.
can get complexity O(mn log n)

