
Outline:Week 10 Lecture Notes


• Finish uncapacitated simplex method 

• Negative cost cycle algorithm 

• The max-flow problem 

• Max-flow min-cut theorem 



Uncapacitated Networks: Basic primal and dual

solutions


• Flow conservation constraints Af = b 
(rows ↔ nodes; columns ↔ arcs) 

˜ ˜ • delete last row: Af = b 

• basic (feasible) solution ↔ (feasible) tree solution 
n − 1 basic variables: flows that lie on the tree 
(easy to calculate given the tree) 

• Calculation of dual basic solution p (one variable per node) 
  | |       ˜ ˜ [p1 · · ·  pn−1]  AB(1) · · ·  AB(n−1)  = [cB(1) · · ·  cB(n−1)]    | | 

  
| |       [p1 · · ·  pn−1 0]  AB(1) · · ·  AB(n−1)  = [cB(1) · · ·  cB(n−1)]    | | 

i.e., use original columns (dimension n), but set pn = 0  

• if (i, j) ∈tree, i.e., fij is basic, pi − pj = cij 
solve by starting at “root” node n, move down the tree 

• pi − pj = cost of path from i to j along the tree 

• for (i, j) outside the tree: 
cij = cij − (pi − pj )= cost of cycle created by arc (i, j). 
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Uncapacitated Network Simplex Algorithm


• Algorithm: 
Start with a tree T , and flows fij , (i, j) ∈ T 

– pn = 0; solve pi − pj = cij , (i, j) ∈ T 

– For (i, j) ∈ T , let cij = cij − (pi − pj ) 

– If all cij ≥ 0, then optimal, 
and the pi are a dual optimal solution 

– Else pick (i, j) with cij < 0 

– Consider cycle created by arc (i, j) 

– “Push” flow around that cycle, until some arc flow is 
zeroed 

– Zeroed arc exits the tree/basis 

• If all bi are integer, basic (or optimal) f is integer 

• If all cij are integer, basic (or optimal) p is integer 

• How to start the algorithm? 

– Assume single source, single sink 

– Auxiliary arc from source to sink, with high cost. 

– Let that arc be in the tree, all flow goes through it. 



The capacitated case


• Tree solution: 
Pick a tree. For (i, j) ∈ T , set fij either to 0 or to uij 

• Calculate pi and cij as before. 

• If cij < 0 and fij = 0, push flow around the cycle, in the 
direction of (i, j). 

• If cij > 0 and fij = uij , push flow in the opposite direction. 



Optimality conditions


• Def: Pushing flow around a cycle: 
fij → fij + δ for forward arcs 
fij → fij − δ for backward arcs 
(flow conservation equation is respected) 

• Def: A cycle is unsaturated if we can push some flow 
around it. 
fij < uij for forward arcs 
fij > 0 for backward arcs 

• Def: Cost of a cycle: 
Sum of the cij , with minus sign for backward arcs. 

• Theorem: Optimal flow iff there is no unsaturated cycle 
with negative cost. 

• Easy direction: 
If ∃ negative cost unsaturated cycle, 
can push some flow along that cycle 
cost reduction 
flow is not optimal 

• Converse direction: proof is more involved 



Negative Cost Cycle Algorithm


• Algorithm: 
1. Start with a feasible flow f . 
2. Search for an unsaturated cycle C with negative cost. 
3. If none, stop (optimal) 
4. Else, push as much flow as possible along C 
(if can push an infinite amount, optimal cost is −∞) 

• Assume bi integer, and uij integer or infinite 
Assume integer initial flow 

• Integrality maintained throughout 

• If the optimal cost is finite, 
terminates with integer optimal solution 

• In noninteger case, not guaranteed to terminate! 

– Number of iterations can be large 

• Algorithm can be made efficient under special rules 
for choosing among negative cost cycles 

• Searching for negative cost cycles can be done in O(n3) time 



The Maximum Flow problem 

• Given capacities uij ; no costs 
maximize flow from source s to destination t 

• Equivalent min-cost flow problem: 

cts = − 1 uts = 
 8

s t 

• Negative cost cycle: 
artificial arc and “unsaturated” path from s to t 
(“augmenting path”) 
along which flow can be pushed 



Augmenting paths 

• Arcs that can be used: 

– can use arc (i, j) in forward direction if fij < uij 

– can use arc (i, j) in backward direction if fij > 0 

s 

1 

1 

2 

t 
1 

1
0 

0 

(all capacities are 1) 

   
minflow pushed : min  

(i,j)∈F 
(uij − fij ), min fij  (i,j)∈B 

• Ford-Fulkerson algorithm: 
search for augmenting path and push flow 

   
  



Searching for an augmenting path


• Labeled node i: have determined that ∃path from s to i, 
with 
fij < uij on forward arcs 
fij > 0 on backard arcs 

• Scanned node i: have looked at all neighbors of i and 
attempted to label them 

• Labeling algorithm: 

– Initialize: label s 

– select labeled but unscanned node 

– scan it, and label its neighbors, if possible 

– repeat 

• If t labeled, have found augmenting path 

• If stuck, with t unlabeled, no augmenting path exists. 

• Work: O(m) 



Labeling algorithm example


s t 
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Comments on overall algorithm


• Not guaranteed to terminate! 

• Works with primal feasible solutions 

• Max-flow is infinite iff ∃ path from s to t with infinite ca­
pacities 
(check ahead of time) 

• Guaranteed to terminate if: 
max-flow is finite and uij are all integer (or rational) 

• Complexity (in integer case): [let U = max uij ] 

nU · O(m)
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Max-flow min-cut theorem 

• Cut S: s ∈ S, t /∈ S. 

cut capacity = C(S) = 

{(i,j)∈A | i∈S, j∈S}


uij


• max-flow ≤ minS C(S) 

• Start algorithm with optimal flow. 

• Fails to find augmenting path, algorithm terminates 

• Consider set S of labeled nodes 

s 

i j 

kl 

tS S 

fij = uij, fkl = 0  

current flow= capacity C(S) of this cut 

• Therefore: 
current flow is optimal 
this cut is minimal 
max-flow value = min-cut capacity 

• Smacks of duality 



Comments


• Size of problem: O(m log U ) 

• Ford-Fulkerson algorithm: O(mnU ): “exponential” 

• Can be modified to polunomial(m,n, log U ) (Exercise 7.25) 

• Better algorithms: 
look for “shortest” augmenting path 
augment flow on many paths simultaneously 
etc. etc. 
can get complexity O(mn log n) 


