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ABSTRACT

This work establishes the conditions for airline system design
building from submodels of smaller aspects of air transportation.
The first three sections develop submodels which then are combined in
extensive numerical studies of singles market services. The final
section discusses the changes to this problem that occur due to network
effects.

The first section develops a simple model of the cost of providing
scheduled transportation on a link. The cost of aircraft of various
capacities are divided into a per-frequency cost and a per-capacity cost
for conventional subsonic turbojet designs. This cost structure implies
that the more capacity provided in conjunction with a fixed schedule of
departures the lower the average cost per seat. It is suggested that
such aircraft scale economies create a trend toward monopoly or at least
oligopoly services.

The second section develops a model for demand. The market for
transportation is argued to be the city pair. Demand for scheduled service
is expressed in terms of fare, frequency and load factor. Fare, frequency,
and load factor are combined into total perceived price for the service.
This price depends on the consumer's personal value of time.

With only a few competitors in aich a market, only a few of the tech-
nically possible qualities of service will be offered. The services
available will be suited better to some tastes than to others. Distribu-
tional effects influence the politics of regulation and have been neglected
in the past. In this light it is shown that competitive firms are likely
to design their services for the same value of time. Product matching
increases costs without improving the distribution of benefits.

Chapter 4 develops in detail the statistical model used to estimate
denied boarding rates from long run design load factors. The development
raises doubts about the viability of competition in this dimension.

Chapter 5 develops the optimal service for a single carrier on a single
citypairmarket. Optima defined by maximum traffic at zero loss show the
importance of the flexibility in aircraft capacity for long run system
design. Both algebraic solutions and extensive numerical studies suggest
that optimal designs depend on traffic and distance. Changes in frequency
and capacity are large; load factor and fare are more stable. Optima
are shallow for U.S. domestic cost structures.
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The final section brings to the discussion issues associated
with networks of services. Most U.S. domestic city pairs have amounts
of traffic of only modest size compared to the efficient aircraft
capacities. Networks overcome these limitations by sharing vehicles
among markets. This is done at the expense of extra departure costs.
The network design tradeoff in its simplest form is shown to be between
larger aircraft capacities and longer stage lengths. The corresponding
routing patterns emphasize stops and connections or direct flights.
Network design adds another degree of flexibility to the design of
transport services: the number of intermediate stops per passenger
trip. This affects both cost and service quality.
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1 Introduction

1.1 Systems Analysis

What is a systems analysis? In the title of this work the
term has two implications. The first is that the discussion
dttempts to describe a complex subject in a way which will
provide useful insights on a number of issues of relevance and
concern. Our concern is not just for profits, not solely for
efficiency, and not for strict legal justice, but for a realistic
combination of these three conflicting demands. The second
implication of the term systems analysis is that the work focuses
on the combination of several detailed sub models involved in
overall airline system design. For this work those sub models
are: (1) airline cost prediction, (2) consumer demand description
in terms of quality, value, and distribution of benefits, (3) the
statistical process of matching supply and demand, (4) the nature
of optimal single link, single market services, and (5) the
complicating effects of networks of services. Each of these gets
a chapter in this work.

1.2 Air Transportation Networks

This work focuses on U.S. domestic trunk airlines. We deal
exclusively with U.S. domestic air passenger transportation,
although the concepts carry over to intercity freight modes. We
specialize thus for two reasons: because of the increased clarity
such a concrete example provides and because data are more often
available for illustration for U.S. airline transportation than
any other mode or place.

Much discussion in the transportation field in general
(Mohrinq [20]) and in air transport in particular (Douglas and
Miller [101) has focused on the economics of operations with the
assumption that markets were viably competitive. Large airline
markets are able to support multiple schedules of service.
However, the ability of such competition to provide levels of
service one would desire is called into question in this
document. Furthermore, there is no doubt that there are markets
too small to support more that one firm. This work suggests that
most of the U.S. domestic markets are of only modest size in
comparison with the efficient choice of equipment and schedule
for a single carrier. However, the severity of this constraint
is considerably relieved by the operation of airline networks.
This condition, however, argues to the advantage of firms of at
least medium size.

At the outset it will be useful to state an assumption and
two conclusions which should be recognized as prejudices of the
author, however well they are documented by the succeeding
developments. The assumption is that aircraft costs vary with
capacity in such a way that big aircraft are cheaper per seat.
The first conclusion is that there is a tendency for airline
service to be dominated by large firms operating big networks of
services. The second conclusion is that this tendency is not



overwhelming. The system design is so flexible that regulation
which attempts to overrule natural tendencies by specifying fares
is likely to fail at its objective.

1.3 Relationship to Previous Work
In a work as broad as this it is impossible to review at the

outset the list of all. previous work addressing the separate
issues. Nor would it be appropriate to do so, since the thrust
of this work is to explore the interactions of existing detailed
understandings rather than to refine any particular sub-model.
However, in the field of air transportation there have been
several predecessors who have taken the larger view. It behooves
us to establish the relevance of our work to their field.

There are two approaches to analysis of the air
transportation industry. The traditional approach is to look at
the existing regulated industry and draw conclusions about what
characteristics are caused by interaction of regulation with
production, profits, and the marketplace. These works are
usually called industry analyses. The second approach is to
examine the technical possibilities of production and enquire
what natural proclivities need to be counteracted. These works
can be called technical analyses. We will pay our respects to
the traditonal literature first.

Industry Analyses
The earliest industry analysis is by Wheatcroft [29] in

1956. while much of this book is dedicated to analysis.of
political and pricing problems for air transport in Europe, the
opening chapters represent a systematic attempt to establish the
underlying cost and demand characteristics for air transport.
The understanding of cost dependency on aircraft capacity is
particularly good. These and other costs are developed from a
fundamental knowledge of aircraft design and operations.
Wheatcroft devotes much attention to whether big airlines are
more efficient than small ones. Unfortunately he does this
without reference to the nature of the airlines' markets. In
contrast, our analysis will focus at the market level.

At nearly the same time another economist (Cherington [20],
1956) was writing a book on U.S. domestic airline pricing. Like
Wheatcroft, Cherington devotes his opening chapters to transport
cost. Cherinqton advanced the case by bringing network variables
into consideration. specifically, he used measures of airline
size, route turnover, length of haul, length of trip, and station
strength. This list is irregular in that some of the variables
describe the geography of demands served by the airline while
others characterize the decisions taken in network design.
Nonetheless the introduction of technical network issues as part
of a systematic cost analysis was an important step. The rest of
Cherington's book discussed specific pricing activity. Except
for his open acceptance of price discrimination, the relevance to
our work today is small.

Taken together, the books by Wheatcroft and Cherington are
as yet unequalled in the depth and subtlety of their



understanding of the major technical issues of air transportation
supply. Both represent industry analyses of the type which must
become somewhat dated 20 years later. Nonetheless their supply
chapters share with this work a focus on the structural
characteristics of the use of airplanes to provide
transportation. Both books take the broader view of
investigatinq what is possible in the way of service, given the
technical characteristics of supply. Because the laws of
engineering are only slightly more mutable than the laws of
mathematics and physics on which they are based, many of the
understandinqs in Wheatcroft and Cherington remain relevant
today. Unfortunately, neither author had the inclination to
formalize his concepts into simple mathematical expressions or to
relate them to a sophisticated treatment of demand. What we have
is a series of tantalizing verbal hints displaying the author's
understandinq of the importance of technical matters.

Caves [2] began a tradition of more systematic economic
analysis which continues in the academic publications of today.
Caves focused particularly on the interaction of regulation and
existing airline service. The obligatory early chapter on cost
is based less on causal understanding and more on data analysis:
"One must . . . use techniques of simple regression." (1)

Abandoninq analytical cost construction in favor of
statistical hypothesis testing is unfortunate. Due to the small
sample size, the difficulty of adjusting for quality of service
and network characteristics, and the high degree of collinearity
among observed measures of airline activity, the attempt to
discover technical cost characteristics by regression analysis
has achieved only mild and dubious success.

Caves did introduce two important concepts concerning the
marxet for scheduled air transport. First, Caves considered
entry and competition at the city pair level. The second
important issue of the market place is the problem of "product
competition" or quality of service. For regulated airlines,
Caves' focus is on high frequency, low load factor services. For
our models of a non-regulated system there are possibilities for
quality to be too low.

Since Caves there have been a number of economists who have
contributed to the examination of air transport, of particular
note to us are two: Jordan [29] showed that the costs of
operations dedicated to a single high density market may differ
from more representative airline costs. Eads [31] argued that
low density networks could not be economically served with medium
capacity aircraft. This latter point has been partially
contended by this author in a separate work {42].

The latest and best contribution by economists is a work by
Douglas and Miller [10] on economic regulation of domestic air
transport. This time the customary early chapter on cost
characteristics discussed a few technical issues, mentioned
without elucidation two network measures, and proceeded to accept

(F) Caves [2], p64. The phrase is somewhat out of context, but
telling nonetheless.



as sufficient a regression analysis largely independent of the
initial discussion. The regression showed no economies of
airline firm size for U.S. domestic carriers.

The real contribution of Douglas and Miller is a far more
sophisticated treatment of demand. Previous articles (Grenau
[16) and DeVany [33]) had developed the usefulness of the concept
of value of time in evaluating trip quality. Borrowing from
Simpson [431 and Gordon and de Neufville [14] in the engineering
field, Douglas and Miller collapsed both frequency and load
factor into time indices and then converted to money value. The
use of explicit numerical forms allowed Douglas and Miller to go
beyond conversational treatment of the interaction of costs and
quality. The focus on determining the optimal quality/price
combination from technically possible services and the explicit
statement of demand values is essentially that taken in chapter 5
of this work. The major difference being that Douglas and Miller
ignore the possibility of changing more or less continuously
among aircraft capacities. Discussion of the technical
differences is reserved for the later sections.

Technical Analyses
The second possible approach to examining the air

transportation industry is to construct cost and behavior
patterns as they might exist in the absence of regulation. Such
costs and market behavior must be developed from logical or
engineering models because little experience exists. This work
maintains that not only the aircraft costs but also network
characteristics are important to the development of costs. In
the field of airline network analysis, there have been several
technical works which go beyond the economics of Cherington.

We may qroup the work by Gordon and de Neufville [14] and
the thesis by Greig [18] together since they are both dedicated
to examining the European air network with an eye to
"rationalization." From our larger view, both works suffer
somewhat from a limited definition of optimal network
performance. It is difficult to collapse a network into a single
performance indicator, as both these works try to do.
Furthermore, the work on single link demand by Douglas and Miller
and the corresponding chapter here suggest that such a
simplification will highlight some issues while ignoring other
ones which are at least as important. In addition, restricting
the problem to the use of a single aircraft capacity is not
realistic in the long run, however well it may apply to airline
fleet averages in the shorter run. By overcoming these
objections we hope to progress beyond the particular technical
focus of these two excellent works. (1)

At the other extreme, the general discussion of regulation

(1) In this section the author is referring to an early working
paper by Gordon and de Neufville. The present reference [14] and
also [50] have broader discussions which reach conclusions
similar to ours on the basis of their simpler statement of the
oroblem.



and economics by Kahn [44] has several chapters of interest.
Kahn sh-ares with Douglas and Miller and with this work an
interest in the quality of service. Unfortunately, Kahn's
experience with regulating public utilities appears to have given
him a tendency to think in terms of a market with regular and
repetitive consumer decisions. The situation in transportation
where consumers can alternate between competing services causes
some additional complication in the issue of guality regulation
and in the types of competition possible. In particular load
factor for an airline is somewhat different from load factor for
a utility. (1) Nonetheless it is Kahn's approach that is closest
to ours in that Kahn chooses to deduce behavior from specific
fundamental characteristics of cost and of the marketplace, To
his more general discussion of regulated companies we bring the
specific case of air transport. The move is not without
relevance, since Professor Kahn was recently head of the CAB,
which regulated airlines in the U.S.

1.4 The Present Work

This work explores the consequences of designing scheduled
air transportation services taking into consideration the ability
to choose from a range of aircraft capacities. The consequences
of this degree of freedom permeate the entire analysis, from
demand and load factor considerations to the type of service
which is optimal for a link or on a network. Airline networks
themselves are a means of taking advantage of cost savings
associated with larger aircraft capacities. In a sense it is
these vehicle economies which motivate the use of networks at
all.

This work is unique in its focus on the option of changing
aircraft capacities and on its consequences in network design.
It goes beyond the studies which have fixed aircratt capacity at
one value or in steps. It also goes beyond the excellent short
paper by Anderson [36] by tracing the consequences in the
distribution of benefits and in network design. On the other
hand this work does not solve the problem of optimal network
designs. Indeed it seems that the problem may not have any
solutions of general applicability. The major contribution of
this work, it must be hoped, is to frame the appropriate
questions and include the relevant issues.

The work divides itself up into five sections. The first
three sections develop submodels which are combined in extensive
numerical studies in the fourth. The result is a more
sophisticated statement of the common carrier transportation
problem for a single link than has been employed in the past.
The final section discusses the changes to this problem that
occur due to network effects.

(1) For utilities load factor and utilization are nearly
synonomous. For a transportation company tle terms refer to two
different measures.



The first section develops a simple model of the cost of
providing scheduled transportation. In wholesale form the
product of a firm offering scheduled transportation between two
points is stated to be a scheduled frequency of service and
capacity. This product is not really transportation since nobody
need be moved anywhere by it, but it turns out to be extremely
useful to develop the cost of a schedule as an intermediate good.
The operating cost of.aircraft of various capacities is shown to
have a fixed portion and a portion which rises with capacity.
This relationship is developed first by detailing the causes of
the fixed cost (crew costs, structural scale economies, engine
scale economies), second by reference to design work by Simpson
and Moore [25], and finally by statistical illustration using
U.S. domestic airline data. The importance of changing aircraft
capacities as part of the design of a transportation service is
established in this way. Aircraft cost per flight is divided
into a per-frequency cost and a per-capacity cost for
conventional subsonic turbojet designs.

This cost structure implies that the more capacity provided
in conjunction with a fixed schedule of departures the lower the
per seat average cost. It is suggested that such aircraft
capacity economies create a trend toward monopoly or at least
oligopoly services.

The second section develops a model for demand which is
relevant to the supply discussion of the previous chapter. The
market for transportation is argued to be the city pair.
Reference to legal definition of monopoly markets suggests that
products in the same market must be functional substitutes for
each other. Travel by different modes or qualities of service in
the same city pair are products in the same market; travel to
other destinations is not.

Demand for scheduled service is expressed in terms of that
service's fare and two other aspects of the technical
performance: average displacement time for the schedule and the
probability of capacity being available. The latter two measures
are shown to depend on frequency and load factor, respectively.
The total service--fare, frequency, and load factor-- is combined
into a single total perceived price for the trip. This price
depends on the consumer's personal value of time.

With only a few competitors in such a market, only a few of
the technically possible qualities of service will be offered.
General statements by Chamberlin [4] are found to apply to this
case. The services available will be better suited to some
tastes than to others. The distribution of benefits for a
particular service quality or small set of service qualities will
not be even across values of time. The tradeoff in design is
between multiple service levels at higher cost and a single level
of service at lower average cost. Distributional effects have a
profound influence on the politics of transport regulation and
have been neglected in the past.

In this light it is shown by an argument analogous to
Hotelling's classical ice cream salesmen on a beach [ 17] that
competitive firms are likely to design their services for the
same value of time. Product matching increases costs without



improving the distribution of benefits.
The next section develops in detail the matching

transportation supply in seats with demand in passengers. For
the first time in the literature, the statistical model which
underlies the intuitive load factor/service discussions [10,14]
is stated fully and explicitly. The most broadly useful
statement of the problem defines the demand distribution for a
randomly selected departure in a schedule. The variability of
such a distribution is part due to known cycles in demand against
the more regular schedule of departures and part due to random
variations in demand. The cyclic components of variability are
shown to have a somewhat Gaussian distribution for available
airline data. Random variations are estimated from a theoretical
model. The random component of demand variability is shown to
scale imperfectly with average load side.

Estimates of variance for a Gaussian demand distribution
allows calculation of the fundamental service index. This is the
probability of a denied boarding due to variations of demand
exceeding available capacity. A numerical approximation of this
index is made for airline load factors.

Competition in load factor alone shows that airlines who
match the perceived price of their services as shown in the
demand chapter will also have a tendency to match their load
factors (if they can by design). Since de Neufville [8] and
Nason [21] have already suggested that airlines match
frequencies, the matching of perceived price may lead to a
matching of tare, frequency, and load factor-- in fact a complete
duplication of services. The proviso is that the competing firms
employ the same technology. This may not be the case if they
have different networks.

The next section develops the optimal service for a single
carrier on a single city pair market. The work parallels recent
efforts by Douglas and Miller [10] on the same lines. The major
addition is the new dimension of changing aircraft capacities.
including this degree of freedom in the analysis permits
frequency and load factor to be adjusted independently in a
market. Optima defined by maximum traffic at zero loss show the
importance of the adaptability of design aircraft capacity and
the relative stability of optimal load factors. Apparently
variations in optimal load factors in previous analysis (DeVany
[331) and numerical work (Douglas and Miller [10], and Gordon and
de Neufville [14]) were caused in part by the coupling of
frequency and capacity forced by fixing aircraft capacity at a
single value.

Both algebraic partial solutions and extensive numerical
studies suggest that optimal designs depend on traffic and
distance. Frequency and capacity changes are important; load
factor and fare are more stable than previous studies showed.

Optima are quite shallow for U.S. domestic cost structures.
Constraining frequency, fare, or load factor is not sufficient to
force the traffic far from the optimal levels if the two
remaining dimensions can be readjusted. This inherent
flexibility in design, it is argued, makes difficult or
ineffective regulation aimed at changing the fundamental market



equilibrium by setting fares.
The final section brings to the discussion issues associated

with networks of services. It is shown that most U.S. domestic
city pairs qenerate modest amounts of traffic in comparison with
efficient aircraft capacities. Networks overcome these
limitations by sharing frequency cost among several markets.
They do so at the expense of extra departure costs. The network
design tradeoff in its simplest form is shown to be between
larger average aircraft capacities and longer average stage
lengths. The corresponding routing patterns emphasize stops and
connections or direct flights.

It is shown by illustration that the average cost for a
network cannot be estimated without knowledge of distributions of
flow densities and link frequencies. Thus previous network
studies have not gone far enough to be able to capture the entire
dimensions of network behavior. Illustrations also show the
importance of network effects even in the largest airline
markets. Aircraft capacities and service frequencies in use
today are a result of firms operating large scale networks of
services and not a result of isolated city pair market
considerations.

Network design adds yet another degree of flexibility to the
design of transport services. The new dimension is the number of
intermediate stops per passenger trip. More stops mean more load
building, which allows larger aircraft and cheaper costs of
frequency.

In conclusion it is argued that thin airline markets are
too small to need regulation of service or entry because the
fullest exploitation must occur just to recover costs. Dense
markets can support isolated competition, although it may be
somewhat wasteful of resources. Medium markets may support only
one carrier if served in isolation. Unfortunately, flexibility
in service quality makes price regulation an ineffective curb on
firm behavior. However, medium and even thin markets can be
competitively served as part of large airline networks.

The growth of air service, then, should tend to be from
single quality single carrier service to competitive multistop
network services to nonstop network service, and finally to a
broad selection of service/fare options. There is some doubt
whether regulation is either necessary or even useful in
achieving these ends.



2 Airline Costs

2.0 Introduction

To say an airline produces available seat miles is like
saying a newspaper company produces pages of print. The
statement is true but it is not a terribly useful improvement
over ignorance. To say an airline produces passenger miles is
like saying a newspaper pr'oduces informed readers. The statement
is nearer the truth, but it represents so specialized a model of
the situation that only one singular insight is available. In
this chapter we will develop a slightly more complex model of
what an airline does. Then it will be possible to say how much
these activities cost in a simple and broadly applicable way.

This chapter is divided into three main sections. The first
structures the problem of airline costs and introduces a series
of useful definitions. The second estimates the cost
coefficients for the cost structure developed in the first
section. The third major section compares these estimates, both
as a structure and as values, to other work.

Throughout this chapter and the whole of this work we will
stress the structure of the cost models. As long as the numbers
are within 10% to 20% of the truth, we shall be satisfied; we are
interested in the consequences of the cost structure and not its
current values. It is beyond the scope of this work to establish
greater accuracy or detail. In the longer run, relative cost
coefficient changes of 20% can be expected. A useful conceptual
model should not be overthrown by such changes.

This cost structure and the cost coefficients are meant to
represent the long run cost characteristics which face U.S.
domestic airlines. In a loose sense, the structure and values
should carry over to regional airlines and international
operations, but later network discussions may not. In the
broadest possible sense, we are talking about regular route,
point to point, common carrier services. Further, we are talking
about regularly scheduled repetitive services. Private
transportation, where one user rents the entire vehicle and
determines its path of travel, is not included in our discussion.
Thus charter aircraft, irregular route trucking, unit trains, and
oil tankers are all part of another class of transportation.
Airlines, LTL (Less Than Truckload) trucking, boxcar rail, urban
rail, and ocean freighter services are all systems of the type we
will be discussing. Here the discussion will be entirely about
passenger carriage by U.S. trunk airlines, but the parallels with
surface modes occasionally occur and in some cases their
involvement in the problem is unavoidable.

2.1 A Structure for Airline Activities

Some Definitions
We will classify any countable measure of what airlines do

as an airline activity. The two broadest categories of airline
activities are aircraft movements and passenger movements.



A direct aircraft movement between a city pair is an
aircraft stage. When we discuss just the movement without
concern whether there are any passengers on board we refer to the
city pair as a link. A series of consecutive aircraft stages is
called a route. A set of links is called a network. The terms
network and network design refer to aircraft movements unless
they are specially qualified to mean otherwise.

A direct passenger movement between a city pair is a hop. A
series of passenger hops make up a path. Passenger movements
differ from aircraft movements in that they have a purposeful
origin and destination. When we discuss origin- destination
passenger movements without concern with the path, we refer to
the movement as a trip.

Wholesale/Retail Distinction
By separating airlines' activities into aircraft movements

and passenger movements we create a useful division of airline
activities. The set of aircraft movements describes what might
be thought of as the wholesale form of the airline product. The
costs associated with wholesale outputs in this case are largely
determined by technical considerations, which are dominated by
the operating costs for the aircraft themselves. In the airline
industry the aircraft costs are specifically called direct
operating costs (DOC's). The process of converting wholesale
aircraft movements into retail consumption is a separate step in
airline production.

The production of aircraft movements as thus defined for
airlines is a technical process with clearly structured costs.
It is these costs and their structure which we will be exploring
in this chapter and throughout this work. The cost of retailing
this production is secondary in a conceptual sense because the
structure of the retailing costs does not add to the design
tradeoffs and problems established by the structure of the
wholesale costs. The retailing process is still of great
interest. We will focus on aspects of this process in chapters 3
and 4.

ngineerin g Cost Methodology
The essence of the engineering approach to cost construction

used here is that physical activities can be counted and a cost
applied to such measures. The art is to choose the activities so
the cost coefficients are constant over a broad range of activity
levels. This choice is guided by knowledge of the details of the
activities and their physical relationships. The process of
finding the activity measures which produce the simplest cost
coefficients is analogous to finding the transformation of
variables which best simplifies the formula for a geometrical
shape.

Because the complexity is contained in the structure rather
than in the cost coefficients, the cost functions here are
different from cost functions established by statistical analysis
of aggregated inputs and outputs. Statistical analyses of
industry activities are almost always compromised in form to
allow for calibration.



Measures of Wholesale Activities
We have generally described wholesale production by the

activity of aircraft movements. Engineering cost functions for
wholesale production will be simpler if we divide aircraft
movements further into departure cycles and cruise miles. There
is one departure cycle per stage. The number of cruise miles is
defined as the great circle intercity distance for the stage in
question. To reach a structure with constant cost coefficients,
it is necessary to divide these categories each in two. The
first part is a cost per vehicle, independent of capacity. The
second part is a cost per seat. In making this-distinction we
have divided an aircraft conceptually into a vehicle part and a
capacity part. We measure aircraft size or capacity in seats.
4e measure aircraft frequency in vehicle hops per link. We now
have tour measures of aircraft activiy:

number of vehicle departure cycles (vehicle departures)
number of vehicle cruise miles (vehicle miles)
number of seat departure cycles (seat departures)
number of seat cruise miles (seat miles)

Total activities in each of these categories for any airline
network will be sufficient to determine the cost of wholesale
production. It will not matter whether the wholesale product is
consumed for us to determine its cost. We will estimate the cost
coefficients in section 2.2.

Measures of Petail Activities
We have qenerally described the retail part of production by

the activity measure of passenger movements. Engineering cost
functions for retail production will be simplest if we divide the
passenger movements further into passenger trips, passenger
miles, and passenger departures. Passenger miles are the total
qreat circle distance of all the hops in the path used for the
trip. Passenger departures are equal to the number of hops used
for the trip. (1) We now have three measures of passenger
activity:

passenger trips
passenger miles
passenger departures

Total activities in these three categories will be
sufficient to determine the retail cost of airline activities.
The cost coetficients for these three measures are developed from
a combination of our work and previous authors' in appendix A.
Because the structure of these costs tends to reinforce the
structure already established by the dominant wholesale costs,
our discussion of retail costs is less thorough than the

(1) We do not make a distinction between a connection and a
through flight for consecutive hops. To do so is the first
improvement we would suggest in our work.



discussion of wholesale costs.

Service Measures
At the reported, accounting level airline activities are

divided into aircraft hours which generate direct costs (DOC's)
and the rest of airline activities which cause indirect operating
costs (IOC's). At our engineering level of wholesale and retail
production activities. we redivided activities into passenger,
vehicle, and seat departures and miles, and also passenger trips.
We now introduce a third frame of reference for looking at
airline activities, the schedule.

The airline schedule describes the airline wholesale
products (aircraft movements) in the form in which they are
presented to the public by the retailing process.

A schedule is a set of aircraft movements useful for trips
in a market. For nonstop service, the schedule is the link
frequency and the seats available. We implicitly assume the
timing of vehicle departures and the distribution of seats among
those depatures are reasonable. For multistop service, the
schedule includes not only nonstop flights but also any multistop
flights or connections which are useful paths. The schedule
frequency will be generally considered in terms of nonstop link
frequency or its equivalent in convenience. (Eguivalence will be
obtained by compensation in price or in higher frequencies.
These issues will be discussed when they are needed in the
network chapter.)

The schedule is as far as we can go in describing airline
service from the airline side alone. The quality of service
depends on the traffic because average load factor is important.
The price of service also depends on the interactions between the
airline and demand.

This completes our discussion of airline cost structure. We
now move on to the matter of calculating the cost, coefficients
for our engineering cost frame of reference.

2.2 Lstimates of Airline Cost Coefficients

Conversion from Reported Cost Measures to Engineering Cost
Coefficients

Accounting terminology divides airline costs into direct
(DOC) and indirect (I0C). DOC is the cost of aircraft hours and
it comprises 60% of airline costs. It is this cost which gives
the structure to wholesale activities. Indirect costs apply
against both wholesale and retail activity measures. We view
indirect costs as a secondary addition to direct costs.

DOC is reported on the basis of block hours of aircraft use.
We will use the term DOC in the sense of aircraft operating cost
per hour, unless we explicitly state otherwise. Block hours
correspond closely to hours with the engine on, so block hours
include both time spent in cruise miles and time spent in
departure cycles. We will convert DOC per hour to a per aircraft
departure and per aircraft mile basis using cruise speeds and
departure times. Then we will subdivide the per aircraft numbers



into per vehicle and per seat coefficients. Finally we will add
indirect costs to arrive at the final coefficients for wholesale
activity measures of vehicle and seat departures and miles. The
cost coefficients for the retail activities of passenger miles,
departures, and hops will also be determined from IOC's.

The cost of the activity measure aircraft block hours is
manipulated in the next four sections to obtain the major
fraction of the cost coefficients for aircraft movements. In
developing values for these coefficients we must demonstrate that
the structure of these costs is valid. That is, we must show
that each coefficient is significant and that it - is reasonably
constant over a range of activity levels. We begin the
discussion by covering several influences which might affect the
tendency of the cost coefficients to be constant.

JOC's for an Aircraft Type
There are a number of issues which can be best disposed of

hy discussion of the costs of a fleet of aircraft all of the same
capacity and design. We refer to the DOC of such a fleet as the
DOC of the aircraft type. The issues which can be usefully
discussed in this context are those influences on DOC which we do
not include in our engineering activity measures, i.e. issues of
what aircraft costs do not depend on in any significant way.

DOC for an aircraft type is not stongly dependent on how
many aircraft of the type are operated in the airline's fleet.
Jordan [28] in particular has investigated the DOC for different
fleet sizes and reached this conclusion. The size of the fleet
or analogously the size of the firm has been a variable of
interest for economists seeking to discover economies of scale
for the industry. We shall try to show in later sections that
economies of scale when phrased in this manner may not be
relevant to issues of social concern.

Also, aircraft DOC is nearly independent of where the
aircraft is operated. Aircraft are machines and they work in
very similar fashion in different geographical places.
Independence of costs from geographical variation is a
particularly useful simplification for network discussions.

One sign that costs are independent of where the aircraft is
operated is the existence of markets for hours of aircraft use.
Airlines rent aircraft by the (block) hour to each other and to
charter operators. In this way aircraft hours have come to be
viewed as a particularly useful intermediate measure in the
process of manufacturing transportation services. DOC's reported
for the same aircraft type by different firms provide one of the
few relevant comparisons of interfirm performance. Restrictions
necessary for a valid comparison are developed later in this
chapter. For now the important thing is that aircraft cost
should be independent of locale.

Another item that is absent from the list of factors having
a significant impact on DOC is load. Capacity is a dominant
characteristic for determining aircraft costs; how much of that
capacity is full is not. Physical laws allow us to put some
bounds on the accuracy of this statement. The major load related
cost is the expenditure of energy to carry more weight. Lift



associated drag for aircraft rises linearly with aircraft weight.
The effect of this on operating expenses can be estimated. Fuel
costs for airlines are 30% of DOC. Lift absorbs roughly half of
this energy in cruise, and payload is less than a quarter of
total weight. combining these estimates, there can be at most a
3.8% difference in DOC between operating dead empty and chock
full. The difference as a percent of total costs is even less.

There is one final and most important independence for
DCC's. The block hours against which DOC's are charged include
both cruise and departure time. If DOC were substantially
different in cruise than during terminal area maneuvering, there
would be different DOC's per hour for stages of different length.
This would not change the validity of our engineering cost
structure, but it would make the coefficients harder to estimate
trom available DOC data. Fortunately, DOC does not vary
significantly with stage.

It is possible to illustrate a lack of dependence of DOC on
stage length. Figure 2.2.1 shows a scatter of block hour costs
plotted against average stage length for the most common aircraft
type. A least squares linear regression of these data points
produces an hourly cost formula with little dependence on stage
length. (R =.14)

The ATA formula provides further support for the concept of
a departure cost proportional to the cost of the same amount of
time spent in cruise. This formula [1] is the industry standard
for comparing new aircraft designs' average per mile costs at
different stages. Within the formula the fundamental measure is
hourly costs. Average cost per mile is found by multiplying
stage time by DOC (per hour) and dividing by stage length. The
only significant correction for departure cycles is the 21 minute
addition to stage time for air and ground maneuvers.

Having stated that we wish to think of aircraft hourly
costs as only marginally dependent on where the aircraft is
operated, how far it is going, or how full it is, we can now
address the issue of what aircraft costs do depend on.

poC's for a Family of Aircraft
The next sections discuss what aircraft as a class of

vehicles cost to operate. The structure of aircraft costs has
not changed with the change from piston prop aircraft to jet
aircraft to turbofan designs. The same structure applies to new
designs, such as STOL fixed wing and VTOL rotary wing designs
[32]. Families of air transport vehicles of similar design
performance (such as runway requirements, speed, range, and
seating density) display hourly costs which are nearly linear
with vehicle capacity. The same statement is true of trucks [37]
and trains [25), within the bounds of their operations.

U.S. domestic airlines all use aircraft from one design
family. Currently these aircraft are pressurized turbofan fixed
wing vehicles with cruise altitudes near 30,000 feet, cruise
speeds near mach 0.8, and runway requirements of a mile or so.
DOC for these aircraft varies with their capacity. At present
the available capacities range between 70 and 500 seats. At any
given po-int in time only a handful of aircraft types with



Figure 2.2.1: DOC vs Stage Length for 727 Aircraft
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different capacities are actually represented, but in a long run
technical sense, the entire continuum is relevant. The single
characteristic on which all later discussion rests is that
aircraft DOC's display economies of scale with respect to
capacity. That is, larger aircraft cost less per seat. The very
existence of larger aircraft would seem to prove this point,
since smaller aircraft are more convenient from every other
aspect. Wherever there is a combining of loads onto a public
transportation system, 'it seems safe to assume that there is some
cost advantage in doing so. However, it will not do to rely on
such logical arguments when observed data~ is available to
illustrate the point.

Figure 2.2.2 plots hourly costs for four aircraft of
identical design in terms of range, field length, seating
density, and technical state of the art. These designs were
performed by Simpson and Moore [26). The line in figure 2.2.2
illustrates two significant points. First, there is a large cost
per vehicle (the intercept). And second, the cost per seat (the
slope) is constant over a broad range.

Observing such lines in real world data is difficult.
Although airline aircraft are all from a similar family, there
are small differences in technical age, (1) range, required
runway lengths, and seating density. These differences average
out among the family in the long run, but they distort the few
data points we have. Furthermore some of the variations which
are relevant from technical considerations have not been
exercised in practice and some have. For instance there are few
very large short range designs and few small long range designs.

In spite of these difficulties, we can illustrate the design
trend using current data if we make some adjustments. We start
with the list of aircraft in table 2.2.1. This is every aircraft
type with over 20 vehicles in the U.S. domestic fleet in 1976.
Where airline accounting practice allocates costs arbitrarily
between model variations, we have used a weighted average. Thus
the DC-9 is a composite of the -10 and the -30 variants heavily
favoring the -30 due to its greater numbers. We make only one
adjustment to these numbers. The newer of these types were
designed to operate at slightly higher cruise speeds than earlier
designs. We are fortunate in having a very careful analysis by
Sercer (24] to use in estimating the practical cruise speeds for
these aircraft. The estimates of departure times by Sercer are
open to a number of questions of comparability of detail, but the
cruise speed estimates should be very good. We use these cruise
speeds to adjust the block hour costs for the aircraft types to
costs for a set of aircraft which were designed to cruise at the
same speed. The speed we use for the standard is 507 mph, so the
adjustment in block hour costs is to multiply the reported costs
by 507 and divide by the cruise speed deduced by Sercer.

The result of our study of adjusted DOC's is presented in

(1) The age of an aircraft is really the year of its design or
first manufacture. Advances in engineering and materials
continually improve the state of the art in commercial aircraft.



Figure 2.2.2: DOC vs. Capacity for Comparable Designs
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Table 2.2.1: Data for Aircraft Operating Costs

Aircraft type

DC-9 )

737-200

727(2)

707-100

DC-8-50-

DC-8-51

DC-10-10

L-1011

B747

Capacity (3)

87

97

115

132

135

194

237

247

357

Speed (4)

463

450

504

504

510

508

510

526

534

Adjusted Block
Hour Costs (5)

$852

1226

1049

1197

1338

1562

1891 '

2205

2773

C1)The DC-9 is a weighted average of the -10 and -30

(2)The 727 is a weighted average of the -100 and -200

(3)Capacity from CAB ref 8 (Seats)

(4)Speed in practice from Sercer ref 24 (mph)

Adjusted Block hour costs are hourly costs from CAB
ref 8 multiplied by (507mph/speed)



figure 2.2.3. A nearly straight line appears to fit the data and
the intercept is still positive and significant.

The reasons for the economies of scale in aircraft capacity
are technical, which is why they have persisted over the ages.
To quote Wheatcroft in 1956 speaking of the first generation of
commercial transports:

"(a) Larger scale gives aerodynamic advantages and lower
proportionate drag.

(b) The structural weight is a lower percentage of the total
weight. [due to changes in proportions.]

(c) The operating weight (crew, radio, navigational
equipment, etc.) is a smaller percentage of total weight.

(d) Larger engines . . . are more efficient . . . per pound
and per qallon.
(e) The costs of aircrew salaries and expenses remains more

or less fixed and becomes a smaller percentage of the total
costs."

--- Wheatcroft [29), p33.

The important observation from figure 2.2.3 is that the cost
per seat mile is a constant (the slope) and the cost per vehicle
departure is about 50 times that constant (the intercept).

dj.gstment _.of Costs for Return on Investment
Depreciation has been included in the DOC figures of the

preceding section. Depreciation is only part of the cost of
owning aircraft. An aircraft is a physical plant with capital.
value. Even idle, it incurs expense due to the cost of capital,
the rate of technical obsolescence, the risks accruing to
ownership, and some mechanical deterioriation. These ownership
expenses depend on clock time, not use. Most of this expense is
reported on the books as depreciation or as accounting profits.
In this section we estimate the total ownership costs including
both depreciation and return to capital. We then remove the
depreciation expense from the DOC figures and replace it with our
newly calculated ownership costs. This is merely a technical
adjustment of costs and does not affect the main flow of our
developments.

Ownership costs actually depend on clock time, not block
hours. However, in transportation industries depreciation is
almost always reported against hours or miles of use. For ground
modes most of depreciation is wear, which is truly a per mile
cost. The situation is different for airplanes. Up to the
present day, changes in the value of airplanes have been caused
by their design growing out of date rather than by their
mechanical life. Thus aircraft depreciation depends on clock
time, not block time, and is therefore an ownership cost.
Airplane designs may change more slowly in the future, but at the
present aircraft depreciation like return to capital is a daily
ownership expense, independent of use.

Capital costs are proportional to market value. Market
value is usually estimated from original price and depreciation.
Both original cost and the depreciation period depend on the age



Figure 2.2.3: DOC vs. Capacity, Reported Figures
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of the design. (See table 2.2.2.) Older designs are worth less
(new or used) and depreciate more quickly. The original price
estimates of figure 2.2.4 give an indication of long term trends
of price for designs which are neither the oldest nor the newest.
Applying a 14 year mortgage at 8% (1) to these figures produces
aircraft ownership expense of $964 per vehicle per day plus
$13.93 per seat per day. Aircraft utilization is roughly 8 hours
per day, which gives an ownership cost of $120.5 per vehicle per
block hour plus $1.75 per seat per block hour. For a 125 seat
aircraft, this becomes $339 per hour. (2)

We may now substitute these values for the depreciation
fraction of the DOC values of figure 2.2.3. (This depreciation
was 15% of DOC.) The new total DOC per hour becomes $392 per
vehicle and $7.79 per seat.

A better estimate of ownership costs is difficult and not
germane to the issues at hand. The important points are that
daily costs do exist, that they depend on aircraft capacity, and
that they are usually allocated against hours of use by assuming
a use pattern. (3)

Discussion of Indirect Costs
one is on firm ground characterizing the cost of vehicles

(DOC) because they are machines subject to physical laws. For
10C the case is more difficult. The laws of performance which
apply to human labor in a service industry are not so well
defined. A great deal of non-specialized service labor goes into
transportation-- loading and unloading, sorting, dispatching,
scheduling, selling, and managing to name a few categories. Most
of these activities do not involve much physical plant, so the
economies of scale typical of industrial production are reached
at very modest levels of activity. That is, the process of
boarding 30 aitcraft loads is pretty much a tenfold repetition of
the process for 3.

Appendix A compares several assessments of airline IOC's
including one done by this author several years ago. We have
updated and selected from among the several values, but we admit
the treatment is crude. Nonetheless, casual conversations with
airline staffs over the years have tended to bear out these

(1) 8% is chosen to provide a 4% return after taxes. All figures
are in constant dollars. Aircraft appreciate on the books due to
inflation (that is they sell for more than their depreciated
value), so some extra cost might be added to pay taxes on these
apparent capital gains.

(2) This is on the order of twice normally reported depreciation
figures. Such an estimate is supported by aircraft lease costs
reported on CAB form 41.

(3) ownership costs should not be allocated against use if the
amount of demand peaking or the average stage length is expected
to change much during the analysis. This matter is explored in
section 2.3.



Table 2.2.2: Depreciation Rates Accepted by the CAB

class of
aircraft

turboprop
(old designs)

turbojet
(first jets)

turbofan
(modern jets)

wide body
(latest designs)

approximate
Example design year

FH227

DC- 8

B-727

L-1011

mixed

1958

1965

1972

depreciation
rate

8.5-9.5%

7.9-9.5%

7.0%

5.6%

Source: CAB DPFI, ref 5.

1 ife
(years)

10.5-12

10. 5-12.5

14

18



Figure 2.2.4: Aircraft Prices
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estimates, so we have more confidence in them than the
methodology alone inspires.

Cost Coefficients for Aircraft Miles
With the above DOC discussion in hand, estimation of costs

per cruise mile becomes straightforward. DOC per aircraft hour
has been found to be

DOC/hr = $7.79/seat + $392/vehicle (2.2.1)

These figures have been adjusted to represent a family of
aircraft with a cruise speed of 507 mph. Dividing by this speed
we qet

$/mi = $.015/seat + $.77/vehicle (2.2.2)

To these must be added indirect costs from appendix A. These
costs are an overhead of 19% on all but the ownership expense.
We introduce three variable names:

c1 = cost per aircraft mile
c1l = cost per seat mile
c12 = cost per vehicle mile

The last two of these are our engineering cost coefficients. The
cost per aircraft mile becomes

c1 = c1l SEATS + c21

or

c1 = $.0176 SEATS + $.816 (2.2.3)

Cost Coefficients for Aircraft Departures
The cost for a departure depends on the amount of the time

the departure cycle takes. For uncongested airports, these cycle
times are determined by local ground and air speed limits and
traffic distances vhich do not vary for different aircraft types.
This throws the variations in Sercer's data (presented in table
2.2.3) into question. However the average time, 22 minutes, is
very close to that used by the ATA [1]. We use this time to
calculate ddeparture cycle costs for aircraft. Thus 22/60ths of
a block hour's cost gives a departure cost of

$/departure=$2.84/seat+$144/vehicle (2.2.4)

To these must be added $183 per vehicle and a 19% overhead from
the indirect costs developed in appendix A. (The overhead does
not apply against the ownership cost fraction of the figures in
equation (2.2.4).) We introduce three more variables:

cO = cost per aircraft departure
c10 = cost per seat departure



.Jable 2.2.3. Departure Cycle Times for Aircraft

Aircraft type

DC-9 (avg) 16 min.

737-200 16 min.

727 (avg) 20 min.

L1011 25 min.

DC-10-10 25 min.

DC-8-61 22 min.

DC-8-50 21 min.

707-100 23 min.

747 32 min.

Average 22 min.

Source: Sercer, ref 24.



c20 = cost per vehicle departure

The last two of these are two more of the engineering cost
coefficients. The cost per aircraft departure becomes

cO = c10 SEATS + c20

or

cO = $3.27 SEATS + $378.9 (2.2.5)

As one might expect, there are considerably more indirect costs
involved in an aircraft departure than a cruise mile.

Cost Coefficients for Passenger Movements
The indirect cost estimates of appendix A provide a cost per

passenger boarding and a cost per passenger mile which come to
$12.64/boarding and $.008/mile including overheads. Our
engineering cost structure does not include the term passenger
boarding. A passenger boarding is one passenger trip plus one
passenger hop. We make a division of boarding costs between the
two parts. Our estimate for the hop cost reflects the passenger
time involved. The remainder of boarding cost is the per trip
cost, which is the cost of initial boarding and ticketing. The
division we employ is entirely arbitrary, but it appears
reasonable. We get for the three retail cost coefficients

c30 = $6.64 per passenger 6og
c3V = $6.00 per passenger boarding
c31 = $.008 per passenger mile

These three coefficients complete the list of engineering cost
coefficients and bring to an end this calibration section.

2. 3 Discussion of Costs and Cost Structure

Cost of a Schedule and Schedule Competition
Section 2.1 defined a schedule for a nonstop market as the

link freuency and the seats available. We can now state that for
a market with intercity (great circle) distance D and a schedule
with frequency FQ and capacity SEATS the cost is

COST=($3.27+$.0176-D)-SEATS+($379+$.816-D)-FQ (2.3.1)

This formula may be approximated by a simpler one, which is
useful as a rule of thumb although it is not accurate enough for
cost calculations:

COST/FQz(D+200) -(CAP+50) -$.0176 (2.3.2)

This formula gives the per stage cost as a function of aircraft



capacity (CAP). (1) This rule of thumb formula will prove a
useful way to think of costs when it comes to matters of network
desiqn.

Notice that both (2.3.1) and (2.3.2) imply that the costs of
capacity (SEATS) and of frequency (FQ) for a schedule are
mathematically separable. This occurs because we have considered
a range of aircraft capacities (CAP). In the long run, airlines
can alter the average aircraft capacity for their fleet and they
can also change the distribution of capacities. In the short
run, airlines cannot alter the average capacity although they can
rearrange the capacities used for particular movements. Global
changes in aircraft capacities in use are part of long run cost
options.

The degree of freedom of changing fleet capacities is often
ignored in analyses of the airline cost function, with misleading
results. The consequences of this problem are discussed in
chapter 5.

This form of the cost function shows that for a fixed
schedule (fixed FQ) the.larger the capacity (SEATS) provided the
lower the average cost per seat. Because of economies of larger
aircraft, competition among many airlines is difficult. If each
carrier offers its own independent schedule, there is duplication
ot frequency costs at great expense. (2) Thus the minimum cost
service on a link is with only one carrier, and there is little
likelihood of more than a few carriers serving any one isolated
market.

Of course we really can not reach any conclusions about
competition from the discussion as it has progressed so far. The
question of matching supply in seats to demand and the process of
competition in the dimensions of frequency and load factor will
be the focus of the next chapters. However, the cost discussion
so far does allow us to focus on service by a severely limited
number of firms and very likely by a single carrier.

CriseSpeed
The cost derivation above is far from formal or rigorous.

In a sense the particular form of the cost calibration, a linear
dependence on capacity with a sizable positive intercept at zero,
is an assumption of our work and not a result. The assumption is
that the technical trends do manifest themselves in practice.
The discussion above is intended as an approximate calibration or
perhaps just a "sizinq" of that assumption. Still it is of value
to discuss the differences between our numbers and those produced
by other analyses.

The most outstanding disparity between the numbers above and
conventional values is in aircraft cruise speed. Aircraft design
cruise speeds are in the neighborhood of 585 mph, not 507 mph as

(1) Notice that SEATS is the total schedule capacity while CAP is
the per aircraft capacity.

(2) Appendix C points out that collusive scheduling is rare in
present practice.



above. There are two reasons why the cruise speeds Sercer
obtained fron airline schedules differ from theory. The first is
circuity. The speed we use, 507 mph, is based on travel time vs.
great circle distance between the two points. Aircraft do not
travel such straight lines, there being between 3% and 10%
circuity as a matter of plan. (1) Thus the miles per hour
measured in great circle miles is lower than that measured along
the aircraft track.

In addition to circuity, airplanes suffer from winds. Winds
average out on round trips, but aircraft spend more time flying
against them than with them, so average speed is reduced.

Departure Time
The other figure which differs from numbers this author has

found prevalant in industry is the departure cycle time. We use
21 minutes; airlines will tend to use 30. We are content to use
Sercer's value, obtained from regression of airline schedules.
This produces a lower departure cycle cost for our study than
might be usual. It turns out that the estimate of departure
costs on the indirect side which we use from appendix A is higher
than most. Consequently our final cost figures will not be far
from the mark.

In general there is little controversy about the existence
of economies of aircraft capacity. The general difficulty has
been that the consequences of this type of cost dependence have
not been explored. This will be the major purpose of our work.

Singularity of 727 Costs
There has been some confusion about the economies of

aircraft capacity due to an anomaly in costs which has developed
in the 1970's. The anomaly is that the 727-200 aircraft, which
seats 125, compares favorably in reported seat-hour costs to the
L-1011 and 747, which seat 250 and 360 respectively.

The reasons for this are several. First and foremost, the
727 has smaller seats and higher seating density. It also has
less galley space and less cargo ability. Second, the 727 is a
medium range design, which makes it cheaper per seat than long
range designs with the same capacity. Third, the 747 and L-1011
bear the costs of a substantial environmental constraint on
noise, while most of the 727 fleet does not. Fourth, the 727 is
a uniquely high production aircraft and is uniquly cheap as a
consequence. And fifth, reported depreciation for 727 fleets is
very low because some aircraft have been fully depreciated and
others are valued in uninflated dollars. None of these
advantages is overwhelming, but taken together they add up so
that unadjusted hourly costs for the 727 are exceptionally low.
This need not concern us here since our discussion is concerned
with long term trends.

(1) Circuity for trucks and rail can be 20% and 40% respectively,
which shows the necessity of converting to great circle distance
before making comparisons.



Block Hour Utilization
Daily ownership costs per aircraft were discussed in section

2.2. In the course of that discussion the point was made that
such costs are traditionally allocated against hours of aircraft
use. Since aircraft operating costs per hour for aircraft of the
same type or even of the same capacity can be used to compare
firms, it is important to know what assumptions about ownership
costs are necessary for su'ch comparisons. (1)

First of all, "utilization" in the vocabulary of the
transportation industry does not include time spent loading or
unloading the aircraft. "Utilization" refers to hours with the
engine on. Let us assume as in figure 2.3.1 that an aircraft can
be in use up to 14 hours a day. Ten night hours have little or
no traffic and are reserved for maintenance. With normal loading
times the maximum possible "utilization" can range from 7 to 12
hours for practical differences in average stage length.
Apparently for a valid comparison of DOC's, stage lengths must be
similar.

Stage length is not the only influence. The amount of
traffic and traffic peaking affects actual aircraft
"utilization". There is generally insufficient traffic to allow
use of an aircraft (including loading) for more than 14 to 16
hours a day; few people travel at night. Further, use at full
intensity may not be the best economic decision at off peak hours
in the middle of the day. Therefore, airlines will not seek to
achieve the same fleet utilization unless they face similar hour
to hour traffic patterns. Thus the actual utilization plotted as
points on figure 2.3.1 may all be efficient use of resources,
even though they inconsistently fall short of the maximum
established either by our formula or the ATA's [1]. (2)

From these considerations it should be clear that the
conditions for interfirm comparison of aircraft expenses are
similar stage lengths and similar traffic peaking patterns. (3)
These issues are specifically excluded from our considerations.
We assume all time of day issues have been solved as a separate
part of the design process.

(1) Ownership costs cannot be eliminated before comparison
because some firms may use low price and high operating cost
aircraft. Their costs for aircraft stages of the same capacity
should be comparable with cost for new, expensive but efficient
aircraft.

(2) In the summer of 1978 United Airlines increased the
utilization of parts of its fleet by 20% in one single network
schedule revision. This accompanied a change in discount travel
fares and activity. Thus off peak idleness was avoidable.

(3) Comparing firms with similar utilization and different
peaking patterns accepts the different degrees of response to the
peakinq as both efficient.
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loq-Linear Cost Stuctures
The discipline of economics as practiced in modern times

emphasizes cost formulas which can be calibrated using linear
least squares regressions and which reveal the cost or scale
elasticities in the calibration parameters. (1) This trend has
produced formulas for aircraft DOC like:

.07 -16
$/ASM 0 STAGE CAP' (2.3.3)

Where ASM are airline system wide available seat miles. STAGE is
fleet average stage length, and CAP is fleet average aircraft
capacity. Exponents are from Douglas and Miller (10], p 16. The
negative exponents in this formula indicate economies of scale
with respect to aircraft capacity and stage length.

In order to see if the log-linear form can describe our cost
structure, we have calibrated a similar expression using data
points generated by exercising our aircraft cost structure and
numbers from section 2.2. The DOC per mile formula we used is
included on table 2.3.1. The 30 points presented in table 2.3.1
were used to arrive at the following results:

11A -. 22

$/ASM N STAGE CAP (2.3.4)

This represents the results that the log-linear regression
techniques could achieve with a set of ideally comparable data
points. We call this the regression of "perfect" data. (2)
Fiqure 2.3.2 plots the results of this regression against the
original data line. The log-linear expression appears able to
follow the original line over the range of calibration (up to
120-0 miles), but fails to predict accurately at practical stages
outside the data points. The Douglas and Miller regression when
scaled to intercept the data at 600 miles also suffers at longer
stages.

The more interesting question is whether aircraft capacity
dependence can be tracked by the log-linear form. The answer is
that both the regression of "perfect" data and the Douglas and
Miller regression track quite well at all but the smallest
capacities, as seen in figure 2.3.3. It is regrettable Douglas
and Miller did not make use of the information contained in their
cost function.

Industrly Cost Presentations
In order to show that the engineering cost stucture can

explain the cost curves the airline industry is accustomed to
seeing, we have plotted DOC lines from the costs developed in
section 2.2 in the representation which is traditional for the
airline industry. Figure 2.3.4 illustrates that the cost "taper"

(1) Adam Smith based his cost arguments on engineering
considerations. The technique has since fallen into disuse in
academic circles.

(2) Statistical performance is listed on table 2.3.1.



43

Table 2.3.1: Data Points For Regression Calibration

"perfect" data generated by exercising the formula

$/ASM = .0153 + .774/CAP + 144/(CAP'STAGE) + 2.85/STAGE

for the values of CAP and MI indicated by the table below:

CAP
STAGE

200

400

600

800

1000

1200

100 125 150 200 250 300

x x x x

x x x x
x x x x x

x x x x x

mean STAGE=700 miles

mean CAP=186 seats

x x x x x correlation: 35%

x x x x

REGRESSION RESULTS:

$/ASM = .523-STAGE-.29 CAP-.22

STAGE exponent significant at 99% level

CAP exponent significan at 99% level

(R2 =.977)

Standard Error = 3.3% (because of log form, error is a %)



Figure 2.3.2: Log-linear Representation of DOC per Stage
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Figure 2.3.3: Log-linear Representation of DOC vs. Aircraft Capacity

DOC for
600 mile stage

$4000
CD

regression of
"perfect" data op

$3000 from table 2.3.1

10.1,

$2000

Douglas and Miller
regression
scaled to intercept
at 150 seats

$1000

50 200 250
aircraft capacity (seats)



Figure 2.3.4: DOC in Traditional Seat Mile Format
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with distance can be explained by our simple assumptions. In the
range of normal average stage lengths (200-1200 miles), stage
length is an important influence on costs.

In figure 2.3.5 the effect of aircraft capacity is seen. In
one sense this is an economy of scale, in that producing more
capacity in the same place (i.e. on the same departure) reduces
average capacity cost. Above 200 to 300 seats, savings begin to
diminish. Aircraft in general use are approaching these ranges,
but their economies are somewhat compromised by network effects.
We will not be able to explain this more fully until chapter 6.

2.4 conclusion

It seems a little early to reach conclusions. We have not
introduced a definition of what is a market or how to measure the
qualtiy of service. Nonetheless, if firms compete for the
traffic in a city pair by offering their own schedule of
departures and capacity, it is clear that the ability to use
larger aircraft to serve larger traffic levels will reduce
average passenger costs for firms serving larger fractions of the
total market. Thus we antipate that service at the city pair
market level will be characterized by one or only a few
competitors. This limitation motivates the demand model
discussion of the next chapter.



3 Characterization of Demand

3.0 Introduction

It is natural and perhaps forgivable for us to think of
demand for travel as more or less fixed and to focus on the cost
of supply. But in a larger sense the value of goods or services
deserves as much attention as their cost. This is particularly
the case with a transportation service where the consumer may
find only one or two carriers and only one service type
available. This section develops a simplified~ model for the
aqqregation of individual decisions which we call demand. (1)
The focus is particularly on the distribution of values for
different levels of service. In chapter 2 we discussed the
supply side costs without discussing the market equilibrating
process through which the supply is used. In this chapter we
follow an analogous course by discussing demand with the supply
side being a postulate. There is one difference, though. We
already suspect from the cost structure that monopoly or
oligopoly service will be the norm in a city pair market. More
than one or two competitors would fractionalize the traffic to
the point where aircraft too small and too expensive are
necessary. Our demand model will take a particular look at
two-firm competition.

The developments in this chapter pull together disparate
discussions of consumer behavior and air travel demand models.
In the general field of demand description we have elegant
mathematical derivations from utility theory and cruder
statistical forrulas from forecasting. Utility theory models
consumer behavior while forecasting models demand. The
distinction is one of emphasis, but the practical differences
between the two approaches should not be underestimated. Between
these two camps there is much fertile ground. In order to
discuss the tradeoffs in airline service design, we need the
concept of value of quality from the theoreticians, but we
approach the issue using the terminology of the forecasting
formulas, because it should be more familiar to most of our
readers. The model we end up with represents the smallest
revision of the conventional transportation demand formulations
which will capture all the relevant issues. The arena thus
entered is coming to be called behavioral demand modeling.

In the discussion below the central variable is the total
perceived price for a trip. This price includes both the fare
paid and travel time. As an expected value, travel time includes
delays which depend on frequency and load factor. Different
people value this time at different levels. It is by appealing
to subsets of the distribution of these values that firms or
modes with different service/price offerings divide a market.

(1) Demand and consumption as used here are not synonomous.
Demand refers to the entire function which describes the
aqqregated values of all potential concumers. The actual number
of consumers is called the traffic.



But there may be a tendency to match services' qualities. Such
behavior will neglect to provide appealing options to some parts
of the demand population. These are the issues we hope to make
clear.

3.1 Definition of a market

It will be important for clarity of later discussions that
the market for scheduled transportation be carefully defined. We
choose to describe services which are practical alternatives for
each other as belonging to the same market and services which can
not replace each other in a functional sense as being in
different markets. This definition of a market does not specify
the mode(s) involved. The test that services which can be used
for the same purpose by the consumer are in the same market is
the same test which the Supreme Court employs in determining
markets ror monopoly cases. (1)

The substitutability criterion implies that transportation
in different geographical places represents different markets:
travel from New York to Miami can not substitute for travel from
Pittsburgh to Chicago. Thus while vehicles are not sensitive to
where they move, people are. The city pair is not sufficient to
define a transportation market. The type of service must also be
specified before the substitutability test can be applied:
passenger travel in the Pittsburgh- Chicago city pair is a
different market from freight carriage between the same cities.
In general we will be discussing passenger travel, although our
model often applies to freight as well.

A market is usually sufficiently defined by specifying the
origin- destination pair and the class of service (e.g. bulk
freight, package, or people). There will be grey areas at this
level of distinction, but the imprecisions will be more
theoretical than practical. There is one interesting aberration.
In air travel, substitutability may not always imply the exact
origin- destination pair. There are cases where the destination
is a region larger than a city. In some contexts it makes sense
to discuss the market for travel from Boston to Europe or Boston
to the West Coast. Usually these broader descriptions apply to
personal pleasure travel. The extreme case of this is a market
for pleasure travel from Boston to anywhere pleasant. But for
the purposes of this discussion, markets are defined by city
pairs. All travellers are included, but no other destinations.
The broader use of the term is mentioned only as an exception to
the rule that substitutability of service defines a market as a
city pair.

The implications of this definition should not be neglected.
Because goods can be transported, the market for physical
products is national. But transportation itself is a service.
The service takes place in one geographical market. A firm which
provides the only practical means of transport in a city pair has

(1) Nason [213, p14 footnote.



a monopoly in that market. The consumer wishing to travel in
that city pair has only one option. This point has escaped a
good many air transportation analysts in recent times. From a
practical point of view the issues of cost, competition, and
monopoly power apply at the market and not the industry level.
Exploitation or excess profits can occur in a single market.

If the market for transportation is specified by the city
pair, then airlines which provide services all over the country
operate in many different markets. They are able to do this
because aircraft can be easily converted from production in one
market to production in another. In fact, the same aircraft
movements may produce service in several markets at once.

A result of airlines operating in many markets is that the
consumer perceives the firm as if it were a retailer carrying an
assortment of loosely related goods. (1) A person goes to a
hardware store for tools and to an airline for trips. From the
consumer's viewpoint the relevant issue is that if only one firm
provides service to the destination city, that firm will carry
all the traffic and may operate as a monopolist.

3.2 The Quality of Service Within a Market

If there is more than one practical way to get from here to
there, the consumer's choice of mode or firms within a mode will
depend on the differing qualities of service offered. In
addition to the price, the consumer considers several other
aspects of service. It is convenient to express these as
additions to the money price of travel. (2)

The first of these additional costs of consumption is the
amount of time it takes to make the trip. Travel time in
particular has a cost. A passenger's travel time may be thought
of as the amount of his own labor necessary to produce the trip.
In some cases, the cost of travel time can dominate the total
perceived price of the trip.

A second part of travel cost is the cost in time and money
of access and egress. This is really a small transport problem
within the larger transport problem. The custom of ignoring the
sub problem of access to consumption will be followed throughout
this analysis.

One cannot ignore the dimension of quality of service
associated with the timeliness of that service. The customary
index of the timeliness of service is its frequency. For
repetitive consumption or as an expected value for a single trip,
a high frequency of service improves the convenience of the

(1) The author is entirely indebted to unpublished comments by
R.W. Simpson for this concept. Much of this discussion has grown
out of work with Prof. Simpson.

(2) The use of heuristic prices for service qualities is quite
well established. Recent examples are Grenou [16] for air and
Roberts [23] for freight.



scheduling, i-.e. it saves time. For a scheduled service, the
consumer can read the schedule and avoid long waits. However,
some time inconvenience is still involved for low frequencies.
For the purposes of quantifying this time we shall use the
expected displacement time as an index of the time inconvenience
associated with the schedule frequency. This is the standard
assumption and has been used by Douglas and Miller [10], Gordon
and de Neufville [.14), Eriksen [11), and others. Displacement
time is the difference either forward or backward between the
desired time and the nearest scheduled departure. It will be
convenient to consider this as part of the time cost of a trip.

As far as the consumer is concerned, displacement time is a
more fundamental measure of the quality of service than
frequency. However, for a well designed schedule even with
considerable peaking in the desired departure times, expected
displacement time is proportional to the reciprocal of frequency.
This relationship applies both in theory [22] and in practice
[411.

The final part of travel time is time lost due to high load
factors. In a normal scheduled transportation system, most of
the consumers are served on their first choice of departures,
even though demand varies from flight to flight. In order to
serve most of the people most of the time, it is necessary to
provide more capacity than the average amount of demand. But
only absurdly large capacities serve all the people all the time.
Sometimes space is unavailable due to an unusually large surge in
demand. The ratio of average load on a regularly scheduled
service to capacity is the average load factor. Load factor is
an important aspect of service quality not because it has an
overwhelminq impact on non-money cost to the consumer but because
it has a powerful influence on average passenger trip cost and
thus on the price charged for the service.

The probability of a denied seat (due to load factor) can be
quantified, and an estimate is developed in chapter 4. The
penalty for such a happening is that the customer must wait one
entire headway period for the next scheduled departure and take a
chance on that being full. (1) Thus, the time associated with
load factor can be thought of as a probability of denied service
which goes up with average load factor times a headway which
drops with the reciprocal of frequency. We go deeper into these
matters in chapter 4. The practical gist of the matter is, the
hiqher the load factor, the more chance of a full departure,
while the greater the frequency, the smaller the extra wait time.

(1) Strictly speaking the customer may move to the second most
convenient service, the displacement being from his original
desired departure time rather than the time of his first choice
of departures. Only third and fourth choice departures must be
an average of one headway further from the desired time.
However, displacement of passengers to much earlier times may not
be possible, in which case the suggested formulation is correct.
In any case it is the conventional approach and seems intuitively
reasonable.



Up to now we have discussed dimensions of service quality
which can be converted into time penalties. We now mention a few
other quality dimensions.

Comfort, perceived safety, and reliability are all aspects
of service quality which can be crudely quantified. At least in
theory, a price can be put on them which adds to travel cost. In
air travel, however, these dimensions of quality add little to
the cost of the trip and they can be ignored, with great
reduction in the complexity of the demand models.

More often ignored but with less justice is the cost of
finding information on available services and of arranging to
purchase the service itself. In the freight modes there is
manipulation of the cost of finding out about a service. This is
done in order to influence demand. Unprofitable services may not
be admitted to exist upon casual inquiry with shipping agents.
(1) Profitable services are marketed door to door. The
situation is similar for passenger travel. In the passenger
business, rail and bus schedules are not practically available
from travel agents and discount air travel information is
sometimes withheld. (2) There are so many products available in
the transportation arena that the services and prices for a
specitic market are often hard to obtain. This adds to the cost,
at least tor some consumers, and often influences the choice of
mode.

3.3 Fare, Perceived Price, and Demand

The previous section implied that the total perceived price
to the consumer of a transportation service could be expressed
as:

PP = F + v-T + h-q (3.1)

Where PP is the total perceived price of the service
F is the money price or Fare.
T is the total travel time defined below.
v is the value of time for the consumer.
q is a variable representing other quality dimensions in

quantized measures. Dimensions include availability of
information as well as comfort and safety.

h are a series of values, i.e. implied (hedonic) prices,
for the various quality dimensions g.

Total travel time is defined as:

(1) Documentary evidence is not available to prove these points,
since such practices are illegal.

(2) Studies have been made to disprove this point for air travel.
The results do not coincide with thi- author's private
experience.



T = tb + fl(FQ) + f2(ILFFQ) (3.1a)

Where FQ is the schedule frequency.
LF is the average load factor
tb is the physical travel t (block time)
f1 is the displacement time function. In appendix c this

is shown to be fl=5.7/FQ
f2 is the expected value of delays du to load factor.

This function is developed in 4.1 as f2=57-LF /FQ.

Althouqh the functional forms of fl and f2 often differ, this
definition of total travel time is the generally accepted one
(cf. [10],[14]).

Real people making choices may not trade off matters of
fare, time, and quality in this simple linear form. This
formulation corresFonds to the first term of the Taylor series of
each of these fundamental tradeoffs. It will be absolutely
necessary to address these tradeoffs in the discussion of
transportation systems, but it will not be necessary to go beyond
the relative slopes v and h in the price expression.
Interactions between F, T, and g and curvatures of the
derivatives of PP with respect to these variables are not
necessary to our later developments.

There are two very nice aspects of this linear formulation
for perceived price. First of all, the numbers v and h are
dimensional quantities which have reasonable boundaries and which
may be obtained by asking people for their values on consumer
surveys. They can also be estimated from non-transport related
data (e.g. v should be associated with the wage rate; safety
values can be taken from tradeoffs in other activities). As a
last resort, they can be imputed from transport choices in the
usual way, by statistical inference.

The second advantage of the linear expression for total
perceived price is that consumer surplus can be expressed in a
simple closed form for the case of constant demand elasticity
with respect to total perceived price. The simplest demand
function for our use will be:

D = k, -PP (3.2)

Where D is the total Demand (1)
PP is the Perceived Price
k, is a market density constant
olis the (negative) elasticity

(1) Since the model is eventually calibrated from observed
behavior in individual markets, the demand curve is neither
income nor time compensated. In a less theoretical sense, we
have already chosen to ignore second order effects in the use of
equation (3.1) for perceived price. We do so because such
refinements do not affect our general conclusions, and because
demand model calibrations are an order of magnitude away from
beinq accurate enough to detect such effects.
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This is not a general form at all. It has been chosen strictly
on the basis of algebraic convenience. Since available
calibrations of forecasting demand models only provide first
order derivatives and since our analysis does not require higher
order terms, this form will do as well as any other. (1) Using
this forr, consumer surplus may be obtained as in figure 3.3.1.
With actual perceived price defined as Pa and the resulting
actual traffic as Da, surplus S becomes:

S = P dD -Pa-Da

or, reversing the axis of integration:

S D dPP

The second form is easier to integrate. By substituting D=k- PP
and performing the integral we get:

The second term is zero for a(<-1 and a large constant for
0<1(<-1. For the usual case where -3<o(<-1 the second term
vanishes. The first term can be reexpressed using (3.2) as:

S = -Da-Pa/(o(+1) (3.3)

This hybrid expression is convenient to remember. Surplus is
proportional to the product of actual traffic and actual
perceived price.

Discussion of Demand Model Form
There is an interesting consequence of the mathematical form

of the demand model. While fare elasticities as normally defined
are known to change with income, the elasticity with respect to
perceived price ( ( in (3.2)) may be nearly constant across
income groups. If a were constant across values of time, our
model implies that consumers with high value of time will be
insensitive to changes in money price (fare F) and sensitive to
travel time changes (T), while people with low values of time
will be inelastic with respect to time and elastic with respect
to money price. This seems intuitively correct. Whether '4 is
nearly constant across consumers of differing values of time is a
matter tor future statistical evaluation, but our assumption that
of is constant does not violate currently available information
and is convenient conceptually.

The approach to demand modelling which uses explicit values
of time (v) and quality (h) is intellectually clearer and
mathematically more tractable (with respect to consumer surplus)
than the form most often used in air transportation analyses
today. The more traditional form ([3],[11]) is

(1) Sadly as it may need improvement, it is not our place at this
time to advance the state of the art in demand modelling.



Figure 3.3. 1: Consumer Surplus
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D = k-F-TIq (3.4)

In this formula the value of time is Fb/Tg and the value of
quality is Fb/qu. (1) Sometimes when these expressions are
evaluated they produce numbers for value of time or service
quality outside of reasonable ranges. Values v and h (not g and
u) are the derivatives in the form which influence the technical
design, so they should be as accurate as possible.

It is unusual to combine the concept of hedonic prices (v,h)
with the more primitive formulation of consumer surplus.
However, the resulting model is mathematically straightforward
and conceptually simple once it is accepted that the price for
valuing and for paying for consumption includes both money
changing hands and labor input (T) on the part of the consumer.
An unusual consequence of this treatment is that figures like
figure 3.3.1 do not allow one to deduce the actual fare F, which
represents revenue to the producer. The process of matching fare
to cost and supply to demand in an air transportation market is
not as simple as it is in a market for hard goods. We will not
even specify the conditions which make a match until chapter 5.

Calibration
The two formulas, ours (3.2) and the traditional one (3.4)

can be made to agree in value and slopes at any given point.
This is what we have done to evaluate aa in our equation from the
best available prediction for b and g in the traditional form.
The best available estimates for b and g are from a two equation
regression of air travel markets by Eriksen [11]. Appendix B
details the transformation which produced our estimate of o4=-1.5
from Eriksen's results.

3.4 Disaggreqation of Demand

Although F, the money price paid for a transportation
service, may be the same for all consumers, the total perceived
price will vary according to the consumer's value of time and
value of quality. For instance, value of time might be predicted
by the consumer's wage rate. In this case the trip is more
expensive for a rich man than a poor one. (2) There will be
differences in value of time for the same person depending on the
purpose of the trip. Pleasure trips may involve a value of time
equal to the marginal wage less the marginal taxes while a
business trip will involve the marginal wage plus employment
taxes and overheads. In any case, there are different implicit
prices for different people and different trips. Thus the

(1) These values are derived from dF/dT=(dD/dT)/(dD/dF) and
dF/dq=(dD/dq)/(dD/dF). The symbol d is used to indicate a
partial derivative.

(2) For ease in terminology we treat ircone and wealth as
perfectly correlated.



perceived price of a trip varies among the population.
The distribution of perceived prices among the consuming

population is not an academic point. We saw in chapter 2 that
small aircraft are very expensive, so division of a market into
many small pieces is uneconomic. From this we suspect that only
a limited number of types of service are likely to be available.
Services tailored for one type of consumer will be expensive for
another type. For instance when only one type of service is
offered, the choice* of service affects who gets the greatest
benefits. The important social issue is not so much technical
efficiency as the distribution of benefits among consumers with
different values.

An arbritrary example will help to illustrate this. The
numbers employed will be more fully explained in chapter 5. Let
us consider three classes of people: those with a value of time
of $1 per hour, those with a value of time of $10 per hour, and
those with a value of time of $50 per hour. At this point in our
development we must take as an assumption that it is possible to
offer scheduled passenger service in an 800 mile city pair market
by air at a fare of $59, a frequency of 5.2 flights per day, and
a load factor of 67% average. Travel time including flight time,
displacement time, and the expected value of delays due to load
factor is 3.32 hours. The perceived price of such a service is
$62, $92, and $225 for our $1/hr, $10/hr and $50/hr people,
respectively.

For this market it is also technically possible to offer
service at a fare of $47, using a larger aircraft twice a day at
a 77% load factor. Travel time is 7.36 hours when delays are
included because of large amounts of displacement time and
frequent unavailability of service due to full flights. The
respective perceived prices of such a service are $54, $120, and
$415. Although fare is 20% less, the two wealthier classes of
travellers experience a very large increase in the perceived
price of the service. On the other hand, the $1/hr people notice
improvement.

Table 3.4.1 describes the situation for three technically
feasible (zero profit) options of air service for this example.
Each option favors one of the types of customers over the other
two. ithin the available service types, the "charter" service
is best for the $1/hr people, the "standard" service is best for
the $10/hr people, and the "premium" service is the best for the
$50/hr people.

Operations at the "charter" level of service represent great
inconveniences of time for the $10/hr and $50/hr people.
Operations at the "standard" level represents a wastefully high
quality of service as far as the $1/hr people are concerned. To
first order however, the operator of the service is content to
operate at any of these points, since all three are technically

(1) A risk averse operator might prefer the higher value of time
customers because they are fare inelastic and he can raise his
tares if his costs turn out higher than expected.



Table 3.4.1: Perceived Prices at Different Levels of Service

services:

fare:
frequency:

load factor:

travel time:

charter

$46.88

2.0

76.5%

7.36 hrs

standard

$58.58

5.2

66.5%

3.32 hrs

All services are technically feasible at 400
and zero loss. Numbers from chapter 5.

premi um
$75.94

11.0
61.0%

2.53 hrs

passengers a day

perceived prices:

services: charter standard premium

@ $1/hr $,54 $ 62 $ 78

@ $10/hr $120 $92 $101

@ $50/hr $415 $225 $202

Relative Traffic:

services: charter standard premium

@ $1/hr 1.00 0.91 0.64

@$10/hr 0.66 1.00 0.86

@$50/hr 0.34 0.86 1.00

total: 2.00 2.77 2.50

Relative Surplus:

service:
@ $1/hr
@ $10/hr
@ $50/hr
totals

charter standard.

0.59 0.55

0.87 1.00

1.54 2.10

3.00 3.65

relative consumer surplus takes into accound both perceived
price and relative traffic.

premi um
0.53
0.95
2.21
3.69



possible at zero loss. (1)

3.5 Market Split

Distribution of Values Among Consumers
For the set of all potential consumers or trips, the

distribution of imp.licit prices for time and other quality
dimensions may be thought of as a probability density function
defined over an n-dimensional space. Each dimension would be one
aspect of quality. Figure 3.5.1 is a contour map for the two
dimensional case. Here the two dimensions of tastes are value of
time and value of reliability. Reliability is measured in
percent but not otherwise defined in this example. From the
contour map one can deduce a peak of demand in the $6/hr and
$30/% range and a correlation in the demand population between
value of time and of reliability.

Splittingjthe Market by Value of Time
In fiqure 3.5.1 there is a dashed line which represents the

watershed between those consumers who prefer a service which
takes 4 hours, is 99% reliable and costs $50 (service A) over a
service which takes 8 hours, is 91% reliable and costs $18
(service B). Given the concept of a distribution of tastes among
consumers, services which compete in the same market with
different cost/quality combinations split the market by such a
watershed line. With more than two service choices, the demand
space is divided into multiple regions. If the numbe.r of
services is no more than one greater that the number of quality
dimensions, all firms can compete against all other firms to
varying degrees.

Figure 3.5.1 is the last time we shall use more than one
dimension of quality to illustrate this point. Usually we will
assume that value of time is the dominant factor and other
quality dimensions g and their implicit prices h will be droppped
from the discussion. Figure 3.5.2 illustrates the case for a
single dimension of quality. Instead of a contour map, the
vertical axis can be used to display the demand density. Figure
3.5.2 shows the demand density and figure 3.5.3 shows the
watershed line between two services.

In practice the watershed line between the two services in
fiqure 3.5.3 will be somewhat muddied. The travel time is a
distribution imperfectly represented by its expected value. In
particular there are variations in access and displacement times.
Some# people will live near an airport and want to leave just
when a flight departs and others will live across town and have
other time of day plans. Thus the distribution of travel times
will muddy a division of traffic made according to average travel
times. (1) This situation will lead to a watershed line which

(1) Further lack of clarity will occur due to inaccurate
perceptions of time or modal choice decisions which are not
strictly rational.



Figure 3.5-1: Hypothetical Density Function for Demand in a Market
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Figure 3.5.2: Distribution of Value of Time

Demand Density Function for the Single Quality of Service
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may look like the one in figure 3.5.4.
When two services are identical except in detail, the model

as we have drawn it fails to provide any useful insights into the
form market split will take. The market split line would become
horizontal rather than vertical, dividing the market according to
some criterion not presented in our figures. Such competition is
very much a possibility in air travel. An example of one of the
forms it may take is presented in section 3 of chapter 4 and
another is explcred in appendix C. But- the larger issues of the
amount and distribution of benefits are apparent from the
pictures we have drawn, so we will not develop the demand model
further at this time.

Our presentation of the problem puts the demand modelling
process in a very untraditional form: modal split is made with
the full disaggregation of demand in the dimension of values of
service quality (figure 3.5.3), and there is a probabilistic
choice of modes or services only for a small part of the
population for which it is a close decision. We see that only a
qroup of people near the watershed line are involved in the
process of competition between services.

As long as the muddying of the service choice decision is
symmetrical, i.e. there are as many people below as above the
average values, the presentation in figure 3.5.4 with the curved
watershed line is not necessary. For clarity, we shall revert to
the use of a distinct, straight watershed for the rest of this
discussion. (1)

Distribution of Demand Stimulation
We now wish to combine two concepts involving the

distribution of values of time. We let the demand distribution
line of figures 3.5.2 through 3.5.4 represent the maximum traffic
at each value of time. By maximum we mean the traffic if the
best mode offered technically efficient service most suited to
just that value of time. Thus for any single service level
offered, actual traffic will only equal the demand density line
at one place. The situation is illustated in figure 3.5.5. The
shaded section on the left represents demand for which the
available service quality is unduly expensive when compared to
service more closely tailored to its needs. The shaded section
to the right similarly represents demand for which the service is
a mismatch, only this time the quality is too low.

Market Split between Competitors
With this concept in mind, we can now define two

philosophically different ways of altering market share between
firms (market split). We consider two firms splitting the market
as in figure 3.5.6. Notice that at the watershed line, both
firms satisfy the same fraction of the potential demand.

The first type of change in market split is the kind which
could come from technological improvement of one firm. Thus if

(1) For a discussion of a calibration of su-h a demand model, see
Blumer and Swan [3).
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Figure 3.5.6: Market Split and Demand Satisfaction Shown Together
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tirm A suddenly became faster and cheaper, but remained designed
for the $7/hr demand, the new market split would involve an
increase in satisfied demand at the higher value of time levels,
but little penetration of firm B's market. This situation is
illustrated in figure 3.5.7. There is a broad increase in
traffic indicated by the dark shaded band and a narrow
penetration of firm B's market indicated by the column lying next
to the new watershed line.

The other type of market split change occurs when firm A
using its old technology merely reconfigures itself to favor the
low value of time market served by firm B. This is illustrated
in figure 3.5,.8. Here firm A is reconfigured to offer service at
a lower fare and frequency and higher load factor. Comparison
with figure 3.5.6 shows a large amount of traffic removed from
firm B, an increase in the fraction of demand satisfied in the
$1/hr range, and a decrease in the amount of satisfaction for all
demand above $5/hr.

This model of demand including a quality dimension (in this
case, time) sheds some interesting light on the process of
competition irrespective of the exact nature of the
transportation technologies involved. First we notice a
predilection for competing firms to match their price/quality
offerings. This is what Nason [21] has shown to happen for
airlines with identical technologies. (1) If we assume that the
total traffic accruing to a firm is either a direct objective of
management or instrumental in achieving management's objectives,
then premium firms will tend to degrade their services (and drop
prices) in order to capture the lower end of the market. They
will do this as long as they are not losing too much traffic at
the upper end of their market due to increasing the mismatch of
service. Similarly, low price/quality firms will attempt to
raise their quality (and price) until constrained by the loss of
the poorest of their customers. (This type of competition was
originally discussed by Hotelling [17] in the context of ice
cream salesmen positioning themselves on a beach.)

If the two competitors have different technologies, their
service/price packages may be held apart by the limitations of
their operations. In addition, if demand stimulation dominates
the market response, firms with identical technology may be held
apart by the desire to satisfy different market segments. On
the other hand we cannot ignore the predeliction of technically
similar firms to offer services as nearly indistinguishable from
each other as possible.

This process of product matching leaves the extreme top and
bottom of the demand relatively unsatisfied. Market entry may be
easiest for a firm directing its attentions to the top or the
bottom of the market. In airline parlance, for a Freddie Laker
Skytrain or a supersonic Concorde.

The demand model alone has less to say about three, four, or
more firm equilibrium than it does in the case of two firms.

(1) Nason's development of the argument focuses on the single
quality dimension of displacement time.



Figure 3.5.8: Market Split Change by Change in Service/Price Option
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However, as the number of firms grows, losses and gains due to
market.penetration become smaller and demand stimulation effects
become stronger. A greater diversity of services can be
expected.

The above discussion has taken the view that maximum traffic
is instrumental in achieving the objectives of the firm. The
objective of maximum profits may be more readily achieved by
isolating a segment of the demand from even remotely useful
alternative services and then exploiting the local monopoly in
that segment of demand to its fullest. Thus we notice that
consumers lying near a modal split watershed line are unlikely to
be unduly exploited by either firm, while consumers at the
extremes may be offered unsuitable services and also suffer
higher price markups whenever they can be singled out in the
marketplace. In air freight we have an example of this in
Federal Express. Federal Express serves the very high value of
time traffic without direct competition in performance. They
have been able to raise prices to cover costs. (Cf. [15].)

3.6 Multiplication of Service Levels

We have already introduced the situation in which a market
is served by two different service levels. In figure 3.5.8 two
firms satisfy more demand than the one in 3.5.6. An interesting
possibility to contemplate is a situation such as figure 3.6.1
where many levels of service are available and almost all the
demand is suitably served. This is the case with the greatest
possible consumer benefits.

Unfortunately the provision of service by each new firm is
accompanied by non-capacity costs. The per vehicle cost in
chapter 2 is one such cost. Vehicle costs recur every day that a
firm offers a frequency, but they do not rise with traffic. Thus
vehicle frequency cost is like a fixed cost. (This will become
more obvious in chapter 5 when explicit matching of demand and
supply is treated in detail.) Each additional firm's service
represents an extra fixed cost. Finding the optimal number of
firms is a matter of trading off the extra fixed costs for each
service type against the extra benefits in terms of demand
satisfaction because of a better matching of service level to
desires. This problem has been discussed theoretically for a
general industry by Chamberlin [4].

Joint Service Offerings
Throughout this discussion we have implicitly assumed that

each firm offers only one level of service. To some extent
multiple service levels can be offered by the same airline by
altering space availabilty and timing for different types of
fare. (1) In this way multiple price/quality combinations can be

(1) When information about actual rather than probable loads on a
service is available to the consumer, differentiation becomes
difficult. See chapter 4.



offered without increasing fixed costs. However, a single firm
is not competing with itself when it offers several quality
options and its pricing and service choices reflect the fact that
cross elasticities refer to traffic which is still on that firm's
service. Although multiple service choices may increase demand
satisfaction, the firm is in a position to capture much of the
extra value as revenue. We continue to consider the one firm,
one service case, avoiding these secondary complications.

Irends for Optimal Service Distributions
in the general case a small market probably should receive

only one level of service while larger markets generate larger
total benefits and thus justify multiple service levels and more
fixed costs. At least this would be the case in a technically
efficient system design. Market growth should be from one choice
of service to many.

The distribution of demand according to its value of time
allows us to perceive the dual objectives for efficient system
design. The first objective is reduced cost or technically
efficient provision of service levels. The second objective is
an appropriate distribution of service level options. The
service levels should be suited to the distribution of consumer
values and should offer several options, especially in dense
markets. Whether this will happen in a competitive situation is
a good question.

3.7 Conclusion

At this point we leave our general discussion of demand
behavior and turn our attention to the fundamentals of transport
technology in serving a single isolated market. Throughout the
rest of the discussion we shall refer to the conceptual model
implied by the figures in this chapter and especially figure
3.5.8 as our demand model. The understanding is that equation
(3.2) is to be exercised at each value of time.

In the next chapter we examine in detail a part of the
process of matching demand and supply, that is the issue of load
factor. In chapter 5 we do the matching for a single market and
firm, discussing the levels of firm and the distribution of
benefits which should occur.



4 Load Factor

4.0 Introduction

Chapter 2 presented the cost of providing transportation
capacity on a regular scheduled basis. Chapter 3 discussed the
nature of the demand for those seats, made up as it is by the sum
of a number of different personal decisions to travel. The next
step is to examine *in detail a simple single link matching of
these two numbers.

Load factor for a regularly scheduled service has been
defined in Chapter 3 as the ratio of the mean traffic to the
(constant) capacity. As such, it was used as an index of quality
of service and become part of the travel time component of
perceived price. The fundamental index was the rate of space
denial. At that time detailed discussion of how load factor
affects denial rate was deferred until this chapter. Section 4.1
develops a model which predicts the rate of space denial from a
careful consideration of statistical matters.

The numbers for demand as it was discussed in chapter 3 were
totals of the demand for all the departures in a daily schedule.
Because we were discussing long term design, this daily total was
an average for numbers of daily repetitions of the schedule. The
schedule is operated for a number of months. For the calculation
of mean denial rates not only the mean demand but also the
variability about the mean is important. Variations in demand
come from both regular cycles and unpredictable randomness.
Section 2 discusses the components of total variability in demand
and their estimates. theoretical development.

Finally, the nature of the reservations and space
availability process permits competition favoring what may be
undesirably high load factors and correspondingly poor service.
This point is raised in Section 3. Detailed treatment of load
factor problems in this chapter allow for single-market,
single-link optima to be developed in the next by matching
demand, capacity, cost, and service. General conclusions may
then be applied to framing the network design problem in the
following chapter.

Although the concept that load factor influences space
availability is widely used, the problem has yet to be correctly
addressed as a probabilistic model, The treatment in this
chapter corrects the best efforts to date (1) and brings to light
several new issues. (2) In addition the issue of competitive
practices with respect to load factor is seldom addressed even by
those employing essentially correct space availability models in.

(1) Douglas and iller [10], Chapter 3, which contains two
analytical errors, but which is correct in intent.

(2) most especially the problems of correlation of the
variability of demand with the mean.



competitive situations. (1)

4.1 Load Factor and Denied Boardings

High average load factors for a transportation service cause
some fraction of users to be unable to take the departure they
would prefer. This section explores two mathematical
descriptions of the process by which some but not all of the
departures in a series come to be over-subscribed and a number of
measures which come out of such models. While the fundamental
results have often been correctly grasped, (2) the formal
treatment which follows has not been presented in the
literature.

We start by specifying with greater detail the phenomenon
we wish to model. A transportation schedule can be once each
day, once each hour, four times weekly, or any other arrangement
of departures which is useful. For our theoretical model we
insist that each departure be performed by a aircraft of the same
capacity. Although changes in capacity will not be discussed,
the model will apply in cases when demand for departures with
different capacities scales with the capacities. (3)

We describe the demand for a randomly selected departure in
a schedule as a random variable d, We assume that all we know
about d is contained in a probability distribution 0(d). We do
not distinguish among departures in the group; they all have the
same 0(d), In practice there may be information about the demand
for consecutive departures in the schedule, but departure. to
departure correlations will not be captured by our 0(d). The
known cyclic variations in demand are, of course, included.in 0,
as are random elements of variability. As defined, 0(d) could
apply to almost any grouping of departures in a network.

Not all of the demand is carried on their preferred
departure The demand variable d includes passengers who cannot
get on the aircraft because there is insufficient capacity.

The probability distribution 0 has a mean p and a standard
deviation c: The variability may be caused by such cyclic
changes in demand as weekend peaks against a daily departure
schedule or morning and evening peaks against an hourly schedule
of departures, Appendix E shows that this effect is quite large.
In addition, some of the variability of demand is caused by
random fluctuations in the desire for travel. It does not matter
to the model at this point what is the source of the demand
variability; we take it that the distribution 0(d) is known.

Three demand distributions are presented in figure 4.1.1.
Figure 4.1.1A shows the demand distribution for a group of

(1)Notably Dorman [9]).-----

(2) See especially Gordon and DeNeufville [14].

(3) Both the mean and distribution of demand must maintain a
constant ratio to aircraft capacity.
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departures with a strong peaking pattern. For half the
departures,.the demand is 150 passengers; for the other half the
demand is only 50. This produces the two-peaked distribution for
a randomly selected departure. Figure 4.1.1B displays a nearly
triangular distribution with a broader.spread of demand levels,
The probability distribution 0(d) for Figure 4.1.1B is still
discrete Figure 4.1.1C shows a Gaussian probability density
function O(d) as a continuous distribution. This last case is
the one we shall ultimately use to describe air travel.

If we define the capacity of each departure in the group as
c, we can write formulas for several measures, each of relevance
in a different circumstance. The model now states that the
demand is distributed as 0(d) and the capacity is always c. For.
those times where demand d is less than capacity c, all the
demand is carried. When demand exceeds capacity some fraction of
the demand is denied space.

Before we start we must discuss what happens to those people
who are denied space, Do they go home and not make the trip? Do
they get first priority on the next departure? Do they join the
lottery for seats on the next departure? Associated with this is
the question of correlation between the demand for a departure
and the demand for the departure succeeding it.

Our discussion will focus on two of these possibilities. We
make the distinction that 0(d) is the distribution of demand
initially preferring a particular departure. We define Os(d) as
the demand for a randomly selected departure including. any
passenqers not accomodated on previous departures in the schedule
who do spill to the next departure.

If passengers for whom space is unavailable on their
preferred departure turn away entirely and do not attempt to
board the following departure, then Os=0. To distinguish this
case we will refer to it as the turnaway model and we will call
its distribution Ot.

If all the passengers for whom space is unavailable on their
preferred departure are spilled to later departures, then Os will
have a higher mean and standard deviation than 0. We will,
discuss the case where a turned away passenger enters, the lottery
for the next departure without priority. This approximates
airline reservations practice. If we maintain the same preferred
distribution for each departure and add to that the distribution
of spills, the process forms a Markov chain. We will refer to
the demand distribution including spills as Om(d). This we. call
the spill model.

For a Gaussian O(d) the distribution Om(d) can be
calculated. We have done so numerically for the cases in this.
chapter. We assumed a capacity of 20 and mean demands in the
range 10 to 20. We divided the Gaussian probability density
function O(d) into a distribution by integrating from -. 5 to .5,
from .5 to 1.5, and so on up to 49.5. This gives a probability
vector Po(d) for the number of people who prefer a given
separture. (We lump all the probabilities in the negative tail
of the Gaussian distribution in the first element of Po,
Po(d=0).) From this vector we can generate tie transition matrix
T(i,j) where T(ij) is the probability of having a demand j for a



departure given there was a demand i for the preceding departure
and any.excess of i over capacity spilled to the next. We can
say

T(i~j) = Po(j) for i<c
T(ij) Po(j-i+c) for i>c

If we define Pm(j) as the distribution for the mth departure in
the series and if we know the demand for the first departure was
k, then

Pm(j) = Pk(i).T(ij)

Where Pk(i) is zero except Pk(k)=1. It is a property of T(i,J)
that for m sufficiently large, each row is identical and
independent of m. This is called the steady state transition
matrix for the Markov chain. We raised T(i,j) to sufficiently
high powers to achieve this result in order to obtain the
numerical values for this section. The resulting Pm is the
discrete form of Om. (1)

Conceptually, the spill distribution Om is the original
distribution 0 scaled up and spread out by the spill rate. This
is illustrated in figure 4.1.2.

Neither the turnaway nor the spill model represent all we
know about a series of departures in a schedule. Because peaks
and valleys of demand cycles are known, some correlation between
the demands of consecutive departures can be measured. With a
significant positive correlation between consecutive departures,.
even the spill model understates the ultimate probability of
demand exceeding capacity. Nonetheless it is a suitable.
approximation for modest spill rates.

Using first the simple turnaway model and then the spill
model we define several measures for the cases of figure 4.1.1,
e.g, the three cases illustrated. Our primary focus is on the
Gaussian distribution, case C, but the simpler distributions make
good illustrations.

Nominal Load Factortln)_
The simplest number to define is the nominal load. factor.

By this term we mean the ratio of the mean of the demand to the
capacity. Mathematically we may define the nominal load factor
as:

p/c = ln = (d) dd (4.1)

The nominal load factor describes only the basic demand.
Whether it spills to succeeding departures or not is not an
issue, so the measure is the same for both turnaway and spill
models. The capacities assumed for cases A, B, and C were 100,

(1) Note: although there are errors in the Douglas and Miller
rioi treatment of this topic, Table 6-5 appears to be numerically
correct.
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150, and 150 seats and p is in every case 100. Therefore in has
a value. of 1.00, 0.67, and 0.67 for cases A, B, and C
respectively (see Table 4.1.1). From case A it is clear that
this load factor (In = 1.0) will not be achieved in practice. In
case A, half the departures have a demand of 50 over the
capacity. The actual load factor for these departures is 100%.
From a practical standpoint, nominal load factors near or above
1.00 will not be handled by our approximations, although they may
occur in fact.

Probability of a Full Departure,_P100
A crude index of level of service is the fraction of

departures which are filled. We call the probability of a full
departure P100. This is merely the integral of the distribution
0 above the capacity: 0

P100 = Os(d) dd (4.2)

In the turnaway model Os=Ot=O. Table 4.1.1 lists the values
for P100 for the three example cases from figure 4.1.1. For case
A, P1 00 is 50%. For case B, the integral is 15%. For case C the
inteqral is the shaded area of Figure 4.1.3, e.g. the cumulative
normal above the capacity. The value is 15.9% in case C.

For the spill case, Os=Om. Needless to say, the probability
of a full departure is higher when customers can spill to, later
departures. We have calculated Om only for the GaussianNgase.
For the spill model of curve C, the probability of a full
departure is 19%.

Reported load factors will most closely correspond to the
spill model. Because of no shows and standbys, reported load-
factors above 95% but below 100% probably include a large
fraction of cases which are described as 100% load factors in our
numbers For the purpose of comparison with observed load
factors, the probability of a 95% or higher load factor according
to the spill model is presented for several load factors and
demands in table 4.1.2.

Flight availability Av is sometimes defined as

Av = 1 - P100

The name fliqht availability is misleading since it is not the
probability of a person being turned away from a departure. We
will discuss that measure next. It is possible to have half the,
departures full (Av =0.5) and have no one turned away... This
would be the case if the two-peaked demand of figure 4.1.1A were
served by a 150 seat aircraft. The flight availability is. only
an informal index of service levels.

Space Avalability Pd
The best measure of the quality of scheduled service.is the

probability of a person being denied space on a departure. We
call this probability the space availability, Pd. This number
takes the situations in which anybody is turned away (Os(d>c))
and weights them by the number turned away (d-c). For the



Table 4.1.1: Measures Using Simple Turnaway
Illustrated in figure 4.1.1

Demand mean

Demand standard deviation

Assumed Capacity

(1) Probability of a full departure

(2) Probability of denied boarding

(3) Nominal Load Factor

(4) Actual measured load factor

(5) Passenger observed load factor

case
A

100

50

100

0.5

.25

1.00

0.75

.833

Model for Cases

case
B

100

41

150

.15

,02

0.67

0.65

.749

case
C

100

50

150

.159

.04

0.67

0.64

.764

Table 4.1.2: Flight Unavailability at 95% load factor for comparison
with observed data;

Values on table are the probability of a randomly
selected de ture having over 95% load factor
Spill model hea

average
load factor

.50

.60

.70

.80

Gaussian Demand/

1.0 2.0 3.0

.212 .043 .005

.383 .138 .042

.524 .302 .081

.621 .494 .373

numerical calculations from a 50 x 50 Markov chain steady state
transition matrix. See text.



Figure 4.1.3: Probability of a full
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turnaway model **

Pd = 1/p 0(d) (d-c) dd (4.3)

This number is presented in table 4.1.3 for several Gaussian 0's.
For the spill model the space availability is similarly:

Pd = 1/p Om(d) (d-.c) dd (4.4)

Here Om is the distribution of demand for a randomly selected
departure including customers spilled from other departures. Pd
in this case is presented in table 4.1.4 for several Gaussian
O's.

Ultimate Denial Rate, jPu
space availability Pd is the denial rate for a single,

departure. On the other hand, the demand model in Chapter 3 used
for its measure the chances of waiting exactly one extra headwa.y..
For the spill model, there is the additional chance of second,
third, and fourth denials. The space availability Pd is only an
approximation of the measure we need for the demand model. A
better approximation of the desired measure would allow turned
away customers to enter the lottery for the next departure with
the same odds as before, and would count the cumulative number of
turnaways. If the spill rate is small, the spill model
approximates the multiple spill behavior fairly well. From this
formulation we get the number of denials per customer as the
power series sum:

Pu = Pd +Pd +Pd +Pd +.... (4.5)

n
Where Pd approximates the probability of being turned away from
n consecutive departures. We call Pu the ultimate denial rate.
Mathematically Pu is still an underestimate of the number of
denials per boarding because the knowledge that there are spilled.
customers is not included in the calculation of the two-spill
probability (EPd2), but such an approximation should be valid
over normal load factor ranges. This spill model ultimate denial
rate is the number we shall use in the demand model as the
probability of enduring one extra headway of wait. We will see
in section 4.2 that the case of a Gaussian distribution with u/o
=2 describes airline demand fairly well. In this light the
values for Pu in table 4.1.5 will be used in the demand model
(3 2) when it is exercised in chapter 5. For .algebraic
convenience we will employ the approximation

Pu= 2.5 1n1 (4.6)

This approximation was obtained by curve fits of the numbers in
table 4.1.5. Quite a few more complicated functions and other
exponents on load factor were tried, but this approximation
seemed best. Over the critical range of load factor, 0.6 to
0.8, the accuracy is acceptable.



Table 4.1.3:

nominal
load factor

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

1.00

Space Unavailability for the lost turnaway model

Gaussian Nominal Demand Distribution y/a
1.0 1.5 2.0 2.5 3.0 10.0

.083 .020 .004 .001 .000 .000

.116 .035 .011 .003 .001 .000

.151 .056 .021 .008 .003 .000

.186 .079 .036 .017 .007 .000

.221 .105 .054 .029 .016 .000

.254 .132 .076 .045 .028 .000

.286 .159 .099 .065 .044 .000

.317 .187 .124 .087 .063 .002

.346 .214 .149 .110 .085 .007

.373 .240 .174 .134 .108 .019

--- .265 .199 .160 .133 .040

Table 4.1.4:
nomi nal
load factor

.50

.55

.60

.65

.70

.75

.80

.85

.95

.95

Space Unavailability for the spilled customers model

Gaussian Nominal Demand Distribution y/a,
1.0 1.5. 2.0 2.5 3.0 10.0

.108 .022 .004 .001 .000 .000

.198 .046 .012 .003 .001 .000

.284 .084 .026 .009 .003 .000

.374 .138 .051 .020 .008 .000

.463 .215 .092 .042 .020 .000

.531 .310 .155 .078 .042 .000

.578 .416 .248 .141 .082 .000

.605 .519 .370 .244 .158 .002

.614 .607 .508 .396 .297 .009

.710 .674 .640 .579 .513 .047

%4- iw OWN M ONNi



Table 4.1.5: Ultimate Denial Rate
Gaussian Nominal Demand with P/c = 2.0

Approximation

2.5 x In 9

.005

.012

.025

.052

.101

.188

.336

.579

.969

1.576

Space
unavailability
Pd

004

.012

.026

.051

.092

.155

.248

.370

.508

.640

Crucial range of in is .55 to .70

nomi nal
load
factor in

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95

ultimate
denial
rate

.004

.012

.027

.054

.101

.183

.329

.587

1.033

1.780



Lm tion~s...gt he t gmand Lode1 for Turnaway and Spill
It turns out the combination of the demand model. and the

ultimate denial rate has implictions about the rate.at which
customers turned away from their preferred departure are retained
by the system. It behooves us to explore the behavior implied by
our models to see if it is reasonable.

We do so by a case study for a market with service defined
by a fare of $75., a frequency of 5.7, a block time of. four
hours, a value of time of $10./hr. and a capacity of 100 seats
total. We use a Gaussian demand distribution with p/a = 2, and
the demand equation from chapter 3 (equation (3.2)). Looking at
Table 4.1.6 we see a series of a priori demands in column- (1).
These are not the actual traffic that occurs with capacity set at
100 but rather they are the mean demand a that would occur if
capacity were so large there were no denied boardings. Column
(2) shows the turnaway model space availability for the Gaussian
0(d) and a capacity of 100. This we take as our a priori.
estimate of the rate of denial for the preferred departure. The
traffic according to our demand model reacts to this denied
boarding rate, and p is reduced. Iterating between estimates of
traffic (adjusted for denial rate) and predictions of ultimate
denial rates (using the adjusted traffic) we get a new observed
traffic po in column (3). This is what our demand model calls
the demand. With capacity at 100 and load factor at po,. the
ultimate denial rate was Pu from column (4).

We can now compare the losses as estimated by the demand
model and the number of turnaways. The demand model losses are
the difference between columns (1) and (3):

losses = (p-po)

The turnaways are those losses plus the ultimate denial rate for
the traffic which remains:

turnaways = (p-po)+Pu.po

The ratio of losses to turnaways is the rate of loss implied by
th demand model. The rate is shown in column (5) of table 4.1.6.

The combination of the demand model and our more detailed
load factor submodel appears to cantain no unhappy surprises.
Column (5) shows a constant fraction of lost turnaways with. load
factor. The losses appear to be reasonable. For instance, at a
measured load factor uo of 67.6%, we see that there could have
been 70 customers (u) had space been available in the peaks. Of
the people turned away, 33% failed to take a later departure.

Notice that the problem now has three means. The first mean
is the mean of the Gaussian single departure demand .0. The
second mean is po, the mean of the traffic as predicted by the
demand model with iterations for the denial rate. Finally there
was another mean which was the mean of the distribution of
spilled demands, of Om. This pm was above p (see figure 4,.1.2).
In fact for all reasonable distributions,, pm is above the a
priori p of column (1). Of these three means, the only
observable number is po, mean onboard load.



Table 4.1.6: Comparison of Denied Boardings Lost for
Demand Model under Typical Circumstances

Capacity = 100;

(2)
turnaway
model space
availability

Pd

.017

.032

.050

.071

.095

.119

.145

.170

.195

(3)
ultimate
mean
demand

pb -

59.3

63.6

67.6

71.0

74.0

76.6

78.7

80.6

82.3

y = (75+10'(5+4'Pu9 )-1. 5 for Pu=0 .

(4)
ultimate
denial
rate
Pu

.023

.043

.074

.115

.166

.227

.290

.359

.433

(5)
Fraction of
denials
lost
% lost

.34

.34

.33

.33

.33

.33

.33

,33

.33

(equation 3.21

(2) 'Pd for Gaussian demand with p/
model on table 4.1.3

r= 2.0 as in lost turnaway

(3) y =(75+10'(5+4'Pu9 )) 1.5; Pu from (4).

(4) Pu = 2.5'p%9; load factor for capacity = 100,

(5) % =(p-p%)/(p-po+Pu'P1.)

p/o- = 2.0

(1)
original
nominal
demand

P

100

(1)
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Table 4,l.7; Buffer Space for Fixed Service Standards
for explanation, please see text

buffer for a Pd of 2% according to spill model

load factor buffer in a s

.49

.58

.65

.70

1.56

1.45

1.35

1.29

buffer for Pd of 10% according to spill model

load factor buffer in a's

.48

.61

.70

.76

.81

1,08

0.96

0.86

0.79

0.70

1.5

2.0

2.5

3.0

1.0

1.5

2.0

2.5

3.0



This case study has served to clarify some fine points
involved in the combination of the demand and denial rate models.
The two models are not perfectly mated by nature, and some care
must be taken to use the most appropriate measure of denial rate
from the load factor submodel for the demand model.

Buffler or Constant Denial Rate
we think of the difference between the capacity and. the mean

demand as the buffer space. As one would expect, the buffer
space necessary to achieve a standard of Pd goes down with the
standard deviation of the demand, c. This can be seen from the
first and second columns of table 4.1.7. The first column shows
that as q goes down (or p/4-goes up), the load factor allowable
for a specific denial rate goes up. What is surprising is that
the buffer space necessary goes down even when Jt is
nondimensionalijed by the s~adard deviation. The third. column
of table 4.1.7 shows a decrease in bu.ffer space for a. fixed
denial rate beyond linear adjustments for changes in a-. This
occurs because the tail of the Gaussian distribution represents
different fractions of p for different values of o-. (1)

The point may seem unnecessarily technical, but it is
natural to assume that a standard of service in terms of-denied
boarding can be specified by stating a buffer space measured in
standard deviations of demand. I Indeed both this author and
Douglas and Miller made just that assumption at first. It proves
inadeguate

4.2 Estimating Variability of Demand

The preceding section discussed in detail the theory of
demand distributions for a series of departures and the
consequent ultimate denial rate. The fundamental input
information for the process was 0(d), the distribution of the
demand d preferring a randomly selected departure. The statistic
we can measure which is closest to 0(d) is the distribution of
measured load factors over a set of departures, 0(1).

As we can see from figure 4.2.1 in the case of airline
passenger transportation the distribution of load factors 0(1)
takes on a nearly Gaussian. shape with p/e- near 2.0. The
Gaussian shape occurs because the variability of- demand is
composed of a number of independent influences.

Random and Cyclic Variability
our analysis of demand variability makes the distinction

between cyclic and random demand variations. Cyclic.variations
could be more closely matched if the supply system found it
economic to do so. Random variability is entirely outside of
design efforts to reduce.

Cyclic variations are those variations which can be observed

(1) For a rigorous mathematical demonstra t ion of this, see
appendix D.



Figure 4.2.1: Frequency distribution of load factors

from service segment data on trunks and locals, Feb 1976

(ref 40)

number of
departures
with stated
load gfactor

seat-departure load factor



by adding up the loads from large numbers of departures by
category. For instance weekly cycles are observable by comparing
Monday's total traffic to Tuesday's and so on. Cyclic
variability is part of 0 only because we have defined . to. apply
to all departures in a schedule without entering into time of day
issues. An important consequence of this definition of cyclic
variability is that it should be proportional to the mean demand.
If we call the contribution to the standard deviation of demand
by cyclic variability cb and the mean of demand p, then dc/p
should not change with p.

This is not the case with the random variability of demand.
We will call the contribution to the standard deviation of demand
due to variabilities which do not scale with the mean d'r. Random
variability dr averages out whenever more than one observation is
added together. In fact, random variability is the variability
which exists when the cyclic variability is removed. Cycles may
be used to predict the expected value of the demand for a
departure for a Tuesday in January at 2:00 p.m. Then the
variation among the four Tuesdays is random. Random variability
is very nearly the variability which averages out whenever you
try to observe it.

This is the important aspect of random variabilities: they
averaqe out. They average out not only in observations but also
in practice as load sizes get bigger. As we shall develop
shortly, random variabilities do not scale as the mean demand u.
They scale with its square root. This is an interesting design
influence and motivates much of the effort spent determining how
much of observed load factor variability is cyclic. Table 4.2.1
shows that a market of 10 passengers a departure may have.
variabilities both cyclic and random requiring a 50% load factor
while a 100 passenger market can survive a 65% load factor for
the same standard of service.

Summarv of Issues
We can summarize the situation for scheduled. air

transportation as we have drawn it so far: We can use mean load
and load factor to deduce rates of denied boardings. The
deduction of denied boarding rates depends on assuming a Gaussian
distribution of demand for a departure with a known mean and
standard deviation per departure. The mean demand is
approximately the average load. The standard deviation must be
deduced from system averages.

The variability of demand can be classified as part cyclic
and part random. Cyclic variabilities are those which scale
proportionally to the mean demand. They are created by
observable seasonal, daily, and hourly cycles. These cycles
could be matched by cyclic changes in supply or in price, but
there are compelling technical and institutional reasons why this
is imperfectly done. To the extent that cyclic variations are
not matched by changing departure capacities or prices,, they
become part of the standard deviation of demand in the load
factor and denied boarding rate model. Because cyclic
variability scales with load size, "hen cyclic .demand
variabilities dominate, small and large airplanes need the same



Table 4.2.1: Numerical Example of Load

for constant denied boarding rates

Factor Changes

demand cyclic random total design
per variance variance variance load fa.

depar'ture W- d; O -' for 2%
.354/1 =1.714[ =4"**' denial

10 3.5 5.4 6.44 .50

25 8.8 8.5 12.2 .58

50 17.7 12.1 21.4 .63

100 35.4 17.1 39.5 .65

200 70.7 24.1 74.7 .67

400 141. 34.1 145. .68

700 247. 45.2 251. .68

1000 354. 54.0 358. .68

design load factor obtained from interpolated values of/41-at
a denial rate of 2% from table 4.1.+. See also table 4.1.7.

ctor

rate



load factors to achieve the same denied boarding standards.
In addition to cyclic patterns of variability there are

variations of demand which have no correlation pattern among
departures. Completely random variations in demand are hard to
observe because aggregation of markets or departures will tend to
average them out. No adjustment in scheduled capacity can
anticipate these variabilities because they are predictable only
as a distribution. According to accepted probability theory for
groupings of independent statistical events, random variabilities
scale as the square root (1) of the mean demand, so as mean
demand grows, random variations as a percent-shrinks. This
allows larger aircraft to tolerate higher load factors without
increases in the denied boarding rate.

The relatively greater difficulty of attaining high service
levels at small load sizes is reflected in the load factor
standards for small and large aircraft airlines in the U.S.. The
curve in Figure 4.2.2 has two distinct points representing load
factor standards for 80 and 140 seat aircraft, taken as
representative for the two classes of carriers. This curve then
suggests what similar standards of denied boarding rates would
imply at higher and lower aircraft sizes. The curve shows the,
effect of the different relative growth of cyclic and random
variabilities in demand. The numerical values are only for the
purposes of illustration.

Estimates of Variability
We can examine in greater detail the components of cyclic

and random variabilities in demand. To do so will bring to light
several points of interest with respect to reported load factor
statistics. Appendix E estimates the size of cyclic variations
of demand from the variations in traffic caused by the
combination of monthly, daily, and hourly cycles. The estimate
from appendix B is that cyclic variations are in the neighborhood
of 40% of the mean demand. (2) We now move on to discuss and
estimate the uncorrelated or random variability.

Random Variability
Random variability (dr) in demand is whatever variability

remains after cyclic variations have been removed. We shall show
here that random variabilities do not scale linearly; with. mean
demand.

Bernoulli_Tial Model
Part of the random variability $r is due to the process of a

large group of people independently deciding whether or not to

( We imply here a specific model which is presented in detail
below.

(2) This estimate has been substantiated in private discussions
with American Airlines and by data from the Federal Register
[401, Lankford [19], and preliminary estimate,: as part of a Ph.D.
thesis by Tim Carmody at George Washington U.



Figure 4.2..2 Load Factors for constant flight availability
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passes through the two circles drawn and also obeys the appropriate
growth rules- .(see text)
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take that trip at that time. A model of such behavior allows
this contribution to or to be predicted. We assume that there is
a very small probability P that each customer at an origin will
want to use the departure in question. For a large number of
people n we predict a mean of P*n customers for the departure.
If the departures form an hourly schedule every day of the week
and month of the year, the probability P would be- predicted from
cycles like those presented in appendix E. The result of n of
these decisions to travel or not to travel is a well known
probability distribution, called the binomial distribution. For
large numbers n and small probabilities P the distribution is
Gaussian with mean, and standard deviation: (1)

p P n
dr = ,

The decision process is called a Bernoulli trial, so we refer to
this as the Bernoulli trial model.

If one agrees with the logic that strangers' decisions to
travel do not -influence each other but that the mean probability
is influenced by hourly, daily .Rr monthly cycles, then the
prediction of dr equaling rP*n is valid. This estimate falls
directly out of the Bernoulli trial model without benefit of.
statistical calibration. This is just as well because observed
load or load factor data almost always represent averages (or
totals) over several cycles. Randomness will tend to average
out, being less than 3% for any aggregation to over 1000
passengers.

Lgjistics Loss
The Bernoulli trial nature of demand is not the only

component of variability which does not scale linearly with load
size. We observe the variability of load factor distribution
rather than of loads, so we must consider variations in capacity
as well as demand. The concept of variability in capacity may.
seem odd at first, but it will be a particularly useful way to
treat an otherwise awkward problem. The problem is that no
airline has all possible aircraft capacities in its fleet, Most
fleets are limited to between 1 and 6 aircraft types.. For
instance, American, TWA, Eastern, and United each have.fleets
with only 5 distinguishable capacities. This means that the
airlines are unable to match capacities to mean loads exactly.
It is possible to model this as a further fractional adjustment
of load factor, one which is correlated with load size. One way
to think of it is as a number of extra empty seats which randomly
show up for a scheduled departure. We name this effect of
missing target capacities the logistics loss. It is really
caused by aircraft "integerization" effects.

one can get a feeling for the size of this effect for

(1) For the case where people travel in groups of m,

dP'n-m'



airlines by examining the extra capacities necessary to meet a
given design requirement. Figure 4.2.3 plots the next available
capacity against load reamirements for one airline. In the first
line of figure 4.2.4, 'the shaded areas of figure 4.2..3 are
reproduced on the horizontal axis. These shaded areas are the
extra seats which must be scheduled in meeting the load
requirements shown on the horizontal axis. Figure 4.2.4 shows
that for the four trunks the logistics loss drops as a fraction
of larger required load sizes. The treatment is not at all
rigorous, but the variability of load factor due to logistics
loss does contribute to or.

We define.the ratio of the required seats to the next
available capacity as the seat factor. Figure 4.2.5 is the seat
factor distribution found by sampling at 105, 115, 125,......,295
over all four of the lines in figure 4.2.4. By itself,, this
effect produces a standard deviation which is 10% of the mean at
an average capacity of 200.

For illustration we will treat logistics loss as if it
scaled in the same way as the Bernoulli trial losses. Thus whan
Table 4.2.1 assumed a fr 70% higher than that suggested by the
Bernoulli trial estimates o of the preceding discussion, that
7'% came from logistics loss.

One warning must be added. The name "logistics loss" might
have been applied to the phenomenon variously referred to as
deadheading, empty backhaul, or vehicle repositioning....While
there is a loss in systemvide average load factor associated with
such movements, it will be convenient to separate this irregular
and local phenomenon from the considerations above. . The
discussion up to this point has involved the difficulty'of
obtaining high load factors in any market or link irrespective of
its location in a network. Network losses associated with
directional flows and backhauls or with sparse demands and weak
links do not occur regularly over all markets or systems.
Surprising as it may seem, mathematical assignments of aircraft
to move networks of demands can achieve target load factors on
nearly all links. (1) Such phenomena are not included in what we
have called "logistics loss."

Random Variability Conclusjons
For the modelling in later chapters, the problem of

variability of demand which does not scale with the mean will be
ignored. The concepts presented here are new and unproven.
Present documentation is more on the order of evidence than
proof In order not to jeopardize later conclusions by involving
untested theories, the issue has been bypassed and a constant
ratio of standard deviation to mean assumed for all load

(1) This occurs with symmetrical flows and aircraft capacities
variable down to small capacities, as is the case for air travel.
The author's experience in modelling U.S. domestic airline
networks confirms this. Backhaul and deadhead links do occur in
networks designed to serve sparse networks of demands. Cf.
chapter 6, section 3.



Figure 4.2.3: Logistics loss illustrated
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Figure 4.2.4 . Logistics Loss for four trunk airlines
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Figure 4.2.5:.; Distribution of Logistic Load Factors
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(for detailed explanation, see text)
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RMS a is 10.4% of mean.

logistics load factor is demand size devided by next largest one or two plane capacity
Demand size sampled from 105 to 295 by tens. Capacities from 1975 fleets of
American, United, Eastern, and TWA (see figure 4.2.'4)



capacities. That constant is p/dr2.0, reflecting a slight upward
adjustment of cyclic variability for the contribution from random
effects. If scaling with size does behave as predicted, it
serves to heighten the cost edge already obtained by larger
aircraft capacities and thus the cost/service dominance of the
largest competitor in the market.

So far, we have developed a detailed understanding of the,
load factor problem and how it is handled by the demand model,
But as a practical matter the demand model does not fit the facts
in the case of two similar services competing at slightly
different load factors and prices. This problem of modelling
competition by load factor is discussed in the next section.

4 3 Load Factor and Competition

Load factors influence the quality and cost of a
transportation service. They also influence in an unusual way
the form competition can take. This occurs because of the
unusual nature of the reservations process as we have come to
know it in air transportation. The phenomenon is named "cream
skimming" although it is more nearly analogous to taking milk off
the bottom.

consider two firms offering nearly identical transportation
services. Firm A offers a low price and operates at a high load
factor. At least that is its intention. Assume that our
expression from chapter 3 (equation (3.1)) for perceived price
including delay time establishes a price of $100. (1) Firm. B
tries to design a competitive service with the same perceived
price, but with a different arrangement of fare and load factor.
B's service is priced higher, but has a greater space
availability (lower load factor). At the same value of time, B's
service is also perceived to price at $100. According to theory
so far, A and B should split the market. In practice, a consumer
making an individual decision to travel can always attempt to
employ A (at low fare) and go to B only when A is full.

If the consumer has knowledge of actual seat availability
instead of merely average denial rates, he can do better in the
long run than either of the design perceived prices of A or B.
If all consumers use departure by departure information,.B will
be unable to get any traffic as long as A has a seat to sell. In
this case B faces a different demand distribution than A. B's
distribution becomes the tail of the total market distribution,
which A does not serve. We see in figures 4.3.1 and 4.3.2 what
happens with a particular discrete distribution of demand. Firm
A carries the majority of the market at a high load factor and
correspondingly low mean cost (Figure 4.3.2k). Firm B gets only
the people who cannot fit on A on big demand days. (For this
illustration we have assumed these people are all willing.to pay
the premium to ride on B. Even then, B does not get. half the
traffic, although his service is of equal value according to the

(1) For some value of time, say $10/hr.



Figure 4.3.1: Sharing of a distribution of demand by day between two services
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demand model.)
This type of market behavior is possible because the

transportation services are scheduled well in advance at a level
of knowledge about demands which reflects statistical averages
while the consumer's decision is made in a shorter time frame
with greater knowledge of supply and demand for a departure.
With greater knowledge, the consumer can get the better of the
bargain The situation is' nearly unique to air travel and is
caused by the reservations process, which is an unusual part of
the buying and selling transaction.

The result of such a situation is a marketplace tending
toward high load, factors and high rates of denied boardings.
Moves by one competitor to adjust load factor up and price down
must be met by the other competitor or he will be caught. in the
cream skimming effect illustated in 4.3.2. On the other. hand,
moves to slightly improve quality at higher price are foolish.

(1)
Airlines find it difficult to overcome this effect of

passengers using premium services only as backup. Round trip
ticketing on one airline can influence passenger behav.ior by
exposing them to a doubled probability of not being accommodated
on the high load factor carrier. Other attempts to make
customers experience the mean reliability instead of the specific
seat availability are difficult.

Other modes have greater success in overcoming this problem.
For package freight movements, reservation information is
generally not available. Repetitive shippers learn to anticipate
expected values of capacity availability. Thus the demand model
as stated applies. In cases where knowledge of capacity
availability is possible, consumers can be tied to the high
quality services for all their shipments by preferential
treatment (2) of regular customers during capacity crunches and
by contractual commitments for regular carriage.

In the most open move to overcome this problem, ocean
freight companies have attempted to freeze out high load
factor/low price competition (tramps) by forming shipping
conferences with service contracts which insist on the use of
member firms. Such a contract is illegal in domestic freight
(regulated by English common law), and furthermore such
agreements are hard to imagine for individually ticketed

(1) f course an airline could intentionally offer the backup
service like B's at a very high price. A service with a 22% load
factor, such as B's, would not have a fare which would allow a
perceived price of $100, so some of the overflow would be lost..
The possibility strikes this author as only an theoretical one.

(2) Such preferences are nominally illegal, but the author is
assured by reliable sources that they are exercised.

(3) Ted Keeler at Berkeley suggests a "club dues" scheme for
binding repetitive customers to an airline. This adjustment is



passenger travel. (3)

4 4 Load Factor Summary

The development in sections I and 2 of this chapter states
that level of service measured as the probability of a customer
being able to obtain a seat on his choice of departures depends
not only on the mean load factor for the service in question, but
also on the magnitude of the mean load on that service. The
suggestion that percent variations of demand -go down as mean
demand rises is a new and radical one. The conventional
assumption is that load factor alone is necessary for predicting
service. Since no data is available for estimating the extent of
this phenomenon and since statistical proof or even calibration
is not possible as part of this work, the level of service
measures used in chapters 5 and 6 do not make any adjustment for
load size For these chapters the approximation in table 4.1.5
will be assumed to apply. This data has been summarized in
equation (4.5)

outside of the rules of the marketplace as we are discussing
them. It also may not be practical.
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5 Isolated Single Link Service

5.0 Introduction and Problem Statement

Service between two cities is largely defined by the fare,
frequency of departures, and load factor. (1) Each of .these
characteristics influences the utility to consumers, their
benefits, and the amount of demand. These three characteristics
also determine the costs and revenues for the operator and thus
his profits or losses. The discussion below focuses on differing
combinations of fare, frequency, And load factor for single.link,
single carrier air passenger service. We seek those arrangements
which are in some sense optimal.

In the next three parts of this chapter we will discuss
three classes of optima. First, we discuss what we believe to be
the best representation of desirable market conditions., that of
traffic maximizing at zero losses. We shall refer to this as the
maximum traffic case. Second, we compare maximum profit optima
to see if they too could be a reasonable description of existing
conditions. Finally, we examine the condition of optimal service
with subsidy, to see what might be achieved in that direction.
This will be called the maxinum surplus case.

Throughout this chapter we will specify optima in terms of
frequency, fare, and load factor. Objective functions will deal
in terms of profits, consumer surplus, and traffic. The arena
for this discussion is a single isolated city pair market. We
imagine a single airline serving origin-destination passengers
nonstop between two cities. There are no network effects from
other markets. A single schedule of service is offered at a
single price, The demand is described by an aggregate demand
function. We characterize the market by the distance.between the
cities and the density of demand for travel.

What is the nature of optimal services for markets of
different distances and densities? Are optimal load factors
constant across markets of different range or density?. Can
optimal frequencies be designated as a simple function of market
density? Should fares change dramatically with market density?
These are the questions we would like to answer before we start
to explore the nature of service in a network.

Sunnly_9SummarY
We may summarize what chapter 2 said about the cost of

providing a schedule of service on a single air transportation
link by the formula

COST=(cI0+cI1.4)SEATS+ (c20+c21-d)PQ+(c30+c31-d)PAX (5.1)

(1) load factor is an independently adjusted degree of freedom
because capacity can vary by choosing different aircraft sizes.
The number of intermediate stops is also important, but not in
the single llink case here.

I _M' MO_ - -
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Where the following definitions apply:

COST is the total expense of operating the day's schedule
of services

SEATS is the total capacity per day. (SEATS/FQ is the
average capacity per departure.)

FQ is the daily frequency
PAX is the daily average traffic
d is the intercity distance

Chapter 2 derived values for the constants for 1976 U.S.
domestic air travel:

c10=$3.27 clO+clldac1
c1=$0.0176

c20=$379.8 c20+c21,d-c2
c21=$0.816

c30=$12.64 3 c30+c31.dzc3
c31=$0.008 I

This simple formula (5. 1) recalls several interesting
results.

First, total capacity (SEATS) and frequency (FQ) can be
adjusted independently. Changes in aircraft capacity are allowed
over a continuum. There may be upper and lower bounds on the
vehicle capacity, but between those bounds adjustments of
frequency and capacity can be made independently.

Second, the average cost per seat falls wth the number of
seats. This is because the cost of frequency (c2) is spread over
more seats. Frequency takes on the aspects of a fixed cost in
this respect; it does not depend on capacity or traffic. . The
concept if a cost of frequency is fundamental to our discussion.
The cost of frequency is the cost of the vehicle trips in the
schedule but not the cost of the seat trips or passenger trips.
We are reminded that vehicle costs are that part of aircraft
costs not associated with capaciaty.

Third, we are reminded that this is the cost for a single
scheduled transportation service over a link assuming the time of
day distributions of PAX, FQ, and SEATS have been worked out and
vehicle utilization is known.

Delad Summary
We may summarize our demand formula from equations (3.1) and

(3.2) in chapter 3. For city pair market:

PAX = kl'(FA+v(tb+(k2+k3'LF )/FQ) (5.2)

The following definitions apply:

FA is the fare
LF is the market average load factor
k1 is the market demand density
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k2/FQ is the expected value of the time lost due to denied
boardings. k2=5.7 in the calibration discussed in appendix C.

k3 LF7/FQ is the expected value of the time lost due to
denied boardings. k3=5; is derived from the approximation that
the denial rate is 2.5-LF (from equation (4.5) in chapter 4)
times the headway, which is 22.8/FQ.

9( is the market elasticity with respect to total perceived
price. Appendix B calibrated 4n-1.5.

tb is the physical travel time or block time. From
chapter 2, tb=.37+d/507

We recall from chapter 3 that we must explore this formula
for a spectrum of different travellers' tastes, represented by
their value of time, v.

In the expression above, frequency affects not only the
schedule displacement time but also the penalty for denied
boardings which result from too high an average load factor.

Loa4d Factor Summry
Aside from its ramifications in the demand model, the

defintion of load factor is a separate condition in the matching
of demand and supply. This provides as with a third equation:

LF=PAX/SEATS (5.3)

It may seem surprising to go to the trouble to explicitly
state the definition of load factor. However, doing so points up
one of the major issues involved in the matching of supply and
demand. Is load factor a result of the matching of supply and
demand or is it part of the matching process? In our
formulation, the matching of SEATS to PAX is not an incidental
fallout of the supply and demand interraction. Load factor is a
design parameter addressed by the supplier of the schedule. As a
measure, it is more fundamental than the measure of SEATS. That
is, solutions to the single link optimum design will state load
factor and passengers and leave capacity to be deduced.

OlhdtciL11.RD319ns
The matching of supply and demand in a single carrier single

link transportation market is not the simple process of. setting
PAX equal to SEATS. First one must translate the many and
conflicting objectives of society and the actors involved into a
mathematical objective function. Then one must find the optimum
conditions subject to the three equations above (5.1-5.3) and
whatever additional constraints the statement of operating and
optimal conditions adds.

We need a precise mathematical definition for the conditions
for optimality. Unfortunately, the objectives of society are not
strictly the maximum benefits with respect to the production and
consumption of goods, nor are the objectives of the firm strictly
the maximization of profits. Consumer benifits and corporate
profits are only leading members of a list of objectives.
Cur discussion will cover three distinct objective functions.

one is a mixed objective, and the other two are more strict
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statements of producer and societal benefits.
The first and most important objective we will discuss is

the maximization of traffic (1) at conditions of zero loss.
(Zero loss and zero profit points are the same, since we have
included a fair return on investment in the costs.) This
statement of the objective is as good an approximation of today's
compromises as is possible to state mathematically. The
condition of zero loss-is one of justice to the producers. For
air travel it is a practical constraint except in a few low
density markets. The condition of maximum traffic is as good as
any other in achieving benefits to consumers.

The second objective we will examine is the one of maximum
profits for the monopoly producer. Since this case produces huge
profits, it is of little practical relevance.

The third objective we will examine is the maximization of
total surpluses. That is, the maximization of the sum of
consumer surplus and the offsetting losses that the producer
might experience. This is the classical societal optimum for an
industry, but since it turns out to involve substantial losses
for the carrier, it is of little relevance to U.S. industry
conditions.

It may seem strange that we do not discuss equilibrium in
competitive markets. We avoid doing so because a profit
maximizing treatment of competition will tend toward monopoly.
We deduce this from the economies of scale 'in the cost of
producing the intermediate good of a transportation schedule (as
defined in chapter 2) and the unstable competitive situations
discussed in chapters 3 and 4. In the presence of such economies
of scale and product matching tendencies, any model of stable
competition in an isolated market must rely on assumptions of
some form of "polite" or constrained behavior among a few
competitors. Such oligopolistic competition might well exist in
an unregulated transportation environment, but it is outside of
our scope to predict its nature here. We will reserve discussion
of the viability of competition in general until after the
development of the final arguement in favor of single large
operators, the network effects.

5. 1 laximum Traffic optima

Although differences of opinion exist about the objective(s)
of the managements of large industries, there is a consensus that
the avoidance of losses is at the very least a constraint on
behavior. In the presence of such a constraint, one objective
which should be instrumental in achieving both the desires of
managment and welfare and justice for society is the maximizing
of total passengers carried. This is the scenario we shall
explore first, It seems the best point of reference for later

(1) We make the careful distinction in terms between demand,
which may not all be satisfied, and traffic, whick is the
passengers actually carried.
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cases. It is also the closest to realistic conditions,
competitive, regulated, or otherwise.. We consider isolated city
pair markets. We employ the cost structure developed for the air
transportation example in chapter 2 and echoed in equation (5.1)
above We employ the demand model developed in chapter 3 and
summarized in equation (5.2). This predicts the traffic that
occurs given the fare, frequency, and load factor of the service.
We require for this section that the fare exactly cover average
costs including a fair return on investment. This produces zero
losses. Our objective is to inquire after the technical
performance which maximizes traffic.

The constraint that fare equal average cost produces zero
(excess) profits. This constraint provides and expression for
the fare:

FA=COST/PA=cI/LF+c3+c2-?Q/PAX (5.4)
The first two terms of this expression are the cost of capacity
and the cost of passenger handling. We will see these two terms
in exactly this form as part of the fare for all our objective
functions. These terms are the cost that can be definitely
associated with each passenger. The final term is the cost of
the frequency of service, averaged over traffic.

For the case where all customers have the same value of
time, maximizing traffic also maximizes consumer surplus, as
discussed in chapter 3. For the case where customers have a
range of values of time, maximizing total traffic is not the same
as maximizing total consumer surplus. The two optima are close
to each other, but they do not coincide. Maximizing consumer
surplus in a market with mixed values of time favors high value
of time customers more heavily that low value of time customers.
It is not the purpose of this work to comment on the distribution
of wealth or benefits in society, nor does the calibration of our
demand model permit us to assess these effects with any pretense
of accuracy. Therefore we examine the condition of maximum
traffic with the understanding that it is a simplification of the
condition of maximum surplus at zero loss. This is not to
endorse the implications for the distribution of welfare among
the population. We have already pointed out in chapter 3 that a
distribution which is unfair in one sense or another must
inevitably exist.

Before we state the mathematics of the problem, it will be
useful to define two further variables which can serve as
notation for the rest of this chapter. The first we wish to
define is the total travel time:

TT=tb+(k2+k3-LF )/FQ (5.5)

The second is total perceived price:

PP=FA+v-TT (5.6)

The problem now becomes:

Maximize PAX(FA,LF,FQ)
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Subject to:

PAI=k1 PP (5.2)

LF=PAX/SEATS (5.3)

FA=c1/LF+c3+c2-FQ/PAK (5.4)

It will be illuminating to eliminate the varible FA by using
(5.4), but further simplification produces no great insights.

We substitute (5.4) into (5.2) and take the derivative
dPAX/dFQ=0 (1) in order to find the conditions for optimum PAX.
This produces:

c2/PAX-(dPAX/dFQ) c2 -FQ/PAX -v (k2+k3 -LF )/FQ=O

But dPAX/dFQ=0, so this can be rearranged to establish frequency:

FQ=PAX& (v(5.,7+57-LF ) /c2 (5.7)

In this final step we have substituted the values for the k's.
From (5.7) we can see that optimal frequency should rise as the
square root of traffic (PAX), provided the load factor is
constant.

This is as far as we can profitably go analytically.
Further algebra results in an equation which must be solved
numerically. Instead, we have done a more intuitive numerical
search for the optima in the next section.

However, insights can be gained into the nature of the load
factor optima by a similar derivation. The condition dPAX/dLF=O
produces from equation (5.2):

2 8
-cl/LF +v-k3-9-LF /FQ=O

The real roots of this are all

LF=(c1 -Q/9k3-v)

Substituting for FQ from (5.7) we get:
0,0s a 8 6.05

LF=PAZ * (cl .(5.7+57LF )/263169.v.c2) (5.8)

once again explicit values have been used for the k's. We note
that if LF on the right hand side does not change much, LF on the
left hand side rises only as the twentieth root of traffic.

Values for COST, SEATS, PP, TT, and FA may be deduced from
the values of PAX, PQ, and LF.

(1) Our ty ace does not include the partial derivative sign.
Within the text, we rely on the symbol "d" for partial
derivatives.
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Numria .studes of X.nIL. TraffIc CASe
One specification perpetually causes confusion both

comceptually and in practical expositions. The constant kI in
the demand equation (5.2) specifies the market density or
potential demand. The actual traffic in terms of passengers can
only be stated in conjunction with a level of service in terms of
fare, frequency, and load factor. The problem is, how to specify
ki? The most convenient approach is to adjust kI so that the
maximum traffic optimum 'just obtains the stated market size.
With this definition, market size is the actual traffic instead
of some theoretical conditions. A 400 passentger market is
understood to have 400 passengers at the maximum traffic optimum.
The k1 would be the smallest k1 which could produce 400
passengers. We can use this simplification of terminology
because minimizing kI for constant PAX is thg same as maximizing
PAX for constant kI . From (5.2) PAX/kl=PP . Optima for either
are derived from dPP/dFQ=0 and 4PP/dLF=0. An 800 passenger
market would have 800 passengers at its maximum traffic optimum,
but ki would not be exactly double the k1 for a 400 passenger
market because the service at the optima would be different. For
convenience we shall follow this approach throughout this chapter
and the next. Market size will be specified in terms of the
passengers carried at the maximum traffic optimum.

We take as the central case for our numerical studies a 400
passenger, 800 mile market. For a start we will use a value of
time of $10/hr. (1) This is a fairly dense air market of typical
length for U.S. domestic trunk operations. For this market 400
passengers can be obtained with the smallest k1 (k1=352441) at a
fare of $59, a frequency of 5.2, and a load factor of .665. (2)
Aircraft size works out to be 116 seats. These values were
obtained by numerical search for the maximum traffic optimum.

We are not concerned that the frequency is a fractional
number. First of all, rounding off to 5.0 flights a day (and
adjusting the load factor and fare to reoptimize) causes only a
0 025% (one-fortieth of 1%) drop in traffic. This is
unimportant. Secondly, we do not want answers to be influenced
by inteqerization effects because such influence may obscure long
term trends. 5.2 flights per day may be interpreted as an
annual average, which may certainly be fractional.

We are also not concerned that the optimal load factor
(.665) is higher than what has been normal for such a market in

(1) Value of time was shown by Defany [35] to be near $13
(1976$) This was a single value for markets involving air
travellers participating at 1968 prices and service levels. A
lower figure is used here as representative of modern markets
with a greater number of low value of time trips being
considered.

(2) Cost and demand constants (c's and k's) have been given
values as indicated in equations (5.1) and (5.2)
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recent U.S. domesti-c trunk operations. (1) Neither our demand
model nor our cost model are accurate enough to permit us to draw
conclusions from numerical comparison with real world operations.
Nor do our single-carrier, zero-profit, maximum-traffic
conditions necessarily represent existing conditions. What will
be meaningful are changes from this optimum in different
scenarios, We will soon see that load factors at optimum climb
with market size. This will be a valid observation which should
have implications in the real world. That they climb above some
number like 75% is not significant.

.. A~gespn_9jp11m Lith jarkgtjegi~t
There are three ways to accomodate increases in traffic in a

market, Frequency can grow, load factor can rise, or aircraft
capacity can increase. Table 5.1.1 shows that for our conditions
of cost and value, all three degrees of freedom come into play at
significant levels. Optimal frequency, fare, and load factor all
change with market density. This is one of the conclusions of
our work.

If one variable can be ignored, it should be changes in load
factor. Load factor changes only as PA1V . (2) This result was
anticipated in eguation (5.8) in the analytical section.
Frequency is the most important adaptation. Frequency rises at
just over the square root of traffic (PA -1 ), bearing out the
analysis -in- equation (5.7). Vehicle capacity is nearly as
important. Capacity changes as the cubic root of traffic
(PAXA=A), The possibility of capacity changes has been ignored
in much recent literatere on the subject. (3) Changes in
capacity coupled with modest changes in load factor produce a
small reduction in fare. Fare drops as PAX-04.

These relationships are approximate and depend on our
specific cost and demand assumptions. The significant
conclusions are (1) the optima do change broadly with market
density, (2) all three of frequency, capacity, and load factor
rise together, and (3) load factor changes the least. In
additon, increases in load factor and in -vehicle size reduce
average cost and thus fare. Fare falls as traffic rises. This
favors production by a single carrier in a market, as we have
noted.

(1) As this is written, load factors appear to be arriving at
this range, but the last fifteen years of regulated service has
seen most load factors in the .50-.55 range.

(2) Exponents in this and the following numerical studies were
obtained by solving lnLF=K+x-lnPAX for x using two widely spaced
values for LF and PAX from the appropriate table. Curve fit was
plotted and seen to be reasonable in all cases. This method was
convenient and suitable given the qualitative nature of the
conclusions.

(3) Specifically Douglas and Miller [10], Dorman [9], but not
Anderson [36).

-1xi"Os I - 1 1-1 10 I -___M ___ __ __ --- - __ ---
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Table 5.1.1: Maximum traffic Case
1W Optim at Different Market Sizes

800 mile market, value

traffic fare

50 $85

100 72

200 65

400 59

800 54

1600 51

3200 48

of time =

frequency

1.8

2.4

3.6

5.2

8.0

11.8

17.6

$10/hr, optim a

load factor

.60

.615

.64

.665

.70

.725

.75

at Tr = 0.

capacity

47

67

87

116

147

187

243

1400 mile market, val

traffic fare

50 $112

100 98

200 89

400 81

800 75

1600 71

3200 67

ue of time = $10/hr, optima at Tr = 0.

frequency load factor capacity

1.4 .615 58

2.0 .635 79

3.0 .66 101

4.4 .69 132

6.6 .715 170

10.2 .75 209

16.0 .785 255
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Changes in Optima With Distance
At longer distances the wait time and denied boarding

penalties are a smaller fraction of total time and cost. This
means more can be saved by using larger aircraft and higher load
factors than is lost due to increased displacement times. Thus
at the optima, frequency should fall and load factor rise as
distance increases.

Table 5.1.2 details our case study for a value of time of
$10/hr and a traffic of 400 passengers. As expected, frequency
falls and load factor rises with distance. Corresponding to a
fall in frequency, capacity rises. The net result is that fare
is not proportional to average seat cost for some standard size
vehicle, but has a lover slope and a higher intercept, as shown
in figure 5.1.1.

The desirability of lower frequency and higher load factors
at longer distances escapes most analysis. One source of error
is assumimg constant vehicle size. Fixing vehicle size nearly
freezes frequency with distance (for constant market size). Such
vehicle size constraints have been employed by economists
([9],[10],[13J). Another viewpoint was expressed by the CAB in
the domestic passenger fare investigation (5]. In that study,
load factor was fixed at all ranges, but the fare formula was not
linear with distance. The combination implied changing to larger
aircraft at longer distances.

In our study of the effect of market distance, the important
variations are in fare and frequency. Fare is the dominant
parameter in this case, rising as the square root of distance
(dod). Frequency falls with distance (d="-), and capacity
correspondingly rises (dA"V). Load factor is once again nearly
stable (dA-0 ).

conclusions from Market Density and Distance Studies
A number of authors (Gordon and de Neufville [14], Douglas

and Miller (10], Dorman [9]) have analysed air travel markets
without considering the airline's ability to adjust aircraft size
almost continuously. This treatment creates an inappropriate
algebraic coupling between load factor and frequency. (The
product of load factor, frequency, and capacity equals demand.)
The cumulative effect of our load factor/delay model, our demand
model, our cost structure, and the definition of optimal in this
section suggests that load factor is the most stable of the
variables. The most volatile is frequency, which in the absence
of constraints on aircraft size translates almost directly into
changes in capacity per flight. In the full formulation of the
problem, capacity changes strongly and load factor is nearly
constant. (1)

Distributiona IEfecjts
We stated at the start that the demand model must be

(1) Interestingly, the analysis by Gordon and de Neufville could
be reformulated for constant load factor and variable aircraft
size with only minor changes.
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Table 5.1.2:

Traffic =

Maximum Traffic Case,
Optim'ar at Different Distances

400 passengers, Value of time = $10/hr

frequency

7.4

7.0

6.2

5.2

5.0

4.4

4.2

3.8

3.6

3.5

load factor

.610

.625

.640

.665

.675

.690

.700

.710

.715

.725

distance

100

200

400

800

1000

1400

1800

2200

2600

3000

fare

$30

$35

$43

$59

$67

$81

$96

$110

$126

$139

capacity

89

92

101

116

119

132

138

148

156

158
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Pigure 5.1,1; Fares vs Distance at optimum for 400 passengers
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evaluated over a range of values of time. Low value of time
consumers prefer low fares even at the expense of high load
factors or low frequency. High value of time consumers prefer
higher prices if service levels are correspondingly raised. Thus
the best service for one class of customers is not the best for
another. Table 5.1.3 illustrates this for our central case.
optimum fares and services rise for higher values of time as the
optimum adapts to minimize the total perceived price including
the cost of time delays. (1)

Table 5.1,4 shows what might happen in a mixed market with
the seven values of time between $1/hr and $19/hr represented
equally (2) as seven disaggregate groups. Each column of the
table lists the passengers in each value of time group for the
fare, frequency, and load factor combination indicated by
reference to the appropriate row in table 5.1.3. Except for the
execrable service designed for the $1/hr people, the total demand
is very nearly the same for all the different types of service.
In other words, a large error in the assumed value of time
produces a small result in terms of total demand when a
distribution of values of time exists in the market. A maximum
for total demand exists near the service designed for the average
value of time, but it is a very shallow maximum. Apparently any
of a broad range of service levels produces nearly the same total
demand.

A slightly more suitable presentation of this point is given
in table 5.1.5. Here frequency and load factor. are as before,
but fares have been adjusted to remove losses. This causes a
small additional erosion of demand. Now every column is a zero
loss condition for the market. This makes comparison more just.
As before, the demand peak is shallow. Only the very lowest
quality of service (column 1) is inappropriate.

Although the total traffic is stable, the distribution of
traffic changes from column to column. In the last column of
table 5.1.5 the $1/hr consumers will be complaining that service
is over-priced. Demand is off 30% in this group (from 57.2 to
39.9 passengers). In the second column, on the other hand, the
$19/hr consumers will find flights infrequent and often full.
Our demand model states that the trip is more important to $19/hr

(1) Table 5.1.3 also states that the per trip consumer surplus as
defined in Chapter 3 is low for low value of time consumers and
high for high value of time consumers. This is a characteristic
of the demand model as defined in chapter 3; it is not a
conscious part of our ground rules. Whether the consumer surplus
of $1 per hour and $30 per hour travellers should be compared in
this way depends on one's definition of social welfare in
general. In this work we will be careful not to draw conclusions
from such relative values generated by the demand model.

(2) By equally we mean traffic is 57.14 for each at its own best
service level. Computational inaccuracies in the original
determination of the k1's cause 57.14 to come out as 57.1 to 57.3
in the diagonal of table 5.1.4.
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Table 5.1 3; Optimum Service Levels for different values of Time
Maximum Traffic optima , 400 passenger markets, 800 mile distance

value of
time -consumer

Row load aircraft surplus
no. $/hour fare frequency factor capacity (000's)

(1) $1 $47 2.0 .765 262 44

(2) 5 54 3.8 .69 153 59

(3) .7.5 57 4.6 .675 129 67

(4) 10 59 5.2 .665 116 78

(5) 12.5 60 5.8 .66 104 80

(6) 15 62 6.2 .65 99 86

(7) 19 64 7.0 .64 89 96

(8) 30 69 8.1 .635 72 120

(9) 50 76- 11.0 .61 60 162

(10) 100 88 15.4 .59 44 259



114

Table 5.1.4: Demand at Service Levels Designed for Other Values of

Time

market distance=800 miles.
service offered at a small loss

traffic
by value
of time
category

Service in terms of Fare, Frequency, and Load Factor
defined by row number and value of time for table 5.1.3
row: (1) (2) (3) (4) (5) (6) (7)
v: $1 $5 $7. $10 $12.5 $15 $19

$ 1

$ 5
$ 7.5
$10
$12.5
$15 ~

$19
total traffic:

loss

57.3 51.8
47.5 57.1
42.2 56.6
38.1 55.4
34.9 53.9
32.4 52.6
29.3 50.6
282 378
$614 $202

Each Column in this table represents the passengers
in each value of time category that would accrue to
a service designed specifically for the value of time
at the top of the column.

The diagonal elements are the traffic from the value
of time category for which the service is optimal.

For further explanation, please consult text.

49.0
56.6
57.2
56.9
56.2
55.4

54.1
385
$164

47.0
55.7
57.0
57.2
56.9
56.5
55.6
386
$179

45.2
54.7
56.4
57.1
57.1
57.0
56.5
384
$228

43.8
53.6
55.7
56.7
57.0
57.1
56.9
381
$276

41.5
51.9
54.4
55.8
56.5
56.9
57.1
374

$444
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Table 5.1.5: Demand for Service Levels Designed

for specific values of time

market distance=800 miles

service offered without a loss by adjusting fares
upward from those used in table 5.1.3

traffic Service in terms of Frequency and Load Factor defined
by value by row number and design value of time for table 5.1.3:
of time row: (1) (2) (3) (4) (5) (6) (7)
category v: $1 $5 $7.5 $10 $12.5 $15 $19

$ 1 53.6 50.9 48.3 46.3 44.3 42.7 39.9

$ 5 45.6 56.4 56.0 55.0 53.8 52.5 50.2

$ 7.5 40.7 55.9 56.7 56.4 55.6 54.7 52.8

$10 37.0 54.8 56.4 56.7 56.3 55.7 54.2

$12.5 34.0 53.4 55.7 56.4 56.4 56.1 55.0

$15 31.6 52.1 55.0 56.0 56.3 56.2 55.5

$19 28.7 50.2 53.7 55.2 55.9 55.5 55.9

total traffic 271 373 381 382 379 373 363

fare: $49 $55 $57 %59 $61 $65 $66

Each column in this table represents the passengers

in each value of time category that would accrue to

a service designed specifically for the value of time
at the top of the column. Minor adjustment of fare

from y/, the value that was optimal on table 5.1.3

corrects each column to a zero loss operating condition.

For further explanation, please see text
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Table 5.1.6: Perceived Prices of Different Levels of

Service

Perception
for people
with value
of time of:

$ 1

$ 5
$10
$15

$19

$30

$50

Service in
defined in
row: (1)
v: $1

154
84

120
157
187
268
415

terms
table
(2)
-$5
$58
74

94

114
130
173
253

of Fare, Frequency, and Load Factor
5.1.3 as optimal for row and $/hr:
(4)
$10

$62
75

92

108
122
158
225

(6)
$15
$65
77

92

108
120
154'
210

(7)
$19

$67
79

93

108
120
152
210

(9)
$30
$72
83

96

110
120
150
207

(10)
$50
$78
89

101
114
124
152
202

Diagonal elements are the services with the
minimum perceived price for the value of time

listed at the left. These are the values of

time for which the service is designed.

For further explanation, please see text.
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people (they pay a higher total perceived price and have higher
surplus per trip), so traffic is off only 12%. The relative
sizes of traffic erosion in different value of time categories is
a result of the specific calibration of the demand model. The
existence of modest distributional effects is a general
conclusion which will survive any recalibration.

Another way to look at the relative evaluatons of service
levels is to state the perceived price of each class of service
by each class of customers. Reverting to the fare, frequency,
and load factor conditions of table 5.1.3, we see the ranges of
perceived prices in table 5.1.6. Data from this table was used
in the example in chapter 3. The numbers themselves depend on
the calibraton of the demand model. The important qualitative
point is that there is a distribution of opinions about any given
service level.

The overall consclusion from table 5.1.3 is that different
values of time require different services and fares at optimum.
However, tables 5.1.4 and 5.1.5 illustrate that only the extremes
of these ranges have a significant impact on the total demand for
a market with a range of values of time. There are two real
world consequences of this. First, one cannot say from a single
parameter such as fare, frequency, load factor, or vehicle size
that a service is far from optimum. (However, demonstrably bad
combingt os of these parameters exist.) And second, some
people in the market will always feel the service is not well
designed for their needs.

We shall take advantage of the observation that the value of
time for which a system is optimized has little effect on the
total demand. From now on the numerical examples will employ a
single value of time ($10/hr) to predict the total traffic in the
market. This simplification has the added advantage of avoiding
the philosophical problems of adding consumer surplus from
different classes of consumers.

CoDtrained Operations
The preceding section made the point that the optimum at

zero losses was very shallow. We can illustrate this point by
exploring the shape of the optimum with one or another of the
variables constrained. For instance, in figure 5.1.2 the
conditions have been found for maximum traffic and zero losses
with the fare fixed at values ranging from $52 to $70. If the
fare is $54 (the optimum was $59). an adjustment of frequency
from 5.2 to 3.5 and load factor from .665 to .64 produces a zero
loss serice level which earns 95% of the optimum traffic. Thus
with the degree of freedom of fare removed, the system can still
adjust to a condition not far from optimum. Figure 5.1.2 is for
a single value of time, with a range of values of time in the
market the optimum can be even more shallow.

A similar story can be told in the load factor demension.
For instance in figure 5.1.3, if the load factor changed to 76%
from the optimum 66.5%, and increase in frequency from 5.2 to 6.3
and an adjustment in fare can nearly make up for the increased
denial rate. The change in aircraft capacity is important here;
the change is from 116 to 79 seats. and only a 5% erosion of
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Figure 5,1,2; Range Qf Possible Fares

Frequency and load factor adjusted to maxtmuze passengers at stated
fare and zero losses, 800 mile, 400 passenger market at $10/hr.

400

PAX

3004

$55 $65 $70 $75

Specified Fare

corresponding frequency:

corresponding load factor

10

5

0

.70-

.60 4
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Figure 5,1,3; Range of possible load factors

Fare and frequency adjusted for maximum passengers at stated
load factor and zero losses, 800 mile, 400 passenger market-
at $10/hr.

Load Factors:

400

PAX

309
.50 .60 .70

Specified Load Factor

corresponding frequency:

$65'

corresponding fare$55.

I p

,80

J
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Figure 5,1,4; Range of possible frequencies

Pare and load factor adjusted for maximum passengers at 
stated

frequency and zero losses, 800 mile, 400 passenger market at

$10/hr.

400?

PAX

300 I

6 7 8 9 103 4 5n

Specified frequency

corresponding fare:

.60

$75

$65

$55

corresponding load factor

note: data points are same as figure 5.1,2, Range of
possible fares case.
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Figure 5,1,51 Range of possible Aircraft sizes

P04 corresonds tQ Figures 5,1,2 And 5,1.3
4001

PAX

3001 50 100 150 200

Specified aircraft capacity

corresponding frequency

corresponding fare

corresponding load factor

$70]

$60-

,70

.60
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Table 5.1,7: Ranges of Service Levels

800 mile, 400 passenger market with

near Maximum Traffic Optimum

value of time = $10/hr

Ranges for a 5% erosion of demand:

fare
frequency

load factor

vehicle size

optimum
59

5.2
.665
116

range
54-66

3.3-8.0
.56-.76
68-180

% ranges

92-113

63-154

84-114

59-155

Ranges for a 10% erosion of demand:

fare
frequency

load factor

vehicle size

optimum,
59

5.2
.665
116

range
52-71.--

2.6-9.4

.51-.79
54-219

% ranges

89-121

50-181

77-119

47-189
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traffic need occur. .
The . range of reasonable operating frequencies is

correspondingly broad. Figure 5.1.4 shows that anywhere from 2.6
to 9.4 flights per day can be flown with no more than a 10% loss
of traffic, We are using only a single value of time instead of
a range of values. With a range of values of time, the optimum
tends to be even more shallow.

The ranges of fare, frequency, and load factor possible are
presented in table 5.1.7 for a 5% and 10% erosion of traffic. Of
course it is not possible to take all parameters to their
extremes simultaneously. Low fare operations must be at high
load factor and low frequency, and vice- versa.

From a technical standpoint it is interesting to note that a
mistake in aircraft size can be adjusted for by changing fare,
frequency, and load factor. Figure 5.1.5 shows the nature of the
capacity optimum.

A consequence of this flexibility in service design is that
regulation which- places restrictions on one aspect of service
will have only modest influence on the value of the optimum.
This makes regulation of service standards within reasonable
limits relatively harmless and regualtion aimed at simulating a
change to a different opjective criterion ineffective.

Regss~ion Analysis
Formulas for predicting optimal fare, frequency, load

factor, and capacity as a functon of market distance and traffic
at the optimum can be created by using data points like those
presented in tables 5.1.1 and 5.1.2 to calibrate log-linear
expressions. Such formulas are only valid as an interpolation
among data points. (1) Nonetheless, the formulas will prove
useful for the qualitative feel provided by the exponents and
later in chapter 6 for interpolating.

The formulas take the form of:

VARIABLE=k' PAX -d'

Values for k, g, and n for each variable of fare, frequency, load
factor, and capacity are listed in table 5.1.8. These values
were obtained by least squares regression of the logarithmic
version of the formula above using the data points listed in
table 5.1.9. The values of 5.1.8 agree with those reported
earlier in this section. Differences in detail are due to the
greater and more careefully distributed range of data points used
to calibrate the formula.

Copettg .nIU,....omst Ig.fuet g
Chapters 3 and 4 suggested that competitive services between

airlines might well take the form of product matching. With
product quality in a city pair market measured in terms of

(1) See Bard [49], chapter 1, for a discussion of the
distinction between an interpolation formula and one that may be
extrapolated.
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Table 5.1.8 Values for regression formula

VARIABLE =kPAXf-di

k ; __ R2

fare (FA) 4.202 0.516 -.118 .995

frequency (FQ) 0.904 -.252 0.570 .979

load factor (LF) 0.338 .0523 .0566 .993

capacity (SEATS/ FQ) 3.274 0.199 0.373 .988

Values used in local one-dimensional curve fits in earlier

parts of thes sectiot4

fare (FA) .55 -.12

frequency (FQ) -.29 .58

load factor (LF) .06 .06

capacity (SEATS/FQ) .23 .36
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Table 5.1.9 Data used to calibrate regression formulas

distance

200

500

1000

1500

2000

2500

3000

traffic
2318
1043

466
213
106

2022
926
423
203
108

1845
861
405
202
113

1781
841
402
205
119

1751
833
403
209
124

1738
832
410
215
128

1733
827
413
217
131

fare
28.3

.30.6
33.8
38.1
43.2

39.3
42.2
46.3,
51.9
58.3

56.6
60.8
66.2
72.7
81.0

73.4
78.5
85.0
92.5
99.7

89.7
95.7

103.3
112.3
119.2

106.0
112.5
121.1
130.2
140.2

121.9
129.7
138.5
148.2
158.0

frequency
18.2
11.6
7.6
5,0
3.4

14.6
9.4
6.0
4.2
3.0

12.0
7.8
5.0
3.4
2.6

10.6
6.8
4.4
3.0
2.2

10.0
6.2
4.0
2.8
2.0

9.2
5.8
3.8
2.6
2.0

8.8
5.4
3.6
2.4
1.8

load factor
.69
.66
,635
.61
.585

.71

.685

.65

.635

.61

.755

.71

.675

.65

.63

.755

.725

.69

.665

.65

.775

.735

.70

.675

.66

.78

.75

.715

.69

.675

.79

.75

.725

.695

.675

capacity

185
136
97
70
53

195
144
109
76
59

208
155
120
91
83

223
171
132
103
83

226
183
144
111
94

242
191
151
120

95.

249
204
158
130
108
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frequency and load factor, how viable is single link competition
at representative U.S. domestic demand volumes? Table 5.1.10
shows a list of markets in the U.S. ranked by traffic flows.
Optimal service quality from table 5.1.8 allows fares to be
predicted for a single carrier operating at the same traffic and
distance. These fares are listed in the lower half of table
5.1.10. For the situation in which competitors duplicate
frequencies, the average cost is listed in the column headed "2
competitor fare". For all U.S. domestic markets, marginal
passenqer cost is noticeably below average cost for service
levels fixed at optimum. (1)

of course competition may take the form of sharing the total
optimal frequency among competitors. Unfortunately, the game
theoretic approach to such scheduling leads to matching of
schedule times, as shown by de Neufville [38]. The condition of
interleaved or coordinated schedules occuring in competitive
markets appears to be an accident unless the arrangement is
collusive. (2)

Sensitg jy_Studies
How sensitive is the zero profit optimum to changes in the

cost or demand parameters? In view of the conclusion that load
factors vary least, the first condition to explore is the
importance of the value for the turnaway rate in the demand
model.

Let us double the probability of a space denial for a given
load factor. The new optima for the standard 400 passenger, 800
mile, $10/hr market show the same ranges of fare and frequecy as
before. Table 5.1.11 can be compared with table 5.1.1 and 5.1.2.
Optimal load factors are down by 4 points, but they too show the
same kinds of variation as before. The conclusions, which were
based on the ranges of these parameters and not their absolute
values, are unaffected.

The opposite is true if the economies of scale with respect
to aircraft size are removed. We may cut these in half by
allocating half the cost per vehicle mile and per vehicle
departure to seat miles and seat departures respectively in such
a way that the total costs at 125 seats remain constant. (3) The
new optima are at roughly double the frequency, and the new load
factors are 5 points above the old. Service has changed a lot,
althouqh fares are more stable. This can be seen by comparing
table 5.1.12 here with tables 5.1.1 and 5.1.2 in the earlier part
of this section. In general, the size of the economies of scale
in vehicle capacity is quite important to the optimum service

(1) The usual definition of marginal cost for a service does not
fix both the frequency of service and the load factor because
aircraft size is not usually allowed to vary.

(2) But network effects change this conclusion, as real data
suggest. Cf. appendix C.

(3) New numbers are 9v=4.79, 9,=.021, %=189.9, cu=.408
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Table 5.1.10

rank in
passengers
boarded

1

50

100

200

400

600

1000

Sizes of U.S. Domestic City Pair Markets

1976
traffic
per day
one way

2308
402
252
159
86

60

33

distance
(miles)

721
407
196
185
604
627
527

competitors
with over
10% of
traffic

2

*
40% of the domestic trips were in markets of less than 60 pax/day

rank city names
1 Chicago-NYC

50 ChicagO-Kansas City

100 Miami-Orlando
200 Dallas-Oklahoma City
400 New Orleans-St Louis

600 Denver-Tucson

1000 Detroit-Norfolk VA

optimal
fare
$46

$43
$38
$40
$63
$69
$72

optimal
frequency

14.2

6.1

5.9

4.4

2.3

1.8

1.3

Marginal
cost %

87%
.75%
67%
63%
64%
60%
54%

2 competitor
fare %

113%

125%

133%

137%

136%

140%

146%

Optimal fare and load -factor are optimal single link
specifications as on table 5.1.8 . Fare deduced.

Marginal cost is the cost of one more passenger at the
stated load factor and frequency, expressed as percent
of the average cost, which is the fare.

2 competitor fare is average cost for double the
frequency and the same capacity and traffic. This
implies frequency and load factor duplication and
is not intended to represent actual competition.

airlines
providing
service
in. 1976

cumul-
ative
traffic
to rank

1%

21%

29%
40%
52%
60%*

69%
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Table 5.1.11: Maximum Traffic Optima with Doubled penied Boardings

varying demand

traffic

50

100

200

400

800

1600

3200

density

fare
$87
76

67

61

56

52

49

at 800 miles, value of time = $10
frequency load factor capacity

1.8 .565 49

2.6 .58 66

3.6 .60 93

5.4 .625 119

8,0 .65 154

11.8 ,675 201

18.4 .71 246

varying distances .with traffic at 400 passengers, value of time = $10

frequency

7.0

6.2

5,4

5.0

4.6

4.2

4.0

3.8

3.6

load factor

.585

.60

.625

.635

.645

.65

.655

.665

.675

distance

200
400
800

1000
1400
1800
2200
2600
3000

fare

$35
44

61

69

85

100
115
131
145

capacity
98

107
119
126
135
147
150
158
165
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level for a market.
This point should be emphasized. If there are no economies

of scale in this respect, the optimal solution is at infinite
frequency, 100% load factor, and a vehicle size of zero. In
order to avoid this conclusion, those analysts who ignore scale
economies are forced to fix aircraft size. (1) By adding the
constraint of fixed capacity, the extreme solution is avoided.
But if there are really no economies of scale with aircraft size,
a smaller aircraft will always produce a yet better optimum. The
logical extension of this is not a public common carrier
transport system, but individually targeted vehicles such as in
road passenger transport. As we argued at the start of chapter
2, that common carriers exist at all is a sign that there are
economies to be gained from using larger vehicle sizes.

While the economies of scale affect the location of the
optima, they do not change the amount of variation with market
size or distance. Table 5.1.13 shows that the exponents of the
dependency of fare on market size or distance are high for the
standard case and both sensitivity studies. (The exponents in
tables 5.1.13 were derived from curve fits of the data in tables
5.1.1, 5.1.2, 5.1.11, and 5.1.12.) The exponent for load factor
is small in every case, showing the least dependence for this
variable. Capacity is important in all cases. Table 5.1.14
shows the ranges of these variables for each study. The ranges
for capacity are certainly not negligible.

These results suggest that our conclusions from the market
size and distance studies are largely independent of the
numerical values of the cost and demand parameters (within normal
ranges). The conclusions do rely on the demand model structure,
but this structure differs only in technical detail (2) from the
models accepted by the best work to date. (3)

Maximum .Ryenues #t Zero Profits
A second form of sensitivity study is sensitivity to the

exact definition of the objective function. What if we had
maximized passenger revenues instead of passengers? The
constraint that fare equal average cost should be maintained in
this section. However it is often assumed that managements
maximize their revenues instead of the traffic carried. These
are not the same objectives, even for a single value of time
market. The maximization of revenues will favor service of
higher quality and higher price than the maximum traffic optimum.
For the standard case of an 800 mile market with 400 passengers

(1) This is done by Douglas and Miller [10], Gordon and de
Neufville [14], Dorman [9], but not Anderson [36].

(2) The functional dependence of seat availability on load factor
and displacement time on frequency are different due to different
approximation schemes. Consult chapters 3 and 4.

(3) Douglas and Miller [10], Gordon and de Neufville [14], Dorman
[9), and others.
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Table 5.1.12: Maximum Traffic Optima with Frequency Cost Halved

varying demand density

traffic fare

50 $80

100 71

200 65

400 60

800 56

1600 53

3200 50

varying distances with

di-stance

200

400

600

800

1000

1400

1800

2200

2600

3000

fare

$35
43

52

60

66

84

99

114
129
144

at 800 miles, value of time = $10
frequency load factor capacity

2.6 .64 30

3.6 .655 43

5.4 .68 55

8.0 .71 70

12.2 .74. 89

18.8 .775 110

30.2 .815 130

traffic = 400, value of time = $10/hr
frequency load factor capacity

10.2 .665 59

9.4 .69 62

8.6 .70 67

8.0 .71 70

7.6 .725 73

7.0 .735 78

6.6 .75 81

6.2 .76 85
5.8 .765 90
5.6 .77 93
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Table 5.1.13:
.? Comparison of exponents for sengitivity studies

dependence on market size:

variable
name
fare

frequency

load factor

capacity

9 standard
case

-.12

.58

.06

.36

variable o PAX?

9 load factor
sensitivity

-.13

.55

.055

.40

7 frequency
sensitivity

-.104

.60

.055

.34

dependence on distance: variable \dI

variable
name

fare

frequency

load factor

capacity

in standard
case

.55
-. 29

.061

.23

n load factor
sensitivity

n frequency
sensitivity

.55
-. 26

.053

.21

.55
-. 24

.055
.18
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Table 5.1.14:

- Ranges of variables for sensitivity studies

ranges for PAX=50 to 3200; distdn:e,= 800 miles,

variable
name

fare ($)
frequency

load factor

capacity

standard
case

48-85

1.8-17.6
.60-.75

47-243

load factor
sensitivity

49-87

1.8-18.4

.565,.71

49-246

frequency
sensitivity

50-80

2.6-30.2
.64-.815
30-130

ranges for distance = 200 to 2600 miles; traffic

variable standard load factor
name case sensitivity

fare ($) 35-126 35-131

frequency 3.6-7.0 3.8-7.0

load factor .625-.715 .585-.665

capscity 89-156 98-158

- 400 passengers

frequency
sensitivity

35-129

5.8-10.2
.665-.765

59-90



133

with a $10/hr value for their time, the maximum revenue service
is at fare=$81, frequency=10.4. and load factor=.61. (The
maximum traffic service was at fare=$59, frequency=5.2, and load
factor=.665.) Traffic for the maximum revenues case is only 321
passengers for the same demand which could produce 400 passengers
at the maximum traffic point. Fare is up 38%, demand is off 20%.
Service is twice as. frequent at lover load factors. Consumer
surplus is off 12%.

Ti might be claimed that these conditiond represent what
happened in the last 10 years in the U.S. domestic markets. Not
only is demand suppressed, but such services are not at all
suited to the low value of time customers. Thus while the total
benefits are only slightly reduced, the distribution of these
benefits is skewed. The poltical forces which fostered
deregulation and the actions by the airlines since seem to be
evidence in support of such claims.

The general observation is that the maximum revenue otimum
is not near the maximum passengers optimum. Whatever its merits
as a discription of management objectives, the maximum revenue,
zero profits case is a poor surrogate for broader social
objectives such as maximizing consumer surplus.

5 2 Maximum Profits Optima

We now examine the case of a monopolist maximizing profits.
By profits we mean accounting profits above the normal return on
investment. Normal cost of capital was included in the cost
function. The general conclusion is that such profits can be
large, although this depends on the market size and elasticity,
The profit optimum case is of particular interest because the
greater the traffic on a single firm's service, the lower the
average cost per passenger and the higher the level of service at
zero profits. We suspect that a single firm might come to
dominate such a market.

Total profits from operating the transportation service are
simply the revenues less the costs:

'T~=FA'PAX-cl 'PAX/LF-c2 -FQ-c3, PAX (5.9)

The variable COST was removed from the problem by the use of its
definition in equation (5.1). The variable SEATS has been
removed by the use of the load factor definition of equation
(5.3). The variable PAX remains in the formula as a useful
notation for the expression of equation (5.2), but it is
understood that the three independent variables are FA, FQ, and
LF. The conditions d/dFA=0, dw/dFQ=O, and diw/dLF=O will be
employed to determine the unknowns at the optimum profit point.
These conditions will locate the maximum profit point when there
is one.

The condition dw/dPA=0 determines the appropriate fare. We
apply the condition to (5.9) and simplify to get:
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?A=c1/LF+c3- 1A- PP (5.10)

First of all, we notice in (5.10) that the expression
(cl/LF+c3) is the sum of the SEAT-related costs and the
PAX-related costs expressed as a cost per passenger. We saw this
term in the previous section and we will see it again. It
represents all costs of service except the cost of frequency.

For comparison, equation (5.4) shows the average cost per
passenger of frequency as (c2.FQ/PAX). The maximumprofit point
will be reasonable only when the third term in (5.10) exceeds
this cost, i.e. when profit is postive:

-1/A > c2.FQ/PAX (5.11)

Using (5.2), PAX=k1-PP , we get:

-1/PP > c2.FQ/(klPP )

Pearranging obtains:

k1 > c2.FQ (-() PP (5.12)

Thus there is a minimum market size (ki) which can be made
profitable. With demand below this minimum, no single fare
service can attract enough traffic to recove its costs. (1) This
comes as no surprize.

But we can say more. PP, the perceived price in (5.10),
contains FA plus time related terms, which we summarized as TT in
equation (5.5). Thus (5.10) becomes:

FA = cl/LF+c3-1/d-(FA+TT.v)

Pearranging obtains:

PA = (c1/LF+c3-1/o-TT-v)/(1+1/d) (5.13)

As the market becomes inelastic with respect to perceived price
(v( moves from -1.5 toward -1.0), the maximum profit fare
approaches infinity. Of course this is really far outside the
range of validity for the demand model, but the indication is
that profits can be a large fraction of revenues. In any case
there is an important dependency of profits on elasticity, as one
would expect.

For our value of a=-1.5, the maximum profit fare is
FA=3 (c 1/LF+c3+0. 667*TT*v)

Since the first two terms of this expression are usually 75% of
the total costs, fares at maximum profit points are generally
well above average costs. In short the maximum profit point for
an isolated monopoly market can be relatively profitable.

What about service levels? Frequency can be determined from

(1) We have not allowed price discrimination in the market at
this time.
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dw/dFQ=0. This produces:

0 = dPAX/dFQ'(FA-c1/LF-c3)-c2 (5.14)

Usinq (5.6), we may state

dPAX/dFQ = dPP/dFQ*(PAX'oG/PP)

Substituting this into (5.14) and rearranging o.btains

1 = (FA-c2/LF-c3) (PAX .o/PP-c2) (dPP/dFQ) (5.15)

Usinq (5.5) and (5.6), we may take dPP/dFQ as:

dPP/dFQ = -v(5.7+57LF )/FQ

Substituting this into (5.15) and moving FQ to the left hand side
produces

FQ=PAX '(FA-c1/LF-c3) - (-dv(5.7+57LF )/PP-c2) (5.16)

The first thinq to notice is that as before frequency at
optimum rises as the square root of traffic. Secondly, the
excess of revenues (FA) over non-frequency costs (cl/LF+c3) in
the second term of the product is the per capita profit. The per
capita profit rises as the square of frequency. Since frequency
costs are linear with frequency, profits as a fraction of costs
qrow with market size. Finally, as the market goes to long hauls
the numerator of the last term of (5.16) becomes small with
respect to the denominator. The numerator is the displacement
and scedule delay component of the total perceived price PP.
Thus, frequencies should drop at longer hauls.

No particular insights into optimum load factors are
available by manipulating the equations above. The best thing to
do is to examine some numerically located optima for the
conditions we have defined above. We have done this by guessing
FQ, LF, and FA for markets of different densities and distances
and searching for the optima. The results are presented next.

Numerical Case Studies for Ma ximum Prof it Optimum
We will specify the market size not by k explicitly but by

the number of passengers which would occur in the maximum traffic
optimum case for the same market. Thus each market size
statement will contain the information for comparing traffic.
The standard market is our 800 mile, 400 passenger market with
$10/hr as the value of time. the maximum traffic point was at
fare=$59, frequency=5.2, and load factor=.665.

For this standard market the profit optimum conditions are
far different from the maximum traffic optimum. The maximum
profit traffic is only 69 passengers. The fare is over four
times the maximum traffic fare. Consumer surplus is half, and
the sum of consumer surplus and producer surplus (profits) is
2/3 of the maximum traffic values (see table 5.2.1). As we
suspected from (5.16), the maximum profit point is outside the
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Table 5.2.1: Maximum Profit Points

Value of time = $1.00 per hour: max 7 at
Vaueoftiemax 7r max pax fare=$47

fare $155 $47 $47
frequency 0.8 2.0 0.8
load factor .70 .765 .84
traffic tpax) 74 400 268
profits w $7400 $ 0 $1100
surplus 24800 43500 38100
total 32200 43500 39200

Value of time = $10 per hour: max r at
max iT max pax fare=$59

fare $245 $59 $59
' frequency 2.0 5.2 2.1

load factor .61 .665 .72
traffic (pax) 69 400 270
profits t $12000 $ 0 $ 2000
surplus 38000 74000 65000
total 50000 74000 67000

Value of time = $50 per hour:
max it at

max it max pax fare=$76

fare $479 $76 $76
frequency 4.5 11.0 4.1
load factor .56 .61 .66
traffic (pax) 71 400 276
profits 7T $25600 $ 0 $4200
surplus 90800 161900 143000
total 116400 161900 147200
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bounds of reasonable operations. Profits are 2/3 of revenues.
It is also possible to maximize profits at fixed fare. For

instance, we might fix the fare at the maximum traffic optimum of
$59. This represents the sort of behavior which is often assumed
relevant to a price-regulated market. Maximizing profits at this
fare produces service and traffic quite far from the best
obtainable. Passengers are only 2/3 and frequency and load
factor are both degraded from optimum at zero profits. Excess
profits in this case are still over 10% of revenues. These
conclusions depend on the calibration values for cost and demand
elastisticity The general observation is that there is room for
maneuvering to off optimum conditions even when the fare is held
at the maximum traffic optimum. (1)

Table 5.2.1 compares maximum traffic, maximum profit at
fixed fare, and maximum profit at any fare for several values of
time in our standard maximum. The non-competitive maximum profit
point is so far beyond the range of reasonable operations that
the condition of unconstrained profit-maximizing will be of
little further interest to us. Both equation (5.16) and our
numerical studies put the maximum profit point at profit levels
unlikely to be tolerated by society. The single and important
exception to this in the case of very thin markets where the
fullest exploitation of monopoly power is necessary to recover
the cost of frequency.

5 3 Maximum Surplus Optima

In the maximum traffic, zero profits case the marginal cost
of adding one more passenger to the system is

dCOST/dPAX = cl/LF+c3 (5.17)

We must be very careful about what this marginal cost means. It
is the cost at fixed frequency and fixed load factor of one more
passenger. Thus it is the marginal cost at constant service
quality To fix both PQ and LF implies that the marginal
passenqer is accomodated by adding 1/LF seats to the capacity,
i.e. by changing aircraft sizes. Taking marginal cost while
maintaining exactly the same service levels (in PQ and LF) has
been addressed only once before (by Anderson [33]).

The fare in the maximum traffic zero profit case was above
(5.17) by an amount necessary to recover the cost of frequency:

FA = cl/L?+c3+c2'FQ/PAX (5.4)

Under these conditions it seems desirable to expand the service
to those people willing to pay at least the marginal cost of
their carriage. The objective function which will set fares (and

(1) In the light of our previous comments, such maneuvering in
the US, domestic operations may have been toward maximum revenue
operations instead of maximum profits.
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frequency and load factor) to take advantage of this is the
maximization of total surplus. With fare at that indicated by
(5.17) and costs as indicated in (5.4), profits will be negative.

In practice this rule of allowing losses to exist in order
to serve the marginal users at the marginal price is difficult to
implement Society seems willing to cover the costs of physical
fixed facilities such as airport land and runways out of tax
revenues, but the cost of frequency of service is expected to be
recovered from the traffic. This can be done by price
discrimination, but' price discrimination among customers in the
air mode is difficult, both as a legal and a practical matter.
The marginal customer is hard to identify by an enforceable rule.
Nonetheless, the condition which establishes marginal cost
pricing is of interest for comparison with the average cost
pricing which was part of the maximum traffic case developed
above

Profits were defined in equation (5.9):

= PAX (FA-cI/LF-c 3 )-FQ-c9 (5.9)

Consumer surplus was defined in chapter 3 as:

S = PAX-PP'(-1/((+1)) (5.18)

The objective function is the sum of the two:

MAx(S+r) = objective (5.19)

We differentiate with respect to FA and use PAX and PP as
notation for the terms involving the instrumental variables in
the optimization process, FA, FQ, and LF:

PAX dPP/dFA s(1+4+(FA-cI/LF-c3)/PP)+PAX=O (5.20)

We notice that PAX can be eliminated, so the optimum fare in the
maximum surplus case is nearly independent of the market density.
Also dPP/dFA, the change in perceived price with a change in
fare, is $1, so (5.20) simplifies to:

FA = cl/LF+c3 (5.21)

This is the condition that price equal marginal cost (equation
(5.17)), as anticipated in the introduction to this objective
function. Notice that this would produce a loss. A major
observation is that fares do not cover the cost of frequency of
service Frequency becomes in essence a public good. This is
the same conclusion reached by Anderson [33] from a similar
problem statement. Anderson's contribution is too little
recognized.

The frequency can be set by differentiating (5.19) with
respect to FQ and using (5.21) to simplify. The solution is not
independent of market size:
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FQ- = PAX (v.(5.7+57LF )/c2) (5.22)

This is the same formula as for the maximum traffic case
(equation (5.7)), except that the term PAX in this case will
reflect a lower fare and a different frequency than the maximum
traffic optimum. Notice that optimum frequency does depend on
the market size, rising as its square root.

The optimum load factor is nearly independent of market
size. We differentiate (5.19) with respect to LF and simplify
using (5.21):

LF = FQ (cl/9.k3'v) (5.23)

Once again this is the same expression as for the maximum traffic
zero profits case, except that the frequency FQ will be higher
than in that case. Substitution of the frequency formula (5.22)
produces a dependence of optimal load factor on the twentieth
root of traffic:

*Of19 0.65
LF = PAX (cf-(5.7+57LF )/263169v.c2) (5.24)

This is the same as equation (5.8).
To summarize, the maximum surplus solution adjusts the fare

downward from the maximum traffic solution. The costs of
frequency are not covered by the new fare. The fare does reflect
the cost of load factor, i.e. the marginal seat cost divided by
the average occupancy. With the fare set at this new low level,
optimum frequency and load factor should be adjusted to have the
same dependence on observed traffic as in the maximum traffic
case. At lower fares traffic will be higher than in the maximum
traffic case, so frequency and load factor will also be higher.

The two major conclusions of the maximum surplus case are
(1) losses occur because fare is below average cost and (2) the
optimum frequency and load factor bear the same relationship to
traffic as in the maximum traffic zero profits cases. Further
insight will be available from the numerical studies which come
next

Just as in the maximum profits case, there is a minimum
market size (minimum k1) at which the surplus is positive. With
the possibility of subsidy, this market size is smaller than that
for zero profit operations. The net surplus from equations
(5.9), (5.18), and (5.19) with substitution of (5.5) for PAX is:

k1-PP (-1/v+1)+k1'PP -(FA-cl/LF-c3)-FQ-c2 >0 (5.25)

We have required surplus to be positive. We know that
(FA=c1)/LF-c3) from (5.21) so (5, 25) can be simplified to:

-4-1kI > FQ c2 (-(d+1))-PP (5.26)

Comparison with equation (5.12) which expresses the minimum
market k1 for a profitable market shows that the net surplus
minimum is smaller. For *=-1.5, the minimum underlying demand
may be one third or less of that for a profitable market.
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Numerical-Study of Maximum Suplus Case
Table 5.3.1 shows the maximum surplus optima for different

distances for market with 400 passenger maximum traffic optima.
Althouqh fares are 25% less, traffic is 33% higher and losses
amount to 20% of costs. The net change in surplus is only 1%.
Thus for major markets at least, the failure of society to find a
way to subsidize the public good of frequency of service causes
very little welfare loss. This conclusion is based on our
calibration numbers and will not necessarily carry over to other
modes. However the conclusion is fairly convincing for air.
Given the accuracy of our numbers, a 10% change would have seemed
small

The situation is slightly different at very low demand
densities. Table 5.3.2 shows that traffic can nearly double in
low density markets if their frequency is subsidized. Measurable
qains of surplus (on the order of 5%) are possible for subsidized
low density services. In table 5.3.2 demand densities below 50
are represented by their relative k1 values because such low
density markets do not have comparable zero-profit traffic.
Subsidy in low density cases can be as much as 50% of costs.

Current airline practice in the U.S. is to subsidize markets
of 25 to 5C passenger per day (1) so that their fares equal
average costs for the denser part of the system and thus are near
marqinal costs for the markets in question. This practice would
seem to have some theoretical justification.

Price Discrimination
The maximum surplus case derived a price covering the

marginal cost of a passenger but not covering the cost of
frequency. One way the cost of frequency could be recovered
would be by price discrimination among consumers of the service.
For instance, if the high value of time customers (who are in our
model relatively fare inelastic) paid more and the low value of
time customers paid less, a more efficient optimum could exist at
zero losses. It would be possible to do better still by offering
the high value of time customers a service suited to their
optimum (low load factor, high frequency) and low value of time
customers service suited to theirs (higher load factors, some
flights not available). Technically, both services can be
combined on the same flights. The fixed costs of frequency could
be shared. The sharing need not be "fair". As long as each
qroup pays the costs of its seats (adjusted for load factor), who
pays for the frequency is not important, philosophically. The
political and legal implications of such an arrangement are less
clear cut.

Price discrimination without service differences is
practical in freight operations. Value of service pricing uses a
commodity's own value as an index of its price elasticity.
Expensive goods are charged more per ton than cheap ones. Air

(1) actually 2gints with 25 to 50 origins per day are subsidized.
This gets us into network effects. Here a single satellite to
hub feeder service is treated as an origin- destination market.
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Table 5. 3,1: Maximum Surplus Optim a over Distances
value of time = $10/hr

demands set so PAX = 400 at

passengers1

149%

144%

138%

133%

131%

128%

124%

123%

farel
71%
72%
73%
76%
76%
79%
80%
81%

maximum traffic optimum

freg
9.2
8.4
7.0
6.2

5.8
5.2
4.4
4.2

1 oad
factor-

.625
.635
.65
.675
.69
.70
.72

.725

capacity
103

108
120

127

131
141
156
162

Table 5.3.2: Maximum Surplus Optima over Demand Density
distance = 800

.nominal actual
passnegers pax4

3200 115%

1600 119%

800 125%

400 133%

200 144%

100 159%

50-1-3.

.50 92

(1/2) 35

(1/4) 14

(1/8) 7

miles; minimum frequency is 1.0

farel

88%
84%
76%
70%
64%
55%

$47
$48

$50
$50

f req 1

19.4
13.0

8.8
6.2

4.4
3.2

2.4
1.4

1.0

1.0

1 oad
acto

.76

.735

.70

.675

.66

.635
.62.

.62

.59

.565
.565

r capacity

249

199
162

127

99

78

......- 6 2.. . ..

62

42

25

12
1fare and passengers as a % of maximum traffic-case
2loss as a % of tntal costs
3surplus is consumer surplus less loss as a %-of max traffic case-'

4actual pax as a % of nominal (except for last four :lines)

distance

100
200
400
800

1000
1400
2200
2600

loss2

25%
24%
22%
21%
21%
20%
18%
17%

surpl us3
102.1%
101.8%
101.5%
101.1%
101.0%
100.9%
100.7%
100.6%

loss 2

12%

14%
17%

21%

26%

31%

... 36%....

36%

46%
60%
75%

surplus 3

100.3%
100.4%
100.7%
101.1%

101.8%

102.9%

-1043%-..
n.a.

n.a.

n.a.

n.a.

i
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freight price discrimination is limited by competition from
trucks and between regular commodity service and containerized
(non-discriminatory) service. A good can be overcharged for its
carriage only if the mode is markedly superior in perceived price
(logistically for freight) to other modes. That is the same
thing as saying that the goods for which a mode is technically
best suited are captive and can be charged above marginal costs.
Goods for which air and truck service are equally appealing can
only be charged the marginal cost of their carriage when
competition is allowed. That is to say that goods whose value of
time falls on the watershed lines of the demand figures in
chapter 3 will usually pay the lowest prices for the service.

In passenger transportation, the use of indicators such as
age, sex, occupation, or marital status to determine elastic
segments of demand is legally difficult. However, simultaneous
service differentiation and price discrimination can occur.
Excursion fares represent services aimed at lower value of time
optima. Excursion fares probably do not cover the average cost
per customer of frequency in the same way as regular fares do.
If frequency costs are not equally shared by both fare groups,
some price discrimination is occuring.

one conclusion from the maximum surplus case is that only
low density markets seem worthy of consideration for subsidy. In
these cases, price discrimination within a market can take the
place of cross subsidy from other markets or other activities.
Price discrimination could be allowed or even encouraged in low
density markets. In higher density markets, stricter standards
of justice among consumers may be enforced, although multiple
choices of service level are still to be encouraged. For freight
this would mean that commodity pricing might exist in low density
markets, but only service based differentials would be
appropriate in bigger markets In passenger transport, low
density markets might have larger price differentials for
different service qualities than would denser markets.

In network studies we will find that the cost of frequency
cannot even be allocated to a given market, so the range for
discrimination among customers extends itself geographically as
well as across values of time. Those markets which are not
captive to the network (i.e. have alternative service in the city
pair) will probably pay close to their marginal cost. We will
discuss these network matters in greater detail in their proper
places.

5.4 Summary and Conclusions

This chapter has demonstrated that the optimum design for a
single link transportation service involves differing frequency,
vehicle size, load factor, and fare depending on the market
density, distance, the nature of the objective function, and
details of the distribution of values among the consumer
population. An objective of maximum profits produces severely
constrained services and unrealistically high fares. An
objective of maximum total surplus produces substantial losses.
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objectives of maximum traffic or maximum consumer surplus at zero
loss produce shallow optima which depend on the distribution of
values of time among the population. Prediction of optimal or
even likely operating conditions can not be made without accurate
demand data. There is an absence of simple, fundamental, global
answers.

The absence of peaked optima means that in any real
situation details of short term practicality may determine
operating conditions. It may also be that the particular choice
of conditions is a matter of chance. This makes regulatory
control difficult if not impossible.

There are three degrees of freedom in designing a service
for a city pair: fare, frequency, and load factor. From the
consumer's viewpoint these add up to total perceived price.
From the producer's viewpoint they determine profits. There may
be some simple natural equilibrium between consumers and a
producer or producers, If there is, regulations fixing only one
degree of freedom are unlikely to displace the equilibrium
perceived price or profits by much. There is sufficient
flexibility- in the system to adjust. Furthermore, the optima are
by nature broad and flexible. Regulation of the product itself
is unlikely to alter the fundamental efficiency or inefficiency
of the market. (Regulation of the rules of the market place
including the number of producers and the pricing shemes
allowable may have considerable influence.)

The lack of peaked optima influences the network design
problem. Apparently a broad range of total seats and frequency
may be provided in a market; cost related adjustments in fare can
produce a service close enough to optimum. Therefore the
definition of optimum network design is extremely difficult.
Networks add yet another degree of freedom to the perceived price
and cost functions. This degree of freedom is the number of
intermediate stops per passenger trip on the service side, which
translates into stage length on the cost side. Even without
network adjustments, optima cannot be generally defined with any
relevance. By examining networks designed to provide capacity
and frequency in markets at minimum cost, we shall see the optima
in this dimension can be shallow too. This is the task of the
next chapter.
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6 Networks
6.0 Introduction

Chapter 2 showed that a schedule of service could be most
cheaply provided by a single carrier. Chapters 3 and 4 explored
the consequences on the demand side of having service provided by
one or only a few carriers. Chapter 5 developed in detail the
technical possibilities for the cheapest and best (single
carrier) service for markets ranging from 50 to 1600 passengers
per day. All these discussions examined a single city pair
market served by a dedicated nonstop vehicle link. But with few
exceptions airlines operate networks of services involving
hundreds of city pairs. Networks were not forced on existing
airlines because new airlines could not be certificated. Nor is
network service entirely due to the market and managerial forces
whicn favor national corporations. Airlines operate networks
because there are technical cost savings gained in so doing.
These savings come frou combining passengers from several markets
onto a single large aircraft. Larger aircraft are cheaper per
seat, so combining loads produces savings. In a sense, airline
networks are a direct consequence of vehicle economies of scale.

This chapter focuses on some very simple network concepts
which are of practical relevance to today's airline system.
While foriral statement of the network design problem has seen
much study (cf. Wong [41] and his references), little has been
done to translate the consequences into meaningful terms. Work
by Gordon and de Neufville [14) on the airline network problem
has broader relevance for the sparser European networks with
larqely connecting traffic. Regression analysis by Fruhan [12]
using network measures suffered from over simplification and
perhaps misstatement of the problem. The discussion below, then,
is largely new work.

We will not be able to develop any closed form mathematical
statements about networks. Indeed, part of the contribution of
this effort is to illustrate that the minimum level of detail for
such a solution goes far beyond the simplified measures used in
the past. In the course of the discussions we will attempt to
develop a level of understanding which will preclude further
misuse oi global activity measures of the kind influenced by
network considerations.

Transportation services are operated in networks because
most markets are too small to be served alone. Networks are a
powerful means of mitigating the problem of small aircraft
capacities. In the domestic U.S. there are only 50 city pairs
with over 400 passengers a day each way. (1) For comparison,
there are 25 airlines operating jet equipment of the kind
described in chapter 2. Airlines operate at the frequencies and
aircraft capacities which were discussed in chapter 5 because
they operate networks of services where each flight is part of
trips taken in a dozen or more city pair markets.

The fundamental technical gain in network design is in the
direction of increased aircraft capacity. These scale economies

(1) 197b CAB ticket survey data [7]. See also table 5.1.10.
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are partially lost-because load building means more expense in
stops and shorter stage lengths. Designs for minimum cost
involve balancing the use of large aircraft on short hops against
longer hauls but smaller aircraft capacities. Thus vehicle cost
(approximately equal to the cost of 50 seats) is traded off
against departure costs (approximately equal to the cost of 200
miles of cruise). These costs are evaluated not for a single
link or market, but as a total for the entire complex of services
in the network.

6.1 The Network Design Problem

Networks: Supply Side
In its simplest form a supply network is a set of city pair

links served at various frequencies by aircraft of various
capacities. The cost is determined from the sum of the single
link costs determined in chapter 2 and employed extensively in
chapter 5. The only difference from chapter 5 is the cost for
traffic which connects from one link to another. (For the moment
we will not care whether the passengers travel on a through
flight or make a physical change of planes.) For air travel this
cost is a minor correction in expense. The early illustrations
in this chapter will treat all movements through intermediate
cities as passenger connections and will consider the expense to
be roughly $6., or half the cost of an original boarding. This
figure is discussed with the rest of the costs, in section 2.2 of
chapter 2.

Networks are sometimes measured in terms of seat-miles or
ton-miles. These are measures of network extent and tell nothing
about the cost or characteristics of the service. A two link
network of a million seat-miles is very different from a 50 link
network of a million seat-miles. The same comments apply to
measures of seat-departures and aircraft departures. For
assessing costs or general viability of networks, measures of the
density of network services are more useful indices of the state
of the network. Such measures include aircraft capacity averaged
over miles, departures, or block hours, stage length averaged
over aircraft or seats, link frequencies or link departures
averaged over links or link miles, links per city, and departures
per city.

Attempts have been made (cf Greig [18]) to characterize air
transport networks by simple measures, but no such general
descriptors can be used for design because the distributions of
stage lengths, capacities, and frequencies and even the
correlation among these distributions affect general cost and
service levels. This is why regressions using network measures
such as the ones performed by Fruhan (12] have met with mixed
results.

It is not determined what is the minimum level of detail
that needs to be specified to characterize network average costs,
but examples in this chapter will illustrate that distributions
of capacity, stage length, and frequencies are necessary, though
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they may not be sufficient..(1)
Networks: Demand Side

Strictly speaking demand does not exist as a network.
Demand applies to travel in a city pair. Nonetheless, groupings
of city pair demands for the purpose of serving them with a
supply network may be referred to as a network of demands. A
network of demands is merely a list of city pair markets with
enough common terminals to make joint services possible.
Problems arise when demand' networks are specified by a list of
cities, with the list of city pairs by implication including all
viable markets. It turns out the definition of viable is
critical. For example, changing the minimum cutoff from 25 to 20
passengers a day will generally increase the number of markets by
a large amount without affecting total network traffic
significantly. Thus, while measures of the extent of networks of
deiand such as cities, passengers, or passenger miles (2) are
stable, measures of demand network density such as passengers per
market, markets per city, and markets per potential city pair (3)
are not broadly useful because the number of viable markets is
sensitive to the definition of viable. Perhaps the only stable
density measure available to characterize a network of demands is
average trip length.

Without contradicting the above statements, it is still useful
to make a point about one aspect of network density. Usually a
few markets dominate the total demand in a network. Among N
cities there can be N(N-1)/2=M city pair markets. M rises as N
Let the top m markets comp se 90% of the demand. Then m will
tend to be between N and N ~ in the real world situations. The
statement cannot be proven; it is not true in any general
mathematical sense. But in the author's experience it is a
useful rule of thumb. (4) Demand in a network is seldom
uniforrly distributed among markets. When the number of markets
is near N, a thin or sparse network exists. Under these
circumstances the flexibility in routing and aircraft capacity
disappears and inteqerization and time of day effects dominate
the technical design problem. This is the case in most
international networks, but it is rare in U.S. domestic trunk
networks, which is the problem we are addressing. (For an
eloquent exploration of the problems of sparse networks, see
iosenberq [51], chapter 3.)

(1) Here we use the term "average cost" intuitively to indicate
general cost performance. Measures such as $/seat mile have
meaning only in the context of fixed demands and service levels.

(2) when specifying demand one should specify the fare and level
of service for each market.

(3) The number of potential city pairs is developed in the next
paragraph.

(4) The reasoning is somewhat circular, since it was the author's
experience that established the rule of thumb.
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This information -points up the great difficulties in
specifying network densities. A very important index for a
network is the number of city pair markets per terminal. In fact
an airline which dominates the service at a city is in a powerful
position not only at that city but in all markets that may
reasonably be routed through that city. But the markets per
terminal rise non-linearly with the number of terminals included
in the case. Thus network design responds to three partially
interrelated measures: number of terminals, number of markets,
and markets per terminal.
Networks: Load Factor

Load factor in a network is usually presented as an average
over seat departures. Load factor is also sometimes presented as
an average for a segment or link. Neither of these measures is
appropriate. When studying a network design, load factor is best
defined by city pair markets, regardless of which links are used
in the path between the origin and destination points. (1)
System average load factors per departure, per mile, or per block
hour are like the other network density measures; the
distribution about the average contains much necessary
information.

Using a definition of load factor per market implies space
is blocked on each link of any path used by a market. A given
link will carry several markets, and sections of that link's
capacity will be allocated at different load factors. There may
even be seats on a link which are not reserved for any market and
which are part of unassignable network overheads. (2) Under this
formulation, the conventionally reported link load factors are
averages among several markets and they may in theory include
some deadhead seats. Designing a network using the traditional
measure of link load factors creates a mathematical problem of
complication and elegance. Using the distinction of market load
factors eliminates the problem entirely. (3)
Networks: Intermediate Stops

The process of matching supply (in seats) and demand (in
passengers) for a single link was complicated by the degree of
freedom called load factor. Load factor affected both service
level and cost. In networks there is yet another degree of
freedom: the number of intermediate stops experienced by the
traveller. Like load factor, this dimension affects both service
and cost.

A city pair's demand can be served in a network either
directly nonstop or by connecting or through service using one or

(1) The set of links used to make a multistop trip in a market is
called a path.

(2) Such deadhead seats seldom occur in the relatively well-
connected U.S. domestic networks.

(3) If variability in demands is partially random, as developed
in chapter 4, then combined loads will have greater than expected
space availability. However, 'this is a second order effect.
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more intermediate stops. . Our terminology calls each way a
passenger might travel through a network a demand path for the
market. 3oth stops and extra miles have significant costs, so
practical options for a path neither stop too often nor go too
far around. This limits the number of potential paths for any
given market to perhaps a dozen options. (This limit makes
possible the linear programming network designs like the one done
later in this chapter.)

The matching of deman'd and supply for each market in a
network is defined by the fare, load factor, frequency, and
number of intermediate stops for that market. Cases often occur
where more than one path serves the market. In this case some
index such as a weighted average should be used to define stops
and total frequency for the market. As a practical matter, the
examples in this chapter will discuss market service in terms of
equivalent non-stop service. The equivalence will be obtained by
one of two methods. At first we shall maintain the single link
perceived price by reducing fare just enough to compensate for
the time spent in the intermediate stop(s). (1) (For this
purpose 1 hour of time or $10 of value represents an intermediate
stop.) We shall incorporate this $10 penalty into the network
cost structure and then we shall look at minimum cost designs.
This method is used in the simplified network examples. The
second approach follows more correctly the methodology of Eriksen
[111 in calibrating the market demand model. In the final
network example, the frequency on multistop paths will be raised
so that the expected total travel time including both stops and
schedule delay is the same as for the design single link service.
Neither of these compromises is ideal; the design should be able
to explore either reduced cost or increased frequency as an
option in compensating for intermediate stops.

In U.S. domestic practice, air passengers make an
intermediate stop on roughly a third of their trips. The number
of stops per trip averaged over a network of demands is an
interesting index of the state of development of the network.
For air use, the network average ranges between 1 and 2 stops per
passenger trip. Truck and rail networks can range much higher
than this.

We now begin to explore network designs using this
compromise approach. Our design criterion is minimum cost for
providing certain service levels to the network of demands.
Because the $10 of passenger experienced cost is included, the
design considers service quality in the dimension which is
uniquely relevant to networks-- the number of intermediate stops.
The other quality dimensions, load factor and frequency, are
fixed. This approach highlights the special network issues.

(1) We assume that people passing through an intermediate airport
are on throuqh flights or are making a close and convenient
connection. This is the case for U.S. domestic trunk systems.
European systems involve a second displacement time at the
intermediate airport, as developed by Gordon and de Neufville
[141.
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optimal network designs.in the sense of optimal used in chapter 5
would consider all degrees of freedom in design.
Network Example: Simple Linear Network

Network relationships may be illustrated using the smallest
possible network. To simplify the design problem, we will
require four departures daily for each market and load factors of
67%. This fixes the service quality in the dimensions not unique
to network design. Figure 6.1.1 describes a simple linear
network of four cities and five city pair demands. In figure
6.1.2 three service patterns are represented: the spanning tree,
an intermediate solution, and an all direct service pattern. In
this case the direct service pattern also characterizes the
network of demands because the average seat stage length is the
average passenger trip length and there are no intermediate stops
per passenger trip.

The three service patterns may be compared for fairly
typical airline conditions. With distances of 500 miles and
demands of 200 passengers per market per day, the three service
patterns are tallied in table 6.1.1. For this network of
demands, the spanning tree service pattern is unduly expensive
because too many long haul passengers are being cycled through
too many intermediate stops. This costs both money to the
airline and time to the passengers. The direct service pattern,
on the other hand, is too expensive because the aircraft capacity
is small and the expense of vehicle frequencies is excessive when
averaged over the on board demand. The intermediate network
design represents a balance between eliminating intermediate
stops and combining markets to achieve densities suited to larger
aircraft. As the number of vehicle departures grows from left to
riqht in table 6.1.1, the average stage length grows (a saving)
but the average aircraft capacity drops (a loss).

What kind of network is appropriate depends on the size of
the demand in comparison to the per vehicle costs. The example
above was carefully chosen to lead to an intermediate solution to
the network problem. In our the vehicle costs are approximately
equal to the cost of 50 seats. (1) Table 6.1.2 displays the
costs of the three network designs for different demands. At the
top of the table the low density markets are best served with
many intermediate stops and short stage lengths (the tree
network). In the tree network maximum load building is achieved,
spreading vehicle costs as much as possible. Stage length has
been sacrificed in order to use increased aircraft capacities.
At the high densities at the bottom of the table, most of the
economies of increased vehicle capacity have been attained, and
maximum stage length is reached by doing without load buildingnd
using aircraft capacities below the absolute largest achievable.
stage lengths and aircraft capacities are also presented in table
6.1.2.

The other influence on network design is the relative

(1) We recall that our engineering cost structure divides
aircraft costs into per vehicle and per seat costs. Vehicles
provide frequency. Seats provide capacity.
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Figure 6.1.1: Simple Linear Network Problem:

AB 500mi -, 50mi - O 500 mi

demands: AB - 200 passengers per day

BC - 0 " "

CD - 200 " "

AC - 200 " "

BD - 200 " "

AD - 200 " "

Assumed service levels and costs:

all markets must be served four times daily

load factor is 67% by design

Costs from Chapter 2:
$12.64 per passenger boarding

$0.008 per passenger mile

$379.8 per aircraft departure

$3.27 per seat departure

$0.816 per aircraft mile

$0.0176 per seat mile.

A cost of $6 fnr handling and $10 for passenger's
time is added for each intermediate passenger stop.
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Figure 6.1.2: Linear Network Service Patterns

Minimum Tree:

900 seats 900 seats 900 seats
A B C D

Intermediate Design:

450 seats
450 seats

A C D

450 seats
450 seats

Direct:

300 seats
300 seats

A B C D

300 seats
300 seats

300 seats
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Table 6.1.1: Data for Simple Linear Network and three service
designs for distances of 500 miles and demands of 200 passengers
Service four times daily.at 67% load factor.

service designs

measure tree intermediate direct

vehicle departures 12 16 20

vehicle miles 6000 12000 18000

seat departures 2700 1800 1500

seat miles (000's) 1350 1350 1350

Costs ($000's) ) $75 $69 $71

Average Vehicle Stage Length 500mi 750mi 900mi

Average Passenger Trip Length 900mi 900mi 900mi

Average Passenger Hop Length 500mi 750mi 900mi

Average Stops per Trip 1.8 1.2 1.0

Average Vehicle Capacity (per mi) 225 113 75
Average Capacity per Departure 225 113 75

System Passenger Handling $ $19,840 $19,840 $19,840
System Minimum Seat Costsi $28,665 $28,665 $28,665

System Frequency Costs $ 9,752 $15,869 $22,284

Seat costs above minimum2 $16,724 $ 4,181 0
total costs $74,683 $68,555 $70,789

1Minimum Seat Costs are the cost of direct milage and
one departure for all passenger traffic at the stated
load factor.

2Seat costs above minimum are the costs of intermediate
hops for seats at design load factor. This includes
$6 handling costs, $10 of passenger time costs, and
$3.27 per seat departure cycle.
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Table 6.1.2: Linear Network at different Densities

costs in $1000 for
intermediate

$29.0
or 42.2-

68.6
94.9 or

121.2

each design:
direct

$34.4

46.6

70.8

95.0
119.3

optima are underlined

market
densities

50

100
200
300
400

stage length:

Aircraft Size in Seats for Network Design:
tree intermediate direct

66 33 19

113 or 66 38

225 113 75

338 169 or 113

450 225 150

500mi 750mi 900mi

market
densi ties

50

100
200

300
400

System
tree

$25.8

42.1

74.7
107.3
139.9
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Table 6.1.3: Linear Network System Costs at 1000 miles

costs in $1000

market
densities

100
181
200
544
800

System Costs in $1000 for each Network Design:

tree intermediate direct

$62.4 $67.5
101.3 or .101.3
110.5
275.7
398.8

109.3

$76.7
108.9
116.4

253.1 or 253.1

360.1 340.4

sost minima are underlined

Table 6.1.4: Linear Network System Costs at 100 miles

mark6t System Costs in $1000 for each Design:
densities tree intermediate direct

$10.6 $11.5
13.6 or 13.6
25.7
29.1
45.9

22.0

$13.5
15.3
22.4

24.8 or 24.8
35.9 34.3

cost minima are underlined

100
120
200
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importance of departure and cruise costs. In our example each
departure costs roughly the same as 250 cruise miles. For a
network with 1000 miles between cities instead of 500, departure
costs are a smaller fraction of the total. Under these
conditions, the tree network becomes more suitable because the
reduced importance of the cost of intermediate stops favors the
network design with more such stops (see table 6.1.3). The stage
length of the tree network (1000 miles) is long enough to nearly
exploit the achievable economies in this dimension, so longer
stage length network designs are not needed.

Table 6.1.4 shows the case for a short haul network with
distances of only 100 miles between cities. Here the cost of
extrd passenger departure and landing cycles is dominant and the
network with the least of them and the greatest stage length is
the best. Thus the direct flight service dominates all but the
smallest demand levels.

Not all the qualitative conclusions from this small network
example carry over to all networks in all cases, as we shall see
in our next example. In particular the regular growth of stage
length with increased number of links sometimes fails. Such
occurrences make general laws about network design impossible.
However, the trends apply to most transport networks in most
cases. Increased demands favor more direct service and longer
stage lengths. Increased departure costs do the same.
Agebraic Statement: implified Trends

Even with the simple example above, we notice several
network trends. Larger aircraft are used with shorter stage
lengths, more stops for passengers already on board, and
generally less direct service. Smaller aircraft are used in more
direct service, longer stage lengths, and less stops for
passengers on board. We may crudely formalize some
relationships. Let us define

D the demand per city pair market (system average)
T the demand average trip length
I the number of city pair markets
N the number of cities

We can characterize the demand network using these variables,
although they are not sufficient to determine the network design.
(1) Corresponding to the demand network descriptors, there are a

number of useful variables for characterizing the supply network
design:

1 the number of links served
f the frequency per link (network average)
c the aircraft capacity (system average)
s the average stage length (either per vehicle or per

seat)

(1) Distributions of densities and stage lengths are also
necessary to characterize a network for design. Even these may
not be sufficient.
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n the number of stops per passenger trip (system average)

For a design without slack capacity and without passenger
circuity:

n " T/s (6.1)

This says that passenger departures and seat departures are
closely correlated when load factor is constant. The number of
intermediate stops per passenger trip (n) tends to~ rise as the
average stage length (s) falls. (1)
We can also say

D-M=f-l-c=constant (6.2)

This states that traffic and seats must match when load factor is
constant (=1.00) and circuity is negligible. As frequency (f)
rises, capacity (c) and number of links served (1) tend to fall.
Finally we can indicate a third trend:

n r M/1 (6.3)

This says that networks with fewer links route more traffic over
the links which do exist. As the number of links falls, the
number of intermediate stops tends to rise.

These relations say that for a fixed network of demands one
can have (1) frequency at the expense of extra intermediate stops
and smaller aircraft capacities, or (2) direct service at the
expense of frequency and aircraft capacities, or (3) low cost
service (large aircraft capacities) at the expense of frequency.
(2) mathematically combining equations (6.2) and (6.3) we get:

fec/n tv D (6.4)

From this we see most clearly the new degree of freedom
offered by network design. For a single link, frequency times
capacity must equal demand (when demand has been adjusted for
load factor). In the single link case there is only one market
(M=1) and one link (1=1). The number of stops (n) must be fixed
(n=1). In a fully developed network, n ranges from 1 upward.
For airline practice n is between 1 and 2, as we have said.

In network design the correspondences in equations (6.1) to
(6.4) are not strict proportionalities. The trends can even be
reversed over some ranges of network design options. Much
depends on the distribution of demand per market and frequency

(1) The equation is true when only one aircraft capacity is
employed. Otherwise it is merely a trend.

(2) For an excellent discussion of just these tradeoffs from a
slightly different perspective, see Gordon and de Neufville [14],
and Rosenberg [51], chapter 8.
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and capacity per link about their averages and on the spatial
layout. of the network. However, for efficient solution to
networks of demands distributed over regular geographical areas,
the tendencies hold true, as we hope to illustrate further.

6.2 Small Hub and Spoke Case Study
Network design involves simultaneous tradeoffs among vehicle

departure cycles, vehicle miles, capacity departure cycles,
capacity miles, and the cost of intermediate stops to the traffic
itself. In order to explore these considerations, it will be
best to start with a stylized network rather than a real list of
cities and markets. With the symmetry and simplicity of a
stylized exauple, the measures and tradeoffs will be more obvious
at the first. Our next step will be to examine more realistic
situations.

We start with the geography of figure 6.2.1. There are two
major hub cities and each hub has three nearby satellite cities.
Inter-hub demand is large. Hub to satellite demand is modest,
and inter- satellite demand is small. To keep the network design
tradeoffs clear, we will fix frequency and load factor. Load
factor for all markets will be required to be 65%; daily
intercity frequency will be required to be two flights. There
will be a $10 expense of passenger time for each passenger who
passes through an intermediate terminal. Otherwise the costs
from chapter 2 can be used:

Cost per vehicle stage=$379.8
Cost per vehicle mile=$.816
Cost per seat stage=$3.27
Cost per seat mile=$.0176
Cost per passenger hop=$6.00
Cost per passenger trip=$6.64
Cost per passenger mile=$.008

For the stylized case of this study, any aircraft capacity can be
used on any link. There will be no deadhead or backhaul seats.
Consequently, passenger and seat costs can be combined using the
sytemwide design load factor in the manner analogous to equation
(5.21) in chapter 5. Also at a design frequency of two, link
costs can be stated explicity by rearrangement of the previous
numbers:

Cost per link=$759.6
Cost per link mile=$1.632
Cost per passenger hop=$21.03
Cost per passenger mile=$0.0351
originating passenger correction=-$3.34

The network design which minimizes the total link costs is
the minimum spanning tree with 7 links. This is shown in figure
6.2.2. Also shown in figure 6.2.2 is a second 7 link network of
almost identical total link costs, but greatly reduced number of
passenger transfers. In our experience network designs often
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have a natural minimum network very close to the mathematically
defined minimum spanning tree but with the most heinous
circuities corrected. In general it is best to start with this
natural minimum network when designing by adding links.

Links can be added to the tree network until all 28 city
pairs are served nonstop. The nonstop solution maximizes link
costs, but minimizes total passenger related costs. In this
process the first links to add for the case study are hub bypass
links hooking the southwestern satellites to the eastern hub (or
vice-versa). The first such link removes one hub transfer for
all 130 passengers headed from the western satellite to the east.
Bypass routes from the eastern satellites to the west are just as
good in the symmetrical case. With six bypass links added, 560
transfers are eliminated. The system has half the possible links
(13 out of 28) and almost all the reasonable savings. The number
of transfers and a few miles of passenger circuity can be reduced
by adding some short local intersatellite links and then the
longer east-west intersatellite links, but the rewards are few.

This link addition process is traced from the start in
tables 6.2.1 through 6.2.4. Table 6.2.1 lists the number of
links and the totals of the activities necessary to calculate
costs. Physical system costs (without the $10 of passenger
experienced transfer costs) are listed in the last column. As
links and link miles are steadily added, passenger departures are
steadily reduced. Passenger miles are also slightly reduced by
the removal of circuity. The minimum cost to the operator of
meeting the design service and capacity levels occurs with 9
links.

The design tradeoffs are highlighted in table 6.2.2. Here
links and link miles above the minimum and passenger departures
and miles above the all-nonstop case are reported. These are the
"extra" links and "extra" passenger departures listed in the
first four columns. One sees at the start the addition of one to
six hub bypass links adds modestly to link costs while saving
large numbers of departures. There is a cost minimum at six
"extra" links for the case where both operator physical costs and
passenger time costs are included. Additional links serve
smaller and smaller markets or groups of markets. Beyond link
14, a few passenger stops are removed at great expense in terms
of link numbers and link miles.

Notice that the optimal system from a minimum physical cost
view has 9 links and the optimum design from the view of minimum
cost including the cost of passenger inconvenience has 13 links.
There is a tradeoff of cost and quality beyond the tradeoffs
already made in determining frequency and load factor in chapter
5. That tradeoff is between cost and the number of intermediate
stops.

Notice also that in a full optimization shared costs of
frequency would be reflected in the specifications of per market
frequency. The instrumental variable in network design is
aircraft route frequency, involving several links, stops, and
markets. Aircraft route frequencies are justified by the
benefits to all the markets involved. In our discussion we do
not optimize design over a network; we merely explore the cost
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advantages involved.
Measures which correspond more closely to single link or

system average transportation parameters are presented in table
6.2.3. In a sense the all nonstop service for a network
corresponds to single link service as an average among the
markets. Starting with this nonstop network at the bottom of
columns 2 and 3 and moving upward, we delete links which are
expensive and thinly used. There is a steady increase in the
average traffic density on the remaining links. Notice that
density per departure and per mile are different due to
distributions of aircraft capacities over links. Higher link
densities mean lower average per seat operating costs because the
cost of frequency (vehicle cost) is averaged over more seats.
Costs do not fall in direct proportion to the economies of
aircraft capacity because intermediate stops (column 6) are being
experienced by passengers, causing both operating and
traffic-borne expense.

From this table we can notice two irregularities which apply
in the real world. First, vehicle stage lengths do not directly
correspond to passenger hop lengths. Vehicle stage lengths do
not even change monotonically with link addition because of the
distribution of aircraft capacities over link lengths (column 4).

The second point that is typical of network designs is seen
in column 7. Passenger circuity for a network of demands is the
ratio of path miles to the direct market distances. Because
mileage cost is significant, minimum cost designs tend to use the
shortest path the network of existing links provides. Thus
passenger circuity is never very large. This is almost always
the case for airline network designs, even though circuity can be
substantial in mathematical network designs with lower costs per
capacity mile.

Table 6.2.2 showed a cost minimum at 6 links added to the
minimum network (or 15 links removed from the all-direct
network). This minimum changes depending on the problem. If
daily frequency requirements are set at three flights per day
instead of two, as the second to last column of table 6.2.4
(column (a)) shows fewer links are cheaper. If passenger demand
is quadrupled, more direct service (more links) is called for, as
shown in column (c) of table 6.2.4. Figure 6.2.3 shows which
links are involved in the three designs of columns (a), (b), and
(c) of table 6.2.4.

It would be valuable to define general laws for tne minimum
cost number of stops, trip length, number of links, and so forth
for networks in general. Indeed it was once the hope of this
research to be able to do so. However, optimal network design
depends very much on the distribution of demand densities over
the network as well as on the relative departure and mileage,
vehicle and capacity costs. Furthermore, as we can see in this
sirple case study, the optimum is quite shallow. In the 13 link
optimum network there are several equal or very nearly equal
paths for most of the multistop demands to take. What is more,
the addition or deletion of a link has modest effects. Removal
of a link generally diverts the traffic to a path of only
slightly greater length and the same number of stops. For
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Figure 6.2.1: Geography of Small Hub and Spoke Network

s 100 h

1 100
s 100 s

500

distances in miles

h - hub terminals

s - satellite terminals

all angles 900 as shown, Intercity distances

determined by plane geometry where not explicitly stated

Demands:

hub to hub -

satellite to

satellite to

total

1000 pax per day (1 market)

hub - 100 pax per day (12 markets)

satellite - 10 pax per day (15 markets)

of 28 markets
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Figure 6.2.2 Seven LInk Designs for Hub and Spoke Example

Minimum spanning tree: - I

link costs=$3556; Passenger departures=3650

"Natural" minimum network.

link costs=$3623; Passenger departures=3190
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Table 6.2.1: Small Hub and Spoke Example: Activities

Passenger
departures

3650

3190

3060

2940

2820

2710

2610

2500

2460

2440

2390

2350

Passenger
mi (000)

1041

1016

1004

993

988

985

985

985

980

976

976

976

System
cost (000)

$96.2
93.6
93.4

93.3
93.5
94.0
94.6
95.1
98.2

101.4
107.8
115.0

minimum spanning tree

total
link mi

1100
1182
1692
2202
2809
3416
4016
4616

5016
5798
8212

11024

number
of links

7*

7

8

9

10

11

12

13

17

20

24

28

*
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Table 6.2.2: Small Hub and Spoke Network Example: Extra Costs

extra pax
mi (000)
40

28

17

12

9

9

9

4

0

0

0

extra physical
cost ($000)

$10.5-
10.4

10.3

10.5

11.0

11.6.
12.1

15.2

18.4

24.8

32.0_

extra total
cost ($000)

$19.0

17.5

16.2

15.2

14.6

14.2

13.6

16.3

19.3

25.2

32.0

+1182 +2350

The figures on

minimum costs

the bottom line with the + signs are the
to which the "extra" costs are to be added

extra
links
0

1

2

3

4

5

6

10

13

17

21

extra
link-mi

0

510
1020
1627
2234

2834
3434
3834
4616
7030
9842

extra
pax-dep

840
710
590
470
360
260
150
110
90

4

0

+976 +83.0 +83.0 .
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Table 6.2.3: Small Hub and Spoke Example: Indices

(2) (3)
link densities:
PAX-mi PAX-dep
Link-mi Link-dep

859 456

593 383

451 327

352 282

288 246

245 218

196 192

195 145

168 145

119 122

(4)
stage :
link-mi
links

169

212

245

281

311

335

355

295

290

342

(5)
hop:
PAX-mi
PAX-dep

318
328
338
351

364
378
394

398
400
408

(6)
stops
per PAX
trip

1.36
1.30
1.25
1.20
1.15
1.11

1.06

1.05
1.04

1.02

(7)
circuity
PAX-mi

demand-mi

1.041
1.029
1.018
1.010
1.010
1.010
1.001
1.000
1.000
1.000

84 394. 415

(1)
total
network
links

7

8

9

10

11

12

13

17

20

24
1.00 1.00028 89
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Figure 6.2.3 Links Added to Tree Network for cases of Table 6.2.4

(a) First Three links for frequency=3 case:

(b) 3 more links for Standard case:

(c) Four more links for demand quadrupled case:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _V
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Table 6.2.4: Small Hub an dSpoke Example; Different Sizes

number
of links
in network

7

8

9

10

11

12

13

17

20

24

28

(b) Cost
Standard
case

$102.4

100.5

99.2

98.3

97.5

97.2

96.7

99.3

102.3

108.3

115.0

(a) cost
frequency=3
case

$105.7

104.9

104.4

104.3

104.6

105.1

105.4

109.9

114.7

124.1

134.7

in (000's) include $10~per

compensate for passenger's

passeger connection

time.

(c) cost
pax-4
case
$386.8

375.8
365.8

356.7
348.8
342.1
334.6
334.2
335.5
338.3
342.6

costs
to
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instance, adding the 6th new link increases the average stage
length by 8%. This would seem to reduce average cost per mile.
But at the same time aircraft capacity is reduced by 15%, which
increases average cost per mile. Also, distributions of
densities and stage lengths change. The net result is a very
small change in average cost per passenger mile.

It is true in practice that stage length and aircraft
capacity economies tend to share any gains made in redesigning a
network for greater demand densities. As a rough rule of thumb,
they share these gains equally. But this is merely a tendency,
and cannot be reduced to a general rule.

Another thing we can see from this example is that the
optimum is so shallow that it could easily be displaced by
reasonable readjustments of costs or parameters. In a sense the
broad and indefinite nature of the optimum network design is
analogous to the broad optimum found for single link service
design. Network design adds a new degree of freedom to a process
ot optimizing technical performance which is already quite
adaptable. Network design has so much freedom to adapt that
coupled with market by market flexibility in fare, frequency, and
load factor there is no way to define optimality with any hope of
generality.

6.3 Cost Allocation in a Network
We saw in chapter 5 that the cost of frequency was not

included in the marginal cost of traffic in an isolated city pair
market. At fixed frequency and load factor, marginal cost per
passenger did not cover vehicle costs. Similarly, if we fix the
frequency throughout a network, the marginal cost for traffic in
any single sity pair market is the cost of capacity (adjusted for
load factor for that market) and the cost of handling for the
miles and departures experienced on the path used for that
market. This is the answer we get if we require all markets and
service levels be fixed, and that our derivative be the cost of
adding one more passenger to one market. The costs of vehicle
frequency are again excluded.

The cost of intermediate stops is included in marginal cost
tor traffic in a network, as is the cost of any miles of
circuity. Because of stops and circuity, the marginal cost for
traffic served in a market is equal or above the marginal cost
for the same market isolated. This occurs even though the total
network cost is below the summed costs of its markets served in
isolation. Also with marginal cost depending on stops and
circuity, marginal cost depends on the network design, which in
turn depends on traffic in other markets in the network and the
design optimality criterion.

The picture we now have is that the costs of all capacity
movements and departures show up as marginal costs in one market
or another and can be allocated to the traffic in those markets.
(1) The cost of frequency cannot be assigned to a specific

(1) We have assumed no empty backhaul or deadhead seats.
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market with any degree of certainty. Thus we cannot express
average costs for a market, even though that is what we did to
set fares in the single link case. With any degree of overlap of
paths, frequency costs can seldom be allocated among any subgroup
of markets with clear justice.

In addition, when it comes to allocation of costs to markets
rather than mathematical definitions of marginal cost for
traffic, the cost of intermediate stops and circuity for a market
cannot with fairness be said to be caused by (the traffic in)
that market. (1) With the market alone, those stops and that
circuity would not exist. With the market combined in a
different network, the stops might not exist. Intermediate stops
in one market are incurred in part to reduce frequency cost which
would result for some other market if it were served alone.

As we saw in the maximum surplus case in chapter 5, marginal
cost as an issue is a simplification of maximum surplus
considerations. But maximum surplus on a network should allow
the degree of freedom of changing service levels in the other
markets of the network, whereas marginal cost is assessed with
all network performance fixed. (The author has illustrated
inter-market traffic and service adjustments due to marginal
traffic in a single market in [34].) With service and traffic
adjustments possible, the usefulness of strict marginal cost
definitions becomes less obvious.

With this in mind, the only expense that can without
argument be allocated to a market is the cost of its own capacity
direct without stops. The rest of network cost in frequency,
intermediate stops, and circuity must be allocated around the
network and among the markets. How it is allocated is almost
entirely arbitrary. However, a reasonable upper bound is the
cost of the service the market would get if isolated. For
reasons of efficiency, the lower bound must be the marginal cost
for traffic with stops and circuity included. In most cases this
lower bound is too low and too close to the minimum marginal
capacity cost to be an issue. For practical purposes cost
allocation in a network by markets is arbitrary between the
average and the marginal traffic cost of the market served alone.
Price Discrimination Among Markets in a Network

The rule above opens up opportunities for price
discrimination among markets to cover non- allocated costs. (In
the single link case, discrimination could occur only among
customers within a market.) The problem is, how is
discrimination among markets in a network defined? Is the non-
discriminatory norm a constant markup over marginal traffic costs
in a market? Is it a fixed sum addition per market for
frequency? Is it a fixed sum addition per passenger for
frequency? Is it a constant discount from costs for the market
served in isolation? Is it related to the extra cost of adding

(1) The concept of extra cost per market has only secondary
relevance to economic efficiency, but it is the first measure
sought in examining justice of cost allocations. As a culture we
intuitively seem to prefer to pay costs within their own markets.
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the market to the network?
Legally speaking, inter-market discrimination even in clear

theoretical network examples is probably not provable for prices
between the average cost for service in isolation and the
marginal capacity costs. Practically speaking, some exploitation
by discrimination does occur unless one of the rules for pricing
listed above is consistently applied across all markets. As long
as prices are below isolated market minimums, society may be
willing to let exploitation be limited by the usual combination
of oliqopolistic competition, the threat of entry, and the mixed
non-profit-maximizing objectives of managements of large
corporations.

In terms of economic efficiency alone the ideal situation
would be to mark up maginal costs in proportion to the traffic's
inelasticity. That is, discriminate among customers in each
market according to their elasticities and among markets
according to the general changes of elasticities short to long
haul. In practical terms, this means tax business and long haul
travel to recover fixed costs, and ignore market density. This
appears a- fair description of what has happened in the past. In
a future competitive environment, dense markets may not support
heavy markups.
Fares in the Hub and Spoke Network

The stylized case study in section 6.2 illustrated the basic
cost tradeoffs in network design. Service requirements were
oversimplified in order to highlight the design cost tradeoffs.
Nonetheless, it is interesting to examine the fares that might
exist in such a network. Table 6.3.1 shows the bounds suggested
by our discussion above. The lower bound fares are the marginal
cost of traffic in direct service for a market of such distance
and service attributes. Because design load factors and
frequencies do not change with traffic in our example, these
costs are the same for 10 passenger or 100 passenger markets.
These lower bound fares are the fares which would be suggested as
the maximum net surplus fares for the traffic and service
provided if provided in isolation.

The upper bound fares in table 6.3.1 are the average costs
of serving the traffic as on a single link. Notice that the
upper bound for the markets with traffic 10 is absurdly high. If
served in isolation, a market with demand near 10 (1) can only be
served with subsidy: the market is below the minimum for
profitable service when served alone.

Finally in table 6.3.1 there is a column of possible fares.
These are the fares for 100 passenger markets applied
universally, except where the upper bound is cheaper. The income
from this arrangement covers the costs. (The $10 connection
penalty has not been included in any of the figures of table
6.3.1.)

It appears from this example that the gap between the upper
and lower bounds on fares drops with traffic. The effect is

(1) We mean a demand of 10 at reasonable fare and service level.
In this stylized example we have traffic of 10 for any fare.
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Table 6.3.1: Bounds for Fares on Small Hub and Spoke Network

service levels in all markets at 65% load factor

frequency of 2.0

Market
passengers

100
100
100

1000
incomes:

Market
distance

100
141

r-700

100
141

-600

500

lower
bound

upper
bound

number of
markets

$21.20 $112.21 4

22.64 121.61 2

42.26 232.46 9

21.20 30.43 4

22.64 32.54 2

38.75 56.14 6

35.24 36.30 1

$76,602 $116,506

possible
fare

$30.43
32.54
61.28

30.43
32.54
56.14
36.30

$96,047

physical costs at 9 links = $93,300
" at 13 links = $95,100
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Figure 6.3.1:

Fare

$100

$50

Fare Bounds for 800 Mile Market in a Network

upper bound (single link

average cost)

lower bound (single link marginal cost)

S I I

800 160012.5 25 50 100 200 400

traffic (passengers per day)

WON
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Table 6.3.2: Fare Bounds at Different Densities

200 mile distance:

PAX frequency

12.5
25
50

100
200
400
800

1.0
1.5
2.2
3.3
4.9
7.2

10.7

800 mile distance:

PAX frequency

12.5 0.7
25 1.1
50

100
200
400
800

1.6
2.3
3.4
5.1
7.6

3200 mile distance:

PAX frequency

12.5
25

0.5
0.7

50 1.1
100
200
400
800

1.6
2.4
3.6
5.3

load factor

.52

.54

.56

.58

.60

.62

.65

load factor

.56

.58

.61

.63

.65

.68

.70

load factor

.61

.63

.65

.68

.70

.73

.76

minimum fare

$27
27
26
26
26
25
25

minimum fare

$50
49
48
47
46
45
44

maximum fare

$71
59
50
44
39
35
32

maximum fare

$108
92
80
71
63
58
54

minimum fare maximum fare

$136
133
129
126
123
120
117

$255
221
195
175
159
147
137

- -.. - - " , I OMMUM ---- I--.--"-- -
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somewhat diminished if frequency and load factor are allowed to
adjust to their single link optima at different market sizes, but
the point still holds true. Table 6.3.2 presents the service and
fares for markets at 200, 800, and 2600 miles and different
densities according to the single link maximum traffic optima.
The optimal single link fares are also the upper bound for
network fares. The final column of table 6.3.1 gives the maximum
surplus fare for these traffic levels, which we have taken as the
lower bound on network fares. Figure 6.3.1 plots the two fare
bounds for the 800 mile market, showing graphically how the
bounds narrow as market density grows. These are the bounds with
load factor and freguency continuously adjusted to the maximum
traffic optimum as market size changes.

6.4 Dense U.S. Domestic Network Example
We now turn our attention to a final network example. The

network of demands is all 120 city pairs among the 16 largest
traffic hubs in the U.S.. This provides an example of a network
of markets so dense that isolated single link service is viable
for most city pairs. A map ind a list of the cities is presented
in fiqure 6.4.1. The distances, approximate traffic in 1974, and
the service at maximum traffic for each market served in
isolation are presented in table 6.4.1. (1)

Initially we discuss the network in the same stylized terms
as we did the previous hub and spoke example: we insist on
service at 65% load factor and at a frequency of 8 per day for
each market. We charge $6 in operating costs and $10 in
passenger time costs for each passenger who passes through' an
intermediate city. This is in addition to the vehicle and
mileage costs that the stop incurs. As before we examine the
network by the process of postulating certain link configurations
and calculating their costs.

Specifically we examine the 8 networks described in figure
6.4.2a-d. Each of the 8 solutions was meant to represent a
distinct design case. None of the 8 choices is necessarily
optimal in any sense at all. However, the 8 solutions do
represent reasonably good networks. (2)

The smallest network contains only 16 links and is very
nearly the minimum spanning tree. (A false node exists at Salt
Lake City in this network.) This design is inappropriate for air
and is included only to illustrate the extreme point in minimum
link network design. Actually this 16 link network would be
suitable only if the cost of adding links were huge and the cost

(1) Maximum traffic service in terms of frequency and load factor
for each market was predicted according to the interpolation
formulas from table 5.1.8 for distance and traffic as stated.
Fare is average cost under these conditions.

(2) These and other stylized network designs in this chapter were
explored by trial and error link addition and deletion using an
interactive computer program to evaluate the networks.
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Table 6.4.1: City Pair List

City Pair
NYC PHL
WAS PHL
NYC BOS
WAS PIT
PIT DET
NYC WAS
ORD STL
DET ORD
PHL PIT
BOS PHL
NYC PIT
LAX SFO
WAS DET
PIT ORD
BOS WAS
ATL TPA
MSY DFW
ATL MSY
DET STL
PHL DET
STL ATL
NYC DET
TPA MSY
BOS PIT
PIT ATL
STL DFW
WAS ATL
PIT STL
WAS ORD
ORD ATL
DET ATL
STL MSY
BOS DET
DFW DEN
S-0 SEA
PHL ATL
PHL ORD
WAS STL
ATL DFW
NYC ORD

distance
84

133
191
193
198
215
256
238
273
274
329
355
391
404
406
409
423
425
451
452
484
489
495
496
526
537
540
554
591
597
602
604
623
664
671
672
675
707
707
721

traffic
184
186

2562
297
238

2562
866
940
479
588
919

1489
1108
556

1003
386
403
301
178
295
251

1006
97

244
237
969
518
127
919
612
275
133
263
455
582
321
645
286
537

2645

frequency load factor fare
5.8 .570 $ 36
5.2 .586 37

21.1 .686 28
6.2 .613 36
5.4 .607 38

20.5 .691 29
10.6 .659 34
11.3 .659 33
7.4 .641 37
8.3 .648 36
10.3 .670 36
13.2 .691 35
10.9 .684 38
7.3 .661 41

10.2 .682 38
5.9 .649 43
6.0 .651 43
5.1 .642 45
3.7 .626 50
4.9 .643 46
4.4 .640 49
9.8 .689 41
2.6 .610 57
4.3 .640 49
4.2 .641 51
9.3 .691 43
6.5 .669 46
2.9 .623 57
8.8 .693 45
7.0 .679 48
4.4 .651 53
2.9 .627 59
4.3 .651 54
5.8 .672 52
6.6 .682 51
4.7 .661 54
7.0 .685 50
4.4 .659 57
6.2 .681.. 52
15.4 .741 46
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Table 6.4.1:

City Pair

NYC ATL
STL DEN
ORD DFW
WAS TPA
PHL STL
ORD MSY
DEN LAX
BOS ORD
STL TPA
PIT TPA
NYC STL
ORD DEN
TPA DFW
PIT MSY
PHL TPA
DET MSY
BOS ATL
DEN SFO
LAX SEA
WAS MSY
DET DFW
DET TPA
NYC TPA
ORD TPA
DEN SEA
BOS STL
PIT DFW
DEN MSY
PHL MSY
DET DEN
WAS DFW
NYC MSY
BOS TPA
ATL DEN
DFW LAX
PHL DFW
PIT DEN
NYC DFW
BOS MSY
WAS DEN

City Pair List (continued)

distance

755
781
790
810
820
831
839
860
873
873
882
907
911
918
922
936
946
956
959
962
983
991

1003
1006
1020
1046
1049
1067
1094
1144
1161
1177
1182
1208
1248
1289
1302
1363
1367
1476

traffic

1007
215
678
151
138
322
655
689
108
163
516

1089
121
67

100
78

216
392
647
136
164
296
645
460
247
127
107
115
100
164
321
388
207
537
667
186
90

664
77

237

frequency

8.8
3.6
6.9
2.9
2.8
4.5
6.7
6.8
2.4
3.0
5.8
8.7
2.5
1.8
2.2
1.9
3.4
4.8
6.4
2.6
2.9
4.1
6.3
5.2
3.6
2.5
2.2
2.3
2.1
2.8
4.1
4.5
3.2
5.4
6.1
2.9
1.9
6.0
1.7
3.2

load factor

.706

.653

.693

.642

.639

.669

.695

.697

.634

.647

.688

.716

.639

.620

.633

.625

.660

.681

.699

.645

.652

.673

.701

.689

.667

.646

.640

.643

.639

.658

.681

.689

.667

.702

.711

.666

.642

.714

.638

.680

fare

$ 51
62
54
67
68
61
56
57
73
68
59
56
73
81
76
80
69
64
61
74
73
68
62
65
71
79
81
81
84
80
74
73
79
71
71
84
95
75

100
89

WWII$
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Table 6.4.1: City Pair List (second continuation)

traffic frequency

DFW
TPA
BOS
PHL
STL
NYC
MSY
DFW
STL
ORD
STL
ORD
BOS
ORD
MSY
DET
ATL
DET
DET
MSY
PIT
PIT
ATL
TPA
ATL
PIT
WAS
WAS
PHL
PHL
TPA
NYC
WAS
NYC
BOS
PHL
TPA
NYC
BOS
BOS

SFO
DEN
DFW
DEN
LAX
DEN
LAX
SEA
SEA
SEA
SFO
LAX
DEN
SFO
SFO
SEA
LAX
LAX
SFO
SEA
SEA
LAX
SFO
LAX
SEA
SFO
LAX
SEA
SEA
LAX
SFO
SEA
SFO
LAX
SEA
SFO
SEA
SFO
LAX
SFO

City Pair distance

1493
1520
1543
1575
1581
1627
1658
1681
1710
1730
1736
1740
1766
1853
1915
1932
1934
1977
2086
2087
2124
2125
2141
2153
2182
1155
1188
2317
2383
2396
2403
2408
2430
2453
2495
2526
2527
2574
2600
2706

348
59

162
116
367
470
211
132
78

356
192

1245
147
744
133
45

295
386
207
25
21

199
210
107
74

114
525
127
55

326
51
30

359
1722
66

215
18

1160
429
315

4.0
1.5
2.6
2.1
4.1
4.7
2.9
2.2
1.7
3.9
2.8
8.0
2.4
5.9
2.2
1.2
3.4
4.0
2.8
0.8
0.7
2.7
2.8
1.9
1.5
1.9
4.6
2.0
1.2
3.4
1.2
0.9
3.6
8.8
1.4
2.7
0.6
7.0
3.9
3.3

load factor

. 694

.633

.668

.658

.698

.709

.680

.664

.647

.701

.679

.749

.670

.731

.669

.633

.698

.709

.688

.616

.611

.688

.690

.666

.654

.670

.727

.675

.647

.711

.645

.628

.715

.776

.655

.697

.612

.762

.724

.714

fare

$ 86
112
97

103
88
88
98

105
116
94

102
83

107
91

115
138
104
103
115
163
172
117
117
129
138
132
110
133
155
120
158
174
120
104
155
132
200
112
124
132
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Figure 6.4.1: Map and City Names for Domestic Network

NYC
BOS
WAS
PHL
PIT
DET
ORD

STL
MSY
DFW
DEN
LAX
SFO

SEA
ATL
TPA

- New York City

- Boston

- Washington, D.C.

- Philidelphia

- Pittsburg

- Detroit

- Chicago

- St. Louis

- New Orleans

- Dallas/Ft. Worth

- Denver

- Los Angelos

- San Francisco

- Seattle

- Atlanta

- Tampa
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Figure 6.4.2a: Domestic Networks
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Figure 6.4.2b: Domestic Networks
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Figure 6.4.2c : Domestic Networks

ADDITIONS FOR MEDIUM NETWORK



181

Figure 6.4.,d : Domestic Networks

ADDITIONS FOR DENSE NETWORK
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of intermediate stops were small. The tree network was
originally designed as part of an unpublished railroad network
study where the link addition costs included the cost of building
the rails.

The 19 link network is a better representation of the
minimum air network. We have labelled this the "discount"
network because it relies heavily on three 'links (NYC-ORD,
NYC-SFO, and SFO-ORD) as if these links were provided by some
extremely cheap and convenient service. Otherwise the network is
nearly identical to the tree network.

The 26 link network employing St. Louis as a central hub
represents a quite dense series of link services from all cities
to STL but requires only one intermediate stop for almost all
trips. This network is more expensive than a similar hub complex
focused just 250 miles north at Chicago. In the ORD hub network,
the strong Chicago traffic no longer must detour through St.
Louis, and substantial savings occur because of this. Both STL
and ORD hub networks have a secondary hub at Atlanta.

Neither of these hub complexes has enough bypass flights or
enough off hub through flights. The network labelled "thin" was
designed by providing nonstop service to all markets of over 500
passengers and adding other links where necessary to avoid high
circuity or excessive number of stops for individual markets.
This thin network design is the first we have proposed which
follows the style of domestic U.S. networks today. A substantial
increase in stage length and hop length occurs over the two hub
style networks, even though only two more links are used. Thus
aircraft costs will be lower, averaged per mile for the fixed.
demand network.

However, this thin design still routes too many people
through too many intermediate stops. There are still 1.71 stops
per trip, and costs are not a minimum. Adding nonstop service to
all previously neglected markets of 300 passengers or more
increases the nonstop markets (links) by 50%, modestly increases
the stage lengths, and brings the stops per trip to the range
observed for U.S. domestic airline systems (m1.36). Circuity is
now quite small (5%), and cost is nearly a minimum. This
solution is the "medium" network. It would be suitable for
medium density U.S. domestic operations.

However we have a very 'dense network of demands. Yet fewer
stops and more direct service is called for because of the large
markets. Adding all previously neglected markets of over 200
passengers to the nonstop list increases the links to just over
half the maximum. The result is the cheapest and most convenient
network so far proposed. We label this the "dense" network.

The final network design is the all nonstop, 120 link
network. (There is no picture of this in figure 6.4.2.) This
design goes too far in providing direct service to markets better
served multistop. Aircraft capacities are too small (67-83 seats
on average).

Data concerning these 8 network designs are presented in
tables 6.4.2-6.4.5. Table 6.4.2 shows the activity measures
which allow us to calculate the costs. The passengers were
routed around the networks using the minimum cost paths. Costs
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in this case included the $10 of passenger time for each
intermediate stop. Passenger transfers refers to passengers
passing through an intermediate city, i.e. intermediate stops.
In the thinner half of the networks listed, most of these
transfers will be connections. In the medium and dense networks,
which are typical of U.S. trunk networks, the "transfers" would
be through flight intermediate stops in almost every case.

A table of network descriptive indices is presented in
6.4.3, including the crucial index, total cost, including the
cost of stops to passengers. We note that as links are added,
stage lenqth (averaged over aircraft) and hop ~length (averaged
over passengers) increase. They are never equal because there
are more passengers in short haul markets.

We can see by comparing the STL hub, the ORD hub, and the
"thin" networks in table 6.4.3 how inconsistent any single index
can be. The hub networks have nearly identical links and link
miles, circuity, seats per mile, and stage lengths, but they have
markedly different stops per trip, seats per departure, and hop
length. The thin network, with only two more links, is different
in all categories, except circuity.

We note that the average aircraft capacity (in either seats
per departure or seats per mile) is outside of normal ranges for
all but the medium and dense networks. The difficult design
tradeoffs occur when aircraft capacities and stage length are
being traded off against one another, which happens at capacities
below 400.

As a final observation, we note that by dividing hop length
into average trip length, which is hop length for the nonstop
network, we qet a crude estimate of the stops per trip. This is
the relationship suggested in equation (6.1). This is also what
was done in table A.2 in appendix A in creating such an index for
the U.S. airlines. How well this index predicts actual stops per
trip depends on the particular network, but within a set of
designs for a specific network of demands, the index is more
consistent.

Table 6.4.4 shows how the distribution of hop lengths
changes as networks become denser. The nonstop distribution
favors the longer hops as much as is possible. The distribution
of hop lengths for thinner networks has a larger peak in the
short lengths and a smaller tail at the long distances. The
approach toward the nonstop distribution is not necessarily
continuous or monotonic, as comparison of the two hub cases and
the thin network shows.

The distribution of costs in table 6.4.5 brings out once
again the basic network tradeoffs. Passenger costs ($10 per
stop) and physical multistop costs (circuity, seat stop costs,
and $6 of handling) are continuously reduced by adding links. At
the same time, the cost of frequency rises. The stop costs are
the departure portion of stage costs and the cost of frequency is
the vehicle portion of aircraft costs. Thus in approximate terms
aircraft capacity is being traded off against stage length.

The cost of frequency and of intermediate stops in the dense
network is $807000 while the cost of frequency in the nonstop
network is $1288000. There is a 13% increase in total costs
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Table 6.4.2: U.S. Domestic Network, Stylized Services

load factors at 65%
each link served 8 times daily
activities for one-way services
total traffic is 51,600 passengers
costs as in section 6.2

passenger
transfers
148400

80500

71400

48400

36400

18800

9100

0

passenger
mi. (000)

64200
60600

54600

55.800

55200

52000

49600

49300

seat
departures

308900

204000

190000

154500

1 5900

108700

93800

79700

Table 6.4.3: Domestic Network, Stized Services; Indices

passenger
circuity_

1.30

1.23
1.11

1.13
1.11

1.05
1.01

1.00

stops/
trip
3.88

2.16
2.36
1.94

1.71
1.36
1.18

1.00

seat/ -
departure

2413
1342
913
715
585
302
175
83

network
name

tree

discount

STL hub

ORD hub

thin

medium

dense

nonstop

number
of links

16

19

26

27
29
45

67

120

link
miles

5999

11914

16098

16529

20542

33853

61189

141389

seat mi.
(000)
98800

93200

84000

85800

84900

80000

76300

75800

network
name

tree

discount

STL hub

ORD hub

thin

medium

dense

nonstop

seats/
mile
2059
977
652
648

516
295
156
67

stage
(mi.)

375
627
619

612
708

752
913

1178

hop
(mil

320

457
442
555

625
736
813
951

cost
(000)

$-6377

,4868

4513

4077

3836

3490

3448

3929
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Table 6.4.4: DIstribution of hop lengths

network
name

tree

seats
0-500 mi

68%

seats
501-1000 mi

35%

seats
1001-200 mi

discount 63

STL hub 70

ORD hub 53

thin 53

medium 43

dense 39

nonstop 33

Table 6.4.5: DIstribution of Costs

network
name

tree

passenger physical
time costs multistop
(transfers) costs

23%
discount 17

STL hub 16

ORD hub 12

thin ;- 9.4

medi um
dense

5.4
2.6

35%

18

16

8.6
3.2

cost of
frequency

1.4%
2.8
4.1
4.7
5.8
10

17

passenger
nonstop
costs

41%

nonstop 0

seats
2001+ mi

0 33
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going from network services to isolated nonstop services. Thus
even a network of the densest markets in the world has
significant cost savings from service integrated into a network.

We can illustrate this with greater relevance by another
exercise on the same network of demands. This time we shall
require that each market in the 120 be served at the load factor,
fare, and frequency found optimal for service alone as in chapter
5. These requirements were listed in table 6.4.1. For this
study the $10 charge for the passenger's time on an intermediate
stop will not be levied. Instead we will insist that all stops
be through flights and that for all multistop markets, the daily
frequency of the multistop flights be decreased to the point
where the decreased displacement time in the schedule offsets the
time spent in the extra stop. This is a much more rigid
requirement than the reduction of fare by $10.

Once again the network was designed to minimize costs for a
network producing the required seats, frequencies, and passenger
movements for each market. The actual minimum was found using an
optimal network design linear program documented by this author
in a previous work [34). Some feeling for the market by market
service requirements can be gained from table 6.4.6, which lists
the activities summed at each airport and the average aircraft
capacities and load factors required for the 15 markets involved
at each city. (We note that the load factors are high and the
aircraft capacities low by historic standards for these dense
markets, but the figures are certainly within reason.)

Table 6.4.7 presents the results for the network design.
solution on a city by city basis. These numbers compare to the
summed requirements from table 6.4.6. For the netovrk design,
the departures at each airport are fewer than those indicated by
totals of the single market services on table 6.4.6, and the
aircraft size is bigger. Even in this dense network with severe
restrictions on the tradeoff between service quality and fare,
there is a noticeable amount of load building and network
influence.

The system comparison at the bottom of table 6.4.7 shows
that the network design 'in this constrained case involves a
modest change in aircraft size and stage length from the all
nonstop case and a very 'small reduction of total costs. This
optimal network design is similar to the "dense" network design
above in that the number of nonstop markets and the average seats
per departure are nearly the same. However the design
requirements in terms of frequency are lower for this complete
specification than the stylized case, and the load factors and
frequencies are distributed differently. This explains the cost
and stage length differences.

The cost savings of network service over nonstop service are
modest in both the stylized and the design specifications for the
120 market network of demands. This network of the densest
markets in the U.S. provides the lower bound on the importance of
network effects in achieving minimum costs. It would seem that a
network is useful but not entirely necessary for the densest
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Table 6.4.6 : Design Conditions for U.S. Domestic Network

city
code

NYC
BOS

WAS

PHL

PIT

DET

ORD

STL
:ATL

TPA

MSY

DFW

DEN

LAX

SFO

SEA

total
or avg.

originating
passengers

16480

7095

8735

3934

3858

5643

12766

4551

5777

2969

2586

5914

4988

9270

6511

2503

design
departures

avg.stage
length

912

742

670

841

579

662

856

727

819

978

932

952

1074

1611

1580.

1313

avg. load factors,
seats /dep. /mile

171

132
134

96

,96

114

155

107

116
99

90

123

123

161

142

105

.71

.68

.68

.65

.65

.67

.70

.67

.67

.67

.65

.69

.69

.72

.71

.68

.74

.69

.69

.67

.66

.,67

.72

.67

.67

.68

.67

.66

.69

.73

.72

.67

129.4 .688 .703

136

79

96

63

62

74

117

64

74

45

44

70

59

80

65

35

103,580 958 1163
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Table 6.4.7: Results of Design Exercise on Dense Network

city summaries expresseed as a % of design values on table 6.4.6

city code

NYC
BOS

WAS
PHL
PIT

DET

ORD

STL
ATL
TPA
MSY
DFW

DEN
LAX
SFO

SEA
total

System total

departures

97%

74

91

79

86

84

100

89

84

62

61

78

85

78

79

76

84%

statistics:

average seats

111%

136

119

132

145

120

125

170

150

163

183

159

141

129

127

134

134%

aircraft stage (mi)

seat hop (mi)

seats/departure

stops per trip

total cost (000)

all nonstop markets

non-nonstop pax cost
(cost of freq & stops)

network

793

834

173

1.12

$3124

58

20%

nonstop % network/nonstop

838 95%

938
129
1.00

$3206
120

22%

89%
134%
112%

97%
48%
88%
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markets.

6.5 Service in a Network
In chapter 5 we optimized the service in frequency, load

factor, and fare for a market according to several objective
functions. We concluded that services of equal value covered
broad ranges of these parameters and that different designs had
different distributions of benefits across consumers with
different values of guality. We also suggested the optimum could
be improved upon by combined price discrimination and quality
differentials. (1) To this picture the network case has added
the new degree of service quality which is called the number of
intermediate stops and a new ability to price discriminate across
city pair markets. We will not repeat the optimizations of
chapter 5 for a network, since the problems of comparability of
benefits across people with different values is complicated by
the comparability across different city pairs in the network.
Furthermore the only possible conclusion is that service is even
more flexible in terms of its design parameters and the optima
will be even more shallow.

However we do want to point out that the network effect can
be a powerful one in reducing costs. Our network designs focused
on cost reduction and the unique network guality index,
intermediate stops. A complete optimization would take into
account the reduction in the costs of frequency and adjust
service levels upward as well as fares down. In this light the
single link service levels with frequency costs halved, which
were presented in table 5.1.12 of chapter 5, suggest the
direction that medium density services might take in an optimal
network.

Because of reduced frequency cost, network services should
be more frequent and cheaper than services to markets of the same
density and distance served in isolation. Marginal seat costs
are not cheaper and may often be higher due to intermediate
stops. Therefore load factor in a network should be at or above
the isolated market optimum.

This reduction of frequency costs occurs particularly in the
case of thin markets served onestop by the concatenation of two
denser nonstop links. This is just where we would like to see
savings from the viewpoint of making competition viable in medium
density markets. For instance, in the design network of section
6.4, Boston to San Francisco is served onestop 5 times: 2 times
via Chicago, 2 times via St. Louis, and once via Denver. In this
case denser markets are being joined end to end to create the
Boston to San Francisco 'frequencies at almost no extra cost.
Thus Boston to San Francisco schedules can be duplicated without
duplicating the entire nonstop frequency costs. This makes

(1) That is different qualities offered at prices differing more
than costs.



190

competition more viable.

6.6 other Network Issues
our discussion has focused on the one issue of network

design which is always an issue, the tradeoff between aircraft
capacity and stage length. Other issues are relevant in specific
cases.

The question of backhaul, deadhead links, and weak links is
a dominant cost issue when it arises as a problem. Fortunately
these problems do not come up in reasonably dense and well
connected networks of demand such as U.S. trunk airlines enjoy.
Still the problems can come up in locally thin parts of a
network, and they do arise for the regional and commuter
carriers. All we have to say about such issues is that where
demand network is limited by regulation of access to interrelated
markets, substantial cost penalties can result.

The second major issue we have neglected is whether
passengers experience connnecting or through service at their
intermediate stops. In reality a transportation network is a
network not only in space but also in time through the day. In
this sense the network design problem can be divided into three
steps: (i) establishing the links, their frequency and capacity,
(ii) establishing the through movement of passengers and aircraft
at each node and (iii) establishing the timing of nonstop and
through services. Ideally we would like to solve all three
problems simultaneously. Practically, computers cannot solve
such problems for more than a few nodes and links. So we have-
collapsed steps (ii) and (iii) into step (i) by assuming that
reasonable through services and timing can occur and building
those assumptions into our cost and service measurements.

Neglect of the through vs. connecting issue is lamentable
since the tradeoffs in cost and value are undoubtedly relevant at
today's level of network intensity. It may be that the
predominance of through service in the U.S. networks represents a
higher quality of service and cost than many travelers would
consider ideal. In this. light it is interesting to note the
discount connecting traffic between the North and Florida at
Atlanta. Unfortunately, neither our demand model nor our network
models are sufficiently sharp tools to allow us to make any
informed comment on these issues.

Finally, network competition may take the less than
benevolent form of one fir dominating a complex of markets or
specific hubs in such a way that all other firms face only a
sparse and thus high cost network of demands. Dominance of
networks by dominance of specific hubs is an issue we have not
explored. But we illustrated in section 6.4 both Chicago- and
St. Louis- based hubs and then we saw in later discussion of the
Boston to San Francisco market that service could be through
either hub. Inter-hub competition is very likely viable.

6.7 Summary and Conclusions
Network design influences the single market optima by



191

reducing frequency costs and raising capacity costs. Thus the
qap between average cost and marginal cost for a market served in
a network is narrower than for the market served alone. Also the
definitions of average and marginal are even more elusive and
less relevant.

Networks make service possible in thin markets and
competition easier in medium markets by reducing frequency costs
and increasing average aircraft size. U.S. domestic networks
seem to be operating in a reasonably well connected way, allowing
only modest numbers of intermediate stops and using reasonably
efficient aircraft capacities.

Pricing in a network allows for discrimination among markets
as well as among customers. But since average costs for
passengers in different markets are almost impossible to define
with any relevance, discrimination is hard to prove or to
criticize. It is perhaps an issue of social concern how costs
and benefits should be distributed among markets of different
densities and distances. For instance, should thin markets pay
the average costs of service alone, or should they pay the extra
costs of their inclusion in the network? The prices will differ
by factors of 2 or more depending on the allocation.

Finally, the problem of optimizing a network of services for
a network of demands involves so many tradeoffs of cost and
quality and so much flexibility of design and performance that
specific designs are hard to fault and general rules are
impossible to establish.
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7 Summary and Conclusions

This work purports to be a systems analysis of scheduled air
transportation. True to the concept of a systems analysis, the
discussion has developed a series of sub-models for supply,
demand, for load factor, for single link service, and for network
design. Also true to the concept of a systems analysis, the
models have broad applicability to a number of issues of design,
operation, regulation, and competition in airline services. Many
of the concepts carry over usefully to other common carrier
modes. But there has been one driving force behind all these
discussions: almost every matter discussed was a consequence of
the economies of scale in aircraft capacity as illustrated in
chapter 2 and reproduced here in figure 7.1. Also conceptually
important was the definition of the market for transport services
as the city pair and of the quality of service in terms of
frequency and load factor. In this light we may review the
ground we have covered.

Chapter 2 established the relationship of aircraft cost per
stage to capacity. The linear rise of costs from some positive
value at zero capacity was derived both from design
considerations and reported cost data. Because airlines can
choose aircraft covering a broad range of capacities along this
line, they experience separable costs of frequency and capacity.
Our work is nearly unique in developing the consequences of this
cost structure.

Chapter 2 suggested that these economies of aircraft
capacity tended to make scheduled service a natural monopoly, but
full development of this argument awaited further definition of
the market and the service.

Chapter 3 defined the market for scheduled air service as
the city pair. Considerations of substitutability of use
borrowed from the legal definition of monopoly meant that
exclusive service of a city pair by a single carrier established
a local monopoly. With the assumption that one or only a few
scheduled services would be available in each market, it was
shown that there would be a distribution of benefits among
consumers due to their different values of the particular service
quality offered. It was also shown that competiers would tend to
duplicate service levels, failing to braoden the distribution of
benefits. Although distributional considerations have political
and social implications for air service, their existence has been
ignored in past -work. It seems possible that recent political
pressure on airlines comes not from their excess profits
(earnings have been low enough) but from the history of neglect
of the low value of time segment of the market.

Chapter 4 developed the concept of load factor in
transportation services. Load factor was shown to be a part of
the design quality of service. Load factor can be adjusted
independent of frequency by changing aircraft capacity. Load
factor affects service availability; load factor is not a casual
consequence of supply and demand mismatching. A 55% average load
factor may be a perfect accommodation of a steady supply to a
fluctuating demand.
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Figure 7.1: Aircraft Cost vs. Capacity

Direct
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Chapter 4 also developed the point that an oligopolistic
approach to competition requires service matching among
competitors not only in overall quality as shown in chapter 3,
but specifically in the load factor dimension. Discussion
assuming conventional reservations services showed that
competition might be unstable in the direction of higher load
factors.

Chapter 5 integrated the models of chapters 2, 3, and 4 to
produce single market technical performance abilities for
scheduled air service. Several definitions of optimal
performance were explored. Maximum profits was shown to be far
from a fair operating condition for a single firm. Maximum
surplus turned out to (1) require subsidy and (2) be a very small
improvement over zero loss operations. Maximum traffic at zero
loss was adopted as a reasonable optimality criterion, although
maximum revenues at zero loss came closer to reproducing existing
conditions.

optimal services were shown to vary in frequency, fare, and
load factor among markets of different densities and distances.
This is the first time all three degrees of freedom have been
allowed to vary continuously, so the nature of the optima is of
particular interest. The most often neglected (1) freedom,
adjustments in aircraft capacity, was shown to be quite
important. Load factor was by far the least variable among the
optima.

It was also demonstrated that if any one of the aspects of
perceived price - fare, frequency, or load factor - were
artificially constrained, a new optimum nearly as good could be
found by adjusting the remaining degrees of freedom. Optima were
found to be quite broad and shallow. This flexibility of design
makes regulation of service ineffective at altering basic
equilibria.

The final chapter added to the picture considerations
associated with the design of networks of service. Networks were
shown to be a way of sharing and reducing the costs of frequency
among markets. Larger aircraft capacities are achieved at the
expense of shorter stage lengths and intermediate stops. Cost
minimum configurations were quite shallow. Explicit design and
performance depended on details of the list of demands served.

Network efficiencies reduce frequency costs and therefore
allow more competition and more service to low density markets.
The issue is raised that economies of local network intensity may
lend a monopoly -tendency to network operations. Further
discussion of network design and competition was not undertaken,
since the germane point was the necessity of networks of service
in achieving cost minimums for service in a market.

From the considerations of chapters 2 through 6 we expect to
see at most two or three airline competitors in large airline
markets. Where aircraft capacities in use are in the medium to
large range (200 to 400 seats), the natural monopoly is weak.
However, offerings of distinctly different service levels may be

(1) neglected in analysis, not in practice.
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rare.
Unfortunately chapter 5 suggests that regulation of service

is extremely difficult since the optimum is so hard to define and
the dimensions of service are so flexible.

Chapter 6 suggests that where interlaced networks of
services compete, even low density markets may receive
competitive service. However, even when large aircraft are
employed it is incorrect to assume that all the economies of
scale have been exploited. Larger aircraft capacities in a
network are usually achieved at the expense of extra stops.
Because of the expense of those stops, average costs in a network
will be above the single link average costs for the aircraft
capacities in use. The natural cost advantage of an airline
network using 200 seat aircraft can be as strong or stronger than
the natural monopoly that exists on a single link served by 100
seat aircraft.

Network considerations of vehicle frequency costs suggest
that as demand among cities grows, the optimal network design
will change from a sparse spanning tree pattern to a highly
interconected nonstop pattern. The index of this growth is the
number of intermediate stops per passenger trip. At the same
time, single link discussions suggested that service should take
the form of a single quality for thin markets and multiple
price/quality combinations for denser markets. Thus overall
system growth should move from sparse networks and a single
service option to multiply connected networks and multiple
service levels. U.S. domestic operations for trunk carriers
appear to be in an intermediate stage of this process.

Overall conclusions from this work are that competition is
possible among networks and that regulation is difficult.
However, there are dangers. Competition may not lead to a
distribution of choices of service quality and price. Further,
network design may isolate particular medium density markets or
particular cities from competition and local exploitation can
occur.
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Appendix A: Indirect Operating Costs for Airlines

Introduction

Indirect operating costs (IOCs) constitute about 40% of
airline costs, These costs cover the sales, administrative,
passenger traffic, and aircraft handling expenses of an airline.
Aircraft direct operating costs (DOC) receive considerabl.e study
not only by the manufacturers and airlines but also by
consultants, government agencies, academics, and the pilots'
union This is not the case with respect to IOCs. Although I3Cs
may not have been the subject of as much detailed work, but they
have been estimated time and again for different studies of
airline systems It has always been assumed that these costs
depend on activity measures such as revenue passengers, revenue
passenger miles, aircraft departures, aircraft miles, seat
departures, and seat miles.

Little is known of the relationship of IOC to these
activities Our models assume that IOC are proportional to these
activities, and that the costs (with the exception of landing
fees) are the same throughout the network. Thus it is assumed
that the labor involved in passenger boardings, or in sales or
aircraft handling, is the same price and is used with the same
efficiency in Boston as in Boise. In a sense these inputs are
treated in the same manner as aircraft block hours.

The arguments for constant proportionality of IOC to
activities at all levels and in all geographic locations are at
least partially convincing: First, we do not have the data to
prove the contrary. Second, many of the measures, such as
aircraft miles, seat miles, and passenger miles, are not station
related. Third, managers in the industry are not uncomfortable
with assuming no economies of scale with station size and little
variation with region. Thus we may for the moment accept the
assumption of proportionality of IOC to total activity levels.
The big problem lies in determining what activity measures the
IOCs are marginally proportional to.

In this appendix estimates are made by referring to two
studies of airline data, one by Simpson and Taneja [47] and the
other by Douglas Aircraft [48]. The results of these studies are
used to guide our own statistical analyses of cost figures
reported by the domestic trunk airlines to the CAB.

As in chapter 2 we are not hypothesis testing using
statistical methods. Nor are we calibrating a production
function for the intermediate products of revenue passenger miles
handled, boardings handled, aircraft dispatched, etc. We are
trying to calibrate cost relationships we deduce to exist from
engineering considerations (i.e. from examining the underlying
activities). Unfortunately, the statistical evidence is so poor
it is difficult to calibrate these relationships.

Difficult! orf Statistical Calibrations
The airlines report their expenditures on IOCs to the CAB.

They also report activity statistics sufficient to determine
airline passenger miles, passenger boardings, aircraft miles,
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Table A.1: Correlation Matrix for Activities and IOC categories

U.S. Domestic Trunk Airlines airline totals.
1970-1974 Annual Figures
Constant Dollars
Strike affected data deleted

column no. (2) (3) (4) (5) (6)
f(1) Passenger Service Cost .964 .977 .970 .837 .892

IOC's(2) Aircraft & Traffic Servicing 1.00 .978 .959. .899 .942
3) Promotion & Sales .978 1.00 .968 .392 .928

(4,), Revenue Passenger Miles .959 .968 1.00 .844 .905
(5) Aircraft Departures .899 .892 .844 1.00 .969
(6) Passenger Boardings .942 .928 .905 .969 1.00

IIWNOIWIIIIA
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seat miles, etc. It would seem straightforward to perform a
multi-variable regression and accept the results for the cost
coefficient calibration. The difficulty is this: all activities
and costs are highly correlated (see table A.1). The first
activity measue introduced in the regres ion, often revenue
passenger miles, explains all costs. (V is near 0.9 for any
activity variable and any cost category.) All this implies is a
nearly complete dependence of IOC on activity in general. The
next variable introduced in the regression usually inggSages the
standard error of the estimate, with very small improvement in
Pr. This occurs because of the high degree of collinearity
between the first and second activity measure. The result is any
traffic measure alone seems to explain all IOC. There is little
to choose among the accuracy of one over the other.

This means the choice of IOC dependencies must be guided
almost exclusively by judgments of the cause and effect
relationships for these costs.

This is most unfortunate because the ratio of per aircraft
to per passenger costs and the ratio of per departure to per mile
costs are important parameters in the network design problem.
Yet it is these very ratios that are impossible to discover from
regression of IOC data.. For instance, we believe the cost of
servicing aircraft departures and passenger boardings) at an
airport is proportional to the number of those movements, We
also know that longer flights require a little more to be done,
so we expect a small fraction of the costs to depend on either
passenger or aircraft miles. But if we put miles in the
calibration, the regression will assign the majority of the costs
against them, slighting the more fundamental activities,
departures and boardings.

The lack of clear indication of cost dependence on different
activities occurs for several reasons. First, there is
relatively little variation in the ratios of passengers to
departures or aircraft miles to departures among the airlines
(see table A.2). This is equivalent to saying the activities
ratioed are collinear. But the similarity among the airlines is
of real world intent. The CAB sought in the 1960's and 1970's to
allow all airlines a fair profit while enforcing a system-wide
fare structure which is uniform across market densities. Less
profitable airlines were given new markets generally held to be
profitable. By this process, any airline with costs
significantly off average due to a lack of long haul or high
density routes is brought back to average costs by normalizing
the important ratios of activity variables. This produces
roughly equal profits at equal fares, but it also prevents the
variations necessary to establish statistically the functional
relationships we seek.

This objection could be overcome by comparisons between
trunk and local service carriers, whose activity ratios are quite
different. Unfortunately, there is an appreciable difference in.
the quality of passenger service associated with local service
operations, so IOC comparisons between local service airlines and
the trunks are not comparing the same outputs. This phenomenon
may extend itself to the trunks themselves. That is, the



Table A.2: 1973 Activity Ratiol for U.S. Domestic Trunk -Airline Networks

PAX/DEP RPM/A

American 53.8 72.1

Eastern 47.4 59.9

United 54.2 70.2

Braniff 43.0 61.8

Continental 42.5 68.6

Delta 45.7 64.9

National 46.0 81.5

Northwest 43.7 73.5

Western 49.5 67.9

average 47.3 68.9

PAX=passengers; DEP=dep

SEATS=aircraft caDacity;
a

M, SEATS/AC LF

143 .530

112 .553

137 .547

126 .502

142 .484

127 .512

164 .496

190 .409

118 .576

140 .512

rtures; RPM=revenue

AC=aircraft; LF=l6

RPM/PAX - ACM/DEP

976 728
644 512
894 690
727 505
879 545
611 430
860 485

1009 601
804 587
823 565

passenger miles;

Trip/Stage

1.34
1.26
1.30
1.44
1.61
1.42
1.77
1.68
1.37
1.46

ACM=aircraft miles;

ad factor; Trip=RPM/PAX; Stage=ACM/DEP;

JTip/Stage is a surrogate for stops per passenger trip
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consistent ticket price among markets with intrinsically
different costs may produce variations in the quality of service
rather than in the expense of that service.

Finally, we can lay some blame on the aggregation of our
data. Each airline has somewhat different amounts of discount,
charter, cargo, and first class traffic (see table A.3). These
customers receive different treatment at different cost, and
these variations may mask small changes in the more basic
activities which we might otherwise observe.

The objections to regression studies are many, and an
examination of past attempts can only serve to illustrate the
point. This has not prevented several authors from addressing
the task. This section compares the published work of Taneja and
Simpson [471 at MIT, the published efforts of the Douglas
Aircraft Corporation [48], and some small unpublished work of
this author at MIT.

Airline IOCs are subdivided by the CAB into four categories.
Aggregate costs in each of the four categories is reported by
each airline on CAB form 41. We shall address each category in
turn, as was done by Taneja and Douglas Aircraft.

Passenger Servicing_
The cost of stewardesses and food is reported under this

heading. The industry's average expenditure on this account per
revenue passenger miles was $0.0098/RPH. (1) In this light the
figure by Taneja of $0,0136/RPM seems reasonable. However, it
would seem that an account nade up largely of stewardess salaries
is probably proportional to passenger travel time, not distance,
i.e there should be an amount per boarding which is over 200
times the cost per mile. This amount covers the time spent on
the ground, taxiing, or in terminal area maneuvers. In this
light, the figure by Douglas Aircraft for local service carriers
is more reasonable. Douglas Aircraft suggests $0.0067/RPM
+$0, 47/BOARDING.

The cost per boarding seems low, but a regression analysis
by the author of domestic trunk carriers' annual operations
1970-1974 produced similar results. The statistical correlation
between passenger service cost and the activities passenger
boardings and passenger miles does not stand out as singularly
more accurate that any of the other correlations available.
However, the dependence makes the greatest sense. The regression
results were $0.0093/RPM +$0.65/BOARDING.

A second regression was made using the airlines' expansion
paths' slopes. Each airline's costs and activities (1970-1974)
were averaged and the annual changes from average were used as
data for the regression. This eliminates the influence of
whatever small fixed costs exist in data for this category. The
results were different, and did establish a substantial zero
distance cost, The result was $0.00122/RPM +$4.052/BOARDING.

(1) Throughout this discussion 1976 dollars will be employed
exclusively. All figures were converted using the consumer price
index.
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Table A.3: Sources of income for US. trunk airlines (%'s)

American

Eastern

United

Braniff

Continental

Delta

National

Northwest

Western

coach
71

78

73

74

76

77

78

75

86

1st class
17

12

13

16

12

14

12

12

7

charter

1

1

0

1

1

0

0

2

1

freight & other

11

9

14

19

11

9

10
11

6

Table A.4: Comparison of Preditions for Promotion And Sales Costs

1976 dollars throughout

Taneja regressions:

trunk airlines:

local airline:
$2.24/pax + $.0122/rpm

$,018/rpm

Douglas Aircraft regressions:

local airlines: $1.61/pax +'$.0063/rpm

Swan regressions (trunks):

long run regression: $2.47/pax.+ $.0071/rpm

shohtrun regression: $3.08/pax + $.0016/rpm +$126/departure



202

There is a significant difference between the results of the
two regressions performed on the same data. The different
results would be important in any system design. Yet there is
essentially no methodological way of choosing between the two.
The straightforward regression among the airlines' total costs
should have found the long run expansion path of an airline. In
fact it did compare with a regression of 1972 data alone. The
second regression addressing the year to year differences may be
the short run expansion path. (1) On the other hand, the year to
year differences were not obscured by variation in fixed (zero
passenger) costs among the airlines, so it may be the true long
run relationship.

The author feels that an average of the two results, or even
a sum slightly favoring the first regression, is reasonable. The
educated estimate might be $3.0067/RPM + $2.68/BOARDING., This is
reasonable at both transcontinental and short haul distances.

Aircraft and Traffic Servicing
This account includes the costs associated with handling an

aircraft on the airport surface plus the costs of boarding
passengers and luggage. This category seems to disprove the
value of regression entirely; the best correlation of the cost
of these departure-based activities is with revenue passenger
miles. The logical dependence of this cost category on aircraft
departures and passenger boardings cannot be demonstrated by
statistical analysis.

This situation persuaded both Taneja at MIT and Douglas
Aircraft to avoid the use of passenger boardings as an index.
Only Douglas Aircraft even included aircraft departures, but the
indicated cost dependence on the activity was slight. This
author obtained similar results from both the short run and the
long run regression analyses. However, with mileage-based
activities not allowed, the causal variables could be brought
into the calibration with the following results for the short run
regression:

Cost=$7.94/BOARDING+$183.2/DEP

(2) But the question remains, can we rely entirely on logic to
disassociate traffic handling costs from revenue passenger miles
in the face of such persistent statistical evidence?

P~rgegtign_.and...Sales
Promotion and sales costs largely pay for the travel agent's

commission on ticket sales, the costs of reservations, and the
costs of advertising. The largest of these expenditures is

---------------------- -----------------------
(1) We shall call this second set of analyses the short run
regression.

(2) As discussed above, we emphatically refuse to judge these
calibrations on statistical grounds. R-squared and F statistics
have been suppressed.
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agents' commissions, which are a flat percentage of ticket price.
Ticket price.is approximately $17/BOARDING +$0.074/RPM, (1) Thus
promotion and sales costs are proportional and passenger miles.
All of the regressions, Taneja's, Douglas Aircraft's, and this
author's, confirmed this relationship. The regressions were in
rough agreement, and the ratios of per boarding costs to mileage
costs were roughly that of the ticket price. For the sake of
completeness, the result of the several regressions are presented
in table A.4.

In a situation in which fares are not predicted by such a
formula, it seems more reasonable to express these costs as a
surcharge on other costs rather than a function of boardings and
miles This assumes that in the future fares depend on costs and
promotion and sales costs are a fraction of fares. The author
recommends the use of 12% of fares or 13.6% of other costs.

General and Administrative
These costs are the costs of management, and are

traditionally called overheads. As such it is normal to treat
them as a constant percent of all other expenses. (2) Douglas
Aircraft takes the view that depreciation and rental expense
should be exempted from overhead charges. With this logic they
achieve an estimate of 5.4% of all non-depreciation expenses,
including direct operating costs (DOC). This estimate agrees
nicely with the 1973 domestic trunk average of 5.6%. The author
recommends the use of one or the other of these figures.

Summary
Regression studies of airline IOC do not clearly indicate

any cause and effect relationships between measures of different
aspects of airline activities and. the appropriate cost
categories. Nor are reasonable hypotheses even favored by the
statistical evidence. As a consquence, it is justifiable to use
judgmental cost assignments rather than to follow blindly results
of regression studies in estimating cost coefficients. Because
of the high degree of collinearity among variables, it is usually
possible to select a convincing regression output to support any
reasonable assignment. (3)

The best judgmental assignments for the IDC of a U.S.
domestic airline appear to come to the following total:

overhead and sales costs of 19% of all other costs (except
depreciation)

Indirect costs for passenger and aircraft of
$10. 62/BOARDING

(1) In the 1960's and 1970's fares were nearly linear with
distance and independent of density. These figures are
representative of 1976 coach fares with tax.

(2) Taneja regresses against RPM and aircraft miles.

(3) It is also possible to select equally convincing regressions
to support unreasonable assignments. That is the point.
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+$ 183. 2/DEP
+$0.0067/RPM.

All these figures are in 1976 dollars.
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Appendix B: Calibration of Air Travel Demand Model

We have deduced t at air travel demand should follow the

formula:

D = k,'(F + v-T)a (B-1)

Where F is the fare and T is the total travel time. The

question is, what are reasonable values for v and a? The only

attempt to calibrate a model with such a formulation involved

several complicating factors. This author [3] calibrated a

non-linear model split model for intercity passenger travel

in the 100 to 400 mile range. The model included predictions

for total travel in the city pairs based on an intervening

opportunities formulation as well as air modal split effects.

With this formulation and the data available, no value of

v could be shown to produce a well-defined minimum for summed

squared error. Therefore v was arbitrarily set to $7 per hour,

that being near the hourly income for the year in question (1976).

With v at $7/hr., a was best in the neighborhood of -0.7.

The entire work is very speculative, relying as it does

on a formulation involving a number of separate effects and

a very limited amount of short haul data. A far better calibration

for air travel demand was performed by Eriksen [(11 . His model

had the form:

D = k ' F T (B.2)



206

Eriksen's calibration involved medium and long haul markets further

disaggregated into low, medium, and high density classes. His

values for y and 6 are given in table B.1. These values are

fare and time elasticities. That is to say that the relevant

slopes are:

DD F = ~1.0 (B.3)
YF D

D T = -0.5 B.4)

Equation P.1 states that the slopes are:

DD F - F (B5)
aF D F+vT

DT vT (B.6)
aT D :-F+vT

Setting (B.3) equal to (B.5) and (B.4) equal to (B.6) requires

the relevant slopes of the two formulations to be equal.. This

process produces the following simple results:

v = (B.7)

a y+ (B.8)

Equation (B.7) tells us that the value of time is the same as the

relative tradeoff of time and money in (B.2). Equation (B.8)

tells us that the formula summing time and fare effects (B.1)

requires an elasticity equal to the sum of time and fare elasticities.
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Table B.1 Eriksen ~Demand Calibration

Values for fare elasticity y:

low density

medium density
high density

medium
-. 60

haul

-. 89

-. 58

long haul
-0.5
-2.1
-1.3

Values for time elasticity S:

medium haul

low density

medium density

high density

-. 57
-. 99

-. 53

long haul

-. 14

-. 45

-. 43

Data from Eriksen I]

-1.0

I -0.5
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Table B.2 Calibration for V/y=2, a = -1.5.

assumed
frequency

6

9

2

4

6

1

3

5

2

4

1976
fare

$54
$54
$54
$82
$82
$82
$130
$130
$130
$167
$167

calculated imputed
time v

3.00 hrs $ 8.9/hr
2.07 12.9

1.76 15.2

4.72 8.6

3.33 12.2

2.86 14.2

8.91 7.3

5.18 12.6

4.43 14.7

7.09 11.7

5.69 14.5

average $12.1/hr

calculated time from T = distance/507 + .37 + 5.6/frequency

imputed v from v = fare/2-time

market
distance

400
400
400
800
800
800

1500
1500
1500
2000
2000
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Equation (M.8) is satisfied in our case by a=-1.5. Equation (B.7)

cannot be satisfied in all markets. Table B.2 provides a reasonable

average value for participating travellers in 1976. A somewhat

lower figure would be appropriate for markets including low fare/low

service trips not take in 1976 due to an absence of such service

offering in the market.
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Appendix C: Frequency, Displacement Time, and Competition

Frequency and Displacement Time
A large number of flights in a city pair market increases

the quality of the service by reducing the amount of time
passengers spend waiting for a departure. The usual measure of
the time inconvenience for a published schedule is the
displacement time either forward or backward from desired
departure times to available flights. Even with peaking in the
time of day distribution of desired departure times, well
designed schedules can reduce the average displacement time to
one quarter of the average headway [22]. Thus for a 24 hour day,
one would expect an average displacement time (Td) of

Td = b/frequencyj h= (C.1)

Steve Eriksen in his Ph.D. thesis [11] examined a level of
service index which reflects only this displacement time and the
aircraft travel time. Eriksen calculated this index using
published airline schedules [27] and time of day distributions of
demand derived from considerations of convenient departure and
arrival times and matters of flight time and time zone changes.
From data for 1974 we (1) culled 31 markets with (a) all nonstop
or all one stop services (i.e. constant aircraft times), (b)
between 3 and 21 departures per day, and (c) one carrier with
over 80% of the market. These markets and their displacement
times are presented in table C.1. There is a good distribution
of distances and densities.

Using these times and frequencies, equation (C.1) was
calibrated by least squares regression. The results predicted h
as:

h = 6.19 +0.26 (hri) (C.2)

The relationship was quite significant (Re=.95, t=24.) A
regression for (c.1) allowing a constant term produced nearly
identical results.

However, one guestion must be asked. Why is h greater than
6 hours? With 4 to 8 hours of almost no demand at night, h
should be in the neighborhood of 5 hours, not 6. .e must
conclude that either airline schedules imperfectly match time of
day peaking of demands or Eriksen's time of day distributions are
off. Probably both effects contribute.

We can make one adjustment which reduces the estimate of h.
There was a certain amount of head to head scheduling even in
these "monopoly" markets. Removing frequencies within one half
an hour of earlier frequencies and recalibrating produced

h = 5.73 hrs +0.25 (C.3)

(1) The data gathering and manipulation for this work was done by
D.F.X. Mathaisel. Any conceptual errors are this author's.



211

(R.=.95; t=23.) This we take as the best estimate we can get for
h.
Competition by Freguency

The logic of displacement times extends itself to
competitive scheduling practices. For airlines with otherwise
identical service, departure schedules are competitive tools.
With only 2 departures in a market, airlines do best to take
different parts of the day for their departure. This avoidance
of each other's times stimulates a bigger net market. But the
fifth departure time only reduces expected travel time by 17
minutes, which is unlikely to stimulate much demand. For fixed
or nearly fixed total demand, competitive scheduling between two
airlines becomes a sort of a game to see who can capture the
greatest fraction. of the day as closest to their departures.
This scheduling game has been explored by de Neufville [383. The
only stable points are (i) two competitors scheduled head to head
or (ii) one airline alone. (1) Any dominance of frequency by one
carrier allows him to capture more traffic per departure than the
smaller competitor by matching the small schedule and then
strategically locating the remaining flights. Even a 50-50 split
by interleaved departures is unstable due to end of day effects.
The 50-50 head to head solution is the only stable one for two
carriers.

Unfortunately such schedule duplication is a waste of
resources. The same service convenience can be provided by using
larger aircraft (one for each head to head pair of departures)
with a reduction in cost.

Fortunately this process of head to head scheduling occurs
less often than theory would suggest. Often one carrier
dominates. In the 48 markets found in Eriksen's data with
between 7 and 21 departures (2) and maximum market shares below
80%, the average maximum market share was 57%. The standard
deviation was 12 percentage points, indicating a broad
distribution, as is shown in table C.2.

It must be stated at the outset that the head to head theory
was suspect. Network scheduling and routing effects influence
airline schedules in a single market, perhaps as much as
considerations of intra-market competition. We tested in a crude
way this theory by developing an index of competition.
Index of Competition Defined

We define an index of competition I according to the 'formula

Td = (h/frequency) x I (C. 4)

Where Td is our familiar expected displacement time. The
dimensions of I are departures per departure time. An I of 2.0
means there are two departures for every departure time of worth,
or a head to head schedule.

(1) The theory even extends to three or more carriers matching
schedules.

(2) All nonstop or all one-stop departures.
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There are three possible predictors for I in a market. Each
has different implications for the type of competition that is
goinq on.
Head to Head Competition: Ih

one predictor for I is Ih=n, where n is the number of
competitors. With distributions of market share as in table C.2,
this is a hopelessly bad predictor for I. Airlines are not
matching frequency shares exactly evenly through the day.
However they may be matching in some parts of the day. If we
take the schedule of the dominant carrier as entirely useful, and
all smaller schedules as matched head to head by this schedule,
the predictor Ih becomes:

Ih = 1/NSmax (C.5)

Where rSmax is the maximum market share. (1)
For our 48 competitive markets (table C.2) we calculated

actual indices of competition (Ia) and compared them with Ih.
The actual index of competition was calculated by the "half hour"
rule. Any departure within 30 minutes after a previously counted
departure was not counted. (2) Eleven out of the 48 markets
appeared to be more or less head to head. But all the rest of
the markets had far smaller Ia's. (3) The mean Ia was 1.34; the
mean predicted by the head to head hypothesis was 1.85.

Our suspicion that head to head scheduling is not the norm
seems supported.
Collusion

Another possibility for scheduling behavior is a careful
interleaving of different airlines' departures to avoid each
other's departure times. This is the norm under collusive
operations in European markets. It maximizes total schedule
convenience for the market while allowing service by more than
one airline. Under these arrangements, all departures would
count. The index of competition under the collusive hypothesis
would be Ic=1.00. (4)

For the 48 competitive markets, only 7 points seemed to fit
the collusive hypothesis even approximately. In fact an I of

(1) Market share is used as a surrogate for frequency share for
reasons associated with the original use of this research. This
situation is a lamentable weakness in the present analysis.

(2) No other useful rule could be implemented given the form of
Eriksen's data.

(3) An la greater than Ih would mean a carrier was scheduling
head to head with itself. This occurs once in a while due to the
limitations of our definitions.

(4) In our 31 near monopoly markets, the average Ia was 1.08,
indicating a little head to head scheduling of the existing
competitive departures and some inefficiencies in our definitions
and processes.
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1.00 was about a standard deviation below the mean observed for
la, Ia=1.34.

Collusive scheduling definitely occurs in some markets, but
it is not the dominant or representative behavior.
Blind Compet tion

A third hypothesis was created before the data was selected
and it turned out to fit the average behavior pretty well. This
hypothesis was that airlines by and large ignored each others
time of day schedules in scheduling their own flights. Thus some
flights (perhaps half by our "half hour" definition) would be
head to head and some interleaved. The whole process would have
lots of random variation in the results. However a predictor for
the index of competition for blind competition Ib assuming half
matching flights.would be:

Ib = 1/(MSmax+.5(1-MSmax)) (C.6)

The term in the denominator is the irst pair of terms of the
Taylor series expansion of M1Smax about 1.0. Thus Tb becomes
approximately

Ib m 1/4MSmax (C.7)

It is this form (C.7) we used as the predictor for the index of
competition.

Figure C.1 shows that 30 out of 48 points fell closer to
this prediction than either the head to head or the collusive
predictions. Furthermore, the average value was right and the
root mean square error was by far the lowest of all the
predictors, as shown in table C.3. (1)

Apparently the blind competitive hypothesis does describe
the trend and predict the average wasted departure times
reasonably well for 2 and 3 competitor markets.
Further Discussion

Frankly, the evidence is less than overwhelming. An attempt
was made to eliminate the weakness in defining the actual index
of competition by testing directly for displacement time vs.
schedule in competitive situations. That is, given (C.3), what
predictors do we get for h using these three predictors for index
of competition? We calibrated Eriksen's displacement times
against that predicted by a choice of I divided by the actual
frequency for our 48 markets plus 19 more city pairs with
frequencies between 3 and 6. (Table C.4 presents the added data
points.) (2)

The results of these regressions are presented in table C.5.
They need some interpretation. First, the Ia's by the half hour

(1) The comparison is not fair since the other two hypotheses can
have errors in only one direction.

(2) Low frequency markets were not used before because the
definition of head to head by the "half hour" rule did not fairly
apply, but these new points greatly add to the data base for
displacement times.
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Figure C.1: Indices of Competition
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Table C.1: Data for 31 "Monopoly" Markets

City Pair
Airport Codes
from ref 27

SLC LAX
MKC STL
STL MKC
ALB NYC
PHL ORF
ORF PHL
NYC ALB
ORD OMA
OMA ORD
ORF RIC
PIT ALB
TUC DEN
LAX SLC
RIC ORF
ICT OKC
ATL CVG
DAL TUC
DAY PIT
PIT DAY
DEN TUS
RDU WAS
WAS RDU
BOS BTT
DTT BOS
LAS RNO
RNO LAS
ALB BOS
BOS ALB
TUS DAL
BIS MOT
MOT BIS

largest
market
share

1.00
.81
.82

1.00
.90
.91

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

.89
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

.98

.87

service
frequency

8
16
15
11
9
8
7
7
7
7
6
6
6
6
5
5
5
5
5
5
5
5
4
4
4
4
3
3
3
3
3

unduplicated
frequency

displacement
time

.90

.44

.42

.56

.74

.67

.82
-90
.83

1.18
1.01

.96

.91
1.36
1.00
1.30
1.76
.98

1.05
1.31
.90

1.22
1.04
1.23
1.45
1.40
1.78
1.56
2.11
3.13
2.45
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Table C.2: Data for 48 Competitive Markets

City Pair
code

MSY HOU
ATL MSY
HOU MSY
SFO SEA
PWB BOS
ORD LAX
MSY ATL
BOS PWM
DFW OKC
OKC DFW
SEA SFO
DFW TLS
PIT WAS
MEM ATL
DEN SFO
SFO DEN
WAS PIT
MKE MSP
MEM STL
DEN SLC
MIA WAS
PHL ORD
STL MEM
MKC OMA
ATL DFW
WAS MIA
SLC DEN
MSP MKE
OMA MKC
STL ATL
LAX PDX
ORD DAL
LAS SFO
ATL MEM
RDU RIC
ATL STL
PDX LAX
DTT PIT
SFO WAS
DFW LUB
PIT DTT
ROC ORD
ORD TUS
LUB DFW
LNK OMA
SFO NYC
NYC SFO
TUS ORD

MSmax

.45

.72

.46

.67

.43

.28

.72

.47

.70

.60

.52
.66
.55
.74
.74
.74
.46
.61
.57
.48
.67
.62
.62
.50
.70
.65
.33
.52
.52
.68
.67
.52
.42
.60
.72
.72
.51
.50
.33
.55
.54
.70
.70
.50
.65
.39
.38
.56

total
frequency

18
14
17
14
17
21
13
16
13
14
15
13
14
11
11
11
14
12
12
13
11
11
11
12
10
10
14
11
11
9
9
10
11
9
8
8
9
9
11
8
8
7
7
8
7
9
9
7

unduplicated displacement
frequency time

13 .36
11 .86
12 .42
9 .58

13 .37
11 .61
8 .58
12 .50
11 .45
10 .49
10 .53
9 .51

11 .45
8 .57
8 .81
7 .77

10 .49
10 .61
11 .46
10 .62
1.8 .81
16 .69
8 .81
9 .60
-91.11

.97
9 .53
7 1.13
g .71
7 .68
8 .77

16 .69
16 .51
8 .69
7 .74
6 .90
7 .93
8 .60
8 .63
7 .76
6 .90
5 1.33
6 1.07
7 .70
6 .89
6 .83
8 .96
5 2.08

... pop i& w 1, 0 w 01"
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Table C.3 Average Indices of Competition for 48 markets

observed Ia

head to head Ih

collusive Ic

blind compet. Ib

average
1.34

1.85

1.00

1.35

deviation from observed
0.0

0.69

0.38

0.20

Table C.57 Predictions for h

method

Ia=actual

Ib=1/ MSmax

1 h=1/MSmax
Ic=1.00

h

6.25
5.43
3.90
7.31

a
.22
.21
.18
.27

t

28

26

22

27

R 2

.92

.91

.88

.92
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Table C.4: 19 Competitive Markets

City Pair
code

DAY STL
ORD ROC
DEN SEA
DEN NYC
MEM MSY
SEA DEN
NYC DEN
PIT CVG
MSY MEM
OKC ICT
STL DAY
CVG PIT
LEX CVG
CVG LEX
OMA LNK
MSU JAN
JAN MSY
PHL LAX
LAX PHL

totalMSmax frequency

.75 6

.73 6

.68 6

.68~ 6

.62 6

.56 6

.56 6

.52 6

.52 6

.72 5

.67 5

.58 5

.59 4

.57 4

.54 4

.72 3

.54 3

.43 3

.42 3

unduplicated
frequency

displacement
time

.90

.89
1.26
1.81
1.32
1.53
1.47
1.19
1.20
1.27
.99

1.42
1.64
1.62
2.69
1.53
3.58
1.71
2.03
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rule produced a value for h very near that for monopoly markets.
So our half hour rule was not unforgivably bad. Second, all four
methods produced siwilar R2 and standard errors. This merely
suggests that displacement time vs. frequency relationship is
strong.

Third, there is a very weak indication that the blind
competitive hypothesis is best, based on a combination of low
standard error and a value of h closest to our best estimate from
equation (C.3).
Summary and Conclusions

Displacement time depends on frequency. In competitive
markets the usefulness of total market frequency in reducing
average displacement times is reduced. But the reduction is only
half that expected from head to head scheduling practices. The
waste is about that expected if airlines schedule blindly against
each other.

Better work should be done along these lines.
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Appendix D: Analytical Solution to the Buffer Size Problem

The probability for a potential passenger being denied space on

a flight according to the formulation discussed in chapter 4 is

Pd=X $(d) - (d- c) dd (D.1)
c

Where the followinj definitions-:apply:

Pd=the probability of being denied space

c= the flight's capacity
$(d) =the distribution of demand d for a flight, which is

assumed to be Gaussian with mean y and standard devieation a.

This formula can be evaluated analytically. We define the

non-dimensional version:

x = (d--p)/a

X = (c-p)/a
o the standard unit normal distribution

D= the integral of $o, the cumulative normal.

With these variables (D.1) becomes:

Pd = II fi(x)-(x-X) dx
X

$o(x)dx + $o(x) x dx

We note that

x dx = 1/2 d(x2

*
The derivation was suggested by equation (2) in [52].
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and also
2 /

o (x) = 1/ J'- e~X/2

So we may state

Pd= (x) + e2/ d(x2
X X-x/2

The integral may be evaluated to become

Pd = 4x) -- 4)(x)

. X IX-

Pd = W{X' ((X)l-)+$O(X)} (D.2)

We recall that X may be interpreted as the buffer in seats between the

mean demand and the capacity, non-dimensionalized by the standard

deviation of the demand.

We see from (D.2) that for constant Pd, as the ratio a/9 rises the

term in brackets may become smaller. This means the buffer non-

dimensionalized by the standard deviation may fall.

The expression (D.2) must still be evaluated numerically since

there is no closed form expression for $. We have performed these

evaluations for a representative set of values for p/ca in table D.l.

The middle two columns of D.1 illustrate the difference between load

factors designed to meet the 2% criterion for Pd as we have developed

it and load factors designed using the simpler assumption that constant

buffer in terms of a produces constant service quality. The range of

actual turnaway rates for constant buffer (in a's) and different
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Table D.l: Buffers Needed for Constant Pd, Lost Turnaway Model

Pd = 2%

for Pd=2%,
I/a buffer in a's

1.0
1.5
2.0
2.5
3.0

10.0

1.67
1.49
1.36
1.26
1.17
0.50

nominal load factor at
load factor buffer=1.36-a

37%
50%
60%
66%
72%
95%

42%
52%
60%
65%
69%
88%

Pd for
buffer=l .36a

4.0%

2.7%
2.0%

1.6%
1.3%
G. 2%

Table D.2: Ranges of Load Factors for Constant Pd

total
a

9.43
14.83
20.16
28.97
37.75
55.28
72.80

142.82

load factor

for 2% Pd

2.12
2.36
2.48
2.59
2.65
2.71
2.75
2.80
2.86

random variance estimated assuming
in groups of 2 (as in [52])

61%
64%
66%
67%
67%
68%
69%
70%
70%

travel

assumed
load
size -P

20

35

50

75

100

150

200

400

35%
cyclic

7

12.25
17.50
26.25
35

52.5
70

140

random

6.32
8.37

10.00

12.25

14.14
17.32
20.00
28.28
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distributions (in p/a) is broad. Equation (D.2) says that for constant

X, the turnaway rate is proportional to a/p. This is illustrated in

the last column of D.l.

In a practical sense p/a changes with p because of the random

component of a. Such changes produce a spread of 8 points in load

factor required for constant denial rate across load sizes in reasonable

ranges. This is shown in the final column of table D.2. Again, the

changes in load factor are on the smae order as changes due to

designs optimized for different densities and distances as in

chapter 5.
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Appendix E: Estimate of Cyclic Variation in Demand
This appendix estimates the variability of demand caused by

the combination of monthly, daily, and hourly traffic cycles.
The random variable d is defined as the demand for a randomly
selected~ flight in a schedule. %(d) is the distribution of that
random variable. ,0(d) is not directly observable, but an
analogous distribution of load factor about its mean is. Ve call
the distribution of either loads or load factor 0(1) . We
understand that the distribution will be nondimensionalized by
its mean, so the distinction between load and load factor is not
relevant. We will attempt to recreate the distribution 9(d)
about its mean by examining the traffic on large sections of
airline networks. Available data present the traffic totaled in
several different ways. These totals reveal several independent
demand cycles. By combining these separate influences, we
estimate e(l) in general.

Unfortunately, the distribution we get will be for all
travel markets in general. Also, it will be per hour rather than
per departure. This is an important point because departure
frequencies do'match to some degree demand cycles. Furthermore
niqht coach fares also adjust a highly cyclic demand to a less
cyclic supply. The net result is that our estimate of traffic
distributions is an imperfect estimate of the demand per
departure distributions.

Nevertheless, there is value in this sustained numerical
effort. First, the components of the variability of load factors
are observed separately and their relative importance measured.
Second, detailed reconstruction of 0 will develop a fuller and
less theoretical understanding of the problems of demand
variability and the difficulty of its measurement. Third, as an
end result we will have a rough support for our estimate of p/W
=2, which we use in later sections. And finally, economies of
scale in aircraft capacity are reinforced by efficiencies
associated with random part of this variability.
Cycles of Demand

The most fundamental cycle of demand is weekly. Most
airline schedules are identical on a day-to-day basis while
demand volume is not. Figure E.1 displays the cycles of traffic
through the week. A schedule with capacity sufficient to exactly
accommodate Friday's mean demand would obtain an average load
factor of 87% through the week.

The most interesting statistic from Figure E.1 is the
estimate of the standard deviation of weekly demand. The
standard deviation is best estimated as 9.7% of the mean. (1) If
the demand in each hour of the day went through the same day of
the week cycle, this would be the contribution of the day of the
week to the standard deviation of demand. Since some hours, such
as noon, are less cyclic than others, say 5:00 p.m., the data in
fiqure E.1 represent a lower bound.

(1) "Best" estivate is route mean square deviation from mean,
adjusted by 7/6 to allow for the loss of a degree of freedom from
calculating the mean.
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A similar examination of total travel in the months of the
year for all airlines and distances reveals a monthly standard
deviation of 9.6% of the mean. Monthly variations for different
markets are undoubtedly different, so this is again a lower
bound. On the other hand, when we relate demand to capacity in
order to obtain expected standard deviation of load factor, we
must bear in mind that capacity is also adjusted seasonally among
markets so the unmatched variability in monthly demand may be
near 9.6% of the market or even less.

Convolution of weekly and monthly cycles is possible, since
the way the data were gathered guarantees their independence.
representing the weekly cycle as in Figure E.2 and the monthly as
in Figure E.3 and multiplying out the probabilities produces the'
distribution in~ E.4. This is an estimate of the day-to-day
variability over the year. The standard deviation is
approximately the root mean square of the sum of the two previous
standard deviations, or 13.6%. The distribution is far from
Gaussian, but is moving in that direction.

There are also hour by hour cycles of demand which must be
satisfied by available aircraft capacity. Unlike daily or
monthly cycles, hourly variations in demand occasionally fall so
low that it is economic to idle equipment rather than operate
with low loads. Aircraft are seldom involved in flying or being
loaded for more than 14 hours in a day, (1) and less than 10
hours are needed for maintenance. This means some time is idle
due to low demand. This often occurs at night.

Figure E.5 shows demand for the 14 hours of the day between
7 a.m. and 9 p.m. This is for all markets, so peaks and valleys
of individual markets cancel out. The estimated standard
deviation is 33% of the mean. Thus if aircraft are used equally
through the 14 hour day, hourly variations in traffic far
outweigh weekly or annual cycles in influencing load factor.
Hour by hour cycles dominate the standard deviation of air
passenger demand. The convolution of all three effects produces
a standard deviation of approximately 35.5% of the mean. Hourly
variability alone accounts for 32.8%.

These three cycles, monthly, daily, and hourly, combine to
make that part of the variability in the load on a departure
which we have considered to be independent of the load size. We
named that part of the variability of demand the -cyclic
variability and we have now described the cycles which influence
it. Our estimate of the cyclic variability is just under 40% of
the mean demand. (2)

(1) See Figure 2.3.1 in Chapter 2 for an illustration of this.

(2) Because of the use of large totals of traffic to estiamte the
variations in 0(1), random components of the variability have
averaged out of all observations in this section.
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Figure E.14 Air passenger traffic cycle by day of week

nominal capacity

a A A a

sun mon tue wed thur fri sat

Source: CAB Discount
p 18 (ref 40).

Fare Policy, Federal Register, Vol 42, no 100,

Data is summed passenger boardings for four trunk airlines for
week onded 14 Aug 76. Trip lengths of 501 to 1000 miles are
included. Precise definition of data measure is somewhat
speculative due to incomplete explanation in original reference.

1 00
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Figure E.2
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For markets 501-1000 miles; week ended 14 Aug 76 for four trunk aielines

Average is 87% of maximum; a/p=9.7%

Source: CAB Discount Fare Policy; Federal Register,
p 18- (see comment, figure E.1 ',)

Vol 42, no 100,

Figure E.3: ~ Distribution of trafficthrough year by month

1/6

1/12

probability

ii
1.0 1 1 1.2

For year ending sept 76. Data adjusted to remove growth trend of 1%
per month. Data is systemwide passenger miles for four trunk airlines.
Source: Ibid., p 14.
Average load is 85% of maximum; a/ip=9 .6%

. .



Figure E.4': Convolution of day of week and month c
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Figure E.5: Distribution of traffic Through the Day by Hour

2/14

1/14

0 -
____________________________________________________ - - *i II-

0.4 0.6 ' 0.8 .1 .0
average

1 .2 9 1 .4

Average load is 69% of maximum

Source: CAB Discount Fare Policy, Federal Register, Vol 42, no 100, p7 . (ref 40)
Data for the month of February, 1976; 7am to 9,pm. Four trunk airlines. See comment
on figure E.1.
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