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ABSTRACT

For a given network let P and N denote the set of all

points and the set of all nodes respectively. Let G and T

denote a cyclic network and a tree network respectively and

let m denote the number of centers available. The categori-

zation scheme {'/{"/m/{ } , where the first and second

cells refer to the possible locations of centers and demand

generating points respectively, provides for compact identi-

fication of a variety of minimax network location problems.

This dissertation presents algorithms which efficiently

solve all problems in this class--for example, P/P/m/G-for

virtually any size of network. Moreover, tree problems

can usually be solved manually.

Methodologically, the tree-based results are graph-

theoretic while the general case, formulated in a mathe-

matical programming framework, leads to a highly efficient

strategy for a class of massive generalized set covering

problems.
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CHAPTER I

INTRODUCTION

1.1 Problem Statement and Background

Consider the network optimization model

min max d(x,y) (1.1)
xeG yeN

where G denotes the set of all points on an undirected graph

with node set N, arc set A and shortest path distances d(x,y),

(1.1) has been termed the 'absolute center' problem in graph-

theoretic terminology. As a model of a physical phenomenon its

most obvious application is to the location of emergency centers

on a network. In (1.1) let x represent the location of a

facility, and y the location of a demand point. For example,

we may wish to locate a first aid center somewhere on a street

network in a manner that minimizes the greatest distance to be

traveled to that center from any node in the network.

Problem (1.1) is but one example of a variety of minimax

location models. The following modifications in model assump-

tions encompass much of this variety:

i) Facilities may be situated on all points of the graph

(nodes and interior points of the arcs) as in (1.1) or on the

nodes alone, in which case the problem becomes

min max d(x,y). (1.2)
xEN yEN

ii) In (1.1) and (1.2) demand is generated only at the

nodes. A natural extension provides for demand generation at

any point on the network. (1.1) and (1.2) would now be re-
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formulated respectively

min max d(x,y), (1,3)
xEG yEG

min max d(x,y). (1.4)
xeN ySG

In addition to the obvious differences in the physical

assumptions, models (1.1) through (1.4) differ significantly

in computational complexity. We shall see later that these

differences are not always intuitively apparent.

iii) The network may be a tree or it may contain cycles.

Though the tree case is not significant in the physical setting,

the distinction does present a useful hierarchy in developing

a theoretical foundation and computational procedures for the

general (cyclic) case. By replacing G with T in (1.1) through

(1.4) we can refer to the appropriate tree problems.

iv) In general, m centers may be desirable, leading to a

'multi-center' problem. In the previous models we implicitly

assumed m = 1. The following model generalizes (1.1) to

include m centers:

min max d(y,Xm) (1.5)

XeGm yeN

where d(y,X) min d(y,x) and G denotes the set of all m

xSXm

points, Xm, on G. Problems (1.2) through (1.4) can be similarly

generalized.
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A related class of problems, which we term the 'inverse'

multi-center problem, seeks to determine the minimal number

of facilities, m, so that all nodes (points) are within a

specified distance, X, from some facility. For example, the

inverse of (1.5) is

min m

XmGm

s.t. max d(y,Xm) < X. (1.6)
yeN

As an example of an application of this type of model,

beyond the location of emergency facilities, consider the de-

termination of the number and location of bus-stops in a

school-bus system where no pupil is to reside further than a

specified distance from the nearest bus-stop.

v) A more general formulation allows for facility and

demand locations on subsets of N or G. Letting N' C N,

G' C G denote these subsets, problem (1.1) would become

min max d(x,y). (1.7)

xEN' yEG'

This formulation enables us to model various locational

restrictions imposed by physical constraints.

vi) So far we have assumed animplicit weighting w(yx) = 1

associated with the shortest path from the demand center at y

to the facility at x. The most important extension of this

type cited in the literature is to attach weights w(y,x) = w(y),
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In this case (1.1) becomes

min max w(y)d(x,y). (1.8)
xcG YEN

In general, such a formulation appears unrealistic in

the context of minimax problems, as can be seen by disaggre-

gating node y into w(y) distinct nodes each with unit weight.

However, the following military scenario, communicated to the

author by Richard Francis, does suggest (1.8) as a suitable

model. Let w(y) represent a 'rate of attrition' at a defen-

sive outpost given an enemy attack. Then the critical 'holding

time' for effective defense of the installation until the

arrival of reinforcements is a function of this rate.

vii) Up to this point we have assumed an absence of arc

orientation. It may be desirable to include directed graphs

allowing, for example, for variations in travel times due to

gradients or traffic patterns in the physical network.

viii) The basic topological assumption has been of a given

network of arcs and nodes, most suitable to an urban planning

configuration. Other distance measures commonly used in

facility location models are primarily Euclidean and rectilinear

distances in a plane.

ix) The models so far are based upon a 'one-shot' or

static scenario. This describes realistically a situation

where the facility is either stationary, as for a hospital, or

where frequency of service is very low. In other cases, for

example police patrols, a dynamic model would be preferred for
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a more realistic approximation of the physical process.

x) It may often be desirable to incorporate stochastic

elements to allow, for example, for congestion, climatic varia-

tions, variable demand rates and so on.

Notice that the dynamic and stochastic extensions referred

to in the previous two categories raise questions concerning

the minimax criterion. Indeed, in many situations other opti-

mization criteria are required. Perhaps the most extensively

treated problem is the median'problem, where total weighted

costs are to be minimized. (1.8) would now be reformulated as

min d(x,y)w(y). (1.9)
xEG yeN

Scope of the Thesis

In this thesis we shall consider minimax network location

models of all varieties with respect to categories (i) through

(iv) above, and we shall indicate that many of our results are

easily extended to cover categories (v) through (vii) as well.

Furthermore, a 'mixed' formulation of center (1.1) and median

(1.9) problems will be briefly treated as an initial effort

towards future research. Categories (viii) through (x) are

beyond the scope of this thesis. Unless otherwise stated, we

shall henceforth adhere to the assumptions implicit in the

models of categories (i) through (iv).

In order to facilitate identification of the varieties of

location models in this dissertation we propose the following

shorthand categorization scheme,
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Facility Location Demand Location No. of Centers/

Set Set Max. Distance

P -

Network

Type

where N,P denote the node and point sets respectively, T,G

denote tree and cyclic graphs respectively and m,X refer to

the number of available facilities and the maximal distance

respectively. The inverse is used in "A " to distinguish from

m where numbers replace the symbols. For example, (1.1) would

be identified as P/N/l/G and (1.6) as P/N/X1 /G.
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1.2 Previous Work

The literature on location theory is extensive. A recent

selective bibliography by Francis and Goldstein [9] runs to some

220 titles while a literature review by Elshafei and Haley [6]

lists over 390 references. Yet there are but a handful of publica-

tions of direct relevance to minimax network location problems. For

example, a new book by Francis and White [9], devoted entirely

to location problems, treats only Euclidean and rectilinear

distance measures. On the other hand, brief surveys of mini-

max network location problems together with a variety of

applications are reported in Elshafei and Haley [6], Frank and

Frisch [11], Odoni [34] and ReVelle et al. [38].

Problems N/N/l/G and P/N/l/G, or the 'vertex center' and

'absolute center' problems, were introduced and solved by

Hakimi [20]. Similar concepts were introduced prior to that

by ore [35] though in a more restricted setting and without

algorithmic solutions. N/N/l/G is naturally solved by finding

all shortest paths in the network. To solve P/N/l/G, Hakimi

proposed an arc by arc search of all shortest paths from the

points along each arc of the network. The resulting procedure

is cumbersome for manual operations though it presents no major

difficulties for a computer solution. We shall point out in

the next section that single center problems are essentially

tractable. Goldman [18] presented a reduction algorithm for

P/N/1/G attempting to overcome some of the original 'brute

force' in Hakimi's procedure. Application of this algorithm

does not, however, guarantee an optimal solution and Hakimi's
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algorithm may yet have to be applied. As a special case of his

algorithm, Goldman derived an efficient algorithm for P/N/l/T.

The m-center problem P/N/m/G was posed by Hakimi [21]

and subsequently solution algorithms were proposed by Minieka

[33] and by Christofides and Viola [2]. An algorithm for

N/N/m/G was given by Torregas et al. [44]. All of these algori-

thms involve repeated solutions of generalized set covering

problems. As we shall point out later, these problems have

yet to be solved satisfactorily for large scale problems, with

the implication that the m-center problem, too, must still be

considered an open problem for large scale networks. This is

particularly true with respect to P/P/m/G and N/P/m/G which,

to our knowledge, have not received any attention at all so far.

Since the inauguration of this research the author has

published, at times with Odoni, a number of preliminary results

pertaining to single center problems, for both cyclic and

acyclic networks [24,25,26], to be discussed later. Very re-

cently this area has exhibited a dynamic growth in interest.

Since the conclusion of the major part of this research effort

a number of related publications have appeared. A report by

Dearing and Francis [3] on single center problems contains some

conceptual results akin to the 'minimum diameter tree' intro-

duced in [24] and discussed in Chapter III. Furthermore, they

propose another algorithm for single centers of a tree, comple-

menting the algorithms by Goldman [18] and the author [25].

Yet another algorithm for the latter problem has been recently

reported by Halfin [22], based upon Goldman's procedure.
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Garfinkel et al. [12] have reported an improved algorithm for

P/N/m/G based upon Minieka's scheme [33]. Interestingly, their

procedure depends upon a 'column elimination' observation which

we also employ in Chapter IV in our proposed solution for two

of the multi-center problems. However, their procedure remains

limited by the previously mentioned covering problem bounds,

so that truly large scale problems cannot be entertained, par-

ticularly for small values of m. The recent comprehensive re-

view by Elshafei and Haley [6] points out a number of additional,

related reports [15,37,39,42]. Unfortunately, none of these

are well documented and could not be obtained by the author in

the short time available. Furthermore, some of these references

are of dubious value as, for example, Rosenthal and Smith [39].

While Elshafei and Haley indicate their algorithm is efficient

for P/N/m/G, the author has come across an algorithm by Rosen-

thal and Smith [40] for the same problem which turned out to

be invalid [24]. It is possible the two algorithms are one and

the same. It appears that this field is particularly suscep-

tible to erroneous suggestions. In reporting an interesting

application of N/N/X 1/G to the location of school-bus-stops,

Gleason [16] mistakenly attributes a unimodular structure to

the matrix of the resultant covering problem. In the course of

this research effort the author has frustratingly often formu-

lated 'remarkable' theorems which turned out, indeed, remark-

ably invalid. Such errors are due chiefly to the mind-twisting

'min-max-min' criterion and the cyclic, 'anti-convex' nature

of general networks.
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Limitations

In conclusion, existing state of the art is seriously

deficient in the following items:

* Single centers of cyclic networks can be found only in

a most cumbersome manner.

* Multi-center problems P/N/m/G and N/N/m/G can be

practically solved for small to medium networks. Truly

large scale problems cannot be entertained.

* Multi-center problems P/P/m/G and N/P/m/G cannot be

solved at all.

Finally, we note that in a recent paper, T. C. Hu [28]

identified the major discrete optimization problem areas for

which breakthroughs are needed. One of these areas is multi-

facility network location of which one variety is the minimax

type. Another variety is the m-median problem (with objective

function as in (1.9)) which has been treated, for example, by

Marsten [31].
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1.3 Overview of the Thesis

1.3.1 Objectives

In this thesis we aim to overcome all of the deficiencies

in the state of the art as listed in the previous section.

Furthermore, we intend to develop a complete graph-theoretic

foundation for minimax location on a tree network together

with more efficient algorithms for single and double centers

of a tree.

1.3.2 Methodology

It is important to differentiate between single and

multi-center problems with respect to computational complexity.

To formalize this dichotomy we might invoke concepts from

complexity theory. Karp [29] distinguishes problems possessing

solution algorithms terminating in a number of steps bounded by

a polynomial in the length of the input from problems with no

such algorithm. We shall refer to the former as algebraic and

the latter as exponential problems.

Single center problems are algebraic, with upper bound

polynomial of low order. Solution techniques are generally

graph theoretic and the intent of this thesis is to develop a

graph theoretic foundation for this class of problems. Multi-

center problems, in contrast, are apparently exponential in

complexity and mathematical programming techniques are needed

for their solution. As indicated, the methods which have been

proposed so far involve repeated solution of the set covering

problem
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min e x

s.t. Ax > e

x.s{0,l1 Vj (1.10)
J

where a. .s{0,1} Vi,j and e = (l,1,...,1). We shall develop
1)

a problem-oriented math programming technique to solve (1.10)

efficiently.

1.3.3 Outline

Chapter II develops a complete graph-theoretic foundation

and highly efficient algorithms for the full variety of single

and double center problems on a tree. An initial effort is

also made in formulating and solving network location models

with 'mixed' objective functions, combining minimax (center)

and minisum (median) criteria. The preliminary treatment of

trees provides results and insights for the general network

case. The relative difficulty in the latter results from the

absence of a basic convexity property dominating the tree case.

Chapter III is addressed to the variety of single center

problems for a cyclic network. Some graph-theoretic results

are obtained, generalizing the notions of Chapter II and an

algorithmic strategy is developed, greatly improving existing

strategies. Above all, important insights are gained for the

major developments of the following chapter.

Chapter IV presents a highly efficient algorithmic strategy

for the full variety of multi-center problems. A problem-ori-
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ented math programming strategy is developed which enables us

to solve truly large scale problems most efficiently.

A final chapter summarizes major results, indicates

straightforward extensions and suggests important and promising

directions for future research.

1.3.4 Basic Notation and Assumptions

Standard mathematical notation is employed in the areas

of set theory, analysis, number theory and linear algebra.

In the latter, matrices are always upper case while vectors

and scalairs are always lower case. Matrix operations are

assumed to conform without explicit statement of dimensions.

Because of non-standard terminology in the graph-theoretic

literature we need to define our notation more carefully in this

area.

Let G(N,A) denote an undirected graph with node set N,

arc set A and infinite point set G. As we shall be dealing

exclusively with undirected graphs we shall refer synonymously

to arcs/edges/links; vertices/nodes; graphs/networks. The

following list of basic notation will be supplemented in subse-

quent sections as required.

d.. length of arc (ij)cA.
1)

d(x,y) E minimum distance between xeG and yeG.

Ijd(x,y)|| minimum distance matrix VxyENxN.

I(x) degree of x; number of arcs or partial arcs

incident at xeG. By convention I(x) = 2 if x/N.
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MPT(x) E minimum path tree rooted at xeG.

MST minimum spanning tree of G.

Unless otherwise stated, we shall always assume the

following network properties:

i) dii = d.. > 0 V(ij)EA.

ii) I(x) / 2 ==> xEN.

Standard algorithms will be assumed for the basic

tree search problems, specifically, Dijkstra [4] for MPT(x),

Kruskal [30] for MST and any of the algorithms in Dreyfus [5]

for |jd(x,y) |.

Finally, we shall often use the following math programming

terminology. Consider the finite-dimensional optimization

problem

z(C) = inf f() (1.11)
REnC

where f: Rn - R, EeRn and C C_ R. A 'relaxation' of (1.11)

is any new problem with C' D C replacing C in (1.11) while a

'restriction' of (1.11) is defined by substituting C" C C for

C in (1.11). If z(C") = z(C) we shall refer to C" as a 'dominant

set' for C in (1.11).
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CHAPTER II

CENTERS OF A TREE

2.1 Introduction

In this chapter we treat a variety of facility location

problems based upon tree networks. The results obtained, in

addition to their elegance and utility for this class of prob-

lems, provide insight, supportive theory and a natural first

step for the study of the more difficult general case treated

later. Furthermore, a number of contributions are made to the

more abstract state of the art of graph theory.

The fundamental results are developed in section 2.2, which

contains a discussion of all four single center problems

/1/T as defined in Chapter I. These results are exten-

ded in 2.3 to the variety of double center problems / /2/T.

Section 2.4, an important digression from the central theme of

the thesis, presents an initial synthesis of median and center

problems. Some results are established for mixed median/center

formulations, which we dub 'medi-centers,' for single facilities

on a tree network. Again, the results of section 2.2 play a

central role.

Definitions and Notation

Let T(N,A) denote the infinite collection of points on the

tree graph with node set N and undirected arc set A, For brevi-

ty we shall refer to T in place of the set T(N,A).
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We shall employ the following notation to characterize

elements of T:

E E end point set, set of nodes with degree one.

AC(T) 'absolute center' of T, solution to P/N/l/T,

denoted also as AC in this chapter.

VC(T) E 'vertex center' of T, solution to N/N/l/T,

denoted also as VC in this chapter.

D(T) 'diametral path' in T, a longest path in T,
also referred to as a 'diameter' of T.

d(x,y) 2 distance between two points x,yeT. We note

that the concept of shortest paths is irrele-

vant in the context of tree graphs as one and

only one path connects any two points,

p(x,y) path connecting x,yeT.

Z(x) max d(x,y).
yeT

p(Z(x)) maximum distance path from x.

For the proofs we shall also require the following notation:

x(t) point xeT such that d(AC,x) = t.

xwt)) -M maximum distance from x(t).

- maximum distance path from x(t).p (L(x (t)))
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These are clearly not necessarily unique, though we shall

show that Z(x(t))' is in fact a unique function of t. Finally,

we shall let 'initial directions' from x denote directions from

a point xcT to adjacent nodes. If x is an interior point of an

arc there are two initial directions. If xeN there are as

many directions as the number of arcs incident to x.
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2.2 Single Centers

In this section we develop a graph-theoretic foundation

for single centers on a tree network and provide simple and

ef f icient algorithms for locating AC (T) and VC (T). Notice, how-

ever, that these are also optimal solutions to P/P/l/T and

N/P/l/T respectively since a furthest point from any xcT is

always an end point ecE c N. Indeed, we might equally solve

the problems P/E/l/T and N/E/l/T respectively. For the remain-

der of this section we shall refer to the problems as AC and VC

respectively.

Existing Algorithms

Goldman [18] first proposed an efficient algorithm for the

AC. Here we shall consider a simpler and more efficient proce-

dure and we shall point out that the AC and VC are located

simultaneously. The results of this section were completed

early in the course of this research effort and have been docu-

mented by the author in the literature [25]. Because of their

importance for subsequent sections these results are reproduced

here in full. More recently, Halfin [22] has proposed a different

algorithm, based upon and improving Goldman's procedure. Dearing

and Francis [3] present yet another recent approach in the con-

text of a generalized distance measure. Finally, a very early

work by Ore [35], brought to the author's attention by Goldman

[19], includes some graph-theoretic ideas closely related to

the following discussion.
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Algorithm for AC and VC

Informally:

Step 1: Choose any point x on tree and, find furthest point

away--say e1.

Step 2: Find furthest point away from e --say e2

Step 3: Absolute center is atmid-pointof path from el to e2
Vertex center is at closest node to AC.

Formally:

Step 1: From any xET find e such that d(x,e ) = 9(x).

Step 2: Find Z(e1).

Step 3: AC is at L(e1)/2 from e1 along p(t(e ) .

2(AC) = 9,(e)/2 . VC is at closest adjacent node to

AC (perhaps itself). 2(VC) = L(e 1 )/2 + d(VC,AC).

Computational Considerations

The major computational effort involves finding the longest

distance from each of two points (x and e ). This requires a

special case of the algorithm for the least cost tree rooted

at a node for a general graph. Here, once a node is labeled

with some cost w(n) it is closed so that no minimizations are

required. 9(x) is the greatest node price.

Step 3 involves tracing back along the path p(t(e ) from

the furthest point--e 2. This is achieved by using the node

costs fr(n) from the computation of t(e 1 ). Beginning at e2 adja-

cent nodes are chosen only where node prices are lower than the
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current node price--there exists one and only one such adjacent

node at each stage--until for the first time fr(n) 3 k(e1)/2,

AC is then Z(e 1)/2-(n) from node n along the last arc traver-

sed.

Goldman's algorithm[18] progresses from 'tips' (nodes ecE),

successively deleting 'quills' (links with an adjacent tip)

from the modified network until AC is located. This procedure

requires in general many computations of 2(x). The

current algorithm involves just two such computations.

Proof: The algorithm may be stated as the following theorem:

Theorem 2.1

i) 2 (AC) = 9 (e)/2 for any eCT such that there exists an

xET such that 94x) = d(x,e).

ii) d(AC,e) = k(e)/2 and AC is located on p(k(e))

iii) VC is located at closest adjacent node to AC.

iv) 2(VC) = Z(AC) + d(AC,VC).

To prove the theorem we require the following lemmas, the

first two of which apply to general networks.

Lemma 2.1; k(AC) is the distance from AC to points on T in at

least two initial directions from AC.

Proof: If L(AC) is the distance from AC to points in T in only

one initial direction from AC then Z(AC) may be reduced by

moving in that direction a short distance. Thus AC is not the

absolute center and a contradiction is apparent.1|
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Lemma 2.2: Z(x) < k(y) + d(x,y) for all x,yET.

Proof: For all x,yeT.

by definition, d(z,y) < k(y) for all zET;

by inspection, d(z,x) < d(z,y) + d(y,x) for all zcT;

hence, d(z,x) < k(y) + d(y,x) for all zeT?

by definition, k(x) = max d(z,x);
z eT

hence, k(x) < k(y) + d(y,x).||

The main observation needed for the proof of the theorem

is contained in the following lemma:

Lemma 2.3:
k(x(t)) = Y,(AC) + t,

or (x) = P(AC) + d(x,AC).

Proof: Using Lemma 2.1, we may write

k(x(t)) > k(AC) + t

since in moving from AC to x(t), the longest distance in at

least one of the initial directions from AC is increased by t.

From Lemma 2.2, we may write

Z(x(t)) Y 2(AC) + t;

hence k(x(t)) = k(AC) + t. ||

Lemma 2.4: AC is unique.
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Proof: Let AC and A 2 be two absolute centers. From Lemma 2.3,

(AC )=(AC2) + d(AC1,AC2

hence d(AC1 AC 2) 0 and AC and AC2 are identical points. ||

The following lemma is a major result.

Lemma 2.5: AC must lie on every maximal path p(t(x)) from all

xsT.

Proof: From the proof of Lemma 2.3, AC lies on a longest path

from any xeT. Denote this path p*(2,(x)), If there exists a

maximal path p(Z(x)) that does not include AC then at the point

of departure of this longest path from p*(L.(x)) the function

Y(x(t)) is at a local minimum. By assumption this point is not

AC. However, from the functional form given in Lemma 2.3, only

AC has the property of a local minimum. Since AC is unique

(Lemma 2.4) a contradiction is apparent. Hence AC must lie on

every maximal path from all xeT. ||

We are now in a position to prove the theorem.

AC must lie on every p(y (x)) for any xsT (Lemma 2.5). Let

e be the furthest point from x on one of the paths p(.Z(x)).

From Lemma 2. 3, k (x (t)) diminishes along p ( 2(x (t))) , reaching a

value M(AC) at AC (t = 0) and then increases, reaching a value

M(e1 ) at e .



-30-

To relate t(AC) and t(e 1), we apply Lemma 2.3 twice in

fle 1 ) = t(AC) + d(AC,e1 )

= t(AC) + d(x,e1 ) - d(x,AC)

= R(AC) + k(x) - d(xAC)

= (AC) + R(AC) + d(x,AC) - d(x,AC)

= 2Z(AC).

But AC also lies on p(t(e1 )). Thus we have shown:

i) Y,(AC) = Y(e )/2,

ii) d(AC,e ) = (e 1 )/2 and AC is located on p(t(ep)

To prove (iii) and (iv) we note from Lemma 2.3 that VC must

satisfy

iii) d(VC,AC) = min d(n,AC),
nEN

Hence VC is located at the node closest to AC--or at AC, if

ACeN--and from Lemma 2,3,

iv) k(VC) = k(AC) + d(VCAC). ||

Additional Observations on the Absolute Center of a Tree

The algorithm presented appears most efficient for prac-

tical purposes. Several related ideas are interesting to con-

sider for theoretical reasons and special cases.

a. First we note that the algorithm presented sets out to
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find the minimax location by finding first a maximax location.

,(e1 ) = d(e1 ,e2 ) = 2(2(AC)) is the longest distance between any

two points. Hence e1 and e2 are maximax locations. Note that,

unlike the minimax, these are not unique. We showed that the

minimax is at the center of the longest path. The validity of

the algorithm could have been proved using this observation to-

gether with Lemma 2.3. These observation provide as well justi-

fication for the terminology D(T), diameter of T, corresponding

to a maximal path p(e11 e2) with mid-point AC(T).

b. Further insight can be gained from a physical analogue

of the algorithm. Consider a 'string solution' to the problem.

Holding up the string network at any point find the lowest

point--e . Holding now at e find the lowest point again--e2'

Then AC is obtained by joining e1 to e2 and locating the mid-

point of p(ee 2 ).

c. Using Lemmas 2.3 and 2.5 we could think of another

algorithm for locating AC--namely, as the intersection of as

many longest paths as are needed to locate a sufficiently small

interval containing AC. We observe that all longest paths from

AC intersect only at AC (Lemma 2.1). Thus all longest paths

intersect only at AC.

d. The essential property given by Lemma 2.3 is a convexity

property of 9(x) over the network. This enables us to locate a

global minimum by locating a local minimum. In fact, i(x(t)) is

a particular linear monotoniQ function enabling us to locate

the minimum very efficiently. It is interesting, however, to

note that an alternative scheme is to 'home in' on the absolute
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minimum by beginning at any point x T and moving in the direc-

tion of decreasing k(x), necessarily along p(t(x)). The follow-

ing lemma validates this procedure.

Lemma 2.6: From any point xeT, Z(x) either

i) decreases in one and only one initial direction --on

the single path from x to AC--and increases in all other ini-

tial directions, or

ii) increases in all initial directions if x = AC.

Proof: Let x be the point x(t). t decreases only in the

direction of AC, unless t = 0, in which case it increases in

all directions. This is true since for a tree graph one and

only one path connects any two points. The lemma then follows

from the functional form given in Lemma 2.3. 11

e. Finally, we note that for the case of a general graph

the property of convexity no longer holds as it is no longer

true that one and only one path connects any two points. Thus

we have the problematic task of minimizing a nonconvex function.
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2.3 Double Centers

In this section we extend the fundamental results of

section 2.2 to provide simple and efficient algorithms for the

full variety of double center problems on a tree network. We

shall emphasize P/P/2/T and modify the results for the remaining

three cases.

Definition

Let D denote twice the optimal value of P/P/m/T.m

2.3.1 Algorithm for P/P/2/T

Informally:

Step 1: Find the absolute single center as in section 2.2.

Step 2: Bisect the tree at the absolute center forming two

sub-trees.

Step 3: An optimal pair of locations is given by the absolute

single centers of the two sub-trees.

Formally:

Step 1: Find AC(T) and a diametral path p(e11 e2) (section 2.2).

Step 2: Partition T into two sub-trees Tl, T2 such that

T U T2 = T; T 1 T2 = AC(T); e1ET ; e2ET2 , (2.1)

resolving a choice arbitrarily if I(AC(T) > 2.

Step 3: Using the algorithm of section 2.2 twice, locate

X2 = {AC(T 1 ),AC(T 2)1. (2.2)
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Then X2 is an optimal solution to P/P/2/T with optimal

value D2/2 given by

D2 max £ (AC(T )) (2.3)

i1,2}

where

Z.(x) max d(xy) xeT. , ie{l,2}. (2,4)
yST~

Computational Discussion

The algorithm is based on a transformation of a difficult

two dimensional optimization problem into two very simple ones

(Theorem 2.2). Computational effort is only marginally greater

than for the single center problem. Having solved for AC(T),

we have available diametral points e1 and e2 where p(e1 ,e2)

coincides with D(T) (section 2.2). We shall show in Lemma 2.9

that {e.} are also diametral points of {T.}. respec-
1 i=1,2 1 i=1,2

tively. Since t (e ) can be found by inspection from previous

computation of 2(e1), only 22 (e2 ) need be computed so that an

additional effort of about 25% is all that is required to locate

an optimal pair of centers.

Proof: The algorithm may be stated and proved as the following

theorem:

Theorem 2.2

The 2-dimensional problem P/P/2/T may be transformed into

three 1-dimensional problems as follows:
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P/P/2/T

min max min d(y,x.)

XlX2 eTXT yeT i{1,21

P./P./l/T.
1 1 1

= 2 max min max d(y,x)
iE{l,2} xET. yeT.

where {T.} are defined in (2.1) and {P.}
1 i=1,2 1 i=1,2

are corre-

sponding symbols. The third problem, implicit in (2.6), is to

locate AC(T).

Proof: Assume T is partitioned into T1 1T2 , not necessarily as

in (2.11), with points y in T1 ,T2 assigned to xlx 2 respectively.

Let e1 and e2 be the diametral end points obtained in locating

AC(T). To prove the theorem we require the following lemmas:

Lemma 2.7:

D2 < 2 max X (AC(T )) < D,
iE{1,2} 1

V T C T, i = 1,2 .

Proof: i) R.H.S.: Directly from the theory of section 2.2. A

maximal path in T T cannot exceed a maximal path in T.

ii) L.H.S.: (2.5) can be rewritten as follows:

D2 = 2 min max min max d(y,x)
T 1T2sTxT is{l,2} xeT yeT

< 2 max min max d(y,x)
ie{l,2} xeT yeT.

2 max k(AC(T) . I
ie{1,2}

V T. C T, i = 1,2

D =2
2

(2.5)

(2.6)

(2.7)
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Lemma 2.8:

VT C T .

Proof: Otherwise, from (2.7) and section 2.2,

= d(e.,e 
2

1, - 1

Lemma 2.9: {e. 1
:i i=l, 2

are (single) diametral end points of

{T }
'i=1,2

where {Ti} are defined in (2.1).
1i=1,2

Proof: From section 2.2

= t(AC(T)

> Z (AC(T))

> d(AC(T) ,e);

therefore,

ki (AC T) = d(AC(T),ei)

and e is a diametral point of T , i = 1,2 . ||

We are now in a position to prove the theorem. Clearly,

D2 .. D . Suppose D 2 = D , then the theorem holds from Lemma

2.7.

D 2 < D 1 e 1 d< e 2 k Tj

d(AC(T),e i)
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Assume D2 < D and construct {T }1
2 1 '=1, 2

as in (2.1) . Let

{f } denote complementary diametral points to {e }
'i=1,2 1i=1,2

in {T.}i=1,2 so that {AC(T.)}i are obtained at the mid-

points of {p(e.,f )}
11i=1, 2

(Lemma 2.9 and section 2.2, Figure 2.1).

Assume, without loss in generality,

A = 2 max
ic{1,2}

X (AC(T )= 2 1 (AC(T 1 ))

= d(e1 ,f1 ). (2.8)

To show A = D2 rather than A > D2 as in Lemma 2.7,

suppose

D2 < A . (2.9)

(2.8), (2.9) and Lemma 2.8 imply

fie2e 1T*

where {T}

and section 2.2

are optimal sub-trees in (2.7). From (2.7)

D2 > min max d (y,x)
xeT* yET2

> d(f 1,e2

= d(e2,AC(T)) + d(AC(T),f)
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AC (T)

Figure 2.1: Partitioned Tree for P/P/2/T
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= d(e ,AC(T)) + d (AC(T),f )

> d(e ,f1 )

= A (from 2.8)

contradicting (2.9).11

Diameters and Double Centers of a Tree

Section 2.2 established the unity of the twin concepts of

a diameter and single center of a tree. The following two

theorems indicate an interesting relationship between diameters

and double centers of a tree.

Theorem 2.3

Any diameter, D(T), and the intersection of all diameters

is a dominant location set for optimal centers in P/P/2/T.

Proof: Directly from Theorem 2.2 and Lemma 2.5. N

Theorem 2.4

D2 = D1 iff more than two 'diametral arcs' intersect at

AC(T), where a 'diametral arc' is any arc (ij)ED(T).

Proof: i) Sufficiency

AC(T) is the unique intersection of all diameters of

T and Theorem 2.3 implies no improvement is gained from a second

center.

ii) Necessity

Consider the algorithm for P/P/2/T and assume, with-

out loss in generality, 2Z,(AC(T)) = D2 = D . Then AC(T1 )
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and AC(T 2) are identical since both are unique (Lemma 2.4),

Since f1 / e2 by construction, this implies p(AC(T) ,e1 ),

p(AC(T),e 2 ) and p(AC(T),fl) are three paths of length i(AC(T))

disjoint everywhere except at AC(T). |

2.3.2 Extensions

P/N/2/T

The algorithm and supporting theorem are very similar to

those in section 2.3.1 for P/P/2/T, requiring minor modification.

Algorithm

As for P/P/2/T except where AC(T) is an interior point

on some arc (n1,n2 )cA (see Figure 2.1) in which case Step 2 is

modified to read

Step 2: Partition T into sub-trees T1 ,T2 by deleting the

interior portion of arc (n1 ,n2)'

The supporting theorem, identical to Theorem 2.2 with modifica-

tions corresponding to above changes, is proved as before.

Lemmas 2.7 and 2.8 apply directly. To prove Lemma 2.9 note that

i(n ) = d(n.,e ), i = 1,2 .

The remainder of the proof of Theorem 2.2 is identical. Theorems

2.3 and 2.4 apply equally in this case,

N/N/2/T

When centers are restricted to the node set a complication

arises which invalidates Theorem 2.2 and the associated algori-
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thm. Specifically, (2,8) now becomes

A E 2 max Z.(VC(T
ic{l,2}

> d(e11 f1 )

from section 2.2, so that the final part of the proof of

Theorem 2.2 no longer holds. Nevertheless, most of the funda-

mental properties, including Lemmas 2.7, 2.8 and 2.9, still

apply and give rise to the following iterative algorithm.

Algorithm

Step 1: Find AC(T) using algorithm of section 2.2; proceed to

Step 2.

Step 2: Partition T into two sub-trees T ,T such that

e eT0 ; e ET

by

i) deleting from T the interior of arc (nl,n2

where AC(T) is an interior point on that arc, or

ii) if AC(T) is a node, by satisfying

T U T = T ; T 0l T = AC(T)

where p(e1 ,e2) is a diametral path of T; proceed

to Step 3.
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Step 3: Find VC(T ), VC(T2) using algorithm of section 2.2.

If k4(VC(T )) = (VC(T )) optimal solution is given

by

X= {VC(T ), VC(T )}

where

2 (x) = maxk d(x,y) xET , ie{l,2}, k = 0,1,2,...
1 :yeT. 1

1

Otherwise, suppose T0 is a critical sub-tree, with
1

diametral path p(e1 ,f0); set k = 1 and proceed to

Step 4.

Step 4: Repartition T into two sub-trees T , such that

k-l C Tk k C Tk-l
2 2 1  1

fk-1 k fk-l kk
1 sT 2  l T

by appending to T k- and excluding from T k- the node
2 1

f1 and a minimal set of arcs to insure connectedness

of the two sub-trees and deleting from Tk-l the in-

terior portion of the arc joining the updated sub-trees;

proceed to Step 5.

St p : Fi dk k k(v (T )),: Pk(VC(T k
Step 5: Find VC(T 1 ), VC(T 2). If k (VC(T ) 2 T )

optimal value of N/N/2/T is given by

min{k (VC(T )) , k-l (VC(T k-1



-43-

and optimal solution is given by

X2 = {VC(T ),VC(T )}1' 2

where j = k or k - 1 as determined in the minimization.

Otherwise, let p(e1,f ) denote a diametral path in

k
Tk; set k = k+1 and go to Step 4.

Computational Remark

Computation of VC(T ) in Step 5, based upon the algorithm
1

k-1
of section 2.2, is most easily performed by updating VC(T. ).

1

Proof of Algorithm: Briefly, corresponding forms of Lemmas

2.7, 2.8 and 2.9 apply here. We need to prove validity of the

stopping condition in Step 5 for the two cases:

i) D(T = p(e2 ,f ) for some re{0,1,...,k-l},

ii) (i) does not hold and, necessarily,

D(T ) = p(e 2 '

In case (i) clearly no improvement is possible, but in case (ii)

we need to demonstrate that transfering f0  to Tk cannot lead21

to any improvement.

Consider the points ei,e 2,f ,f ,n ,n2 and AC(T) as shown

in Figure 2.1 after dropping superscripts and ignoring T.

labels in the figure.

Definition

Let pVq denote the relaxation of N/N/l/T,
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pVq = min max{d(x,p),d(x,q)}.
xcN

We wish to demonstrate

e1Vf2 >ef2 2(2.10)

By assumption (case (ii)) and section 2.2

d(n2'f2 ) > d(n2 '1f)' (2.11)

From section 2.2, any optimal location for e1Vf2 must

lie on p(e 1 n2 ) so that, together with (2.11),

e1Vf2 >e1 1 (2.12)

and, by assumption (Step 3),

e1Vf1 > ef2 2 (2.13)

(2.12) and (2.13) establish (2.10). ||

N/P/2/T

As for N/N/2/T except that interior of connecting link

can no longer be neglected. This leads to some changes in the

previous algorithm as specified below.

Step 2: Use (ii) always.

k-l
Step 4: Instead of deleting from T1  the interior portion of

the connecting arc, let T k T2 = x, where x is
1 p 2oint

connecting point.
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Step 5: If fk = x, require a one-dimensional search to avoid
1

cycling.

Multi-Centers

The strategies for double centers do not, alas, extend to

the case of three or more centers. However, combining such a

generalized procedure with a simple perturbation scheme to

obtain a local multi-center optimum does result in a most

effective heuristic technique. Furthermore, such a procedure

can be ideally combined with the optimal strategy of Chapter IV

by furnishing quickly a good initial solution.



-46-

2.4 Medi-Centers

2.4.1 Preliminaries

In this brief digression from our main theme, we present

an initial effort at combining the objective functions of the

median and center problems in a single formulation, which we

have dubbed the 'medi-center' problem. As indicated by Odoni

[34], this is a crucial research area which has received prac-

tically no attention so far. We shall establish some results

for the simplest cases, for single facilities on a tree network,

hence the inclusion of this discussion in the present chapter.

We shall consider in turn the following two 'natural'

medi-center formulations:

Constraint Approach

c(x) = min d(x,y)w(y)
xET ysN

s.t. d(x,y) < X VyeN (2.14)

Penalty Approach

P = min f(d(x,y))w(y) (2.15)
xeT yeN

where f(-) is monotonic increasing and convex. (2.14) and

(2.15) correspond to P/N/l/T and we shall see that the corre-

sponding versions of N/N/l/T require no significant additional

attention. In contxast, corresponding versions of N/P/l/T and

P/P/l/T, which would require integration operators, are not

treated here. We assume w(y) > 0 throughout this section.
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A fundamental convexity property, analogous to the one

established for 24x(t)) in Lemma 2.3, will prove useful.

Definitions

S(x) > f(d(x,y))w(y) , xsT (2.16)
yeN

aab
xa (t point on path p(a,b), a,beT , distant t units from a.

(t))

Lemma 2.10: S(x t) is a convex function of tE[o,d(a,b))

VabeTxT, if f(-) is monotonic increasing and convex.

Proof: f(dx(t) ,Y)), yeN is a convex function of te[o,d(a,b)]

since f(-) is both convex and monotonic increasing. Then from

basic convexity theory so is I f(d(x )y))w(y). ||
yeN

Corollary 2.1: A local minimum of S(x) is a global minimum

satisfying (2.15), providing f(-) is convex and monotonic

increasing.

Proof: Immediate from the lemma and the existence of a path

joining any two points. ||

As a final preliminary, weshall find it convenient to re-

produce here a very efficient and elegant algorithm for locating

the median of a tree network or, equivalently, for solving

(2.15) where f(d) = d. Let W E I w(y).

yeN

Algorithm for Median of a Tree (Goldman[17])

Step 1: If N consists of a single node, stop; that node is an

optimal solution.
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Step 2: Search for a 'tip' ecE and associated 'quill' (ei).

If w(e) > W/2, stop; e is an optimal location.

Step 3: Modify T by deleting node e from N and link (ei)

from A; also increment w(i) by w(e) and return to

Step 1.

2.4.2 Constraint Approach

Definition

Let Mz denote a median (optimal solution to (2.15) with

f(d) = d) which is closest to a given point zsT. From the

theory in [17], MZ = z or Mz eN.

A solution to the medi-center problem defined in (2.14)

is immediately available upon location of AC and MAC

Theorem 2.5

An optimal solution to (2.14) is given by one or more of

the following cases:

i) X < L(AC): no feasible solution,

ii) A = 2(AC): unique solution at AC,

iii) A > 2(AC) + d(MAC,AC): optimal solution at

iv) AeE(PAC),k(AC) + d(MAC,AC)): unique optimal solution

on the path p(AC,MAC), (X - 2iAC)) units from AC.

Proof: (i), (ii) and (iii) directly from Lemma 2.3. To show

(iv), note that f(d) = d satisfies the convexity conditions in

Lemma 2.10. Lemmas 2.3 and 2.10 and the fact that Mz is a mini-

mum establish the result. ||
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Theorem 2.5 in effect defined an algorithm for solving

(2.14), based upon solving first independently for AC and

median. We can improve upon this by combining the two phases.

Algorithm for (2.14)

Step 1: Find AC using algorithm of section 2.2. If X < t(AC),

stop; no feasible solution. If X = t(AC), stop;

solution at AC. Otherwise, cut the tree at all points

(X - t(AC)) units from AC and amalgamate into the new

end-points the sum of the node weights of those ex-

cluded nodes extending from the respective end-points.

Step 2: Find a median for the new tree using Goldman's al-

gorithm (section 2.4.1), stop; this median is an

optimal location.

Additional Observations on Constrained Medi-Centers

a. If a parametric solution is desired for (2,14) namely;

C(X),Xe[Z(AC),t(AC) + d(AC,MC)], it is preferable to use the

strategy implied in Theorem 2,5. Such a solution is very easy

to obtain as it is only necessary to consider the path

p(AC,MAC). Figure 2.2 illustrates the general form of such a

solution.

b. An important property of pure median problems (includ-

ing both general networks and multi-median problems) is the

dominance of the node set as a location set for optimal solu-

tions (e.g., see Hakimi[20]). This property is clearly lost in

the constrained problem. Consequently, a different result will

generally occur where (2.14) is replaced by the problem corre-
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C (A)

S ution at AC

No feasible
solutiow7

AS

C(C) P(AC C

k (AC) I (AC) + d (AC

Figure 2.2: Parametric Solution to Constrained
Medi-Center Problem

olution of MAC

F
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sponding to N/N/l/T. However, the modification is slight.

Having solved as before the new solution is at the closest

adjacent node in the direction of AC, providing X is not viola-

ted.

c. Finally, notice the separate functions of node weights

and arc lengths. While the former play no role in the center

problem (in keeping with our original assumptions), the latter

are irrelevant in the median algorithm.

2.4.3 Penalty Approach

Making use of Corollary 2.1, a solution to (2.15) can be

obtained by computing values S(x) (2.16) while descending to a

local and global optimal solution. A particularly simple al-

gorithm results from the special case where f(d) = ed in (2.15).

Algorithm for (2.15) with Exponential Penalty

Step 1: Transform arc lengths d(i,j) as follows:

ed(irj) + d*(ij)

Step 2: Choose a node n and find S(n) as follows:

Search iteratively for a 'tip' esE,e / n

and associated 'quill' (ei). If n is

the only node, S(n) = w(n); otherwise,
update w(i) according to

w(e)d*(ei) + w(i) + w(i),

delete e from N and (e,i) from A and

continue the search.
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Step 3: Restoring the original network, search for a direction

of descent by locating a node k satisfying

keA n, S(k) < S(n)

where An = set of nodes adjacent to n. (Note that

S(k) is easily found from the information in Step 2.)

Set k + n and repeat Step 3 until a local node minimum

is established.

Step 4: Search all arcs (n,k) ksAn for an interior minimum

as follows:

For any arc (n,k) find a point c on (n,k)

such that

d*(n,c) = max {(S d*(n,k h,1

where Sk = S(k) if (n,k) is cut from tree

Sn = S(n) if (n,k) is cut from tree.

At most one interior minimum can exist, in which case

the optimal location, c, is on the link (n,k),

d(n,c) = htn - + d(n,k) units from n, with optimal
n

value P = S(c) = S nd*(n,c) + S d*(n,k) Otherwise,
d*(n,c)

node n is the optimal location with optimal value

P = S(n).

Justification for Algorithm

i) Computation of function values S(x) in Step 2 follows

immediately from the multiplicative form of (2.15) when
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af(d) = e :

min {w(y) - J d (a,b)}
xeT yeN (a,b)ep(y,x)

where p(y,x) = (y,i1),(ij,i2 )''(i q rx), reN.

ii) A minimum point on an arc (n,k) is found in Step 4 by

minimizing the function

S(t) = Sn et + Sk e - t

where t is a point on (n,k) t units from n.

Then

dS(t) t Ske d(n,k)- t

dt ~n k

and at a minimum

et = k d(nk)
\Sn

Since t > 0, a minimal point c satisfies

d (n,c) =max (- d *(n,k)
n

iii) Finally, a local minimum is also a global minimum since

ed is convex and monotonic increasing and Corollary 2.1 applies.

The 'vertex medi-center,' corresponding to N/N/l/T, is

located simultaneously. If the previous optimal location, c,

is a node the solution is identical. Otherwise, if c is interior

to an arc (n,k) the new optimal location is at n or k determined

by

P = min{S(n),S(k)}.
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CHAPTER III

SINGLE CENTERS OF A GRAPH

3.1 Introduction

In this chapter we consider the class of problems

N / /l/G where G = G(N,A) is a cyclic network. P/N/l/G

and N/N/l/G were originally formulated and solved by Hakimi [201

while P/P/l/G and N/P/l/G have not been treated in the litera-

ture, as far as the author is aware. We shall initially re-

strict the discussion to P/N/l/G reserving extensions to the

remaining cases for a final section.

In section 2.2 we formulate a new tree search problem

based upon the ideas of Chapter II and demonstrate its equiva-

lence to P/N/l/G. Using problem restriction, this section also

provides useful upper bounds for an algorithm for P/N/l/G which

is presented in 2.3. Section 2.4 considers problem relaxation

and provides useful lower bounds for the previous algorithm.

An associated'relaxation gap'leads naturally to the developments

in Chapter IV. In a final section, extensions to the remaining

three single center problems are described.

Definitions and Notation

Extending the terminology of Chapter II, section 2.1,

assume any tree, T, is a spanning tree of G(N,A), namely;

T t T(N,AT) , AT C A, IAT| = IN| - 1

and let r denote the set of all such trees of G.
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In addition to AC(T), VC(T), D(T) and *initial directions'

from a point, define the terms:

AC

VC

'absolute center' of G, solution to P/N/l/G,

- 'vertex center' of G, solution to N/N/l/G.

Y(x) max d(x,y).
yEN

kT(x) = max d(x,y).
yeT

D - 2min L(x), twice optimal value of P/N/l/G.
xeG

D1 (T) 2min Z(x), twice optimal value of P/N/l/T and
xeT

length of D(T).
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3.2 Minimum Diameter Trees

Definition

A 'minimum diameter tree' of G is a tree, MDT, satisfying

D (MDT) = min D1 (T). (3.1)
TEsr

The following theorem identifies an equivalence between

P/N/l/G and the tree search problem (3.1).

Theorem 3.1

D, = D1(MDT) and AC(MDT) is also an AC.

Proof: P/N/l/T is a restriction of P/N/1/G since, by

definition, AT C A and the node sets are identical. Hence

D1 (T) > D V TElr (3.2)

establishing the 'weak' part of the theorem. To prove the

equality, let T* E MPT(AC). By definition

D (T*) < 22T*(AC)

= Di .
(3.3)

(3.2) and (3.3) imply

D1 (T*) = D (3.4)

and (3.1), (3.2) and (3.4) establish the theorem and

MDT = MPT(AC). I (3.5)
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Discussion

The theorem may be viewed, at least conceptually, as

transforming P/N/l/G from a continuous optimization problem

(on a graph) to a purely combinatorial, tree search problem.

The diameter D1 (T) of any tree Ter serves as an upper bound

on D and there exists at least one tree such that equality

holds. Further, the class of trees to be searched may be re-

stricted, again conceptually, to the set of trees

{MPT(x): xEG} c_ r (of course, r is a finite set). We would

like to find an efficient search procedure for MDT. To date,

no such efficient procedure exists. A suggested approach by

Rosenthal and Smith [40] , though couched in a different con-

ceptual framework, would have implied a further restriction of

the search to the set of, at most INI, trees {MPT(i): icNI.

Unfortunately, the suggested approach is invalid, as the author

demonstrates in [24].

Whereas an efficient optimal approach based upon the

preceding ideas appears unattainable, an approximate approach

can be devised to obtain useful upper bounds. Such a procedure

is discussed below. Furthermore, these bounds can be used in a

hybrid algorithm as outlined in section 3.3.

Minimum Spanning Tree Approach - Upper Bounds

Consider first finding MST as a surrogate for MDT, with

corresponding bound

D1 (MST) > D1  (3.6)

necessarily true from (3.2). Note the ease of locating MST

II
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(e.g., Kruskal [30]) and D (MST) (Chapter II). Here is an

example:

Example 3.1

a

9- q9 AC(MST)

93 e 96f
G =6-

10

c

94 95
99

b

*d

An MST is indicated by the continuous lines. The path b-c-e-f

is a diametral path in MST, so that D (MST) = 200 and AC(MSTI

is at the mid-point of this path. Hence D < 200 and AC(MST)

is an initial approximation for AC. As we shall show later,

AC(MST) is also optimal for G and D, = 200.

Though this strategy often locates an optimal solution,

particularly for small examples, equality will not always hold

in (3.6), for obvious reasons. The following example illustrates

this.

Example 3.2 5
d c

6 6

G =5 <56e 6

a _b
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An MST is indicated by the continuous lines and D (MST) = 21.

Now consider another sub-spanning tree

Clearly, D1 (T) = 12 so that

D < 12 < D1 (MST).

The last example motivates the following observation.

Whereas MST is chosen with minimal total length as the sole

criterion, MDT is also affected by the structure of the tree.

Specifically, high degrees at nodes, I(i), tend to reduce D (T).

This suggests that we might change Kruskal's algorithm to

encourage higher degrees by modifying the entry criterion to

min f(d. .,I(i),I(j))
(ij) EA

s.t. no cycles being formed (3.7)

where I(i) and I(j) are the new degrees resulting from adding

(ij) to the current (partial) solution. For example, letting

f = d. ./(I(i) + I(j))
1)

in (3.7) we find the following 'MST' for the previous example
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(here, it happens that 'MST' is still an MST),

d. c

'MST' = 5 e 5
6

a 5 b

so that D 1 ('MST') = 16 < D 1 (MST), but still greater than D .

This approach might be developed as a parametric procedure

to obtain tighter upper bounds.

At this stage we note a conceptual similarity to Held and

Karp's solution of the Traveling Salesman Problem [27]. Using

a dual approach for the constrained MST problem, MSTs (more

accurately, 'minimum spanning 1-trees') are successively

generated by altering arc lengths in such a way that a minimal

hamiltonian circuit is unaltered. In our case, modified MSTs

are obtained by modifying the MST algorithm in order to solve

a problem differing from MST only in objective function.
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3.3 A 'Split and Bound' Algorithm for P/N/l/G

The difficulty in locating AC is due to the non-convex

nature of the problem. In Chapter II, Z (x) was shown to be

monotonically decreasing in the direction of AC(T) (Lemma 2.3).

In the cyclic graph case, k(x) obtains, in general, many

local minima. Indeed, k(x) can be multimodal even along one

arc as illustrated in Figure 3.1.

i(z = 0) j(z = d )j

Figure 3.1: Form of 2(x)

In the figure, 2(z) is the upper envelope of all d(n,z) for

all neN, zs[0,d..] where z is a point on arc (ij) distant z
1)

units from i.

In the exhaustive search procedure suggested by Hakimi [20],

the first step is the computation of ||d(x,y)j| . The second

phase is a link by link search to identify local minima as

'candidate centers.' An overall minimum of these candidates is

an AC. We shall formalize these concepts in our discussion of

multi-center problems (Chapter IV). Here, suffice it to observe
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that the second phase of the search is an extremely cumbersome

operation, particularly for large networks. The following

ideas provide simple local and global lower bounds which are

very useful in speeding up the search.

Theorem 3.2

k(z) > (L(i) + i(j) - d. )/2 y ze[0,d. ],(ij) eA

where z is a point on arc (ij), z units from i.

(3.8)

Proof: Lemma 2.2 applies to cyclic graphs as well, so that

t(i) < 9(z) + d(i,z) (3.9)

and

t(j) < P(z) + d(j,z). (3.10)

Summing (3.9) and (3.10) yields

L(i) + t(j) - 22(z) < d(iz) + d(j,z)

< d. .11

Geometrically, the lower bound for the arc is achieved if

k(z) is two-piece linear, sloping down (at 450) from both ends.

Corollary 3.1:

D > min
(ij)EA

{t(i) + (j) - d. I

Proof: Directly from (3.8). ||

(3.11)
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Discussion

Theorem 3.2 may be employed to locate dominated links,

Note that 2(VC), obtained by inspection from I|d(x,y)II, serves

as an initial upper bound for such pruning. Manual examples

indicate that this simple procedure alone serves to reduce the

number of arcs to be searched to a very small proportion of

the original number. At this point, the remaining arcs may be

searched by the exhaustive technique. However, a better ap-

proach is to use Theorem 3.2 iteratively. For instance, let

(ij) be a candidate link and let z be the mid-point of this

link. Then Z(z) is easily computed since

d..
k(z) = maximin{d(iy),d(j,y)} + -1 (3.12)

yEN 2

and Theorem 3.2 can be reapplied to the newly created arcs

(iz), (jz).

This procedure is combined with the upper bounds establish-

ed in section 2.2 to yield an iterative algorithm for P/N/l/G.

The following additional notation is adopted in the algorithm.

LB(i,j) = (Z(i) + Z(j) - d. .)/2, UB and LB denote current upper
13

and lower bounds respectively for D1 , S denotes the current set

of candidate 'arcs' and 6(>0) is some assigned optimality

tolerance.

Algorithm

Step 0: Initialize

A + S; D1 (MST) + UB; VC +* z.
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Step 1: Update Lower and Upper Bounds

min{UB,k(z)} + UB

min LB(i,j) + LB.
(ij)ES

Step 2: Optimality

If LB > UB -6, stop; D = UB.

Step 3: Eliminate Arcs

If LB(ij) > UB - 6, (ij) + S, V(ij)sS.

Step 4: Split Arc

Suppose LB(i*,j*) = LB and z is mid-point of (i*j*),

replace (i*j*) by (i*z) and (j*z) in S and go to

Step 1.

Remarks:

i

i) At some desired point the algorithm can continue

with exhaustive search for remaining links. This

would be advisable where few links remain and

splitting continues to occur. Such a switch also

guarantees finite convergence.

ii) For a true optimum set 6 = 0 in Steps 2 and 3.

ii) Initial LB(i,j) quantities require computation of

||d(x,y)|| . When an 'artificial node,' z, is

added in Step 4, new quantities

d..
d(z,y) = min{d(i,y),d(j,y)} + 1

2

must be added to |jd(x,y)j| for all current nodes,

y, for computation of X(z) (3,12).
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iv) (UB - LB) is a non-increasing interval from one

iteration to the next.

The following examples illustrate the algorithm.

Example 3. 3

Consider again the graph

(195

in Example 3.1. The numbers in

99

(104) 96
20 f

(200)

(19 3)1 d

parentheses indicate £(x). We found D (MST) = 200 and

Z(VC) = k(e) = 104, UB = min{104,100} = 100, LB = 100.

Therefore, D = 200 and AC(MST) is also AC, or, equivalently,

MST is also MDT.

Example 3.4

Consider the example given by Hakimi [20].

a(6)

G = b<
(7)

2

K3

4
(7) f(7)

c
(6) d (6)
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Again, continuous lines make up an MST and numbers in

parentheses represent 2(x). We find D 1 (MST) = 10,

£(VC) = k(d) = 6, UB = min{6,51 = 5 and LB = LB(a,b) = 4 .

Eliminating dominated arcs leaves (ab) the single remaining

candidate which, on splitting, is replaced by

b 2 z 2 a
a i e(7) (6) (6)

and we obtain UB = 5, LB = 5 so that D = 5 and AC(MST) is

also AC. Again, MST is MDT.
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3.4 A Relaxation Approach for P/N/lG

Theorem 3.3

max d(x,y) <D (3.13)
xyeNxN

or, equivalently,

max k(x) < 2 min ,(x).
xsN xeG

Proof: For any pair of nodes x,y

d(x,y) < d(x,AC) + d(AC,y)

< 2P(AC)

=D (3.14)

Discussion

The lower bound established by Theorem 3.3 is the result

of a relaxation of P/N/l/G formed by eliminating from N all

nodes except some pair x,y. In fact, d(x,y) is the optimal

value of P/{x,y}/l/G. In contrast, the upper bound D (T) (3.2)

was the result of a problem restriction induced by eliminating

a set of arcs. Notice that while D1 = D1 (MDT) from Theorem 3.1,

here a 'relaxation gap' may well exist namely, a strict in-

equality in (3.13). In Chapter IV we develop a relaxation tech-

nique for multi-center problems which, when specialized to the

single center problem, can be viewed as a technique for elimina-

ting this gap. We shall return to this topic in section 4.5.

Notice that the bound in (3.13) can be incorporated in the

algorithm of the previous section. While that algorithm and
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this bound require prior computation of |Id(x,y)| we can

suggest a simple 'ascent' algorithm which will approximate this

bound from below without requiring such preliminary computation.

The procedure is especially useful in conjunction with the

ideas of Chapter IV. Furthermore, the procedure is a direct

generalization of the algorithm of section 2.2 for D 1 (T).

Ascent Algorithm for Lower Bound

Step 0: Choose any node xcN; set 0 + LB.

Step 1:

Step 2:

Remarks:

Locate a furthest node y such that d(x,y) = k(x)

by finding MPT(x).

If £(x) = LB, stop; LB is 'best' lower bound.

Otherwise, set 2(x) + LB; y + x and go to Step 1,

i) Successive values of LB are monotonically increasing

since 2(x) = d(x,y) < L(y) and where equality

holds the algorithm terminates.

ii) The final value of LB may be lower than max £(x),
xsN

in which case a 'local optimum' has been obtained,

This increases the size of the potential relaxa-

tion gap.

iii) In the case of a tree network, no relaxation gap

exists and the above procedure locates a global

optimum after exactly two iterations.
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3.5 Extensions

N/N/l/G

According to existing state of the art VC is found far

more easily than AC since the former is found from lId(xy)||

by inspection. Consequently, the 'split and bound' algorithm

of section 3.3 is irrelevant here. The upper and lower bounds

of sections 3.2 and 3.4 are easily extended to this case by

considering the restriction N/N/l/T and the relaxation

N/{x,y}/l/G respectively. In Chapter IV we demonstrate how a

generalized relaxation strategy can eliminate the need for the

complete ||d(x,y)j| matrix. Using a New York State network

with 30 locations, an example is given in section 4.4.2. 7 MPTs

are required to locate VC. Finally, we shall see that an

interesting consequence of this approach is a marked change in

the relative ease of solving P/N/l/G compared to N/N/l/G with

VC at times more difficult to locate than AC.

P/P/l/G

The upper bound and tree search equivalence of section

3.2 apply here with the proviso that 'spanning trees' of G

now span all points in G, requiring a minor extension in the

MPT algorithm.

While Hakimi's exhaustive search [20] cannot be applied

here because of the infinite set of demand locations, the

'split and branch' algorithm of section 3.3 is ideally suited

to this problem. Redefining 2 (x) ~ max d(x,y), it is straight-
yEG

forward to obtain Z(x) for all xEN from ||d(xy)|| . The
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algorithm is then applied as before. Notice, however, that finite

convergence is not guaranteed in this case.

Most rewarding in this problem is the relaxation approach

initiated in section 3.4. The ascent algorithm, with points

replacing nodes to reflect the redefined L(x), provides an

initial lower bound, while the generalized relaxation strategy

of Chapter IV provides an ideal algorithm for closing the

relaxation gap. Finally, we note that here too finite

convergence is not guaranteed, as is demonstrated in an example

in section 4.4.1.

N/P/l/G

This case is similar to N/N/l/G, except that k(x) is

defined as in P/P/l/G above with corresponding changes in the

MPT algorithm.
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CHAPTER IV

MULTI-CENTERS OF A GRAPH

4.1 Introduction

In this chapter, we propose an efficient methodology for

solving the complete variety of minimax multi-center network

location problems for large scale networks. In the terminology

of Chapter I we shall address the problems P/N/m/G, P/P/m/G,

N/N/m/G, N/P/m/G for m > 1, as well as the associated 'inverse'

problems where m is replaced by -.

For the special case m = 1, the proposed strategy provides

efficient algorithms, particularly in conjunction with the

ideas of Chapter III. We shall returnto this issue in 4.5. For

the remainder of this section we concentrate upon the more

difficult case, m > 1

Previous Work

Algorithms for P/N/m/G have been proposed by Christofides

and Viola [2] and by Minieka [33]. For N/N/m/G the algorithm

by Torregas et al. [44] can be used. Essentially similar al-

gorithms solve the 'inverse' problems. All of these algorithms

operate on the same principle, solving in succession a series of

Set Covering Problems (CP). To the best of this author's know-

ledge no procedure has been suggested for P/P/m/G or N/P/m/G in

the literature.

Our research has been prompted by two, related, deficien-

cies inherent in the state of the art:

a. The number of nodes, INI, is critical. Because of the
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'CP bottleneck', discussed at length in 4.2, problems with

INI > 100 are costly to solve and with INI > 1000 probably en-

tirely intractable.

b. P/P/m/G and N/P/m/G cannot be directly solved by any

of the existing approaches. An approximate solution strategy

is to discretize the set of 'demand points' by introducing

artificial nodes at 'sufficiently close' intervals. By greatly

increasing the size of INI this approach quickly leads to enor-

mous computational requirements.

Proposed Algorithm - A Relaxation Approach

By developing a problem oriented relaxation technique which

seems especially appropriate for this class of optimization

problems we have been able to overcome the afforementioned

deficiencies, specifically:

a. The size of problems of type P/N/m/G which can be

reasonably solved may be increased by ordersof magnitude.

b. Problems of type N/N/m/G can be solved very much more

efficiently than hitherto, though not quite as dramatically as

P/N/m/G.

c. Problems of type P/P/m/G and N/P/m/G can be solved

directly and efficiently for large scale networks.

d. Virtually any size of problem of type P/N/m/T and

P/P/m/T can be solved manually.

Outline

For expository purposes we shall initially restrict our

discussion to P/N/m/G. This problem is seen as generic and ex-
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tensions to the remaining cases are reserved for a later section.

We have chosen as our point of departure Minieka's algorithm [33]

although the general strategy can be equally applied to the

other existing schemes.

Section 4.2 is devoted to the CP framework. After a brief

description of Minieka's procedure [33] a greatly improved ver-

sion of it is developed as a crucial preliminary to the proposed

relaxation strategy. This section includes as well a brief

summary of the state of the art of CPS in general and with

respect to multi-center problems in particular. The relaxation

technique, fully developed in 4.3, can be viewed as a problem-

oriented solution technique for the large scale CPs encountered

in multi-center problems. In 4.4 we extend the relaxation stra-

tegy to P/P/m/G, N/N/m/G, N/P/m/G and the 'inverse' problems.

In a final section, 4.5, single center problems, treated ini-

tially in Chapters II and III, are reconsidered in the light of

the proposed scheme.
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4.2 Set Covering Strategy for P/N/m/G

Definition

<x,c,y> , denoting a 'local center' at a point ccG with

respect to a pair of nodes xy, is said to exist iff

i) d(x,c) = d(yc)

ii) 16ec : lim fd(z,1 ) - d(z,c)} < 0, vzE{x,y}J =

where Ac is the set of nodes adjacent to c and e6 is a point

distant e from c in the direction of the node 6cA

Remark: Note that <x,c,x> c 0 x, never exists while <x,x,x>

always exists. We shall refer to the latter as the

'null center' at x.

The existence of <x,c,y> identifies c as a local minimum of the

function max{d(x,z),d(y,z)},zcG . A more complete discussion

appears in section 4.3.3 and in Appendix A.

Definition

C = {cEG: <x,c,y> exists for some xycNxN} (4.1)

Notice that C is the collection of intersection points,

as depicted for an arc (ij) in Figure 3,1, over all (ij)EA.

While in P/N/l/G it was sufficient to consider such points on

the upper envelope, k(-), alone, here it is necessary, and

sufficient, to consider all intersection points, as we shall

see next.
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4.2.1 Minieka's Approach [33]

Minieka employs a different, but equivalent, definition

for C (4.1). Our own, more explicit, definition is preferred

for subsequent developments. The following theorem, which can

be viewed as a generalization of Lemma 2.1, enables us to refer

to 'local centers' as 'candidate centers.'

Theorem 4.1 (Minieka)

The finite set C defines a dominant set for the location

of centers in P/N/m/G which can now be reformulated as

min max d(y,Xm) (4.2)

eECm yeN

where Cm denotes the set of all sets of m points, Xm, in C.

Proof: (Sketch): The reasoning is intuitively clear. A cen-

ter at x/C can be perturbed in the direction of the furthest

node being served by it, without loss of optimality.||

A solution strategy for P/N/m/G can be devised by reformu-

lating (4.2). Form the matrix F = ||ff.II , with INI rows and

ICI columns, where f.. denotes twice the shortest distance from
th

node i to the jth candidate center. Then (4.2) can be reformu-

lated as

min max min f.. (4.3)

JmCSm ieN jEJm

where Sm is the set of all sets of m columns, Jm, of F.
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Algorithm for P/N/m/G

The following algorithm solves (4.3), and hence P/N/m/G,

in a finite number of operations.

Step 0: Choose an arbitrary initial solution, Jm

Step 1: i) Let d = max min f.
13

iN jJm

ii) Update the matrix A = |a..|| where
iJ

0 if f.. > d

i otherwise

Step 2: Solve the CP

i = l,2,...,IN
j = 1,2,..., IC|

. =tz = min e x

s.t. Ax > e

xw{0,1} y.J J

where et=(,,

If z > m,

solution.

obtained.

stop; D = d is the value of the optimalm

Otherwise, an improved solution has been

Update im and go to Step 1.

A feasible solution to (4.4) always exists because of

the 'null set' of node centers, N C C .

4.2.2 Column Elimination

For large |NI the number of candidate centers, |CI, be-

comes extremely large. The following theorem has the effect

(4.4)

Step 3:

Remark:
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of greatly reducing the number of columns in successive itera-

tions of (4.4).

Definition

For any candidate center ceC, let dc denote the 'diametral

span'

dc a 2d(x,c) = 2d(y,c) (4.5)

where x,y are the generating nodes for c as defined in (4.1).

Theorem 4.2

Any candidate center ceC can be considered as 'covering'

all of the nodes in the set

d
N {neN: d(c,n) < _c} (4.6)c 2

and only those nodes, without loss of optimality.

Proof: The justification for this theorem is implicit in the

proof of Theorem 4.1. The generating pair of nodes x,y are,

by definition, furthest away of the nodes served by c. ||

Corollary 4.1: In Minieka's algorithm, if d is the value of the

incumbent solution for m centers, then all candidate centers

(columns) in the set

K = {cEC :dc > d} (4.7)

can be eliminated without loss of optimality.
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Proof: For any ccK the generating nodes are no longer 'covered'

by it (Step 1 of the algorithm). It follows from Theorem 4.2

that c is no longer a candidate center. ||

Corollary 4.2: In Minieka's algorithm, for any column j cor-

responding to a candidate center ceC, the initialization pro-

cedure

a.. = 0 if f.. > d.
1J IJ J

where d. d , can be made without loss of optimality.
J c

Proof: Directly from Theorem 4.2. ||

Revised Algorithm for P/N/m/G

Corollaries 4.1 and 4.2 lead directly to the following

revised version of the algorithm of section 4.2.1 .

Step 0: i) Choose an arbitrary initial solution, Jm

ii) Set up matrix A = |ja..|| where
1)

0 if f. > d. .
a. _ if J i = 1,2,...,INI

l otherwise . j = 1,2,..., ICI

Step 1: i) Let d = max min f..
1J

icN jeJm

ii) Eliminate from A all columns {j} 3 d. > d

Step 2: Solve the CP (4.4).

Step 3: If z > m, stop; Dm = d is the value of the optimal

solution. Otherwise, an improved solution has been
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obtained. Update Jm and go to Step 1.

Remark: Step 1, part (i) can be simplified to

d = max d.

except for the first iteration. Though some minor

redundancy may result, this procedure allows the matrix

F to be discarded after initialization.

Discussion

In the revised algorithm columns of A are eliminated,

whereas previously elements of A were zeroized, leaving A, in

general, with its original dimensions. The effect of this

reduction in size becomes increasingly significant as m in-

creases. Notice, however, that for small m we still encounter

a great number of columns which, coupled with large INI, renders

the problem intractable for large problems for reasons to be

explained in section 4.2.3.

ILP Formulation for P/N/m/G

An interesting consequence of Theorem 4.2 and associated

corollaries is the following formulation of P/N/m/G as a 'single

shot' MILP

min d

s.t. AX > e

et

d > d.x. .

x.C{0,1} (4.8)
J VJ
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4.2.3 Covering Problems and Their Solution

In all the existing methods for solving large scale multi-

center problems, solving the CPs, as distinguished from matrix

generation, is the major computational burden and bottleneck.

This is obviously true for N/N/m/G (Torregas et al.[44]) and is

clearly indicated for P/N/m/G by Christofides and Viola [2].

The observation is equally true for the algorithms of sections

4.2.1 and 4.2.2. This bottleneck, severely limiting the size

of problems which can be optimally solved, is a result of the

reliance of existing techniques upon standard algorithms for

the solution of the CPs. By fully utilizing their special

structure, it is possible to solve problems several orders of

magnitude larger than hitherto, enabling truly large scale

models to be considered. Prior to embarking upon a discussion

of such a technique, a few words of explanation are justified

to substantiate the observation that standard CP techniques

render large scale problems intractable.

In the ensuing discussion we refer to the general CP ob-

tained by replacing the unit cost vector in (4.4) with a general

vector. We remark also that some of the discussion relates to

the Partitioning Problem (PP), where equalities replace the in-

equalities in the CP, though it can be shown that PP is but a

special case of CP (see Garfinkel and Nemhauser [13]),

CPs have attracted extensive and intensive attention due

to their wide applicability, simple structure, tantalizing

properties and frustrating inherent complexity. Some of the

better known applications include airline crew scheduling
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[23,32,41,43] and political districting [13]. Initial efforts at

solving the CP concentrated on CP-oriented implicit enumeration

techniques as in Pierce [36] These were found useful for small

problems particularly due to the natural use of computer orien-

ted binary logic and data representation. Such schemes were

invariably exponentially dependent upon the number of columns.

More recent efforts, as in Handler [23] and Thiriez[43] suc-

ceeded in converting the critical parameter to the number of

rows by basing solution techniques on LP methodology. A well-

known property of CPs is that basic feasible solutions of the

imbedded LP provide a dominant set'for an optimal solution of

the CP. Moreover, computational experience indicates a vague

property of 'near total unimodularity' (Handler [23] Thiriez [43]

Torregas [44]), so that LP solutions are often integer and al-

most always 'close' to the CP solution. Given the generally

relatively large number of columns in CPs, these techniques

have rendered medium size problems solvable. However, for rea-

sons of massive degeneracy, problems with very many rows are

still beyond solution. Thus, it is commonly accepted as in

Geoffrion [14] and Marsten[32] that the real bottleneck in solving

the general CP is the imbedded LP itself.

Various avenues have been explored to 'beat the bounds.'

Rubin [14] has developed an effective heuristic algorithm, with

application to airline crew scheduling. Balas and Padberg [1],

Fisher [7], Handler [23] and Trubin[45] have sought special pro-

perties of CP and PP structures in order to modify the Simplex

method to avoid the degeneracy difficulty. Alas, a final break-
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through is yet to be achieved in these efforts. The recent

work of Fisher et al. [8] in developing dual decomposition

techniques for discrete optimization may also lead eventually

to a method whereby the LP may be circumvented. It is entirely

possible, however, that the general CP will remain inherently

'complex' and that problem-oriented techniques, as for the job

shop scheduling problem in Fisher [7], are the most viable

approach. The proposed strategy for multi-center location

constitutes another example of the success of this approach.
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4.3 Relaxation Strategy for P/N/m/G

4.3.1 Motivation

The 'relaxation strategy' proposed herein is based upon

two fundamental observations:

a. For any number of centers, m, there exist a number of

critical nodes, a 'relaxed' set R C N, which essentially deter-

mine the optimal location of centers. An optimal solution for

P/R/m/G will automatically cover the remaining nodes, R. More-

over, IR| will be relatively unaffected by INI and instead will

be fairly closely related to m.

In relation to other math programming problems, this obser-

vation, and implied strategy, is akin to a relaxation approach

for minimax formulations where, again, the observation is that

most of the constraints in the derived constrained problem will

be non-binding at an optimal solution.

b. Unlike general math programming relaxation strategies,

in this case both rows and columns are eliminated as a result of

the manner in which columns (candidate centers) are generated by

rows (nodes) as outlined in section 4.2. Thus a special fea-

ture here is that advantages generally resulting only from re-

striction obtain as well, rendering the relaxation strategy par-

ticularly attractive.
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4.3.2 Relaxation Algorithm

Notation

For completeness, we include some previously defined

quantities. Recall that G denotes the infinite collection of

points on the graph G(N,A), with arc lengths d.., (ij)cA.

d(x,y) shortest distance between two points

x,y on G.

I|d(x,y) 11 shortest distance matrix for all node

pairs xyeNxN.

d(Xm,y) min d(x,y), where Xm is a set of m points on G,

max d(x,y).
yEN

£(Xm)

D

m

R

C

max d(Xmy)
yEN

min2 (em), where Gm is the set of all sets

Xm EGm

Xm on G, twice optimal value of P/N/m/G.

'relaxed' set of nodes, R C N.

set of 'candidate centers' as defined in

(4.1).
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C
xy

Cxy

d c

{ Z, d
{zX Id cRI

'diametral span' of candidate center c as

defined in (4.5).

{ceC :<x,cyy> exists for a given pair xy}.

{cEC :dc < d}.
xyc

- ~ dcU C .
xysRxR

optimal solution quantities for the CP

defined in (4.4) where

z value of objective function,

^ZX

d

AC

AC(T)

VC

MPT (x)

identity of the z centers in the solution,

max {dc

ceZ c

'absolute center,' optimal solution of

P/N/l/G.

optimal solution of P/N/l/T

'vertex center,' optimal solution of

N/N/l/G .

minimum path tree rooted ata point x,



-86-

We shall state the algorithm in the more general context

of solving P/N/m/G for m = k,k+l1,...,M

Step 0: Initialization

Set m = k and select judiciously an initial set of m

centers, Xm. Then d = 2t(Xm) is an upper bound on Dm

Let the initial relaxed set of nodes, R, comprise a

set of critical nodes for the m chosen centers and find

all candidate centers dCR . Proceed to Step 1.

Step 1: Relaxed CP

Select from dCR m centers, Xm, covering all nodes in R.

If this is impossible go to Step 4. Otherwise, proceed

to Step 2.

Step 2: Improvement/Node-to-Enter

m is an improved solution for P/R/m/G with value d.

If all nodes in R are covered by m within a distance

d , then Xm is an improved solution for P/N/m/G; let
2A

m replace Xm as the incumbent solution; set d = d;

eliminate centers whose diametral spans exceed or equal

d and go to Step 1. Otherwise, designate as node-to-

enter a node, n, which is furthest away from if

d < 22 (im) < d then m is still an improved solution;

set d = 22 (im) and replace Xm by Fm . In both cases

proceed to Step 3.
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Step 3:

Step 4:

Column Generation

Add to dCR candidate centers generated by node pairs

nr for all reR, whose diametral spans are less than

d. Add n to R and go to Step 1.

Optimality

Incumbent solution, Xm, is optimal for P/N/m/G with

value Dm = d. If m = M stop. Otherwise, retain this

solution as incumbent for m + 1; let m = m + 1 and go

to Step 1.

A flow chart of the relaxation algorithm appears in Figure

4.1. Computational details of the subroutines are given below,

followed by a proof of the algorithm and discussions of compu-

tational efficiency and experience. Examples illustrating the

the algorithm appear in Appendix B.

4.3.3 Subroutines

The basic computational building blocks, depicted as sub-

routines in the flow chart of Figure 4.1, need to be clarified.

SRO-Initialization

Assuming first that we wish to locate m = 1,2,...,M multi-

centers we can initialize the algorithm for m = 1 in one of

several ways. We present three alternatives:

a) Choose any node xeN and find a furthest node yeN from it

by constructing MPT(x). Then an upper bound for D is given by
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Flow Chart for Relaxation AlgorithmFigure 4, 1:
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d = 2k(x) = 2d(x,y) . D .

Let R = {x,y} and X = {x}

b) Choosing nodes x,y as in (a), a different upper bound

for D is given by the absolute center of the tree MPT(x) namely;

d = 2Z (AC (MPT(x))) D

(See Chapter III). Let R = {e1 ,e2} and xi = {AC(MPT(x)}

where ei,e 2 are diametral nodes found in constructing AC(MPT(x))

using the algorithm of Chapter II.

Notice that given the information derived in (a) it is

exceedingly simple to compute the quantities in (b). Thus e1

corresponds to y and only one longest path need be found in

MPT(x) in order to locate AC(MPT(x)) as suggested in Chapter II.

c) The previous procedures are recommended for problems

where M is small in relation to INI . Otherwise, it becomes

advantageous to compute initially the matrix ||d(x,y)j| for sub-

sequent computations in SR2 and SR3. In this case a solution to

N/N/l/G, found by inspection, provides an upper bound on D

namely;

d = 2k(VC) > D

Futhermore, a furthest apart pair of nodes pq satisfying

d(p,q) = max d(x,y)
xyENxN
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provides a useful lower bound on D1 , namely;

d(p,q) < D .

Let R = {p,q} and X = {VC)

To complete the initialization procedure, dCR has to be

generated. A procedure for this is described in SR3 below.

Consider now the case where m = k(>l),...,M (including the

case k = M). One possibility is to build up the solution by

generating solutions for m = 1,2,. . .,k-1 first. However,

a more direct approach is preferable. The simplest procedure

is to choose judiciously k points, X k, as an incumbent solution

for P/N/k/G with associated upper bound

d = t(Xk) >z Dk '

We can conceive of various heuristic procedures for obtaining a

good initial solution, for example, by successively adding cen-

ters and perturbing their locations to reduce the critical dis-

tance until a 'local optimum' is achieved for k centers. Let R

be the set of critical nodes for the initial k centers and, as

before, use SR3 to generate dCR'



-91-

SRl - Set Covering Problem

We have already indicated in section 4.2.3 that the rev-

laxation strategy in its entirety can be viewed as a problem

oriented technique for solving the large scale CPs arising in

a minimax facility location scenario. Operationally, we have

transformed a succession of large scale CPs into a succession

of miniscule CPs each of which requires a trivial computational

effort for its solution.

The size of a generic CP is |R| x |dCR| compared with

INI x |C and INI x IdCI in the algorithms of sections 4.2.1 and

4.2.2 respectively. Since JR| is usually of the order of 2m

(independently of INI) it is evident that for small m the CP

is indeed trivial. This is particularly true as a consequence

of the sequential nature of the algorithm, enabling the CP (4.4)

to be solved essentially as the feasibility problem

Ax > e

te x = m

xs{0,1} Vj. (4.9)

Indeed, all of the CPs encountered in the course of this

research (for m <6) were solved by manual inspection in less

than one minute.

For large networks and large m it might become necessary

to employ or modify some standard CP algorithm. However, it is

difficult to envision a realistic situation where the CP part
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of the algorithm would require significant computational effort.

We shall therefore not concern ourselves further with this

particular issue.

SR2 - Node-to-Enter

Assuming prior computation of Id(x,y)|| it is straight-

forward to compute 2 (Xz). Alternatively, in the absence of the

complete Ijd(x,y)|| matrix, it is necessary to compute MPT(x),

VxEX . Note that since x is not necessarily a node a slight

modification is required in the standard MPT algorithm.

SR3 - Column Generation

dCR requires updating to dCRUn according to the expression

d =d d
CRUn = CR U Cnr U {n} . (4.10)

reR

A procedure for generating all candidate centers, C xy, for

a given pair xy is described below. This procedure is perfor-

med for all pairs nr, reR. Note also the inclusion of the null

center Cnn in (4.10).

The necessary calculations can be performed directly from

||d(x,y)|| or, in the absence of this matrix, after computing

MPT(n) and utilizing the previously computed MPT(r), VrER.

For each center, c, generated we need to record its location,

diametral span, dc and the subset of R,

d
Rc = {rER :d(c,r) < } (4.11)
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covered by it. Finally, we need to identify the subset of dCR '

A d
Q {c E C R: d(c,n) < - (4.12)

covering node n. Notice that Q fX = % according to the

algorithm.

d
Generation of C (x ' y)xy

For our discussion we shall find it convenient to extend

the set of definitions of section 4.3.2. Consider a generating

pair of nodes xy and a generic arc (ij)sA.

Definitions

dCii {c E dC :c is on (ij)}.
xy xy

S (v min{d(vx),d(vy)}, vE{i,j}.

<x,ij,y> , denoting a 'flip-flop' condition on arc (ij) with

respect to a pair of nodes xy, is said to exist iff:

{Sxy - d(i,x)}{S Xy - d(j,x)} + {Sxy - d(iy)}{Sxg - d(jy)} =0-(i) (j) MiM

The following lemma will enable us to construct an efficient

dalgorithm for generating C :xy

Lemma 4.1: C13 / 0 only if <x,ij,y> exists, in which case the
xy

following are mutually exclusive and exhaustive cases:

i) <x,c,y> exists at an interior point of (ij), IC 13 = 1
xy

and the diametral span and location of c are given by
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d = d.. + S' + S
c 1) (i) (j)

d. = {d.. + SE - S 1/2ic 13 (j) (i)

ii) <x,c,y> exists at a node vE{i,jl , | | 1xy

and

d = S .
c (v)

iii) <x,c ,y> and <x,c.,y> exist at nodes i,j respectively,

C 3| = 2 andXy

d - x V =i

iv)C =0
xy

Futhermore, when all arcs (ij)SA are scanned, nothing is lost

by assuming |C 'I = 0 in case (iii).xy

A detailed but straight-forward proof of the lemma is

given in Appendix A. The lemma leads directly to an efficient

algorithm for generating dC = U dC d as described in
xy (ij)EA xy

the flow chart in Figure 4.2.

Remark: In the algorithm described in Figure 4.2 redundancy

can occur in two ways:

i) A node, v, can appear more than once as a candidate

center. Such duplication can be avoided by 'closing'
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Case (iii) Y

Figure 4.2: Flow Chart for Column Generation
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node v after it is first designated as a center

and subsequently skipping over all arcs incident

to node v.

ii) A node, V, designated as a candidate center may

not qualify as a local center after all. To avoid

this it is necessary to inspect the remaining

incident arcs of v. Alternatively, the problem can

be ignored since the additional computational burden

due to such redundancy is generally insignificant.

4.3.4 Proof of Relaxation Algorithm

Theorem 4.3

The algorithm of section 4.3.2 achieves an optimal solu-

tion to P/N/m/G in a finite number of steps.

Proof: i) Optimality

A simple relaxation argument suffices. The algorithm

finds an optimal solution, Xm, to P/R/m/G for some R C N accor-

ding to the results and algorithm of section 4.2.2. Futhermore,

d = min max d(Xm,y) = max d(Xmn,y) (4.13)

XmEGm yER yEN

according to the algorithm. Now consider P/R/m/G reformulated

as

min w

XmGm

s.t. w > d(Xmy) VySR (4.14)
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indicating that P/R/m/G is a relaxation of P/N/m/G. (4.13)

and (4.14) establish that X is also optimal for P/N/m/G.

ii) Finite Convergence

An iteration of the algorithm consists of a CP and

subsequent row/column generation, clearly a finite operation.

At each iteration one and only one of the following occurs:

a) One row is added with possible column

additions and eliminations.

b) At least one column is eliminated and

none added.

Since INI is finite a necessary condition for an infinite num-

ber of iterations is that (b) is repeated infinitely for a given

R. Since |CRI is finite (Lemma 4.1) this is impossible and

finite convergence is guaranteed. ||

4.3.5 Computational Discussion

Algorithmic Framework

With respect to general math programming methodology, we

have already indicated the special feature of the proposed

relaxation algorithm incorporating as well restriction advanta-

ges. While the conceptual formulation (4.14) establishes P/R/m/G

as a bona-fide relaxation problem, greater insight is derived

by considering the MILP (4.8) from which it is evident how both

rows and columns are eliminated in P/R/m/G.

In terms of multi-center strategies, notice that the pro-

posed algorithm employs both algorithms of section 4.2. While
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P/R/m/G is solved by the algorithm of section 4.2.2, P/N/m/G is

implicitly solved also by Minieka's algorithm (section 4.2.1)

since the condition of Theorem 4.2 does not necessarily apply

to nodes in N-R.

The relaxation algorithm synthesizes the previous techniques

to achieve massive savings in both CP and matrix generating

phases.

Computational Efficiency

The critical factor is the cardinality of R at the optimal

solution for a given m. In the worst case the algorithm will

perform roughly as the algorithm of section 4.2.2. Consider

P/N/l/G where G is a single loop and nodes are distributed at

equal intervals. Then IR| ; INI at the optimal solution (see

example in section 4.4.1). But apart from such pathological

cases yielding rather insignificant computational upper bounds,

the algorithm can be expected to lead to immense savings. Pre-

liminary computational experience suggests IRI ~ 2m is a good

approximation. This indicates an enormous relative advantage

over the algorithm of section 4.2.2 where m is small. Since

the latter algorithm is particularly efficient for large m it

turns out that the proposed algorithm, by combining both fea-

tures, is ideally suited for all values of m.

We now wish to focus attention on the number of columns

IdCI which, apart from the direct dependence on IRI, is based

upon the generic quantities I dC | .
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Corollary 4.3:
aC < |AI

Proof: Directly from Lemma 4.1. |1

The following three observations indicate, however, why

iC I is usually a very small number.xy

i) By definition, points csG satisfying <x,c,y> must

satisfy requirements which severely limit their location. One

manifestation of this is reflected in the following theorem:

Definition

Let p(c) denote the diametral paths of length d joining
c

x to y through c where <x,c,y> exists.

Theorem 4.4

<x,c,y>==> <x,z,y> does not exist for any zsp(c), z / c

Proof: Let zep(c) be a point closer to one end, say y, and

assume <x,z,y> exists. Then

d(c,x) < d(c,z) + d(z,x)

= d(c,y) - d(z,y) + d(z,x)

= d(c,y)

which is impossible. ||

ii) The effect of d in reducing IdC I is all important.
xy

For small m the induced 'spread' of nodes in R sharpens this
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effect. Note that

d(x,y) > d=> idCI = 0

as utilized in the flow chart in Figure 4.2. For large m,

small values of d again guarantee its effectiveness.

iii) Corollary 4.3 could be reformulated

IdC < |A'| (4.15)

where A' is the set of arcs derived after amalgamating adjacent

arcs at nodes with degree 2. This observation is particularly

important for P/P/m/G (section 4.4.1).

Finally, note the special case of trees where

IC xyI = 1 .

Since now both CP and matrix generating efforts are minimal it

appears that P/N/m/T can be reasonably solved manually for vir-

tually any size of network as illustrated in example B.l in

Appendix B.

Improvements

Various possibilities exist for streamlining the basic al-

gorithm. The following is a list of some of these:

* observations (i) and (iii) above suggest possibilities

for improving matrix generation efficiency.

* When IRI exceeds 2m it may be advantageous to reduce jRI

by preserving only current critical nodes after an improve-
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ment has been made. However, care must be taken to avoid

cycling.

* Efficient heuristics can easily be developed for good

initial solutions. A local optimum seeking perturbation

technique appears attractive.

* For large m and very large INI it may be advantageous to

combine a standard CP algorithm with a variety of problem-

oriented reduction techniques.

4.3.6 Computational Experience

A major result of this research is that multi-center problems

can generally be solved at minimal computational cost. Thus,

for problems of type P/N/m/T no computer assistance is required,

as illustrated in example B.l of Appendix B. At least twenty

other examples were generated with similar results. For the

general case, P/N/m/G, for small values of m, it appears that

computer assistance is required only for updating dCR , namely

the matrix generating part, while solution of the resulting

CPs is usually a trivial problem ideally suited for manual

solution. This experience is reflected in Table 4,1 summarizing

computational data for example B.2 of Appendix B.
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Table 4.1:

P/N/m/G,

Legend: I|d(x, y)||

m

IRI

CP

INI

JAI

Computational Data for Example B.2

m = 1,2,3,4; INI 53; |AI = 81

shortest distance matrix.

number of centers.

number of nodes in relaxed set at

optimal solution.

set covering problem.

E number of nodes in network.

E number of arcs in network.
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Notes: (1) Program written in Fortran IV, compiled under level

Gl, and run on an IBM 370/165.

(2) Times are incremental, but to solve for a given

number of centers, M, would not necessitate solving

for all previous m < M, as indicated in section 4.3.3.

(3) A large fixed cost was incurred in this example by

first computing Id(x,y)|| . This is very ineffi-

cient for small values of m. Thus, for m = 1, total

time would be approximately 0.05 seconds instead of

0.27 as indicated.

(4) CPs were solved trivially by inspection. Corre-

sponding cpu times would be insignificant.

(5) Number of columns in CPs does not include the

identity matrix I R| corresponding to the set of

null centers at the nodes.

The advantages accruing from the relaxation scheme can be

readily seen in this example. The number of nodes in R was

generally twice the number of centers, m, in place of the full

set of nodes, here 53, employed in existing algorithms. This

represents a savings in orders of magnitude both with respect

to the resultant CPs and matrix generation. Indeed it is doubt-

ful whether Minieka's algorithm (section 4.2.1) can reasonably

handle this problem, given the enormous number of generated

columns. The computational data in Table 4.2 refers to the

largest problem reported by Christofides and Viola [2] and serves

to underscore the relative advantage of the relaxation scheme.
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Table 4.2: Computational Data from [2]

for Graph with INI = 50; |AI = 80

As problem size increases, the relative advantage of the

relaxation approach increases. Indeed, it seems quite reason-

able to solve problems with thousands or tens of thousands

of nodes using this approach. For the existing techniques,

networks with more than one hundred nodes would appear pro-

hibitively large.

To further validate the efficiency of the algorithm, we

constructed a 'worst case' example by generating a 'random

network,' with uniform distributions for the number of arcs

incident to any node, the identity of adjacent nodes and the

lengths of arcs. Such a network loses physical distance proper-

ties which are particularly attractive for the algorithm.

Furthermore, we generated an example for larger than can possi-

bly be solved by existing techniques, namely; |N j = 200 and

JAI = 512. Table 4.3 provides computational data for m = 1 and

number of centers, m 1 2 3 4

cpu - seconds on 17.8 8.11 17.7 24,55

CDC/6600
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m = 3. The table is subject to the same legend and notes as

Table 4.1. Note in particular the dominant cost of computing

|Id(x,y) |, which for m = 1 and m = 2 is really grossly redun-

dant. Thus, realistic total times for m = 1 and m = 2 are on

the order of 1.5 and 7 seconds respectively.

Table 4.3: Computational Data for Random

Network with INI = 200; JAI = 512
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4.4 Extensions

So far the discussion of the relaxation algorithm has been

in the context of P/N/m/G. In this section we seek to demon-

strate the applicability and efficiency of the algorithm for a

wider range of related problems, thus completing our discussion

of multi-center problems. In addition to the direct benefits

of extended applicability, the ensuing discussion will add

fresh insight into the nature of the relaxation scheme.

4.4.1 P/P/m/G

This problem is perhaps the most challenging of the variety

of location problems we are considering.

Physically it represents what is often the most realistic

situation while P/N/m/G is some discretized approximation of it.

So far as is known to the author, no attempt has been made in

the literature to solve this apparently difficult problem and

certainly none of the techniques for P/N/m/G can be directly

applied to it. The only existing feasible approach is indeed

to discretize the set of demand generating points as finely as

desired and solve as P/N/m/G. Clearly, such a scheme is doomed

to failure as the approximation is tightened because of the

critical effect of a large number of nodes in existing techniques.

Consider now the relaxation approach of section 4.3. All

along we have been solving relaxed problems P/R/m/G, R C_ N, as

surrogates for P/N/m/G. The only conceptual change here is that

N is now the infinite set of 'artificial nodes,' G. The basic

strategy remains unaltered and only minor modifications are

required. To enable points ycG to be considered as 'nodes,'
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it is necessary to redefine

E(Xm) = max d(Xm,y) (4.16)
ysG

necessitating a simple extension in the MPT computations in SR2

(section 4.3.3). To generate dc = L) dC i note that it
(ij)eA XY

is sufficient in SR3 (section 4.3.3) to consider arcs (ij)

which join 'intersection nodes' (nodes with degree greater than

two) so that artificial nodes need not be considered in this

phase. (See also section 4.3.5 and (4.15).)

Although P/P/m/G utilizes to the fullest extent the capa-

bilities of the relaxation method and provides the most striking

context for its application, it nevertheless remains elusive in

its convergence properties. We have shown that for P/N/m/G

the algorithm converges finitely (Theorem 4.3). The same is

not true for P/P/m/G and the following, possibly pathological,

example illustrates this. Consider a network, as in Figure 4.3,

composed of a single cycle and solve the problem P/P/l/G. Then

application of the algorithm, beginning at some arbitrary point,

a, will lead to an infinitely convergent series of intermediate

solutions. The labels in Figure 4.3 represent successive addi-

tions to R of 'artificial nodes' as required in (4.16).
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Figure 4.3: Unit Cycle for P/P/1/G

Successive iterations of the algorithm yield intermediate

results as shown in Table 4.4.

Table 4.4: Intermediate Results for

Unit Cycle Example - P/P/1/G

R l d 2(X)

a a 0 1
a,b d 1/2 1

a,b,c c 1/2 1

a,b,c,d f 3/4 1

a,b,c,d,e e 3/4 1

a,b,c,d,e,f h 3/4 1
a,b,c,d,e,f,g g 3/4 1

a,b,c,d,e,f,g,h j 7/8 1

etc...
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In general, d =2 s where s = 0,1,... represents step

number each of which entails 2s iterations.

4.4.2 N/N/m/G

A recent treatment by Torregas et al. [44] is equivalent to

Minieka's scheme for P/N/m/G (section 4,2.1) except that the

dominant set of candidate centers C (4.1) is replaced by the

set N. The mid-point property (Theorem 4.1) no longer holds

though centers are now restricted to a finite set of points,

Indeed, within the framework of Minieka's scheme, N/N/m/G is by

far the easier of the two problems since in general,

ICl >> Nj + INI >> |NI.
(2 /

The relaxation approach can be applied here with some modi-

fication. Note first that the column elimination scheme of

section 4.2.2 is no longer applicable since that scheme was

inextricably tied up with the mid-point property. Consequently,

columns cannot be eliminated and the full complement of |NI

centers must be carried explicitly throughout, Otherwise, the

relaxation scheme remains as before. Finite convergence is

clearly guaranteed.

Though the improvement is not as dramatic as for P/N/m/G

and P/P/m/G, substantial savings can be expected because of the

importance of the number of rows in the solution of CPs (section

4.2.3). Furthermore, even in the classical case where m = 1

and no CP need be solved, substantial savings can be made. To

illustrate this point consider the example given by Torregas et

al. in [44]. Table 4.5 reproduces the |jd(x,y) 1 matrix for 30
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Table 4.5: The Minimum-Distance Matrix for Locations in

New York State (The distances are in miles)

1 4 % ' 7 8 " 1 II 12 13 14 15 16 17 18 19 2 21 21 11 74 75 26 27 ?q 70 30

71 221
254 31
136 136

V) 33?
33' 7)
192, 100
22 46
124 242
253 60
1412 93
151 134
24 254

?74 739
75 106
45 P4

270 1 d)
796 1 ft
116 J7b
225 73

7, 757
238 29)

6n 241
3 272

272 1
229 251
86 209

149 R 5
7 224

146 135
?P4 131

IS? 16
214 733
719 129
245 141
321 2 72
274 185
737 170
106 41
304 717
240 S1
385 327
211 64

46 193
303 161
315 284

92 19
351 784
194 67
181 156
Ia 52

52 157
269 17?
228 86
251 209

" 141
147 0
b 124

154 15
147 ?
120 152

Table 4.6 : Intermediate Solutions for N/N/l/G

in New York State Example

R VC d/2 L(VC) = d(VC,n)

1 1 0 338 = d(1,11)

1,11 7 181 294 = d(7,4)

1,11,4 3 215 279 = d(3,21)

1,11,4,21 27 254 254
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locations in New York State. Consider now the problem of lo-

cating a solution VC to N/N/l/G. The classical approach of

Hakimi [21] is to initially compute ||d(x,y)|| and inspect the

matrix for an optimal solution. Employing instead the relaxation

technique and beginning arbitrarily with R = {} results in the

series of solutions to N/R/l/G shown in Table 4.6, derived by

inspection of the relevant columns and rows in Table 4.5. Thus,

VC = 27 and 2(VC) = 254 is a solution to N/N/l/G. Notice that

to arrive at the solution required ocmputation of MPT(x),

vxE{1,l1,7,4,3,21,27} in place of the full I|d(x,y)I matrix

or MPT(x), VxE{l,2,...,30}. However, this advantage is some-

what mitigated by the relative efficiency of computing the com-

plete matrix as in [5].

In conclusion, we have seen how N/N/m/G can be profitably

solved with the relaxation algorithm. However, the advantages

due to this approach are not quite as dramatic as for P/N/m/G

and P/P/m/G and this serves to emphasize the unique features of

the relaxation scheme when applied to these problems. With

respect to N/N/m/G the relaxation technique can be viewed as a

classical application of relaxation concepts to a minmax problem

with corresponding elimination of constraints. But for P/N/m/G

and P/P/m/G the technique is ideally suited because the linkage

between columns and rows results in both row and column elimina-

tions. Thus, problem relaxation alone carries the advantages of

both relaxation and restriction.

Finally, note the reversal in relative computational diffi-

culty for these problems. N/N/m/G now becomes the more difficult
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problem to solve, contrary to existing state of the art and,

perhaps, to intuition. The situation is akin to the relative

complexity of LP and ILP problems.

4.4.3 N/P/m/G

To the best of our knowledge, no treatment of this problem

appears in the literature. Existing techniques can be applied

directly to a discretized approximation, though this becomes

impractical as the approximation is tightened. An exact formu-

lation amenable to existing techniques is derived at the end

of this section though the result is essentially conceptual.

Once again, the relaxation approach is ideally suited to

this problem. The procedures outlined for N/N/m/G and P/P/m/G

can be readily combined to form a solution strategy for N/P/m/G.

An important distinction from P/P/m/G is contained in the

following theorem.

Theorem 4.5

The relaxation algorithm appropriately modified to solve

N/P/m/G converges to an optimal solution in a finite number of

steps.

Proof: An iteration of the algorithm results in one of the

following two cases:

i) A new artificial node is added to R.

ii) At least one non-zero element of the CP matrix is

changed to zero.

To prove finite convergence it suffices to show that R has
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finite maximal cardinality. According to the algorithm, R C W

where

W= {weG : d(Xim,w) = P(Xm) for some Xm Nm} (4.17)

Since INI is finite so is IWI and convergence is guaranteed.

Corollary 4.4: N/P/m/G can be reformulated without loss of

optimality as N/W/m/G where W is a finite set of nodes.

Proof: Directly from the previous proof, letting W be defined

as in (4.17). ||

Remark: N/P/m/G can now be solved conceptually as N/N/m/G with

existing tools. Clearly, however, such an approach

is impractical while the relaxation scheme is an

efficient method.

4.4.4 Solving the 'Inverse'

Consider first P/N/A 1/G and let z denote the minimal

number of centers. The relationship between z and the solu-

tion, D , to P/N/m/G is illustrated in Figure 4.4.

Solving P/N/X 1/G requires minor and generally simplifying

modifications to any procedure that solves P/N/m/G. Thus, the

algorithms of section 4.2 can be used on a 'one shot' basis,

solving just one CP. As usual, however, the relaxation tech-

nique is far more efficient. Setting d = A from the outset

and ignoring intermediate updates of Xm where z > m, the algori-

thm of section 4.3.2 will yield z = z when Z(Xz) = A for
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the first time.

Extensions to the cases P/P/X 1/G, N/N/X 1/G and N/P/X 1/G

are straightforward. Note that N/N/X1 /G is the problem consi-

dered by Torregas et al. in [44].

m,z

. represents solution to P/N/m/G

IN| -- represents solution to P/N/X 1 /G

2-

1 -

Z(AC) D X

Figure 4.4: Relationship Between z and Dm
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4.5 Single Centers Revisited

By synthesizing the developments of the previous three

chapters with respect to single center problems, a number of

ideas come into clearer focus, leading to fresh insight and

some further algorithmic suggestions. For expository purposes

we confine the discussion to AC.

Resolution of Relaxation Gap

Chapter III introduced a relaxation approach for P/N/l/G

and a relationship summarized as

max k(x) < D = D1 (MDT) (4.18)
xE:N

(Theorems 3.1 and 3.3). An ascent algorithm for the left-hand-

side in (4.18) involved, possibly, a 'double relaxation gap'

(section 3.4). The generalized relaxation algorithm of this

chapter, for m = 1, effectively resolves this gap. Notice a

conceptual similarity to the dual approach to some discrete

optimization problems taken by Fisher et al. [8]. An ascent

algorithm is used first to approximate the dual function, after

which another strategy, possibly 'branch and bound,' is employed

to resolve the resultant total gap from the primal function.

Considering now the right-hand-side in (4.18), we now have an

efficient relaxation strategy for locating an MDT. Again, ana-

logies may be drawn to Held and Karp's strategy for locating a

minimal hamiltonian circuit [27], which is also one of the

examples analyzed in [8].
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Composite Algorithm for P/N/l/G

Where Id(x,y)|| is readily available, employ the 'split

and bound' algorithm of section 3.3, and if necessary, continue

with the relaxation algorithm of this chapter. Notice that dCR

is particularly easily determined since many arcs have been

eliminated in the first stage. If ||d(x,y)|| is not available,

use first the ascent algorithm of section 3.4 and continue with

the relaxation algorithm of this chapter.

Tree Networks

Finally, we have seen in Chapter II that the ascent algori-

thm locates AC(T) in exactly two iterations so that no 'relaxa-

tion gap' need be resolved. Furthermore, it is interesting to

observe that the relaxation algorithm of this chapter, when

applied to a tree, reduces to a procedure essentially equivalent

to the algorithm of section 2.2.
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CHAPTER V

CONCLUSIONS

5.1 Introduction

In this chapter we briefly summarize the major results,

indicate straightforward extensions and suggest some items for

future research which are important and appear tractable in

the light of this research.

5.2 Summary

Referring to the variety of minimax network location

models defined in Chapter I, we have developed methodologies for

solving truly large scale problems of all varieties included in

categories (i) through (iv) in section 1.1. Chronologically,

and in increasing order of complexity, theory and algorithms

have been developed for

* /l/T

* /2/T

* //

* J/ 1/-lJ/G

as well as for a single center, tree based class of mixed

minimax and minisum objective function problems. Networks with

tens of thousands of nodes ought not to prove intractable even

for the most general, multi-center, problems. Furthermore,

virtually any tree based problem is now amenable to manual

solution. Finally, an interesting result is the reversal in
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relative complexity of P/N/m/G and N/N/m/G, the latter now be-

comming, usually, the more formidable problem.

In a wider context, a major result of this research has

been the successful resolution of massive set covering problems

arising in the minimax location scenario. By developing a

problem-oriented relaxation technique, these were effectively

transformed into similar, but miniscule covering problems.

Though not pursued here, the implications for other set covering

formulations, for minimax problems in general and for relaxation

strategies are significant.



-119-

5.3 Extensions

We indicate the applicability of the results, with minor

modifications, to the models described in categories (v) through

(vii) in section 1.1. We shall confine the discussion initial-

ly to the relaxation strategy for multi-center problems given

in Chapter IV. Consider the categories in turn.

Category (v) - Restricted Location Sets

Where demand locations are thus restricted, the results are

directly applicable by virtue of the very nature of the relaxa-

tion scheme. Similarly, in the case of facilities on a restric-

ted node set the algorithm remains identical. Indeed, in both

cases the resultant problem is easier than before.' However,

some modification is required if facilities are restricted to

a sub-set of the point set, since the 'mid-point property'

(Theorem 4.1) no longer holds without qualification. To solve

the problem define as 'nodes' all of the boundary points of the

restricted set of points and adopt a hybrid algorithm combining

the strategies for P/1N /m/G and N/ /m/G.

Category (vi) - Unequal Node Weights

The 'mid-point property' is easily generalized to account

for node weights as are all of the remaining propositions, so

that a generalized algorithm is simply derived.

Category (vii) - Arc Orientation

Again, allof the propositions are directly extended to

this case. Note, however, that in this case it is necessary to

specify also whether the 'server' or the 'customer' is the mobile
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unit.

Finally, note that even the basic assumptions of non-

negative arc 'lengths' and the restriction I(x) y 2 XEN

are not essential prerequisites for the algorithm.

The special features associated with tree networks, dis-

cussed in Chapter II, are affected by most of the afforemen-

tioned categories and suitable extensions need to be developed

for every change in assumption.
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5.4 Future Work

Further computational experience is required to accurately

determine the cost of solving the variety of multi-center

problems. In particular, it is interesting to ascertain the

efficiency of the relaxation algorithm generalized to accomo-

date unequal node weights. Francis [10] observes a general

tendency of weighted minimax location problems to be 'badly

behaved' in comparison with equal weight problems. The relative

efficiency of solving P/P/m/G, previously intractabler is also

worth investigating. Furthermore, it should be possible to

devise a modified algorithm for this problem which will guarantee

finite convergence.

An area of critical importance is the combined minimax

(center) and minisum (median) model. Though we have made some

preliminary efforts in this direction, the issue remains un-

resolved for the general problem. It is felt that with effi-

cient algorithms now available for the separate multi-facility

problems, the time is ripe for a purposeful research effort in

this direction.

In a wider context, we have already indicated the, at least

conceptual, implications of the results of this research for

related optimization areas. Specifically, set-covering problems,

minimax formulations and relaxation strategies might usefully

be reexamined in the light of our findings.
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APPENDIX A

PROOF OF LEMMA 4.1

We shall refer to the diagrams in Figure A.l. Consider

first the general form of the function d(xz) where z is a point

on (ij), z units from i, ze[O,d. .]. The following properties

of d(x,z) are readily established and illustrated in the generic

example in (a):

* one or two piece linear

* gradient ± 1

* concave.

We consider the relationship between d(x,z) and d(y,z)

and distinguish three mutually exclusive and exhaustive cases:

i) d(x,v) ; d(y,v), v = i,j

A necessary and sufficient condition for <x,z,y> in the

range ze(O,d. .) is the existence of a 'flip flop,' <x,ij,y> ,
1)

as illustrated in (b). Furthermore, such a local center, c, is

unique. Finally, it is evident from the diagram that the dia-

metral span d = Xy + Sxy + d.. and that the location of c
c (i) (j)

is given by d = (d.. + Sxy - Sxy )/2
ci 13 (j) (i)

ii) d(x,v) = d(y,v) for v = i or v = j but not both

Assume v = i without loss of generality and consider the

generic case depicted in (c). Only the point c = i can possibly

satisfy <x,c,y> though information from adjacent arcs is re-

quired to confirm this. Note that d =2S .
c (i)
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iii) d(x,v) = d(y,v), V = i,j

Consider the generic case depicted in (d).

d(x,z) = d(y,z) Vze[O,d..] and only the points i and j are
IJ

potential local centers, with diametral spans 2SE , 2SXY(i) (j)

respectively.

Note that <x,ij,y> exists whenever d(x,v) = d(y,v) for

v = i or v = j or both, as well as in the situation illustrated

in Figure A.2, thus establishing the four cases of Lemma 4,1.

We now wish to show that nothing is lost by ignoring local

centers in case (iii) providing all arcs (ij)eA are investigated.

Assuming case (iii) obtains, consider the two possibilities

illustrated in (d) and (e). Without loss of generality consider

node i and let A denote the set of nodes adjacent to i. All

arcs incident to i are in cases (ii) or (iii). In (d),

<x,i,y>= >6eA.)(i6) is in case (ii). The contrary

=) x = y(= i) which, by assumption, is impossible. In (e),

<x,i,y> does not exist. In conclusion, to generate C it

suffices to inspect all arcs (ij)eA in cases (i) and (ii)

alone. |1
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d (x, z)

(a) - Form of d(x,z)

d(x,z)

(c) - Case (ii)

d
c

2

= d..)
1)

(b) - Case (i)

d(x,z) = d(y,z)

(d) - Case (iii)

d(x,z) = d(y,z)

(e) - Case (iii)

Figure A.l: Local Center Conditions
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APPENDIX B

RELAXATION ALGORITHM EXAMPLES

Two examples are solved with the relaxation algorithm of

section 4.3.2. Note that the test 22 (Xz > d has been omitted

from this earlier version of the algorithm.

Example B.1: P/N/m/T, m = 1,2,...7

The tree network with 60 nodes is shown in Figure B.l.

The example illustrates how virtually any tree problem can be

solved manually. We shall let x denote the mid-point of the

path linking x to y and, for compactness, shall also refer to

x as xy in labelling columns of CP matrices.

m = 1

Use the algorithm of Chapter II for P/N/l/T to obtain

X =X ab D= 46.

m =2

Use the algorithm of Chapter II for P/N/2/T to obtain

X2 Xbc'xad) ' 2 = 34

m =3

Initiate the relaxation algorithm, arbitrarily, with the

following upper bound solution derived by breaking up the maxi-

mal span in X2

X3 xbc'xae'xdf I , d = 30 , R = {a,b,c,d,e,f}

which 'covers' all nodes in N - R . Update dCR to obtain the
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- INI = 60 -

(Not drawn to scale)

Figure B.1: Network for P/N/m/T Example

Numbers represent arc lengths.

Encircled node labels a,b,...,j represent successive additions to R.
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following CP matrix:

ae,af,cd,cf,df,ef, a, b, c, d, e, f

l1l

11

1 1 1 1 1

24 26 22 20 20 0a 0 ]

Note that the objective function is Ix . .
J

The row vector

representing diametral spans, d c, is included for subsequent

column eliminations.

3Obtain by inspection, z = 3, X {X fx c ,b} , d =26.

3 3 d
2k(X ) = 2d(g,X ) > 26 . Adding g to R and updating CR obtain

the following enlarged CP matrix:

ae,af,cd,cf,df,efgbgc, a, b, c, d, e, f, g

l1

11

1 1 1 1 1

1 1

24 26 22 20 20 24 28 0 z W 0]dc [22

d [22C

& 0
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Obtain by inspection, z = 3, 3 "Xaf Xcd'Xgb} d = 26.

Since 2 =(X 26 we have an improved global solution with

d = 26. Attempting to improve upon this, eliminate columns

with d > 26 thus obtaining the following CP matrix:

ae,af,cf,df,ef,gb, a, b, c, d, e, f, g

l 1

b

c

d
e

f

g

c [22

1 1 1 1

0 0 0

24 22 20 20 24 0 : W-0]

We find z ^4

4X = {x af, Xcf,x dfx} , d = 24 . Hence, the

incumbent solution is optimal for m = 3, namely:

X3 Xaf' xcd Xgb}, D = 26 .

m = 4

4 4 ^4
Since 22(X ) = 24 we have an improved solution X = X

with d = 24 . Eliminating columns with d > 24 the following

CP matrix is obtained:

ae,cf,df,ef, a, b, c, d, e, f, g

1 1 1

22 20 20

al

0 0 0

( [22
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^5A

We find z = 5, X = aep cfx df ,b,g} , d = 22. Hence, the

incumbent solution is optimal for m = 4, namely:

X = {xaf'Xcf Xdf xgb}, D4 = 24.

m =5

22(X5) = 2d(hx5) > 22 . Adding h to R and updating dCR

obtain the following enlarged CP matrix:

ae,cf,df,ef,hy,hb, a, b, c, d, e, f, g, h

a 1

b

c 1

d 1 18
e 1 1

f 111

g

h 11

d [22 22 20 20 17 23 0 :0]
C

^5

We find z = 5, X = {x ae"x cf'd g, d1 = 23. Since

^5 5 5 h2k(X ) = 23 , X = X is an improved global solution for m = 5

with d = 23. Eliminating columns with d > 23 and solving the

revised CP we obtain z = 5, $ = 22, 22(X5) = 2d(i,X5) > 22.

Adding node i to R and updating dCR we obtain a new CP of size

(9x7) (excluding null variables) yielding z = 5, d = 22,

^ 5  = 5 d2k(x ) = 2d(j,X ) > 22. Adding node j to R and updating CR we

obtain an enlarged CP of size (10xlO) yielding z = 5, d = 22,

^ 5 5 ^52k(X ) = 22 so that X = X is an improved solution with d = 22.
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Eliminating columns with d > 22 and resolving the CP of size
C-

-~ 5
(lOx7) yields z = 6, d = 21 so that X is an optimal solution

with D5 = 22.

m = 6

6 6 ^6Since 22(x ) = 21, X = X is an improved global solution

for m = 6 with d = 21. Eliminating columns with d > 21
c~

results in a CP of size (10x5) which yields z = 7, d = 20 so

that X6 is optimal and D6 21

m = 7

^7 7 ^72Z(x ) = 20 so that X = X is an improved global solution

for m = 7 with d = 20. Eliminating columns with d > 20 we
c-

A 7
obtain a CP of size (10x2) yielding z = 8, d = 17 so that X is

optimal and D7 = 20 .

Comparative Note: Minieka's algorithm (section 4.2.1), in

contrast, involves generating and solving

CPs with 60 rows and 1830 columns.
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Example B.2: P/N/m/G, m = 1,2,3,4

The network, with 53 nodes and 81 arcs, is shown in Figure

B.2. For the general graph problem the task of updating dCR is

tedious for a manual mode while the CPs are usually amenable to

manual solution by inspection. In this example an interactive

approach was adopted with successive updates of dCR by computer

and manual solution of CPs by inspection. Details are reproduced

only for m = 1 and m = 2. Computational data for this problem

appear in section 4.3.6.

m = 1

Computing first the matrix jd(x,y)j we find first an

upper bound solution 2(16) = 37. Hence, D1 < 74. A most dis-

tant pair of nodes is {40,531. Initiate the algorithm by set-

ting d = 74 and R = {40,53}. Compute C40,53 to obtain the

following CP matrix:

11,13 12,16
x40 ,53 x4 0 ,53 40 53

40 1 1 2
53 1 1 I

d [71 73 0 0]

dic 1/2 7/2 0 0

Where x1 j is the candidate center on (ij) generated by the pairxy

xy and dic is the distance of the center, c, from node i along

(ij).
1 11,13Choosing X = x 4 0,5 3 , d = 71 we find 2 (X ) = 71 so that
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- INI = 53; |AI = 81 -

(Not drawn to scale)

Figure B.2: Network for P/N/m/G Example

Numbers on links represent arc lengths.

Numbers in brackets identify nodes.

Encircled node labels a,b,...,h represent successive additions to R.
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1 -'1
X - X and d = 71. Clearly, no better solution exists for

P/R/l/G so that the global solution is

X = x1, 13x 40r53

Remark:

D = 71 .

Note the ease with which the single center solution

has been identified. Utilizing the technique suggested

by Hakimi [20]would involve generating C for all
xy

pairs xycNxN.

m = 2

Eliminating columns with dc > 71 reduces the previous CP

matrix to the set of null centers with solution z = 2,

X = {40,53}, d = 0.

^2 2
2 (X ) = d(l,X ) > 0 and node 1 is appended to R. Updating

yields the new CP matrix:

22,26 X20,27 X21,26 x42,43 X22,23 x27,28
40,1l 40,1l 40,1 53,1 40,1 40,1

40 1 1 1 0 1 1

53 0 0 0 1 0 0

1 l1 1 1 1 1

40 53 1

13 1
65 0 0 0][50

[1 17/2 0 0 0]

Solving the CP yields

2%(X ) = 50

"2 20,27z = 2, X = {x4 0 jl ,53}, d = 50. Since

2 ^2
we have an improved global solution X = X , d = 50.

Eliminating all columns with dc > 50 reduces the CP matrix to

dc

d.
ic
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the null set. Clearly, no improvement can be made for P/R/2/G

so that a global solution too is given by X = {x20,27 53 and
{4 0,1 13 n

D = 50

m =3

Proceeding as before an initial solution for P/R/3/G with

d < 50 is given by the null set and a most distant node, 30,

is added to R. After five iterations an optimal solution for

m = 3 is achieved with R = {40,53,1,30,32} and D3 = 36

m =4

Five iterations are needed to achieve optimality with

R = {40,53,1,30,32,43,41,42} and D = 25
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