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[1] Vegetation is ubiquitous in rivers, estuaries, and wetlands, strongly influencing water
conveyance and mass transport. The plant canopy affects mean and turbulent flow
structure, and thus both advection and dispersion. Accurate prediction for the transport of
nutrients, microbes, dissolved oxygen and other scalars depends on our ability to quantify
the impact of vegetation. In this paper, we focus on longitudinal dispersion, which
traditionally has been modeled in vegetated channels by drawing analogy to rough
boundary layers. This approach is inappropriate in many cases, as the vegetation provides
a significant dead zone, which may trap scalars and augment dispersion. The dead
zone process is not captured in the rough boundary model. This paper describes a new
model for longitudinal dispersion in channels with submerged vegetation, and it validates
the model with experimental observations.

Citation: Murphy, E., M. Ghisalberti, and H. Nepf (2007), Model and laboratory study of dispersion in flows with submerged

vegetation, Water Resour. Res., 43, W05438, doi:10.1029/2006WR005229.

1. Introduction

[2] Traditionally, vegetation has been removed from
waterways to improve conveyance [Lopez and Garcia,
2001]. However, it is now known that vegetation directly
improves the quality of coastal and inland waters through
nutrient uptake and oxygen production [Kadlec and Knight,
1996]. For example, aquatic macrophytes sequester nitrogen
and phosphorus, so that some researchers now advocate
widespread planting in waterways [Mars et al., 1999]. The
fate and transport of contaminants is also affected by the
presence of vegetation, which dramatically alters the flow
dynamics [Ghisalberti and Nepf, 2002]. Reduced velocity
due to canopy drag promotes the deposition of sediment
grains, which can aid in the removal of absorbed contam-
inants [Leonard and Luther, 1995; Leonard and Reed, 2002;
Lopez and Garcia, 1998; Palmer et al., 2004]. The baffling
effect of vegetation suppresses turbulence [Nepf, 1999],
which influences the growth and distribution of organisms
such as phytoplankton [Leland, 2003]. Finally, residence
time within the canopy is also strongly affected by vegetation
density [Oldham and Sturman, 2001; Schultz et al., 2002;
Nepf et al., 2007].
[3] In aquatic systems, the primary impact of submerged

vegetation is an increase in flow resistance and subsequent
reduction in conveyance capacity [see, e.g., Kouwen et al.,
1969; Stephan and Gutknecht, 2002; Stone and Shen, 2002,
and references therein]. More recent work has shown in
greater detail how submerged vegetation alters both the
mean and turbulent structure of the flow [Ikeda and

Kanazawa, 1996; Ghisalberti and Nepf, 2004; Poggi
et al., 2004]. In particular, the velocity profile is far from
logarithmic over the full depth, so that traditional treatment
of longitudinal dispersion in open channels cannot be
directly applied to vegetated ones. While dispersion in
flows with emergent vegetation has been studied [Nepf
et al., 1997a; White and Nepf, 2003; Lightbody and Nepf,
2006], the effect of submerged vegetation on dispersion has
not been fully investigated.
[4] The coefficient of longitudinal dispersion (Kx) des-

cribes the growth rate of the longitudinal variance (s2
x) of a

tracer cloud, according to

Kx ¼
1

2

dsx
2

dt
ð1Þ

After a sufficient time since release, s2
x increases linearly

with time and Kx reaches a constant value, indicating that
the Fickian limit has been reached. In wide channels,
dispersion is dominated by vertical shear, and, in the
Fickian limit, Kx is given by

Kx ¼ � 1

H

ZH

0

u00
Zz

0

1

Dz

Zz

0

u00dzdzdz ð2Þ

[see Fischer et al., 1979, pp. 91]. Here z is the vertical
coordinate with z = 0 at the bed, H is the flow depth, u00 is
the local deviation from the depth-averaged velocity <U>,
and Dz is the vertical diffusivity. In a wide, straight channel
with a logarithmic velocity profile, equation (2) reduces to
Kx = 5.93u*HH [Elder, 1959]. Here u*H denotes the friction
velocity,

u*H ¼
ffiffiffiffiffiffiffiffiffi
gSH

p
ð3Þ

where S is the potential gradient due to channel-bed slope
and/or water-surface slope. Elder’s analytical prediction is
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comparable to dispersion coefficients observed in wide
(wc /H � 10, where wc is the channel width), straight,
rough-bottomed laboratory channels [Fischer, 1973].
However, these conditions do not hold in all aquatic
systems. Lateral nonuniformity in rivers, such as bends
and dead zones, can result in significant lateral shear that
dramatically increases dispersion [Day, 1975; Nordin and
Troutman, 1980; Davis et al., 2000]. Similarly, the drag
imparted by submerged vegetation generates a velocity
profile that differs from a logarithmic boundary layer
[Ghisalberti and Nepf, 2005], such that Elder’s analysis
does not directly apply. In this paper, we use new information
on the physics of vegetated flow (described in section 2) to
formulate a predictive model for dispersion in vegetated
channels, and we validate the model experimentally.

2. Two-Zone Model for Vegetated Flows

[5] The diminished fluid velocity in a layer of submerged
vegetation makes it distinct from the overflowing water. We
therefore propose a two-zone model for vegetated channels
with a division at the top of the canopy (z = h), as in Figure 1a.
A uniform velocity, U1 and U2, is assumed within the lower
and upper zone, respectively. K1 and K2 are the longitudinal
dispersion constants in the lower and upper zones, respective-
ly. Scalar transport between the two layers is characterized by
the exchange coefficient, b, which has dimensions ‘‘time�1’’.
[6] This approach is similar to transient storage, or dead

zone models, which have been developed to explain the
persistently skewed concentration distributions observed in
natural channels [Day, 1975 Nordin and Troutman, 1980;

van Masijk and Veling, 2005]. These observations have led
to widespread consensus that the characterization of longi-
tudinal dispersion in rivers must explicitly consider the
effect of ‘‘dead’’, or ‘‘slow’’ zones [Valentine and Wood,
1977; Chikwendu and Ojiakor, 1985]. Several multilayer
models have emerged [e.g., Thacker, 1975; Smith, 1981;
Chikwendu and Ojiakor, 1985; Roberts and Strunin, 2004].
The basis for most analyses is the application of coupled
advection-dispersion equations in each region of flow.
Chikwendu [1986] derived an expression for dispersion in
a flow with N distinct velocity zones. Here we choose two
zones (N = 2). Then, Chikwendu’s equation (3.3) reduces to
the following prediction for longitudinal dispersion coeffi-
cient at large times.

Kx ¼
h
H

� �2 H�h
H

� �2
U2 � U1ð Þ2

b
þ h

H

� �
K1 þ

H � h

H

� �
K2 ð4Þ

U1 and U2 are the layer-averaged velocity in slow-and
fast-zone, respectively, as shown in Figure 1. Equation (4)
highlights three distinct processes that contribute to
dispersion in channels containing submerged vegetation.
The first term in equation (4) represents dispersion arising
from the inefficient exchange between the fast zone (h <
z < H) and the slow zone (0 < z < h). In other words,
scalar trapped in the canopy (slow-zone) is held up relative to
scalar in the overflow (fast-zone), increasing the spread of
mass in the longitudinal direction. The second and third terms
in equation (4) represent the dispersion in the canopy and in
the overflow, respectively.

Figure 1. (a) Two-zone model with top of the canopy at z = h. The channel depth, H, is divided into a
fast zone of thickness (H � h) and a slow zone within the canopy (0 < z < h). (b) The vertical profile of
velocity, U, for run H (Table 1). The canopy is separated into an upper exchange zone (z1 < z < h) with
rapid vertical exchange and a lower wake zone (0 < z < z1) with greatly reduced turbulent velocity and
length scales.
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[7] As first presented by Raupach et al. [1996], the flow
structure near the top of a submerged canopy resembles a
mixing layer, rather than a boundary layer (Figure 1b). A
mixing layer is a confined region of shear (of size tml) that
separates two regions of approximately constant velocity.
The velocity difference across the layer is denoted by DU.
The mixing layer is characterized by a street of coherent
Kelvin-Helmholtz (K-H) vortices that dominate vertical
transport between the canopy and overflowing layer [Ikeda
and Kanazawa, 1996; Ghisalberti and Nepf, 2005]. These
structures reach a fixed scale and a fixed penetration into
the canopy at a short distance from the canopy’s leading
edge (Ghisalberti and Nepf, 2004). The penetration dis-
tance, (h � z1, Figure 1), segregates the canopy into an
upper layer with rapid transport and a lower layer with
slow transport [Nepf and Vivoni, 2000]. The upper layer,
called the exchange zone, spans z1 < z < h. Vertical
transport in this region is dominated by the coherent
structures. The lower layer, called the wake zone, spans
0 < z < z1. Vertical transport in this region is controlled by
stem-wake turbulence, which has significantly smaller
length-and velocity-scales than the K-H vortices. Conse-
quently, vertical transport in the wake zone is typically an
order of magnitude slower than that in the exchange zone
[Ghisalberti and Nepf, 2005].
[8] White et al. [2003] showed that the vortex penetration

distance (h � z1) is inversely proportional to the drag
coefficient (CD),

h� z1ð Þ � 0:2 CDað Þ�1; ð5Þ

where a is the projected frontal area of the vegetation per
unit volume, which can be related to the leaf area index
(LAI) [Nepf and Vivoni, 2000, and references therein]. The
solid volume fraction within the canopy is then ad, where d
is the mean diameter of the vegetation.
[9] The exchange coefficient, b, which appears in the first

term of equation (4), is set by the time-scale for transport
across both layers, T. We assume that the time-scale for
transport across the upper, open layer is negligible (reason-
able for small values of H/h), so we can approximate

b�1 � T ¼ z21
Dw

þ ðh� z1Þ
k

ð6Þ

The first term on the right of equation (6) represents the
time for turbulent-diffusive transport across the wake zone.
In the second term k (cm s�1) characterizes the vortex-
driven flushing of the exchange zone, as described by
Ghisalberti and Nepf [2005]. Section 2.1 considers the
regime where K-H vortices dominate exchange between the
layers, such that the first term is negligible. Section 2.2
examines the opposite case, when exchange is limited by
turbulent diffusion in the wake zone.
[10] Next, consider the third term in equation (4) in

which K2 represents the longitudinal dispersion in the fast
zone due to velocity shear in this region. Above the
canopy, the velocity profile reverts to a logarithmic profile
for z > h [Kouwen et al., 1969; Nepf and Vivoni, 2000;
Carollo et al., 2002]. Thus, Elder’s expression should hold
in the region h < z < H, with coefficient g = 5.9.

K2 ¼ u*ðH � hÞ: ð7Þ

For this region the equivalent bed stress is ru*
2 = �ru0w0

z¼h,
with

u* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gS H � hð Þ

p
: ð8Þ

We note again for emphasis that this characterization of
K2 only reflects contributions from vertical shear. It may
underestimate conditions in which lateral shear also
makes a significant contribution. For such cases a larger
value of g may be appropriate. Finally, in the limit
H/h >> 1, the combination of equations (4), (7), and (8)
gives Kx = 5.9 u*HH, consistent with boundary layer theory.
Similarly, in the limit of emergent vegetation (H/h ! 1),
Kx = K1.

2.1. Vortex-Driven Exchange

[11] In sparse canopies z1/h << 1 and exchange is driven
by the K-H vortices that penetrate deep into the canopy.
Experiments by Ghisalberti and Nepf [2005] show that
vortex-driven exchange may be described by an exchange
velocity k = DU/40, so that in this limit of behavior

b ¼ DU

40h
: ð9Þ

Furthermore, we assume that the difference in layer
velocities, U2 � U1, is a constant fraction, b1, of the total
velocity difference, DU, i.e.

ðU2 � U1Þ ¼ b1DU ð10Þ

[12] Previous studies suggest that u0w0 
 (DU) 2

[Ghisalberti and Nepf, 2005], so that it is reasonable to
assume b2 = DU/u* is approximately constant. The
assumptions of constant b1 and b2 are verified for our
canopy in section 5. The exchange term in equation (4) is
then simplified by substitution of equations (9), (10), and
DU = b2u*. Based on the dispersion observed in emergent
canopies [White and Nepf, 2003; Nepf et al., 1997a], the term
in equation (4) containing K1 is expected to be small
compared to the other terms, and is neglected for simplicity.
Finally, equation (7) is used for K2,

Kx ¼ 40b2
1b2

h

H

� �2
H � h

H

� �2

hu* þ g
ðH � hÞ2

H
u* ð11Þ

For convenience, we combine the constants 40 b2
1 b2 = b

and divide through by u*HH, obtaining the following
nondimensional coefficient of longitudinal dispersion.

Kx

u*HH
¼ b

h

H

� �3
H � h

H

� �5=2

þ g
H � h

H

� �5=2

ð12Þ

2.2. Diffusion-Limited Exchange

[13] In dense canopies, z1/h � 1 and vortex penetration is
limited. With these conditions the in-canopy diffusion
controls exchange between the canopy and overflow. When
z1 = h, equation (6) reduces to

b ffi Dw

h2
ð13Þ

We assume the wake-zone diffusivity, Dw, approximates
the value observed in emergent canopies, and use the
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relationship observed in field canopies [Lightbody and
Nepf, 2006],

Dw ¼ 0:17U1d ð14Þ

Substituting equations (13) and (14) into equation (4) and
applying similar simplifications to those in section 2.1,

Kx

u*HH
¼ 1

0:17

U2 � U1

u*H

� �2
h

H

� �3
H � h

H

� �2
h

d

� �
u*H

U1

þ 5:9
H � h

H

� �5=2
ð15Þ

Because vegetative drag is the dominant resistance for
ad � 0.01 [Nepf, 1999], the depth-averaged force balance
for steady conditions can be written

rgSH � 1

2
rCDahU

2
1 : ð16Þ

Then, using equation (3) to simplify the left-hand side of
equation (16),

u*H

U1

¼ CDah

2

� �1=2

ð17Þ

Substitution of equation (17) into equation (15) yields

Kx

u*HH
¼ z

h

H

� �3
H � h

H

� �2
h

d

� �
CDahð Þ1=2

þ 5:9
H � h

H

� �5=2
ð18Þ

The coefficient z = 4.2[(U2 � U1)/u*H]
2 will be evaluated

with experimental observations.

3. Experimental Methods

[14] Experiments were conducted in a 24-m-long �
38-cm-wide � 58-cm-deep, glass-walled recirculating
flume (Figures 2a and 2b). The flow rate was controlled

Figure 2a. Experimental setup (not to scale).

Figure 2b. Model canopy.

4 of 12

W05438 MURPHY ET AL.: DISPERSION IN FLOWS WITH SUBMERGED VEGETATION W05438



by a Weinman 3G-30P14 pump, with a capacity of 600 to
15,000 cm3/s. A Signet flow gauge, with ±200 cm3/s
accuracy, provided flow rate. A number of measures
were taken to ensure smooth inlet conditions. A dense,
0.5-m-long array of emergent wooden dowels and mats of
rubberized coconut fiber were used to break up inlet turbu-
lence. A 1-m section of honeycomb eliminated swirl, pro-
viding unidirectional flow. The flume had zero bed-slope, so
that the potential gradient was associated with water-surface
gradient only. However, the surface gradient was too small to
measure using surface displacement gages. Therefore S was
estimated from the Reynolds’ stress profiles in the upper
water region, as described by Ghisalberti and Nepf [2004].
[15] The model plant canopy consisted of maple cylinders

(diameter, d = 6 mm), inserted in a random configuration
into perforated Plexiglas boards, which covered the entire
length of the flume. The canopy density was varied between
ad = 0.015 and ad = 0.048, within a range representative of
field conditions, as cited by Ghisalberti and Nepf [2004].
Two canopy heights were employed, 7 and 14 cm. Velocity
profiles for runs A through I were measured by acoustic
Doppler velocimeters, as reported in Ghisalberti and Nepf
[2004]. For the remaining runs, velocity measurements were
taken by a two-dimensional (2-D) laser Doppler velocimeter
(LDV). A 300-mW blue-green argon-ion laser was used in
conjunction with a Dantec 58N40 flow velocity analyzer
(FVA) unit. Vertical profiles were taken at midwidth in the
flume and consisted of 5-min records taken at vertical
intervals between 0.5 and 2 cm, depending on the precision
required. All measurements were taken sufficiently far
downstream of the canopy’s leading edge that the flow
was fully developed (i.e., @/@x = 0). Velocity records were
decomposed into a temporal-average and turbulent fluctua-
tions in the x-(longitudinal) and z-(vertical) directions,
respectively

uðtÞ ¼ U þ u0ðtÞ ð19Þ

wðtÞ ¼ W þ w0ðtÞ ð20Þ

The LDV probe was aligned so that W = 0.
[16] Twenty-four flow scenarios were investigated,

with different discharge, Q, canopy density, ad, and
relative submergence, H/h. The Reynolds number (ReH =
<U>H/n,< > denotes a depth average) was between 3000
and 41,000, consistent with values observed in natural
channels.
[17] Tracer experiments were conducted by releasing a

small pulse of fluorescent dye at the top of the canopy, and
6 m downstream of the leading edge. This longitudinal
position was observed to be well within the region of fully
developed flow, determined by a sequence of velocity
profiles. The tracer consisted of a mixture of Rhodamine
WT dye and isopropyl alcohol, with the latter added to
render the solute neutrally buoyant in the flume. The dye
was injected manually with a 60-ml syringe, through micro-
tubing (1 mm I.D.) glued to the top of a dowel at midwidth
and oriented parallel to the flow. Care was taken to match
the injection speed with local water speed, to limit near-field
mixing. The duration of the injection was minimized, to
mimic a pulse, and subsequent leakage of tracer into the
flow was eliminated by rawal of the syringe.

[18] The depth-averaged concentration of dye was mea-
sured as a function of time, at a location 11.3 m downstream
of the injection point. This was done using a Rhodamine
fluorometer, with a sampling rate of 8 Hz. In all cases, the
traveltime of the tracer cloud from its point of injection to
the probe was much greater than the time taken to introduce
the dye, confirming that the injection approximated an
instantaneous release. For most experiments the fluorometer
was mounted at midwidth in the flume on a pulley system
that allowed smooth, precise maneuvering in the vertical
plane. As the tracer cloud advected past, the fluorometer
was repeatedly raised and dropped at timed intervals, so that
the entire water depth was sampled. The vertical traverse
time was sufficiently short compared to the timescale of
tracer passage, that the vertical profile could be considered
an instantaneous snapshot and was used to estimate the
instantaneous depth-averaged concentration. Experimental
runs were terminated when tracer mass in the leading edge
of the cloud had recirculated around the flume. Each
condition was repeated five times. For several cases the
fluorometer was positioned at three different lateral loca-
tions for the same flow condition. The difference in disper-
sion coefficient obtained at each location was within the
uncertainty of the method, demonstrating that a single
measure at midwidth was sufficient.
[19] The temporal variance, s2

t , of the measured concen-
tration-time distributions was calculated using the method
of moments [Aris, 1956],

s2
t ¼

M2

M0

� M1

M0

� �2

ð21Þ

Mi denotes the ith temporal moment, obtained from the
concentration record, C(t), by

MI ¼
Z1

�1

t iCðtÞdt ð22Þ

The velocity, Uc, of the center of mass is

Uc ¼ X=m ð23Þ

where X is the distance between the point of injection and
the fluorometer (11.3 m), and m is the arrival time of the
center of mass, which is obtained from

m ¼ M1=M0 ð24Þ

Combining a minimum of five realizations of each
experiment yielded ensemble-averaged values of Uc and
st. The frozen cloud approximation [Fischer et al., 1979,
p. 137] was applied; that is, the tracer mass was assumed
not to disperse appreciably, as it passed the fluorometer.
The spatial variance was then inferred from the Lagrangian
velocity of the tracer,

s2
x ¼ s2

t U
2
c ð25Þ

and longitudinal dispersion coefficients were estimated as
Kx = s2

x /2m, an approximation of equation (1). Here it is
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assumed that X is sufficiently large for the solute to reach
a Fickian dispersive regime. Fischer [1973] proposed that
this regime is achieved beyond the time,

tf ¼ 0:4
H2

Dzh i ð26Þ

Uncertainty in the approximation, Kx = s2
x /2m was

investigated using a two-dimensional (x and z) particle-
tracking model for open channel flow, developed by B. L.
White at M.I.T., in the Netlogo programming environment
[Wilensky, 1999]. The model was modified to represent the
specific hydrodynamic conditions of each experimental
run. Full model details are given by Murphy [2006]. In the
random walk particle-tracking (RWPT) model, particles are
advected with the time-mean velocity, U(z), and vertical
diffusion is simulated by random jumps in the vertical.
Longitudinal diffusion is neglected, as it is small compared
to longitudinal dispersion. For simplicity, a stepped profile
of vertical diffusivity, Dz, was used in the model. For the
wake zone z < z1, Dz = Dw obtained from Figure 7 by
Nepf et al. [1997b]. For z > z1, the diffusivity was
assigned a mean value based on the estimated or observed
Dz profile,

Dz;sl

� 	
¼ 1

H � z1

ZH

z1

Dzdz: ð27Þ

Experimentally determined Dz profiles were available from
Ghisalberti and Nepf [2005] for runs A through I. For the
remaining runs diffusivity profiles were computed from
measured Reynolds’ stress profiles, using Dz(z) = ntz(z)/Sct,
where ntz is the turbulent eddy viscosity,

ntz ¼ � u0w0

@U=@z
; ð28Þ

and the turbulent Schmidt number, Sct, was taken to be 0.5
based on previous observ in vegetated shear layers

[Ghisalberti and Nepf, 2005]. In the upper water column,
where low values of shear made equation (28) unstable,
we assume Dz = 0.013 DUtml as suggested by Ghisalberti
and Nepf [2005].
[20] In RWPT models, a discontinuous diffusivity profile

can result in artificial particle accumulation in regions of
low diffusivity [Thomson et al., 1997; Hoteit et al., 2002;
Ross and Sharples, 2004]. A correction was therefore
applied, by treating the diffusivity discontinuity interface
as a semireflecting boundary [see e.g., Ross and Sharples,
2004]. The approach was deemed appropriate following
observations that particles, when introduced as a line source
over depth, remained uniformly distributed with time
[Thomson et al., 1997].
[21] Ten thousand particles (sufficient to provide statis-

tical convergence) were released at z = h and tracked for
3000 s, or until Kx = 0.5 s2

x /t became constant with time.
To validate the model, predictions of dispersion coefficient
were made for each of the experimental runs, at the time
corresponding to the experimental m. The correlation
between the predicted and observed values was highly
significant (Figure 3, R2 = 0.89, n = 24), suggesting that
the model correctly represents the dispersion process.

4. Results and Discussion

[22] Flow parameters for the 24 experiments are listed in
Table 1. The first seven rows correspond to runs of the same
letter in the work of Ghisalberti and Nepf [2004]. Physical
constraints of the flume limit the range of z1/h, such that z1/
h << 1 for most of the experiments. Therefore the discussion
of experiments will focus on the vortex-driven exchange
model given in equation (12).
[23] The concentration-time distribution for run A5 is

shown in Figure 4. Individual realizations are consistent
with the average, indicating that the number of repetitions
is adequate. A nonzero skewness coefficient (shown in
Figure 4) reveals a slight deviation from Gaussian form
that agrees with observations in natural channels [Nordin
and Troutman, 1980]. The statistics of the temporal
concentration distributions are presented in Table 2, along
with the dispersion coefficients obtained from the appro-
ximation Kx = s2

x /2m. eKx is the standard error over
multiple realizations. In all cases the Peclet number,
Pe = UcX/Kx >> 1, validated the frozen cloud assumption
made in section 3 [Levenspiel and Smith, 1957].

[24] Over the full range of H/h u* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gSðH � hÞ

p
is a

consistent estimator for the Reynolds’ stress measured at
the top of the canopy, with u*/ ð�u0w0

hÞ1/2 = 1.1 ± 0.1
(Figure 5). In contrast, u*H/ð�u0w0

hÞ1/2 varies consider-
ably. As expected, u* and u*H converge for H/h > 1.
Furthermore, the ratio b2 = DU/u* = 6.1 ± 1.1 (SD) and is
not significantly correlated with either H/h (Figure 6, R2 =
0.05, n = 24), or CDah (Figure 7, R2 = 0.006, n = 24). The
parameter b1 = (U2 � U1)/DU = 0.68 ± 0.04 (SD) and has
no correlation with H/h (Table 1, R2 = 0.004, n = 24).
Given these values we expect b = 40 b2

1b2 = 110 ± 20.
[25] The results of the RWPT model simulations suggest

that a more stringent criterion than t > tf is required when
the single-point estimate is used to determine Kx. As an
example, we consider run C1. Both the instantaneous
coefficient, Kx = 0.5@s2

x /@t, as well as the single-point
estimate, Kx = s2

x /2t, are calculated from the RWPT results

Figure 3. Modeled Kx versus observed Kx = s2
x /2m.

Horizontal bars indicate the standard error of multiple
realizations, eKx in Table 2. Correlation between the modeled
and laboratory data is highly significant (R2 = 0.89, n = 24).
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and compared in Figure 8. As expected, the instantaneous
Kx reaches its asymptotic limit just after the Fickian time-
scale, tf , and remains constant, with minor fluctuation, after
that. In contrast, the point-approximation does not reach the
Fickian Kx value until t � t10%; i.e., the approximation of
equation (1) by s2

x /2m will underestimate Kx until some time
after the onset of a Fickian regime. We propose t10%, the
time when the point approximation of Kx becomes accurate
to within 10% (see Figure 8), as an appropriate value. On
the basis of the range of conditions considered here, t10% =
2.9 tf (Figure 9, R2 = 0.88, n = 24). Because m < t10% for
many of the experimental runs (Table 2), it is likely that Kx

values obtained from sx
2/2m are underestimates of the

desired Fickian value. In cases for which m < t10%, the
RWPT results are used to adjust the measured dispersion
coefficient, Kx,adj in Table 2. For example, in run C1
(Figure 8), at t = m the RWPT model indicates s2

x /2m =
69 cm2 s�1, which is close to observed value Kx,o = 64 ±
4 cm2 s�1, but falls short of the asymptotic Fickian value.
For this run, the dispersion coefficient is adjusted upward to
Kx = 75 cm2 s�1, in accordance to the RWPT results.
[26] Figure 10 shows the raw experimental data (dia-

monds) and the adjusted data (circles), ensemble-averaged
for each value of H/h. Model equation (12) with coef-
ficients b = 110 and g = 5.9 is shown as a gray line. A
least squares best fit of equation (12) to the adjusted data
yields a value of b = 140 ± 20 and g = 6.9 ± 0.6. This
curve is shown as a solid black line in Figure 10. The
fitted value for b agrees within uncertainty with the value
predicted from velocity data (b = 110 ± 20). However, the
coefficient for the upper-layer dispersion, g, slightly
exceeds the value for logarithmic boundary layers (g =
5.9), suggesting that the analogy between overcanopy flow
and boundary layer flow is not exact. Future models
should consider the velocity structure in this region more
closely. The dashed and dash-dot lines in Figure 10

represent the contributions of the exchange-zone and
fast-zone-shear dispersion terms, respectively, for b =
140 and g = 6.9. For H/h < 2.5 inefficient exchange
between layers is the primary mechanism for dispersion.
Realistically, Kx will not go to zero at H/h = 1 but will
assume the small finite value of K1 in the limit of
emergent vegetation. As H/h increases, shear dispersion
in the fast zone grows in importance and becomes the
dominant at H/h � 2.7.

Table 1. Summary of Experimental Conditions and Flow Parameters

Run Q � 10�2 cm3 s�1 h, cm H, cm a, cm�1 S � 105 U1, cm s�1 U2 cm s�1 DU cm s�1 b1 h � z1, cm ReH � 10�4

A 48 14.0 46.7 0.025 0.99 1.6 3.7 3.2 0.67 12.7 1.5
C 74 14.0 46.7 0.034 2.50 2.0 5.5 4.9 0.71 10.9 2.1
D 48 14.0 46.7 0.034 1.20 1.4 3.8 3.5 0.67 12.3 1.4
E 143 14.0 46.7 0.040 7.50 4.2 10.6 9.5 0.68 11.6 4.1
G 48 14.0 46.7 0.040 1.30 1.4 3.7 3.3 0.69 10.3 1.4
H 143 14.0 46.7 0.080 10.00 3.3 11.1 11 0.71 11.2 4.1
I 94 14.0 46.7 0.080 3.40 2.1 7.2 7.4 0.69 9.8 2.7
A6 17 7.0 29.8 0.025 0.30 0.6 1.6 1.6 0.64 5.8 0.4
B6 94 7.0 29.8 0.025 8.04 3.3 8.4 7.0 0.73 7.0 2.2
C6 48 7.0 29.8 0.025 2.42 1.7 4.4 3.7 0.70 3.4 1.1
A1 17 7.0 23.6 0.025 1.06 0.7 1.6 1.4 0.68 7.0 0.3
B1 94 7.0 23.6 0.025 11.57 4.3 10.2 9.1 0.65 7.0 2.0
C1 48 7.0 23.6 0.025 4.27 2.2 5.1 4.8 0.61 5.1 1.0
A2 17 7.0 14.0 0.025 1.73 1.3 2.9 2.4 0.67 7.0 0.3
B2 94 7.0 14.0 0.025 48.66 7.8 15.5 11.8 0.65 7.0 1.7
C2 48 7.0 14.0 0.025 30.05 5.0 10.6 7.8 0.72 7.0 1.1
A3 17 7.0 10.5 0.025 12.44 2.5 5.4 5.0 0.59 2.9 0.4
C3 48 7.0 10.5 0.025 66.61 6.9 14.7 11.0 0.71 7.0 1.0
A5 17 7.0 8.8 0.025 28.35 2.8 5.3 3.2 0.77 3.9 0.3
C5 48 7.0 8.8 0.025 134.04 9.9 18.7 12.6 0.70 7.0 1.1
C6D 48 7.0 29.8 0.080 2.03 0.8 4.6 5.3 0.72 7.0 1.1
C2D 48 7.0 14.0 0.080 36.64 3.0 9.3 9.5 0.66 7.0 0.9
A2D 17 7.0 14.0 0.080 4.74 1.0 3.4 3.4 0.70 5.3 0.3
A3D 17 7.0 10.5 0.080 23.19 2.0 5.2 4.6 0.71 5.4 0.3

Figure 4. Concentration-time curves for run A5. The
ensemble average (solid line) is superimposed on the
individual realizations (dotted curves). The time and
concentration axes are normalized by the mean arrival time,
m, and the total recovered solute mass, M0, respectively.
Normalization eliminates, so far as is possible, nonunifor-
mities across realizations caused by slight differences in the
masses of tracer injected [White and Nepf, 2003].
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[27] It is interesting to note that Kx also has a significant
correlation with u*HH, the parameterization suggested by
Elder (Figure 11, R2 = 0.83, n =24). On the basis of this we
suggest a second, simpler model, Kx = (5.0 ± 0.7) u*HH. The
two models are compared in Figure 12. Model equation (12)
has better agreement with experimental values (R2 = 0.81,
n = 24) than the model based on correlation (R2 = 0.72,
n = 24). In particular, equation (12) does better at lower

values of Kx, which are associated with the lower values of
H/h. This is consistent with Figure 10, which shows that
Kx/u*HH is approximately constant only for H/h > 2, but
drops off below this in the region dominated by inefficient
exchange. The correlation model fails to follow this trend.
One concludes that for shallow submergence (H/h < = 2)
model equation (12) is required in order to properly capture
the contribution from inefficient exchange. But, for relative
submergence H/h > 2, the simpler correlation model is
sufficient.
[28] Finally, the value Kx/u*HH observed for H/h < 5 is

smaller than that predicted for an unvegetated channel of
the same depth, i.e., for an unobstructed logarithmic
boundary layer. Let us explore why. In these experiments,

Table 2. Temporal Moment Analysis of Concentration Distribution

Run m, s st, s Pe Kx, cm
2 s�1 eKx, cm2 s�1

m
t10%

a
Kx,ad j

a,
cm2 s�1

A 390 89.1 39 85 10 0.3 130
C 252 58.4 37 140 10 0.3 210
D 356 80.3 40 90 10 0.2 150
E 137 34.1 32 290 20 0.4 440
G 382 81 45 75 5 0.2 120
H 123 35.2 25 420 30 0.2 690
I 192 48.6 31 210 25 0.2 380
A6 729 140 55 32 2 0.4 43
B6 141 21.1 89 100 10 1.6 110
C6 252 38.9 84 60 3 0.2 110
A1 567 100 65 35 3 0.5 44
B1 96.8 13 110 120 5 1.4 130
C1 192 26.6 104 64 4 0.7 75
A2 332 48.3 95 41 5 0.9 46
B2 60.7 5.9 210 100 20 0.7 110
C2 117 12.1 189 58 1 0.7 66
A3 234 29.2 129 42 3 0.4 60
C3 89.4 8.7 211 68 1 1 75
A5 172 15.8 235 32 1 0.6 41
C5 70.3 5.9 281 65 4 1.3 70
C6D 289 62.2 43 103 5 0.5 130
C2D 128 19 91 110 5 1 120
A2D 326 52.3 77 51 4 0.5 61
A3D 231 33.8 93 60 1 1.1 65

aBased on results of the RWPT model.

Figure 5. Friction velocities u* =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gSðH � hÞ

p
(circles)

and u*H =
ffiffiffiffiffiffiffiffiffi
gSH

p
(squares), each normalized by the square

root of the Reynolds stress at the top of the canopy,ffiffiffiffiffiffiffiffiffiffiffiffi
�u0w0

p
h. Vertical bars represent uncertainty. Dashed line

indicates mean across all u*/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u0w0

h

p
= 1.1 ± 0.1.

Figure 6. The velocity difference DU normalized by u*
over the range of H/h. Vertical bars indicate uncertainty. The
dashed line indicates the mean value, DU/u* = 6, across all
cases.

Figure 7. Velocity difference DU normalized by u*.
Vertical bars indicate uncertainty. The dashed line indicates
the mean value, DU/u* = 6, across all cases. CD was
estimated based on reported values for isolated, long-aspect
ratio cylinders [see e.g., White, 1974, p. 210].
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<Dz>/u*HH = 0.073, which is comparable to the value
<Dz>/u*HH = 0.067 for logarithmic boundary layers
[Fischer et al., 1979, p. 93]. Therefore the vertical mixing
rates are comparable, such that the difference in Kx must
be attributed to the difference in the velocity variance.
From equation (2), the contribution of velocity heteroge-
neity to dispersion can be isolated in the expression

I ¼ � 1

H

ZH

0

u00
Zz

0

Zz

0

u00dzdzdz 
 u2*HH
2 ð29Þ

For logarithmic layers, Ibl = 0.46u*H
2 H2. For a representative

vegetated channel, we consider the two-layer velocity
profile shown in Figure 1, with layers of equal depth, i.e.,
h = H/2. The velocities U2 and U1 are uniform across the
respective layers. For this vegetated-channel profile,

Ivc ¼
1

48
U2 � U1ð Þ2H2 ð30Þ

[after Fischer et al., 1979, p. 93]. Data from Table 1
implies that (U2 � U1) = (3.1 ± 0.7) u*H. Substituting into
equation (30) yields Ivc = 0.20 u*H

2 H2 for a vegetated
channel. Thus, Ibl/Ivcv = 2.4. This indicates that for a fixed
potential gradient, i.e., fixed u*H =

ffiffiffiffiffiffiffiffiffi
gSH

p
, the bare channel

has more than twice the velocity heterogeneity, explaining
why the dispersion is nearly twice as high. The greater
velocity heterogeneity is simply due to the greater mean
velocity that is possible in the low resistance open channel
compared to the high resistance vegetated channel.
[29] Now we consider the regime of wake-diffusion

dominated exchange (i.e., CDah > 2, as discussed in
section 2.2). We will examine equation (18) for typical
field conditions. Beca ur experimental conditions

could not be extended into this regime, equation (18)
has not been experimentally verified, and this section
should be treated as hypothesis. The highest vegetation
density observed in the field corresponds to ad = 0.4
(mangrove, Mazda et al. [1997]). Since vortex-driven
exchange is expected to dominate in sparse canopies
(ad < 0.1), here we consider a range 0.1 < ad < 0.4.
We use the constant aspect ratio, d/h = 0.05, based on
geometric similitude observed among aquatic plants [Niklas,
1994]. It is also reasonable to assume CD = 1. Data from
the vortex-driven exchange regime (Table 1) implies that
(U2 � U1)/u*H = 3.07 ± 0.69 and we use this as an approx-
imation for the case of diffusion-dominated exchange. The
resulting nondimensional dispersion coefficients for ad =

Figure 8. RWPT simulation for run C1. The estimator Kx = s2
x /2t is shown as a dashed line, and the

instantaneous Kx = 0.5@s2
x /@t is shown as a solid line. At t = m, the approximation Kx = s2

x /2m = 69 cm2 s�1

is close to observed value Kx,o = 64 ± 4 cm2 s�1. However, both fall short of the asymptotic value Kx,a.
Although the dispersion is Fickian at t = m, s2

x /2t is not yet an accurate approximation. For this
particular run, the experimentally determined dispersion coefficient underestimates the final Fickian
value by 14%.

Figure 9. Regression analysis between t10% and the
Fickian timescale, tf = 0.4 H2/<Dz>.
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0.1 and ad = 0.4 are shown in Figure 13. The dimension-
less dispersion is an order of magnitude higher with
diffusion-limited-exchange than with the vortex-driven-
exchange (Figures 10 and 13). This is expected because
the slower exchange rate in the diffusion-limited regime
produces longer retention time in the vegetation, and
therefore, a larger dispersion. However, it takes much
longer for this dispersive regime to develop and to reach
its Fickian limit. The exchange term also remains dominant

to higher values of H/h than in the vortex-driven-exchange,
with shear-dispersion becoming dominant only after H/h = 6.
[30] Although the model developed in this paper was

experimental tested with a rigid canopy, the model frame-
work applies to flexible and even waving canopies. One
needs only to determine the coefficients b1, b2, and b. Some
insight can be gained from the study of Ghisalberti and
Nepf [2006] (for example, see their Figure 6), who show
that the ratio u*/DU decreases as the movement of the
canopy increases, i.e., exchange of momentum between the

Figure 11. Least squares linear fit of the adjusted
experimental data to depth-scale shear parameter, u*HH.
Vertical lines represent experimental uncertainty. The
correlation is significant ( 2 .83, n = 24).

Figure 13. Nondimensional dispersion in the regime of
diffusion-driven exchange, from equation (18), for typical
field conditions: d/h = 0.05, CD = 1, and ad = (0.1, 0.4)
shown as solid lines. For the case ad = 0.1 the individual
contributions of diffusion-limited exchange (dashed) and
fast-zone shear dispersion (dash-dot) are also shown.

Figure 10. Experimentally measured coefficients of dis-
persion, Kx, normalized by u*HH and then ensemble-
averaged for each value of H/h. Diamonds are raw data and
circles are adjusted with the RWPT model. The gray line is
equation (12) with b = 110 and g = 5.9. A least squares fit
(heavy black line) of equation (12) to the corrected
observations yields b = 140 and g = 6.9. For this case the
contributions of the first (dash line) and second (dash dot
line) terms in equation (4) are shown.

Figure 12. Modeled and observed Kx. Circles represent
equation (12) with b = 140 and g = 6.9. The agreement
between the model and observations is highly significant,
R2 = 0.81, n = 24. Squares represent the u*HH correlation
determined in Figure 11. This agreement is less significant,
with R2 = 0.72, n = 24. Horizontal bars represent
experimental uncertainty. Vertical bars represent uncertainty
in model coefficients.
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slow (canopy) zone and the fast (overflow) zone becomes
less efficient. Their observations indicate that b2 = DU/u*
increases with canopy flexibility/motion, and imply,
through the transport analogy, that the mass exchange
coefficient b will decrease as canopy flexibility/motion
increases.

5. Conclusion

[31] A theoretical framework has been proposed for
evaluating the longitudinal dispersion coefficient in chan-
nels with submerged vegetation. The two-zone model
identifies three contributing processes: large-scale shear
dispersion above the canopy, inefficient exchange between
the canopy and the overflow, and stem-scale dispersion
within the canopy. For shallow relative submergence
(H/h < 3), the inefficient exchange dominates the total
dispersion. As H/h increases, large-scale shear dispersion
eventually dominants, and, as expected, approaches the
limit for logarithmic boundary layers for H/h ! 1. For
sparse canopies (CDah small), exchange between the
canopy and overflow is governed by K-H vortices, and
for dense canopies (CDah large), this exchange is governed
by in-canopy turbulent diffusion. In the latter case the
exchange is much slower, and the resulting dispersion
coefficients are much greater. Finally, we suggest that
the single-point estimator Kx = s2

x /2t is reasonable,
but only after a time-since-release of t > 2.9tf, where
tf = H2/<Dz>.

Notation

a (cm�1) Frontal area per volume
b (cm s�1) Canopy exchange coefficient

CD Drag coefficient
C (g cm�3) Concentration

d (cm) Stem diameter
Dw (cm2 s�1) Vertical diffusivity in wake zone
Dz (cm

2 s�1) Vertical diffusivity
h (cm) Canopy height
H (cm) Water depth

Kx (cm
2 s�1) Total dispersion coefficient

Ki (cm
2 s�1) Dispersion coefficient in ith zone

Mi ith temporal moment
t (s) Time
T (s) Full-depth transport timescale

Ui (cm s�1) Velocity in ith zone
DU (cm s�1) Velocity difference across shear layer
u* (cm s�1)

p
gS(H � h)

u*H (cm s�1)
p
gSH

Uc (cm s�1) Center of mass velocity
X (cm) Distance from injection to probe
z1 (cm) Interface between wake and exchange

zones
b1 (U2 � U1)/DU
b2 DU/u*
b 40b2

1b2

g Shear dispersion scale coefficient
si (s) Standard deviation of i = x or t
m (s) Center of mass arrival time

n (cm2 s�1) Kinematic viscosity
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