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ABSTRACT

A.I.S.E. (Advanced Interactive Scheduling Environment) is an interactive computer system

designed to schedule efficiently a fleet of vehicles accordingly to a set of requests made in

advance or at the last minute. The system consists of both an electronic drawing-board with

which the schedule can be manipulated visually, and a support algorithm that helps the user to

build the schedule efficiently.

This thesis begins by discussing-the evolution that lead to the design of the A.I.S.E.

planning tool together with the environment in which A.I.S.E. will be used. It then gives a

general analysis of the support algorithm used in A.I.S.E.. The analysis describes the

"insertion heuristic" that is being used, and shows how it can generate an efficient schedule

from a list of requests, or insert an individual request into an already existing schedule with

minimum disruptions. Since the heuristic was initially designed to solve the "Dial-a-Ride"

problem, necessary modifications are also reviewed.

The various aspects of the schedule electronic drawing-board are then presented. The

description is based on the version of A.I.S.E. that will be delivered to the U.S. Air Force

Operational Support Airlift. Graphics displays are reviewed; the links between the support

heuristic and the graphic interface are analysed. This presentation is followed by a review of

other areas in which such a scheduling tool can be used.
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1 GENERAL PRESENTATION.

1.1 Background.

Two years ago, the U.S. Air Force Military Airlift Command (M.A.C.) started a major

overhaul program to improve its Command and control procedures (C2 upgrade) [ref. 15].

M.I.T's Flight Transportation Laboratory was selected as part of a task force to investigate new

ways to support M.A.C. scheduling activities.

The basic recommendations made after one year of research were [ref. 9, 16]:

. avoid large -scale optimization algorithms,

- build scheduling graphic workstations to help human schedulers, and

- support parts of the scheduling activity with heuristic algorithms.

Based on these recommendations, M.A.C. asked the Flight Transportation Laboratory to put

together a small test scheduling system for the Operational Support Airlift (O.S.A.) which is a

small subset of the Airlift Command itself.

This thesis describes A.I.S.E. (Advanced Interactive Scheduling Environment), a scheduling

tool which is based on the test system delivered to O.S.A.. The system consists of both a

heuristic support algorithm that automatizes some aspects of the scheduler activities and an

extensive graphic interface that can be viewed as a sophisticated electronic drawing board and

spreadsheet, entirely devoted to the scheduling task.

This chapter will review the main ideas that lead to Flight Transportation Laboratory's

recommendations to the Air Force. In order to set up the environment A.I.S.E. is designed to



work in, the chapter will then briefly describe O.S.A. operations as well as describe the type of

problem that must be solved by the support algorithm.

Chapter 2 describes the support "insertion heuristic" that was adapted from the "dial-a-ride"

environment. The modifications needed to adapt this heuristic to O.S.A.'s operational

environment are extensively studied.

Chapter 3 presents the graphics interactive environment that is proposed to the scheduler and

shows how it is linked to the support heuristic. It also reviews special programming

considerations that are needed to implement such a system.

Finally, the last chapter discusses possible directions for future implementations of interactive

scheduling tools.

1.2. Strategy for scheduling systems.

During the past two decades, most of the efforts made to solve practical scheduling problems

resulted in large-scale optimization algorithms running on large mainframe computers [ref. 13,

14]. This approach became dominant because most available computers during that time were

essentially number processing machines with very few interactive capabilities. Scheduling was

also considered as an activity. quantitative enough to be entirely solveable by pure mathematical

techniques.

Overall, the results have been mixed [ref. 3]. The mathematical optimization approach was

discovered to have the following drawbacks:

. the size of problems quickly became enormous and required extensive computation time,

. the assumptions or simplifications needed to integrate real-life scheduling problems into

the appropriate mathematical framework lead very often to worthless solutions, and

- the underlying instability of optimal solutions was unacceptable for real-life operations.

For these reasons, large-scale models were found to be appropriate for schedule "planning" but

not adapted to practical, every-day scheduling. In their analysis of Aircraft Scheduling [ref. 3],



Etschmaier and Mathaisel conclude:

It was thought for quite some time that scheduling airlines was relatively easy and could

be carried out by a large linear model [...]. Although many closed form endeavors were

begun, none of them were ever completed, but it was hoped that eventually the size and

efficiency of computers could catch up and permit some sort of closed form [of the

scheduling problem] to be solved.

The consensus today is that the problem of aircraft scheduling is unsolvable, at least by

quantitative techniques.

In the last three years, because computers have become more used as general processors of

not only numbers but also text and pictures, researchers have begun to think differently about

the scheduling process. After all, some aspects of manual scheduling such as the types of charts

used, appeared to be efficient ways to handle information. Humans were also found to be quite

efficient at certain kinds of processing. Finally, the recent arrival of a new generation of graphic

oriented microcomputers lead us to investigate a very different approach to solve the scheduling

problem. Rather than use a machine to produce an excessively optimal schedule, why not use it

to replicate electronically the "paper" environment of schedulers; let them create the schedule,

and have the computer check for errors and violations of constraints, manage all the data and

display graphically appropriate information when needed.

A first experimental prototype was built and successfully tested by Flight Transportation

Laboratory [ref. 1]. It quickly demonstrated that such an approach took advantage of the

processing power of human schedulers. It also showed that some parts of the scheduling

activity were indeed quite quantitative and could certainly be handled by heuristic support

algorithms that would produce reasonably good and stable answers to the scheduler.

These ideas resulted in our proposal for a hybrid scheduling environment that would exploit the

processing capabilities of both the computer and the human scheduler.



1.3 O.S.A. scheduling problem.

The Operational Support Airlift, a division of the Military Airlift Command, has responsibility

for the rapid delivery of Air Force personnel and small cargo to any point whithin the continental

United States. O.S.A. uses a fleet of 60 to 80 small business airplanes and satisfies about 200

out of 300 daily requests for transportation. At this time, rejected requests are either

accomodated later or simply dropped.

Its activity cycle can be viewed as follows:

1) The requests (see 2.1.1) are filed from 0 to 15 days in advance.

2) A first schedule plan is prepared two days in advance.

3) The schedule is fixed one day in advance.

4) Subsequently, last minute requests can be handled only if their insertion does not modify

the schedule.

5) On the day of service, the schedule is monitored constantly.

A.I.S.E. completes these requirements in the following way:

. Step 1 is handled by a data base manager that maintains the list of requests.

. Steps 2 and 3 are executed by both the support algorithm that proposes an initial schedule,

and the scheduler who alters it with the graphic schedule. editor in order to account for

non-quantifiable constraints.

- The decision support algorithm will also suggest good ways to insert last minute requests

into the schedule (step 4); again the solution can be modified by the scheduler.

. Finally, schedule monitoring (step 5) is handled by graphic tools with one exception: after

airplanes failures, the decision support algorithm is used to reschedule requests.

The relatively small size of this system made it ideal for a test demonstration that has been

implemented on Apple Macintosh microcomputers.

Let us now begin our presentation of A.I.S.E. by describing its support algorithm.



2 THE SCHEDULING HEURISTIC.

2.1 Presentation.

The heuristic selected for the M.A.C. scheduling system is an "Insertion" algorithm initially

developped by Dr. J. J. Jaw in order to solve the "Dial-a-Ride" problem. Many similar heuristic

algorithms have been developed over the years to solve the Travelling Salesman and the

Dial-a-Ride problem [ref. 6, 10, 17] but they usually consider a single pick-up or delivery point.

Jaw's heuristic was chosen because it allows multiple pick-up and delivery points and this

characteristics made it more appropriate for O.S.A.'s operational environment. In his thesis

[ref. 8], Dr. Jaw extensively presents the properties of this algorithm as well as its behavior

under various scenarios. We will review here the most fundamental aspects of the heuristic:

how it tries to produce an economically good answer and the computational efficiency of the

algorithm. We will then investigate the modifications and extensions to this algorithm that are

required by the Military Airlift Command specialized operations. Some of these modifications

have already been implemented and tested.

2.2 The Insertion Algorithm,

2.2.1 Some definitions,

Let us first review definitions of terms which will appear often in this thesis.

2.2.1.1 Fleet. stations and requests.

There are three sets of data which completely define the scheduling problem.



The Fleet represents the resources available to the scheduler. It consists of different

vehicles each with its own physical characteristics (speed, capacity) as well as economical

characteristics (operating costs...).

Vehicles with similar characteristics are said to be of the same type.

The Stations are the different Cities, Airports, warehouses etc..., the vehicles must serve.

Their geographical locations define some of the problem constraints such as interstation

distances. Other constraints will be defined by more general characteristics of these stations

such as curfews, fuel availability, length of runways etc...

Last, the Requests are demands for transportation of cargo, passengers etc... between two

stations. They mainly specify the volume to be carried and in our case, the earliest time at

which the load will be available as well as the latest time before which it must be delivered.

Thus, there is a "time window" constraint associated with each request.

2.2.1.2 Missions and Events.

For each vehicle, a Mission is a sequence of events occuring sequentially at specific times

during the scheduling period. These events will usually be of three types:

- Pick-up a specific load at a given station.

- Deliver a specific load at a given station.

- Go from one station to another. (In the air transport environment, this will be a flight.)

2.2.1.3 Schedule.

A Schedule consists of a series of missions which are individually assigned to specific

vehicles from the fleet. An extract of a typical schedule is shown in figure 2.1.

2.2.2 Purpose of the Insertion Algorithm.

As its name indicates, the purpose of this algorithm is to insert a specific "request" for

transportation into an already established schedule (see figure 2.2). If the request can be
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inserted in many different ways, some criterion will be used to select the insertion to be

retained.

The use of the algorithm can be generalized:

- if the initial schedule is "empty" (no request has been served yet), the sequential insertion

of multiple requests will be equivalent to the creation of a new schedule. This turns the

heuristic into a complete scheduling algorithm (see figure 2.3.).

. if the schedule is not empty, the algorithm will simply try to insert with minimum

disruptions; it will only modify the existing schedule.

In general, the algorithm will be used in a three-step process:

1) Accumulate a certain number of requests and create an initial schedule to satisfy them as

much as possible (scheduling function).

2) Insert last minute requests into this schedule (insertion function).

3) Revise parts of the schedule to accomodate last minute requests of high priority which

cannot be inserted otherwise (mixture of both functions).

2.2.3 The selection criterion,

As we mentioned in the last section, when a request can be satisfied in many different ways

a selection must be made. In the current implementation of the heuristic, the selection criterion

retained is minimum incremental travel time. Among various insertions, the selected candidate

will be the one that increases the duration of a mission by the le=I amount of time. The best

possible insertions are therefore those that accomodate requests with already scheduled flights

since they add no incremental time to missions.

2.2.4 The insertion procedure,

2.2.4.1 Insertion of single last minute requests,

The algorithm uses three phases to select the best way to satisfy the new request:
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Phase 1:

For each vehicle in the fleet, establish all possible ways the request can be inserted into the

current schedule.

At this point, account only for the time constraints.

Compare all possible solutions and select:

. the best one that can carry the full load

. the best one that can only carry part of the load (due to limitations on the remaining space

available).

Phase 2:

. For the "full load" solutions, compare the best answers among all vehicles and select the

best one.

- For the "split load" solutions, look at every possible combination of two best answers

among all vehicles and select thebest pair that can accomodate the full load. (Iq the

current implementation a pair's travel time is the sum of the travel times with each

vehicle.)

Phase 3:

Compare the "full load" and "split load" solutions and select the best one. If both solutions

add the same incremental time, choose the "full load" answer. If no feasible insertion can

be found at the end of phase 2, the request is rejected.

2.2.4.2 Sequential insertion of multiple requests (initial scheduling).

1) The initial processing of each request is executed with the 3 phase process described

above.

2) The best solution is then inserted into a "pool" of n answers which already contains the

best solutions corresponding to n- 1 previous requests from the request list.

3) The best answer among these n will finally be inserted into the schedule. If the requests



have different priorities, higher priorities will always be chosen first.

4) At this point, the remaining n-1 solutions will be re-calculated, taking into account the

new insertion, and a new request will be pulled from the list in order to keep the pool

always full.

This procedure is summarized in figure 2.4.
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Figure 2.4: Selection of best insertions



2.2.5 Data structure associated with the schedule,

A very flexible internal data structure has been chosen to represent each vehicle's mission.

It is based on the events described in 2.1.2.

Considering that each mission is a succession of events during the scheduling period, it is

represented as a linked list of event data records:

Figure 2.5: Mission list

Adding in the vehicle data itself, the global schedule is represented in computer memory as

follows:

Vehicle

Uehicle
2

fee

Uehicle
n

(Wrrag of
uehicle
data)

2 fee NIL (Mission list)

Euent
ese (Mission list)

gs (Mission list)

Fieure 2.6: Data structure of schedules

Figure 2.7 gives a full description of the structure with details of the content of the event

record.
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2.2.6 General comments,

In light of the above descriptions, a few comments can now be made.

1) The handling of split loads was not part of the original "Dial a ride" insertion algorithm.

2) Even though three types of events were described earlier, only two -pick up and

delivery- will appear in a mission list since it is assumed that a vehicle has to move

between two successive events which occur at two different stations.

3) This algorithm is a "forward insertion" heuristic: it will always insert a new event after

an old one. For this reason, only four types of insertions will be possible for a request,

(remember that an inserted request will consist of two events, a pick up and a delivery):

- Sequential insertion at end of schedule:

Pickup 0 eliuery

Event N IL

(old link)

Figure 2.8: Sequential insertion (1)

- Sequential insertion between two events from the mission list:

Pickup Deliuery

Euent Euent

(old link) Old list

Figure 2.9: Sequential insertion (2)

- Non-sequential insertion with delivery at end of schedule:



Pickup Delivery

Euent Euent Event NIL

(old link) (old link)

Figure 2. 10: Non-sequential insertion (1)

. Non-sequential insertion anywhere in the schedule:

Pickup Deliuery

Euent E ent Event EDent

(old link) (old link) Odls

Figure 2.11: Non-sequential insertion (2)

. Practically, when the heuristic tries to insert a new request into a mission list, it will skip

over the events which occur before the earliest time at which the load will be available. Then,

in order to find a feasible insertion, the algorithm will try each of the four types just described,

using the remaining events of the mission list.

The last three types of insertion may require the algorithm to push forward (i.e. later) in

time some already scheduled events. For instance, let us suppose that a vehicle went from

station AAA to BBB in its original mission; all pick-up's and deliveries occuring in BBB

and after must be delayed to a later time if we want the vehicle to go from AAA to CCC and

only then to BBB. The incremental trip time will be equal to the trip time from AAA to CCC

plus the trip time from CCC to BBB minus the old trip time from AAA to BBB. If this

process does not violate any of the latest delivery constraints, the insertion will be considered

as valid.

This behavior triggered the name "forward insertion" since events can be inserted only after

other events, and once inserted can be moved only forward in time by the algorithm.



2.2.7 Performance of the algorithm,

2.2.7.1 Size of the pool.

The pool (see 2.2.4.2) is the area where a certain number of feasible insertions are kept for

comparison before the fourth selection process (Figure 2.4). With a larger number of slots

in the pool more insertions can be compared and the resulting schedule should be better.

Different sizes, ranging from 1 to 5, have been experimented with, using various test cases.

The elements retained to evaluate the schedule produced in each case were the number of

passenger-miles flown, the average system load-factor and the total travel time required by

the schedule. The results are shown in Appendix 6.2.

As Jaw showed in ref. 8, increasing the pool size does not produce any specific

improvement. In our example from the appendix, we can even observe a deterioration of

the schedule with larger sizes. However, in other cases which were tested, pool sizes of 1

and 2 gave obviouslysbad schedules with many rejected requests. Improvements came only

with a size of 3. Overall, there is-no systematic trend and the "goodness" of the solution

seems to depend only on the order in which requests are presented for insertion.

After some experiments it was decided that a pool size of 5 would be a possible compromise

between producing a good schedule and not increasing substantially execution time. For the

time being, results produced by the insertion heuristic are at least as good or better than

those produced by human schedulers. However, further research is needed; a better

optimization objective-function must be defined, and the procedure to select best insertions

must be improved.

2.2.7.2 Execution time.

The timings shown on figures 2.12 and 2.13 were derived, using an Apple Macintosh

computer. The time is measured from the beginning of the insertion process to its end. Set

up time is not counted, neither is the time it takes to produce the results report.

Surprisingly, when one parameter (fleet size or number of requests) is fixed, calculation

times seem to increase linearly with the other parameter. This is not true. In fact, the



problem solved is so small that its real calculation time is hidden by a substantial computer

operating-system overhead. Jaw has shown [ref. 8] that computation times needed by the

insertion heuristic are proportional to V*(R/V)3 with V vehicles and R requests.

Time (minutes)

Fixed fleet

100 200 300
Number of requests

Fieure 2.12: Algorithm speed. fixed fleet & variable number of requests

Time (minutes)

Fixed number of
requests

(200)

Figure 2,13: Algorithm speed. fixed number of requests & variable fleet

of
30 vehicles

400

30 40 50 60 70 80 90 100
Number of vehicles



2.3 Modifications and extensions over the original insertion

algorithm for the dial-a-ride problem,

Most of the extensions which will be discussed here, were needed in order to satisfy the

Military Airlift Command operational requirements. Even though some of them may be very

specific to M.A.C. type of activity, most extensions would be needed in a general purpose

scheduling system.

When discussing the graphics aspect of A.I.S.E., other requirements will be studied which

do not involve the insertion heuristic.

Let us first review the M.A.C. requirements which necessitate modifications or extensions to

the algorithm. Their actual implementation will be discussed afterwards.

2.3.1 Description of operational requirements.

2.3.1.1 Duration of events.

The current implementation of the algorithm assumes that each event is instantaneous. For

instance, if a pick-up occurs at 10:00 the vehicle can leave the station at the same time. This

assumption is obviously unrealistic and must be modified.

2.3.1.2 Return to base. return to predefined station.

A vehicle located at a station at the beginning of the scheduling period may be forced to

return to that original base no later than a specified time.

A natural extension of this assumption is to be able to force the vehicle to return to any

specified station.

2.3.1.3 Maximum Crew duty.

Each mission is served by one crew and there can be some constraints on how long a crew

can remain operational during a scheduling period. This limits the duration of all missions.

M.A.C crews have a maximum duty time of 16 hours per day in peace time; their duty day

starts one hour before the first departure.



2.3.1.4 Operational range of vehicles,

There usually are some restrictions on how far a vehicle can go without refueling. This

means mainly that certain stations cannot be linked by a direct, non-stop service.

2.3.1.5 Minimum time on ground.

In the case of passenger transportation, boarding and disembarking events have a very

short duration and an efficient schedule could become very "tight" and quite sensitive to

unexpected events such as weather delays, minor breakdowns etc... In order to introduce

some slack in its operations and give some margins for small delays, M.A.C. requires a

minimum of one hour on the ground at any station.

2.3.1.6 Stations restrictions.

There may be some constraints at specific stations, which should be taken into account

when the schedule is established.

The most important ones will be:

- curfews : vehicles may not leave or arrive at a station during a certain period of time.

. maximum number of vehicles at a station at any given time: a station may have a limited

number of parking slots.

. maximum handling capacity : there may be enough parking space but not enough

equipment to unload more than a certain number of vehicles at the same time.

- runway length: in the case of airplanes there may be some physical constraints limiting

the access to certain stations.

2.3.1.7 Force a vehicle to stay at a station.

Again, in the case of passenger transportation, many requests will really consist of two

requests:

- Pick up somebody at a station and take him to another station (for a meeting).

- Take him back to the first station (after the meeting).

Very often, however, these requests are left open-ended: the return travel earliest time will

depend on the meeting itself. Under these circumstances M.A.C. ensures the availability



of a vehicle for its V.I.P's by keeping it ready on the ground as long as necessary.

During that time the vehicle cannot be used to satisfy any other request.

2.3.1.8 Force a vehicle to provide a non-stop service.

Even though the service will be provided within the desired time constraints, some

individuals might require service in which they are transported from one station to another

without many stops in between to pick up or unload other passengers.

2.3.1.9 Keep the departure times unchanged.

When the insertion process has reached the second stage where last minute requests are

handled, the algorithm might find a feasible solution by pushing forward in time some of

the services provided by a vehicle.

Unfortunately, if a scheduler has already transmitted the schedule to the individuals who

placed the requests, it might be desireable not to touch the departure times at all in order to

avoid too many late changes.

2.3.1.10 Force an infeasible request to be inserted and/or replace other requests of lower

priority.

Once an initial schedule has been established, all subsequent requests will be inserted only

on top of it. Prior requests already inserted will never be removed. It is possible,

therefore, that at a certain point the schedule becomes so dense that no further request can be

served, whatever its priority.

If a last minute request of extreme urgency is presented to the scheduler, it may not be

acceptable to have the system simply reject tharrequest if its insertion into the old schedule

is infeasible. A way should be provided to allow this request to replace any other request of

lower priority or, if this is not enough, to be inserted into the schedule before any request

of same priority.

2.3.1.11 Fix schedule up to a cut-off time and reschedule afterwards.

If a long series of last minute requests is presented to a scheduler who has already released

the schedule to operations, he (she) might want to modify it only after a certain time in order



to minimize short term disruptions and changes.

2.3.1.12 Reschedule missions following a vehicle failure.

This is certainly one of the most difficult task for the scheduler. For this reason it has

usually been handled in the most straightforward way: leave the other missions untouched,

relocate a spare vehicle to the station were the failure occurred and resume the mission with

a substantial delay...

However, an optimized rescheduling will often decrease the negative impact of vehicle

failures by re-routing more than one vehicle and spread the effect of these failures over more

missions. Such a capability should be added to our system.

Having reviewed these requirements, let us now return to the algorithm and see how it can be

modified or extended to account for them.

2.3.2 Addressing the operational requirements.

2.3.2.1 Duration of events,

A very simple modification was made:

1) Add an event duration field to each event record of the mission list.

2) Modify all the time and schedule calculations in order to account for this term.

2.3.2.2 Return to base.

Here, rather than altering the insertion algorithm, we decided to make use of "dummy

events". These events consist of pick-ups and deliveries of "null" loads (0 passenger, 0

pallet of cargo...) which are inserted into mission lists in order to force vehicles to be at

specific stations at specific times.

Suppose that our vehicle must return to its base no later than time T. The schedule is first

initialized with a dummy delivery that makes the vehicle start from the morning base. The

time at which this delivery occurs will be the beginning of the scheduling period (when our



vehicle becomes available). Following this initial delivery, the algorithm inserts a dummy

pick-up followed by another dummy delivery. All three events occur at the same station.

a) The second dummy delivery has a latest delivery time set equal to T in order to ensure

that the vehicle returns no later than T.

The event duration of this delivery is set to infinity to avoid the insertion of requests after

the return to the base.

b) The dumny pick-up has an earliest available time set to T and a duration equal to zero.

This dummy pick-up is necessary to keep the pick-ups and deliveries matched. This

requirement is not crucial in the current algorithm, but may become so in future

extensions. Another reason for including this activity is algorithm efficiency since

certain tests of feasibility are done using pick-up events.

Finally, for overall consistency, the time of occurence of both events is set to T.

Figure 2.14 shows how initial requirements will be translated into the initial "empty"

schedule. Suppose these requirements were: Vehicle V will be ready in AAA at time T =

07:30 and will have to return no later than T = 23:00.

The initial mission list for vehicle V will be:

LDT = 07:30 EPT = 23:00 LDT = 23:00 tim

On =00:00 O n =00:00 Dn =c

TO =07:30 TO =23:00 TO =23:00

Legend:

P = pickup, 0 = delivery
ST = station name
EPT =earliest pickup time, LOT = latest delivery time

On = duration of euent

TO = time of occurence for euent

Figure 2.14: Mission list with initial requirements



If the vehicle must return to a station different from its base of origin,the station of both

dummy events can simply be changed accordingly.

Finally, if the scheduler wants the vehicle to return to a specific station without any time

limit, the latest delivery time of the dummy delivery can be set to infinity.

2.3.2.3 Maximum Crew duty,

This constraint can be checked by keeping track of the total mission time for each vehicle.

This time includes both moving time as well as time spent at each station.

At the first and last stations of the mission, the time to be considered should be respectively

vehicle preparation and "deactivation" time.

When a new insertion is considered, the algorithm should simply add to the current mission

time the extra time required and check that the sum remains within the limit. If not, that

particular insertion will be dropped from further considerations.

Since each request is served as early as possible, it is possible that a vehicle leaves at the

beginning of the schedule period in order to serve an early request or relocate itself to

another station where service will be needed. Often, this early move will be followed by an

extensive time on the ground in order to wait for the next load to be available for pick-up.

For instance, we will have:

ARAA BBB

Leave empty Arrive Stay at Pickup Leave
at 6:00 at 7:00/ station / at 10:00/at 10:30

(Pickup duration
= 00:30)

Figure 2.15: Mission with time wasted at a station

Because of the limit on mission time, such a schedule should really be:



RAA BBB

Leave empty -Arrive/ Pickup / Leave
at 9:00 at 10:00 at 10:00 at 10:30

(Pickup duration
= 00:30)

Figure 2.16: Efficient schedule

However, if the first leg is pushed forward in time, we have seen that the algorithm has no

ability to move it back. The following new insertion will therefore become impossible:

RAN CCC BBB

6:00 6:30 7:30 8:00 9:30 10:00

Figure 2,17: Unfeasible insertion

For this reason, the dummy delivery event simulating the time at which the

vehicle becomes available should -never be moved forward. Rather, when computing the

mission duration, the algorithm should assume that the vehicle will leave on it's first trip as

late as is compatible with the first latest delivery constraint. When evaluating new possible

insertions, the mission time will be increased as described above only if the insertion does

not involve the first trip. If it does, the duration will be recalculated not using the time of

the first dummy delivery but assuming that the new first request is served as late as

possible.

Let us clarify this approach using the previous example. Before evaluating insertions, the

beginning of the mission list for our vehicle was:

(We have assumed that time to move from AAA to BBB was one hour)



PI ST = AAA P S=BB

EPT = 06:00 EPT = 10:00

On = 00:00 On = 00:30

TO =06:00 TO =10:00

Legend: See figure 2.14

Figure 2,18: Beginning of mission list

This list must be interpreted as:

- The vehicle is available at 6:00 in AAA.

- It will go from AAA to BBB totally empty (relocation).

. Finally, it will pick up a load in BBB at 10:00.

According to the principles discussed above, mission length will be calculated by adding

the following terms:

- One hour for vehicle preparation.

- One hour to relocate the vehicle from AAA to BBB (this move is assumed to occur as

late as possible from 9:00 to 10:00).

- Thirty minutes of ground/loading time in BBB.

- Etc...

If no "special treatment" was given to the first leg of the mission, the time calculation

would assume that the relocation occurs between 6:00 and 7:00 and add a three hour stay on

the ground (entirely wasted) in BBB.

Let us now suppose that part of a new request to be inserted is:

Pick up a load in CCC with EPT=8:00 and Dn=O:30.

(Moving times are respectively: one hour from AAA to CCC and one hour from CCC

to BBB).

A possible insertion to be evaluated will be:



Du ST = AR A AP ST = CCC P ST = BOB

LDT= 06:00 EPT= 08:00 EPT = 10:00

On = 00:00 On = 00:30 On = 00:30

TO = 06:00 TO = 08:00 TO = 10:00

Legend: See figure 2.14

Figure 2.19: Insertion into the schedule

Mission length should now be calculated by adding the following terms:

* One hour for vehicle preparation.

- One hour to relocate from AAA to CCC (again assume a departure as late as possible

at 7:00 and not 6:00).

. 30 minutes for loading in CCC.

- One hour to go to BBB (from 8:30 to 9:30).

. 30 minutes waiting on the ground at BBB.

. 30 minutes to load in BBB.

- Etc...

As one can see, if the minimum ground time requirement is ignored, there are still 30

minutes lost in BBB. One solution could be to move flight AAA to CCC forward by 30

minutes.

Unfortunately, this tactic would not be compatible with the algorithm implicit "policy":

serve each request as early as possible. There is, however a definite tradeoff. Experience

only will show whether it is better to serve each request as early as possible or implement a

"compaction algorithm" which would push events around in order to minimize time wasted

on the ground.



At the end of the mission, the same problem will occur only if a "return to base" constraint

is implemented. In other cases, the algorithm will schedule events as early as possible

insuring the earliest possible arrival at the last station of the mission.

In the "return to base" case, the problem can be easily fixed by changing the constraint

implementation previously described (see 2.3.3). The "earliest pick up time" of the dummy

pick up event should be changed to the time at which the vehicle is available at the beginning

of the scheduling period.

The algorithm will try to serve this dummy request as early as possible but because of the

infinite duration of the delivery all requests will be inserted before it.

With this new set up, we can expect to see the two dummy events separated by other pick

up or deliveries. Very likely, the dummy pick up will be the first event served in the

morning if the return has to be at the base (since the vehicle is already at the base, it does not

cost anything to insert the dummy pick up at this point). In fact, if it appears that any

matching of events (one pick up for one delivery) is not crucial, the dummy pick up could

be removed.

2.3.2.4 Range of vehicles,

When the insertion of a request necessitates a new movement from one station to another,

-the algorithm should check that the distance is less than the maximum range of the

concerned vehicle. If the range is not sufficient, however it is not possible to simply reject

the insertion.

Suppose for instance that we have:

. 3 stations:



BBB
ARAA

range of
vehicle CCC

0

. one vehicle whose range is not enough to go directly from AAA to CCC.

If the first request is for service between AAA and CCC, the range constraint would force

the algorithm in its current state to reject it. AAA to CCC would never be feasible; this is

obviously wrong. On the other hand, if the first request is between AAA and BBB and if

this trip leaves enough space for the AAA-CCC load, then the service from AAA to CCC

will become perfectly feasible with a stop in BBB. The feasibility of "out of range"

requests depends on the order in which they appear in the request list.

For a specific request, if the best insertion appears to be infeasible due to range restrictions,

the following strategy could be used:

(1)Find an appropriate feasible multi-stop itinerary.

- by asking the scheduler, or

- by looking into a data base where possible itineraries could be stored in advance or

upon request.

(2) Calculate the "cost " of providing the service with that itinerary.

(3) Compare it to the best entirely feasible insertion (if any).

(4) Take the cheapest one.

The insertion of a multi-stop itinerary will be done with two dummy events inserted at the

intermediate station:

. a dummy delivery of the load, with an event duration of 0 minutes followed by:

. a dummy pick up of the load, with an event duration equal to the refueling time of the



vehicle.

For a load to be carried from AAA to CCC with an intermediate stop in BBB, the mission

list will be:

E ~ ~ Es H OS BPTS = STB =ccC

EPT = ... LOT = oo EPT =morning EPT=..

On = ...e On = 00:00 Dn =refueling On=..

TO = TO =arriual TO =arriual TO

Legend: See figure 2.14

Figure 2.20: Handling of intermediate stops

The latest delivery time and earliest pick up time of the dummy events are set respectively to

infinity and to the start of the scheduling period. They should not interfere with the other

events.

2.3.2.5 Minimum time at stations,

In every case, the time spent at the station can be divided as follows:

1) Just after the arrival, a first time period is needed to unload. the vehicle.

2) Then there is a waiting period until a first load is available for pick-up.

3) The third period is the loading period that may include other waiting periods if the loads

to be picked-up are not quite ready.

4) A final waiting period will be required only if the minimum time at the station is more

than the length of all previous periods.

The duration of the loading and unloading periods will depend on the following factors:

. Duration of individual pick up and delivery events.

. Whether these events are parallel ( more than one piece of cargo can be unloaded at the

same time) or sequential (if the vehicle has only one door for instance) .



. Earliest pick up times.

All these elements are summarized in the following figure.

Deliveries

-Minimum time
at station

EPT 1  EPT 2

Figure 2.21: Typical activity at a station

In the case of our system, only passengers will be transported. Consequently, the loading

and unloading times will always be very short and altogether less than M.A.C. required

minimum time at a station.

Also, because passengers do not like to wait inside a vehicle that is not moving, we suggest

handling the constraint as follows:

U

N L
L W R I T 0
0 R
R 0
0

M.R.C. minimum
time requirement

Figure 2.22: Handling of station activity in the M.A.C. system

Pick ups



1) Assume that each pick up or delivery event has a duration of say 15

minutes and that they all occur in parallel.

2) Thus:

- set the start time of delivery events to the landing time, their duration to 15 minutes.

- set the start time of pick up events to (Landing Time + Minimum Time At

Station -15 Minutes) and their duration to 15 minutes.

2.3.2.6 Station Restrictions,

Most of the restrictions listed in 2.3.1.6 can be handled with a simple check by the

algorithm when a new insertion is being evaluated.

" If a station has any constraint on the vehicle types, insertions will be tried only on

appropriate types.

- If any curfew exists, insertions with inappropriate pick up or delivery times will be

rejected.

- etc...

The limit on loading/unloading equipment will require a different processing. It will mainly

affect the length of time spent at a station since the vehicle will have to wait for the

equipment to be available.

2.3.2.7 Force a vehicle to stay at a station.

This constraint can be handled by setting the delivery duration to infinity. The system will

not schedule any event after that delivery and the vehicle will stay at the station indefinitely.

Unfortunately, this setting would also lead to an inconsistent state of the system since

ultimately the vehicle will return to another station. If that station is known in advance, the

"return to station" dummy events should be added at the end of the mission list.

In the following chapter we will see how the system should interpret the mission list to

derive the schedule as well as the list of stations where overnight stays will occur.



2.3.2.8 Force a vehicle to provide a non-stop service.

The scheduler will have the ability to 'attach" the non-stop constraint to a request. If he

does, the algorithm will:

1) Evaluate only the non-stop insertions, if any.

2) Set the earliest pick up time and latest delivery time such that

LDT - EP = flight time

This choice will insure that no other request be served through an intermediate stop

which would require some extra time over the original non-stop service time.

2.3.2.9 Keep the departure times unchanged,

This constraint will be handled by the algorithm when checking the feasibility of new

insertions. If the insertion requires to move forward in time any event already scheduled, it

will be eliminated and considered infeasible.

If the scheduler wants such a constraint to be active,. it can be expected that feasible

insertions will become much more difficult to find.

2.3.2.10 Force an infeasible request to be inserted and/or replace other requests of lower

priority.

This requirement is one of the most difficult to handle because it requires a change to the

initial schedule rather than an addition to it.

If a last minute request of priority p cannot be inserted into the current schedule, the

scheduler has two ways to deal with it:

1) Consider that it was presented to the schedule after all previous p requests. In that case,

all requests of lower priority (p+l,p+2...) should be removed from the schedule , and the

insertion should be retried. If it remains infeasible, the scheduler can justify the rejection of

the request by its lateness with respect to other requests of same priority.

40



2) Consider that it was presented to the schedule before all previous priority p requests.

Here, all requests of priority p and less should be removed before the insertion is retried. If

it is rejected once more, the justification will simply be that there are already too many

requests of higher priority being served. In short, the priority is not high enough.

Let us now investigate how requests should be removed from the schedule.

If the schedule is kept unchanged and the appropriate events (priority p+l,p+2, etc...)

simply removed, the final result will not be very good. During the previous scheduling

process, the insertion of these lower priority events requires pushing forward in time some

of the higher priority events already inserted. If the low priority events are removed, the

remaining events will still be "pushed forward" and as we have seen, the algorithm will not

be able to move them back in time.

It is therefore more appropriate to "remove" lower priority events by returning to the

schedule obtained before these events were inserted. The algorithm should save the

schedule it has produced in a file, each time a request with a new (lower) priority is about to

be inserted.

The new process is described in figure 2.23.

Let us now look at two problems associated with this process.

1) Computation time and number of changes,

As shown in figure 2.23 each time a last minute request needs to be inserted, all lower

priority requests have to be re-inserted afterwards. The insertion will therefore become

quite long if the request is of high priority; basically the whole schedule would have to be

recalculated. Moreover, even though the new request will be served by one or two vehicles

at most, the new insertion could affect the missions of other vehicles as well.

If execution speed is critical or if it is important to keep the schedule intact as much as

possible, the previous strategy could-be changed as follows:

If the insertion in the schedule with priorities 1 and 2 is feasible then



I
Build
initial

schedule

4

Insert
last minute

request
of priority 2

Process priority

Saue schedule with

Process priority

SSaue schedule with p

IProcess priority

Figure 2.23: Process to modify the schedule when an insertion is not feasible
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. keep the new schedule only for the affected vehicles,

- reinstall the previous final schedule for all other vehicles,

. re-insert the requests displaced by the new insertion only. Modify all intermediate

schedules as needed.

Experiments only will show if a schedule produced in this manner is much worse than one

obtained by rescheduling all lower priority requests.

Depending on the results there may be some tradeoffs involved between keeping the

schedule intact and making it as efficient as possible.

2) Feasible last minute requests,

Let us suppose that before an infeasible priority 2 request was presented to the scheduler,

two other priority 1 last .minute requests had been successfully inserted. Since these 2

requests were not part of the original list, they will not appear in any of the intermediate

schedules saved in data files. If the new process described in figure 2.23 is used, these

requests will not be served any more since the system restarts from one of the intermediate

schedules. To avoid this undesireable effect, the following steps should be added to the

process:

a) If a last minute request is successfully inserted, add it to a stack.

(each priority should have its own stack).

b) If a rejected last minute request must be inserted, rebuild the schedule by inserting at

each priority level

- the requests from the appropriate stack if it is not empty,

- the rejected request when its priority has been reached.

c) Empty all the stacks and add their requests to the main request list.

Finally, depending on how the fleet is set up, it may be appropriate for the system to give



the scheduler the capability to serve an infeasible request by adding a spare vehicle to the

active fleet.

2.3.2.11 Fix schedule up to a cutoff time and reschedule afterwards.

The major difficulty with this feature will be the selection of events that should be kept or

even fixed in the schedule once the cutoff time has been selected.

Practically, around that time a typical vehicle will either:

. be at a station, totally empty [case I], or

- be at a station, but with a load in "transit" [case II], or

- be moving from one station to the next with a load on board [caseII].

Case I is the most simple to handle. All requests that were served prior to cutoff time are

left unchanged into the old schedule; the others are put back into the request list. A new

schedule is then initialized in which the vehicle is simply available at cutoff time at the

station where it stopped.

Case II requires the scheduler to make some decisions. As in case I, all the requests entirely

served (pick-up and delivery) before cutoff time will be kept in the old schedule; all those

for which the pick-up will occur after cutoff time are put back into the request list. The

requests in transit (pick up has been done but not delivery) cannot be handled as easily: two

strategies are possible.

- Cancel the pick-up event of the transit request and put the request back into the request

list. This makes the old schedule less efficient, but keeps the insertion process simple

and free to build the new schedule optimally.

- Keep the pick up event and force the delivery to occur in the new schedule. The old

schedule remains untouched but the new one will not be as efficient as possible (within

the limits of the algorithm) since it has to deliver the requests in transit.

If the second strategy is selected, the new schedule will have to be prepared with all

necessary events appropriately placed:



- the dummy delivery at the beginning for the availability information,

. the deliveries of requests in transit as early as possible (since the algorithm can only

push them forward in time),

- the dummy pick-up and delivery at the end, if any "return to station" constraint is

active.

Again if it is important to have a match between pickups and deliveries, the deliveries from

requests in transit could be balanced with dummy pickups of the appropriate load at the new

station of origin.

Case III will be turned into case I or II as soon as a station is selected as the origin of the

new schedule. This station can either be the one the vehicle is coming from or the one it is

going to . If the system has to be automatic , it could select the station

. which is after cutoff time (in order to keep the old schedule as untouched as possible),

or

- which has the least number of requests in transit (in order to allow for more optimality),

or

- which is closest to cutoff time.

It may be appropriate, however, to leave the choice to the scheduler.

Figure 2.24 summarizes the handling of cutoff time by an example.



Old schedule

STRT |1

continue

continue

CUTOFF TIHE IS 12:00 - BBB IS SELECTED RS CUTOFF STATION

Old schedule is changed to:

STR RT PICK-UP DEllUER

i n loads 1 D' 2 load 1

RRR in RRR in BBB

at 6:00 at 9:00 at 11:00

Neu schedule

STaRT DElb TER
in load 2

BBB in000

at I11:00 at 12:30

Requests for transportation of loads 3 and 4 are put back into REQUEST LIST.

Figure 2,24: Effect of a cutoff time on the schedule



2.3.2.12 Reschedule missions following a vehicle failure.

This last extension to the insertion algorithm can be handled in two different ways.

1) Re-insertion of affected requests,

With this technique, the rescheduling process is automatic. First, the scheduler makes all

spare vehicles available to the system. Then, the insertion algorithm is used to reinsert all the

requests affected by the failure:

. requests not yet served (pick-up not done); the request specifications remain unchanged.

- requests not yet delivered; the specifications are changed to reflect the fact that these

requests must now be picked-up at the station where the failure occured.

The advantage of this approach is that it will try to reschedule with minimum incremental

time. The solution, however, may not be acceptable to the scheduler if some requests are

rejected or if some missions are substantially modified. In order to give the user more

control, we suggest also the following heuristic.

2) Manual rescheduling.

Even though we consider this modification as. an extension, it may be more appropriate to

view it as another decision support tool which can be used in parallel to the insertion

algorithm.

Since a failure is a dynamic event which becomes known only when it occurs, the task of the

scheduler is to find out which vehicle are, or will be, available after failure time, and figure

out if some of these vehicles can be used to solve the problem.

This process can be decomposed in the following way:

1) Get failure information:

- Current time: CT

- Vehicle type: V

- Estimated repair time: RT

- Station at which failure occured: AAA

2) Check if there is a spare vehicle of type V at AAA. If yes, the problem is solved:



transfer loads to spare and leave with it. If no, find out where the nearest spare of type

V is (BBB) and continue with step 3).

3) Check if the spare can be moved to AAA and be loaded before the originally scheduled

departure time from AAA. If yes, move it. If no, continue with step 4).

4) At this point, the maximum delay (MD) in AAA will be:

MD = min(RT, trip time from BBB to AAA).

This delay in AAA can be reduced if an appropriate combination of vehicles and stations

is used.

If for instance, a regularly scheduled vehicle of type V is at station CCC at time CT, and if

CCC lies halfway between AAA and BBB, then it is possible to send the spare vehicle

from BBB to CCC and reroute the scheduled vehicle from CCC to AAA. With this

scheme, the delay in AAA could be reduced to MD/2 (If RT is greater than trip time from

BBB to AAA) at the cost of introducing another MD/2 delay in CCC.

However, if enough slack ground time is available (see 2.3.6), two delays of MD/2 may be

much easier to absorb than one delay of MD.

In more detail, the intermediate station CCC should be selected with the following

conditions (it is assumed that all spares are available at time CT and that a scheduled vehicles

of type V is available in CCC at time CT+WT, [Waiting Time] since it will land in CCC

after CT and must be unloaded first):

. trip time from CCC to AAA should be less than MD,

- trip time from BBB to CCC should be less than MD,

. [WT+ trip time from CCC to AAA] should be inferior enough to MD

(It is not worth relocating vehicles all around in order to reduce MD by 5 or 10 minutes),

- the delay introduced in CCC should also be inferior enough to MD.

5) The final station CCC will be the one producing the smallest overall delay (delay in

AAA + delay in CCC). If no intermediate station can be found, the nearest spare will

be used unless the disabled vehicle can be repaired within relocation time.



Three final remarks can be made about this process.

a) During the selection of an intermediate station (CCC), the resulting delays have to be

inferior enough to MD. How much enough should either be decided by the scheduler or

based on what type of delays can be absorbed by the slack waiting time at stations.

b) The use of one intermediate station was not an arbitrary decision. In reality, a delay

could be reduced into smaller pieces, spread over more than two missions but the processing

involved was considered unecessarily complex and lengthy.

c) The advantage of this approach is that the scheduler has full control over the station

CCC that will be selected. If the best choice (timewise) corresponds to a mission that should

not be changed (no delay added), it can simply be rejected.



3 THE GRAPHICS INTERFACE.

3.1. Presentation,

As we explained at the beginning of the thesis, A.I.S.E. is a hybrid system that provides both

a decision support tool composed of an insertion heuristic, and a graphics environment through

which the user can create, control and manipulate a schedule.

This chapter will first review the new generation of computer hardware and software that

made the implementation of these ideas possible. It will then describe the principles that

underlie the graphics interface as well as the characteristics of the scheduling environment. A

specific section will look at how the insertion algorithm and the graphics tool should interact in

order to complement each other.

3.2 The new generation of personal computers.

Specific developments have occured over the past 20 years and lead to the graphics oriented

systems that flourish everywhere nowadays.

3.2.1 The mouse.

In hardware, the "revolution" started in 1964 with the invention of a pointing device, called"

a mouse", by Douglas Erigelbart from the Stanford Research Institute. Typically a mouse is a

little box equipped with a system that detects in which direction it is moved. Modem mice

have either:



. a ball that rotates as the mouse is moved over a flat surface, or

- an optical scanner that "reads" a grid engraved on a flat platen.

The movement information is interpreted by the computer and used to move in a similar

manner a graphic arrow on the C.R.T.. Since the arrow follows exactly the movements

imposed on the mouse, the user has the impression of moving the mouse (see figure 3.1).

With this system, it is possible to locate the arrow very precisely over any area of the

computer screen.

Mouse cursor movesin the same way
theM moueis moved

Figure 3.1: Relationship between mouse and cursor movements

A mouse is also equipped with 1,2 or even 3 buttons that are used to trigger actions from the

system. These actions will depend on:

. which button was depressed, and

- over which area of the screen the arrow was positioned.

3.2.2. The desktop.

The second major idea came in Software. In 1970, Xerox Corporation formed its Palo Alto



Research Center (PARC) that investigated new ideas on how to make computers more "user

friendly"

From this research emerged the idea of desk top environment. The computer C.R.T. is

considered as an image of a typical desk; on top of it, lies a certain number of items:

. document folders,

. closed documents represented by graphic symbols (for the type) together with names

(symbols are called "Icons"),

- opened documents that appear inside "windows".

A window typically is a partial rectangular view of a document sheet of paper. -It can be resized

and moved around. The user can look at any part of a document by scrolling it sideways or up

and down inside its window.

Finally as on a real desk, many windows will be allowed to overlap but only the top most one

will be "active", the document it represents being modifiable by the user.

-Scheduling Folder.,-z kN
CURRENT SCHEDULE

ED ~ - MISSIONS RRRF

******************** AIRCRAFT *6 *5 01:00 24
5 05:00 21:1

TYPE = C21 / STATION = MIA / TIME WH ESTS

ITINERARY : MIA 06:30 10:00
10:00 15:50

SCHEDULED DESIRED PAX 10:00 21:00
6%$ BASE MODE TIME TIME ON/OF 04:00 09:00

---- ---- --------- ------- ------ 07:00 12:00
12:30 23:00
1:00 19:00

X

Figure 3.2: A typical desktop display with three windows, one folder

and one closed document.

7,5'

---- --------------- ---------------- -------------- ----- -



Obviously, the desktop type of display requires a lot of graphics operations. Its feasibility is

therefore also due to the dramatic increase in speed of new microprocessors that allows for

real time modifications of desktop items.

Both the mouse and the desktop ideas have been incorporated by Apple computer into its new

line of machines. This line started in 1983 with the expensive Lisa, followed in 1984 by the

Macintosh. A.I.S.E. originally developed on the Lisa, is now implemented on the Macintosh.

3.2.3 The Macintosh environment,

Let us now turn to the Macintosh environment more specifically. We will review in turn the

user interface (how the user and the computer communicate) and the special type of

programming needed for each application to fit within this interface.

3.2.3.1 The User Interface.

Basically this interface is a close replica of Xerox P.A.R.C. desktop idea. When the machine

is started, the desktop appears on the screen with all sortsof icons representing:

. the disk drives connected to the system

. the document folders

- the documents themselves that can either be applications (programs) or data files to be used

by these applications.

When a disk drive is opened, the icons corresponding to its content appear in a window or in

a folder.

At the top of the screen, Apple has added a new idea: the menu bar. Through it, we will see

how the mouse is used to interact with the system.

Looking at figure 3.3, the menu bar appears as a white band containing a certain number of

menu names. If the user moves the arrow over a name, presses and holds down the mouse

button, an appropriate "pull down menu" appears right under the corresponding name. This

pull down menu is a rectangle containing a list of commands that can be executed (Print,

Copy, Duplicate, etc...). Holding down the mouse button the user will then move the arrow



down the menu rectangle, highlighting each command as the arrow passes over it. Once the

arrow is positioned over the appropriate command, the mouse button is released and the

command is executed by the system. This process is described in figure 3.4..

Figure 3.5 describes the elements of windows used in the Macintosh environment. On top of

each window a bar is displayed that contains a name of the document presented. If the

window is active that name is highlighted. By moving the arrow over the left hand side

square and clicking the mouse button the user will close the window.

The window can be dragged around the desktop by moving the arrow anywhere else on the

top bar, pressing and holding the mouse button, moving the arrow ( a shape of the window

follows) and releasing the button. The window can also be resized with the same sequence

repeated over the square in the lower right corner. Finally, since each window is a partial

view of a document, "controls" are provided to scroll the view in any direction. They appear

on the right and bottom side of the window.

Fi2ure 3.3: The Apple Macintosh desktop
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Figure 3.5: A typical Macintosh window

A control typically has :

- 2 arrows that when clicked over with the mouse make the system scroll the document view

by a fixed amount.

Box to close window

MISSIONS'

r******************* AIRCRAFT # 1 *********
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. a square ("elevator") that can be dragged along the control element to position the view

anywhere over the document.

The dragging is done as usual (point, click, hold, move and release). When the elevator is at

one end of the control, the corresponding end of the document will be displayed in the

window (see figure 3.6).

1) Left side of document is visible

. . .. . ... .................................. ...... .

2) Center of document is visible
:. . ........... . .

3) Right side of document is visible

Figure 3.6: Relationship between the "elevator" position and

the visible area of a document

When an application such as the scheduling system is started (by clicking twice on its icon), it

takes over the system, creates its own desktop environment with the menu bar and opens

appropriate windows on top of it. We will now look at how such an application keeps track

of the user interaction through the mouse and the keyboard as well as how it monitors external

events such as messages arriving from a network.

3.2.3.2 Application programming.

Two special techniques have to be used in order to put together applications such as A.I.S.E.

let us review them successively.
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1) Event driven system.

In order to exploit the desktop capabilities each Macintosh application must be programmed as

an "event driven system". In such a system the computer is considered as a central node that

constantly monitors events occuring "around" it and takes appropriate actions depending of

the event detected. The types of events detectible by the system are:

. Mouse button up or down,

. Keyboard key up or down,

- New diskette inserted,

* Make an opened window active (bring it to the front, etc..),

. Update a window (redraw the visible part of its content),

" "Appletalk" external network event,

. Application defined events.

In order to implement such an interaction, the computer operating system accumulates into a

queue the codes and characteristics of the successive events it detects. Each application, in

turn, consists of a main loop that constantly:

. Reads the next event in the queue, and

. Depending on its type,

- reads its characteristics from the appropriate memory locations (which was pressed,

what type of message is coming from the network, etc...).

- Executes the appropriate processing.

Figure 3.7 summarizes this organization.

This process is made possible because most events originate from a human operator who is

very slow compared to the processing speed of new microprocessors. For example, when a

user types some text into the system each key stroke is considered as an individual event that is

processed ( find the character corresponding to the key and display it at an appropriate position

in the active window) through a full iteration of the loop.



MAIN LOOP

Get neHt EVENT from the queue

If EVENT is: Network

Network
e mouse key down then do:

- find out where the mouse cursor was

- if it was over:

* menu area then do:

- find out which menu

- eHecute corresponding command

* a window then do:

- find out which window
- take appropriate action

* ETC...

* keyboard key down then do:
- find out which keg was pressed

- if appropriate write the corresponding letter

into the currently active Edit Area

e update window then do:
- find out which window
- redraw the content and rewrite ang Edit Area

(the sgstem automaticalig constrains the update
to the visible part of the window)

* ETC...

Figure 3.7: Typical event driven system



The program is fast enough to even loop a few times between each keystrokes and therefore

detect and process other types of events that might occur while the user is typing ( a message

coming from the network, for instance).

The combination of sequential event handling and processor speed actually gives the illusion

that many activities can be executed at the same time. This last point highlights the need for

this type of programming. Since no single process takes over the machine, the user can

switch easily from one environment to another by changing the active window,

- interrupt its current activity to resize or move a window, execute a command from the

menu bar, etc... , and

- receive warnings about events occuring in the background of the main activity.

Moreover, none of these capabilities requires the system to terminate the current process that

only needs to be temporarily interrupted.

2) Graphic objects.

It is possible to expand the desktop and mouse philosophy beyond simple operating system

applications.

As we have seen, the principle behind the desktop concept is "object manipulation".

Typically, the user selects a "graphic object" (window, folder icor., document icon, etc...) by

clicking with the mouse button while the arrow is on top of the object image. It is then

possible to:

- move the object on the screen, by keeping the mouse button down and dragging the image

around, or

- act on the object, by selecting a command from the menu bar.

Derived from these concepts, the idea behind the experimental scheduling electronic

drawing-board has been to consider flights (or more generally movements from one station to

another) as individual objects that can be manipulated by a human scheduler with the methods

described above.



When object oriented applications are designed, a certain number of general principles have to

be considered. Let us review here some rules that should be kept in mind while programming

such applications.

Rule 1: Each object on the graphic screen is uniquely related to a data record in the

underlying data base.

Rule 2: Each time an object is acted upon, the corresponding data record must be updated

before the object graphic representation.

Rule 3: If any of the updated information is subject to certain constraints, these

constraints must be checked before the data base and the display are changed.

Rule 4: The system should distinguish between two types of constraints :

- those that are simple boundaries on the attributes of objects (the fields of the data base

records); in this case, there should be three steps in the processing cycle: calculate the

new values of the attributes, check them against the constraints, and either update the

object location and attributes or cancel the process if there is any violation.

- those that relate attributes of different objects to each other; the number of steps in the

cycle should be greater than three: calculate the new values of the attributes, check them

against the constraints either cancel if there is any visible violation, or calculate new

values of attributes of objects affected by the constraints, again check them for

feasibility, etc..., if everything is feasible update each affected object graphic image.

These cycles are shown in the following figure.

Rule 5: Each object has two types of attributes.

. those that have a fixed value; their graphic representation will be fixed and belong to the

background of the display. It may be selectable.

. those that have variable values; their representation will be selectable and movable over

the background.
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Figure 3.8: Graphic object manipulation cycle.

Rule 6: The graphic interface should be entirely separated from the rest of the application.

It should act only as a transfer between the actions of the user on the screen (and

with the mouse) and the data base records as well as procedures to be executed

(figure 3.9).



Figure 3.9: Graphic interface organization.

3.3 The graphic scheduling environment.

3.3.1 O.S.A. scheduling organization.

A description of O.S.A. activities was already given in section 1.3. We will look here at the

personnel organization whithin the scheduling division and infer from it a possible setup of

the support computer system. [Note: in the following description, we will call day 0 the day

the missions are flown, day -1 the day prior to day 0, etc...]. Looking at a typical cycle of

activity, we can distinguish between the following people:

I) The Request Handler.

From day -15 to day -3 or-2 requests are transmitted to the scheduling department in two

steps:

- first, the request specification is electronically transmitted to an O.S.A. mainframe

computer where it is added to a request data base.

. second, the request originator calls the Request Handler (RH.) to check that the request has

been properly transmitted, confirm it and perhaps modify it or remove it.

The role of the R.H. is to update/modify requests already entered into the data base and make

sure that they are all consistent and confirmed.



2) The Schedule Planner.

On day -2, the Schedule Planner (S.P.) uses all the requests accumulated into the data base to

create a first draft of the schedule: the schedule plan.

3) The Schedule Controller #1 (S.C.1).

On day -1, the S.C. 1 does flight management on the schedule plan. He adds to mission

specifications the actual tail number of the airplane that is going to be used, the names of the

pilots etc... Last minute requests (or modifications to requests) are usually handed to him. If

they can be handled by the current schedule, he will modify the flight plane accordingly. If

they cannot, S.C. 1 will interact with S.P. to see how the schedule can be modified with

minimum disruptions.

4) The Schedule Controller #2 (S.C.2)

On day 0, the S.C.2 follows the execution of each mission. If an airplane failure occurs, he

will be in charge of all necessary re-scheduling and will have to contact all affected

passengers.

Practically, two individuals occupy the positions of S.C. 1 and S.C.2. They both rotate

constantly: the S.C.1 on day -1 becomes S.C.2 for the same schedule on day 0. On day 1,

he becomes again S.C. 1 for the schedule of day 2, etc...

5) The Archiver.

After the missions have been flown, the Archiver will retrieve some operational data and store

them into another data base. Stored information includes number of hours flown, fuel

consumption, delays observed etc... At certain dates, the Archiver will produce summary

reports about O.S.A. operations.

These roles are summarized in figure 3.10.
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Day -15 Request
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Day -2 Schedule plan SCHEDULE PLRNNER
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Figure 3.10: O.S.A. scheduling organization.

The next figure shows how A.I.S.E fits inside this organization. The following comments

clarify the set-up.

1) All the Macintosh "stations" will be connected by a Local Area Network to each other (mail

and message capability.) as well as to a main hard disk (shared data base capability).

2) The R.H. will be able to work either with the O.S.A mainframe computer or directly

whithin the Macintosh network environment. In any case, request information available on

the mainframe will be transmitted to the request file of the Macintosh system data base.
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Figure 3.11: Physical set-un of the new scheduline organization.

3) The schedule planner will access most data from the main hard disk and will produce the

schedule plan using both the insertion algorithm and the schedule drawing-board. The

resulting plan will be saved back on the main electronic hard disk.

4) The schedule controllers will access the schedule plans with the electronic drawing board.

The support algorithm will only be used on day 0 if an airplane becomes disabled. The actual



execution of missions (real landing times etc...) is recorded into an operational data base.

5) The archiver will retrieve appropriate information from the operational data base and update

the archival data base from which summary reports will be produced. This function can

certainly be automatized entirely.

3.3.2 The Schedule electronic drawing-board.

The drawing board appears as a typical desktop with its menu bar and windows (figure 3.12).

Figure 3.12: A.I.S.E. desktop display.

In this section we will look successively at the two types of windows that can be used and

discuss the commands available from the menu bar.

3.3.2.1 The mission display window.

Inside this window appears part of a mission display [ref. 1] that is organized with time of

day running horizontally and missions assigned vertically (see fig. 3.13). Let us review each

element successively.



Figure 3.13: The mission display window.

1) Flights.

Each mission consists of a series of successive flights that appear one after each other

throughout the day. As we discussed before, each flight is an object that can be moved

around the display and inserted into any mission or moved within a mission. The flight

graphic image is interpreted as follows:

Figure 3.14: Image of the "flight" object.

Flight 102 from Saint-Louis to Atlanta
Leaves at 13:30 and Arrives at 14:50



Figure 3.14 shows how such a flight can be moved.

Fieure 3.15: Movine a flight obiect over the displav.

2) Display Area.

The area of the mission display visible in the window is divided into three sections.

a) The left column lists the numbers of the visible missions, the time zone used to display

time and a ">>>" sign if a mission has any more flights at the left of the visible area.

Both the mission number and the time zone indicator will be selectable with the mouse.

When the time zone is selected, the user will be able to change it. When the mission is

selected, the user will be able to act upon it with commands from the menu bar.

b) The central area displays the individual flights of each mission over a time grid that has a

vertical bar for each hour.

c) The left column contains a "<<<" sign if a mission has any more flights at the right of the

visible area.

3) Window,

The window itself has the following standard items:



. A title bar that can be used to move the window around the desktop.

A box on the left side of the title bar to close the window.

- A box on the lower right corner of the window to resize the window. If the window is

resized horizontally, on the central part of the display is resized accordingly; the left and

right column have a fixed width.

- A vertical scroll bar : The square is used for continuous scrolling, the arrows that scroll

one mission at a time. If the mouse button is pressed while the cursor is on the gray area

between the square and one of the arrows, the display is scrolled one full window at a

time.

- The horizontal scroll-bar follows the same principles except that only the central will be

scrolled and the arrows will allow to scroll one hour at a time.

4) Menu Commands.

The following commands will be available under each menu title.

- Help menu.

This menu will include a Help command that will display a window with explanations about

the action currently undertaken by the user. At any point in time the user should be able to get

help panel on any command available in the system.

Under Help, we will find a succession of "desk accessories" such as calculator, calendar,

clock etc... that can be brought over the desktop at any time.

. File menu.

It will include the following commands:

- New mission display : a completely blank mission display window appears on the

desktop.

- Open mission display : a list of schedule files appears first for selection, the mission

display window is opened afterwards with the flights corresponding to the schedule

selected.

- Close mission display : closes the window and asks the user if the changes made (if



any) are to be saved on the file.

- Print : the user can print a certain number of standard reports with mission

information.

Edit menu.

It will include:

- Undo last change : allows the user to cancel the effect of some modifications made to

the display (usually by mistake).

- Cut : an object such as a flight or an entire mission or even the entire schedule can be

removed from the display and saved into a temporary clipboard.

- Copy: same as cut except that the object affected is not removed from the display.

- Paste: bring back on the next available slot the object that has been put into the

clipboard.

- Select all : the entire schedule can be selected in one command (in order to copy it, for

example).

. Window menu.

Enables to select the type of the next window to be opened on the display:

- Mission display

- Station display ( see 3.3.2.2)

. Special menu.

This menu will include most of the commands that do not fit under any of the other

categories.

- Information : when an object is selected, this command will enable the user to access any

data that is related to that object and not currently visible on the display. This information

will appear inside a window that will be automatically opened over the mission display

window; if appropriate, the user will be able to modify data at that point. Three types of

information windows will be implemented:



* Schedule information :

Figure 3,16: Schedule information window,

* Mission information (the editable items appear inside rectangles):

INFORHATION on Mission

Number: 14

Aircraft type:

i Schedule: Sched. 1/1/85 '

C12
tail number:
capacity: 6
return constraint:

USMAC-1 234

ONI 23:30 in ATL

Crew Captain:
Copilot:
Mechanics:

Starts: 06:15
Ends: 16:55

Data status:

* . mi

. . ones
t. . raes

HEDULED

Figure 3.17: Mission information window,

INFORHATION on Schedule

Name: Sched. 1/1/85
Date created: 12/30/84
Last modified: 12/31/84
Active options:

Crew duty day ON (16:00)
Minimum ground time OFF
Keep departure times unchanged ON



* Flight information:

INFDRMRTION on Flight Schedule: Sched. 1/1/85

Number: 104

Origin: JFK Leaves: 06:15
Destination: DCA Arrives: 07:55
Flight time: 01:40

Aircraft capacity: 6 Loads on board:

Request Load EPT LDT Priority

53 3 06:00 10:00 2
68 3 06:15 11:30 3

Constraints stay on ground:7ON
non-stop: ON

Data status: SCHEDULE

Figure 3,18: Flight information window,

- Auto-create : this command will be used to create a new schedule using the insertion

algorithm; It will be available only if the current mission display is empty. Before any

calculation starts, the user will be prompted for the name of the requests list to be used as

well as the name of the schedule created.

- Insert request : the user will be able to insert a single request into the current active

schedule. He will be prompted for the characteristics of the request, and after the insertion

the display will scrolled automatically to show the flight with which the request will be

served. If needed, all displaced flights could also be highlighted.

If the request cannot be inserted the system will warn the user and give him a certain

number of options depending on how many of the items discussed in chapter 2 have been

implemented. The choices could be:



* OK : the request is added to the list of rejected requests.

* Force after same priority requests : (see 2.3.2.10) insert the request after all

others of same priority and reschedule all lower priorities.

* Force before same priority requests : (see 2.3.2.10) reschedule all requests of

same priority with the request appearing at the top of the list; reschedule all lower

priorities.

Again the system will scroll the display over the appropriate flight or announce the

unfeasibility.

- Cutoff time : (see 2.3.2.11) The system will first ask the user to give the desired time. It

will then scroll horizontally the display in order to have the cutoff time at the center, a gray

line will show the separation and all affected flights will be surrounder by a frame. At that

point the user will have a chance to select some of the flights that should not be changed :

they will become highlighted inside their box (figure 3.19). When the selection is done the

user will tell the system to go ahead and reschedule. Every eliminated requests will be put

back into the request list.

Figure 3.19: Mission display with cut-off time.



- Failure : this command will be used to start the process described in 2.3.2.12. The system

will first ask for the number of the mission affected and the station at that the airplane is

grounded. The support algorithm will then be used to propose some solutions that can be

rejected by the user.

- Keep airplane on the ground (ON/OFF) (see 2.3.2.7): the user selects the flight after which

the airplane should stay on the ground, and sets the constraint on. If the flight selected is

already subject to the constraint, this command allows to remove it.

- Keep flight non-stop (ON/OFF) (see 2.3.2.8): this command works like the previous one.

- Option menu.

This menu will be available in order to select the options that should be active when the

insertion algorithm (see 2.3.2.3) is used. Its items will be :

- Crew duty day : the system will give the user two choices:

* constraint on; enter length of maximum duty day.

* constraint off.

- Minimum ground time: (see 2.3.2.5) as above the choices will be:

* constraint on; enter minimum ground time.

* constraint off.

- Keep departure times unchanged (see 2.3.2.9):

* constraint on.

* constraint off.

This option will be used only when the algorithm inserts a single request into an "old"

schedule.

3.3.2.2 The Station display window.

Nearly all the characteristics of the mission display described above, are exactly the same with

the station display. This section will cover only the differences.



Figure 3.20: The mission display window.

1) Flights.

Flights are handled differently in the station display; they are represented graphically by two

objects rather than one. This is due to the way the station information is displayed; flights

arrive at the station over the "station line" and depart from it underneath.

Station line

Arriving flights
... . . ..||| .. ... .... . . ... . . . .. . ..||||.. ..

*.~.. ... ..... .* ........ * .. . . . .

.. . ..* .. ** .... ** ...... . * * ..*. * *. .*.* . .~ .*. *. .* . .* *. .. .* *. *. .* .* *. .*.~*.* *.*............... ... .I.*............*.*. ................... .

U Departing flights

Continuation
link

Figure 3.21: Organization of flights in the station display

The flight objects will therefore be:

. a flight arrival
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Figure 3,22: Arriving flight graphic object,

a flight departure

sI22

%52 Minutes of departure time
MIAI

Destination station

Flight number

Figure 3.23: Departing flight graphic object.

Both objects will be attached to two different stations since it is unlikely that a flight will

take-off and land at the same base. Moreover, a continuation link (see figure 3.21) will relate

an arrival to a departure if the corresponding flights are sequentially served by the same

airplane.

As before, flights can be moved in the usual fashion:



:1:

Figure 3.24: Moving a flight on the station display.

2) Display area.

It was decided to allow the display of only two stations at a time. For this reason,the window

is divided into 3 sections.

a) The left column that includes the station names and the time zone indicator. Both can be

selected as before.

b) The upper station area.

c) The lower station area.

3) Window,

It is again a very standard type of window with the following exceptions:

. Horizontal scrolling does not affect the left hand-side area.

- If the window is large enough to display entirely both stations areas, the vertical scroll bar

will disappear.

- It will also be possible to scroll horizontally one station area at a time. If two stations are

shown with the same time zone and if the difference between the times on each area is

equal to the flight-time between the stations the scheduler will see the departure of a flight



just over its arrival. This is quite convenient when a flight has to be moved since the effect

of the change at the next station can be observed instantly as in figure 3.24.

4) Menu commands,

All the commands described above will be available when working with the station display.

The only differences will be:

- Special menu

When the station name at the left of the display is selected., a station information window can

be displayed with the Information command. This window is shown in the next figure with

all editable items displayed inside rectangles.

The constraints in effect at a station will all be selectable from this window rather than from

the option menu. This set-up is preferred since it is unlikely to have a single constraint apply

to every station of the network.

INFORMATION on Station

Name: Kennedy airport
Code: JFK
Latitude: 40'38' N LongitudE
Time zone: Eastern time
Phone number: |(516) 123 4567

Constraints runway length:
curfew:
maH. gates:
maH. K-loaders:
fuel auailability:

Last update: January 1 1985

Schedule: Sched. 1/1/85

73'47' W

OFF
ON 23:00 to 05:30

OFF
OFF

Figure 3.25: Station information window.

|



3.3.2.3 Dialog windows,

As we discussed in 3.2.3.2, each time the user wants to change the characteristics of an

object, a certain number of constraints have to be checked before the modification can be

accepted. However, if a violation occurs the system will always have to indicate to the

scheduler which constraint was not satisfied. This is done with "Dialog windows" which

display an appropriate message togeLher with an "acknowledgment" box. The user has to

press the mouse button while the cursor is over that box in order remove the window and

resume normal execution; the object is left unchanged. The following figures show two

examples of possible dialogs.
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Figure 3.26: Dialog window in the mission display

Figure 3.27: Dialog window in the station display



4 FUTURE DEVELOPMENTS AND APPLICATIONS.

4.1 Support algorithms,

Most of the thesis has described an insertion heuristic algorithm and has studied some of the

extensions needed to complement the dial-a-ride version of it. Obviously, as more constraints

from real life environments become known, the algorithm itself can be extended to incorporate

new problem features. For example, discussions with O.S.A. have already indicated that it may

be more appropriate to have "soft-bounds" on the earliest pick up or latest delivery times (rather

than eliminate a request if a bound is violated -a hard bound-, increase the cost of the insertion

according to a disutility function that increases as the constraint becomes more violated).

Unfortunately, many extensions will increase execution time beyond acceptable levels and, as

we have already seen, it will be better at some point to simply let the human scheduler solve the

problem. Given the complexity of a typical scheduling environment, it seems problem size will

always be an issue, whether it is the number of calculations that will be required or the size of

memory needed. For the time being, at least, all paths seem to lead us back to the human

operator.

Most of the future research should therefore try to produce algorithms that can present to the

user a better "initial guess" about the schedule. "Better" does not necessarily means "optimal"

or "satisfying-as-many-constraints-as- possible" but able to accept further modifications without

much deterioration. As we discussed in chapter 2, both the objective-function of our heuristic

and its insertions selection process need to be studied further, but other optimization techniques

should be investigated also. The Flight Transportation Laboratory at M.I.T. is currently testing



the Out-of-Kilter-Flow algorithm (O.K.F.) that was used in one of its vehicle routing systems

[ref. 13, 14]. Given the characteristics of the algorithm, it could use a schedule produced with

the insertion technique to generate a much better solution which could then be further

re-arranged by the scheduler.

In the end, will we ever be able to create a full schedule automatically? In the current state of

research, we may be able to answer positively. Our heuristics would be used to execute half the

task, and a "rule-based" system could possibly do the second half (developed by Artificial

Intelligence scientists, rule based systems typically consist of base facts known initially and a set

of rules that allow the system to draw some conclusions through inferences made from the initial

knowledge). In our case,

- the initial knowledge for the rule-based system would consist of

- the schedule produced by the support heuristic.

- the numerous side constraints that have not been (or could not be) taken into account by

the algorithm.

. the rules would reflect the reasoning of the scheduler, how he (she) moves flights around

in order to account for detailed scheduling issues, and

. the conclusions would simply be which flights should be moved and how.

Even though many journal articles have recently praised the rule-based system (also called

expert system) technology [ref. 2, 5], the author's experience with such systems has been quite

different: the field looks promising, but it must be approached with great caution. A further

investigation of these systems for scheduling is recommended but, especially since the

technology is new, it may lead to disappointing results.

4.2 Schedule drawing board.

This part of the system can definitely be improved substantially.

First, it is very unlikely that professional schedulers working with major airlines in a pressure

intensive environment will accept the small screen of a Macintosh XL computer as well as its



memory and speed limitations. For this reason, a natural upgrade of this system is to implement

it on a more powerful machine such as the Apollo or Sun graphics-oriented computers. They

both have much larger screens that enable the display of more information simultaneously (with

color capabilities). Execution is faster and memory is not limited since both computers run with

virtual memory systems.

Second, as the experience of O.S.A. scheduling teams is accumulated, it will be possible to

refine, update or modify the capabilities of the drawing board. Finally, more research should be

done on the best ways to present scheduling information to the user. The mission and station

displays are certainly not the only ways to interact with the scheduler. In fact, if we expect the

human user to take over the preparation of the schedule at some point, the display of information

will be a critical factor that will affect the comfort of the scheduler and the speed at which he

will release his final schedule.

4.3 Other applications Scheduling Activities of non-Air Transport

opleratos

In this analysis we must distinguish between the support heuristic and the drawing-board.

In its current version, the mission display can be used to visually organize any activity that

involves sequential events. The station display is somewhat more specific and might not be

useful under all circumstances. For example, if the sequential events consist of beginnings and

ends of processing activities in a factory floor, there is no notion of "station"; rather, a display

that could give a cross-section of activities undertaken at a given time of the day by all

production/manufacturing stations would be more appropriate. Ultimately, a general purpose

system could consist of a library of displays that could be tailored to a specific application by the

user.

On the other hand, it is very unlikely that a support heuristic such as the insertion algorithm

could ever be made general purpose and still produce satisfactory solutions. The principle of the



insertion itself is rather general but all the constraints added to it will definitely depend on the

application. In any case, it is possible to review how various types of scheduling activities

could use an insertion based support algorithm.

1) Applications that could use the current version of the heuristic,

Beside O.S.A, nearly all organizations that must satisfy a certain number of predefined

requests for transportation could use a similar scheduling system.

" Dial-a-ride systems with advance reservation (the original purpose of the algorithm).

- Air-taxi, again with advance reservation.

- Corporate air transportation departments that use their own business airplanes.

Transportation of cargo by trucks could also be handled by the same program:

- Delivery of goods from warehouses to supermarkets.

- Distribution of products to retailers (in this case, a request would correspond to a shipment

from a warehouse to a store, the earliest pick-up time would be the time at which the

product becomes available in the warehouse and the latest delivery time would be set by the

retailer himself).

2) General transportation services such as those provided by public systems.

Airlines, train or bus companies could also use this system but with some modifications due

to basic differences in their type of activity:

a) they do not try to satisfy "individual" requests that might change every day but rather a

"general average" demand that is cyclical but evolves slowly.

b) that demand will depend on the type of service provided (fare etc...).

In this case, requests should be turned into levels of demand spread along the day, time

bounds should be soft and new techniques must be found to enable the demand to be served

by more than two vehicles unless that demand corresponds to a small enough period of the

day.

3) Activities generally requiring the sheduling of sequential events.

We already mentioned the operations of a factory floor, but it seems that the insertion heuristic



coupled with the graphic interface could be used in general for task scheduling.

Recently, for instance, some interest has been expressed on applying the system to the

scheduling of Space Shuttle missions activities. Typically a crew of 8 members or less must

perform as many experiments, exercises and other activities as possible during a limited time

period ( 7 to 10 days); these activities have priorities and each crew member has its specialties,

moreover some tasks require a certain number of astronauts for their execution [ref. 11].

Nowadays, this scheduling requires many man-months of work at N.A.S.A and an

appropriately modified A.I.S.E. could dramatically reduce this effort.

In this environment, the requests would simply be tasks to be executed and the vehicles would

be the crew members. However, the number of constraints to be handled is much greater than

in our case and the constraints themselves are quite different from ours; this application would

certainly require a complete reprogramming of the algorithm.



5 CONCLUSION.

5.1 On the insertion heuristic.

Because it is a heuristic, the insertion algorithm has been shown to be flexible enough to

accomodate many modifications. Some of these modifications will affect the way requests are

processed, others will only alter the internal data structure of the schedule. It can be expected,

however, that as more of these extensions are incorporated in the algorithm, execution time will

increase substantially. Considering that the schedule obtained is never the most optimal one,

there may be a point where a professional scheduler will produce solutions that are as good as

those proposed by the system, but that require much less computation time. Especially with the

graphic techniques presented in the next section, it is important for system engineers to

remember that a human scheduler should also be "used to accomplish certain tasks.

The modifications discussed in this section do represent a minimum set required to produce a

usable schedule; it may not be appropriate to expand the features of the algorithm beyond this

set.

5.2 On the graphic interface.

At this time, it is too early to present a real life evaluation of the Schedule electronic drawing

board since the first system will be implemented only during the summer of this year.

However, reactions to the presentations made have been quite positive. In the airline industry

where the approach to scheduling is shifting away from entirely automated systems [ref. 3, 4],



many domestic and foreign carriers have expressed considerable interest. At the user level, one

of the most commonly heard comments has been that the ability to override the decision made by

the system was a major strength.

In any case, it becomes more apparent that the man-machine interactive approach to

scheduling may become the state of the art in the near future. The new graphic-based computer

systems that are developed everywhere will certainly favor this trend and, indeed, make it

possible.

5.3 On the future.

Even though some operation research results have been criticized earlier, it is important to

acknowledge that without such results this scheduling tool would have never been possible.

Operation research's major contribution has been the thorough investigation of each component

of the scheduling process as well as its conceptualization. For this reason, not only should all

new quantitative procedures which might emerge in the future be carefully reviewed as possible

support algorithms in our interactive environment, but research should also be monitored since it

might further improve our understanding of the scheduling process itself.

Because of their general purpose, the insertion algorithm and the electronic drawing-board

have been shown to be adaptable to many different applications as long as they support each

other within a unified set-up. We should not infer from this capability that a universal

scheduling tool has been found, but the hybrid design of A.I.S.E is believed to be a first step in

that direction.



6 APPENDIX.



6.1 Sample input and output from the insertion algorithm.

The following listings successively represent the three input data bases needed by the insertion

algorithm followed by the output it produces. This data represents on a small scale the O.S.A.

environment.

6.1.1 Aircraft data,

Aircraft type

| 'Station at which it is available in the morning

STL
DEN
SFO
LAX
DCA
MIA
BTV
LAX
STL
BED
STL

Number of seats

01:00
05:00
06:00
05:00
06:00
06:00
04:00
05:00
04:00
07:00
04:00

Time at which it is available

Time before which it has to return
(if zero, there is no return constraint)

fuerage block speed in knots

24:00 420
21:00 420
22:00
24:00
23:00
23:00
23:00

420
420
420
420
420

23:00 420
23:00 420
23:00 420
23:00 420

C21
C21
C21
C21
C21
C21
C12
T39
T39
T39
T39

I

F I



6.1.2 Station data.

Station code
LatitudeI Longitude

BTV (Burlington, VT) 44.28 73.09
BED (Bedford, MA ) 42.28 71.17
JFK (New-York ) 40.38 73.47
ATL (Atlanta ) 33.39 84.26
MIA (Miami ) 25.48 80.17
STL (Saint Louis ) 38.45 90.22
DEN (Denver ) 39.45 104.53
SFO (San Francisco ) 37.37 122.23
LAX (Los Angeles ) 33.56 118.24
DCA (Washington DC ) 38.51 77.02

6.1.3 Request data,

Origin
Destination
Earliest pick-up time
Latest delivery time
Number of passengers
Split indicator (I =no, 2=yes)
Priority

BTV BED 06:30 10:00 5 1 1

BED JFK 10:00 15:50 2 1 1

DEN MIA 10:00 21:00 7 2 1
SFO STL 04:00 09:00 3 1 1
LAX STL 07:00 12:00 7 2 1

SFO JFK 12:30 23:00 5 1 1
STL MIA 11:00 19:00 2 1 2

DCA ATL 14:00 18:00 3 1 2

ATL JFK 06:00 10:00 5 1 2
ATL MIA 18:00 23:00 2 1 3

STL ATL 13:00 16:00 3 1 3

DEN MIA 06:00 12:00 2 1 3

STL BED 04:00 08:30 4 1 3

DCA ATL 06:30 09:50 3 1 3

MIA DEN 07:00 20:00 2 1 3

ATL DEN 01:00 19:00 5 1 3



6.1.4 Resulting mission assignment.

This final listing shows how the different requests can be handled by the fleet in a way that

requires as little flying time as possible. A few comments are needed to understand this

output:

- In a mission description, the column "MODE" contains the following codes:

RL: a ReLocation flight (aircraft is empty) is needed to go to the first station where a load

is available.

Pn: Pick-up a load of priority n.

Dn: Deliver a load of priority n.

RT: The aircraft must ReTurn to its morning base.

- The column "SCHEDULED TIME" represents the earliest time at which anevent could be

executed. Since events have no duration in this version of the algorithm, landing,

deliveries, pick-up's and take-off can all occur at the same instant at each station.

For RT, the time indicated is simply the latest return time to the station.

- The column "DESIRED TIME" contains alternatively:

- the earliest time at which the load will be available for pick-up.

- the latest time before which the load must be delivered.

- The mission listing is followed by lists of

- the requests that were split in two parts and carried with two different aircraft.

- the requests that were denied.

For example in the next listing, aircraft #1 will have the following mission:

- Take-off from Saint-Louis at 1 a.m. in order to relocate the empty airplane to Los-Angeles.

- Pick-up 5 priority 1 passengers at 7 a.m. and leave Los-Angeles for Saint-Louis

immediately. Since the earliest pick-up time for this group of passengers was 7 a.m., the

constraint is satisfied. The load on board of the airplane is now 5 passengers and there are

no seats left.



- Arrive in Saint-Louis at 11:07 a.m. and deliver the 5 passengers. Since the latest delivery

time for the group was noon, the constraint is satisfied again. The airplane had to return to

Saint-Louis by midnight, it will therefore end its mission here.

******************** AIRCRAFT # 1 ****************************************

TYPE - C21 / STATION - STL / TIME WHEN AVAILABLE = 01:00 / CAPACITY - 5 /
SPEED(KNTS) - 420

ITINERARY STL LAX STL

SCHEDULED DESIRED PAX ONBOARD REMAINING
BASE MODE TIME TIME ON/OFF LOAD CAPACITY

STL RL 01:00
LAX P1 07:00 07:00 5 5 0
STL D1 11:07 12:00 5 0 5
STL RT 24:00
************************************************************************* **

******************** AIRCRAFT # 2 ****************************************

TYPE - C21 I STATION - DEN / TIME WHEN AVAILABLE - 05:00 / CAPACITY - 5 /
SPEED(KNTS) - 420

ITINERARY : DEN MIA DEN

SCHEDULED DESIRED PAX ONBOARD REMAINING
BASE MODE TIME TIME ON/OFF LOAD CAPACITY

DEN P1 10:00 10:00 5 5 0
MIA D1 14:22 21:00 5 0 5
MIA P3 14:22 07:00 2 2 3
DEN D3 18:44 20:00 2 0 5
DEN RT 21:00
************************************************************************* **

******************** AIRCRAFT # 3 ****************************************

TYPE - C21 / STATION - SFO / TIME WHEN AVAILABLE = 06:00 / CAPACITY - 5 I
SPEED(KNTS) - 420

ITINERARY : SFO

SCHEDULED DESIRED PAX ONBOARD REMAINING
BASE MODE TIME TIME ON/OFF LOAD CAPACITY

SFO RT 22:00



******************** AIRCRAFT # 4 ****************************************

TYPE - C21 / STATION - LAX / TIME WHEN AVAILABLE - 05:00 / CAPACITY - 5 /
SPEED(KNTS) - 420

ITINERARY LAX STL DEN MIA LAX

SCHEDULED DESIRED PAX ONBOARD REMAINING

BASE MODE TIME TIME ON/OFF LOAD CAPACITY

LAX P1 07:00 07:00 2 2 3

STL P2 11:07 11:00 2 4 1

STL Dl 11:07 12:00 2 2 3

DEN P1 13:33 10:00 2 4 1

MIA D2 17:55 19:00 2 2 3

MIA Dl 17:55 21:00 2 0 5

LAX RT 24:00

******************** AIRCRAFT # 5 ****************************************

TYPE - C21 / STATION - DCA / TIME WHEN AVAILABLE - 06:00 / CAPACITY - 5 /

SPEED(KNTS) - 420

ITINERARY : DCA ATL DCA ATL MIA DCA

SCHEDULED DESIRED PAX ONBOARD REMAINING

BASE MODE TIME TIME ON/OFF LOAD CAPACITY

DCA P3 06:30 06:30 3 3 2

ATL D3 08:27 09:50 -3 0 5

DCA P2 14:00 14:00 3 3 2

ATL P3 18:00 18:00 2 5 0

ATL D2 18:00 18:00 3 2 3

MIA D3 20:04 23:00 2 0 5

DCA RT 23:00

******************** AIRCRAFT # 6 ****************************************

TYPE - C21 / STATION - MIA / TIME WHEN AVAILABLE - 06:00 / CAPACITY - 5 /
SPEED(KNTS) - 420

ITINERARY : MIA

SCHEDULED DESIRED PAX ONBOARD REMAINING

BASE MODE TIME TIME ON/OFF LOAD CAPACITY

MIA RT 23:00



******************** AIRCRAFT # 7 ****************************************

TYPE - C12 / STATION = BTV / TIME WHEN AVAILABLE = 04:00 / CAPACITY = 5 /
SPEED(KNTS) - 420

ITINERARY BTV ATL JFK BTV

SCHEDULED DESIRED PAX ONBOARD REMAINING
BASE MODE TIME TIME ON/OFF LOAD CAPACITY

BTV RL 04:00

ATL P2 06:49 06:00 5 5 0
JFK D2 09:13 10:00 5 0 5
BTV RT 23:00
*********************************** ********************************

******************** AIRCRAFT # 8 ****************************************

TYPE - T39 / STATION - LAX / TIME WHEN AVAILABLE = 05:00 / CAPACITY - 6 /
SPEED(KNTS) - 420

ITINERARY : LAX DEN MIA LAX

SCHEDULED DESIRED PAX ONBOARD REMAINING
BASE MODE TIME TIME ON/OFF LOAD CAPACITY

LAX RL 05:00

DEN P3 07:35 06:00 2 2 4
MIA D3 11:57 12:00 2 0 6
LAX RT 23:00
************************************************************************* **

******************** AIRCRAFT # 9 ****************************************

TYPE - T39 / STATION = STL / TIME WHEN AVAILABLE - 04:00 / CAPACITY - 6 /
SPEED(KNTS) - 420

ITINERARY : STL BED STL ATL STL

SCHEDULED DESIRED PAX ONBOARD REMAINING

BASE MODE TIME TIME ON/OFF LOAD CAPACITY

STL P3 04:00 04:00 4 4 2
BED D3 06:57 08:30 4 0 6

STL P3 13:00 13:00 3 3 3
ATL D3 14:50 16:00 3 0 6

STL RT 23:00
*************** ****************** ******************************************



******************** AIRCRAFT # 10 ****************************************

TYPE = T39 / STATION = BED / TIME WHEN AVAILABLE = 07:00 / CAPACITY = 6 /
SPEED(KNTS) = 420

ITINERARY : BED BTV BED JFK BED

SCHEDULED DESIRED PAX ONBOARD REMAINING

BASE MODE TIME TIME ON/OFF LOAD CAPACITY

BED RL 07:00

BTV P1 08:10 06:30 5 5 1

BED Dl 09:20 10:00 5 0 6

BED P1 10:00 10:00 2 2 4

jdFK Dl 11:12 15:50 2 0 6
BED RT 23:00
************************************************************************* **

******************** AIRCRAFT # 11 ****************************************

TYPE - T39 / STATION - STL / TIME WHEN AVAILABLE - 04:00 / CAPACITY - 6 /
SPEED(KNTS) - 420

ITINERARY : STL ATL DEN SFO JFK STL

SCHEDULED DESIRED PAX ONBOARD REMAINING
BASE MODE TIME TIME ON/OFF LOAD CAPACITY

STL RL 04:00

ATL P3 05:50 01:00 5 5 1

DEN D3 09:09 19:00 5 0 6

SFO P1 12:30 12:30 5 5 1

JFK Dl 18:40 23:00 5 0 6

STL RT 23:00
***************************************************** **** ******************

THE FOLLOWING REOUEST(S) HAVE BEEN SPLIT :

DESTINATION

STL
MIA

EARLIEST

07:00

10:00

LATEST

12:00

21:00

PAX

7

7

PRIORITY AIRCRAFT

1 1, 4

1 2, 4

THE FOLLOWING REOUEST(S) CANNOT BE SERVED :

PAX PRIORITY

3 1

Calculation time in minutes: 0.054

ORIGIN

LAX

DEN

ORIGIN DESTINATION EARLIEST LATEST

SFO STL 04:00 09:00



6.2 Effect of different pool sizes in the algorithm.

CASE

In this table

- CASE:

- Pool size:

- Pax-miles:

- Average L

. Travel time

- Calculation

- Idle aircraf

headers must be read as follows:

Content of the initial data-base

Number of slots in the algorithm pool (for final selection)

Number of passengers multiplied by the number of (nautical) miles they

flew

F: Average system load-factor (in %)

Total travel time used to produce the schedule (in hours)

time: Time needed to calculate the schedule (in minutes)

Number of aircraft not used

Pool size

1
2
3
4
5

1
2.
3
4
5

1
2
3
4
5

1
2
3
4
5

Same
as
example

Twice
as many
requests

Four
times
as many
requests

Same as
above +
twice
as many
aircraft

Pax-miles

68432
67928
67928
67928
67928

113939
109823
109823
109823
105833

158032
145852
156975
156534
153118

231252
230748
234738
230748
224392

Average LF

40%
40%
37%
37%
37%

47%
47%
47%
47%
45%

49%
51%
52%
48%
45%

51%
51%
51%
51%
47%

Travel time

88.6
91.1
94.5
94.5
95.5

131.9

121.6

121.6
121.6

121.3

169.4
155.9
163.6
166.4
165.9

238.7
241.2
239.3
241.2
242.5

Calculation time

0.041
0.043
0.044
0.044
0.047

0.082
0.087
0.091
0.094

0.095

0.207
0.213
0.213
0.233
0.215

0.288
0.294
0.312
0.321
0.344

Idle aircraft

2
3
2
2
2

1
1
1
1
1

0
0
0
0
0

2
3
2
3
3
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