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ABSTRACT

The purpose of this work is to formulate and develop
practicable solution methods to some important fleet routing,
scheduling and fleet composition problems. These problems
arise in the operation of air transportation systems like the
operating domestic and international airlines.

The problem of minimal fleet size to meet a variable
schedule, which will be fixed when the system goes into opera-
tion, is formulated in several ways as Integer Linear Programs
in 0-1 variables. The ILP's obtained are large scale programs
and solved here by Land and Doig type Branch and Bound algo-
rithms. The computational experiments with them, which were
conducted with MPS/360, have been very sucessful and in the
majority of cases, particularly when larger systems are solved,
the algorithms terminated at the optimal integer solutions
after a single iteration. The problem of scheduling and
routing the minimal fleet is then formulated as an ILP which
has exhibited equally successful computational results.

The minimal single fleet-problem is extended to include
some extraneous constraints on service frequencies between and
at stations. Computational results with examples are provided.
The problem of system design with and without a given fleet
size is formulated.

The problem of decomposition of the system into subsys-
tems, each consisting of a single vehicle type is next for-
mulated in several ways for several considerations. These
formulations are also given as Integer Linear Programs. The
first is proven to have at least one optimal integer solution.
Computational experience with the application of the Land and
Doig Branch and Bound algorithm to some of the other tnulti-
fleet problems is alSo given.

A computerized Airline Management Decision System which will
use the models and solution methods developed in this work is
briefly described in Appendix A. The Crew Scheduling Problem
is also briefly discussed in this appendix since its solution
procedures must be a part of such a Decision System.
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CHAPTER I

INTRODUCTION

1.1 General Discussion

The topics which will be treated in this work are con-

cerned with very important operational problems confronting

the management of the competitive air transportation system.

Some of these problems are significant for transportation

systems which have public utility rather than profit orienta-

tion. The problems we shall address ourselves to are those

connected with fleet utilization, fleet size, routing, fleet

composition and scheduling. Work which is related to some of

these problems has been carried out by Operations Researchers

during the last decade with only partial success. The success

has been limited because of two main reasons: 1. When optimal

solutions were sought computation times were excessive. 2.

When a computationally acceptable method was suggested it

usually did not guarantee optimal solutions. In some inves-

tigations a combination of both drawbacks is evident. The

principal method of attack has been Dynamic Programming, which

usually results in a huge state space for any real-life trans-

portation system [ 3J . A survey of all the significant

work done in this area is provided in [181 and will not be

given here. Specific references to work which is related to

ours will be given in Chapter II.

The purpose of the following chapters is to describe a

method of attack which has not, apparently, been extensively
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investigated thus far. The basic models are of the discrete-

time rather than of the continuous-time variety. This property

permits the formulation of the optimization problems as Integer

Linear Programs. Our aim is to discuss a realistic model and

to obtain the optimal solution to it and consequently, no

heuristics or approximations are attempted here. Rather we

concentrate on obtaining the optimal integer solutions for

the problems and this is what makes this work unique among

all the reports which have been published thus far.

As the reader will realize the Integer Linear Programs

which will be discussed in the substantive chapters are large

for any existing air transportation system. However, the

solution methods developed here and the extensive computational

evidence gathered by the author in course of this research

work lead to the rather gratifying conclusion that the problems

with obtaining the optimal integer solutions to these large

problems are manageable. The methods which were selected to

solve our problems are Branch and Bound methods of the Land

and Doig variety (10] . This approach is the only one feasi-

ble to us because of the following reasons: 1. Very efficient

Linear Programming codes which can handle large enough Programs

to accommodate our models have recently become available. (The

computational system used throughout this investigation was

MPS/360). The Land and Doig approach is based on the repeated

solution of Linear Programs. 2. The Branch and Bound methods

of the Implicit Enumeration variety (see for example [9 ] )

have performed quite poorly, from computation time point of

view, for large problems. They definitely do not have a chance



with problems of the size that we are dealing with.

1.2 Overview of the Chapters

In Chapter II the basic model is discussed. It is

concerned with the problem of minimizing the fleet size to

meet a schedule subject to some latitude in departure times.

Assuming now that management can predict the passenger

demand at each departure, the problem of the best routing

of the minimal fleet is formulated and solved. Various for-

mulations are presented, the last of which is provided as a

suggestion, since no computer code currently exists.

In Chapter III the basic model is extended to include

some constraints which may result from legal and other require-

ments. Also the problem of best utilization of available

fleet is discussed. These extensions which are easily made

emphasize the advantage in the formulation of the problems

as Integer Linear Programs. The results of computational

experiments are stressed.

Chapter IV contains extensions into the multi-fleet case.

The transportation system will now include different types of

aircraft with distinctive properties and the problem of opti-

mal utilization and proper mix of the different types is dis-

cussed.

Chapter V is the concluding chapter.

In Appendix A the concept of Integrated Airline Management

Decision System is introduced. This system (as yet unimple-

mented) is computerized and based on MPS/360 [11] . The
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methods of Chapter II to Chapter IV are envisaged as the

basic computational algorithms in this system and consequently

practicability of the methods and precise definitions of the

optimization algorithms are stressed throughout this work.

The appendix also includes a sketchy discussion of the Crew

Scheduling Problem since the author considers solution pro-

cedures to it to be an integral part of the Decision System.
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CHAPTER II

THE SINGLE FLEET PROBLEM

2.1 Introduction

In this chapter the basic models will be formulated.

The primary objective is to minimize the fleet size for

fixed and variable schedules of the air transportation sys-

tem. By variable schedule we mean a schedule that will

eventually be fixed in some optimal manner before the system

goes into operation. In this chapter it is assumed that

only a single type of aircraft is available to the system.

The fixed schedule problem is treated as an optimal flow in

network problem. The extension for the variable schedule

problem leads to Integer Linear Programs for which the solu-

tion tools will be Branch and Bound methods and 'Cut and

Branch' algorithms which will be explained and formalized

in section 2.8.

Sections 2.2 and 2.3 contain some preliminary discussions,

definition and a central theorem, which provide the necessary

concepts and results for all the following developments. Sec-

tion 2.4 presents the fixed schedule minimal fleet problem. The

first discussion of this problem first appears in Operations

Research literature in 1954 [4] where the problem is formu-

lated as a Transportation Problem. The reader may find the

formulation of Section 2.4 somewhat simpler. In Section 2.5 a

method for the generation of an improved schedule, which is

suitable for computerized scheduling and aircraft assignments,

is discussed. The variable schedule version is presented in

Section 2.6. This problem was treated before in [151 where



a heuristic method which, although efficient, does not

guarantee an optimal solution is suggested. More recently

some more work has been done and is discussed in [13) .

This is a Branch and Bound method which seems to be not

particularly efficient and is capable of solving only two-

station problems (although it could conceivably be general-

ized). The method presented here, however, is completely

general (any number of stations) and an optimal solution is

guaranteed when the algorithms terminate. The rest of this

chapter contains discussion of various formulations, each

having its own advantages and disadvantages, and some exten-

sions of the basic optimization problem. These extensions

have not appeared in literature (as far as the author knows)

until now.

2.2 Definitions

A directed graph G = [ N;A) is defined to be a collection

N, of elements with a subset, A, of NXN, the set of ordered

pairs (xi,xg) where xi, xj E N. The members of N, which is

not necessarily finite, are called nodes and the members of

A are called arcs. The pictorial representation of G will

have a distinct point for each element xi E N and an arrow

pointing from xi to xj if and only if (xi,xj) E A.

Let xlx2.'**Fxn (n : 2) be a sequence of distinct mem-

bers of N such that (xi, xi+1)E A for all i = l,2,...,n-l.

Then the sequence of nodes and arcs xl, (xl,x2),-

(xn-1, xn), xn is defined to be a chain (or a directed chain).

For convenience and consistency in the following discussion

a single node xi E N will also be defined to be a chain. If

it is further stipulated that xi = xn (na- 2) then the sequence



is referred to as a cycle (or a directed cycle).

A directed graph which contains no directed cycles is

said to be an acyclic directed graph. We shall be concerned

with acyclic graphs exclusively.

A graph whose set of nodes, N is divided into two subsets

S and T such thatSUT = N and SfT =0 , with all arcs of

A leading from the nodes of S to the nodes of T is called a

bipartite graph. In order to emphasize that a graph G is

bipartite we denote it by G.= [S,T;A] .

When various functions (capacity, flow, etc.) which map

the members of A to the real axis are defined, we refer to

the graph as a network. It is assumed that the reader is

familiar with the various algorithms of network flow theory.

2.3 Chain Decomposition of Acyclic Graphs

A decomposition of an acyclic graph into chains is a

partition of N such that the nodes of each part (with their

connecting arcs) form a single chain. From the definition

of a chain it is clear that the graph can always be decomposed

into (Ni single node chains. An acyclic graph which is

decomposed into five chains is shown in Fig. 2.1, where

the chains are indicated by the heavy lines.

xx 2x3
x x2 3

x 4 x 5

G=(N,A)

x6 x xx6 78

10 ~ll

Fig. 2.1



There are two single node chains in this particular decom-

position: x and x 10.

We are interested in finding the minimal number of

chains into which a given acyclic graph can be decomposed,

since the path that an aircraft follows on a schedule map

(Fig. 2.4) is a chain.

Corresponding to any given acyclic graph G = [NA]

we construct a bipartite graph G* = [S,T;A*] where S =

(s.1, T = It.), ISI = ITI = IN! and both indices i,j run
1 J

from 1 to NJ . A* is constructed from G as follows: If

(x.,x.) E A there will be an arc (s.,t.) in G*. We get the

bipartite network G* by defining capacity values of 1 on all

arcs (si,t ) E A*.

The following correspondence will be defined between

chain decomposition of G and flow from S to T in G*: If the

arc (x.,x ) of G is a part of a chain, there will be a flow

of one unit from s. to t. in G*. If (x.,x.) is not a part
1 J i1J

of a chain, there will be a flow of value zero in (s.,t ).

Conversely, (x.,x ) will be made a part of a chain if and

only if there is a flow on one unit in (s.,t.). From the
1 J

definition of a chain and the selection of capacity values,

it is clear that the correspondence is one to one, this be-

cause a node in G belongs to one and only one chain. (If xk
is a single node chain there will be positive flow neither

out of sk nor into tk in G*,) In Fig. 2.2 the bipartite net-

work and the flows (denoted by the heavy lines) correspond-

ing to the chain decomposed graph of Fig. 2.1 is shown.

The consequences of the following theorem will provide

us with a method for finding the minimal number of chains



into which the acyclic

G*=[S, T;A*]

si l

s2,"
S3,
s4 

s5

S7 %
s7,

S 9 .

sio.
sii.
si 12

graph G can be decomposed.

-ti

.t2
-t3
t4

t6
t7
t8

tlo
til

Fig. 2.2

For a chain decomposed acyclic graph, C will be defined to

be the set of chains and P the set of arcs which are parts

of the chains of C.

Theorem 2.1[61 Let G = [ N;A]be a chain decomposed

acyclic graph.

Then ICI + JPI = INI.

Proof: The chains will be indexed by k, k=l, ... , |CI

The number of nodes which belong to the k-th chain will be

denoted by nk. Since each node belongs to exactly one chain

we have:

ICI

k=1

nk = NJ

A chain, by its definition, has one less arcs than nodes. Hence:

Ici
nk

k=1

|Cl

k=1
(n k-l) + IC! = |PI + IC!



From which:

INI = IPt + ICI Q.E.D.

From the indentity stated in Theorem 2.1 the minimiza-

tion of IC can be achieved by maximizing |PJ. But |P| is

the value of the flow from S to T in the network G*, a fact

which is evident from the definition of G*.

From the discussion above it is clear that the problem

of determining the minimal number of chains into which G can

be decomposed can be solved by finding the maximal flow in

G*.

2.4 Minimizing the Fleet Size to Meet a Fixed Schedule

The results and usefulness of Theorem 2.1 will now be

demonstrated in solving the fixed schedule version of our

fleet size problem.

An airline is serving the stations.A,B and C. There is

no direct service between A and C (Fig. 2.3).

A B C

Fig. 2.3

Given the block times between any two stations and

fixed required departure times for services, what is the

minimal number of airplanes necessary to meet the schedule?

It is convenient to show the schedule on a time expan-

sion of the graph of Fig. 2.3 obtaining the graph shown in

Fig. 2.4, which will be referred to as the 'schedule map'.



A Schedule Map

Fig. 2.4
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The resulting map is as large as the planning horizon. How-

ever, if the schedule is periodic, one period will suffice.

Domestic airlines normally have daily periodicity while the

international carriers a weekly one. A scheduled service

from station X to station Y is shown by a directed arc from

X to Y with the origin at the departure time at X and the end

at the arrival time in Y. The service number is written

alongside the arc. For example, flight number 7 is the

earliest service from B to A. An aircraft arriving at any

station, X, can connect to any of the departures scheduled

out of X after its arrival there. It may be assumed that

any necessary delay due to minimal required servicing time

of the aircraft before it is ready for the next takeoff is

included in the blocktime of its last arrival. For example,

an aircraft assigned to flight number 17 (Fig. 2.4) can be

subsequently assigned to any one of the flights 18, 16, 5,

10 departing from B later in the day. These possible assign-

ments are shown in the directed graph of Fig. 2.5, where node

x. represents flight number i and the arc (x.,x.) a possible

sequence of two flights.

x 17

18 16 5 10

Flight Connections

Fig. 2.5



The graph G which shows these relations for the entire

schedule map is acyclic (since time progresses in an acyclic

fashion). A chain in G describes the services that a parti-

cular aircraft will be assigned to. Therefore the problem

of minimizing the fleet size to meet the schedule can be

stated as a problem of minimal chain decomposition of the

graph G.

We are assuming that an aircraft arriving in X will

either connect to a departure out of X in the same period

or wait in X until the next one; i.e. dead heading is not

permitted. (If this assumption is dropped the graph G will

have arcs from nodes corresponding to flights arriving at

one station into flights departing from another station. And

if such an arc is included in a chain, dead heading may take

place).

As shown above, the problem can be solved by construct-

ing the bipartite network G*, which can be done directly from

the schedule map, and computing the maximal flow in it. For

max-flow computations we adjoin to G* a 'master source' s,

and a 'master sink' t, together with arcs (s,s ) Vi and
(t.,t) Vj. The capacity values of all these arcs will be

set to 1. 4e shall refer also to the enlarged network as

G*. Fig. 2.6 is the network G* constructed from the schedule

of Fig. 2.4. The heavy lines indicate unit flows. The flow

from s to t is maximal and has a value of 11. Since there

are 18 flights in the schedule, by Theorem 2.1 the minimal

fleet size required is 7. The assignment of aircraft to

flight numbers can be read off directly from G*. For exam-

ple, the same aircraft will take both flight number 13
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Fig. 2.6
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and flight number 5, since there is a unit of flow in (s 1 3 ,t 5 )
Whereas the maximal flow solution is not in general unique,

many combinations of assignments are possible, but so far in

our discussion any one is acceptable.

2.5 An 'Improved' Fixed Schedule Solution Generation

It was mentioned in the last section that many minimal

chain decompositions of the schedule map are possible. How-

ever, it is generally accepted that short assignment times

for the aircraft are less desirable than larger ones since

there may be an undue pressure on the servicing ground per-

sonnel during some periods and low pressure during some

others. A more even distribution will be obtained by making

the connections as long in time as possible. If it is de-

sired to have the method of the last section generate the

chains to be actually used by the transportation system some

additional considerations will have to be used.

With each possible connection (x,x ) in G a 'disutility'

index, c.., will be associated. The value of c.. can be set
IJ I

to T-t.. where T is the periodicity of the schedule and t..

is the time between the arrival point of flight number i and

the departure time of flight number j. In G* the flow in

arc (s.,t.) will have a cost of c... The max-flow which mini-
1 J I

mizes the cost over all the max-flows will accomplish the two

objectives of minimizing of the size of the fleet and genera-

ting 'good' chains in the sense discussed in the last para-

graph.

Other considerations may affect the selection of the

c..'s. If the chains obtained are not satisfactory, a
1J

larger fleet size may be considered as a possibility. If



the flow in G* is one unit less than the maximal, one more

airplane is needed, for the number of chains is one larger

than the minimal one. However, they may be sufficiently

better, from management's point of view, to justify the use

of a larger fleet. Minimal cost of flow of any value can

be examined, and final decisions be made using these results.

2.6 Minimizing the Fleet Size for a Variable Schedule

In the last two sections the departure times of all

services were given as fixed. However, it is possible that

management will be willing to consider other departure times

for the same service in the neighborhood of the most desir-

able one, if the net result will be a reduction of the fleet

size. Alternative departure times may be considered simul-

taneously for a number or all of the services. But sometimes

the effect of a perturbation on the departures of just a few

services are of interest.

We turn now to the variable schedule version of the fleet

size problem. A set of alternative departure times for a

particular service from station X to station Y will be shown

as a 'bundle' of arcs from X to Y, which have origin nodes

at their respective departure times from X. It is specified

that one and only one arc out of each bundle will eventually

be used is a service from X to Y. The problem is then, to

select one flight out of each bundle so that the fleet size

required to accomplish the resulting schedule is minimal. A

part of such a 3chedule map is shown in Fig. 2.7a, where

service number 1 has three alternative departure times and

service number 2 has two. If the earliest alternatives are
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are selected

Y X Y X

2j

21

Service Bundles

Fig. 2.7a Fiq. 2.7b

for both services only one aircraft is needed. If the second

alternative of service number 1 and the first of number 2 are

selected, two airplanes are required. For reasons to be ex-

plained later we exclude from consideration cases like the

one shown in Fig. 2.7b where the 'bandwidth' of service no.

1 is so large that it is possible to depart on the first arc,

return and depart on the last arc of the same service.

In the fixed schedule case there is one and only one

arc (s sk) and one and only one arc (tk, t) for service

number k in the bipartite graph G*. Now, however, when a

bundle of n arcs represent a service there will be a bundle

of n(s,s.) arcs and a bundle of n (t.,t) arcs in G*, one
3- J

representative of which will be selected for the optimal

schedule. Fig. 2.8 shows the bipartite network corresponding

to the schedule map of Fig. 2.7a.



s t

4t4

S 5

t5

Fig. 2.8

For notational convenience the correspondence between

the service numbers and the nodes of S and T in G* will be

dropped. The indices will be listed sequentially; e.g. s4
and t in Fig. 2.8 represent the first arc of bundle number

2 in Fig. 2.7a.

The problem is to select one representative out of each

bundle such that the resulting max-flow is maximal over all

combinations of selections. Notice that if an arc (s )
is selected its 'counter arc' (tklt) must also be selected.

This last condition makes it an 'unusual' max-flow problem,

and puts it with the class of 'flows with bundle constraints'

and 'flow with homologous arcs' network flow problems [ 1 ]
The problem can be formulated as an Integer Linear Pro-

gramming Problem with 9-1 variables. In order to do so we

define the following index sets for G* = [S,T i A*] :
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N = the set of services

Ke = k I (s sk) belongs to the f-th bundlej

(There are |NI such sets.)

A(i) = j j (s ,t ) E A*)

B(j) = [il (s.,t.) E A*)

And the following variables:

x . = the flow from s to s.

x.. = the flow from s. to t.
1J l

x. = the flow from t. to t
Jt c

u = the capacity of arc (s,s.)

v= the capacity of arc (t.,t)
J J

The ILP (Integer Linear Program) is:

jNI
(i) max z = x .

e=l i E Y

subject to

(ii) u. = 1, v.= 1 ,Ve
iE K 1ijEKe

(iii) u. = v. ,Vi

(iv) x .u. ,Vi

(2.1) (v) x v. , j
Jt J

(vi) x . = x.. ,Vi
i E A (i)

(vii) xjt i 3V

iE B(j)
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(All variables are 0-1)

Constraints (ii) specify our requirement that exactly one

arc out of each bundle must be selected. Constraints (iii)

specify that if an arc (s,sk) is selected (i.e., if uk = 1)

then its counter arc (tk,t) must be selected too (i.e., vkl1).

Constraints (iv) - (vii) are the usual network capacity in-

equalities and nodal conservation of flow equations. The

value of the objective function (i) is the flow from s to t.

If the explicit requirement that all variables must be 0-1

is dropped we refer to the problem as LP(2.1) rather than

ILP(2.1), and this convention will hold throughout the rest

of this work. The optimal solution to LP(2.l) may not, in

general, be all-integer, as the example below will demonstrate.

However, fortunately, it seems that in many cases it is. In

all 'large-scale' problems solved by the author an all-integer

solution for LP(2.1) was obtained. A situation which tends

to give trouble is the one depicted in Fig. 2.7b and that is

why it is desirable to avoid it. Some examples are given below.

But in order to deal with the general case we have to resort

to the methods of integer programming to obtain the optimal

integer solution.

2.7 A Branch and Bound Algorithm for ILP(2.1)

The selection of a successful Branch and Bound algorithm

for the solution of a particular problem must strongly depend

on the structure of the problem and on computational experi-

ence. Since as was mentioned above the author has been un-

able to produce a 'large' example for which LP(2.1) did not
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have an optimal integer solution (about 10 different ones

were attempted) we are naturally led to the selection of a

Land and Doig type algorithm rather than an Implicit Enumera-

tion type. The selection is strengthened also by the belief

that even if the initial optimal solution is non-integer it

will take relatively few steps down the Branch and Bound solu-

tion tree to obtain the optimal integer solution. The last

statement is based on the particular structure of the problem

and on computational experience. MPS/360, with which all the

computational experiments were conducted is a very efficient

system and the solution times which were obtained for the

'large' problems were very satisfactory (see below). Also,

experience gained by solving large crew scheduling problems,

which is a problem of similar structure (but with restricted

cycles rather than chains as elements of interest), by the

Land and Doig algorithm leads to the same conclusion*.

The number of variables defined in ILP(2.1) is very

large for any real life problem. However, for the present

formulation, the partitioning strategy (on which the branch-

ing is based) specifies explicitly only a small subset of

them, which consists of the u. 's exclusively.

Since there are INI services in the system at most that

number of u. 's will have to be explicitly fixed at 1. In

general at each particular node of the tree, some u. 's are

fixed at 1 and some others, belonging to other bundles, are

explicitly fixed at 0. When u. is fixed, then by (iii) v.

must be fixed too. The net effect of this is to 'propagate'

a change along the chain of which the particular departure

is a part, and possibly affect some other chains as well.

*See Appendix A



A complete explicit partitioning of the solution space will,

in all probability, never be necessary. This observation may

point to a good strategy for the selection of variables to

be fixed: Of the set of noninteger u 's start by fixing the

ones which currently represent the beginning of a chain.

In order to describe the Branch and Bound algorithm we

define the following sets:

X = xV1 x2,... II, the set of the nodes of the solution

tree (the nodes will be indexed sequentially as

they are generated)

Xt= the subset of X consisting of all and only the

terminal nodes

1 (xk = ilu = 0 at node x k

1(x k) = { i |u = 1 at node xk

and denote by

z(xk) the optimal value of the objective function at

node xk

S (xk) the optimal solution .uu 2, ...1 at node xk

The Branch and Bound Algorithm for ILP (2.1) is:

STEP 1. Create a node x1 and set X = Xt 1

STEP 2. Set 1(x 1 ) =

STEP 3. Set I (x1 ) =

STEP 4. Solve LP(2.1) obtaining S(x ) and Z(x )



STEP 5.

STEP 6.

STEP 7.

STEP 8.

STEP 9.

STEP 10.

STEP 11.

STEP 12.

STEP 13.

23

Set r = 1.

If S(x r) is integer, stop. The optimal objec-

tive function has been obtained.

Create two branches and nodesx X +1 and x|X|+2
out of x

r

Set X =X + { x[X|+1, x|X+2

Set Xt Xt + x IX -1, X r

Select an i such that 0 < u < 1

SetI X -x o=0 r) + { iS; I1 (x|XI-1
= 11 (x r)

= I r

Set 1 (xXI 1 (xr) +{ i ; IYW

= I (xr

Solve LP(2.l)' (below) for k = XI -1 and

k = X obtaining S(xIXI-1 s(xx).
z(xIX-1) and z(x )

N
(i) max z (x )

k =1
z

iEKf
si

S.t.

u. = v = 0
1 1

U. =V.=1
1 1

2 u = 1,
iE K,

V iEI (x k

V iEI 1 (xk

Sv = 1 ,

jEKg
(ii)



(iii) u. = v. , i
1

(2.1) ' (iv) x . u. , Vi

(v) x . v . ,j
Jt 3

(vi) x . = x. .,i
Ji E A (i) 1

(vii) xt x. . ,Vj
Jt . 13

J E B(j)

STEP 14. Determine r such that ~z(xr) = t x ( E Xt)

STEP 15. Go to STEP 6.

Notice that in the stopping condition it is stated that

the optimal ob-jective function corresponding to the optimal

integer solution has been obtained. Although S(x r) is inte-

ger it may yet be possible that some of the flow components

are not. When S(x r) is integer we have a definition of a

isimple' network. The incidence matrix of such a network

has the unimodularity property, that is, every submatrix has

determinant + 1 or 0. This property guarantees that every

basic feasible solution is integer. In our case, however,

this is not true unless we specify that unnecessary con-

straints and variables are eliminated from the system when

branching takes place. This would seem to be an unnecessary

complication since when S(x ) is integer and the flows are

not, we can apply a max-flow routine to the defined simple

network and obtain the all-integer solution we seek. The

value of this max flow is equal to ~Z(xr ). (In all cases

tested on MPS/360 it has been the author's rather gratifying
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experience that if an optimal all-integer solution existed

it was invariably the one which was obtained). We prove

formally:

Theorem 2.2 When the stopping condition (STEP 6) is met

an optimal solution to ILP (2.1) is determined

by S(x '.

Proof: Let S(x r) be integer with a corresponding opti-

mal objective z(x r). The min cut capacity of

the 'simple' network is at least equal to i(x *
It cannot be greater than z(x r) for this would

be a contradiction to the definition of z(x '
Hence there is an integer flow of value z(x r
in this network. From the selection of r (STEP

14) it is obvious that no other all-integer

solution can have a better objective function.

As an example, the algorithm is applied to the three

station problem shown in Fig. 2.10. There are 8 services

with two possible departures for each one of them. The bi-

partite network is shown in Fig. 2.lla. The solution of

LP(2.1) for this case gives u. = Vi and the max-flow in

this network is shown by the heavy lines, each of which

represents a flow of value . The arcs (s,s.) and (t,t.)

are not shown in this figure. The solution tree for a ran-

dom selection of a fractional variable is shown in Fig. 2.9a

and the one--corresponding to the preferred selection of a

variable which starts a chain is shown in Fig. 2.9b. Upper

and lower bounds on variables are not handled in MPS/360 as
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explicit constraints, which is a great saving in the size of

the basis.

6.5 6.5
xy x 2

u15=_0 ul15 lu,=0 U 1=1

6.5 2 6.0 ax6.0 x36.0

u 6=0 u 6=1

x4 6.0 5 6.0

Fig. 2.9a Fig. 2.9b

An optimal integer solution is shown in Fig. 2.llb. The

heavy lines represent unit flows (and the flight connections).

Since there are 6 such connections at least 2 aircraft are

needed to maintain the schedule thus determined.

Notice that compared with the number of variables de-

fined for this problem the number of Branch and Bound itera-

tions is remarkably low. Experiments with other small

problems point to the same conclusion.

A three city transportation system is shown in Fig.

2.12, for which the schedule map is drawn in Fig. 2.13. The

groups of possible departures for each service are indicated

by heavy lines and the service numbers alongside the depar-

ture points. There are 26 required services in this system.

Three different fleet size problems were solved using the

data of Fig. 2.13. The first was a subsystem consisting

of services between A and B only (10 services), the second
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between A and B and between A and C without the direct ser-

vices between B and C (18 services), and the third for the

entire system (26 services). The solutions of LP(2.1) for

all three problems were integer and the one for the complete

system is shown in Fig. 2.14a (An alternative solution is

shown in Fig. 2.14b). Statistics for the runs are given in

table 2.1. These statistics are shown in order to point out

the fact that solution times for large LP problems are very

reasonable and, therefore, that the Land and Doig Branch and

Bound Algorithm has become a feasible method for solving our

problems. Also, the good chances of obtaining an integer

solution at the first iteration strengthens the author's be-

lief in the efficiency of this approach. Some more computa-

tional results will be given in Chapter III.

Fig. 2.12
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(Experience with the Implicit Enumeration approach to large

drew scheduling problems has been rather discouraging[16] ).

Prob.No. Rows* I Cols. ** Run time*** I Setup time
Simplex
Algo. time

1 141 344 0.70 0.14 0.10

2 269 789 1.13 0.25 0.39

3 369 1221 2.01 0.39 1.03

*Actually, a considerably smaller number of rows is necessary

(see next section)

**

Includes one artifical variable for each row.

Time is given in minutes.

Table 2.1

2.8 A Cut and Branch Algorithm for ILP(2.1)

INI
Suppose that LP(2.1) is solved and zo = x

£=1 iE Kg
is the optimal value of the objective function. If the

constraint (cut)

N

6 Kz siF
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where 0 < F - z is added to the set of constraints of

LP(2.1), there exists a feasible solution to the new Linear

Program which will be denoted by LP(2.l)''. That this is

so is clear from the observation that any amount of flow can

be withdrawn from the network defined by the optimal solution

Ju.i to LP(2.1). If zo is fractional then an optimal ob-

jective function to an integer solution cannot have value

greater than E z0] (the largest integer in zO). If it can

be guaranteed that the solution obtained to the new problem

will be all-integer if one exists, then the solution proce-

dure to follow is simple: Solve LP(2.1)'' starting with

F = [zo] and reducing F by one unit until an integer feasi-

ble solution is obtained. This cannot be guaranteed, of

course, for reasons explained in the last section. Hence

some finer cuts are needed. If LP(2.1)'' is solved and a

non-integer solution S(x 1 ) is obtained a Land and Doig type

branching procedure can be used to determine whether a feasible

integer solution having a flow of value F exists. The ter-

minal nodes of the solution tree may now have infeasible

solutions associated with them. If all terminal nodes repre-

sent infeasible solutions we have to restart with F set to

F-l.

Define the following sets (in addition to those defined

earlier) S(xk)= the solution at node xk

Xtf = the set of feasible terminal nodes

The Cut and Branch algorithm is:

STEP 1. SolveiLP(2.1). If the solution is all-integer stop.

The optimal solution to ILP(2.l) has been obtained.

STEP 2. Set F = (z0 ] (where z4 is the optimal objective in

STEP 1.)



STEP 3. Create node x2 and set X = Xtf = l1

STEP 4. Set Ix 1 ) =(

STEP 5. Set I (x) =(

N
STEP 6. Solve LP(2.1) with the added constraint x.

obtaining S(x 1 ) iE K.,

STEP 7. Set r = 1

STEP 8. If S(x ) is integer stop. The optimal solution

to ILP(2.1) has been obtained.

STEP 9. Create two branches and nodes x XI+l and x[JX+2
out of x

r

STEP 10. Set X = X + t x |X+1' |X|+2

STEP

STEP

STEP

STEP

11.

12.

13.

14.

STEP 15.

STEP

STEP

STEP

16.

17.

18.

Select an i .) 0 <.u. <. 1
1

Set 10 (x |XI -l o (xr) + {i I 1 ( XXI -1 1 (xr)

Set I1(x ) = 1r + il; I (x ) = I0 r

Solve LP(2.1)' with the added constraint (defined

in STEP 6) obtaining S(xi-jl, S(x )

If S(x)X|-1) is feasible set Xtf = xtf + x I-l

If S (x ) is feasible set Xtf = Xtf + | X|

If Xtf =CD set F = F-l and go to STEP 6.

Select an r?& xr E Xtf

Go to STEP 8.

= F
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Lemma 2.1 If the conditional of STEP 16 is true there

exists no feasible solution to ILP(2.1)''.

Proof: Assume that there exists a feasible solution to

ILP(2.1)'' and let S0 = turu 2,...) be one such solution.

Let T be the tree defined by executing STEP 6-STEP 18 whenr
the conditional of STEP 16 is true. We shall trace a chain

in T from x to some terminal node as follows: Start atr 1
x and follow the branch u = 0 or u = 1, where u is them m m
variable which defines the partitioning, according to the

value: of u in S . Continue by following branches out of
m 0

subsequent nodes of Tr using the same rule until a terminal

node is reached. Let this node be xk and xk Xtf. But

here we arrive at a contradiction since in S we have
0

u = 0 ViE 1(xk), u = 1ViE II'(xk) and S is assumed to

be a feasible solution to ILP(2.l)''.

From Lemma 2.1 and Theorem 2.2 it is clear that when the

algorithm stops in STEP 8 an optimal solution to ILP(2.1) is

obtained with z = F.

The computational success of this algorithm will depend

mainly on the size of the tree. If the set of feasible ter-

minal nodes is generally small then there is a good chance

that this algorithm will be better than the one described

in the last section. However only extensive computational

experience with large problems can provide sufficient evi-

dence to make a judgement on this point.

The algorithm was applied to example of Fig. 2.10 using

MPS/360. After LP(2.1) was solved giving z = 6.5, LP(2.1)''
N

was set up with 7 Z x si= 6 and the first solution was

all-integer. f=1 iEK1



36

2.9 Alternative Formulation

We now discuss an approach which will result in a sub-

stantial reduction in the size of the Linear Programs. In

this approach only the variables x.. from LP(2.1) and some
1J

other variables to be defined shortly are used. Consider

the 4 services example shown in Fig. 2.15a and the bipar-

tite graph in Fig. 2.15b.

C

a

c

I d

T

a

.J

8 -,
7.

8
9.

Fig. 2.15a Fig. 2.15b

We shall refer to the condition that exactly one de-

parture must be taken out of each bundle for, alternatively,

that at most one unit of flow can pass through a bundle) as

logical condition I. If S is the set of sources and T is



the set of sinks then we refer to the requirement that if

a source sk is selected so must be the sink tk as logical

condition II.

Define the following variables (see ILP(2.1) for the

definition of the sets)

x.. = the flow from s. to t.
IJ 1 J

s. = the slack at source i

t. = the slack at sink j

The ILP is:

INI
(i) max z= z E 7 x..

,*=1 iEK, jEA (i)
S.t.

(ii) (s .+ x. .) = 1, e
IJ

iGKt jEA(i)

(2.2) (iii) 2 (t + x ) = 1 , V .- K =l

jEKI iEB(j)

(iv) s.+ x. . + (t. + x. .) = 1

jEA(i) jEKg-[il jdB(j) I

,V iEKe

VtI }K >l

s.,t.,x. . = 0,1 , V i,j
1 J IJ

Constraints (ii) are logical condition I for the set

S. Constraints (iii) are logical condition I for those

members of T which have only one possible departure (although

a summation sign is written only one term results). Condi-

tion I for the other members of T will result from constraints
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(iv) as will be shown below. The last constraints also in-

duce the satisfying of logical condition II. (The physical

interpretation of s. and t. is this: If s. = 1 the depar-
1 J 1

ture indexed by i is selected and is the last flight on the

chain that includes this service. If t. = 1 the departure
J

indexed by j is selected and is the first flight on the

chain that includes it). We now prove the statements made

in the last paragraph.

Let X = x .j S = s., T = It. be a feasible
I iJ' I 1 I J

integer solution to ILP(2.2). At least one such feasible

solution can be obtained by setting x.. = 0 Vi,j and se-

lecting one arbitrary index k out of every set Kg and

setting sk =tk = 1. These values satisfy (ii)-(iv) as can

be checked by substitution. The logical conditions are also

trivially satisfied.

Let K, be an arbitrary bundle. If IKI = 1 then

constraints (ii) and (iii) guarantee that logical condition

I is satisfied, and so is condition II trivially. Let

IKe!> 1. Then (ii) guarantees that condition I is satis-

fied for the set S (the sources of Kg(). Suppose it is

not satisfied for the set T K(the sinks). Then it must be

true that either

7 (t. + x..) = 0

jE Ke iEB(j)
or

(t. + x. .) >2
J IJ

jEKt iEB(j)

Assume that the first possibility is true, and let mE Ke

be an index such that
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s + x.
m3

= 0

jEA (m)

(such an index clearly exists since KI ; 2 and (ii) holds).

Then

S + X . +
m m]

j E A (M)

= (t. + x ) 2

jE Kr -{[m} iEB ( j) jE

= 0

which is a violation of constraints (iv)

(t . + Z x..)

jE K -{Iml iE B (j)

(t.

Kg
E

iE B (j)

Assume that the second possibility is true and that

( t( . +
jEKI

x. .) = M
1J

iEB(j)

where M >.. 2

Let nEK, be an- index such that

S + nj
jEA (n)

(constraints (ii) guarantee the existence of such an index).

Then from (iv)

s +
n

jEA (n)

x .+ (t. + x.)nj 1J

jEK -{n) iEB (j)

x. )

we get
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(t .
J

jEK2 - [ n)

x. .) = 0

iEB(j)

hence

t +
n

iEB(j)

x . .= z
13

jE Kt

(t .+ z
J

iE B(j)
LJ J

= M - 0 = M

Then writing constraints (iv) when i = m (chosen above),

s + X. .+
m F.J

jEKg -[ml

(t .+
J

jEK - { m, n3

x. .)

iEB (j)

x. .) + t +
IJ n

iE B (j)

=t + x.. M > 2
n J

iEB(n)

which is a violation of constraints (iv).

We now prove that condition II holds too. Assuming

that
x.

ni
s n+ = 1

jEA (n)

and

t + Z
m

x.im
= 1

iE B (m)

where m,nEKe and m / n, we have from (iv)

. )

jEA (m)

x. .
J

iEB(n)
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s + En
jEA(n)

x .+
n) jE

jEKe-{Inj]

(t. + Z x..)
E B 1)

iEB(j)

=s + E

jEA(n)

x . + t +
nj m z:

iEB(m)

+ E (t. +

jEK,-{m,n)

Sx..) = 2

iEB(j)

which is a violation of constraints (iv).

All the violations of constraints contradict the as-

sumption that we have a feasible integer solution. The proof

is therefore complete.

ILP(2.2) for the example of Fig. 2.15 is written below.

max z = x +x + x + x + x + x + x
15 18 19 25 -28 29 38

+ X 3 9 + x4 6 + x47 + x 57 + x6 9

subject to

s 1 + x 15 + x 18 + x 19 + s 2 + x 25 + x 28 + x 29 + S 3 + x 38'

+ x39

sg + X4 + x4 + s5 + x554 + 4 6 + 4 7  57 =1

s6 + x69 + S= 1

s+ st = 1

s1 + x15 18 9+ x1 + t2 + t3

s2 + x25 + x28 + x29 + t1 + t3
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s3 + x 3 8 + x39 + t1 + t 2

s4 + x 4 6 + x 7 + t5 +x 1 5 + x 2 5

s5 + x57 + t

s6 + x69 + t 7 + x 4 7 + x 5 7

s7 + t6 + x 4 6

s8 + t9 + x1 + x29 + x39 + x69

s 9 + t 8 + xl18 + x 28 +x38

x. ,s.,t.
:IJ 3l J

= 0,1 Vi,j

2.10 A Branch and Bound Algorithm for ILP(2.2)

The algorithm for ILP(2.2) will explicitly set only

the variables x... Define the sets:
1J

1 (xk) - i,j) x

Il(xk) i (~) j 

= 0 at node x k

= 1 at node xkl

S(xk) = the solution set { x .. at node xk

The other sets were defined in the last section.

The Branch and Bound algorithm is:

STEP 1. Create a node x1 and set X = Xt = x1

STEP 2. Set I (x1) =(C

-l

-1

-l

-l

-l

-l
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STEP 3. Set 1 (x 1 ) =D

STEP 4. Solve LP(2.2) obtaining S(x1 ) and z(x )

STEP 5. Set r = 1

STEP 6. If S(x r) is integer stop. Optimal integer solu-

tion has been obtained.

STEP 7. Create two branches and nodes x X|+1 and x |X|+2

out of x
r

STEP 8. Set X = X + [x X|+1' x|X|+2

STEP 9. Set Xt Xt + [ x |X|-l' |X| r

STEP 10.

STEP 11.

STEP 12.

STEP 13.

Select (i,j)3)-O < x < 1

Set 10 (x |XI-1 1 0 (xr) + ,(i,j)l ; I (x Xil 1(x r)

Set I (XIX|) = r) + [(i, 1 xi = r

Solve LP(2.2)' for k =Xi-l and k = 1XIobtaining

S (x X ) z (x

N
(i) max z (xk)

and S (x ) , z (x )

z x.1]~
=1 iE Ks

x.
1)

(2.2)' (ii)

jE A (i)

, V(i, j) E Io (xk)

, V(i, j)EI (x )= 1

Z (a + x ) = 1

iEKZ jE A (i)

Z (t + x ) = 1

S. t.

(iii) , W -1Kg I= 1

jEKgt iEB (j)



(iv) s. + z

jEA (i)

x. . +
1J 71

jEKg i

(t. + Z x J

iE B (j)

,V iE K1

,V t .-:) KI 1> 1

STEP 14. Determine r such that z(xr) = max{4(ck E Xt)

STEP 15. Go to STEP 6

The stopping condition (STEP 6) specifies that only

S(xr) must be integer. However the other variables {s ,I

ft.} will also be integer or could be trivially set to integer

values without a change in z(x r), thus in effect obtaining

an all-integer solution. Formally

Theorem 2.3 When the stopping condition (STEP 6) is

met an optimal solution to ILP(2.2) is

determined by S (x ).

Proof: Let S(x r) be integer and select an arbitrary

bundle Kt . Then there are four cases:

1. xm. = 1, x. = 1 for some i,j where m E KI; then

s. = t. = 0 t iEKi
1 1

2. x.=1, 
m3

j E Kg iEB(j)

x.. = 0; then s. = 0 V iE Ki,
1J 1

t =
m

t. 0 V jEKf -(mI
J

3. x. =1,im x.. =0; then s =1,

iE Kj E A (i)
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s.= 0 V iEK -Imi

t.=0 VfjEKJ

4. 2 x.. =0, x 0

iEKC jEA (i) jEK, iEB (j)

then s. 1, t. =
J

iEKe jEKg

In which case not all s.,t. are necessarily integer. Then
1)J

arbitrarily fix s k=t k=1 for some kE Kg, thus obtaining an

all-integer solution.

from the selection rule in STEP 14 it is clear that

the solution thus obtained is the optimal solution to

TLP(2.2).

In the formulation of the last section we dealt explic-

itly only with a small subset of the variables, while in the

present formulation the number is considerably higher. Hence

it is likely that more Branch and Bound iterations will be

required in the latter than in the former. However the size

of the basis is considerably smaller here. A decision as to

which formulation to use will depend on the size of the tra-

nsportation system. A more quantitative discussion, with

reference to the capacity of MPS/360 will be given in the

next section.

2.11 Minimal Flow Formulation; Comparisons

The variable schedule problem can be formulated as a

problem of minimal flow with bundle constraints. The schedule

map will be transformed into a network by adding some arcs
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and defining capacity and flow functions on subsets of arcs of

the graph. The vertical lines, representing the stations

will be called ''station lines'. The bottom of the station

lines will be connected to their top by 'overnight arcs'.

The other arcs, connecting one station to another arc the

'flight arcs'. A network thus constructed is shown in Fig.

2.16. The objective is to minimize the sum of the flows on

the overnight arcs subject to the

s s2

t 1 t2 - t3-

Fig. 2.16

conditions that a unit flow must pass through exactly one

arc out of every bundle of flight arcs.

Define the following sets:

Ke = the set of flight arcs belonging to the t-th

service

B(i)= the set of nodes such that there is an arc from

each one of them to node i

A(i) = the set of nodes such that there is an arc from

node i to each one of them
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And the variable

f.. = the flow from node i to node j
IJ

The ILP for this formulation is:

(i) min z = E f
(t.,s.) 1 1

S.t.

(ii) f .- f. =0 ,V i
ki i

kEB(i) pEA(i)

(2.3)

(iii) f.. =V1 ,v
(ij) EKe

(iv) f . = integer , (i,j)

This formulation is perhaps more natural than the pre-

ceding two. However it has a significant disadvantage, which

will now be discussed.

Linear Programming codes usually restrict the number of

rows which can be handled. MPS/360, for example, has a capa-

city of up to 4095 rows with a (practically) unlimited number

of columns. Depending on storage available it can handle

very efficiently a smaller number of rows. We shall now com-

pare the number of constraints required for each of the formu-

lations described thus far. But in order to do so we bring

LP(2.1) to a minimal form. This can be done by substituting

u. for v. in (v) and substituting (iv) and (v) in (vi) and
J J

(vii) respectively. Thus obtaining the ILP:
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IN|
(i) max z = Y.

e=1 iEKt
S.t.

(ii)

(2.la)

(iii)

(iv)

u = 1

iEKt

u. >

jEA (i)

u..
J

iE B(j)

Y x..

jEA(i)

x..
13

x. .
1J

, V i

, V j

We shall refer to the formulations of the problem as I, II

and III in the order in which they were introduced in this

chapter. The number of constraints required are:
INI

for formulation I:

for formulation II:

INI + 2( KtI )
t =1

INI
IN + F 1Kt1

e=1
|NI

for formulation III: INI + 2 ( Z IKg) (every arrival
e=l

and every departure are counted as a node)

The number of variables depends on the problem. The com-

parison for two specific examples: 1. Fig. 2.10, 2. The

entire system of Fig. 2.13, are given below:

constraints

variables

I II

40 24

60 76

III

40

48

I II III

184 105 184

773 852 243

It is evident from these statistics that formulation II is

the best when the system is large and/or the number of
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alternative departure times is large. In any case I and II

are preferred since they also provide the scheduler with an

ability to treat individual connections in any manner de-

sired. He can generate improved (in the sense discussed

in section 2.5) schedules or eliminate specific connections

from consideration if he feels that it is desirable to do so

for any reason.

The large domestic airlines have a total of above 1000

services per day. However the system can frequently be de-

composed (geographically) so that it may not be necessary

to treat the entire system simultaneously. For example if

a subsystem consisting of 500 services and 6 alternative

departures for each service is considered, it can be handled

by formulation II (using MPS/360) but not by the other two.

In the author's judgement this is sufficient for handling

present day systems. If the system is small enough it may

be desirable to use formulation I (or III) for as was argued

earlier it may result in a smaller number of iterations of the

Branch and Bound algorithm. In the next section a fourth for-

mulation which reduces the number of constraints even further

will be discussed.

2.12 Arc-Chain Minimal Flow Formulation

The minimal flow problem of the last section can be for-

mulated in an Arc Chain form [7]. This formulation reduces

drastically the number of constraints. As we shall see the

number of constraints in this form is equal to the number of

services. The number of columns is extremely large, but it

is not necessary to know all of them. Only the columns which



50

are introduced into the basis must be known, and they are

generated as the algorithm progresses. The method of column

generation was suggested by Ford and Fulkerson in [ 8] for

computing maximal multicommodity network flows.

The formulation is based on the observation that we

could in principle enumerate all the chains that an aircraft

can be assigned to and select the minimal number of chains

that will accomplish all the services. If c1 ,c2 ..,cn is

the list of all the chains, c. can be represented as a vec-
J

tor with INI components, one for each service. If 11,A2'
... ,A is an enumeration of all flight arcs then we define

p
the following matrix A = (aej):

1 if c. includes A.. i E Ke
a . =

0 otherwise

(See the definition of Kg in the last section).

And let x. be the flow along the chain c.(or, alternatively,
J J

a decision variable as to whether ci will be used in the

optimal schedule). Then our optimization problem is:

n
(i) minimize z = x.

j=1

S.t.

(2.4) n

(ii) a .x. = 1 e = 1,...,N|aJ J
j =1

x. =0,1
J

Following the discussion in section 2.5 it is assumed that

no chain can include more than one member of a bundle. Fig.

2.17 is an example of the set of constraints for a 4-service

system.
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1 1 - 1 1 1 1 1 1 = 1 (1)

1 1 1 1 1 1 1 1 = 1 (2)
1 1 1 1 1 1 1 1 = 1 (3)

S1 1 1 1 1 (4)

Fig. 2.17

The number of chains even for this small example is quite

large. Chains which cover exactly the same services are

represented by the same columns in the matrix, although phy-

sically they represent different sets of flight arcs.

In order to proceed with the algorithm all we need is a

starting feasible basis. This can be easily obtained by

selecting an arbitrary flight arc from each service bundle

and defining them as single arc chains (see the first 8 chains

of the example given above) thus obtaining a convenient unit

matrix. In general, suppose we have a basis B with dB the vec-

tor of costs of variables in the basis. Then the simplex

multipliers are _7T = d B 1 where dB 1 A chain x. may
-B -B -IN

be introduced into the basis if

INI INI
7T, a, - 1 > 0 or 1 + (- TT ) a <0.

e:= 1 1= 1
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If -7T is interpreted as the length of all the flight arcs

belonging to the /-th service, a shcrtest chain algorithm

can be used to find the one to be introduced into the basis

or to determine that an optimal solution has been obtained

if the length of the shortest chain is not less than -1.

From this discussion it is clear that explicit knowledge of

all the chains is not necessary. A suitable shortest chain

algorithm must handle both positive and negative arc lengths.

Such an algorithm is described in Chapter III of E 7 ]. A

condition that this particular algorithm will be guaranteed

to work is that there should be no negative cycles in the

graph. But since our graph is acyclic no problems arise.

The case shown in Fig. 2.7b is undesirable particularly

in this formulation of the problem, because if we enumerate

all chains in a schedule map which includes such cases we are

likely to obtain erroneous results. In such cases a chain

may include two or more flight arcs which belong to the same

service. Notice that in the present formulation there is no

way to express this fact to the system of equations in ILP(2.4).

Consider for example the schedule map shown in Fig. 2.18.

Except for one service which consists of two possible depar-

tures (denoted by the two heavy lines) all others are fixed

departure services. A B

Fig. 2.18
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If xs is the chain consisting of all the flight arcs in the

system then xs = 1 is an optimal solution to ILP(2.4). It

can be checked however that at least two aircraft are neces-

sary to meet the schedule with a choice of either one of the

two alternative departures. In order to guard against such

pitfalls our column introduction scheme should introduce only

chains which cover a service at most once. Therefore we

would like to exclude the situation of Fig. 2.7b.

No computational experience with large systems can be

reported since no code currently exists. However it seems

that if in the future very large systems, which require more

capacity than existing LP codes can provide, are to be solved

this method will have to be used.

A Branch and Bound algorithm for this formulation would

be based on inclusion and exclusion of particular flight

arcs rather than on specific variables (chains). For ex-

ample if xs is fractional and covers flight arc i such that

ieKg then one branch out of the node from which branching

is currently taking place will have a new schedule map in which

all arcs j Kg-Iil are excluded (by putting on them very high

costs, for example) and the other node will have the arc i

excluded.

2.13 Scheduling with Departure Preferences

Until now it was assumed that management is indifferent

to the particular choice of a departure out of a set. However



it may indeed have preferences for some departures over others.

In this action the model is extended to the case where the

departures are ranked on a preference scale, and we may say

that each departure has a 'preference index'. This index

may simply be the number of passengers the airline expects

to accomodate if the service is provided at the particular

departure time. It is possible that the proximity of a com-

petitive service will tap some of the potential passengers,

or that the waiting time itself may influence the expected

number of passengers. In anyv case it is assumed that manage-

ment can assign a reasonable preference index to every depar-

ture.

Suppose that ILP(2.1) has been solved and the minimal

fleet size required to meet the schedule is known. Out of

all schedules that this fleet can accomplish we would like

to pick the one which maximizes the sum of the preference in-

dices. This optimization problem will now be formulated as

an ILP. First define:

c. = the preference index of the i-th

departure

F = the max-flow obtained by solving

ILP(2.1)

Then the Integer Linear Program is:

N
(i) max z* = c u

1=1 iE Kj

S.t.



(ii) u=1, Z v =VI

iEKI iEKg

(iii) u. = v. , Vi
l 1

(2.5) (iv) x . :; u. , i
Sl1

(v) x . v. ,VjJt 3

(vi) x .= x. ,Vi

j EA(i)

(vii) x. = x. j

iE B(j)

N
(viii) x .Fsi

e=1i E Kg

F can actually be chosen to be equal to any integer

smaller than the maximal, for it may be profitable to use a

larger fleet if the increase in revenues induced by a better

schedule will justify it. Thus a parametric study may be

conducted, with F as a variable, from which the most efficient

point can be determined. The smallest F which has to be

examined is the maximal flow obtained by selecting the best

departure out of a bundle and solving for the maximal flow

(which is a fixed schedule problem).

Since F is an integer and we know that there exists at

least one all-integer feasible solution to the constiaints

of LP(2.5), the question which arises now is whether LP(2.5)

will always have at least one optimal integer solution. At



present the author is able neither to prove this nor to pro-

vide a counter-example, since the problems that were solved

had - integer optimal solutions. Table 2.2 lists the prefer-

ence indices for the example of Fig. 2.10. The maximal

integer flow in that network was 6 units and LP(2.5) was

solved for F = 6. The optimal solution is shown in Fig.

2.19. The reader can check that the more profitable depar-

ture out of each bundle is taken. Our large example (Fig. 2.13)

i c. i c. i c. i c.

1 75 5 80 9 75 13 78

2 65 6 85 10 65 14 92

3 100 7 85 11 90 15 70

4 75 8 85 12 75 16 100

TABLE 2.2

was also solved with some c.'s which will not be shown here.

But they were chosen so that the more 'central' departures

out of the bundle are always the better ones. The result is

shown in Fig. 2.14b, which can be compared with the rather

random arrangement of Fig. 2.14a.

The use of the other two formulations, II and III, will

now be briefly discussed. In formulation II the profit of

variable x.. 1is (c.+ c.) of s. is c., and of t. is c.. It
1J 21' 1 J J

can be easily verified that a solution to the ILP formulated

below will properly account for the preference indices of all the
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departures chosen. The ILP is
INI

(i) max z*= c.s.+ t.)

=1 i E Kg

INI

.=l iE KI

(s +

i E A(i)

S(c + c)x

jE A(i)

x. ) = 1
13J

(iii)

j E Kg

(t. +

iE B(j)

x .) = 1 , V-e - 1Kt = 1

(iv) s. + x +

i E A (i)

(t . +
J

j EKg [ .11
x. .) = 1

1J

i E B(j)

,t i E Ke

INI

(v) 2 7

?=l i E K,

s. , t., x ..
1- J IJ

In the case for which c.

- c.. for all x.. to be

in section 2.5 we solve.

sense discussed in that

meaningfully defined to

, K > [- l

x. .
1J

jE A (i)

= 0,l

= F

,1 Vi,

= 0 V i and we define the costs

equal to T - t.. for reasons discussed
1J

for an 'improved' schedule in the

section. In general, if c.. can be
ce

carry a proper weight compared to

S.t.

(ii) z
iE K.,

, e

(2.6)
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the c.'s we may have a cost of (c. + c c c. . for x.
11 J 13 13

For the fourth formulation d. will be defined to be the
J

sum of all the preference indices on the chain of departures

which x. covers. Consequently the Integer Linear Program
J

is: n
(i) maximize z* = 2 d. x.

J J
j=1

S.t.
n

(2.7) (ii) a x =1 e =,...,INI

j=1

n
(iii) x. = F

J
j=1

x.= 0, 1
J

Here also a shortest route algorithm can be used to determine

the chain to be introduced into the basis. The simplex mul-
-l

tipliers are 7T = d B where dB is the vector of the costs

of the basic variables. A chain x. may be introduced into
J

the basis if
INI+1

7T ae. - d . < 0.

Hence define the following lengths on the flight arcs:

77 .C. V iEK ,

Then a shortest route algorithm can be used to determine the

next chain to be introduced, or that the present solution is

optimal if INI

77g a. - d. + 7. ;
3J J INI+1
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for the shortest route.

2.14 Scheduling with Direct Fleet Costs

Until now the operating costs of the fleet were not ex-

plicitly introduced into the model. Rather, it was pointed

out that management can conduct a parametric study with the

variable F taking successively lower integer values. This

approach is suitable for the case in which the cost of main-

taining the fleet is not a linear function of its size. For

example, it is likely that economies of scale are significant

and the dependence of the cost of maintaining the fleet on

its size looks like the curve of Fig. 2.20a. However, if it

is assumed that a linear relation (Fig. 2.20b) is adequate,

or that an existing system has already taken care of

costs costs

size size

Fig. 2.20a Fig. 2.20b

the initial high expense and now we are concerned with an

almost linear region of the relation, the explicit constraint

(viii) of ILP(2.5) can be dropped and direct operating costs

introduced instead. The ILP which will be defined shortly

will determine a fleet size optimally balanced with depar-
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ture profits. Let c be the cost per period of operating an

additional aircraft. Since the number of aircrafts is

INI

- xsi the total cost of opera ting theINJ
e=l iEK, f leet is

c0 (I NJ
INI

zxsi

e=l i E KL

From which the profit of operating the system is

INj
c. U. - c ( INI - Z

t =1 i E Kt(=1 iEKg

c9|N being a constant, the ILP is:

(i) max z =

S. t.

(ii) u.
iE K,

INI
e(c u + c9 x

9=1 i E K

.= 1, z
iC K~t

U. = V.
1 1

x .u 

Jt3-

x = V

jEA (i)

xt z
xjt

iE B(j)

, V i

x.
1J

x..
13

(all variables 0-1)

xsi

v.
1

= 1

(iii)

, V I

(2.8)

, V i

(iv)

(v)

(vi)

(vii)
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When c is very high the optimal solution to ILP(2.8) will

give the maximal flow in the network. Consequently, by a

previous counterexample, LP(2.8) may have non-integer optimal

qo1utions. If c is low the fleet is inexpensive to operate,

and the best departure will be taken out of each service.

Since this fixes the schedule LP(2.8) will have at least one

optimal integer solution. The Branch and Bound algorithm

which was defined for ILP(2.1) can be used for ILP(2.8) with-

out any changes, since when all u.'s are fixed (at 0,1) the

problem becomes one of maximizing the flow in a 'usual' net-

work.

The ILP for formulation II takes the form:

INI
(i) max z = c. (s. + t.)

e=1 iEK1

+ I (c. + c. + c ) x..
1-1 iEK jEA(i) 13 0

S.t.

(ii) 2 (s. + x..) = 1 , Y £
iEKA jA(i)

(iii) (t. + Z x , V e Kel =1
jEKf iEB(j)

(2.9)
(iv) s. + x.. + (t. + x..) = 1

jEA(i) J jEKL -fil iEB(j) 1'

,ViE KI

V~IbKI| > 1

s.,t.,x.. = 0,1 , V i, j
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2.15 Concluding Remarks

In this chapter a basic decision model for a single fleet

air transportation system was discussed. The fixed schedule

model (for which solution methods have already appeared in

literature) was introduced as the basis for the following

extensions. Next it was assumed that departures are variable

within a given 'bandwidth' for each service. The departures

are to be fixed so that the size of the fleet which will

provide the services is minimal. Four different formulations

of this problem were discussed. Solution procedures by the

methods suggested in this chapter can be carried out with

available LP codes for the first three. The last one, the

Arc-Chain formulation, can handle considerably larger systems

but no computer code is available. The ILP's which constitute

the formulations of the problem exhibit the interesting and

welcome property that quite often the corresponding LP's have

optimal integer solutions. In case they do not then effective

Branch and Bound procedures, by which the optimal integer

solutions can be obtained, were formulated. Next the concept

of 'preference index' was introduced and the problem of sched-

uling and routing the minimal fleet was formulated as an ILP

and computational results were discussed. Finally, the

problem of scheduling with direct fleet costs rather than with

the minimal fleet constraint was suggested and formulated as

an ILP. Additional computational experience will be presented

in the next chapter. Experience with very large systems will

have to be obtained in future work.



CHAPTER III

THE SINGLE FLEET: EXTENSIONS

3.1 Introduction

In this short chapter some extensions to the basic Single

Fleet Problem will be discussed. The formulations of the

problems presented in this work as Integer Linear Programs

is of great advantage, since by the introduction of but a few

constraints the models can be extended to include many of the

real life constraints imposed on the system. We shall be more

specific about it in the following section. It is also pos-

sible to allow optional services which will be taken only if

they contribute to the profitability of the system. Thus

management may have higher flexibility in committing itself

to specific services. Section 3.3 will include a discussion

of total system design, in which it is not committed to the

inclusion of any services at all. This chapter is devoted to

model formulations and to the presentation of the results of

computational experiments.

3.2 Restricted Service Frequencies

In Chapter II it was assumed that the airline intends

to include each service on the schedule map. It is possible

however that it may want to consider alternative services from

station A to station B from which only a subset will be se-

lected. Specifically, the airline plans to have nAB services

from A to B, nBA services from B to A etc. The airline may

have nAB set for it by regulating agencies. Another problem
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is one in which an airline is permitted to fly only nA flights

in and out of A. Management may want to have a higher fre-

quency at A but is restricted (perhaps due to traffic conges-

tion at the airport). In both cases the schedule map will

contain more services than will eventually be flown, and we

add some constraints to the ILP's of Chapter II. The assump-

tion here is that the system operates in a competitive environ-

ment and that consequently, whether a service is or is not

included in the resulting system has no effect on the other

services in the system, because the competitive carriers ab-

sorb the demand projected for the service which is not included.

In order to formulate the Integer Linear Programs we

need the following definitions:

I = e (Kg is an inbound service to station q

0= { |Ke is an outbound service from station qJ

L = { e|Ke is a service from p to q I

We shall now formulate the ILP for the case in which the

transportation system is restricted as to the number of ser-

vices it can operate at each station. We assume that the

first objective of the management is to select the services

so that the total fleet size is minimal. Then using the

minimal form of formulation I of the last chapter the ILP

is: IN

(i) max z = Z Z Z x..
e=1 iEK j E A(i) '
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S. t.

(ii) Z
iE K

(iii) U. >

(3.1) (iv) U. >

(v)

(vi)

e EIq

eE.

jE Ai)

iE B(j)

i E Kg

2i E Ke

u 1 1

x. .

x. .
1J

u. = n
1

u. = n
I1

, Vj

, Vq

, V q

(all variables 0,1)

Constraints (v) and (vi) are the ones which impose the fre-

quency restrictions at each station. After the minimal fleet

size has been found we can formulate the problem which will

select the best schedule for this fleet, as was done in Chap-

ter II.

We shall now formulate the ILP for the case in which the

management would like to limit the number of services between

some or all of the station pairs. Again, we are first inter-

ested in the selection which will make the total fleet size

minimal. The ILP is:
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INI

max z =2 Y,

e=l iEKj

(ii)

(iii)

(3.2) (iv)

(v)

u. ;17,

i E Kt

u. >...-

U. 2
~ J

i

eE L

Z
j E A (i)

E B(j)

i E Kg

(All variables 0,1)

The example of Fig. 2.10 is a special case for ILP(2.1) and

ILP(3.2) hence the solutions to LP(3.1) and to LP(3.2) are not

necessarily integer.

Fig. 3.1 is an example of a shuttle system among 6 cities.

There is a total of 54 possible services in the system with

three possible departures for each one of them. The system

was solved for the minimal fleet size for two cases:

(i)

S. t.

x. .
13

j EA(i)

,Vi

,Vj

V(p,q)

x. .

x..
IJ

n
pg
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nABPnBA nBC,nCB nCD,nDC nDE"nED nEF nFE
Case 1. 8 4 5 8 2

Case 2. 5 2 3 4 2

Table 3.1

The first case is the min-fleet problem (of Chapter II) for the

entire system. LP(3.2) gave an integer optimal solution for

both cases. Eleven aircraft are needed for the system of case

1 and 5 aircraft for case 2. The resulting schedule for the

latter is shown in Fig. 3.2. The connections (x .. 's) are
IJ

also indicated in this figure by broken lines and the chains

which will be followed by each of the five aircraft can be

easily traced.

In Chapter II we discussed the procedure for scheduling

with preference indices and here we proceed similarly. Subject

to the constraint of minimal fleet size management would like

to pick the schedule which will bring maximal (projected)

revenue. After ILP(3.2) is solved with max-flow of F as the

optimal objective, c. is assigned as a preference index for

the i-th departure, and the ILP is:

INI
(i) max z= c. u.

C~l iEKi
e=1 i E Kt

S .t.

(ii) u. 41 ,

i E Ke
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j E A (i)

(3.3)

(iv) U x ,

i EB(j)

(v) u. = n , V(p,q)

IEL iE Kpq

|NJ
(vi) 7 x. F

e= 1 iEKt j EA(i) 13

(all variables 0,1)

In all cases tested by the author LP(3.3) had an optimal in-

teger solution. For example, for case 2 of Table 3.1, after

ILP(3.2) was solved so was ILP(3.3) for a set of preference

indices which were randomly selected and ranged from -20 to

80 (Table 3.2). The solution is shown in Fig. 3.3. Notice

that although the same number of aircraft is used in both

this solution and Fig. 3.2, the schedules are quite different.

As a general observation it is true that in any system there

are quite a few possible schedules which will use the minimal

number of aircraft.
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30
1 60

Service No. c.

20
19 40

60

50
70
20

-10

60

70
22

-10

30
-20
10

40
80
40

25

10
-10

20
60
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0
60
40

10
60

-10

12
40
10
70

28

30

20

10
30
20

40
40
30

70
50
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40
-10

40
40
60

70
40

-10

40
0
20

60
20
70

40
10
60

Service No.

39

40

42

43

44

45

46

47

48

c

-10
50
30

50
40

60
-20

70
20
0

20
50
80

-10
60
20

70
30
20

60
50
70

0
-20
40

60



Service No. C.
I

15

16

Service No.

-10
40
60

-20
40
40

-10
20
70

80
50
0

40

c. Service No.

31 49
40

32
-10
20
70

30
40

-20

50

80
50

40

-20

TABLE 3. 2

c.

70

60
50
40

-10
20

30
-10
40
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3.3 System Design

In what we term 'System Design' we mean that management

is not a priori committed to any number of services at all

between any two stations or to frequency of service at any

station. We can assume that the transportation system has a

number of aircraft available which must be used in the system,

or that it has none and would like to determine the size of

the fleet which will operate profitably.

Assume now that we are dealing with the second case. The

number of services which will constitute the system is

INI

. 2 u.
e=l i E Ke

where N is the set of services considered. The size of the

fleet will be

IN INI
Z u. - Zx .

e=1 iE Kg le=l iE K, j EA (i)

If c. is the profit of the i-th departure and assuming linear

costs for an aircraft over the period which is equal to c

(see section 2.15), we get the expense of operating the fleet

over the period:

|N| INI
c2 u - 2 x..)

=1 iE Kg t=1 iE Ke j6A(i)

The ILP is:
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INI INI

(i) max z = i (c.-c )u. + 0 c x

t=l iEKt t=1 i E Kt jE A (i)

S .t.

(ii) U. el 1 , i

i E Kg

(3.4)

1J

j EA(i)

(iv) u. >.> x. . j
J IJ

i E B(j)

(v) u= u ,V q

((I i E Ke eE q iEKj

(all variables 0,1)

Constraints (v) specify that in the optimal system there will

be an equal number of arrivals and departures at each station.

This conditions was always assumed to hold in the models dis-

cussed thus far. It guarantees that there will be conservation

of aircraft flow in the system; i.e. there will be no net ac-

cumulation of aircraft at any station after a period of opera-

tion.

In general LP(3.4) has non-integer optimal solutions.

The Branch and Bound algorithm of section 2.7 can be applied

here to obtain the optimal integer solution. Consider, for
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Fig.
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exampl , the three-station problem of Fig. 3.4a.

for this system is given in Table 3.3, where the

tion to LP(3.4) is shown too.

The data

optimal solu-

Depart. No.

1

2

3

4

5

6

7

8

9

10

30

30

2

15

10

14

25

18

15

10

2/3

1/3

0

1/3

2/3

1/3

1/3

2/3

1/3

2/3

Depart. No. 
u.
u.

0

2/3

0

0

0

0

1

0

0

c =40
0

TABLE 3.3

The solution tree is shown in Fig. 3.5 where all the terminal

nodes represent integer solutions. The optimal integer solu-

tion is shown in Fig. 3.4b (by the heavy lined services ).

/- 55 2/3

u =
= 1

1/2

u = 1

hX5 5548

Fig. 3.5

Depart. No.

u 4
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In experiments with 'large'systems the opietI:i :slutions ob-

tained were all-integer. For example, the system of Fig. 3.1

was solved with the data of Table 3.2 and with c = 300. The
0

optimal solution is shown in Fig. 3.6. The fleet size for the

optimal system is 5.

Assume now that p aircraft which management would like

to use in the system are available or that it plans on having

a fleet of this size. It then wants to fix the schedule which

will bring the maximal profit with p aircraft in operation.

The ILP for this case is:

(i)

S.t.
(ii)

max

i E K

INI

=1 i E Kz

c.u.
1 1

' V tU

(iii) u.

(3.5)
(iv) u. 'A

3

(v)

e EIq

INI
(vi) ~

j E A (i)

i EB(j)

iE

x. .
13

x. .
IJ

u. =Z

1E

q
INI

u 
-

t=1 iEKe 1=1 iEK jEA(i)

(all variables 0,1)

,V j

,V qu.

i E K1

x..
1)
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As the reader can verify, it is the last constraint which

imposes the fleet-size requirement. No computational exper-

iments were conducted with ILP(3.5).

3.4 Concluding Remarks

In this chapter we discussed some model extensions,

together with computational experience. Simplex algorithm

times (using MPS/360) for all the problems discussed were

below 1 minute. Any combination of the constraints which

were discussed can, of course, be included in any particular

model. The other formulations of Chapter II were not in-

cluded because they would simply be repetitious. Formulation

II could be profitably used here also to reduce the number

of constraints. In the next chapter we extend the discussion

to a transportation system which operates more than one type

of aircraft.
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CHAPTER IV

THE MULTI-FLEET PROBLEM

4.1 Introduction

In Chapter II it was assumed that the transportation

system uses only one type of aircraft or, alternatively,

that the subsystem consisting of a single type was considered.

All large air transportation systems do indeed use several

types of aircraft, and in the present chapter we shall ad-

dress ourselves to some optimization problems connected with

the operation of a multi-fleet system. The reason for

operating a multi-fleet is, of course, the difference in

operating costs between different types of aircraft which

have different capacities. Thus it may be profitable to use

a low capacity aircraft for a low demand service while it

may not be so if a high capacity aircraft is used.

Section 4.2 includes some preliminaries and definitions

which will be used in the following sections. In section 4.3

a 'system decomposition problem' is formulated. This section

provides a tool for decomposing the transportation system

(in some optimal manner) into subsystems each consisting of

a unique aircraft type.

. Sections 4.4-4.6 also present various formulations of

the system decomposition problem but with some additional

constraints and operating costs, which at the same time in-

troduce computational difficulties like matrix size problems

and integrality of the optimal solutions. An Arc-Chain for-

mulation of some of the models of this chapter is discussed

in section 4.7.



83

4.2 Preliminary Discussion and Definitions

It was stated in the introduction to this chapter that

the aircraft types differ mainly in capacity and in operating

costs. Lower capacity aircraft have lower operating costs

and therefore it may be costly to assign a high capacity

airplane to an (expectedly) low demand service. On the other

hand a potentially large number of passengers will have to

be rejected if a low capacity aircraft is assigned to a high

demand service. It may still be a sound decision, however,

to assign a small aircraft if demand exceeds capacity only

slightly, when the difference is not sufficiently high to

balance the higher operating costs of the larger aircraft.

We shall restrict the following discussions to a two-fleet

system, but generalizations to an n-fleet system can be

easily made.

In order to define suitable Integer Linear Programs for

the models, we have to transform the discussion of the last

paragraph into a more quantitative format. The operating

costs of an aircraft type will be expressed in terms of a

'breakeven point' which is the number of passengers required

to just make the operation of the aircraft for a particular

service profitable. There will be two preference indices

for each departure, one for each of the vehicle types. The

preference index of type-1 aircraft for a given departure

will be obtained by subtracting the breakeven point from the

number of passengers it will carry if the departure is taken

multiplied by the fare. This procedure looks reasonable

enough but, of course, any number of factors can be included

in the computation of the preference index.
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When the entire system is being divided into subsystems

according to the aircraft types we have to impose the constraint

that there must be conservation of 'vehicle flow' in each

subsystem. Namely, that there are as many arrivals as there

are departures at each station of each subsystem. Otherwise

there will be an accumulation of aircraft in some stations.

This constraint is superfluous in the single fleet case since

it is automatically satisfied.

The schedule map will now have two copies, one for each

aircraft type. Superscripts will distinguish variables and

sets. Fig. 4.1 is the two-copy version of the schedule map

of Fig. 2.7a. Out of the total of six departures which cor-

respond to service number 1 (1 1and 12) exactly one will be

selected. If the one selected belongs to 11 the service will

be taken by a type-l aircraft. If it belongs to 12 a type-2

aircraft will be assigned to service no. 1.

Y1 X Y2 X2

2 2 2

Fig. 4.1



The bipartite network corresponding to a two-fleet problem

will have two copies, joined together at the nodes s and t

(Fig. 4.2). This network will be denoted by

G* = S , S2, T1 , T2 ; A1 , A2 1 . Before proceeding we define

some sets and variables for G* which will be used in the for-

mulations of the optimization problems in the rest of this

chapter. We shall number the stations sequentially and use

q as an index for this sequence.

Define the following sets:

A M = { (sm,tm) E Am)
m i J.

B (j) = (sm, tm) E Ami (m = 1, 2)
m i j

Im [ in is an inbound service to station qI
q

Om= f E K is an outbound service from station q
q

(Subsequently we shall drop the superscript from and

assume that we have.two exact copies, namely, that each copy

has as many alternative departures for each service as the

other).

And the following variables:

xM. = the flow in (s,s )sJ i

xm = the flow in (sm, t m
lJ i J

mm
x. = the flow in (tm,t) (m = 1,2)

jt

m m
u. = the capacity of (s,s.i)

v. the capacity of (tm,t)
J
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s t

s t

3t

soti

tt

s 5
5

2 2
s t

s 2 t

s 
t

S' t

2 4
s4 

2
t525

s 5

Fig. 4.2

Note that our assumption of two copies implicitly states

that the two types fly at the same speed. This assumption is

not crucial, however, and the discussion can be generalized

to the case where only one-to-one correspondences is defined

between services of the two copies.

The sizes of the Integer Linear Programs defined in this

chapter will be larger than the ones defined in Chapter II.

They may indeed be too large to handle by present day systems.

There may be an advantage (or a necessity) to decompose the

system into its subsystem in some optimal manner and then
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treat each one of them separately by the methods of Chapter

II. The system decomposition problem which will now be for-

mulated is only partially satisfactory. Although the optimal-

ly decomposed system will bring maximal revenue, no fleet

size considerations will be incorporated in this formulation.

Namely, the total fleet size required (including both types)

may be larger than the one that would have been obtained had

the entire system been optimized with the minimal total fleet

size requirement as a constraint. This is not to say that

the 'total' optimization is always better than the decomposi-

tion-first method. Each subsystem will be optimized with

respect to its own fleet size and the total fleet size thus

obtained may well be the minimal one anyhow, or that the

total revenue is sufficient to justify a larger fleet.

4.3 Decomposition of the Air Transportation System

m
Let c. be the preference index of the i-th departure if

it is taken by a type m (m = 1,2) aircraft. As argued in the
1 2

last section in general c. / c.. Then the following ILP is
1 1

a formulation of the system decomposition problem:

INI 1 2 2
(i) max z = 2 [ (c. u. + c. u.)

1 1 1 1

1=1 iE Kt
S.t.

(4.1) (ii) 2 (u1 + u) = 1,
.EK i ii6K~

(iii) 2 2 u i= u ~ , Vq
e E 1  iEK IE0 2  iE Kt

u.,, u. = 0,1 , i
l 1
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Constraints (ii) specify that the i-th service will be taken

by exactly one of the two types. Constraints (iii) are the

conservation of aircraft flow equations for type-1 aircraft.

Similar constraints for type-2 will be automatically satis-

fied since the model specifies that there are as many arrivals

as there are departures at each station on the schedule map.

The objective function is self-explanatory.

LP(4.1) has a 'small' number of constraints as the

reader can check. However, what is equally important is

that it has at least one optimal integer solution. This

can be argued in a few ways, but in order to provide a formal

proof a preliminary discussion is necessary.

In section 2.2 the notion of cycle was defined. A cir-

cuit is defined to be a cycle x0, (x 0 x ),x 1, ... ,I (xn,'xo ),x0
for which xi = xj for any i and j is allowed, i.e. it is

permitted to visit a node more than once when a circuit is

traversed. An Euler circuit is a circuit whose arcs are

traversed only once.

The outward degree of a node x. is the number of arcs

which originate from x.. The inward degree of x. is the

number of arcs terminating there. An Euler Graph is a graph

for which the inward and outward degrees are equal for all

of the nodes. In [2 ] it is proved that there exists an

Euler circuit (or a set of Euler circuits if the graph is

disconnected) which includes all the arcs of an Euler graph.

We now define a 'station map' to be a graph in which

the stations of the transportation system are represented

as nodes and each service, regardless of how many alternative

departures are considered, as a single arc. Fig. 4.3 is

the station map of for the system of Fig. 2.10.
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Fig. 4.3

For the two-fleet problem there will be two copies to the

station map: one for each subsystem. The station map is an

Euler Graph since we have assumed that there is an equal

number of arrivals and departures at each station over the

period.

Let V = V1 ,V 2 , ... 3 be the set of feasible integer

1 2 1 2solutions to LP(4.1) where V. = u ,u ; u ,u ; and
12 1 1 2 u 2

u~u = 0,1. (This set is not empty since, for example if

u= 0 V i (iii) of LP(4.1) is automatically satisfied and
1

(ii) has at least one integer solution: one arbitrary depar-

ture out of each service.) Let V0 be an arbitrary, not

necessarily integer, feasible solution to LP(4.l). If u.

is interpreted as a flow in the m-th copy in the i-th depar-

ture arc, then Vo describes a circulatory flow in the two

copies having a value of Z u in the arc which represents
iE KL

the 1-th service in the m-th station map. It is not impor-

tant, for the current discussion, to distinguish among the

alternative departures of service I .

Each member of V specifies integer valued circulations

in the two copies. In other words, to each Vi E V corresponds
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a selection of Euler circuits such that each service is

covered exactly once: either in the first or in the second

copy.

Let G = [N; A be a sourceless-sinkless network

and define:

u.. = the upper capacity of arc (i,j) E A
1J

.e .3i
f. .

13

= the lower capacity of arc (i, j) E A

= the flow in arc (i, j) E A

(I,I) = any cut in G+ (IUI = N, IflI =CU) consisting

of the arcs (i, j) -iE I, jE Y

Theorem 4.1 Let u.., e.. be integer V(i,j), then a neces-

sary and sufficient condition that an integer

feasible flow exists in G +is that

-_
(I,I)

13j>, - 13 i
(I, I)

holds for all I C N.

Proof: See Theorem 11.1 and the infeasibility conditions

of the 'out of kilter' algorithm of section III.11 in [7].

Lemma 4.1 Let u.. = 1, (.. = 0 V(i,j) E A of G . And
lJ IJ

let f.. > 0, not necessarily integer, V(i,j)E A
1J

be a feasible flow. Then there exists an Euler

circuit (or a set of Euler circuits) in G+ which

includes all the saturated arcs of A.
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Proof: Let A GQA be the set of saturated arcs and redefine
s

.= 1 V (i,j) E A . Let (I, T) be an arbitrary cut in G

In the redefined network the flow is still feasible, and

since the net flow across any cut is 0 it must be true that

L u..i
(II) CT',I)

simply by accounting for all flow across the cut.

By theorem 4.1 an integer feasible circulation exists in the

redefined network G . Then construct such z_ feasible flow

(by the Out of Kilter procedure, for example). From conser-

vation of flow, the subgraph of G consisting of all the

saturated arcs is now an Euler Graph. From our previous dis-

cussion, there exists an Euler circuit which includes all the

arcs of this subgraph. This proves the lemma.

Lemma 4.2 The convex set defined by the constraints of

LP(4.1) is the convex hull of the members

of V.

Proof: Denote the convex set defined by LP(4.1) by R and
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let Vo E R be arbitrary. It was argued above that V0 defines

circulation flows in the two copies of the station map. Also

a set of Euler circuits which include each service exactly

once (in either but not in both copies) defines some V. E V.

Select the first copy and trace an Euler circuit which includes

all its saturated arcs. This is possible by lemma 4.1. Let
1 2

A be the set of arcs included in this circuit and let A
c c

be the set of arcs in the second copy which includes the arcs
1 2

representing the same services as the members of A . If A
22

is the set of arcs of the second copy then A - A is an Euler
c

subgraph and there exists an Euler circuit which covers all

the members of this subgraph. Trace such a circuit. The

circuit traced in the two copies define some V E V. V will
p p

be completely specified, however, only if we specify the

departure taken out of each service. Since we trace arcs for

which u. > 0, there is at least one departure iE Kg

i E K 1

and an arbitrary one can be selected. Let

X =min I min (u min (u )
p i .

for those u1 's included in the Euler circuits traced, and

define V' V - X V . The components of V' satisfy:
0 0 p p

1 2
(u. + u) = 1 - ,e

i E Kg
u =u , q

eEI1  iE K t E0 i E Kgq q

If =1 then V  V , else V' E R, in which case the
p 0 p 1 - o
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procedure described above can be applied to V and re-

peated until

O = V- \i V and

which proves the lemma.

Theorem 4.2 LP(4.1) has at least one optimal integer

solution.

Proof: Define c = [ 1 ,c1 ;c2 c2 ;... 1. Let V

be a feasible solution to LP(4.1). Then

z* = c V = c XV.-o -'-i i

.i c V.

Let cVk = max[c Vi, then

i

= c _ V k- Vk

But Vk is an integer solution to LP(4.1) by definition.

Q.E.D.

Observe that it is sufficient to select the best depar-

ture out of each bundle in each copy when the system decom-

position problem is being solved. This is true because a

service is assigned to one of the two types, and it may as

well be the best departure.

As an example we shall optimally decompose the three-

station system of Fig. 2.4. The data for the system are as

follows: There are two types of aircraft available:



Breakeven Point Capacity

1. 60 100

2. 80 150

The demand data and the preference indices computed from

them are given in Table 4.1. (It is assumed that A-B and

B-C services have the same fare).

1 2 1 2
Flight No. Demand c. c. Flight No. Demand c. c.

1 *L 1 1

1 160 40 70 10 150 40 70

2 70 10 -10 11 40 -20 -40

3 180 40 70 12 90 30 10

4 60 0 -20 13 200 40 20

5 20 -40 -60 14 110 40 30

6 140 40 60 15 40 -20 -40

7 80 20 0 16 30 -30 -50

8 50 -10 -30 17 140 40 60

9 100 40 20 18 170 40 70

Table 4.1

The optimally decomposed system is shown in Fig. 4.4. The

heavy-lined flight arcs constitute the type-1 subsystem. The

broken-lined arcs constitute the second subsystem.

4.4 System Decomposition with Total Fleet Size Minimization

In the last section we discussed a method for an optimal

decomposition of the air transportation system. It was assumed
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Fig. 4.4
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that any fleet size optimization procedures will be carried

out in each subsystem independently. If the system is large,

so that there is high utilization of aircraft anyway, this

may be a satisfactory procedure. When the system is smaller

the main objective may be the minimization of the size of

the entire fleet. Also, for large systems, if the computer

codes can accomodate larger size Linear Programs it may be

desirable to perform 'total' optimization directly.

The optimization procedure will be carried out as fol-

lows: First solve for the minimal fleet size using ILP(2.l),

and let F be the maximal flow obtained. Subject to the mini-

mal fleet size constraint solve the two-fleet problem using

the following ILP:

INI 1 1 2 2(i) max z* = Y , (c. u. + c. u.)
, l 1 1 1

!=1 lEKg

S.t.

(ii) ( u. + u) = 1V
i E Kt

(4.2 (ii u =t f u ' q EK
EI iE K1  eEOJ iEKg

1 12 2.
(iv) x.. < u., 2 u 2

jEA (i) 1 EA 2 i)

1 1 2 2
(v) x.. 4 u., x.. <u. ,Y j

1E J 1) J

iE B1 (j) iE B2(j



(vi) To ( Z x .+ FIJ J
e=l iE K jE A1 (i) jE A2

(all variables 0-1)

ILP(4.2) is written in its minimal form (see section

2.11). Constraint (vi)is the requirement that the total

fleet size is minimal. The other constraints should be

familiar.

Just like the case with LP(2.5) the author is unable

to produce an example which has a non-integer optimal solu-

tion. Neither is he able to prove that in general LP(4.2)

has at least one integer optimal solution.

As an example consider the system of Fig. 4.5a. There

are three services with alternative departures. All the

other services are fixed. The minimal number of aircraft

necessary to meet the schedule is 5. Subject to this con-

straint the system is decomposed into two subsystems with

aircraft types for which the data was given in the last

section. The data for Fig. 4.5a is given in Table 4.2,

and the optimally decomposed system is shown in Fig. 4.5b.

Again, it is assumed that all fares are equal. Three type-1

aircraft and two type-2 aircraft are necessary to accomplish

the schedule of the subsystems.
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Fig. 4.5a

000"~

Fig. 4.5b



Depart.No.

1

2.-

3

4

5

6

7

8

9

10

1
Dem&nd c.

1

140

30

150

80

50

100

60

7C

110

130

40

-30

40

20

-10

40

0

10

40

40

99

2
c.

I

60

-50

70

0

-50

20

-20

-10

30

50

Depart.No. Demand

11

12

13

14

15

16

17

18

19

170

80

100

60

160

40

130

90

140

1
c.

1

40

20

40

0

40

-20

40

30

40

TABLE 4.2

Other computational experiments were conducted with

LP(4.2). Invariably they resulted in all-integer optimal

solutions.

Formulation II will again introduce a considerable

saving in the number of constraints. Instead of s.;t. we
1 2 1 2 3

now have the variables s., s.; t., t. with their obvious
J- 1 J j

interpretations. The ILP is:

N 2 1 1 22 2
(i) max z* = Z [c (s + t ) + c (S. + t )]

= iEKg

N

+ 7 Z ( Z k(c + c ) x
t=1 iGNr jEAy 1() j ij

+ ; (c2 + c2) x.. I
1 J 2J

jdA 2 i

2
c.

1

70

0

20

-20

70

-40

50

10

60



100

S.t.

(ii) E
i E KL

(s!
1

Z1 2X. + s.
1J 1

jEA1 (i)

2x..)
13

jEA2 M

Z x1x.
1)

jEA 1 Mi

+

jEKt- {i3

(t. 1x.)
1i

iEB 1(j)

2x.)

iEB2 )

(4.3)(iv) 2
(4.3) (iv) s.

1 x -g +
1E

jEA 2(M

(t.
J

F.

jE-Kt -{ji)

2
1J

iEB2 (j)

(t + x )

iE B (j)

1
iZ x '

jEA 1 (i) 1

(vi) 2
Elq

iE
(s + X 1

KI jEA 1 (i) eE0 iE Ktq

+ x.)

jEA1 (i

(all variables 0,1)

(iii)s

= 1 ,VI

+ 2
jEKe

(t
J

= 1 ,V iEKt, Vt

jEKg

= 1

INI

,V iEKI, V t

(v) Et

L=1
2

iEKg
2

x..
jEA (i)

'V q
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The proof that this is indeed the correct ILP follows

exactly the same lines as the proof of section 2.9.

4.5 System becomposition with Direct Fleet Costs

In the last section c was computed by subtracting some

quantity (breakeven point) from some expected income from

operating a service. We now propose a different formulation

which will use the direct operating costs of an aircraft

over the entire period, rather than the breakeven point. This

approach has already been discussed in section 2.14. For the

two-fleet case we have c as operating costs for type-1 air-
0 2

craft over the period and c for type-2 aircraft. Let N1 be

the set of services which will be taken by type-1 and N2 the

set taken by type-2 aircraft(|N 1 | + | N2 | = INI). The costs

of operating the fleets over the period are

1 11
z = c0 ( IN 1- x.) for type-1

tEN 1 iE Kt jEA Ai

and

z 2  c2 ( |N2  2.) for type-2

eEN 2  iEK, jEA 2(i)

The net operating income of the period is

INI 1 1 2 2 1 2
S E (c. u. +c. u.) - z - z
e=1 i 1E K

But
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JNI INI

z z ui ,N 21
e=l iE Kt t=1 iEKf

Hence the ILP is:

INI
(i) max z = 2Z

t=1 iEKg

+ 2 2 (c

0

L=1 iEKI

(c -1c)u
o 1

x.

jEA (i)

+ (c - c 2) u2
i 0 1

+ c 2 )2
+ A0 i

jEA 2 (i)

S.t

I ( u +u) =
iE KI 1

(iii)

eE Iq iEKg

(4.4) (iv)

E

IEs'q

1 1
x 1 < u,

j E A (i)

u

i E Kg

2 2
x si < u

jE A 2M

1 1
x n , (

iEB (j)

2
7. x.. u~

iEB 2 (j) '

INI
(vi) x. +

1)
e=1 iEKt jEA Mi

x2.) = F

-;E A 2M

(All variables 0-1)

INJ = 2
U.i

(ii)
, VI

, Vq

, V i

(v)
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ILP(4.4) is different from ILP(4.2) only in the values of the

c 's and in the form of the objective function. LP(4.4) does

not always have optimal integer solutions. If constraint (vi)

of ILP(4.4) is eliminated a new optimization problem is ob-

tained in which the optimal size of the fleet will be deter-

mined by the ILP. This is what management may desire if

there is a net increase in revenues as a result of higher

combinatorial flexibility possible with a larger fleet. If,

for example, the value of c is very high compared with the
0

other cost coefficient of z+ we have a problem of max-flow

in the first copy. From this it is obvious that the optimi-

zation problem does not always have an optimal integer solu-

tion. The Branch and Bound algorithm of the next section

is applicable for the present problem without any changes.
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4.6 A Branch and Bound Algorithm for ILP(4.4)

As an example consider the data in table 4.3 for the

system of Fig. 4.5a. This data obviously does not represent

any 'real' situation but was selected because it gives a

'bad' initial optimal solution which was selected in order

to demonstrate the power of the Land and Doig type algorithm

to be defined below.

1 2 1 2 1 2 1 2Depart.No. c. c. u. u. Depart.No. c. c. u, u.
1 1 1 1 1 1 1 1

1

2

3

4

5

6

7

8

9

10

1
c =
o0

30

30

2

15

10

14

35

18

15

10

40, 2
c

o

2/3

1/3

0

1/3

2/3

1/3

0

1

1/3

2/3

0

0

1

2/3

1/3

2/3

0

0

0

0

11

12

13

14

15

16

17

18

19

0

0

0

0

1/3

1/3

1

0

0

1

1

1

1

2/3

0

0

1

1

L

= 0

Table 4.3

Table 4.3 also shows the values of the variables, u ' s, which
1

constitute an optimal solution to LP(4.4).

The Branch and Bound algorithm is similar to the one de-

fined in section 2.7. Here, however, there is a possibility
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of generating terminal nodes which represent infeasible solu-

tions. The infeasibilities may arise because of the inclusion

of constraints (iii) and (vi), although by the definition of

F at least one optimal integer solution exists. Define the

following sets (others were defined in Chapter II):

Im (xk) {i u m = 0 at node x m = 1,2
o k 1 ki

I (xk= i u. = 1 at node x m = 1,21' xk) I ki

k) 1 1 2 2

The algorithm is:

STEP 1. Create a node Rc and set X = Xtf (xI

m
STEP 2. Set I (x = m = 1,2

o 1~

STEP 3. Set IM (x m = l,2

STEP 4. Solve LP(4.4) obtaining S(x1 ) and z (x1 )

STEP 5. Set r = 1

STEP 6. If S(x r) is integer stop. The optimal solution

has been obtained.

STEP 7. Create two branches and nodes x lx|+1 and x|X +2
out of xr

STEP 8. Set X = X + f xlIX|+1' IX+2

STEP 9. Set Xtf =Xtf - r

m
STEP 10. Select (i,m) ?& 0 < u. < 1
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STEP 11.

STEP 12.

STEP 13.

STEP 14.

STEP 15.

STEP 16.

set Im (x|X -l = (xr) +f ij; Copy the other

three sets of x lxii from xr'

Set Im (x ) = I(xr) + {i]; Copy the other three
1 lxi 1r

sets of x |XI-l from xr

Solve LP(4.4) for k = IXl-l, k = iXIwith the fol-

lowing additional constraints, obtaining S (x )
+ -

S (x 1 ), z (x|XI -l) , z (x )X
1 1 21

(vii) u = 0, V i E I (x) u = 1, V i E I (xk)

(viii) U= 0, V iE I (xk) = 1, iE I (xk

If S (x X-. is feasible, Xtf = Xtf + { x|X| -l

If S (x X) is feasible, Xtf = Xtf + I x I I

Determine r & z (xr max xk E xtf)I

Go to STEP 6.

The algorithm was applied to the problem of Table 4.3

and the tree is shown in Fig. 4.6. All the terminal nodes

represent integer solutions.

54.0

1=1

x3 53.0

U
1 6

51.

=1

50.0

Fig. 4.6

U 1 = 0

50.0



107

Fig. 4.7

Formulation II can be derived directly from LP (4.3) and

LP(4.4) and will not be given here.
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4.7 Arc-Chain Formulation

The Arc-Chain formulations for single fleet problems

were discussed in sections 2.12 and 2.13. The principle of

this formulation is the implicit enumeration of all possible

chains that an aircraft may follow. In this chapter there

are two copies of the schedule map and any chain can be

traced in either one of them. Hence we have twice as many

chains to consider. Here, moreover, we add the explicit

requirement of conservation of aircraft flow for each type

over the period. The Arc-Chain equivalent of LP(4.2) will

now be formulated.

Define:
m
x. = the j-th chain on the m-th copy (m = 1,2)
J

m
d. = the total profit of the j-th chain on copy m.
J

F = the minimal number of aircraft necessary to

accomplish the schedule on any copy.

0 = the set of chains which start at the q-th station.

I = the set of chains which end at the q-th station

n = the number of chains on any copy

The ILP is:

n
1 1 2 2

(i) maximize z* = Z (d. x + d. x.)
J J J J

j=1
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S.t.
n 1 2

(ii) Z a . (x. + x.) = 1 (= 1,..., jNJ
J J J

j=1

n 1 2(4.5) (iii) 2 (x. + x.) = F
J J

j=1

(iv) x1 ,V q

j EIq i Eg

x, x = 0, 1 .j
J J

LP(4.5) can be solved by a column generation technique similar

to the one described in section 2.13. Only in this.case we

have to examine the shortest route on both copies in order to

determine the next column to be introduced into the basis.

Here, in addition we have the constraints (iv) which require

some changes in the column generation procedure. As a result

of the constraint for station q all chains originating there

will have an additional cost term, and the same for all

chains terminating there. Hence each station line of the

first copy will start and end with arcs having some costs

which are determined from those components of 7T ,the shadow

prices, which correspond to constraints (iv). Every chain

originating at q must include the starting arc of q and every

chain terminating there must include the end arc of q.

Since the number of stations is generally very small

compared to INI , we stll have a system with a very small

number of constraints compared to the other formulations.
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4.8 Concluding Remarks

In this chapter some multi-fleet models and optimization

problems were formulated. Some variations are possible to

suit particular conditions and requirements. For example,

suppose the system already has p1 type-1 and p2 type-2 air-

craft available and management would like to use all of them

in the newly optimized system. From section 4.5, the fleet

sizes for type-l and type-2 aircraft are, respectively,

INI 1 1

t=l iEK j E A i)

Z Z (u - Z x .)
1=1 iEKg jEA 2(i

Hence we must add the constraints

INI
(i) ' (u - x) p

=1 i EK jEA(i)

INI
(ii)I ' uj-x ) . p2 .

E=1 iEKe jE A 2i

to the constraints of ILP(4.4) in order to obtain the appro-

priate optimization problem.

Some other constraints could similarly be imposed to

meet specific requirements. But the author feels that the

basic formulations were completely discussed in this chapter.
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CHAPTER V

CONCLUSIONS

5.1 General Remarks

The emphasis in this work has been on the development of

models for practical applications and practicable solution

methods. As the reader probably realizes no attempt has been

made to include economic justification for the basic model

except for the fact that it looks reasonable and it offers

great possibilities for applications to real-life transpor-

tation systems.

The largest system solved by the author included 54 ser-

vices (Chapter III) which is almost a fair-size system. The

application of the Land and Doig 'Branch and Bound' techniques

to our formulations has been very successful and, in the author's

opinion, the only reasonable algorithm to obtain the optimal

integer solutions. But what is more important, as a result

of the computational experiments with MPS/360 it seems that

for some of our problems optimal integer solutions are ob-

tained at the first iteration, and this has been particularly

true when the larger transportation systems were solved. Com-

puting time statistics have also have been very good. As far

as problem size is concerned it is the author's opinion that

all present day systems can be handled by LP procedures like

those of MPS/360 (provided sufficient core storage is avail-

able). Although some geographical decomposition of the

larger system may be necessary for some of the optimization
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problems (see next section).

5.2 Further Research

This work reemphasizes the importance of continuing re-

search in the area of 0-1 Integer Programming problems. For-

mulation II of section 2.9 is in the special form of the 0-1

problem which has occupied researchers for quite a few years

now [14] . Results so far have been of limited success.

Two questions were left open: 1. Does LP(2.5) have at

least one optimal integer solution? 2. Does LP(4.2) have at

least one optimal integer solution? It will be very valuable

to be able to answer these questions by providing either proofs

or counterexamples.

How good is the system decomposition procedure which was

formulated in section 4.3? An answer to this question can be

given only after extensive experimentation with large-scale

systems and in comparison with solutions to ILP(4.2).

Since some of the existing air transportation systems

are quite large it is desirable to obtain a procedure by which

a system can be decomposed into geographical subsystems (in

contradistinction to decomposition by vehicle type) which will

not harm the over-all optimal solutions. Some experimentation

with large systems will be necessary here too.

The Arc-Chain formulation uses a considerably smaller

number of constraints. It will be useful or necessary (al-

though probably expensive) to write a code for this formula-

tion and obtain computational results.
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Formulation II of section 2.9 introduces a sizeable re-

duction in the number of constraints. At the same time the

number of variables increases. What is needed is a procedure

to reduce the number of variables without a loss in optimality.

Finally, a problem for the econometrician is to devise a

procedure for the determination of the c. 's which we have been

using in our models.

The author plans to continue working on these problems.
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APPENDIX A

AN OUTLINE OF A COMPUTERIZED

AIRLINE MANAGEMENT DECISION SYSTEM (AMDS)

A.l Introduction

The purpose of this appendix is to describe a computer-

ized airline management decision system. AMDS is intended

to be built around MPS/360 whose Linear Programming proce-

dures are the basic optimization tools in this decision system.

Airline management may want to solve many of its short range

and long range planning problems by using the tools of LP

and optimal flows in networks algorithms. The AMDS which is

being sketched here will be so easy for management to use,

that even the manager who is totally unfamiliar with the

computational algorithms of mathematical programming will

be able to use it with little effort. He will have to punch

just a few control cards or, possibly, type only a few com-

mands into a time-sharing console and obtain the results he

will request.

The Crew Scheduling problem has occupied airline O.R.

groups for some time now [17] . This optimization problem

will be a part of the AMDS in addition, of course, to the

problems which are the subject of this thesis. The next

section will briefly describe the formulation of the problem

and will include some of the author's ideas concerning solu-

tion procedures.

The description of the AMDS is meant to be very sketchy

and consequently many of the details are missing. No
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programming has been done. The construction of the entire

system is certainly a major programming effort although the

structure of MPS/360 will greatly facilitate the task.

A.2 The Crew Scheduling Problem

In an airline transportation system with many cities

only a small number of them serve as 'crew bases', where

airline crews and their families live. Out of these bases

crews are assigned to all the scheduled flights. There are

union limitations on the duty time of crews [16] , which

impose severe restrictions on the tours (or flight sequences)

to which crews can be assigned. Also, overnighting crews

away from their bases, meals, etc. are expenses that the

airlines must take care of. The problem of crew assignment

to flight tours can be formulated as an ILP in the following

way: n

(i) min z= c x.

j=1
S.t. n

(A.1) (ii) a.. x. = 1 V iEN
j=1

(iii) X. = 0, 1
3

where x . represents a feasible tour of a crew (namely, a
J

tour which meets all union requirements) and i is an index

over the set of services, N. This formulation requires the

enumeration of all the feasible tours. If tour j covers

flight number i then a.. = 1, otherwise a.. = 0. The number
13 13
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c. represents the cost to the company associated with the
J

j-th tour. If c. = 1 V j we are looking for the minimal
J

number of crews necessary to meet the schedule. In general,

LP(A.1) has non-integer optimal solutions. Various Implicit

Enumeration type algorithms have been suggested to solve

ILP(A.1). The computational record is quite poor [16]

Based on his experience with the Land and Doig type algo-

rithm for fleet size problems the author has suggested the

use of this technique for ILP(A.1). Computational experi-

ments (conducted by a colleague) have been very successful

and indicate that this method is considerably better than

all of the enumerative algorithms. The number of constraints

is equal to the number of flights in the system and the

number of columns is usually very large. But this is just

the right situation for MPS/360. The solution procedure is,

then, to solve LP(A.1) and then apply a Land and Doig Branch

and Bound algorithm (of the type formulated in Chapter II)

until the optimal integer solution is obtained.

Another formulation of the Crew Scheduling problem has

been pointed out to the author by Fred Steiger of Swissair.

Let G = [ S,T;A] be a bipartite graph in which S represents

the feasible tours and T the services, i.e. ISI will be equal

to the number of feasible tours (n of ILP(A.l))and ITI

is equal to the number of flights in the transportation

system ( ITI = INI ). There will be an arc (sk,te) E A

if the tour which sk represents includes flight t . As

done before we adjoin to G the nodes s and t and the arcs

(s'sk) V k, (te, t) V t obtaining the graph shown in
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Fig. A.l.

P a

tI

tI NI

Fig. A.l

Define the following capacities for the arcs of G, where u..
1i

is upper and t. . is lower:

usk ssk = the number of flights which are covered

by tour k (or the number of (sk, t*)

arcs which originate at sk

,esk es-sk = 0 V k
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ukt usk t t

ekt Sk, tt

= 1 V (kt)

= 0 Y (k,f)

U t

And the costs:

c k =-cs

-utttU e,t

= the cost of tour k (= ck of ILP(A.1)).

all the other costs are equal to zero.

The optimization problem has been formulated now as

one of obtaining the feasible flow which minimizes costs, but

with the following condition: each arc is either empty or

saturated. The last condition renders the problem nonlinear,

and no straightforward algorithms for solving it are current-

ly available. The formulation of this optimal flow problem

is:

n

(i) min z=

k=l

(ii) Xsk

(iii) xtt

csk

Usk Xsk

Xkf
eEA(k)

kEB(t)

Vk

V exkI

(A.2)
(iv) 0 kx x1 (1

= lye

= ive

V (k, I ).
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(v) x e t 1 Ve

(vi) Xsk = 0, Usk V k

The author is suggesting the following Branch and Bound

Procedure for this problem. This procedure was motivated

by the ideas brought forth in [5] . The discussion will

be sketchy.

Suppose we relax constraint (vi) and substitute the

following constraint for it:

(vi)' 0 A xsk usk

The new problem thus obtained is a usual optimal flow

in a network problem ~which can be solved by the 'Out of

Kilter' algorithm, say. If for some k in the optimal solu-

tion 0 < xsk <usk create two branches: xsk = 0 and

xsk = usk and solve the two optimal flow in network problems.

Continue per Chapter II. Eventually the optimal solution to

MP(A.2) is obtained. The advantage of this method is, of

course, that it uses a network flow algorithm instead of a

LP at each node, but the author expects the tree to be con-

siderably larger than the one representing the Land and Doig

procedure for ILP(A.1). No computational experience can, as

yet, be reported.

The Crew Scheduling problem has been discussed because

the author considers it to be, together with fleet size

problems, the most important component of AMDS. We shall
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assume that ILP(A.1) will be used in AMDS for solving it.

A.3 The Structure of AMDS

The discussion of AMDS will be divided into the follow-

ing topics:

1. Data Files and file-maintenance procedures

2. Preoptimization Procedures

3. Optimization Procedures

4. Management Report Generation

It is the intention of the author to expose the reader only

the very basic ideas:

1. The data files will consist of all the basic data

which are needed in the preoptimization and optimization

procedures. These data will include all the services of

the system: their departure and arrival times, alternative

departures and preference indices for each one of them. This

file will be the basic one for fleet-size problems. The

Crew Scheduling procedure requires a fixed schedule system

and a different file may be necessary for that purpose.

These files will be uniquely identified by names and a file

dictionary. File maintenance procedures will provide manage-

ment with file-deletion and file-addition capabilities as

well as the ability to modify individual data items via a

time-sharing console or by batch processing, using a minimal

number of control cards.

2. The preoptimization procedures will include all

the programs which ope rate on the basic data files and gen-
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erate temporary and/or intermediate files. They will be

stored, in the format required by the optimization procedures.

The preoptimization procedures will be matrix generators for

the various ILP's or data for network flows algorithms (for

the fixed schedule min-fleet problem for example). The

intermediate files will be permanently stored in order to save

as much future preoptimization processing as possible.

3. MPS/360 [11] will be the central component of the

optimization procedures. This system can be augmented by

user-written programs to which computational results of the

LP algorithms are accessible. Thus a FORTRAN coded routine

which will manage the Branch and Bound procedure can be

added to the MPS program library. This program will. be

brought to core by the MPS executor [12lwhenever an optimal

solution to the LP's are obtained, will check the solution

and further branching or termination decisions will be made

by it.

4. After the optimal integer solution to the problem

at hand has been obtained, management reports will be gener-

ated by a user written program, which will transform the filed

solution into a report in a format easily interpreted and

used by management, scheduling personnel and others. The

report-generating programs can also be made part of the

MPS/360 program library. MARVEL processor of MPS/360 (un-

implemented as yet) might also be used to generate reports.

The execution of every MPS/360 job is controlled by

MPS control statements. These consist of procedure names

such as PRIMAL (which causes the execution of a LP optimization
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algorithm) or the name of a user written Branch and Bound

routine, for example. All these statements must be logically

related, of course, and can be grouped and defined as a

MACRO statement, which may be added to MPS MACRO library.

Hence, a person who would like to perform the crew scheduling

procedure for his system (or a part of it) will have to use

only a single control statement which might look like this:

CREWSCHD('FILNAME','OUTPUTA')

where the first parameter identifies for the processing

programs which data file to use for this particular schedu-

ling. The second parameter designates the output device.

The necessity for other parameters will of course arise

when the development of AMDS progresses.

Fig. A.2 is a schematic drawing of AMDS.
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AMDS

Fig. A.2
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