
FLIGHT
REPORT

TRANSPORTATION LABORATORY
R 67-3

OUT-OF-KILTER FLOW (OKF):
USER'S GUIDE

Amos Levin

1967

FLIGHT TRANSPORTATION LABORATORY REPORT R67-3

OUT-OF-KILTER FLOW (OKF):

USER'S GUIDE

Amos Levin

1967

FTL COPY, DON'T REMOVE
33-412, MIT 02139

The following few pages are from the

book, "Flows in Networks" by Ford and

Fulkerson, which is referenced in this

report. After these few pages, the

report itself commences.

/ -~
/ /

/ ~~':~/<:

/ ,/7!~7~

III. MINIMAL COST FLOW PROBLEMS

a=I ,b =3,c=3

2,4,1

5,1

0,2,1

,6,3

Figure 10.5

may go against one's intuition
not, after all, surprising.

at first, but a little reflection shows that it is

11. Constructing minimal cost circulations [28)

The method presented here for computing optimal network flows is more
general than those described earlier in at least three ways:

(a) lower bounds as well as capacities are assumed for each are flow,
and are dealt with directly;

(b) the cost coefficient for an arc is arbitrary in sign;
(c) the method can be initiated with any circulation, feasible or not,

and any set of node numbers.

(It is convenient to describe the computation in terms of circulations,
rather than flows from sources to sinks.) The freedom to begin with any
circulation and node numbers, instead of starting with particular ones
which satisfy certain optimality properties, as has been the case before, is
perhaps the most important practical feature of the method. For example,
in actual applications, one is often interested in seeing what changes will
occur in an optimal solution when some of the given data are altered. This
method is tailored for such an examination, since the old optimal primal
and dual solutions can be used to start the new problem, thereby greatly
decreasing computation time.

An interesting feature of the method is that, loosely speaking, the status
of no are of the network is worsened at any step of the computation. We
shall make this statement more precise later on.

162

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

We take the problem in circulation form. That is, we want to construct f
thiat satisfies

(11.1) f(x, N) - f(N,x) 0, all x e N,

)(x, y) < f(x, y) < c(x, y), all (x, y) G d;

and minimizes the linear cost function

(11.3) a(x, y)f (x, y).

(Here 0 < l(x, y) < c(x, y), and as usual, we assume integral data.) Thus,
if it is desired to construct a feasible flow from 8 to t of given value v that
minimizes (11.3), one can merely add a return flow arc (t, s) with l(t, s)
= c(t, s) = v, a(t, s) = 0, to get the problem in circulation form. Or, if it is

desired to construct a maximal feasible flow from s to t that minimizes
(11.3), one can take l(t, s) = 0, c(t, s) large, a(t, s) negatively large.

Of course feasible circulations may not exist. In this case the algorithm
terminates with the location of a subset X of nodes for which the condition
of Theorem 11.3.1 is violated.

For given node numbers 7r, we set

(11.4) i(x, y) = a(x, y) + r(x) - r(y).

Then, for given r and circulation f, an arc (x, y) is in just one of the
following states:

(a) d(x, y) > 0, f(x, y) = l(x, y),

(#) d(x, y) = 0, l(x, y) < f(x, y) < c(x, y),

(y) d(x, y) < 0, f(x, y) = c(x, y),

(ai) i(x, y) > 0, f(x, y) < l(x, y),

ik(lrx, y) = 0, f(x, y) < l(x, y),

(yi) 5(x, y) < 0, ff(x, y) < c(x, y),

(a2) d(x, y) > 0, f(x, y) > l(x, y),

(#2) e(x, Y) = 0, f (x, y) > c(X, Y),

(Y2) c(X, Y) < 0, f (X, Y) > C (X, Y)

We say that an are is in kilter if it is in one of the states a, #y;otherwise
the are is out of kilter. Thus to solve the problem, it suffices to get all arcs
in kilter, since optimality properties are

(11.5) ii(x, y) < 0 =>-- f (X, y) = c(x, y),

(11.6) d(x, y) > 0 =>- f (X, y) = l(x, y).

With each state that an are (x, y) can be in, we associate a non-negative
number, called the kilter number of the are in the given state. An in-kilter

163

III. MINIMAL COST FLOW PROBLEMS

are has kilter number 0; the are kilter numbers corresponding to each
out-of-kilter state are listed. below:

(ai) or (#1): l(x, y) - f(x, y),

(yi1) : d(x, y)[f(x, y) - c(x, y)],

(a2): d(x, y)[f(x, y) - l(x, y)],

(#2) or (y2): f(x, y) -- c(x, y).

Thus out-of-kilter arcs have positive kilter numbers. The kilter numbers
for states ai, P1, #2, Y2 measure infeasibility for the are flow f(x, y), while
the kilter numbers for states yi, a2 are, in a sense, a measure of the degree
to which the optimality properties (11.5), (11.6) fail to be satisfied.

The algorithm concentrates on a particular out-of-kilter arc and attempts
to put it in kilter. It does this in such a way that all in-kilter arcs stay in
kilter, whereas the kilter number for any out-of-kilter are either decreases
or stays the same. Thus all are kilter numbers are monotone non-increasing
throughout the computation. (This is the interesting feature of the method
that was mentioned previously.) However, steps can occur that change
no kilter number, and this somewhat complicates the proof of termination.
But if the process begins with a feasible circulation, the monotone prop-
erty is stronger: at least one arc kilter number decreases at each step, thus
providing a simpler proof of finiteness in this case.

A basic notion underlying the method is to utilize the labeling process of
11.3, modified appropriately, for increasing or decreasing a particular
arc flow in a-circulation. The appropriate modification this time will not
be in terms of the notion of "admissibility " for an are, used previously,
but will rather be more general.

We now state the algorithm.
The out-of-kilter algorithin.t Enter with any integral circulation f and

any set of node integers 7T. Next locate an out-of-kilter are (s, t) and go on
to the appropriate case below.

(al) d(s, 1) > 0, f(s, t) < l(s, t). Start a labeling process at t, trying to

reach s, first assigning t the label [s+, e(t) = l(s, t) - f(s, t)]. The labeling

rules are:

(11.7) If x is labeled [z±, e(x)], y is unlabeled, and if (x, y) is an are such
that either

(a) U(x, y) > 0, f(x, y) < l(x, y),

(b) i(x, y) _<; 0, f (x, y) < C (X, y),

t An IBM 704 code based on this algorithm has been prepared by J. D. Little. A
FORTRAN-FAP revision for the IBM 7090 has been writ ten by R.Clasen. This code,
identified as RS OKFl, is available through SHARE. A sample problem involving
2900 arcs and 775 nodes required 1139 breakthroughs, 411 non-breakthroughs. Total
computing time was 5 minutes, exclusive of an input-output time of 3.2 minutes.

164

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

then y receives the label [x+, e(y)], where

e(y) = min [e(x), t(x, y) - f(x, y)] in case (a),

e(y) = min [e(x), c(x, y) - f(x, y)] in case (b).

(11.8) If x is labeled [z+, e(x)], y is unlabeled, and if (y, x) is an are such
that either

(a) d(y, x) ;- 0, f(y, x) > l(y, x),

3 (b) d(y, x) < 0, f (y, x) > c(y, x),

then y receives the label [x-, e(y)], where

e(y) = min ((x), f(y, x) - l(y, x)] in case (a),
s (y) = min [E(x), f(y, x) - c(y, x)] in case (b).

s If breakthrough occurs (that is, s receives a label), so that a path from t to
s has been found, change the circulation f by adding -(s) to the flow in
forward arcs of this path, subtracting -(s) from the flow in reverse arcs,

e and finally adding E(s) to f(s, t). If non-breakthrough, let X and X denote
labeled and unlabeled sets of nodes, and define two subsets of arcs:

(11.9) di {(x, y)Ix e X, y X, (x, y) > 0, f(x, y) '; (x, y)},
s

(11.10) /2 = {(y, x)Ix e X, y e X, d(y, x) < 0, f(y, x) > l(y, x)}.

Then let
S(11.11)81

= min [(x, y)],

(11.12) 82 = min -d(y, x)],

(11.13) 8 = min (81, 82).

n (Here 8 is a positive integer or co according as Wi is non-empty or empty.)
Change the node integers by adding 8 to all -i(x) for x e X.

(#1l) or (y1). Z(s, t) = 0, f(s, t) < l(s, t) or !(s, t) < 0, f (s, t) < c(s, t).
ig Same as (ai), except e(t) = c(s, t) - f(s, t).

(a2) or (P2). 4{s, t) > 0, f(s, t) > l(s, t), or d(s, t) = 0, f(s, t) > c(s, t).

Here the labeling process starts at s, in an attempt to reach t. Node s is
assigned the label [t-, e(s) = f(s, t) - l(s, t)]. The labeling rules are (11.7)

and (11.8) again. If breakthrough, change the circulation by adding and
subtracting e(t) to are flows along the path from s to t; then subtract e(t)
from f(s, t). If non-breakthrough, change the node numbers as above.

A . (Y2). (s, t) < 0, f(s, t) > c(s, t). Same as (a2) or (P2), except e(s)
le, = f(s, t) - c(s, t).
ng The labeling process is repeated for the arc (s, t) until either (s, t) is in
Lai kilter, or until a non-breakthrough occurs for which 8 = oo. In the latter

165

III. MINIMAL COST FLOW PROBLEMS

case, stop. (There is no feasible circulation.) In the former case, locate

another out-of-kilter arc and continue.
We show that the out-of-kilter algorithm terminates, and that all arc

kilter numbers are monotone non-increasing throughout the computation.

Suppose that are (s, t) is out of kilter, say in state a1. The origin for

labeling is t, the terminal s. The are (s, t) cannot be used to label s directly

since neither (11.8a) nor (11.8b) is applicable. Consequently, if break-

through occurs, the resulting path from t to s, together with the are (a, t),
is a cycle. Then the flow changes that are made on arcs of this cycle again

yield a circulation. Moreover, the labeling rules have been selected in such

a way that kilter numbers for arcs of this cycle do not increase, and at

least one, namely, for are (s, t), decreases by a positive integer. Kilter num-

bers for arcs not in the cycle of course do not change.

Similar remarks apply if (s, t) is in one of the other out-of-kilter states.

We summarize the possible effects of a breakthrough on an arc (x, y) in

Fig. 11.1, which shows the state transitions that may occur following

breakthrough. If a transition is possible, the number recorded beside the

corresponding arrow represents the change in kilter number. (Here E is the

flow change.)

Oor -oa 0 Oor-e

(_ _ __ _a 2)_____ (a)

0 or-c 0 Oor- t

c-f f-I Q

0or-E 0 Oor6c

Figure 11.1 Breakthrough diagram

Verification of the breakthrough diagram is straightforward. For

example, suppose arc (x, y) is in state a2, with d(x, y) > 0,f(x, y) > l(x, y),
and kilter number U(x, y) [f(x, y) - l(x, y)] > 0. If (x, y) is not an arc of

the cycle of flow changes, then (x, y) remains in state a2 with zero change in

166

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

kilter number. If the flow in arc (x, y) has changed as a result of the break-
through, then either (x, y) is the arc (s, t) or, by the labeling rules, (x, y) is

e0 a reverse arc of the path from origin to terminal. Specifically, x was
labeled from y using (11.8a). In either case, f(x, y) decreases by the positive

>r integer s < f(x, y) - 1(x, y), the new state for (x, y) is a2 or a, and hence
Y the kilter number for (x, y) has decreased by ed(x, y) > 0. The rest of the

diagram may be verified similarly.
The state transitions and changes in kilter number that may occur

n following a non-breakthrough with 8 < co are indicated in Fig. 11.2.

0 or-8(f-) 0 0

s. 2

in&

ig C 0 0 0
1e
le

0 0 0 -f
+8 (/-c)

0 0 0 or 8(f-c)

Figure 11.2 Non-breakthrough diagram

Again we omit a detailed verification, but consider, for example, an arc
(x, y) in state y1, so that a(x, y) < 0, f(x, y) < c(x, y), having kilter
number d(x, y) [f(x, y) - c(x, y)] > 0 before the node number change is
made. If both x and y are in X or both in X, then Z(x, y) remains the-same
after the node number change, and consequently (x, y) stays in state yi
with no change in kilter number. We cannot have x in X, y in X (labeling

'or rule (11.7b)), and hence the remaining possibility is x in X, y in X. Then
)(x, y) is increased by 8 > 0. Consequently the are (x, y) either remains in

on state yi (if 8 < - (x, y)), goes into state # (if 8 = -d(x, y) and f(x, y)
in> l(x, y)), into state #l (if 8. = -(x, y) andf(x, y) < l(x, y)), or into state

167

III. MINIMAL COST FLOW PROBLEMS

ai (if 8 > - d(x, y) and f(x, y) < l(x, y)), and the corresponding changes in
kilter number are respectively

8[f(x, y) - c(x, y)] < 0,

8[f(x, y) - c(x, y)] < 0,

l(x, y) - f(x, y) + 8[f(x, y) - c(x, y)] 0,

l(x, y) - f(x, y) - z(x, y) [f(x, y) - c(x, y)] 0.

(The remaining logical possibility 8 > - (x, y), f(x, y) ;> l(x, y) cannot
occur, since if f(x, y) > l(x, y), then (x, y) is in 02 defined by (11.10) and
hence 8 < -(x, y).)

It follows from the breakthrough and non-breakthrough diagrams that
kilter numbers are monotone non-increasing throughout the computation.
Moreover, if breakthrough occurs, at least one are kilter number decreases
by a positive integer. Thus to establish termination, it suffices to show that
an infinite sequence of consecutive non-breakthroughs, each with 8 < o, is

impossible. To show this, let us suppose that a labeling resulting in non-
breakthrough with 8 < oo has occurred, and let X, X denote labeled and
unlabeled sets of nodes. After changing the node numbers, the new function

U'(x, y) is given by

(11 y) - 8 for x in X, y in X,

(11.14) U'(x, y) = i(x, y) + 8 for x in X, y in X,
d(x, y) otherwise.

If the arc (s, t) is still out of kilter, then the origin is the same for the next
labeling, and it follows from (11.14) and the labeling rules that every node
of X will again be labeled. Thus if the new labeling results in non-break-
through with labeled set X', we have X c X'. Let ' denote the new
sets defined in terms of X', s', andf by (11.9), (11.10), and suppose X = X'.
Then from (11.14) we have d' , Wf C 2, and at least one of these
inclusions is proper by (11.11), (11.12), (11.13). Hence the new labeling
either assigns a label to at least one more node, or failing this, an are is
removed from one of the sets di or Q2. It follows that, after finitely many
non-breakthroughs with 8 < o, we either get the are (s, t) in kilter, obtain

a breakthrough, or obtain a non-breakthrough with 8 = oo.
If a non-breakthrough with 8 = oo occurs, there is no feasible cir-

culation. For if 8 = oc, then from the definitions of di, d2 and the label-
ing rules, we have f(x, y) > c(x, y), f(y, x) <_l(y, x) for x E X, y eX.
Moreover, for the are (s,), either t is in X, s in X with f(s, t) < l(s, t), or s
is in X, t in X with f(s, t) > c(s, t). (This is immediate for cases al, #1, P2, Y2
of the algorithm, and follows from (11.9) and the assumption 8 = o for

case as, from (11.10) and the assumption 8 =o for case yi.) Hence,

168

J"

§11. CONSTRUCTING MINIMAL COST CIRCULATIONS

summing the conservation equations (11.1) over x in X, we obtain in all
cases

0 = f(X, X) - f(X, X) > c(X, X) - l(X, X).

But this violates the feasibility condition of Theorem 11.3.1. Thus 8 = cc
implies there is no feasible circulation.

THEOREM 11.1. The out-of-kilter algorithm either solves the problem (11.1),
(11.2), (11.3) in finitely many applications of the labeling process or terminates
with the conclusion that no feasible circulation exists. All arc kilter numbers
are monotone non-increasing throughout the computation. In addition, if the
algorithm is initiated with a feasible circulation, at least one arc kilter nunber
decreases with each labeling.

The only part of Theorem 11.1 that remains to be checked is the last
assertion. If the computation begins with a feasible circulation, the states

, l1, #2, Y2 are empty to begin with, and consequently remain empty
through the computation. Hence, at each non-breakthrough (as well as
each breakthrough), the kilter number for at least one are, namely (s, t),
decreases by a positive integer.

It is worth while to point out how the out-of-kilter algorithm generalizes
the method of § 3 for constructing a maximal flow from source s to sink t
that minimizes cost over all maximal flows. Here we suppose 1 = 0, a > 0,
as in § 3. Now add the arc (t, s) to the network with l(t, s) = 0, c(t, s) large,
and a(t, s) negatively large. If we start with the zero circulation and all
node numbers zero, as in § 3, then the only out-of-kilter are is (t, s) (it is in

t state y1) and hence it remains the only out-of-kilter arc throughout the

e computation. Then the origin for the labeling process is always s, the
terminal t, and the labeling rules, flow change, and node number change all
reduce to those of § 3.

IV1

e References

g
is 1. R. Bellman, "On a Routing Problem," Quart. Appl. Math. 16 (1958),

87-90.
y 2. C. Berge, Theorie des Graphes et ses Applications, Dunod, Paris, 1958.

3. R. G. Busacker and P. J. Gowen, "A Procedure for Determining a
Family of Minimal-Cost Network Flow Patterns," O.R.O. Technical

- 4. Paper 15, 1961.
4. A. S. Cahn, "The Warehouse Problem," Bull. Amer. Math. Soc. 54 (1948),

1073 (abstract).
- 5. T. F. Cartaino and S. E. Dreyfus, "Application of Dynamic Programming
s to the Airplane Minimum Time-to-climb Problem," Aero. Engr. Rev.

Y2 16 (1957), 74-77.

6. A. Charnes and W. W. Cooper, "Generalizations of the Warehousing
Model," Op. Res. Quart. 6 (1955), 131-172. i

169

FLIGHT TRANSPORTATION LABORATORY
DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
CAMBRIDGE, MASSACHUSETTS 02139

20 May 1976

MEMORANDUM

Re: OKF Control Cards

From: Bob Mann, x3-7571

The new control cards for OKF runs are now as follows:

// 'program name',CLASS=B,REGION=128K
/*MITID USER=(M3865,Pnnnnn,, ,password)
/*MAIN TIME=time, LINES=lines,CARDS=cards
/*SRI LOW
// EXEC PGM=GO
//STEPLIB DD DSNAME=U.M3865.Pl1724.OKFLOAD.COMMAND,DISP=SHR
//FT05FOO DD DDNAME=SYSIN
//FT06FOOl DD SYSOUT=A
//FT07FOO1 DD SYSOUT=B
//SYSIN DD *

DatalDeck

i *

This where:

'program name' is any identifying name

Pnnnnn is your programmer number

password is your password

time is the estimated CPU run time in minutes (usually less-than 1)

lines is the estimated number of lines output (usual
the number of arcs per job step) in thousands

ly less than 2 times

cards are the estimated number of cards output in hundreds (only used
if the OUTPUT PUNCH option is to be used)

&

Flig'ht Transportation

Laboratory,M.I.T.

Control Cards for Out-of-Kilter Runs

// 'name ' ,REGION=128K,CLASS=B
/*MILTID USER=(M3865,progno, pa s sword)
/*MAIN TIME=time ,LINES=lines ,CARDS=cards
/*SRI LOW
// EXEC FORG,PROG='U.M3865.8856.LOADOK.OK(OKF)'
//G.SYSIN DD *

data cards

name= your name
progno= your programmer number
time= estimated time for the ru.n in minutes
lines= number of lines printed in thousands
cards= number of cards punched in hundreds

OKF currently can handle up to 500 nodes and 2000 arcs.

MIT Flight Transportation Laboratory

IBM /360 OUT OF KILTER NETWORK FLOW ROUTINE

DESCRIPTION FOR THE USER

Table of Contents

Section Page

1. Introductory Notes 2

2. Formulation 3

3. Data 4

4. Control Cards for Standard Run 6

5. Example 7

6. Jobs with More Than One Run 9

7. Save and Alter Run 10

8. Other Program Options 12

9. Output 14

10. Program Messages 19

11. Program Operation Notes 22

12. Structure of the Program 25

13. Compiling the Program 27

1. Introductory Notes

This writeup is intended for the user of the "Out of Kilter"

program which has been written for the IBM system 360 model 65.

The program has been successfully run at the MIT Computation

Center.

Both the program and the writeup are based on the SHARE

routine RS OKFl and its corresponding writeup.

The FORTRAN subprograms are written in FORTRAN IV (G level).

The assembly language subprograms use the extended mnemonic

branching instruction codes and the macros SAVE and RETURN,.

3

2. Formulation

A Computer routine for the solution of "network flow"

programs -- problems of finding those flows of an homogeneous

commodity through a capacitated network minimizing the sum of

the linear costs of flow through each arc -- is herein described.

The computational algorithm employed is described in the book

"Flows in Networks",L.R. Ford and D.R. Fulkerson, Princeton

University Press, 1962, pp.162-169.

The network in question consists of nodes designated by

i or j, and a certain collection of arcs joining pairs of

nodes. The arc 1j is thought of as directed from i to j.

With each arc in the network is associated the following

four integer quantities.

cij the cost of one unit of flow from i to j along

arc ij;

uij the upper bound on the amount of flow along the

arc iJ;
lij the lower bound on the amount of flow along the

arc 13;

Xij the quantity of flow along the arc ij

The network flow problem is that of determining x.. (for all
1J

arcs ij of the network) such that

(1) . x.. u. . (all arcs ij),

(2) the net flow into any node (generally zero)'remains

fixed throughout the solution of the problem, and

(3) c. .x .1. is minimized
3J IJ

l J

3. Data

Data Format

A node may be represented by any combination of six Hollerith

characters (at least one of which is neither zero nor blank);

i and j below are such combinations. (Note that for node names

a blank is a character, and different from a zero.) The numerical

data above are represented as right-justified integers in the

appropriate fields. All data pertaining to one arc are entered

on one card as follows:

l..6 7..12 13..18 19,20 21..30 31..40 41..50 51..60 61..8(

blank i j free c.. u.. e.. x.. free
to use 1J 1J to usE

Leading zeros in the numeric fields need not be entered, nor

need any figures where zero is desired. -Node names must be

left justified and must differ in the first four characters.

Of course, fields 7-50 contain constants for the stated problem.

Entry of the "x.." is optional,constituting only an initial guess
1J

at the solution.

An optional initial set of node prices 17. may be entered. These

are entered one per card as follows:

1 .. 6 7 .. 12 13 ... 20 21... 30 31 80

blank i free to 17. free to use
use

Assembly of Data

The data just described is put together in the following way:

1) All arcs ij having a given first node i must be

adjacent in the deck. (No other requirement on their order

is made.)

5

2) The arc cards are preceded by two cards, the first

being the title card and the second bearing the word "ARCS"

in the field 1-4. The title card should be blank in column

1 and may have any Hollerith punches in columns 2-80.

3) If no node prices are given, the arc cards are followed

by a card bearing "END" in 1-3.

4) If node prices are given,the arcs are followed by a

card bearing "NODES" in 1-5; the node cards follow this, and

all the cards are followed by the END card of (3).

4. Control Cards for Standard Run

Input, computation, and output are effected by control

cards whose punching in the field 1-12 controls the operation

of the routine. Punching always begins in column 1, and there

is one blank between English words. The first card of the

deck which follows the program deck must be the control card

READY.

Following the "READY" card must be one of the two control

cards

CARDS or TAPE.

If "TAPE", the assembled data described in the previous section

should be on the reserved input tape. If "CARDS", the

assembled data should immediately follow this control card.

.Next may be placed any combination of the three output

control cards

OUTPUT TAPE

OUTPUT PRINTER

OUTPUT PUNCH

which will cause the types of output described in Section 8. At

least one OUTPUT control card must be included in the data set.

Next is placed the card

COMPUTE

which causes computation to begin.

The last card in the deck must be the control card

PAUSE

which terminates the job.

7

5'. Example

The example which follows is a modification of the one given

in the book " Flows In Networks", L.R. Ford and D.R. Fulkerson,

Princeton University Press, 1962, pp.123-127. Costs and bounds

for the arcs can be found in the data listing on the next page.

Since the cost on the arc T S is very low (negative) compared

to the costs on the other arcs, the routine finds the maximal

flow that minimizes costs from S to T.

READY
CARDS

F.
ARCS

AND

S
S
S
X1
X2
X2
X2
X2
X2
X3
X3
X4
X4
X5
X6
X6
X7
X7
X8
X8
X9
T

END
OUTPUT PRINTER
OUTPUT TAPE
COMPUTE
PAUSE

F. EXAMPLE

X1
X2
X3
X2
X4
X3
X4
X5
X7
X 5
X8
X6
X7
X7
X7
T
X9
T
X7
X9
T
S

1

3
6
8
2
2
2
1
3
8
1
3
9
8
5
1
2
1
4
2
3
3

-10000

50
30
15
50
25
15
45
10
15
10
20
90
10
60
10
10
10
80
20
10
10
85

t

35
0
0
0
0

- 0
0

10
0
0
0
0
0
0
7
0
0
0
0
0
0

25

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

6. Jobs with More than One Run.

The control card setup described in Section 3 applies to

jobs with only one run. By a "job", we mean all that is

done in one pass at the computer; that is, any work that

can be done without manual interference with the computer

and, in addition, without inputting the program instructions

into the computer more than once. By a "run", we mean that

which is involved in the solution of one problem.

For multiple run jobs, the standard input for each run

is as described in Section 3 with the "PAUSE" card removed.

Runs may be stacked one after another. Only one "PAUSE" card

may be used, and it is always placed after the "COMPUTE" card

of the final run.

Each run begins with a "READY" card or a "SAVE" card as

described in Section/. Each run ends with a."COMPUTE" card.

The job ends with a "PAUSE" card.

7. Save and Alter Run

In Section 3, the standard run beginning with the " READY"

card was described. In Section 5, it was noted that these

runs may be stacked, one after another. Frequently it is

desired to execute a run in which only relatively few c..,
1J

u.. or /.. are changed, but in which the arc configuration

remains the same. In this event, a "Save and Alter" precedure

may be followed. A "Save and Alter" run may be any run except

the first. The control card setup for this type of run is as

follows.

The first card of the run must be the control card

SAVE

which initiates a new run without destroying the results

of the previous run.

The second card is the title card, which may have any Hollerith

punches in it, except that column 1 should be blank.

Next are placed the "OUTPUT" cards as mentioned in Section 3

and described in Section 8.

Next are placed any number of "ALTER" cards. Each "ALTER"

card has the following format:

1.. .6 7..12 13..18 19,20 21..30 31..40 41..50 51..60 61..80

ALTER i j n. . c.. U.. . f.. free to
1) 1J 1J IJ - J use

i and j are the source and sink nodes of an arc which is in

core storage; that is, one which was used on the preceding

"READY" run. n.. may be left blank if there is only one arc

ii. If there is more than one arc ij, then n. . gives the number

of this arc as to whether it was the 1st, 2nd, 3rd, etc. arc 13

which was read into memory in the applicable "READY" run. c. ., u. .

and e. are the new values of these same quantities for this arc.

afij is usually zero (or blank). It is the change in the flow

out of node i and into node j. Note that inputting a new x.. is
1J

meaningless, since x.. on input is a guess, and guessing a different
1J

value of x.. on an alter run would only upset the conservation of
1J

flow from the nodes. Hence inputting a non-zero af.. is a means
1J

of deliberately upsetting the flow conservation. It will change

x.. to x.. +&f...
1J 1J 1J

The last card of the run must be the control card

COMPUTE

which causes computation to begin.

Note that any number of "Save and Alter" runs may follow

one "READY" run. The effects of each "Save and Alter" are

cumulative.

The program also allows "ALTER" cards to be placed after

the "OUTPUT" cards and before the "COMPUTE" card on a "READY"

run. This "Ready and Alter" run is useful when data is on

tape and a few changes in the value of c, u, and e are needed

before the run is to be executed.

8. Other Program Options

In the standard run, the program requires that every node

be a first node for some arc and be a second node for some

other arc. This is the standard network problem. Another

type of problem allows arcs to end at nodes at which no arcs begin.

These arcs are desginated by the program as "dead end arcs."

Also we may have nodes on which no arc terminates. The type

of problem for which the requirement that each node begin some

arc and end some arc is not enforced by the program is designated

a "transportation" problem.

The reserved.input tape may have data for several jobs stacked

on it. There are no ends of file on this tape except at the end

of all data; the program knows when it is at the end of the data

for one run by sensing the "END" card record. In certain cases,

it may be desirable to pass over some data packages while pro-

cessing a job. In this event, the control card "SKIP" is used.

The general "READY" type run is now described.

The first card must be the control card

READY.

An optional card which must follow the "READY" card if this

is a transportation problem, is the control card

TRANSPORTATION.

Also optional is the control card

SKIP

which is used to cause the reserved input tape to skip one

package of assembled data. As many "SKIP" cards are used as

are needed to skip the desired number of packages of assembled

data. The "SKIP" cards and the "TRANSPORTATION" card may be in

any order immediately following the "READY" card.

Following the above cards must be one of the two control cards

CARDS or TAPE.

These cards are as described in Section 3.

The data package follows the "CARDS" control card. Following

the data package, or the control card "TAPE" where there is

no data package with the control cards, may be an optional title

card. If this is included, it supersedes the title card on the

data package.

Next may be placed any number of "OUTPUT" cards as described

in Section 8.

Next may be placed any number of "ALTER" cards as described

in Section 6.

The last card in the run must be the control card

COMPUTE

which causes computation to begin.

9. Output

The type of output is controlled by one or more of four control

cards. The four control cards are

a) OUTPUT PRINTER
b) OUTPUT TAPE
c) OUTPUT PUNCH
d) OUTPUT NODES

The "OUTPUT PRINTER" control card causes output to be written

on the system output device.This output is written for printing

on the peripheral printer under program control. The system

output device is denoted in the program by the symbol "KO", and

KO has the value 6 in the version of the program submitted.

The data for each arc are printed horizontally on the page. The

data for one arc, ij, are printed in the following order:

1) node name i

2) node name j
3) c.., the unit cost of arc ij

4) u. ., the upper bound of the quantity of flow
1J

through arc ij

5) eij,the lower bound of the qunatity of flow

through arc ij

6) x.., the quantity of flow in the arc 19

7) "FLOW" = c. . x. ., the total cost of x. . units
1J IJ IJ

at the cost c..
1J

8) Ir., the node price of node i

9) rT . the node price of node j
J

10) -. ., the quantity 17.+ c. . -TT.
1 1J J

11) The letter "K", the letter "N" or nothing.

The letter "K" is printed if all the arcs

are in kilter. The letter "N" is printed

if this arc could not be brought into kilter,

indicating that the problem has

no feasible solution. Nothing is

printed in all other cases.

The "OUTPUT TAPE" control card causes output to be written

on the reserved output tape. This output may be printed

peripherally using single space (or double space) control.

It may also be punched peripherally, and the cards gotten

thereby will be substantially the same as the cards gotten

from the "OUTPUT PUNCH" option described below. The information

from the "OUTPUT TAPE" option is the same as that from the "OUTPUT

PRINTER" option, except that items 8), 9), and 10), are not output.

This output is compatible with the input "TAPE" option.

The "OUTPUT PUNCH" option gives items 1) through 7) on the

on-line punch. This option is generally very time consuming

except on short problems.

Any of the above three options may be used in combination

on any one problem. At least one OUTPUT control card must be

included in each data set.

The "OUTPUT NODES" option will output a list of node prices

in addition to the arc information on the tape or punch options.

This option will have no effect on the printer output option.

All of the output on the reserved output tape and on the

punch is compatible with the input to the problem. The "OUTPUT

PRINTER" output is not compatible with the input.

In addition to the above, all control card information is

written on the peripheral printer device, with the execption of the

16

"COMPUTE" control card for which is substituted a count of

the arcs and the nodes. The messages in Section 9 are all

written on the system output device also.

On the following two pages are shown the "OUTPUT PRINTER" results

of the example given in Section 4. "Flow" is c.. x... "Total system
. 1J 1J

contribution" is the optimal value of the objective function

2c.. x . Note that the first pag e contains information

that would be on the system output device regardless of whether

"OUTPUT PRINTER" is requested.

READY

CARDS

F. AND F. EXAMPLE 1

ARCS

OUTPUT PRINTER

OUTPUT TAPE

NO OF ARCS= 22 NO OF NODLS=

THIS RUN OUTPUT TO TAPE

11 _

F.
ARCS

S
S
S
X I
X I
X2
X2
X2
X2
X3
X3
X4
X4
X5
X6
X6
X7
X7
X8
X8
X9
T

AND F. EXAMPLE 1
COST

^-

3
6
8
2
2
2
1
3
8
1
3
9
8
5
1
2
1
4
2
3
3

-10000

END

TOTAL SYSTEM CONTRIBUTION =

NO UF BREAKTHRUS= 12, NO OF NONBREAKTHRUS=
NO OF NUDES FROM WHICH LABELING WAS DONE= 131

11, NO OF X CHANGES=

PAUSE

RESERVED TAPE HAS BEEN WRITTEN

UPPER LOWER P12 CBARFLOW

150
120
120
50
50
30

5
30

120
10
60

180
80

100
10
20

0
300

40
0
0

-850000

P 11

13
13
13
17
17
19
19
19
19
24
24
20
20
25
29
29
30
30
28
28
31
34

-1
0

-3
0
-1
-3

0
-3
-3

0
-1

0
-2

0
0

-3
0
0
0
0
0

-9979

-848525

19

10. Program Messages

One exception to the previous formats is permitted. If

the "READY" of "SAVE" card is not the first card in a run

this is not considered to be an error, but it is assumed

that these are comment cards. The contents of columns 7-72

of all cards in a run (if any) which precede the "READY" or

"SAVE" card plus columns 7-72 of the "READY" or "SAVE" card ,

itself are written on the system output device.Thus only columns

1-6 of the "READY" and the "SAVE" card are fixed in format, the

rest of the card may be used for comments. The above is also

applicable to the "PAUSE" card.

Below is given a list of comments which may be written on

the system output device.

Comments 3),4), 5), 6), 7), 8), 9), 12), and 13), denote

errors in data set-up that were caught by the- pre-processing

routines. Conditions 10) and 11) are considered to be errors

only if no "TRANSPORTATION" control card was present. Whenever

any of the above error conditions are present, the run is

terminated.

Comment 18) is given to convey information but is not regarded

as an error.

Comment 17) denotes a trivial infeasibility--in this case

the algorithm is not executed.

Comment 2) is written if the algorithm computation was started

but not finished. Comment 1) will be present when comment 2)

is written.

20

OFF LINE PROGRAM COMMENTS

1) OVERFLOW IN NODE PRICES

2) RUN TERMINATED AT ARC_

3) RUN TERMINATED DUE TO
ERRORS IN THE DATA

4) TOO MANY NODES IN THIS RUN

5) TOO MANY ARCS IN THIS RUN

6) CARD PUNCHING ERROR IN ARC
CARD NO.

7) CARD PUNCHING ERROR IN NODE
CARD NO.

8) THE ARC IN THE ABOVE ALTER
CARD IS NOT IN CORE

9) SOURCE NODES ARE NOT ADJACENT,
ARC

10) ARC IS A DEAD END ARC

11) NO ARC ENDS AT NODE

12) CARD NODE NOT IN ARCS

13) ILLEGAL CONTROL CARD(___
)

A node price is greater than
100,000,000. Costs should
be rescaled to run job.

Gives the arc at which run
was terminated due to the
reason stated above the
comment.

Self - explanatory

These comments are self-
explanatory

All arcs having similar first
nodes must be adjacent. This
comment gives an arc which is

separated from another arc
having the same first node.

The second node of this arc
does not appear anywhere as
a first node.

Self-explanatory

A node card appears on which
the node is not represented
in any arc.

The control card just read
into core is not able to be
interpreted by the program.

14) OUTPUT CONTROL CARD MISSING
OR OUR OF SEQUENCE

15) RESERVED TAPE HAS BEEN WRITTEN

16) NO RESERVED TAPE HAS BEEN
WRITTEN

17) ARC HAS LOWER BOUND GREAT-

ER THAN UPPER BOUND

18) NODE
FLOW=

NON-CONSERVATIVE, NET

19) THIS RUN OUTPUT TO TAPE

20) THIS RUN OUTPUT PUNCH

21) ARCS ARE OUT OF KILTER

Self - explanatory

This comment states whether
an output has been written on
a tape other than the system
device(as requested by an
" OUTPUT TAPE" control card).

Self-explanatory

Node has a finite net flow.
Negative flow denotes
source node.

These comments state where
the output to this run may
be found.

This run was completed, but
there is no feasible solution.
As many as 100 arcs are marked
with an "N" on the output.
"N" denotes that these arcs
are not in kilter.

22

11. Program Operation Notes

The I/o device reference numbers the program uses are

given below. Of course, these numbers may vary from install-

ation to installation.

I/O Device Reference Numbers

System input device - 5
all control cards and data
packages of the "CARDS" variety

System output device- 6
general editing output and
"OUTPUT PRINTER" option

Reserved input tape- 2
data packages of "TAPE" variety

Reserved output tape- 3
"OUTPUT TAPE" output

Card punch 7

The current capacity of the routine is 4800 nodes and 14200

arcs. The numbers can be changed, as indicated in section 13.

System control cards must be included in the deck whenever the

reserved tapes are used. The numbers 2 and 3 for the reserved

input and output tapes respectively were arbitrarily chosen. These

numbers can be changed, but they must correspond to the tape

numbers specified on the system control cards.

For a reserved output tape the following two control cards

must be included:

//G.FTO3FOOl DD UNIT=TAPE9,LABEL=(l,NL), X

// VOLUME=SER=tapeid,DCB=(RECFM=FB,LRECL=80,BLKSIZE=8000)

These cards should immediately precede the data. When the

job is run under the ASP system (at the MIT Computation Center),

the following card must also be included:

/*SETUP DDNAME=FT03FOO1,DEVICE=2400-9,ID=(tapeid,RING,SAVE,NL)

This card should immediately follow the job card. Note that

tapeid is an identification number assigned to the tape by

the MIT Computation Center. Three similar control cards must

be included whenever a reserved input tape is used, but FTO3

should be changed to FTO2. The OS/360 user's manual contains

more details concerning the use of reserved tapes.

The sequence of operations by the computer when it is

doing one problem is as follows:

First the "READY" card is looked for.

Next the data package is read.

Next comes the generation of the output. When outputting

is finished, the next run (if any) will be started.

The running time for this program, of course, varies con-

siderably from problem to problem. The input and output time

will be roughly proportional to the number of arcs. The

execution of the algorithm is the most variable part of the

problem, and its duration will depend on the type of problem

considered. At the end of "PRINTER" output, the number of

non-breakthroughs that were Gbtained are written. Also it

writes the "number of X changes," which is the sum of the

number of arcs in each breakthrough chain, and "number of

nodes from which labeling was done," which is the sum of the

number of nodes scanned on each labeling operation.

As an example, a problem was run that gave the following

statistics:

Number of arcs 414

Number of nodes 348

Number of breakthroughs 40

Number of non-breakthroughs 179

Number of X-changes 1915

Number of nodes from which 7550

labeling was done

The upper bounds on the elapsed times were:

Program compilation 2.2 min.

Data preprocessing 3.3 sec.

Algorithm computations 3.6 sec.

12. Structure of the Prog;am

A. The main routine (MAINE)

1) Sets up I/O device numbers and dimensions

2) Calls the preprocessing routines

PREDAT
ARCASY
MAKE JL
NODASY
READER
TRANSL

3) Calls the subroutine KILTER once for each arc.

4) Calls the postprocessing routine OUTPUT.

The routine also processes certain error and infeasiblility
conditions.

B. Subroutine PREDAT looks for a control card of the type
" READY", " SAVE", or "PAUSE". If it finds a "READY" card,
core is cleared and it looks for a control card of the
type "CARDS", "TAPE", "SKIP", or "TRANSPORTATION". After
if finds a "CARD" or "TAPE" control card it then looks for
the control card "ARCS" on the appropriate input device.

If a "SAVE" card is found the program returns control to
the main program and control is passed next to the subroutine
READER.

If a "PAUSE" card is found, the end-of-job instructions
are executed.

C. Subroutine ARCASY reads arc record after arc record into
storage until it comes to a record with "END" or one with
"NODES"

The lij, uig, ci., and x. information is stored in the

KL, KU, KC, and i X blocks, respectively. The BCD names
of the first nodes are stored in NN, and the BCD names
of the second nodes are stored in IJ.

D. Subroutine MAKEJL sets up lists in IL and JL storage.
These lists are cumulative counts of the arcs beginning
and ending at the nodes. The subroutine also replaces

the IJ names by numbers.

26

E. Subroutine NODASY reads in the node prices, if any.

F. Subroutine READER reads the OUTPUT, ALTER, and COMPUTE
control cards.

G. Subroutine TRANSL performs the final operations before
going to the Out of Kilter algorithm.

H. Subroutine KILTER tests the arc presented to see if it is
in kilter. If it is not in kilter, the assembly language
subroutine LABEL N is called. Depending on a flag set
in LABELN, the KILTER subroutine then calls either UPNOPR
OR BREAKT. When the arc has been brought into kilter or
when it is determined that the arc cannot be brought into
kilter, the control passes back to MAINE.

I. Subroutine OUTPUT generates the output required for the run.

J. Assembly language subroutine LABELN performs the labeling
operation. If a breakthrough results, the next subroutine called
by KILTER will be BREAKT. If a non-breakthrough results,
the next subroutine called by KILTER will be UPNOPR.

K. Assembly language subroutine BREAKT alters the quantities of
flow in the cycle generated by LABELN.

L. Assembly languate subroutine UPNOPR raises the node prices of
the labeled nodes by the appropriate amount.

M. Assembly language function NODENO returns the number of the
node that has the name presented.

N. Assembly language function LADDR returns the rightmost 16
bits of the word presented as a 32-bits FORTRAN integer.

0. Assembly language function LDECR returns the leftmost
16 bits of the word presented as a 32-bits FORTRAN integer.

P. Assembly language subroutine PLACE stores the rightmost 16 bits
of the first full-word argument in the leftmost 16 bits of the
second full-word argument.

4!.

13. Compiling the Program

In order to change the I/O device numbers of the program,

only the main routine need be compiled. The I/o device numbers

are the first items to be defined by the program. The symbols

assigned to the tapes are as follows:

KI
KO
KQ (l)
KQ (2)
KQ (3)

= System input device

= System output device
= Punch card device

= Reserved output tape

= Reserved input tape

In order to change the dimensions of the program, it is

necessary to change the dimensions of all the FORTRAN subpro-

grams and also the numeric values of the symbols KQ(4) and

KQ (5). The assembly language subprograms should not be changed

since they do not contain dimensions information.

Let a be the maximum of arcs allowed in the program and n

the maximum number of nodes allowed. Then the storage which

must be allocated for each symbol is as follows:

SYMBOL

KL
KC
KU
KX

NL
NN
NP
IJ
IL
JL

DIMENSION

a
a
a

a
n

2n
n
n

n +1
maximum
and a -

a

of n+l
2n - 1

Total storage for

Also KQ (4) = a,

above symbols 5a + 4n + max (a, 3n + 2).

and KQ(5) = n in the main routine.

A total of 108,000 full words were available for dimensions

when the program was last tested on the IBM 360 model 65 computer.

One can choose a and n to be any positive integers as long as

5a + 4n + max (a,3n + 2) : full-word storage available for dimensions.

61 -: ate S

NV AAC18cs

